@needle-tools/engine 4.12.0-next.de80571 → 4.12.0-next.f546e2b

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. package/CHANGELOG.md +1 -1
  2. package/components.needle.json +1 -1
  3. package/dist/generateMeshBVH.worker-iyfPIK6R.js +21 -0
  4. package/dist/{gltf-progressive-DZrY8VT6.min.js → gltf-progressive-BmSygnAC.min.js} +2 -2
  5. package/dist/{gltf-progressive-DgYz5BYa.js → gltf-progressive-DnLBuGK5.js} +24 -24
  6. package/dist/{gltf-progressive-DWcmTMCh.umd.cjs → gltf-progressive-Rs-ojtXy.umd.cjs} +1 -1
  7. package/dist/{loader.worker-Dip-PthR.js → loader.worker-DWzfDpAl.js} +4 -4
  8. package/dist/{needle-engine.bundle-S3PalR7r.min.js → needle-engine.bundle-BcsvlMBI.min.js} +150 -151
  9. package/dist/needle-engine.bundle-Dw_P6rEZ.umd.cjs +1646 -0
  10. package/dist/{needle-engine.bundle-CbrIHiN8.js → needle-engine.bundle-qhXfGDpR.js} +8564 -8382
  11. package/dist/needle-engine.d.ts +108 -43
  12. package/dist/needle-engine.js +4 -4
  13. package/dist/needle-engine.min.js +1 -1
  14. package/dist/needle-engine.umd.cjs +1 -1
  15. package/dist/{postprocessing-DYDtB188.min.js → postprocessing-B5ksn9-G.min.js} +54 -54
  16. package/dist/{postprocessing-CMgoN5t5.umd.cjs → postprocessing-DZtb9Nnn.umd.cjs} +81 -81
  17. package/dist/{postprocessing-BTW9pD_s.js → postprocessing-__7s9wON.js} +450 -441
  18. package/dist/{three-DfMvBzXi.js → three-BCCkyCA5.js} +1 -7
  19. package/dist/{three-qj71I7J3.umd.cjs → three-Bf2NBxAw.umd.cjs} +2 -2
  20. package/dist/{three-B7CT31Bt.min.js → three-W7zWTcfP.min.js} +1 -1
  21. package/dist/{three-examples-CsW4_6LI.umd.cjs → three-examples-Dho7cuu4.umd.cjs} +4 -4
  22. package/dist/{three-examples-D1P7eEhn.min.js → three-examples-MsJjauyk.min.js} +10 -10
  23. package/dist/{three-examples-D1SK93ek.js → three-examples-y2GeYlze.js} +2 -20
  24. package/dist/{three-mesh-ui-C_uSB5dD.js → three-mesh-ui-3nSSizT4.js} +1 -1
  25. package/dist/{three-mesh-ui-LQ44s0AL.min.js → three-mesh-ui-CIez6qJQ.min.js} +1 -1
  26. package/dist/{three-mesh-ui-DpATDXwU.umd.cjs → three-mesh-ui-zsOOA5Pq.umd.cjs} +1 -1
  27. package/dist/{vendor-D0zoswDa.js → vendor-DMZcbVO1.js} +3707 -3527
  28. package/dist/vendor-sURMCFSI.min.js +1116 -0
  29. package/dist/{vendor-UCpFAwt1.umd.cjs → vendor-tyBvnMF-.umd.cjs} +39 -39
  30. package/lib/engine/codegen/register_types.js +0 -2
  31. package/lib/engine/codegen/register_types.js.map +1 -1
  32. package/lib/engine/debug/debug_console.js +403 -1
  33. package/lib/engine/debug/debug_console.js.map +1 -1
  34. package/lib/engine/engine_components.js +3 -3
  35. package/lib/engine/engine_components.js.map +1 -1
  36. package/lib/engine/engine_input.d.ts +5 -0
  37. package/lib/engine/engine_input.js +6 -0
  38. package/lib/engine/engine_input.js.map +1 -1
  39. package/lib/engine/engine_license.js +3 -9
  40. package/lib/engine/engine_license.js.map +1 -1
  41. package/lib/engine/engine_networking.js +5 -5
  42. package/lib/engine/engine_networking.js.map +1 -1
  43. package/lib/engine/engine_physics.js.map +1 -1
  44. package/lib/engine/engine_physics_rapier.js +1 -1
  45. package/lib/engine/engine_physics_rapier.js.map +1 -1
  46. package/lib/engine/engine_utils.d.ts +4 -1
  47. package/lib/engine/engine_utils.js +28 -4
  48. package/lib/engine/engine_utils.js.map +1 -1
  49. package/lib/engine/extensions/extensions.d.ts +29 -7
  50. package/lib/engine/extensions/extensions.js.map +1 -1
  51. package/lib/engine/webcomponents/WebXRButtons.js +13 -5
  52. package/lib/engine/webcomponents/WebXRButtons.js.map +1 -1
  53. package/lib/engine/webcomponents/needle menu/needle-menu.js +4 -5
  54. package/lib/engine/webcomponents/needle menu/needle-menu.js.map +1 -1
  55. package/lib/engine/webcomponents/needle-engine.ar-overlay.js +4 -0
  56. package/lib/engine/webcomponents/needle-engine.ar-overlay.js.map +1 -1
  57. package/lib/engine/webcomponents/needle-engine.js +1 -1
  58. package/lib/engine/webcomponents/needle-engine.js.map +1 -1
  59. package/lib/engine/xr/NeedleXRSession.d.ts +1 -1
  60. package/lib/engine/xr/NeedleXRSession.js +67 -24
  61. package/lib/engine/xr/NeedleXRSession.js.map +1 -1
  62. package/lib/engine/xr/TempXRContext.js +12 -2
  63. package/lib/engine/xr/TempXRContext.js.map +1 -1
  64. package/lib/engine/xr/usdz.js +6 -2
  65. package/lib/engine/xr/usdz.js.map +1 -1
  66. package/lib/engine-components/AlignmentConstraint.d.ts +1 -1
  67. package/lib/engine-components/AlignmentConstraint.js +1 -1
  68. package/lib/engine-components/Animation.d.ts +1 -1
  69. package/lib/engine-components/Animation.js +1 -1
  70. package/lib/engine-components/Animator.d.ts +1 -1
  71. package/lib/engine-components/Animator.js +1 -1
  72. package/lib/engine-components/AudioListener.d.ts +1 -1
  73. package/lib/engine-components/AudioListener.js +1 -1
  74. package/lib/engine-components/AudioSource.d.ts +1 -1
  75. package/lib/engine-components/AudioSource.js +1 -1
  76. package/lib/engine-components/Camera.d.ts +1 -1
  77. package/lib/engine-components/Camera.js +1 -1
  78. package/lib/engine-components/CharacterController.d.ts +6 -2
  79. package/lib/engine-components/CharacterController.js +6 -2
  80. package/lib/engine-components/CharacterController.js.map +1 -1
  81. package/lib/engine-components/Collider.d.ts +1 -1
  82. package/lib/engine-components/Collider.js.map +1 -1
  83. package/lib/engine-components/Component.d.ts +2 -1
  84. package/lib/engine-components/Component.js +3 -2
  85. package/lib/engine-components/Component.js.map +1 -1
  86. package/lib/engine-components/DragControls.js +3 -0
  87. package/lib/engine-components/DragControls.js.map +1 -1
  88. package/lib/engine-components/Joints.d.ts +14 -0
  89. package/lib/engine-components/Joints.js +14 -0
  90. package/lib/engine-components/Joints.js.map +1 -1
  91. package/lib/engine-components/LookAtConstraint.d.ts +1 -1
  92. package/lib/engine-components/LookAtConstraint.js +1 -1
  93. package/lib/engine-components/OrbitControls.d.ts +1 -1
  94. package/lib/engine-components/OrbitControls.js +1 -1
  95. package/lib/engine-components/Renderer.d.ts +6 -0
  96. package/lib/engine-components/Renderer.js +6 -0
  97. package/lib/engine-components/Renderer.js.map +1 -1
  98. package/lib/engine-components/RendererInstancing.js +5 -3
  99. package/lib/engine-components/RendererInstancing.js.map +1 -1
  100. package/lib/engine-components/SceneSwitcher.js +18 -14
  101. package/lib/engine-components/SceneSwitcher.js.map +1 -1
  102. package/lib/engine-components/SpectatorCamera.js +15 -7
  103. package/lib/engine-components/SpectatorCamera.js.map +1 -1
  104. package/lib/engine-components/SpriteRenderer.d.ts +2 -1
  105. package/lib/engine-components/SpriteRenderer.js +2 -1
  106. package/lib/engine-components/SpriteRenderer.js.map +1 -1
  107. package/lib/engine-components/api.d.ts +1 -0
  108. package/lib/engine-components/api.js +1 -0
  109. package/lib/engine-components/api.js.map +1 -1
  110. package/lib/engine-components/codegen/components.d.ts +0 -1
  111. package/lib/engine-components/codegen/components.js +0 -1
  112. package/lib/engine-components/codegen/components.js.map +1 -1
  113. package/lib/engine-components/timeline/SignalAsset.d.ts +1 -1
  114. package/lib/engine-components/timeline/SignalAsset.js +1 -1
  115. package/lib/engine-components/ui/Raycaster.d.ts +3 -2
  116. package/lib/engine-components/ui/Raycaster.js +3 -2
  117. package/lib/engine-components/ui/Raycaster.js.map +1 -1
  118. package/lib/engine-components/ui/RectTransform.d.ts +6 -0
  119. package/lib/engine-components/ui/RectTransform.js +6 -0
  120. package/lib/engine-components/ui/RectTransform.js.map +1 -1
  121. package/lib/engine-components/utils/LookAt.d.ts +2 -1
  122. package/lib/engine-components/utils/LookAt.js +2 -1
  123. package/lib/engine-components/utils/LookAt.js.map +1 -1
  124. package/lib/engine-components/web/CursorFollow.d.ts +1 -1
  125. package/lib/engine-components/web/CursorFollow.js +1 -1
  126. package/lib/engine-components/web/HoverAnimation.d.ts +1 -1
  127. package/lib/engine-components/web/HoverAnimation.js +1 -1
  128. package/lib/engine-components/web/ViewBox.d.ts +1 -1
  129. package/lib/engine-components/web/ViewBox.js +1 -1
  130. package/lib/engine-components/webxr/Avatar.js +2 -0
  131. package/lib/engine-components/webxr/Avatar.js.map +1 -1
  132. package/lib/engine-components/webxr/WebXR.js +18 -12
  133. package/lib/engine-components/webxr/WebXR.js.map +1 -1
  134. package/package.json +3 -3
  135. package/plugins/vite/poster-client.js +8 -1
  136. package/src/engine/codegen/register_types.ts +0 -2
  137. package/src/engine/debug/debug_console.ts +449 -1
  138. package/src/engine/engine_components.ts +4 -4
  139. package/src/engine/engine_input.ts +7 -0
  140. package/src/engine/engine_license.ts +3 -8
  141. package/src/engine/engine_networking.ts +5 -5
  142. package/src/engine/engine_physics.ts +3 -3
  143. package/src/engine/engine_physics_rapier.ts +1 -1
  144. package/src/engine/engine_utils.ts +23 -4
  145. package/src/engine/extensions/extensions.ts +30 -6
  146. package/src/engine/webcomponents/WebXRButtons.ts +15 -5
  147. package/src/engine/webcomponents/needle menu/needle-menu.ts +4 -5
  148. package/src/engine/webcomponents/needle-engine.ar-overlay.ts +6 -0
  149. package/src/engine/webcomponents/needle-engine.ts +2 -2
  150. package/src/engine/xr/NeedleXRSession.ts +78 -27
  151. package/src/engine/xr/TempXRContext.ts +12 -2
  152. package/src/engine/xr/usdz.ts +6 -1
  153. package/src/engine-components/AlignmentConstraint.ts +1 -1
  154. package/src/engine-components/Animation.ts +1 -1
  155. package/src/engine-components/Animator.ts +1 -1
  156. package/src/engine-components/AudioListener.ts +1 -1
  157. package/src/engine-components/AudioSource.ts +1 -1
  158. package/src/engine-components/Camera.ts +1 -1
  159. package/src/engine-components/CharacterController.ts +6 -2
  160. package/src/engine-components/Collider.ts +1 -1
  161. package/src/engine-components/Component.ts +5 -4
  162. package/src/engine-components/DragControls.ts +4 -0
  163. package/src/engine-components/Joints.ts +14 -0
  164. package/src/engine-components/LookAtConstraint.ts +1 -1
  165. package/src/engine-components/OrbitControls.ts +1 -1
  166. package/src/engine-components/Renderer.ts +6 -0
  167. package/src/engine-components/RendererInstancing.ts +6 -3
  168. package/src/engine-components/SceneSwitcher.ts +17 -17
  169. package/src/engine-components/SpectatorCamera.ts +21 -10
  170. package/src/engine-components/SpriteRenderer.ts +2 -1
  171. package/src/engine-components/api.ts +2 -1
  172. package/src/engine-components/codegen/components.ts +0 -1
  173. package/src/engine-components/timeline/SignalAsset.ts +1 -1
  174. package/src/engine-components/ui/Raycaster.ts +3 -2
  175. package/src/engine-components/ui/RectTransform.ts +6 -0
  176. package/src/engine-components/utils/LookAt.ts +2 -1
  177. package/src/engine-components/web/CursorFollow.ts +1 -1
  178. package/src/engine-components/web/HoverAnimation.ts +1 -1
  179. package/src/engine-components/web/ViewBox.ts +1 -1
  180. package/src/engine-components/webxr/Avatar.ts +4 -0
  181. package/src/engine-components/webxr/WebXR.ts +19 -11
  182. package/dist/generateMeshBVH.worker-mO20N_b8.js +0 -21
  183. package/dist/needle-engine.bundle-BGixCtrn.umd.cjs +0 -1647
  184. package/dist/vendor-BKGa4GE0.min.js +0 -1116
@@ -1,6 +1,6 @@
1
- import { Uniform$1 as u, Vector4 as de, Color as Q, Vector2 as p, CanvasTexture as Qi, RepeatWrapping as se, ShaderMaterial as T, NoBlending as z, WebGLRenderTarget as w, NearestFilter as P, EventDispatcher as wt, SRGBColorSpace as S, UnsignedByteType as Y, PerspectiveCamera as Be, BasicDepthPacking as W, REVISION as Pe, AlwaysDepth as Kt, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Pt, Vector3 as F, MeshDepthMaterial as Vi, LinearSRGBColorSpace as Je, NoColorSpace as tt, DepthTexture as Ce, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Oe, RGBAFormat as H, Scene as dt, Matrix4 as O, HalfFloatType as $, Data3DTexture as Ze, Loader as Et, LoadingManager as ve, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Wi, BackSide as Qe, DoubleSide as Ve, FrontSide as Yi, OrthographicCamera as Jt, Mesh as qt, Texture as qe, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Ki, GreaterDepth as Xi, GreaterEqualDepth as Zi, LessEqualDepth as ji, NeverDepth as Ji, Material as $t, BufferGeometry as ei, BufferAttribute as _e, RGFormat as qi, DepthFormat as It, Sphere as _i } from "./three-DfMvBzXi.js";
2
- import { Pass as $i } from "./three-examples-D1SK93ek.js";
3
- var er = "6.38.0", tr = class {
1
+ import { Uniform$1 as u, Vector4 as de, Color as Q, Vector2 as p, CanvasTexture as Qi, RepeatWrapping as se, ShaderMaterial as T, NoBlending as z, WebGLRenderTarget as w, NearestFilter as P, EventDispatcher as wt, SRGBColorSpace as S, UnsignedByteType as Y, PerspectiveCamera as Be, BasicDepthPacking as W, REVISION as Pe, AlwaysDepth as Kt, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Pt, Vector3 as F, MeshDepthMaterial as Vi, LinearSRGBColorSpace as Je, NoColorSpace as tt, DepthTexture as Ce, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Oe, RGBAFormat as H, Scene as dt, Matrix4 as O, HalfFloatType as $, Data3DTexture as Ze, Loader as Et, LoadingManager as ve, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Wi, BackSide as Qe, DoubleSide as Ve, FrontSide as Yi, OrthographicCamera as Jt, Mesh as qt, Texture as qe, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Ki, GreaterDepth as Xi, GreaterEqualDepth as Zi, LessEqualDepth as ji, NeverDepth as Ji, Material as $t, BufferGeometry as ei, BufferAttribute as _e, RGFormat as qi, DepthFormat as It, Sphere as _i } from "./three-BCCkyCA5.js";
2
+ import { Pass as $i } from "./three-examples-y2GeYlze.js";
3
+ var er = "6.38.2", tr = class {
4
4
  /**
5
5
  * Frees internal resources.
6
6
  */
@@ -321,6 +321,7 @@ gl_FragDepth=readDepth(vUv);
321
321
  super({
322
322
  name: "CopyMaterial",
323
323
  defines: {
324
+ COLOR_SPACE_CONVERSION: "1",
324
325
  DEPTH_PACKING: "0",
325
326
  COLOR_WRITE: "1"
326
327
  },
@@ -370,6 +371,17 @@ gl_FragDepth=readDepth(vUv);
370
371
  set depthPacking(e) {
371
372
  this.defines.DEPTH_PACKING = e.toFixed(0), this.needsUpdate = !0;
372
373
  }
374
+ /**
375
+ * Indicates whether output color space conversion is enabled.
376
+ *
377
+ * @type {Boolean}
378
+ */
379
+ get colorSpaceConversion() {
380
+ return this.defines.COLOR_SPACE_CONVERSION !== void 0;
381
+ }
382
+ set colorSpaceConversion(e) {
383
+ this.colorSpaceConversion !== e && (e ? this.defines.COLOR_SPACE_CONVERSION = !0 : delete this.defines.COLOR_SPACE_CONVERSION, this.needsUpdate = !0);
384
+ }
373
385
  /**
374
386
  * Color channel weights that modulate texels from the input buffer.
375
387
  *
@@ -900,7 +912,7 @@ gl_FragDepth=readDepth(vUv);
900
912
  ]), this.defines = /* @__PURE__ */ new Map(), this.uniforms = /* @__PURE__ */ new Map(), this.blendModes = /* @__PURE__ */ new Map(), this.extensions = /* @__PURE__ */ new Set(), this.attributes = V.NONE, this.varyings = /* @__PURE__ */ new Set(), this.uvTransformation = !1, this.readDepth = !1, this.colorSpace = Je;
901
913
  }
902
914
  };
903
- function Ut(e) {
915
+ function bt(e) {
904
916
  let t;
905
917
  if (e === 0)
906
918
  t = new Float64Array(0);
@@ -952,10 +964,10 @@ var si = class {
952
964
  generate(e, t) {
953
965
  if (e < 3 || e > 1020)
954
966
  throw new Error("The kernel size must be in the range [3, 1020]");
955
- const i = e + t * 2, r = t > 0 ? Ut(i).slice(t, -t) : Ut(i), a = Math.floor((r.length - 1) / 2), n = r.reduce((h, d) => h + d, 0), s = r.slice(a), o = [...Array(a + 1).keys()], l = new Float64Array(Math.floor(o.length / 2)), c = new Float64Array(l.length);
967
+ const i = e + t * 2, r = t > 0 ? bt(i).slice(t, -t) : bt(i), a = Math.floor((r.length - 1) / 2), n = r.reduce((h, d) => h + d, 0), s = r.slice(a), o = [...Array(a + 1).keys()], l = new Float64Array(Math.floor(o.length / 2)), c = new Float64Array(l.length);
956
968
  l[0] = s[0] / n;
957
969
  for (let h = 1, d = 1, v = o.length - 1; h < v; h += 2, ++d) {
958
- const A = o[h], g = o[h + 1], x = s[h], M = s[h + 1], C = x + M, E = (A * x + g * M) / C;
970
+ const A = o[h], m = o[h + 1], x = s[h], y = s[h + 1], C = x + y, E = (A * x + m * y) / C;
959
971
  l[d] = C / n, c[d] = E;
960
972
  }
961
973
  for (let h = 0, d = s.length, v = 1 / n; h < d; ++h)
@@ -1573,11 +1585,11 @@ var si = class {
1573
1585
  e ? t.layers.enable(0) : t.layers.disable(0);
1574
1586
  return this;
1575
1587
  }
1576
- }, m = {
1588
+ }, g = {
1577
1589
  SKIP: 9,
1578
1590
  SET: 30,
1579
1591
  ADD: 0,
1580
- ALPHA: 23,
1592
+ ALPHA: 1,
1581
1593
  AVERAGE: 2,
1582
1594
  COLOR: 3,
1583
1595
  COLOR_BURN: 4,
@@ -1609,39 +1621,40 @@ var si = class {
1609
1621
  SRC: 30,
1610
1622
  SUBTRACT: 31,
1611
1623
  VIVID_LIGHT: 32
1612
- }, cr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb,y.a),y.a*opacity);}", fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb)*0.5,y.a),y.a*opacity);}", hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.xy,xHSL.z));return mix(x,vec4(z,y.a),y.a*opacity);}", dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/b)),vec3(1.0),step(1.0,a));return mix(x,vec4(z,y.a),y.a*opacity);}", vr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(x,vec4(z,y.a),y.a*opacity);}", pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb,y.rgb),y.a),y.a*opacity);}", gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(abs(x.rgb-y.rgb),y.a),y.a*opacity);}", mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb/max(y.rgb,1e-12),y.a),y.a*opacity);}", Ar = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb-2.0*x.rgb*y.rgb),y.a),y.a*opacity);}", xr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=min(x.rgb,1.0);vec3 b=min(y.rgb,1.0);vec3 z=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(x,vec4(z,y.a),y.a*opacity);}", Dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(step(1.0,x.rgb+y.rgb),y.a),y.a*opacity);}", Tr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.x,xHSL.yz));return mix(x,vec4(z,y.a),y.a*opacity);}", wr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-y.rgb,y.a),y.a*opacity);}", Er = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(y.rgb*(1.0-x.rgb),y.a),y.a*opacity);}", Sr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb,y.rgb),y.a),y.a*opacity);}", Cr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(y.rgb+x.rgb-1.0,0.0,1.0),y.a),y.a*opacity);}", yr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb+y.rgb,1.0),y.a),y.a*opacity);}", Mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(2.0*y.rgb+x.rgb-1.0,0.0,1.0),y.a),y.a*opacity);}", Br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.xy,yHSL.z));return mix(x,vec4(z,y.a),y.a*opacity);}", Pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb*y.rgb,y.a),y.a*opacity);}", Ir = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-abs(1.0-x.rgb-y.rgb),y.a),y.a*opacity);}", Rr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,y.a*opacity);}", Ur = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(2.0*y.rgb*x.rgb,1.0-2.0*(1.0-y.rgb)*(1.0-x.rgb),step(0.5,x.rgb));return mix(x,vec4(z,y.a),y.a*opacity);}", br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 y2=2.0*y.rgb;vec3 z=mix(mix(y2,x.rgb,step(0.5*x.rgb,y.rgb)),max(y2-1.0,vec3(0.0)),step(x.rgb,y2-1.0));return mix(x,vec4(z,y.a),y.a*opacity);}", Fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(min(x.rgb*x.rgb/max(1.0-y.rgb,1e-12),1.0),y.rgb,step(1.0,y.rgb));return mix(x,vec4(z,y.a),y.a*opacity);}", Lr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.x,yHSL.y,xHSL.z));return mix(x,vec4(z,y.a),y.a*opacity);}", Or = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb-min(x.rgb*y.rgb,1.0),y.a),y.a*opacity);}", Nr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb;vec3 b=y.rgb;vec3 y2=2.0*b;vec3 w=step(0.5,b);vec3 c=a-(1.0-y2)*a*(1.0-a);vec3 d=mix(a+(y2-1.0)*(sqrt(a)-a),a+(y2-1.0)*a*((16.0*a-12.0)*a+3.0),w*(1.0-step(0.25,a)));vec3 z=mix(c,d,w);return mix(x,vec4(z,y.a),y.a*opacity);}", Hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return y;}", zr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb+y.rgb-1.0,0.0),y.a),y.a*opacity);}", Gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(max(1.0-min((1.0-x.rgb)/(2.0*y.rgb),1.0),0.0),min(x.rgb/(2.0*(1.0-y.rgb)),1.0),step(0.5,y.rgb));return mix(x,vec4(z,y.a),y.a*opacity);}", kr = /* @__PURE__ */ new Map([
1613
- [m.ADD, cr],
1614
- [m.AVERAGE, fr],
1615
- [m.COLOR, hr],
1616
- [m.COLOR_BURN, dr],
1617
- [m.COLOR_DODGE, vr],
1618
- [m.DARKEN, pr],
1619
- [m.DIFFERENCE, gr],
1620
- [m.DIVIDE, mr],
1621
- [m.DST, null],
1622
- [m.EXCLUSION, Ar],
1623
- [m.HARD_LIGHT, xr],
1624
- [m.HARD_MIX, Dr],
1625
- [m.HUE, Tr],
1626
- [m.INVERT, wr],
1627
- [m.INVERT_RGB, Er],
1628
- [m.LIGHTEN, Sr],
1629
- [m.LINEAR_BURN, Cr],
1630
- [m.LINEAR_DODGE, yr],
1631
- [m.LINEAR_LIGHT, Mr],
1632
- [m.LUMINOSITY, Br],
1633
- [m.MULTIPLY, Pr],
1634
- [m.NEGATION, Ir],
1635
- [m.NORMAL, Rr],
1636
- [m.OVERLAY, Ur],
1637
- [m.PIN_LIGHT, br],
1638
- [m.REFLECT, Fr],
1639
- [m.SATURATION, Lr],
1640
- [m.SCREEN, Or],
1641
- [m.SOFT_LIGHT, Nr],
1642
- [m.SRC, Hr],
1643
- [m.SUBTRACT, zr],
1644
- [m.VIVID_LIGHT, Gr]
1624
+ }, cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,src.a*opacity);}", hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=(dst.rgb+src.rgb)*0.5;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.xy,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", vr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/max(b,1e-9))),vec3(1.0),step(1.0,a));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=abs(dst.rgb-src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ar = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb/max(src.rgb,1e-9);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", xr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-2.0*dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb,1.0);vec3 b=min(src.rgb,1.0);vec3 c=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Tr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=step(1.0,dst.rgb+src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", wr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.x,a.yz));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Er = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Sr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=src.rgb*max(1.0-dst.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", yr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb+src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(2.0*src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.xy,b.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ir = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Rr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-abs(1.0-dst.rgb-src.rgb),0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,opacity);}", Ur = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=2.0*src.rgb*dst.rgb;vec3 b=1.0-2.0*(1.0-src.rgb)*(1.0-dst.rgb);vec3 c=mix(a,b,step(0.5,dst.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 c=mix(mix(src2,dst.rgb,step(0.5*dst.rgb,src.rgb)),max(src2-1.0,vec3(0.0)),step(dst.rgb,src2-1.0));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Lr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb*dst.rgb/max(1.0-src.rgb,1e-9),1.0);vec3 c=mix(a,src.rgb,step(1.0,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Or = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.x,b.y,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Nr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-min(dst.rgb*src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 d=dst.rgb+(src2-1.0);vec3 w=step(0.5,src.rgb);vec3 a=dst.rgb-(1.0-src2)*dst.rgb*(1.0-dst.rgb);vec3 b=mix(d*(sqrt(dst.rgb)-dst.rgb),d*dst.rgb*((16.0*dst.rgb-12.0)*dst.rgb+3.0),w*(1.0-step(0.25,dst.rgb)));vec3 c=mix(a,b,w);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", zr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return src;}", Gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", kr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=mix(max(1.0-min((1.0-dst.rgb)/(2.0*src.rgb),1.0),0.0),min(dst.rgb/(2.0*(1.0-src.rgb)),1.0),step(0.5,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Qr = /* @__PURE__ */ new Map([
1625
+ [g.ADD, cr],
1626
+ [g.ALPHA, fr],
1627
+ [g.AVERAGE, hr],
1628
+ [g.COLOR, dr],
1629
+ [g.COLOR_BURN, vr],
1630
+ [g.COLOR_DODGE, pr],
1631
+ [g.DARKEN, gr],
1632
+ [g.DIFFERENCE, mr],
1633
+ [g.DIVIDE, Ar],
1634
+ [g.DST, null],
1635
+ [g.EXCLUSION, xr],
1636
+ [g.HARD_LIGHT, Dr],
1637
+ [g.HARD_MIX, Tr],
1638
+ [g.HUE, wr],
1639
+ [g.INVERT, Er],
1640
+ [g.INVERT_RGB, Sr],
1641
+ [g.LIGHTEN, Cr],
1642
+ [g.LINEAR_BURN, Mr],
1643
+ [g.LINEAR_DODGE, yr],
1644
+ [g.LINEAR_LIGHT, Br],
1645
+ [g.LUMINOSITY, Pr],
1646
+ [g.MULTIPLY, Ir],
1647
+ [g.NEGATION, Rr],
1648
+ [g.NORMAL, br],
1649
+ [g.OVERLAY, Ur],
1650
+ [g.PIN_LIGHT, Fr],
1651
+ [g.REFLECT, Lr],
1652
+ [g.SATURATION, Or],
1653
+ [g.SCREEN, Nr],
1654
+ [g.SOFT_LIGHT, Hr],
1655
+ [g.SRC, zr],
1656
+ [g.SUBTRACT, Gr],
1657
+ [g.VIVID_LIGHT, kr]
1645
1658
  ]), ni = class extends wt {
1646
1659
  /**
1647
1660
  * Constructs a new blend mode.
@@ -1703,7 +1716,7 @@ var si = class {
1703
1716
  * @return {String} The blend function shader code.
1704
1717
  */
1705
1718
  getShaderCode() {
1706
- return kr.get(this.blendFunction);
1719
+ return Qr.get(this.blendFunction);
1707
1720
  }
1708
1721
  }, oi = class extends Qi {
1709
1722
  /**
@@ -1755,7 +1768,7 @@ var si = class {
1755
1768
  */
1756
1769
  constructor(e, t, {
1757
1770
  attributes: i = V.NONE,
1758
- blendFunction: r = m.NORMAL,
1771
+ blendFunction: r = g.NORMAL,
1759
1772
  defines: a = /* @__PURE__ */ new Map(),
1760
1773
  uniforms: n = /* @__PURE__ */ new Map(),
1761
1774
  extensions: s = null,
@@ -1992,7 +2005,7 @@ var si = class {
1992
2005
  (t instanceof w || t instanceof $t || t instanceof qe || t instanceof N) && this[e].dispose();
1993
2006
  }
1994
2007
  }
1995
- }, Qr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
2008
+ }, Vr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
1996
2009
  #ifdef USE_COLOR
1997
2010
  uniform vec3 color;
1998
2011
  #endif
@@ -2006,7 +2019,7 @@ outputColor=vec4(color*asciiCharacter,inputColor.a);
2006
2019
  #else
2007
2020
  outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2008
2021
  #endif
2009
- }`, Vr = class extends I {
2022
+ }`, Wr = class extends I {
2010
2023
  /**
2011
2024
  * Constructs a new ASCII effect.
2012
2025
  *
@@ -2022,7 +2035,7 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2022
2035
  color: i = null,
2023
2036
  inverted: r = !1
2024
2037
  } = {}) {
2025
- super("ASCIIEffect", Qr, {
2038
+ super("ASCIIEffect", Vr, {
2026
2039
  uniforms: /* @__PURE__ */ new Map([
2027
2040
  ["asciiTexture", new u(null)],
2028
2041
  ["cellCount", new u(new de())],
@@ -2109,14 +2122,14 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2109
2122
  LARGE: 3,
2110
2123
  VERY_LARGE: 4,
2111
2124
  HUGE: 5
2112
- }, Wr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2125
+ }, Yr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2113
2126
  uniform mediump sampler2D inputBuffer;
2114
2127
  #else
2115
2128
  uniform lowp sampler2D inputBuffer;
2116
2129
  #endif
2117
2130
  varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec4 sum=texture2D(inputBuffer,vUv0);sum+=texture2D(inputBuffer,vUv1);sum+=texture2D(inputBuffer,vUv2);sum+=texture2D(inputBuffer,vUv3);gl_FragColor=sum*0.25;
2118
2131
  #include <colorspace_fragment>
2119
- }`, Yr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Kr = [
2132
+ }`, Kr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Xr = [
2120
2133
  new Float32Array([0, 0]),
2121
2134
  new Float32Array([0, 1, 1]),
2122
2135
  new Float32Array([0, 1, 1, 2]),
@@ -2143,8 +2156,8 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2143
2156
  toneMapped: !1,
2144
2157
  depthWrite: !1,
2145
2158
  depthTest: !1,
2146
- fragmentShader: Wr,
2147
- vertexShader: Yr
2159
+ fragmentShader: Yr,
2160
+ vertexShader: Kr
2148
2161
  }), this.setTexelSize(e.x, e.y), this.kernelSize = te.MEDIUM;
2149
2162
  }
2150
2163
  /**
@@ -2170,7 +2183,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2170
2183
  * @type {Float32Array}
2171
2184
  */
2172
2185
  get kernelSequence() {
2173
- return Kr[this.kernelSize];
2186
+ return Xr[this.kernelSize];
2174
2187
  }
2175
2188
  /**
2176
2189
  * The blur scale.
@@ -2478,7 +2491,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2478
2491
  static get AUTO_SIZE() {
2479
2492
  return D.AUTO_SIZE;
2480
2493
  }
2481
- }, Xr = `#include <common>
2494
+ }, Zr = `#include <common>
2482
2495
  #ifdef FRAMEBUFFER_PRECISION_HIGH
2483
2496
  uniform mediump sampler2D inputBuffer;
2484
2497
  #else
@@ -2523,7 +2536,7 @@ gl_FragColor=vec4(l*mask);
2523
2536
  toneMapped: !1,
2524
2537
  depthWrite: !1,
2525
2538
  depthTest: !1,
2526
- fragmentShader: Xr,
2539
+ fragmentShader: Zr,
2527
2540
  vertexShader: ue
2528
2541
  }), this.colorOutput = e, this.luminanceRange = t;
2529
2542
  }
@@ -2768,7 +2781,7 @@ gl_FragColor=vec4(l*mask);
2768
2781
  initialize(e, t, i) {
2769
2782
  i !== void 0 && i !== Y && (this.renderTarget.texture.type = i, this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
2770
2783
  }
2771
- }, Zr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2784
+ }, jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2772
2785
  uniform mediump sampler2D inputBuffer;
2773
2786
  #else
2774
2787
  uniform lowp sampler2D inputBuffer;
@@ -2777,7 +2790,7 @@ uniform lowp sampler2D inputBuffer;
2777
2790
  #define WEIGHT_OUTER 0.0555555
2778
2791
  varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;float clampToBorder(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void main(){vec4 c=vec4(0.0);vec4 w=WEIGHT_INNER*vec4(clampToBorder(vUv00),clampToBorder(vUv01),clampToBorder(vUv02),clampToBorder(vUv03));c+=w.x*texture2D(inputBuffer,vUv00);c+=w.y*texture2D(inputBuffer,vUv01);c+=w.z*texture2D(inputBuffer,vUv02);c+=w.w*texture2D(inputBuffer,vUv03);w=WEIGHT_OUTER*vec4(clampToBorder(vUv04),clampToBorder(vUv05),clampToBorder(vUv06),clampToBorder(vUv07));c+=w.x*texture2D(inputBuffer,vUv04);c+=w.y*texture2D(inputBuffer,vUv05);c+=w.z*texture2D(inputBuffer,vUv06);c+=w.w*texture2D(inputBuffer,vUv07);w=WEIGHT_OUTER*vec4(clampToBorder(vUv08),clampToBorder(vUv09),clampToBorder(vUv10),clampToBorder(vUv11));c+=w.x*texture2D(inputBuffer,vUv08);c+=w.y*texture2D(inputBuffer,vUv09);c+=w.z*texture2D(inputBuffer,vUv10);c+=w.w*texture2D(inputBuffer,vUv11);c+=WEIGHT_OUTER*texture2D(inputBuffer,vUv);gl_FragColor=c;
2779
2792
  #include <colorspace_fragment>
2780
- }`, jr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends T {
2793
+ }`, Jr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends T {
2781
2794
  /**
2782
2795
  * Constructs a new downsampling material.
2783
2796
  */
@@ -2792,8 +2805,8 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
2792
2805
  toneMapped: !1,
2793
2806
  depthWrite: !1,
2794
2807
  depthTest: !1,
2795
- fragmentShader: Zr,
2796
- vertexShader: jr
2808
+ fragmentShader: jr,
2809
+ vertexShader: Jr
2797
2810
  });
2798
2811
  }
2799
2812
  /**
@@ -2813,14 +2826,14 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
2813
2826
  setSize(e, t) {
2814
2827
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
2815
2828
  }
2816
- }, Jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2829
+ }, qr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2817
2830
  uniform mediump sampler2D inputBuffer;uniform mediump sampler2D supportBuffer;
2818
2831
  #else
2819
2832
  uniform lowp sampler2D inputBuffer;uniform lowp sampler2D supportBuffer;
2820
2833
  #endif
2821
2834
  uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vec4 c=vec4(0.0);c+=texture2D(inputBuffer,vUv0)*0.0625;c+=texture2D(inputBuffer,vUv1)*0.125;c+=texture2D(inputBuffer,vUv2)*0.0625;c+=texture2D(inputBuffer,vUv3)*0.125;c+=texture2D(inputBuffer,vUv)*0.25;c+=texture2D(inputBuffer,vUv4)*0.125;c+=texture2D(inputBuffer,vUv5)*0.0625;c+=texture2D(inputBuffer,vUv6)*0.125;c+=texture2D(inputBuffer,vUv7)*0.0625;vec4 baseColor=texture2D(supportBuffer,vUv);gl_FragColor=mix(baseColor,c,radius);
2822
2835
  #include <colorspace_fragment>
2823
- }`, qr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ci = class extends T {
2836
+ }`, _r = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ci = class extends T {
2824
2837
  /**
2825
2838
  * Constructs a new upsampling material.
2826
2839
  */
@@ -2837,8 +2850,8 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
2837
2850
  toneMapped: !1,
2838
2851
  depthWrite: !1,
2839
2852
  depthTest: !1,
2840
- fragmentShader: Jr,
2841
- vertexShader: qr
2853
+ fragmentShader: qr,
2854
+ vertexShader: _r
2842
2855
  });
2843
2856
  }
2844
2857
  /**
@@ -2992,12 +3005,12 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
2992
3005
  for (const e of this.downsamplingMipmaps.concat(this.upsamplingMipmaps))
2993
3006
  e.dispose();
2994
3007
  }
2995
- }, _r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3008
+ }, $r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2996
3009
  uniform mediump sampler2D map;
2997
3010
  #else
2998
3011
  uniform lowp sampler2D map;
2999
3012
  #endif
3000
- uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 texel=texture2D(map,uv);outputColor=vec4(texel.rgb*intensity,max(inputColor.a,texel.a));}`, hi = class extends I {
3013
+ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv)*intensity;}`, hi = class extends I {
3001
3014
  /**
3002
3015
  * Constructs a new bloom effect.
3003
3016
  *
@@ -3017,7 +3030,7 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
3017
3030
  * @param {Number} [options.height=Resolution.AUTO_SIZE] - Deprecated. Use mipmapBlur instead.
3018
3031
  */
3019
3032
  constructor({
3020
- blendFunction: e = m.SCREEN,
3033
+ blendFunction: e = g.SCREEN,
3021
3034
  luminanceThreshold: t = 1,
3022
3035
  luminanceSmoothing: i = 0.03,
3023
3036
  mipmapBlur: r = !0,
@@ -3031,7 +3044,7 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
3031
3044
  resolutionX: h = c,
3032
3045
  resolutionY: d = f
3033
3046
  } = {}) {
3034
- super("BloomEffect", _r, {
3047
+ super("BloomEffect", $r, {
3035
3048
  blendFunction: e,
3036
3049
  uniforms: /* @__PURE__ */ new Map([
3037
3050
  ["map", new u(null)],
@@ -3238,13 +3251,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
3238
3251
  initialize(e, t, i) {
3239
3252
  this.blurPass.initialize(e, t, i), this.luminancePass.initialize(e, t, i), this.mipmapBlurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S));
3240
3253
  }
3241
- }, $r = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
3254
+ }, ea = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
3242
3255
  #ifdef PERSPECTIVE_CAMERA
3243
3256
  float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDepth=viewZToOrthographicDepth(viewZ,cameraNear,cameraFar);
3244
3257
  #else
3245
3258
  float linearDepth=depth;
3246
3259
  #endif
3247
- float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ea = class extends I {
3260
+ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ta = class extends I {
3248
3261
  /**
3249
3262
  * Constructs a new bokeh effect.
3250
3263
  *
@@ -3262,7 +3275,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3262
3275
  aperture: r = 0.015,
3263
3276
  maxBlur: a = 1
3264
3277
  } = {}) {
3265
- super("BokehEffect", $r, {
3278
+ super("BokehEffect", ea, {
3266
3279
  blendFunction: e,
3267
3280
  attributes: V.CONVOLUTION | V.DEPTH,
3268
3281
  uniforms: /* @__PURE__ */ new Map([
@@ -3273,7 +3286,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3273
3286
  ])
3274
3287
  });
3275
3288
  }
3276
- }, ta = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", ia = class extends I {
3289
+ }, ia = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", ra = class extends I {
3277
3290
  /**
3278
3291
  * Constructs a new brightness/contrast effect.
3279
3292
  *
@@ -3282,8 +3295,8 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3282
3295
  * @param {Number} [options.brightness=0.0] - The brightness factor, ranging from -1 to 1, where 0 means no change.
3283
3296
  * @param {Number} [options.contrast=0.0] - The contrast factor, ranging from -1 to 1, where 0 means no change.
3284
3297
  */
3285
- constructor({ blendFunction: e = m.SRC, brightness: t = 0, contrast: i = 0 } = {}) {
3286
- super("BrightnessContrastEffect", ta, {
3298
+ constructor({ blendFunction: e = g.SRC, brightness: t = 0, contrast: i = 0 } = {}) {
3299
+ super("BrightnessContrastEffect", ia, {
3287
3300
  blendFunction: e,
3288
3301
  uniforms: /* @__PURE__ */ new Map([
3289
3302
  ["brightness", new u(t)],
@@ -3349,16 +3362,16 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3349
3362
  setContrast(e) {
3350
3363
  this.contrast = e;
3351
3364
  }
3352
- }, ra = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", aa = class extends I {
3365
+ }, aa = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", sa = class extends I {
3353
3366
  /**
3354
3367
  * Constructs a new color average effect.
3355
3368
  *
3356
3369
  * @param {BlendFunction} [blendFunction] - The blend function of this effect.
3357
3370
  */
3358
3371
  constructor(e) {
3359
- super("ColorAverageEffect", ra, { blendFunction: e });
3372
+ super("ColorAverageEffect", aa, { blendFunction: e });
3360
3373
  }
3361
- }, sa = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", na = class extends I {
3374
+ }, na = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", oa = class extends I {
3362
3375
  /**
3363
3376
  * Constructs a new color depth effect.
3364
3377
  *
@@ -3367,7 +3380,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3367
3380
  * @param {Number} [options.bits=16] - The color bit depth.
3368
3381
  */
3369
3382
  constructor({ blendFunction: e, bits: t = 16 } = {}) {
3370
- super("ColorDepthEffect", sa, {
3383
+ super("ColorDepthEffect", na, {
3371
3384
  blendFunction: e,
3372
3385
  uniforms: /* @__PURE__ */ new Map([
3373
3386
  ["factor", new u(1)]
@@ -3403,7 +3416,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3403
3416
  setBitDepth(e) {
3404
3417
  this.bitDepth = e;
3405
3418
  }
3406
- }, oa = `#ifdef RADIAL_MODULATION
3419
+ }, la = `#ifdef RADIAL_MODULATION
3407
3420
  uniform float modulationOffset;
3408
3421
  #endif
3409
3422
  varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec2 ra=inputColor.ra;vec2 ba=inputColor.ba;
@@ -3412,7 +3425,7 @@ const vec2 center=vec2(0.5);float d=distance(uv,center)*2.0;d=max(d-modulationOf
3412
3425
  #else
3413
3426
  if(vActive>0.0){ra=texture2D(inputBuffer,vUvR).ra;ba=texture2D(inputBuffer,vUvB).ba;}
3414
3427
  #endif
3415
- outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, la = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", ua = class extends I {
3428
+ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ua = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", ca = class extends I {
3416
3429
  /**
3417
3430
  * Constructs a new chromatic aberration effect.
3418
3431
  *
@@ -3426,8 +3439,8 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, la
3426
3439
  radialModulation: t = !1,
3427
3440
  modulationOffset: i = 0.15
3428
3441
  } = {}) {
3429
- super("ChromaticAberrationEffect", oa, {
3430
- vertexShader: la,
3442
+ super("ChromaticAberrationEffect", la, {
3443
+ vertexShader: ua,
3431
3444
  attributes: V.CONVOLUTION,
3432
3445
  uniforms: /* @__PURE__ */ new Map([
3433
3446
  ["offset", new u(e)],
@@ -3488,13 +3501,13 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, la
3488
3501
  setOffset(e) {
3489
3502
  this.offset = e;
3490
3503
  }
3491
- }, ca = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
3504
+ }, fa = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
3492
3505
  #ifdef INVERTED
3493
3506
  vec3 color=vec3(1.0-depth);
3494
3507
  #else
3495
3508
  vec3 color=vec3(depth);
3496
3509
  #endif
3497
- outputColor=vec4(color,inputColor.a);}`, fa = class extends I {
3510
+ outputColor=vec4(color,inputColor.a);}`, ha = class extends I {
3498
3511
  /**
3499
3512
  * Constructs a new depth effect.
3500
3513
  *
@@ -3502,8 +3515,8 @@ outputColor=vec4(color,inputColor.a);}`, fa = class extends I {
3502
3515
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
3503
3516
  * @param {Boolean} [options.inverted=false] - Whether the depth should be inverted.
3504
3517
  */
3505
- constructor({ blendFunction: e = m.SRC, inverted: t = !1 } = {}) {
3506
- super("DepthEffect", ca, {
3518
+ constructor({ blendFunction: e = g.SRC, inverted: t = !1 } = {}) {
3519
+ super("DepthEffect", fa, {
3507
3520
  blendFunction: e,
3508
3521
  attributes: V.DEPTH
3509
3522
  }), this.inverted = t;
@@ -3542,12 +3555,12 @@ outputColor=vec4(color,inputColor.a);}`, fa = class extends I {
3542
3555
  GREEN: 1,
3543
3556
  BLUE: 2,
3544
3557
  ALPHA: 3
3545
- }, yt = {
3558
+ }, Mt = {
3546
3559
  DISCARD: 0,
3547
3560
  MULTIPLY: 1,
3548
3561
  MULTIPLY_RGB_SET_ALPHA: 2,
3549
3562
  MULTIPLY_RGB: 3
3550
- }, ha = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3563
+ }, da = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3551
3564
  uniform mediump sampler2D inputBuffer;
3552
3565
  #else
3553
3566
  uniform lowp sampler2D inputBuffer;
@@ -3574,7 +3587,7 @@ vec4 acc=vec4(0.0);for(int i=0;i<32;++i){vec4 kernel=kernel64[i];vec2 uv=step*ke
3574
3587
  #else
3575
3588
  vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel16[i];vec2 uv=step*kernel.xy+vUv;maxValue=max(texture2D(inputBuffer,uv),maxValue);uv=step*kernel.zw+vUv;maxValue=max(texture2D(inputBuffer,uv),maxValue);}gl_FragColor=maxValue;
3576
3589
  #endif
3577
- }}`, be = class extends T {
3590
+ }}`, Ue = class extends T {
3578
3591
  /**
3579
3592
  * Constructs a new bokeh material.
3580
3593
  *
@@ -3599,7 +3612,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
3599
3612
  toneMapped: !1,
3600
3613
  depthWrite: !1,
3601
3614
  depthTest: !1,
3602
- fragmentShader: ha,
3615
+ fragmentShader: da,
3603
3616
  vertexShader: ue
3604
3617
  }), t && (this.defines.FOREGROUND = "1"), this.generateKernel();
3605
3618
  }
@@ -3699,7 +3712,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
3699
3712
  setSize(e, t) {
3700
3713
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
3701
3714
  }
3702
- }, da = `#include <common>
3715
+ }, va = `#include <common>
3703
3716
  #include <packing>
3704
3717
  #ifdef GL_FRAGMENT_PRECISION_HIGH
3705
3718
  uniform highp sampler2D depthBuffer;
@@ -3750,7 +3763,7 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
3750
3763
  toneMapped: !1,
3751
3764
  depthWrite: !1,
3752
3765
  depthTest: !1,
3753
- fragmentShader: da,
3766
+ fragmentShader: va,
3754
3767
  vertexShader: ue
3755
3768
  }), this.uniforms.focalLength = this.uniforms.focusRange, e !== null && this.copyCameraSettings(e);
3756
3769
  }
@@ -3893,7 +3906,7 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
3893
3906
  const t = this.defines.PERSPECTIVE_CAMERA !== void 0;
3894
3907
  e instanceof Be ? t || (this.defines.PERSPECTIVE_CAMERA = !0, this.needsUpdate = !0) : t && (delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
3895
3908
  }
3896
- }, va = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3909
+ }, pa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3897
3910
  uniform mediump sampler2D inputBuffer;
3898
3911
  #else
3899
3912
  uniform lowp sampler2D inputBuffer;
@@ -3953,9 +3966,9 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
3953
3966
  toneMapped: !1,
3954
3967
  depthWrite: !1,
3955
3968
  depthTest: !1,
3956
- fragmentShader: va,
3969
+ fragmentShader: pa,
3957
3970
  vertexShader: ue
3958
- }), this.colorChannel = fe.RED, this.maskFunction = yt.DISCARD;
3971
+ }), this.colorChannel = fe.RED, this.maskFunction = Mt.DISCARD;
3959
3972
  }
3960
3973
  /**
3961
3974
  * The input buffer.
@@ -4129,7 +4142,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
4129
4142
  initialize(e, t, i) {
4130
4143
  i !== void 0 && i !== Y && (this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
4131
4144
  }
4132
- }, pa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
4145
+ }, ga = `#ifdef FRAMEBUFFER_PRECISION_HIGH
4133
4146
  uniform mediump sampler2D nearColorBuffer;uniform mediump sampler2D farColorBuffer;
4134
4147
  #else
4135
4148
  uniform lowp sampler2D nearColorBuffer;uniform lowp sampler2D farColorBuffer;
@@ -4143,7 +4156,7 @@ vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,colorFar.a);cocNearFar.x=min(
4143
4156
  #else
4144
4157
  vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,texture2D(farCoCBuffer,uv).g);cocNearFar=min(cocNearFar*scale,1.0);colorFar.a*=cocNearFar.y;
4145
4158
  #endif
4146
- vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, ga = /* @__PURE__ */ new F(), ma = class extends I {
4159
+ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, ma = /* @__PURE__ */ new F(), Aa = class extends I {
4147
4160
  /**
4148
4161
  * Constructs a new depth of field effect.
4149
4162
  *
@@ -4176,7 +4189,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4176
4189
  resolutionX: h = c || D.AUTO_SIZE,
4177
4190
  resolutionY: d = f || D.AUTO_SIZE
4178
4191
  } = {}) {
4179
- super("DepthOfFieldEffect", pa, {
4192
+ super("DepthOfFieldEffect", ga, {
4180
4193
  blendFunction: t,
4181
4194
  attributes: V.DEPTH,
4182
4195
  uniforms: /* @__PURE__ */ new Map([
@@ -4190,9 +4203,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4190
4203
  const v = this.cocMaterial;
4191
4204
  v.focusDistance = n, v.focusRange = s, this.blurPass = new pe({ resolutionScale: l, resolutionX: h, resolutionY: d, kernelSize: te.MEDIUM }), this.maskPass = new _(new vi(this.renderTargetCoC.texture));
4192
4205
  const A = this.maskPass.fullscreenMaterial;
4193
- A.colorChannel = fe.GREEN, this.maskFunction = yt.MULTIPLY_RGB, this.bokehNearBasePass = new _(new be(!1, !0)), this.bokehNearBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehNearFillPass = new _(new be(!0, !0)), this.bokehNearFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehFarBasePass = new _(new be(!1, !1)), this.bokehFarBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.bokehFarFillPass = new _(new be(!0, !1)), this.bokehFarFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.target = null;
4194
- const g = this.resolution = new D(this, h, d, l);
4195
- g.addEventListener("change", (x) => this.setSize(g.baseWidth, g.baseHeight)), this.bokehScale = o;
4206
+ A.colorChannel = fe.GREEN, this.maskFunction = Mt.MULTIPLY_RGB, this.bokehNearBasePass = new _(new Ue(!1, !0)), this.bokehNearBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehNearFillPass = new _(new Ue(!0, !0)), this.bokehNearFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehFarBasePass = new _(new Ue(!1, !1)), this.bokehFarBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.bokehFarFillPass = new _(new Ue(!0, !1)), this.bokehFarFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.target = null;
4207
+ const m = this.resolution = new D(this, h, d, l);
4208
+ m.addEventListener("change", (x) => this.setSize(m.baseWidth, m.baseHeight)), this.bokehScale = o;
4196
4209
  }
4197
4210
  set mainCamera(e) {
4198
4211
  this.camera = e, this.cocMaterial.copyCameraSettings(e);
@@ -4314,7 +4327,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4314
4327
  * @return {Number} The focus distance in world units.
4315
4328
  */
4316
4329
  calculateFocusDistance(e) {
4317
- return this.camera.getWorldPosition(ga).distanceTo(e);
4330
+ return this.camera.getWorldPosition(ma).distanceTo(e);
4318
4331
  }
4319
4332
  /**
4320
4333
  * Sets the depth texture.
@@ -4362,7 +4375,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4362
4375
  initialize(e, t, i) {
4363
4376
  this.cocPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.bokehNearBasePass.initialize(e, t, i), this.bokehNearFillPass.initialize(e, t, i), this.bokehFarBasePass.initialize(e, t, i), this.bokehFarFillPass.initialize(e, t, i), this.blurPass.initialize(e, t, Y), e.capabilities.logarithmicDepthBuffer && (this.cocPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTarget.texture.type = i, this.renderTargetNear.texture.type = i, this.renderTargetFar.texture.type = i, this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S, this.renderTargetNear.texture.colorSpace = S, this.renderTargetFar.texture.colorSpace = S, this.renderTargetMasked.texture.colorSpace = S));
4364
4377
  }
4365
- }, Aa = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", xa = class extends I {
4378
+ }, xa = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Da = class extends I {
4366
4379
  /**
4367
4380
  * Constructs a new dot screen effect.
4368
4381
  *
@@ -4372,7 +4385,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4372
4385
  * @param {Number} [options.scale=1.0] - The scale of the dot pattern.
4373
4386
  */
4374
4387
  constructor({ blendFunction: e, angle: t = Math.PI * 0.5, scale: i = 1 } = {}) {
4375
- super("DotScreenEffect", Aa, {
4388
+ super("DotScreenEffect", xa, {
4376
4389
  blendFunction: e,
4377
4390
  uniforms: /* @__PURE__ */ new Map([
4378
4391
  ["angle", new u(new p())],
@@ -4420,18 +4433,18 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4420
4433
  set scale(e) {
4421
4434
  this.uniforms.get("scale").value = e;
4422
4435
  }
4423
- }, Da = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
4436
+ }, Ta = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
4424
4437
  #define ONE_OVER_TWELVE 0.08333333333333333
4425
- varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, Ta = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", wa = class extends I {
4438
+ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, wa = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", Ea = class extends I {
4426
4439
  /**
4427
4440
  * Constructs a new FXAA effect.
4428
4441
  *
4429
4442
  * @param {Object} [options] - The options.
4430
4443
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
4431
4444
  */
4432
- constructor({ blendFunction: e = m.SRC } = {}) {
4433
- super("FXAAEffect", Da, {
4434
- vertexShader: Ta,
4445
+ constructor({ blendFunction: e = g.SRC } = {}) {
4446
+ super("FXAAEffect", Ta, {
4447
+ vertexShader: wa,
4435
4448
  blendFunction: e,
4436
4449
  defines: /* @__PURE__ */ new Map([
4437
4450
  ["EDGE_THRESHOLD_MIN", "0.0312"],
@@ -4485,7 +4498,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4485
4498
  set samples(e) {
4486
4499
  this.defines.set("SAMPLES", e.toFixed(0)), this.setChanged();
4487
4500
  }
4488
- }, Ea = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Sa = class extends I {
4501
+ }, Sa = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ca = class extends I {
4489
4502
  /**
4490
4503
  * Constructs a new gamma correction effect.
4491
4504
  *
@@ -4493,8 +4506,8 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4493
4506
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
4494
4507
  * @param {Number} [options.gamma=2.0] - The gamma factor.
4495
4508
  */
4496
- constructor({ blendFunction: e = m.SRC, gamma: t = 2 } = {}) {
4497
- super("GammaCorrectionEffect", Ea, {
4509
+ constructor({ blendFunction: e = g.SRC, gamma: t = 2 } = {}) {
4510
+ super("GammaCorrectionEffect", Sa, {
4498
4511
  blendFunction: e,
4499
4512
  uniforms: /* @__PURE__ */ new Map([
4500
4513
  ["gamma", new u(t)]
@@ -4507,7 +4520,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4507
4520
  CONSTANT_MILD: 2,
4508
4521
  CONSTANT_WILD: 3
4509
4522
  };
4510
- function Ca(e, t, i) {
4523
+ function Ma(e, t, i) {
4511
4524
  const r = /* @__PURE__ */ new Map([
4512
4525
  [rt, 1],
4513
4526
  [qi, 2],
@@ -4537,13 +4550,13 @@ var et = class extends it {
4537
4550
  * @param {Number} [type=UnsignedByteType] - The texture type.
4538
4551
  */
4539
4552
  constructor(e, t, i = rt, r = Y) {
4540
- super(Ca(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
4553
+ super(Ma(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
4541
4554
  }
4542
4555
  }, ya = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", We = "Glitch.Generated";
4543
4556
  function Z(e, t) {
4544
4557
  return e + Math.random() * (t - e);
4545
4558
  }
4546
- var Ma = class extends I {
4559
+ var Ba = class extends I {
4547
4560
  /**
4548
4561
  * Constructs a new glitch effect.
4549
4562
  *
@@ -4935,7 +4948,7 @@ var Ma = class extends I {
4935
4948
  const e = this.perturbationMap;
4936
4949
  e !== null && e.name === We && e.dispose();
4937
4950
  }
4938
- }, Ba = `#include <common>
4951
+ }, Pa = `#include <common>
4939
4952
  #include <dithering_pars_fragment>
4940
4953
  #ifdef FRAMEBUFFER_PRECISION_HIGH
4941
4954
  uniform mediump sampler2D inputBuffer;
@@ -4971,7 +4984,7 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
4971
4984
  toneMapped: !1,
4972
4985
  depthWrite: !1,
4973
4986
  depthTest: !1,
4974
- fragmentShader: Ba,
4987
+ fragmentShader: Pa,
4975
4988
  vertexShader: ue
4976
4989
  });
4977
4990
  }
@@ -5335,12 +5348,12 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
5335
5348
  const n = this.scene, s = this.camera, o = this.selection, l = s.layers.mask, c = n.background, f = e.shadowMap.autoUpdate, h = this.renderToScreen ? null : t;
5336
5349
  o !== null && s.layers.set(o.getLayer()), this.skipShadowMapUpdate && (e.shadowMap.autoUpdate = !1), (this.ignoreBackground || this.clearPass.overrideClearColor !== null) && (n.background = null), this.clearPass.enabled && this.clearPass.render(e, t), e.setRenderTarget(h), this.overrideMaterialManager !== null ? this.overrideMaterialManager.render(e, n, s) : e.render(n, s), s.layers.mask = l, n.background = c, e.shadowMap.autoUpdate = f;
5337
5350
  }
5338
- }, Pa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
5351
+ }, Ia = `#ifdef FRAMEBUFFER_PRECISION_HIGH
5339
5352
  uniform mediump sampler2D map;
5340
5353
  #else
5341
5354
  uniform lowp sampler2D map;
5342
5355
  #endif
5343
- void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new F(), bt = /* @__PURE__ */ new O(), Ia = class extends I {
5356
+ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new F(), Ut = /* @__PURE__ */ new O(), Ra = class extends I {
5344
5357
  /**
5345
5358
  * Constructs a new god rays effect.
5346
5359
  *
@@ -5363,7 +5376,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5363
5376
  * @param {Boolean} [options.blur=true] - Whether the god rays should be blurred to reduce artifacts.
5364
5377
  */
5365
5378
  constructor(e, t, {
5366
- blendFunction: i = m.SCREEN,
5379
+ blendFunction: i = g.SCREEN,
5367
5380
  samples: r = 60,
5368
5381
  density: a = 0.96,
5369
5382
  decay: n = 0.9,
@@ -5376,9 +5389,9 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5376
5389
  width: d = D.AUTO_SIZE,
5377
5390
  height: v = D.AUTO_SIZE,
5378
5391
  resolutionX: A = d,
5379
- resolutionY: g = v
5392
+ resolutionY: m = v
5380
5393
  } = {}) {
5381
- super("GodRaysEffect", Pa, {
5394
+ super("GodRaysEffect", Ia, {
5382
5395
  blendFunction: i,
5383
5396
  attributes: V.DEPTH,
5384
5397
  uniforms: /* @__PURE__ */ new Map([
@@ -5387,8 +5400,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5387
5400
  }), this.camera = e, this._lightSource = t, this.lightSource = t, this.lightScene = new dt(), this.screenPosition = new p(), this.renderTargetA = new w(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "GodRays.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "GodRays.Target.B", this.uniforms.get("map").value = this.renderTargetB.texture, this.renderTargetLight = new w(1, 1), this.renderTargetLight.texture.name = "GodRays.Light", this.renderTargetLight.depthTexture = new Ce(), this.renderPassLight = new Ge(this.lightScene, e), this.renderPassLight.clearPass.enabled = !1, this.blurPass = new pe({ kernelSize: f }), this.blurPass.enabled = c, this.copyPass = new Ne(this.renderTargetLight), this.copyPass.fullscreenMaterial.channelWeights = new de(0, 0, 0, 1), this.godRaysPass = new _(new pi(this.screenPosition));
5388
5401
  const x = this.godRaysMaterial;
5389
5402
  x.density = a, x.decay = n, x.weight = s, x.exposure = o, x.maxIntensity = l, x.samples = r;
5390
- const M = this.resolution = new D(this, A, g, h);
5391
- M.addEventListener("change", (C) => this.setSize(M.baseWidth, M.baseHeight));
5403
+ const y = this.resolution = new D(this, A, m, h);
5404
+ y.addEventListener("change", (C) => this.setSize(y.baseWidth, y.baseHeight));
5392
5405
  }
5393
5406
  set mainCamera(e) {
5394
5407
  this.camera = e, this.renderPassLight.mainCamera = e;
@@ -5571,7 +5584,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5571
5584
  */
5572
5585
  update(e, t, i) {
5573
5586
  const r = this.lightSource, a = r.parent, n = r.matrixAutoUpdate, s = this.renderTargetA, o = this.renderTargetLight;
5574
- r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n || bt.copy(r.matrix), r.matrix.copy(r.matrixWorld)), this.lightScene.add(r), this.copyPass.render(e, t), this.renderPassLight.render(e, o), r.material.depthWrite = !1, r.matrixAutoUpdate = n, a !== null && (n || r.matrix.copy(bt), a.add(r)), ut.setFromMatrixPosition(r.matrixWorld).project(this.camera), this.screenPosition.set(
5587
+ r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n || Ut.copy(r.matrix), r.matrix.copy(r.matrixWorld)), this.lightScene.add(r), this.copyPass.render(e, t), this.renderPassLight.render(e, o), r.material.depthWrite = !1, r.matrixAutoUpdate = n, a !== null && (n || r.matrix.copy(Ut), a.add(r)), ut.setFromMatrixPosition(r.matrixWorld).project(this.camera), this.screenPosition.set(
5575
5588
  Math.min(Math.max((ut.x + 1) * 0.5, -1), 2),
5576
5589
  Math.min(Math.max((ut.y + 1) * 0.5, -1), 2)
5577
5590
  );
@@ -5600,7 +5613,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5600
5613
  initialize(e, t, i) {
5601
5614
  this.blurPass.initialize(e, t, i), this.renderPassLight.initialize(e, t, i), this.copyPass.initialize(e, t, i), this.godRaysPass.initialize(e, t, i), i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, this.renderTargetLight.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTargetA.texture.colorSpace = S, this.renderTargetB.texture.colorSpace = S, this.renderTargetLight.texture.colorSpace = S));
5602
5615
  }
5603
- }, Ra = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Ua = class extends I {
5616
+ }, ba = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Ua = class extends I {
5604
5617
  /**
5605
5618
  * Constructs a new grid effect.
5606
5619
  *
@@ -5609,8 +5622,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5609
5622
  * @param {Number} [options.scale=1.0] - The scale of the grid pattern.
5610
5623
  * @param {Number} [options.lineWidth=0.0] - The line width of the grid pattern.
5611
5624
  */
5612
- constructor({ blendFunction: e = m.OVERLAY, scale: t = 1, lineWidth: i = 0 } = {}) {
5613
- super("GridEffect", Ra, {
5625
+ constructor({ blendFunction: e = g.OVERLAY, scale: t = 1, lineWidth: i = 0 } = {}) {
5626
+ super("GridEffect", ba, {
5614
5627
  blendFunction: e,
5615
5628
  uniforms: /* @__PURE__ */ new Map([
5616
5629
  ["scale", new u(new p())],
@@ -5687,7 +5700,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5687
5700
  const i = e / t, r = this.scale * (t * 0.125);
5688
5701
  this.uniforms.get("scale").value.set(i * r, r), this.uniforms.get("lineWidth").value = r / t + this.lineWidth;
5689
5702
  }
5690
- }, ba = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", Fa = class extends I {
5703
+ }, Fa = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", La = class extends I {
5691
5704
  /**
5692
5705
  * Constructs a new hue/saturation effect.
5693
5706
  *
@@ -5696,8 +5709,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5696
5709
  * @param {Number} [options.hue=0.0] - The hue in radians.
5697
5710
  * @param {Number} [options.saturation=0.0] - The saturation factor, ranging from -1 to 1, where 0 means no change.
5698
5711
  */
5699
- constructor({ blendFunction: e = m.SRC, hue: t = 0, saturation: i = 0 } = {}) {
5700
- super("HueSaturationEffect", ba, {
5712
+ constructor({ blendFunction: e = g.SRC, hue: t = 0, saturation: i = 0 } = {}) {
5713
+ super("HueSaturationEffect", Fa, {
5701
5714
  blendFunction: e,
5702
5715
  uniforms: /* @__PURE__ */ new Map([
5703
5716
  ["hue", new u(new F())],
@@ -5769,7 +5782,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5769
5782
  setHue(e) {
5770
5783
  this.hue = e;
5771
5784
  }
5772
- }, La = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Oa = class extends I {
5785
+ }, Oa = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Na = class extends I {
5773
5786
  /**
5774
5787
  * Constructs a new lens distortion effect.
5775
5788
  *
@@ -5785,7 +5798,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5785
5798
  focalLength: i = new p(1, 1),
5786
5799
  skew: r = 0
5787
5800
  } = {}) {
5788
- super("LensDistortionEffect", La, {
5801
+ super("LensDistortionEffect", Oa, {
5789
5802
  uniforms: /* @__PURE__ */ new Map([
5790
5803
  ["distortion", new u(e)],
5791
5804
  ["principalPoint", new u(t)],
@@ -5838,7 +5851,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5838
5851
  set skew(e) {
5839
5852
  this.uniforms.get("skew").value = e;
5840
5853
  }
5841
- }, Na = `#ifdef LUT_PRECISION_HIGH
5854
+ }, Ha = `#ifdef LUT_PRECISION_HIGH
5842
5855
  #ifdef GL_FRAGMENT_PRECISION_HIGH
5843
5856
  uniform highp sampler2D lut;
5844
5857
  #else
@@ -5847,7 +5860,7 @@ uniform mediump sampler2D lut;
5847
5860
  #else
5848
5861
  uniform lowp sampler2D lut;
5849
5862
  #endif
5850
- void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, Ha = class extends I {
5863
+ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, za = class extends I {
5851
5864
  /**
5852
5865
  * Constructs a new color grading effect.
5853
5866
  *
@@ -5855,8 +5868,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5855
5868
  * @param {Object} [options] - The options.
5856
5869
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
5857
5870
  */
5858
- constructor(e, { blendFunction: t = m.SRC } = {}) {
5859
- super("LUT1DEffect", Na, {
5871
+ constructor(e, { blendFunction: t = g.SRC } = {}) {
5872
+ super("LUT1DEffect", Ha, {
5860
5873
  blendFunction: t,
5861
5874
  uniforms: /* @__PURE__ */ new Map([["lut", new u(null)]])
5862
5875
  }), this.lut = e;
@@ -5920,7 +5933,7 @@ var le = class mi {
5920
5933
  a = t.data;
5921
5934
  return new mi(i, r, a);
5922
5935
  }
5923
- }, za = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;switch(t.operation){case O.SCALE_UP:r=v.expand(r,t.size);break}postMessage(r,[r.buffer]),close()});})();
5936
+ }, Ga = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;t.operation===O.SCALE_UP&&(r=v.expand(r,t.size)),postMessage(r,[r.buffer]),close()});})();
5924
5937
  `, Lt = /* @__PURE__ */ new Q(), He = class je extends Ze {
5925
5938
  /**
5926
5939
  * Constructs a cubic 3D lookup texture.
@@ -5951,7 +5964,7 @@ var le = class mi {
5951
5964
  const r = this.image;
5952
5965
  let a;
5953
5966
  return t <= r.width ? a = Promise.reject(new Error("The target size must be greater than the current size")) : a = new Promise((n, s) => {
5954
- const o = URL.createObjectURL(new Blob([za], {
5967
+ const o = URL.createObjectURL(new Blob([Ga], {
5955
5968
  type: "text/javascript"
5956
5969
  })), l = new Worker(o);
5957
5970
  l.addEventListener("error", (f) => s(f.error)), l.addEventListener("message", (f) => {
@@ -5983,8 +5996,8 @@ var le = class mi {
5983
5996
  else {
5984
5997
  const s = i.data, o = r.data, l = a, c = l ** 2, f = l - 1;
5985
5998
  for (let h = 0, d = l ** 3; h < d; ++h) {
5986
- const v = h * 4, A = s[v + 0] * f, g = s[v + 1] * f, x = s[v + 2] * f, M = Math.round(A + g * l + x * c) * 4;
5987
- s[v + 0] = o[M + 0], s[v + 1] = o[M + 1], s[v + 2] = o[M + 2];
5999
+ const v = h * 4, A = s[v + 0] * f, m = s[v + 1] * f, x = s[v + 2] * f, y = Math.round(A + m * l + x * c) * 4;
6000
+ s[v + 0] = o[y + 0], s[v + 1] = o[y + 1], s[v + 2] = o[y + 2];
5988
6001
  }
5989
6002
  this.needsUpdate = !0;
5990
6003
  }
@@ -6115,7 +6128,7 @@ var le = class mi {
6115
6128
  const n = new je(i, t);
6116
6129
  return n.name = "neutral", n;
6117
6130
  }
6118
- }, Ga = `uniform vec3 scale;uniform vec3 offset;
6131
+ }, ka = `uniform vec3 scale;uniform vec3 offset;
6119
6132
  #ifdef CUSTOM_INPUT_DOMAIN
6120
6133
  uniform vec3 domainMin;uniform vec3 domainMax;
6121
6134
  #endif
@@ -6174,11 +6187,11 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
6174
6187
  * @param {ColorSpace} [options.inputColorSpace=SRGBColorSpace] - The input color space.
6175
6188
  */
6176
6189
  constructor(e, {
6177
- blendFunction: t = m.SRC,
6190
+ blendFunction: t = g.SRC,
6178
6191
  tetrahedralInterpolation: i = !1,
6179
6192
  inputColorSpace: r = S
6180
6193
  } = {}) {
6181
- super("LUT3DEffect", Ga, {
6194
+ super("LUT3DEffect", ka, {
6182
6195
  blendFunction: t,
6183
6196
  uniforms: /* @__PURE__ */ new Map([
6184
6197
  ["lut", new u(null)],
@@ -6282,11 +6295,11 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
6282
6295
  }, Se = {
6283
6296
  FULL: 0,
6284
6297
  SINGLE: 1
6285
- }, ye = {
6298
+ }, Me = {
6286
6299
  DEFAULT: 0,
6287
6300
  KEEP_MAX_DEPTH: 1,
6288
6301
  DISCARD_MAX_DEPTH: 2
6289
- }, Mt = {
6302
+ }, yt = {
6290
6303
  DEPTH: 0,
6291
6304
  LUMA: 1,
6292
6305
  COLOR: 2
@@ -6313,18 +6326,18 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
6313
6326
  }, Ee = {
6314
6327
  DEFAULT: 0,
6315
6328
  ESKIL: 1
6316
- }, ka = {
6329
+ }, Qa = {
6317
6330
  DERIVATIVES: "derivatives",
6318
6331
  FRAG_DEPTH: "fragDepth",
6319
6332
  DRAW_BUFFERS: "drawBuffers",
6320
6333
  SHADER_TEXTURE_LOD: "shaderTextureLOD"
6321
- }, Qa = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
6334
+ }, Va = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
6322
6335
  #ifdef PREMULTIPLY
6323
6336
  outputColor=vec4(min(inputColor.rgb*noise,vec3(1.0)),inputColor.a);
6324
6337
  #else
6325
6338
  outputColor=vec4(noise,inputColor.a);
6326
6339
  #endif
6327
- }`, Va = class extends I {
6340
+ }`, Wa = class extends I {
6328
6341
  /**
6329
6342
  * Constructs a new noise effect.
6330
6343
  *
@@ -6332,8 +6345,8 @@ outputColor=vec4(noise,inputColor.a);
6332
6345
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SCREEN] - The blend function of this effect.
6333
6346
  * @param {Boolean} [options.premultiply=false] - Whether the noise should be multiplied with the input colors prior to blending.
6334
6347
  */
6335
- constructor({ blendFunction: e = m.SCREEN, premultiply: t = !1 } = {}) {
6336
- super("NoiseEffect", Qa, { blendFunction: e }), this.premultiply = t;
6348
+ constructor({ blendFunction: e = g.SCREEN, premultiply: t = !1 } = {}) {
6349
+ super("NoiseEffect", Va, { blendFunction: e }), this.premultiply = t;
6337
6350
  }
6338
6351
  /**
6339
6352
  * Indicates whether noise will be multiplied with the input colors prior to blending.
@@ -6364,7 +6377,7 @@ outputColor=vec4(noise,inputColor.a);
6364
6377
  setPremultiplied(e) {
6365
6378
  this.premultiply = e;
6366
6379
  }
6367
- }, Wa = `#include <packing>
6380
+ }, Ya = `#include <packing>
6368
6381
  #include <clipping_planes_pars_fragment>
6369
6382
  #ifdef GL_FRAGMENT_PRECISION_HIGH
6370
6383
  uniform highp sampler2D depthBuffer;
@@ -6389,7 +6402,7 @@ float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);
6389
6402
  #else
6390
6403
  float viewZ=orthographicDepthToViewZ(depth,cameraNear,cameraFar);
6391
6404
  #endif
6392
- float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Ya = `#include <common>
6405
+ float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Ka = `#include <common>
6393
6406
  #include <morphtarget_pars_vertex>
6394
6407
  #include <skinning_pars_vertex>
6395
6408
  #include <clipping_planes_pars_vertex>
@@ -6423,8 +6436,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6423
6436
  toneMapped: !1,
6424
6437
  depthWrite: !1,
6425
6438
  depthTest: !1,
6426
- fragmentShader: Wa,
6427
- vertexShader: Ya
6439
+ fragmentShader: Ya,
6440
+ vertexShader: Ka
6428
6441
  }), this.depthBuffer = e, this.depthPacking = ae, this.copyCameraSettings(t);
6429
6442
  }
6430
6443
  /**
@@ -6470,7 +6483,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6470
6483
  copyCameraSettings(e) {
6471
6484
  e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Be ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
6472
6485
  }
6473
- }, Ka = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", Xa = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends T {
6486
+ }, Xa = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", Za = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends T {
6474
6487
  /**
6475
6488
  * Constructs a new outline material.
6476
6489
  *
@@ -6488,8 +6501,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6488
6501
  toneMapped: !1,
6489
6502
  depthWrite: !1,
6490
6503
  depthTest: !1,
6491
- fragmentShader: Ka,
6492
- vertexShader: Xa
6504
+ fragmentShader: Xa,
6505
+ vertexShader: Za
6493
6506
  }), this.uniforms.texelSize.value.set(e.x, e.y), this.uniforms.maskTexture = this.uniforms.inputBuffer;
6494
6507
  }
6495
6508
  /**
@@ -6645,7 +6658,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6645
6658
  const r = e.capabilities.reversedDepthBuffer ? 0 : 16777215, a = this.renderPass.clearPass;
6646
6659
  a.overrideClearColor = new Q(r), a.overrideClearAlpha = 1;
6647
6660
  }
6648
- }, Za = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
6661
+ }, ja = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
6649
6662
  #ifdef USE_PATTERN
6650
6663
  uniform lowp sampler2D patternTexture;varying vec2 vUvPattern;
6651
6664
  #endif
@@ -6669,7 +6682,7 @@ outputColor=vec4(color,alpha);
6669
6682
  #else
6670
6683
  outputColor=vec4(color,max(alpha,inputColor.a));
6671
6684
  #endif
6672
- }`, ja = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", Ja = class extends I {
6685
+ }`, Ja = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", qa = class extends I {
6673
6686
  /**
6674
6687
  * Constructs a new outline effect.
6675
6688
  *
@@ -6694,7 +6707,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6694
6707
  * @param {Number} [options.height=Resolution.AUTO_SIZE] - Deprecated. Use resolutionY instead.
6695
6708
  */
6696
6709
  constructor(e, t, {
6697
- blendFunction: i = m.SCREEN,
6710
+ blendFunction: i = g.SCREEN,
6698
6711
  patternTexture: r = null,
6699
6712
  patternScale: a = 1,
6700
6713
  edgeStrength: n = 1,
@@ -6707,11 +6720,11 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6707
6720
  multisampling: d = 0,
6708
6721
  resolutionScale: v = 0.5,
6709
6722
  width: A = D.AUTO_SIZE,
6710
- height: g = D.AUTO_SIZE,
6723
+ height: m = D.AUTO_SIZE,
6711
6724
  resolutionX: x = A,
6712
- resolutionY: M = g
6725
+ resolutionY: y = m
6713
6726
  } = {}) {
6714
- super("OutlineEffect", Za, {
6727
+ super("OutlineEffect", ja, {
6715
6728
  uniforms: /* @__PURE__ */ new Map([
6716
6729
  ["maskTexture", new u(null)],
6717
6730
  ["edgeTexture", new u(null)],
@@ -6723,10 +6736,10 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6723
6736
  ["patternTexture", new u(null)]
6724
6737
  ])
6725
6738
  }), this.blendMode.addEventListener("change", (ee) => {
6726
- this.blendMode.blendFunction === m.ALPHA ? this.defines.set("ALPHA", "1") : this.defines.delete("ALPHA"), this.setChanged();
6739
+ this.blendMode.blendFunction === g.ALPHA ? this.defines.set("ALPHA", "1") : this.defines.delete("ALPHA"), this.setChanged();
6727
6740
  }), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new w(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new w(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new Ie(), this.clearPass.overrideClearColor = new Q(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Bt(e, t), this.maskPass = new Ge(e, t, new xi(this.depthPass.texture, t));
6728
6741
  const C = this.maskPass.clearPass;
6729
- C.overrideClearColor = new Q(16777215), C.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: x, resolutionY: M, kernelSize: c }), this.blurPass.enabled = f;
6742
+ C.overrideClearColor = new Q(16777215), C.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: x, resolutionY: y, kernelSize: c }), this.blurPass.enabled = f;
6730
6743
  const E = this.blurPass.resolution;
6731
6744
  E.addEventListener("change", (ee) => this.setSize(E.baseWidth, E.baseHeight)), this.outlinePass = new _(new mt());
6732
6745
  const K = this.outlinePass.fullscreenMaterial;
@@ -6958,7 +6971,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6958
6971
  return this.uniforms.get("patternTexture").value;
6959
6972
  }
6960
6973
  set patternTexture(e) {
6961
- e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(ja)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
6974
+ e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(Ja)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
6962
6975
  }
6963
6976
  /**
6964
6977
  * Sets the pattern texture.
@@ -7060,14 +7073,14 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7060
7073
  initialize(e, t, i) {
7061
7074
  this.blurPass.initialize(e, t, Y), i !== void 0 && (this.depthPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.outlinePass.initialize(e, t, i));
7062
7075
  }
7063
- }, qa = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", _a = class extends I {
7076
+ }, _a = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", $a = class extends I {
7064
7077
  /**
7065
7078
  * Constructs a new pixelation effect.
7066
7079
  *
7067
7080
  * @param {Object} [granularity=30.0] - The pixel granularity.
7068
7081
  */
7069
7082
  constructor(e = 30) {
7070
- super("PixelationEffect", qa, {
7083
+ super("PixelationEffect", _a, {
7071
7084
  uniforms: /* @__PURE__ */ new Map([
7072
7085
  ["active", new u(!1)],
7073
7086
  ["d", new u(new de())]
@@ -7118,7 +7131,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7118
7131
  const r = this.granularity, a = r / i.x, n = r / i.y;
7119
7132
  this.uniforms.get("d").value.set(a, n, 1 / a, 1 / n);
7120
7133
  }
7121
- }, $a = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
7134
+ }, es = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
7122
7135
  #ifdef MANUAL_DOF
7123
7136
  uniform vec4 dof;
7124
7137
  #endif
@@ -7146,7 +7159,7 @@ const int MAX_RING_SAMPLES=RINGS_INT*SAMPLES_INT;blur=clamp(blur,0.0,1.0);vec3 c
7146
7159
  #ifdef SHOW_FOCUS
7147
7160
  float edge=0.002*linearDepth;float m=clamp(smoothstep(0.0,edge,blur),0.0,1.0);float e=clamp(smoothstep(1.0-edge,1.0,blur),0.0,1.0);color=mix(color,vec3(1.0,0.5,0.0),(1.0-m)*0.6);color=mix(color,vec3(0.0,0.5,1.0),((1.0-e)-(1.0-m))*0.2);
7148
7161
  #endif
7149
- outputColor=vec4(color,inputColor.a);}`, es = class extends I {
7162
+ outputColor=vec4(color,inputColor.a);}`, ts = class extends I {
7150
7163
  /**
7151
7164
  * Constructs a new bokeh effect.
7152
7165
  *
@@ -7182,7 +7195,7 @@ outputColor=vec4(color,inputColor.a);}`, es = class extends I {
7182
7195
  manualDoF: d = !1,
7183
7196
  pentagon: v = !1
7184
7197
  } = {}) {
7185
- super("RealisticBokehEffect", $a, {
7198
+ super("RealisticBokehEffect", es, {
7186
7199
  blendFunction: e,
7187
7200
  attributes: V.CONVOLUTION | V.DEPTH,
7188
7201
  uniforms: /* @__PURE__ */ new Map([
@@ -7257,7 +7270,7 @@ outputColor=vec4(color,inputColor.a);}`, es = class extends I {
7257
7270
  set pentagon(e) {
7258
7271
  this.pentagon !== e && (e ? this.defines.set("PENTAGON", "1") : this.defines.delete("PENTAGON"), this.setChanged());
7259
7272
  }
7260
- }, ts = `uniform float count;
7273
+ }, is = `uniform float count;
7261
7274
  #ifdef SCROLL
7262
7275
  uniform float scrollSpeed;
7263
7276
  #endif
@@ -7265,7 +7278,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){f
7265
7278
  #ifdef SCROLL
7266
7279
  y+=time*scrollSpeed;
7267
7280
  #endif
7268
- vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, is = class extends I {
7281
+ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, rs = class extends I {
7269
7282
  /**
7270
7283
  * Constructs a new scanline effect.
7271
7284
  *
@@ -7274,8 +7287,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7274
7287
  * @param {Number} [options.density=1.25] - The scanline density.
7275
7288
  * @param {Number} [options.scrollSpeed=0.0] - The scanline scroll speed.
7276
7289
  */
7277
- constructor({ blendFunction: e = m.OVERLAY, density: t = 1.25, scrollSpeed: i = 0 } = {}) {
7278
- super("ScanlineEffect", ts, {
7290
+ constructor({ blendFunction: e = g.OVERLAY, density: t = 1.25, scrollSpeed: i = 0 } = {}) {
7291
+ super("ScanlineEffect", is, {
7279
7292
  blendFunction: e,
7280
7293
  uniforms: /* @__PURE__ */ new Map([
7281
7294
  ["count", new u(0)],
@@ -7332,7 +7345,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7332
7345
  setSize(e, t) {
7333
7346
  this.resolution.set(e, t), this.uniforms.get("count").value = Math.round(t * this.density);
7334
7347
  }
7335
- }, rs = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", as = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", ss = Math.PI * 0.5, Re = /* @__PURE__ */ new F(), Nt = /* @__PURE__ */ new F(), ns = class extends I {
7348
+ }, as = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", ss = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", ns = Math.PI * 0.5, Re = /* @__PURE__ */ new F(), Nt = /* @__PURE__ */ new F(), os = class extends I {
7336
7349
  /**
7337
7350
  * Constructs a new shock wave effect.
7338
7351
  *
@@ -7350,8 +7363,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7350
7363
  waveSize: a = 0.2,
7351
7364
  amplitude: n = 0.05
7352
7365
  } = {}) {
7353
- super("ShockWaveEffect", rs, {
7354
- vertexShader: as,
7366
+ super("ShockWaveEffect", as, {
7367
+ vertexShader: ss,
7355
7368
  uniforms: /* @__PURE__ */ new Map([
7356
7369
  ["active", new u(!1)],
7357
7370
  ["center", new u(new p(0.5, 0.5))],
@@ -7465,12 +7478,12 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7465
7478
  const r = this.position, a = this.camera, n = this.uniforms, s = n.get("active");
7466
7479
  if (this.active) {
7467
7480
  const o = n.get("waveSize").value;
7468
- a.getWorldDirection(Re), Nt.copy(a.position).sub(r), s.value = Re.angleTo(Nt) > ss, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), Re.copy(r).project(a), this.screenPosition.set((Re.x + 1) * 0.5, (Re.y + 1) * 0.5)), this.time += i * this.speed;
7481
+ a.getWorldDirection(Re), Nt.copy(a.position).sub(r), s.value = Re.angleTo(Nt) > ns, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), Re.copy(r).project(a), this.screenPosition.set((Re.x + 1) * 0.5, (Re.y + 1) * 0.5)), this.time += i * this.speed;
7469
7482
  const l = this.time - o;
7470
7483
  n.get("radius").value = l, l >= (n.get("maxRadius").value + o) * 2 && (this.active = !1, s.value = !1);
7471
7484
  }
7472
7485
  }
7473
- }, os = `#include <common>
7486
+ }, ls = `#include <common>
7474
7487
  #include <packing>
7475
7488
  #ifdef GL_FRAGMENT_PRECISION_HIGH
7476
7489
  uniform highp sampler2D depthBuffer0;uniform highp sampler2D depthBuffer1;
@@ -7521,7 +7534,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7521
7534
  DEPTH_EPSILON: "0.0001",
7522
7535
  DEPTH_PACKING_0: "0",
7523
7536
  DEPTH_PACKING_1: "0",
7524
- DEPTH_TEST_STRATEGY: ye.KEEP_MAX_DEPTH
7537
+ DEPTH_TEST_STRATEGY: Me.KEEP_MAX_DEPTH
7525
7538
  },
7526
7539
  uniforms: {
7527
7540
  inputBuffer: new u(null),
@@ -7533,7 +7546,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7533
7546
  toneMapped: !1,
7534
7547
  depthWrite: !1,
7535
7548
  depthTest: !1,
7536
- fragmentShader: os,
7549
+ fragmentShader: ls,
7537
7550
  vertexShader: ue
7538
7551
  }), this.depthMode = Pt;
7539
7552
  }
@@ -7610,7 +7623,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7610
7623
  return this.maxDepthStrategy;
7611
7624
  }
7612
7625
  set keepFar(e) {
7613
- this.maxDepthStrategy = e ? ye.KEEP_MAX_DEPTH : ye.DISCARD_MAX_DEPTH;
7626
+ this.maxDepthStrategy = e ? Me.KEEP_MAX_DEPTH : Me.DISCARD_MAX_DEPTH;
7614
7627
  }
7615
7628
  /**
7616
7629
  * Returns the strategy for dealing with maximum depth values.
@@ -7734,7 +7747,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7734
7747
  copyCameraSettings(e) {
7735
7748
  e && (this.uniforms.cameraNearFar.value.set(e.near, e.far), e instanceof Be ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
7736
7749
  }
7737
- }, ls = class extends hi {
7750
+ }, us = class extends hi {
7738
7751
  /**
7739
7752
  * Constructs a new selective bloom effect.
7740
7753
  *
@@ -7809,7 +7822,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7809
7822
  return this._ignoreBackground;
7810
7823
  }
7811
7824
  set ignoreBackground(e) {
7812
- this._ignoreBackground = e, this.depthMaskMaterial.maxDepthStrategy = e ? ye.DISCARD_MAX_DEPTH : ye.KEEP_MAX_DEPTH;
7825
+ this._ignoreBackground = e, this.depthMaskMaterial.maxDepthStrategy = e ? Me.DISCARD_MAX_DEPTH : Me.KEEP_MAX_DEPTH;
7813
7826
  }
7814
7827
  /**
7815
7828
  * Indicates whether the background is disabled.
@@ -7873,7 +7886,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7873
7886
  initialize(e, t, i) {
7874
7887
  super.initialize(e, t, i), this.clearPass.initialize(e, t, i), this.depthPass.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), e !== null && e.capabilities.logarithmicDepthBuffer && (this.depthMaskPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTargetMasked.texture.colorSpace = S));
7875
7888
  }
7876
- }, us = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", cs = class extends I {
7889
+ }, cs = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", fs = class extends I {
7877
7890
  /**
7878
7891
  * Constructs a new sepia effect.
7879
7892
  *
@@ -7882,7 +7895,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7882
7895
  * @param {Number} [options.intensity=1.0] - The intensity of the effect.
7883
7896
  */
7884
7897
  constructor({ blendFunction: e, intensity: t = 1 } = {}) {
7885
- super("SepiaEffect", us, {
7898
+ super("SepiaEffect", cs, {
7886
7899
  blendFunction: e,
7887
7900
  uniforms: /* @__PURE__ */ new Map([
7888
7901
  ["weightsR", new u(new F(0.393, 0.769, 0.189))],
@@ -7945,7 +7958,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7945
7958
  get weightsB() {
7946
7959
  return this.uniforms.get("weightsB").value;
7947
7960
  }
7948
- }, fs = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7961
+ }, hs = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7949
7962
  #if EDGE_DETECTION_MODE != 0
7950
7963
  varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
7951
7964
  #endif
@@ -7989,7 +8002,7 @@ float l=luminance(texture2D(inputBuffer,vUv).rgb);float lLeft=luminance(texture2
7989
8002
  #elif EDGE_DETECTION_MODE == 2
7990
8003
  vec4 delta;vec3 c=texture2D(inputBuffer,vUv).rgb;vec3 cLeft=texture2D(inputBuffer,vUv0).rgb;vec3 t=abs(c-cLeft);delta.x=max(max(t.r,t.g),t.b);vec3 cTop=texture2D(inputBuffer,vUv1).rgb;t=abs(c-cTop);delta.y=max(max(t.r,t.g),t.b);vec2 edges=step(threshold,delta.xy);if(dot(edges,vec2(1.0))==0.0){discard;}vec3 cRight=texture2D(inputBuffer,vUv2).rgb;t=abs(c-cRight);delta.z=max(max(t.r,t.g),t.b);vec3 cBottom=texture2D(inputBuffer,vUv3).rgb;t=abs(c-cBottom);delta.w=max(max(t.r,t.g),t.b);vec2 maxDelta=max(delta.xy,delta.zw);vec3 cLeftLeft=texture2D(inputBuffer,vUv4).rgb;t=abs(c-cLeftLeft);delta.z=max(max(t.r,t.g),t.b);vec3 cTopTop=texture2D(inputBuffer,vUv5).rgb;t=abs(c-cTopTop);delta.w=max(max(t.r,t.g),t.b);maxDelta=max(maxDelta.xy,delta.zw);float finalDelta=max(maxDelta.x,maxDelta.y);edges*=step(finalDelta,LOCAL_CONTRAST_ADAPTATION_FACTOR*delta.xy);gl_FragColor=vec4(edges,0.0,1.0);
7991
8004
  #endif
7992
- }`, hs = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
8005
+ }`, ds = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7993
8006
  #if EDGE_DETECTION_MODE != 0
7994
8007
  varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
7995
8008
  #endif
@@ -8005,7 +8018,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
8005
8018
  * @param {Vector2} [texelSize] - The screen texel size.
8006
8019
  * @param {EdgeDetectionMode} [mode=EdgeDetectionMode.COLOR] - The edge detection mode.
8007
8020
  */
8008
- constructor(e = new p(), t = Mt.COLOR) {
8021
+ constructor(e = new p(), t = yt.COLOR) {
8009
8022
  super({
8010
8023
  name: "EdgeDetectionMaterial",
8011
8024
  defines: {
@@ -8029,8 +8042,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
8029
8042
  toneMapped: !1,
8030
8043
  depthWrite: !1,
8031
8044
  depthTest: !1,
8032
- fragmentShader: fs,
8033
- vertexShader: hs
8045
+ fragmentShader: hs,
8046
+ vertexShader: ds
8034
8047
  }), this.edgeDetectionMode = t;
8035
8048
  }
8036
8049
  /**
@@ -8307,7 +8320,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
8307
8320
  setSize(e, t) {
8308
8321
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
8309
8322
  }
8310
- }, ds = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
8323
+ }, vs = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
8311
8324
  #if __VERSION__ < 300
8312
8325
  #define round(v) floor(v + 0.5)
8313
8326
  #endif
@@ -8332,7 +8345,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8332
8345
  #if !defined(DISABLE_DIAG_DETECTION)
8333
8346
  }else{e.r=0.0;}
8334
8347
  #endif
8335
- }if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, vs = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", Ti = class extends T {
8348
+ }if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, ps = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", Ti = class extends T {
8336
8349
  /**
8337
8350
  * Constructs a new SMAA weights material.
8338
8351
  *
@@ -8369,8 +8382,8 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8369
8382
  toneMapped: !1,
8370
8383
  depthWrite: !1,
8371
8384
  depthTest: !1,
8372
- fragmentShader: ds,
8373
- vertexShader: vs
8385
+ fragmentShader: vs,
8386
+ vertexShader: ps
8374
8387
  });
8375
8388
  }
8376
8389
  /**
@@ -8561,7 +8574,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8561
8574
  const i = this.uniforms;
8562
8575
  i.texelSize.value.set(1 / e, 1 / t), i.resolution.value.set(e, t);
8563
8576
  }
8564
- }, xt = "", Dt = "", ps = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", gs = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", ms = class extends I {
8577
+ }, xt = "", Dt = "", gs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", ms = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", As = class extends I {
8565
8578
  /**
8566
8579
  * Constructs a new SMAA effect.
8567
8580
  *
@@ -8572,13 +8585,13 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8572
8585
  * @param {PredicationMode} [options.predicationMode=PredicationMode.DISABLED] - The predication mode.
8573
8586
  */
8574
8587
  constructor({
8575
- blendFunction: e = m.SRC,
8588
+ blendFunction: e = g.SRC,
8576
8589
  preset: t = we.MEDIUM,
8577
- edgeDetectionMode: i = Mt.COLOR,
8590
+ edgeDetectionMode: i = yt.COLOR,
8578
8591
  predicationMode: r = Ai.DISABLED
8579
8592
  } = {}) {
8580
- super("SMAAEffect", ps, {
8581
- vertexShader: gs,
8593
+ super("SMAAEffect", gs, {
8594
+ vertexShader: ms,
8582
8595
  blendFunction: e,
8583
8596
  attributes: V.CONVOLUTION | V.DEPTH,
8584
8597
  uniforms: /* @__PURE__ */ new Map([
@@ -8776,7 +8789,7 @@ function Fe(e, t, i) {
8776
8789
  function Le(e, t, i) {
8777
8790
  return Math.min(Math.max((e + t) / (t - i), 0), 1);
8778
8791
  }
8779
- var As = `#include <common>
8792
+ var xs = `#include <common>
8780
8793
  #include <packing>
8781
8794
  uniform vec2 cameraNearFar;
8782
8795
  #define cameraNear cameraNearFar.x
@@ -8843,7 +8856,7 @@ if(linearDepth<distanceCutoff.y){vec3 viewPosition=getViewPosition(vUv,depth,vie
8843
8856
  #ifdef LEGACY_INTENSITY
8844
8857
  ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8845
8858
  #endif
8846
- }gl_FragColor.r=ao;}`, xs = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends T {
8859
+ }gl_FragColor.r=ao;}`, Ds = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends T {
8847
8860
  /**
8848
8861
  * Constructs a new SSAO material.
8849
8862
  *
@@ -8882,8 +8895,8 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8882
8895
  toneMapped: !1,
8883
8896
  depthWrite: !1,
8884
8897
  depthTest: !1,
8885
- fragmentShader: As,
8886
- vertexShader: xs
8898
+ fragmentShader: xs,
8899
+ vertexShader: Ds
8887
8900
  }), this.copyCameraSettings(e), this.resolution = new p(), this.r = 1;
8888
8901
  }
8889
8902
  /**
@@ -9383,7 +9396,7 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
9383
9396
  t / r.image.height
9384
9397
  ), i.texelSize.value.set(1 / e, 1 / t), this.resolution.set(e, t), this.updateRadius();
9385
9398
  }
9386
- }, Ds = `#include <packing>
9399
+ }, Ts = `#include <packing>
9387
9400
  #ifdef GL_FRAGMENT_PRECISION_HIGH
9388
9401
  uniform highp sampler2D depthBuffer;
9389
9402
  #else
@@ -9404,7 +9417,7 @@ vec3 n[4];n[0]=texture2D(normalBuffer,vUv0).rgb;n[1]=texture2D(normalBuffer,vUv1
9404
9417
  #else
9405
9418
  vec3 n[4];n[0]=vec3(0.0);n[1]=vec3(0.0);n[2]=vec3(0.0);n[3]=vec3(0.0);
9406
9419
  #endif
9407
- gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", Ei = class extends T {
9420
+ gl_FragColor=vec4(n[index],d[index]);}`, ws = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", Ei = class extends T {
9408
9421
  /**
9409
9422
  * Constructs a new depth downsampling material.
9410
9423
  */
@@ -9423,8 +9436,8 @@ gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying ve
9423
9436
  toneMapped: !1,
9424
9437
  depthWrite: !1,
9425
9438
  depthTest: !1,
9426
- fragmentShader: Ds,
9427
- vertexShader: Ts
9439
+ fragmentShader: Ts,
9440
+ vertexShader: ws
9428
9441
  });
9429
9442
  }
9430
9443
  /**
@@ -9589,7 +9602,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying ve
9589
9602
  if (!(r.getExtension("EXT_color_buffer_float") || r.getExtension("EXT_color_buffer_half_float")))
9590
9603
  throw new Error("Rendering to float texture is not supported.");
9591
9604
  }
9592
- }, ws = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
9605
+ }, Es = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
9593
9606
  #if defined(DEPTH_AWARE_UPSAMPLING) && defined(NORMAL_DEPTH)
9594
9607
  #ifdef GL_FRAGMENT_PRECISION_HIGH
9595
9608
  uniform highp sampler2D normalDepthBuffer;
@@ -9612,7 +9625,7 @@ outputColor=vec4(1.0-ao*(1.0-color),inputColor.a);
9612
9625
  #else
9613
9626
  outputColor=vec4(vec3(1.0-ao),inputColor.a);
9614
9627
  #endif
9615
- }`, Ht = 64, Es = class extends I {
9628
+ }`, Ht = 64, Ss = class extends I {
9616
9629
  /**
9617
9630
  * Constructs a new SSAO effect.
9618
9631
  *
@@ -9648,7 +9661,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9648
9661
  * @param {Number} [options.height=Resolution.AUTO_SIZE] - Deprecated. Use resolutionY instead.
9649
9662
  */
9650
9663
  constructor(e, t, {
9651
- blendFunction: i = m.MULTIPLY,
9664
+ blendFunction: i = g.MULTIPLY,
9652
9665
  samples: r = 9,
9653
9666
  rings: a = 7,
9654
9667
  normalDepthBuffer: n = null,
@@ -9661,9 +9674,9 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9661
9674
  distanceFalloff: d = 0.03,
9662
9675
  rangeThreshold: v = 5e-4,
9663
9676
  rangeFalloff: A = 1e-3,
9664
- minRadiusScale: g = 0.1,
9677
+ minRadiusScale: m = 0.1,
9665
9678
  luminanceInfluence: x = 0.7,
9666
- radius: M = 0.1825,
9679
+ radius: y = 0.1825,
9667
9680
  intensity: C = 1,
9668
9681
  bias: E = 0.025,
9669
9682
  fade: K = 0.01,
@@ -9674,7 +9687,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9674
9687
  resolutionX: ge = re,
9675
9688
  resolutionY: me = L
9676
9689
  } = {}) {
9677
- super("SSAOEffect", ws, {
9690
+ super("SSAOEffect", Es, {
9678
9691
  blendFunction: i,
9679
9692
  attributes: V.DEPTH,
9680
9693
  defines: /* @__PURE__ */ new Map([
@@ -9695,7 +9708,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9695
9708
  const ce = new et(Ht, Ht, H);
9696
9709
  ce.wrapS = ce.wrapT = se;
9697
9710
  const G = this.ssaoMaterial;
9698
- G.normalBuffer = t, G.noiseTexture = ce, G.minRadiusScale = g, G.samples = r, G.radius = M, G.rings = a, G.fade = K, G.bias = E, G.distanceThreshold = h, G.distanceFalloff = d, G.proximityThreshold = v, G.proximityFalloff = A, o !== void 0 && (G.worldDistanceThreshold = o), l !== void 0 && (G.worldDistanceFalloff = l), c !== void 0 && (G.worldProximityThreshold = c), f !== void 0 && (G.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
9711
+ G.normalBuffer = t, G.noiseTexture = ce, G.minRadiusScale = m, G.samples = r, G.radius = y, G.rings = a, G.fade = K, G.bias = E, G.distanceThreshold = h, G.distanceFalloff = d, G.proximityThreshold = v, G.proximityFalloff = A, o !== void 0 && (G.worldDistanceThreshold = o), l !== void 0 && (G.worldDistanceFalloff = l), c !== void 0 && (G.worldProximityThreshold = c), f !== void 0 && (G.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
9699
9712
  }
9700
9713
  set mainCamera(e) {
9701
9714
  this.camera = e, this.ssaoMaterial.copyCameraSettings(e);
@@ -9932,7 +9945,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9932
9945
  this.depthDownsamplingPass.enabled = !1;
9933
9946
  }
9934
9947
  }
9935
- }, Ss = `#ifdef TEXTURE_PRECISION_HIGH
9948
+ }, Cs = `#ifdef TEXTURE_PRECISION_HIGH
9936
9949
  uniform mediump sampler2D map;
9937
9950
  #else
9938
9951
  uniform lowp sampler2D map;
@@ -9943,7 +9956,7 @@ vec4 texel=texture2D(map,vUv2);
9943
9956
  #else
9944
9957
  vec4 texel=texture2D(map,uv);
9945
9958
  #endif
9946
- outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, Cs = `#ifdef ASPECT_CORRECTION
9959
+ outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, Ms = `#ifdef ASPECT_CORRECTION
9947
9960
  uniform float scale;
9948
9961
  #else
9949
9962
  uniform mat3 uvTransform;
@@ -9964,7 +9977,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9964
9977
  * @param {Boolean} [options.aspectCorrection=false] - Deprecated. Adjust the texture's offset, repeat and center instead.
9965
9978
  */
9966
9979
  constructor({ blendFunction: e, texture: t = null, aspectCorrection: i = !1 } = {}) {
9967
- super("TextureEffect", Ss, {
9980
+ super("TextureEffect", Cs, {
9968
9981
  blendFunction: e,
9969
9982
  defines: /* @__PURE__ */ new Map([
9970
9983
  ["TEXEL", "texel"]
@@ -9986,7 +9999,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9986
9999
  }
9987
10000
  set texture(e) {
9988
10001
  const t = this.texture, i = this.uniforms, r = this.defines;
9989
- t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(Cs)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
10002
+ t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(Ms)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
9990
10003
  }
9991
10004
  /**
9992
10005
  * Returns the texture.
@@ -10055,14 +10068,14 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
10055
10068
  update(e, t, i) {
10056
10069
  this.texture.matrixAutoUpdate && this.texture.updateMatrix();
10057
10070
  }
10058
- }, Ms = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10071
+ }, Bs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10059
10072
  uniform mediump sampler2D inputBuffer;
10060
10073
  #else
10061
10074
  uniform lowp sampler2D inputBuffer;
10062
10075
  #endif
10063
10076
  uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;float linearGradientMask(const in float x){return smoothstep(maskParams.x,maskParams.y,x)-smoothstep(maskParams.w,maskParams.z,x);}void main(){vec2 dUv=vOffset*(1.0-linearGradientMask(vUv2.y));vec4 sum=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y-dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y-dUv.y));gl_FragColor=sum*0.25;
10064
10077
  #include <colorspace_fragment>
10065
- }`, Bs = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Ci = class extends $e {
10078
+ }`, Ps = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Ci = class extends $e {
10066
10079
  /**
10067
10080
  * Constructs a new tilt shift blur material.
10068
10081
  *
@@ -10079,7 +10092,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10079
10092
  focusArea: r = 0.4,
10080
10093
  feather: a = 0.3
10081
10094
  } = {}) {
10082
- super(), this.fragmentShader = Ms, this.vertexShader = Bs, this.kernelSize = e, this.uniforms.aspect = new u(1), this.uniforms.rotation = new u(new p()), this.uniforms.maskParams = new u(new de()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
10095
+ super(), this.fragmentShader = Bs, this.vertexShader = Ps, this.kernelSize = e, this.uniforms.aspect = new u(1), this.uniforms.rotation = new u(new p()), this.uniforms.maskParams = new u(new de()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
10083
10096
  }
10084
10097
  /**
10085
10098
  * The relative offset of the focus area.
@@ -10148,7 +10161,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10148
10161
  setSize(e, t) {
10149
10162
  super.setSize(e, t), this.uniforms.aspect.value = e / t;
10150
10163
  }
10151
- }, yi = class extends pe {
10164
+ }, Mi = class extends pe {
10152
10165
  /**
10153
10166
  * Constructs a new Kawase blur pass.
10154
10167
  *
@@ -10174,12 +10187,12 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10174
10187
  } = {}) {
10175
10188
  super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new Ci({ kernelSize: a, offset: e, rotation: t, focusArea: i, feather: r });
10176
10189
  }
10177
- }, Ps = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10190
+ }, Is = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10178
10191
  uniform mediump sampler2D map;
10179
10192
  #else
10180
10193
  uniform lowp sampler2D map;
10181
10194
  #endif
10182
- uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Is = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", Rs = class extends I {
10195
+ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Rs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", bs = class extends I {
10183
10196
  /**
10184
10197
  * Constructs a new tilt shift Effect
10185
10198
  *
@@ -10206,15 +10219,15 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
10206
10219
  resolutionX: o = D.AUTO_SIZE,
10207
10220
  resolutionY: l = D.AUTO_SIZE
10208
10221
  } = {}) {
10209
- super("TiltShiftEffect", Ps, {
10210
- vertexShader: Is,
10222
+ super("TiltShiftEffect", Is, {
10223
+ vertexShader: Rs,
10211
10224
  blendFunction: e,
10212
10225
  uniforms: /* @__PURE__ */ new Map([
10213
10226
  ["rotation", new u(new p())],
10214
10227
  ["maskParams", new u(new p())],
10215
10228
  ["map", new u(null)]
10216
10229
  ])
10217
- }), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new w(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new yi({
10230
+ }), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new w(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new Mi({
10218
10231
  kernelSize: n,
10219
10232
  resolutionScale: s,
10220
10233
  resolutionX: o,
@@ -10330,7 +10343,7 @@ float l1=texture2DLodEXT(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
10330
10343
  #else
10331
10344
  float l1=textureLod(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
10332
10345
  #endif
10333
- l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`, Mi = class extends T {
10346
+ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`, yi = class extends T {
10334
10347
  /**
10335
10348
  * Constructs a new adaptive luminance material.
10336
10349
  */
@@ -10496,7 +10509,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10496
10509
  * @param {Number} [options.adaptationRate=1.0] - The luminance adaptation rate.
10497
10510
  */
10498
10511
  constructor(e, { minLuminance: t = 0.01, adaptationRate: i = 1 } = {}) {
10499
- super("AdaptiveLuminancePass"), this.fullscreenMaterial = new Mi(), this.needsSwap = !1, this.renderTargetPrevious = new w(1, 1, {
10512
+ super("AdaptiveLuminancePass"), this.fullscreenMaterial = new yi(), this.needsSwap = !1, this.renderTargetPrevious = new w(1, 1, {
10500
10513
  minFilter: P,
10501
10514
  magFilter: P,
10502
10515
  depthBuffer: !1
@@ -10561,7 +10574,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10561
10574
  render(e, t, i, r, a) {
10562
10575
  this.fullscreenMaterial.deltaTime = r, e.setRenderTarget(this.renderToScreen ? null : this.renderTargetAdapted), e.render(this.scene, this.camera), this.copyPass.render(e, this.renderTargetAdapted);
10563
10576
  }
10564
- }, bs = `#include <tonemapping_pars_fragment>
10577
+ }, Fs = `#include <tonemapping_pars_fragment>
10565
10578
  uniform float whitePoint;
10566
10579
  #if TONE_MAPPING_MODE == 2 || TONE_MAPPING_MODE == 3
10567
10580
  uniform float middleGrey;
@@ -10594,7 +10607,7 @@ outputColor=vec4(Uncharted2ToneMapping(inputColor.rgb),inputColor.a);
10594
10607
  #else
10595
10608
  outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10596
10609
  #endif
10597
- }`, Fs = class extends I {
10610
+ }`, Ls = class extends I {
10598
10611
  /**
10599
10612
  * Constructs a new tone mapping effect.
10600
10613
  *
@@ -10613,7 +10626,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10613
10626
  * @param {Number} [options.adaptationRate=1.0] - The luminance adaptation rate.
10614
10627
  */
10615
10628
  constructor({
10616
- blendFunction: e = m.SRC,
10629
+ blendFunction: e = g.SRC,
10617
10630
  adaptive: t = !1,
10618
10631
  mode: i = t ? j.REINHARD2_ADAPTIVE : j.AGX,
10619
10632
  resolution: r = 256,
@@ -10624,7 +10637,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10624
10637
  averageLuminance: l = 1,
10625
10638
  adaptationRate: c = 1
10626
10639
  } = {}) {
10627
- super("ToneMappingEffect", bs, {
10640
+ super("ToneMappingEffect", Fs, {
10628
10641
  blendFunction: e,
10629
10642
  uniforms: /* @__PURE__ */ new Map([
10630
10643
  ["luminanceBuffer", new u(null)],
@@ -10840,13 +10853,13 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10840
10853
  initialize(e, t, i) {
10841
10854
  this.adaptiveLuminancePass.initialize(e, t, i);
10842
10855
  }
10843
- }, Ls = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
10856
+ }, Os = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
10844
10857
  #if VIGNETTE_TECHNIQUE == 0
10845
10858
  float d=distance(uv,center);color*=smoothstep(0.8,offset*0.799,d*(darkness+offset));
10846
10859
  #else
10847
10860
  vec2 coord=(uv-center)*vec2(offset);color=mix(color,vec3(1.0-darkness),dot(coord,coord));
10848
10861
  #endif
10849
- outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
10862
+ outputColor=vec4(color,inputColor.a);}`, Ns = class extends I {
10850
10863
  /**
10851
10864
  * Constructs a new Vignette effect.
10852
10865
  *
@@ -10864,7 +10877,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
10864
10877
  offset: r = 0.5,
10865
10878
  darkness: a = 0.5
10866
10879
  } = {}) {
10867
- super("VignetteEffect", Ls, {
10880
+ super("VignetteEffect", Os, {
10868
10881
  blendFunction: e,
10869
10882
  defines: /* @__PURE__ */ new Map([
10870
10883
  ["VIGNETTE_TECHNIQUE", i.toFixed(0)]
@@ -10980,7 +10993,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
10980
10993
  setDarkness(e) {
10981
10994
  this.darkness = e;
10982
10995
  }
10983
- }, Ns = class extends Et {
10996
+ }, Hs = class extends Et {
10984
10997
  /**
10985
10998
  * Loads a LUT.
10986
10999
  *
@@ -11037,17 +11050,17 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
11037
11050
  const l = new Float32Array(s ** 3 * 4);
11038
11051
  let c = 0, f = 0;
11039
11052
  for (; (r = i.exec(e)) !== null; ) {
11040
- const v = Number(r[1]), A = Number(r[2]), g = Number(r[3]);
11041
- c = Math.max(c, v, A, g);
11042
- const x = f % s, M = Math.floor(f / s) % s, C = Math.floor(f / o) % s, E = (x * o + M * s + C) * 4;
11043
- l[E + 0] = v, l[E + 1] = A, l[E + 2] = g, l[E + 3] = 1, ++f;
11053
+ const v = Number(r[1]), A = Number(r[2]), m = Number(r[3]);
11054
+ c = Math.max(c, v, A, m);
11055
+ const x = f % s, y = Math.floor(f / s) % s, C = Math.floor(f / o) % s, E = (x * o + y * s + C) * 4;
11056
+ l[E + 0] = v, l[E + 1] = A, l[E + 2] = m, l[E + 3] = 1, ++f;
11044
11057
  }
11045
11058
  const h = Math.ceil(Math.log2(c)), d = Math.pow(2, h);
11046
11059
  for (let v = 0, A = l.length; v < A; v += 4)
11047
11060
  l[v + 0] /= d, l[v + 1] /= d, l[v + 2] /= d;
11048
11061
  return new He(l, s);
11049
11062
  }
11050
- }, Hs = class extends Et {
11063
+ }, zs = class extends Et {
11051
11064
  /**
11052
11065
  * Loads a LUT.
11053
11066
  *
@@ -11107,7 +11120,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
11107
11120
  const v = new He(c, l);
11108
11121
  return v.domainMin.copy(f), v.domainMax.copy(h), o !== null && (v.name = o), v;
11109
11122
  }
11110
- }, zs = class extends Et {
11123
+ }, Gs = class extends Et {
11111
11124
  /**
11112
11125
  * Loads the SMAA data images.
11113
11126
  *
@@ -11137,7 +11150,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
11137
11150
  }), i.itemStart("smaa-search"), i.itemStart("smaa-area"), r.itemStart("smaa-search"), r.itemStart("smaa-area"), s.src = xt, o.src = Dt;
11138
11151
  });
11139
11152
  }
11140
- }, Gs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11153
+ }, ks = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11141
11154
  uniform mediump sampler2D inputBuffer;
11142
11155
  #else
11143
11156
  uniform lowp sampler2D inputBuffer;
@@ -11231,7 +11244,7 @@ vec2 s=texelSize*scale;for(int x=-KERNEL_SIZE_HALF;x<=KERNEL_SIZE_HALF;++x){for(
11231
11244
  #endif
11232
11245
  gl_FragColor=result*INV_KERNEL_SIZE_SQ;
11233
11246
  #endif
11234
- }`, ks = `uniform vec2 texelSize;uniform float scale;
11247
+ }`, Qs = `uniform vec2 texelSize;uniform float scale;
11235
11248
  #if KERNEL_SIZE == 3
11236
11249
  varying vec2 vUv00,vUv01,vUv02;varying vec2 vUv03,vUv04,vUv05;varying vec2 vUv06,vUv07,vUv08;
11237
11250
  #elif KERNEL_SIZE == 5 && MAX_VARYING_VECTORS >= 13
@@ -11274,8 +11287,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends T {
11274
11287
  toneMapped: !1,
11275
11288
  depthWrite: !1,
11276
11289
  depthTest: !1,
11277
- fragmentShader: Gs,
11278
- vertexShader: ks
11290
+ fragmentShader: ks,
11291
+ vertexShader: Qs
11279
11292
  }), this.bilateral = e, this.kernelSize = t, this.maxVaryingVectors = 8;
11280
11293
  }
11281
11294
  /**
@@ -11406,7 +11419,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends T {
11406
11419
  setSize(e, t) {
11407
11420
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
11408
11421
  }
11409
- }, Qs = `#include <packing>
11422
+ }, Vs = `#include <packing>
11410
11423
  varying vec2 vUv;
11411
11424
  #ifdef NORMAL_DEPTH
11412
11425
  #ifdef GL_FRAGMENT_PRECISION_HIGH
@@ -11442,7 +11455,7 @@ gl_FragColor=(depth==1.0)?vec4(1.0):packDepthToRGBA(depth);
11442
11455
  gl_FragColor=vec4(vec3(depth),1.0);
11443
11456
  #endif
11444
11457
  #endif
11445
- }`, Vs = `varying vec2 vUv;
11458
+ }`, Ws = `varying vec2 vUv;
11446
11459
  #if DEPTH_COPY_MODE == 1
11447
11460
  uniform vec2 texelPosition;
11448
11461
  #endif
@@ -11472,8 +11485,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
11472
11485
  toneMapped: !1,
11473
11486
  depthWrite: !1,
11474
11487
  depthTest: !1,
11475
- fragmentShader: Qs,
11476
- vertexShader: Vs
11488
+ fragmentShader: Vs,
11489
+ vertexShader: Ws
11477
11490
  }), this.depthCopyMode = Se.FULL;
11478
11491
  }
11479
11492
  /**
@@ -11607,7 +11620,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
11607
11620
  setMode(e) {
11608
11621
  this.mode = e;
11609
11622
  }
11610
- }, Ws = `#include <common>
11623
+ }, Ys = `#include <common>
11611
11624
  #include <packing>
11612
11625
  #include <dithering_pars_fragment>
11613
11626
  #define packFloatToRGBA(v) packDepthToRGBA(v)
@@ -11646,7 +11659,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11646
11659
  #include <colorspace_fragment>
11647
11660
  #endif
11648
11661
  #include <dithering_fragment>
11649
- }`, Ys = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Ri = class extends T {
11662
+ }`, Ks = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Ri = class extends T {
11650
11663
  /**
11651
11664
  * Constructs a new effect material.
11652
11665
  *
@@ -11747,7 +11760,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11747
11760
  * @return {EffectMaterial} This material.
11748
11761
  */
11749
11762
  setShaderParts(e) {
11750
- return this.fragmentShader = Ws.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Ys.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
11763
+ return this.fragmentShader = Ys.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Ks.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
11751
11764
  }
11752
11765
  /**
11753
11766
  * Sets the shader macros.
@@ -11871,14 +11884,14 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11871
11884
  static get Section() {
11872
11885
  return B;
11873
11886
  }
11874
- }, Ks = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11887
+ }, Xs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11875
11888
  uniform mediump sampler2D inputBuffer;
11876
11889
  #else
11877
11890
  uniform lowp sampler2D inputBuffer;
11878
11891
  #endif
11879
11892
  uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec4 result=texture2D(inputBuffer,vUv)*kernel[0].y;for(int i=1;i<STEPS;++i){vec2 offset=kernel[i].x*vOffset;vec4 c0=texture2D(inputBuffer,vUv+offset);vec4 c1=texture2D(inputBuffer,vUv-offset);result+=(c0+c1)*kernel[i].y;}gl_FragColor=result;
11880
11893
  #include <colorspace_fragment>
11881
- }`, Xs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", Ui = class extends T {
11894
+ }`, Zs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", bi = class extends T {
11882
11895
  /**
11883
11896
  * Constructs a new convolution material.
11884
11897
  *
@@ -11899,8 +11912,8 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11899
11912
  toneMapped: !1,
11900
11913
  depthWrite: !1,
11901
11914
  depthTest: !1,
11902
- fragmentShader: Ks,
11903
- vertexShader: Xs
11915
+ fragmentShader: Xs,
11916
+ vertexShader: Zs
11904
11917
  }), this._kernelSize = 0, this.kernelSize = e;
11905
11918
  }
11906
11919
  /**
@@ -11962,7 +11975,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11962
11975
  setSize(e, t) {
11963
11976
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
11964
11977
  }
11965
- }, Zs = class extends N {
11978
+ }, js = class extends N {
11966
11979
  /**
11967
11980
  * Constructs a new box blur pass.
11968
11981
  *
@@ -12120,22 +12133,22 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
12120
12133
  setSize(e, t) {
12121
12134
  this.renderTarget.setSize(e, t);
12122
12135
  }
12123
- }, js = Number(Pe.replace(/\D+/g, "")), he = 255 / 256, Js = new Float32Array([
12136
+ }, Js = Number(Pe.replace(/\D+/g, "")), he = 255 / 256, qs = new Float32Array([
12124
12137
  he / 256 ** 3,
12125
12138
  he / 256 ** 2,
12126
12139
  he / 256,
12127
12140
  he
12128
- ]), qs = new Float32Array([
12141
+ ]), _s = new Float32Array([
12129
12142
  he,
12130
12143
  he / 256,
12131
12144
  he / 256 ** 2,
12132
12145
  1 / 256 ** 3
12133
12146
  ]);
12134
- function _s(e) {
12135
- const t = js >= 167 ? qs : Js;
12147
+ function $s(e) {
12148
+ const t = Js >= 167 ? _s : qs;
12136
12149
  return (e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]) / 255;
12137
12150
  }
12138
- var $s = class extends Tt {
12151
+ var en = class extends Tt {
12139
12152
  /**
12140
12153
  * Constructs a new depth picking pass.
12141
12154
  *
@@ -12194,7 +12207,7 @@ var $s = class extends Tt {
12194
12207
  const d = n.texelPosition;
12195
12208
  f = Math.round(d.x * o.width), h = Math.round(d.y * o.height);
12196
12209
  }
12197
- e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(c ? _s(l) : l[0]), this.callback = null;
12210
+ e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(c ? $s(l) : l[0]), this.callback = null;
12198
12211
  }
12199
12212
  }
12200
12213
  /**
@@ -12214,7 +12227,7 @@ function zt(e, t, i) {
12214
12227
  s[1] !== null && i.set(s[0], s[1].replace(n, a));
12215
12228
  }
12216
12229
  }
12217
- function en(e, t, i) {
12230
+ function tn(e, t, i) {
12218
12231
  let r = t.getFragmentShader(), a = t.getVertexShader();
12219
12232
  const n = r !== void 0 && /mainImage/.test(r), s = r !== void 0 && /mainUv/.test(r);
12220
12233
  if (i.attributes |= t.getAttributes(), r === void 0)
@@ -12226,7 +12239,7 @@ function en(e, t, i) {
12226
12239
  {
12227
12240
  const o = /\w+\s+(\w+)\([\w\s,]*\)\s*{/g, l = i.shaderParts;
12228
12241
  let c = l.get(B.FRAGMENT_HEAD) || "", f = l.get(B.FRAGMENT_MAIN_UV) || "", h = l.get(B.FRAGMENT_MAIN_IMAGE) || "", d = l.get(B.VERTEX_HEAD) || "", v = l.get(B.VERTEX_MAIN_SUPPORT) || "";
12229
- const A = /* @__PURE__ */ new Set(), g = /* @__PURE__ */ new Set();
12242
+ const A = /* @__PURE__ */ new Set(), m = /* @__PURE__ */ new Set();
12230
12243
  if (s && (f += ` ${e}MainUv(UV);
12231
12244
  `, i.uvTransformation = !0), a !== null && /mainSupport/.test(a)) {
12232
12245
  const C = /mainSupport *\([\w\s]*?uv\s*?\)/.test(a);
@@ -12235,21 +12248,21 @@ function en(e, t, i) {
12235
12248
  `;
12236
12249
  for (const E of a.matchAll(/(?:varying\s+\w+\s+([\S\s]*?);)/g))
12237
12250
  for (const K of E[1].split(/\s*,\s*/))
12238
- i.varyings.add(K), A.add(K), g.add(K);
12251
+ i.varyings.add(K), A.add(K), m.add(K);
12239
12252
  for (const E of a.matchAll(o))
12240
- g.add(E[1]);
12253
+ m.add(E[1]);
12241
12254
  }
12242
12255
  for (const C of r.matchAll(o))
12243
- g.add(C[1]);
12256
+ m.add(C[1]);
12244
12257
  for (const C of t.defines.keys())
12245
- g.add(C.replace(/\([\w\s,]*\)/g, ""));
12258
+ m.add(C.replace(/\([\w\s,]*\)/g, ""));
12246
12259
  for (const C of t.uniforms.keys())
12247
- g.add(C);
12248
- g.delete("while"), g.delete("for"), g.delete("if"), t.uniforms.forEach((C, E) => i.uniforms.set(e + E.charAt(0).toUpperCase() + E.slice(1), C)), t.defines.forEach((C, E) => i.defines.set(e + E.charAt(0).toUpperCase() + E.slice(1), C));
12260
+ m.add(C);
12261
+ m.delete("while"), m.delete("for"), m.delete("if"), t.uniforms.forEach((C, E) => i.uniforms.set(e + E.charAt(0).toUpperCase() + E.slice(1), C)), t.defines.forEach((C, E) => i.defines.set(e + E.charAt(0).toUpperCase() + E.slice(1), C));
12249
12262
  const x = /* @__PURE__ */ new Map([["fragment", r], ["vertex", a]]);
12250
- zt(e, g, i.defines), zt(e, g, x), r = x.get("fragment"), a = x.get("vertex");
12251
- const M = t.blendMode;
12252
- if (i.blendModes.set(M.blendFunction, M), n) {
12263
+ zt(e, m, i.defines), zt(e, m, x), r = x.get("fragment"), a = x.get("vertex");
12264
+ const y = t.blendMode;
12265
+ if (i.blendModes.set(y.blendFunction, y), n) {
12253
12266
  t.inputColorSpace !== null && t.inputColorSpace !== i.colorSpace && (h += t.inputColorSpace === S ? `color0 = sRGBTransferOETF(color0);
12254
12267
  ` : `color0 = sRGBToLinear(color0);
12255
12268
  `), t.outputColorSpace !== tt ? i.colorSpace = t.outputColorSpace : t.inputColorSpace !== null && (i.colorSpace = t.inputColorSpace);
@@ -12257,7 +12270,7 @@ function en(e, t, i) {
12257
12270
  h += `${e}MainImage(color0, UV, `, (i.attributes & V.DEPTH) !== 0 && C.test(r) && (h += "depth, ", i.readDepth = !0), h += `color1);
12258
12271
  `;
12259
12272
  const E = e + "BlendOpacity";
12260
- i.uniforms.set(E, M.opacity), h += `color0 = blend${M.blendFunction}(color0, color1, ${E});
12273
+ i.uniforms.set(E, y.opacity), h += `color0 = blend${y.blendFunction}(color0, color1, ${E});
12261
12274
 
12262
12275
  `, c += `uniform float ${E};
12263
12276
 
@@ -12270,7 +12283,7 @@ function en(e, t, i) {
12270
12283
  i.extensions.add(C);
12271
12284
  }
12272
12285
  }
12273
- var tn = class extends N {
12286
+ var rn = class extends N {
12274
12287
  /**
12275
12288
  * Constructs a new effect pass.
12276
12289
  *
@@ -12335,12 +12348,12 @@ var tn = class extends N {
12335
12348
  const e = new ai();
12336
12349
  let t = 0;
12337
12350
  for (const s of this.effects)
12338
- if (s.blendMode.blendFunction === m.DST)
12351
+ if (s.blendMode.blendFunction === g.DST)
12339
12352
  e.attributes |= s.getAttributes() & V.DEPTH;
12340
12353
  else {
12341
12354
  if ((e.attributes & s.getAttributes() & V.CONVOLUTION) !== 0)
12342
12355
  throw new Error(`Convolution effects cannot be merged (${s.name})`);
12343
- en("e" + t++, s, e);
12356
+ tn("e" + t++, s, e);
12344
12357
  }
12345
12358
  let i = e.shaderParts.get(B.FRAGMENT_HEAD), r = e.shaderParts.get(B.FRAGMENT_MAIN_IMAGE), a = e.shaderParts.get(B.FRAGMENT_MAIN_UV);
12346
12359
  const n = /\bblend\b/g;
@@ -12437,13 +12450,9 @@ var tn = class extends N {
12437
12450
  * @param {Event} event - An event.
12438
12451
  */
12439
12452
  handleEvent(e) {
12440
- switch (e.type) {
12441
- case "change":
12442
- this.recompile();
12443
- break;
12444
- }
12453
+ e.type === "change" && this.recompile();
12445
12454
  }
12446
- }, rn = class extends N {
12455
+ }, an = class extends N {
12447
12456
  /**
12448
12457
  * Constructs a new Gaussian blur pass.
12449
12458
  *
@@ -12461,7 +12470,7 @@ var tn = class extends N {
12461
12470
  resolutionX: r = D.AUTO_SIZE,
12462
12471
  resolutionY: a = D.AUTO_SIZE
12463
12472
  } = {}) {
12464
- super("GaussianBlurPass"), this.renderTargetA = new w(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Ui({ kernelSize: e }), this.copyMaterial = new ze(), this.copyMaterial.inputBuffer = this.renderTargetB.texture;
12473
+ super("GaussianBlurPass"), this.renderTargetA = new w(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new bi({ kernelSize: e }), this.copyMaterial = new ze(), this.copyMaterial.inputBuffer = this.renderTargetB.texture;
12465
12474
  const n = this.resolution = new D(this, r, a, i);
12466
12475
  n.addEventListener("change", (s) => this.setSize(n.baseWidth, n.baseHeight)), this.iterations = t;
12467
12476
  }
@@ -12504,7 +12513,7 @@ var tn = class extends N {
12504
12513
  initialize(e, t, i) {
12505
12514
  i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, i !== Y ? (this.blurMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1", this.copyMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1") : e !== null && e.outputColorSpace === S && (this.renderTargetA.texture.colorSpace = S, this.renderTargetB.texture.colorSpace = S));
12506
12515
  }
12507
- }, an = class extends N {
12516
+ }, sn = class extends N {
12508
12517
  /**
12509
12518
  * Constructs a new lambda pass.
12510
12519
  *
@@ -12525,7 +12534,7 @@ var tn = class extends N {
12525
12534
  render(e, t, i, r, a) {
12526
12535
  this.f();
12527
12536
  }
12528
- }, sn = class extends N {
12537
+ }, nn = class extends N {
12529
12538
  /**
12530
12539
  * Constructs a new normal pass.
12531
12540
  *
@@ -12634,7 +12643,7 @@ var tn = class extends N {
12634
12643
  }, Gt = [
12635
12644
  new Float32Array(3),
12636
12645
  new Float32Array(3)
12637
- ], b = [
12646
+ ], U = [
12638
12647
  new Float32Array(3),
12639
12648
  new Float32Array(3),
12640
12649
  new Float32Array(3),
@@ -12678,29 +12687,29 @@ var tn = class extends N {
12678
12687
  ]
12679
12688
  ];
12680
12689
  function Ye(e, t, i, r) {
12681
- const a = i[0] - t[0], n = i[1] - t[1], s = i[2] - t[2], o = e[0] - t[0], l = e[1] - t[1], c = e[2] - t[2], f = n * c - s * l, h = s * o - a * c, d = a * l - n * o, v = Math.sqrt(f * f + h * h + d * d), A = v * 0.5, g = f / v, x = h / v, M = d / v, C = -(e[0] * g + e[1] * x + e[2] * M), E = r[0] * g + r[1] * x + r[2] * M;
12690
+ const a = i[0] - t[0], n = i[1] - t[1], s = i[2] - t[2], o = e[0] - t[0], l = e[1] - t[1], c = e[2] - t[2], f = n * c - s * l, h = s * o - a * c, d = a * l - n * o, v = Math.sqrt(f * f + h * h + d * d), A = v * 0.5, m = f / v, x = h / v, y = d / v, C = -(e[0] * m + e[1] * x + e[2] * y), E = r[0] * m + r[1] * x + r[2] * y;
12682
12691
  return Math.abs(E + C) * A / 3;
12683
12692
  }
12684
- function Ue(e, t, i, r, a, n) {
12693
+ function be(e, t, i, r, a, n) {
12685
12694
  const s = (i + r * t + a * t * t) * 4;
12686
12695
  n[0] = e[s + 0], n[1] = e[s + 1], n[2] = e[s + 2];
12687
12696
  }
12688
- function nn(e, t, i, r, a, n) {
12689
- const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), c = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l), g = s - c, x = o - f, M = l - h;
12697
+ function on(e, t, i, r, a, n) {
12698
+ const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), c = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l), m = s - c, x = o - f, y = l - h;
12690
12699
  if (c === s && f === o && h === l)
12691
- Ue(e, t, s, o, l, n);
12700
+ be(e, t, s, o, l, n);
12692
12701
  else {
12693
12702
  let C;
12694
- g >= x && x >= M ? C = Ae[0] : g >= M && M >= x ? C = Ae[1] : M >= g && g >= x ? C = Ae[2] : x >= g && g >= M ? C = Ae[3] : x >= M && M >= g ? C = Ae[4] : M >= x && x >= g && (C = Ae[5]);
12703
+ m >= x && x >= y ? C = Ae[0] : m >= y && y >= x ? C = Ae[1] : y >= m && m >= x ? C = Ae[2] : x >= m && m >= y ? C = Ae[3] : x >= y && y >= m ? C = Ae[4] : y >= x && x >= m && (C = Ae[5]);
12695
12704
  const [E, K, ee, ie] = C, re = Gt[0];
12696
- re[0] = g, re[1] = x, re[2] = M;
12705
+ re[0] = m, re[1] = x, re[2] = y;
12697
12706
  const L = Gt[1], ge = d - c, me = v - f, ne = A - h;
12698
- L[0] = ge * E[0] + c, L[1] = me * E[1] + f, L[2] = ne * E[2] + h, Ue(e, t, L[0], L[1], L[2], b[0]), L[0] = ge * K[0] + c, L[1] = me * K[1] + f, L[2] = ne * K[2] + h, Ue(e, t, L[0], L[1], L[2], b[1]), L[0] = ge * ee[0] + c, L[1] = me * ee[1] + f, L[2] = ne * ee[2] + h, Ue(e, t, L[0], L[1], L[2], b[2]), L[0] = ge * ie[0] + c, L[1] = me * ie[1] + f, L[2] = ne * ie[2] + h, Ue(e, t, L[0], L[1], L[2], b[3]);
12707
+ L[0] = ge * E[0] + c, L[1] = me * E[1] + f, L[2] = ne * E[2] + h, be(e, t, L[0], L[1], L[2], U[0]), L[0] = ge * K[0] + c, L[1] = me * K[1] + f, L[2] = ne * K[2] + h, be(e, t, L[0], L[1], L[2], U[1]), L[0] = ge * ee[0] + c, L[1] = me * ee[1] + f, L[2] = ne * ee[2] + h, be(e, t, L[0], L[1], L[2], U[2]), L[0] = ge * ie[0] + c, L[1] = me * ie[1] + f, L[2] = ne * ie[2] + h, be(e, t, L[0], L[1], L[2], U[3]);
12699
12708
  const ce = Ye(K, ee, ie, re) * 6, G = Ye(E, ee, ie, re) * 6, ke = Ye(E, K, ie, re) * 6, at = Ye(E, K, ee, re) * 6;
12700
- b[0][0] *= ce, b[0][1] *= ce, b[0][2] *= ce, b[1][0] *= G, b[1][1] *= G, b[1][2] *= G, b[2][0] *= ke, b[2][1] *= ke, b[2][2] *= ke, b[3][0] *= at, b[3][1] *= at, b[3][2] *= at, n[0] = b[0][0] + b[1][0] + b[2][0] + b[3][0], n[1] = b[0][1] + b[1][1] + b[2][1] + b[3][1], n[2] = b[0][2] + b[1][2] + b[2][2] + b[3][2];
12709
+ U[0][0] *= ce, U[0][1] *= ce, U[0][2] *= ce, U[1][0] *= G, U[1][1] *= G, U[1][2] *= G, U[2][0] *= ke, U[2][1] *= ke, U[2][2] *= ke, U[3][0] *= at, U[3][1] *= at, U[3][2] *= at, n[0] = U[0][0] + U[1][0] + U[2][0] + U[3][0], n[1] = U[0][1] + U[1][1] + U[2][1] + U[3][1], n[2] = U[0][2] + U[1][2] + U[2][2] + U[3][2];
12701
12710
  }
12702
12711
  }
12703
- var on = class {
12712
+ var ln = class {
12704
12713
  /**
12705
12714
  * Expands the given data to the target size.
12706
12715
  *
@@ -12714,14 +12723,14 @@ var on = class {
12714
12723
  for (let c = 0; c < t; ++c)
12715
12724
  for (let f = 0; f < t; ++f) {
12716
12725
  const h = f * o, d = c * o, v = l * o, A = Math.round(f + c * t + l * s) * 4;
12717
- nn(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
12726
+ on(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
12718
12727
  }
12719
12728
  return a;
12720
12729
  }
12721
- }, Me = [
12730
+ }, ye = [
12722
12731
  new Float32Array(2),
12723
12732
  new Float32Array(2)
12724
- ], xe = 16, ct = 20, De = 30, ln = 32, ft = new Float32Array([
12733
+ ], xe = 16, ct = 20, De = 30, un = 32, ft = new Float32Array([
12725
12734
  0,
12726
12735
  -0.25,
12727
12736
  0.25,
@@ -12735,7 +12744,7 @@ var on = class {
12735
12744
  new Float32Array([-0.25, 0.25]),
12736
12745
  new Float32Array([0.125, -0.125]),
12737
12746
  new Float32Array([-0.125, 0.125])
12738
- ], un = [
12747
+ ], cn = [
12739
12748
  new Uint8Array([0, 0]),
12740
12749
  new Uint8Array([3, 0]),
12741
12750
  new Uint8Array([0, 3]),
@@ -12752,7 +12761,7 @@ var on = class {
12752
12761
  new Uint8Array([4, 1]),
12753
12762
  new Uint8Array([1, 4]),
12754
12763
  new Uint8Array([4, 4])
12755
- ], bi = [
12764
+ ], Ui = [
12756
12765
  new Uint8Array([0, 0]),
12757
12766
  new Uint8Array([1, 0]),
12758
12767
  new Uint8Array([0, 2]),
@@ -12773,11 +12782,11 @@ var on = class {
12773
12782
  function Ke(e, t, i) {
12774
12783
  return e + (t - e) * i;
12775
12784
  }
12776
- function cn(e) {
12785
+ function fn(e) {
12777
12786
  return Math.min(Math.max(e, 0), 1);
12778
12787
  }
12779
12788
  function Qt(e) {
12780
- const t = Me[0], i = Me[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = cn(e / ln);
12789
+ const t = ye[0], i = ye[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = fn(e / un);
12781
12790
  t[0] = Ke(r, t[0], o), t[1] = Ke(a, t[1], o), i[0] = Ke(n, i[0], o), i[1] = Ke(s, i[1], o);
12782
12791
  }
12783
12792
  function k(e, t, i, r, a, n) {
@@ -12787,15 +12796,15 @@ function k(e, t, i, r, a, n) {
12787
12796
  const d = (f + h) / 2;
12788
12797
  d < 0 ? (n[0] = Math.abs(d), n[1] = 0) : (n[0] = 0, n[1] = Math.abs(d));
12789
12798
  } else {
12790
- const d = -t * s / o + e, v = Math.trunc(d), A = d > e ? f * (d - v) / 2 : 0, g = d < i ? h * (1 - (d - v)) / 2 : 0;
12791
- (Math.abs(A) > Math.abs(g) ? A : -g) < 0 ? (n[0] = Math.abs(A), n[1] = Math.abs(g)) : (n[0] = Math.abs(g), n[1] = Math.abs(A));
12799
+ const d = -t * s / o + e, v = Math.trunc(d), A = d > e ? f * (d - v) / 2 : 0, m = d < i ? h * (1 - (d - v)) / 2 : 0;
12800
+ (Math.abs(A) > Math.abs(m) ? A : -m) < 0 ? (n[0] = Math.abs(A), n[1] = Math.abs(m)) : (n[0] = Math.abs(m), n[1] = Math.abs(A));
12792
12801
  }
12793
12802
  else
12794
12803
  n[0] = 0, n[1] = 0;
12795
12804
  return n;
12796
12805
  }
12797
- function fn(e, t, i, r, a) {
12798
- const n = Me[0], s = Me[1], o = 0.5 + r, l = 0.5 + r - 1, c = t + i + 1;
12806
+ function hn(e, t, i, r, a) {
12807
+ const n = ye[0], s = ye[1], o = 0.5 + r, l = 0.5 + r - 1, c = t + i + 1;
12799
12808
  switch (e) {
12800
12809
  case 0: {
12801
12810
  a[0] = 0, a[1] = 0;
@@ -12864,7 +12873,7 @@ function fn(e, t, i, r, a) {
12864
12873
  }
12865
12874
  return a;
12866
12875
  }
12867
- function hn(e, t, i, r, a, n) {
12876
+ function dn(e, t, i, r, a, n) {
12868
12877
  let s = e === i && t === r;
12869
12878
  if (!s) {
12870
12879
  const o = (e + i) / 2, l = (t + r) / 2, c = r - t, f = e - i;
@@ -12877,79 +12886,79 @@ function Vt(e, t, i, r, a, n) {
12877
12886
  for (let o = 0; o < De; ++o)
12878
12887
  for (let l = 0; l < De; ++l) {
12879
12888
  const c = l / (De - 1), f = o / (De - 1);
12880
- hn(e, t, i, r, a + c, n + f) && ++s;
12889
+ dn(e, t, i, r, a + c, n + f) && ++s;
12881
12890
  }
12882
12891
  return s / (De * De);
12883
12892
  }
12884
- function U(e, t, i, r, a, n, s, o) {
12885
- const l = bi[e], c = l[0], f = l[1];
12893
+ function b(e, t, i, r, a, n, s, o) {
12894
+ const l = Ui[e], c = l[0], f = l[1];
12886
12895
  return c > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 - Vt(t, i, r, a, 1 + n, 0 + n), o[1] = Vt(t, i, r, a, 1 + n, 1 + n), o;
12887
12896
  }
12888
- function dn(e, t, i, r, a) {
12889
- const n = Me[0], s = Me[1], o = t + i + 1;
12897
+ function vn(e, t, i, r, a) {
12898
+ const n = ye[0], s = ye[1], o = t + i + 1;
12890
12899
  switch (e) {
12891
12900
  case 0: {
12892
- U(e, 1, 1, 1 + o, 1 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12901
+ b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12893
12902
  break;
12894
12903
  }
12895
12904
  case 1: {
12896
- U(e, 1, 0, 0 + o, 0 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12905
+ b(e, 1, 0, 0 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12897
12906
  break;
12898
12907
  }
12899
12908
  case 2: {
12900
- U(e, 0, 0, 1 + o, 0 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12909
+ b(e, 0, 0, 1 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12901
12910
  break;
12902
12911
  }
12903
12912
  case 3: {
12904
- U(e, 1, 0, 1 + o, 0 + o, t, r, a);
12913
+ b(e, 1, 0, 1 + o, 0 + o, t, r, a);
12905
12914
  break;
12906
12915
  }
12907
12916
  case 4: {
12908
- U(e, 1, 1, 0 + o, 0 + o, t, r, n), U(e, 1, 1, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12917
+ b(e, 1, 1, 0 + o, 0 + o, t, r, n), b(e, 1, 1, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12909
12918
  break;
12910
12919
  }
12911
12920
  case 5: {
12912
- U(e, 1, 1, 0 + o, 0 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12921
+ b(e, 1, 1, 0 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12913
12922
  break;
12914
12923
  }
12915
12924
  case 6: {
12916
- U(e, 1, 1, 1 + o, 0 + o, t, r, a);
12925
+ b(e, 1, 1, 1 + o, 0 + o, t, r, a);
12917
12926
  break;
12918
12927
  }
12919
12928
  case 7: {
12920
- U(e, 1, 1, 1 + o, 0 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12929
+ b(e, 1, 1, 1 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12921
12930
  break;
12922
12931
  }
12923
12932
  case 8: {
12924
- U(e, 0, 0, 1 + o, 1 + o, t, r, n), U(e, 1, 0, 1 + o, 1 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12933
+ b(e, 0, 0, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 1 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12925
12934
  break;
12926
12935
  }
12927
12936
  case 9: {
12928
- U(e, 1, 0, 1 + o, 1 + o, t, r, a), U(e, 1, 0, 1 + o, 1 + o, t, r, a);
12937
+ b(e, 1, 0, 1 + o, 1 + o, t, r, a), b(e, 1, 0, 1 + o, 1 + o, t, r, a);
12929
12938
  break;
12930
12939
  }
12931
12940
  case 10: {
12932
- U(e, 0, 0, 1 + o, 1 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12941
+ b(e, 0, 0, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12933
12942
  break;
12934
12943
  }
12935
12944
  case 11: {
12936
- U(e, 1, 0, 1 + o, 1 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12945
+ b(e, 1, 0, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12937
12946
  break;
12938
12947
  }
12939
12948
  case 12: {
12940
- U(e, 1, 1, 1 + o, 1 + o, t, r, a);
12949
+ b(e, 1, 1, 1 + o, 1 + o, t, r, a);
12941
12950
  break;
12942
12951
  }
12943
12952
  case 13: {
12944
- U(e, 1, 1, 1 + o, 1 + o, t, r, n), U(e, 1, 0, 1 + o, 1 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12953
+ b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 1 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12945
12954
  break;
12946
12955
  }
12947
12956
  case 14: {
12948
- U(e, 1, 1, 1 + o, 1 + o, t, r, n), U(e, 1, 1, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12957
+ b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 1, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12949
12958
  break;
12950
12959
  }
12951
12960
  case 15: {
12952
- U(e, 1, 1, 1 + o, 1 + o, t, r, n), U(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12961
+ b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
12953
12962
  break;
12954
12963
  }
12955
12964
  }
@@ -12961,7 +12970,7 @@ function Wt(e, t, i) {
12961
12970
  const s = e[a], o = s.data, l = s.width;
12962
12971
  for (let c = 0; c < l; ++c)
12963
12972
  for (let f = 0; f < l; ++f) {
12964
- i ? fn(a, f, c, t, r) : dn(a, f, c, t, r);
12973
+ i ? hn(a, f, c, t, r) : vn(a, f, c, t, r);
12965
12974
  const h = (c * l + f) * 2;
12966
12975
  o[h] = r[0] * 255, o[h + 1] = r[1] * 255;
12967
12976
  }
@@ -12971,14 +12980,14 @@ function Yt(e, t, i, r, a, n, s) {
12971
12980
  const o = s.data, l = s.width;
12972
12981
  for (let c = 0, f = i.length; c < f; ++c) {
12973
12982
  const h = r[c], d = i[c], v = d.data, A = d.width;
12974
- for (let g = 0; g < a; ++g)
12983
+ for (let m = 0; m < a; ++m)
12975
12984
  for (let x = 0; x < a; ++x) {
12976
- const M = h[0] * a + e + x, E = ((h[1] * a + t + g) * l + M) * 4, K = n ? (g * g * A + x * x) * 2 : (g * A + x) * 2;
12985
+ const y = h[0] * a + e + x, E = ((h[1] * a + t + m) * l + y) * 4, K = n ? (m * m * A + x * x) * 2 : (m * A + x) * 2;
12977
12986
  o[E] = v[K], o[E + 1] = v[K + 1], o[E + 2] = 0, o[E + 3] = 255;
12978
12987
  }
12979
12988
  }
12980
12989
  }
12981
- var vn = class {
12990
+ var pn = class {
12982
12991
  /**
12983
12992
  * Creates a new area image.
12984
12993
  *
@@ -13005,7 +13014,7 @@ var vn = class {
13005
13014
  0,
13006
13015
  5 * xe * l,
13007
13016
  s,
13008
- un,
13017
+ cn,
13009
13018
  xe,
13010
13019
  !0,
13011
13020
  r
@@ -13015,17 +13024,17 @@ var vn = class {
13015
13024
  5 * xe,
13016
13025
  4 * ct * l,
13017
13026
  o,
13018
- bi,
13027
+ Ui,
13019
13028
  ct,
13020
13029
  !1,
13021
13030
  r
13022
13031
  );
13023
13032
  return r;
13024
13033
  }
13025
- }, pn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
13034
+ }, gn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
13026
13035
  `;
13027
- function gn(e = !0) {
13028
- const t = URL.createObjectURL(new Blob([pn], {
13036
+ function mn(e = !0) {
13037
+ const t = URL.createObjectURL(new Blob([gn], {
13029
13038
  type: "text/javascript"
13030
13039
  })), i = new Worker(t);
13031
13040
  return URL.revokeObjectURL(t), new Promise((r, a) => {
@@ -13038,7 +13047,7 @@ function gn(e = !0) {
13038
13047
  }), i.postMessage(null);
13039
13048
  });
13040
13049
  }
13041
- var mn = class {
13050
+ var An = class {
13042
13051
  /**
13043
13052
  * Constructs a new SMAA image generator.
13044
13053
  */
@@ -13067,7 +13076,7 @@ var mn = class {
13067
13076
  localStorage.getItem("smaa-search"),
13068
13077
  localStorage.getItem("smaa-area")
13069
13078
  ] : [null, null];
13070
- return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : gn(e)).then((r) => new Promise((a, n) => {
13079
+ return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : mn(e)).then((r) => new Promise((a, n) => {
13071
13080
  const s = new Image(), o = new Image(), l = new ve();
13072
13081
  l.onLoad = () => a([s, o]), l.onError = n, s.addEventListener("error", (c) => l.itemError("smaa-search")), o.addEventListener("error", (c) => l.itemError("smaa-area")), s.addEventListener("load", () => l.itemEnd("smaa-search")), o.addEventListener("load", () => l.itemEnd("smaa-area")), l.itemStart("smaa-search"), l.itemStart("smaa-area"), s.src = r[0], o.src = r[1];
13073
13082
  }));
@@ -13097,15 +13106,15 @@ function X(e, t, i, r) {
13097
13106
  const a = ht(e, t, 0.75), n = ht(i, r, 1 - 0.25);
13098
13107
  return ht(a, n, 1 - 0.125);
13099
13108
  }
13100
- function An(e, t) {
13109
+ function xn(e, t) {
13101
13110
  let i = 0;
13102
13111
  return t[3] === 1 && (i += 1), i === 1 && t[2] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i;
13103
13112
  }
13104
- function xn(e, t) {
13113
+ function Dn(e, t) {
13105
13114
  let i = 0;
13106
13115
  return t[3] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i === 1 && t[2] === 1 && e[0] !== 1 && e[2] !== 1 && (i += 1), i;
13107
13116
  }
13108
- var Dn = class {
13117
+ var Tn = class {
13109
13118
  /**
13110
13119
  * Creates a new search image.
13111
13120
  *
@@ -13118,7 +13127,7 @@ var Dn = class {
13118
13127
  const c = 0.03125 * l, f = 0.03125 * o;
13119
13128
  if (Xe.has(c) && Xe.has(f)) {
13120
13129
  const h = Xe.get(c), d = Xe.get(f), v = o * 66 + l;
13121
- n[v] = 127 * An(h, d), n[v + 33] = 127 * xn(h, d);
13130
+ n[v] = 127 * xn(h, d), n[v + 33] = 127 * Dn(h, d);
13122
13131
  }
13123
13132
  }
13124
13133
  for (let o = 0, l = 17; l < 33; ++l)
@@ -13127,28 +13136,28 @@ var Dn = class {
13127
13136
  return new le(64, 16, s);
13128
13137
  }
13129
13138
  };
13130
- const Rn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13139
+ const bn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13131
13140
  __proto__: null,
13132
- ASCIIEffect: Vr,
13141
+ ASCIIEffect: Wr,
13133
13142
  ASCIITexture: oi,
13134
- AdaptiveLuminanceMaterial: Mi,
13143
+ AdaptiveLuminanceMaterial: yi,
13135
13144
  AdaptiveLuminancePass: Bi,
13136
- BlendFunction: m,
13145
+ BlendFunction: g,
13137
13146
  BlendMode: ni,
13138
13147
  BloomEffect: hi,
13139
13148
  BlurPass: pe,
13140
- BokehEffect: ea,
13141
- BokehMaterial: be,
13149
+ BokehEffect: ta,
13150
+ BokehMaterial: Ue,
13142
13151
  BoxBlurMaterial: Pi,
13143
- BoxBlurPass: Zs,
13144
- BrightnessContrastEffect: ia,
13145
- ChromaticAberrationEffect: ua,
13152
+ BoxBlurPass: js,
13153
+ BrightnessContrastEffect: ra,
13154
+ ChromaticAberrationEffect: ca,
13146
13155
  CircleOfConfusionMaterial: di,
13147
13156
  ClearMaskPass: ii,
13148
13157
  ClearPass: Ie,
13149
- ColorAverageEffect: aa,
13158
+ ColorAverageEffect: sa,
13150
13159
  ColorChannel: fe,
13151
- ColorDepthEffect: na,
13160
+ ColorDepthEffect: oa,
13152
13161
  ColorEdgesMaterial: At,
13153
13162
  ConvolutionMaterial: $e,
13154
13163
  CopyMaterial: ze,
@@ -13159,105 +13168,105 @@ const Rn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13159
13168
  DepthCopyPass: Tt,
13160
13169
  DepthDownsamplingMaterial: Ei,
13161
13170
  DepthDownsamplingPass: Si,
13162
- DepthEffect: fa,
13171
+ DepthEffect: ha,
13163
13172
  DepthMaskMaterial: Di,
13164
- DepthOfFieldEffect: ma,
13173
+ DepthOfFieldEffect: Aa,
13165
13174
  DepthPass: Bt,
13166
- DepthPickingPass: $s,
13175
+ DepthPickingPass: en,
13167
13176
  DepthSavePass: Tt,
13168
- DepthTestStrategy: ye,
13177
+ DepthTestStrategy: Me,
13169
13178
  Disposable: tr,
13170
- DotScreenEffect: xa,
13179
+ DotScreenEffect: Da,
13171
13180
  DownsamplingMaterial: ui,
13172
13181
  EdgeDetectionMaterial: At,
13173
- EdgeDetectionMode: Mt,
13182
+ EdgeDetectionMode: yt,
13174
13183
  Effect: I,
13175
13184
  EffectAttribute: V,
13176
13185
  EffectComposer: sr,
13177
13186
  EffectMaterial: Ri,
13178
- EffectPass: tn,
13187
+ EffectPass: rn,
13179
13188
  EffectShaderData: ai,
13180
13189
  EffectShaderSection: B,
13181
- FXAAEffect: wa,
13182
- GammaCorrectionEffect: Sa,
13190
+ FXAAEffect: Ea,
13191
+ GammaCorrectionEffect: Ca,
13183
13192
  GaussKernel: si,
13184
- GaussianBlurMaterial: Ui,
13185
- GaussianBlurPass: rn,
13186
- GlitchEffect: Ma,
13193
+ GaussianBlurMaterial: bi,
13194
+ GaussianBlurPass: an,
13195
+ GlitchEffect: Ba,
13187
13196
  GlitchMode: Te,
13188
- GodRaysEffect: Ia,
13197
+ GodRaysEffect: Ra,
13189
13198
  GodRaysMaterial: pi,
13190
13199
  GridEffect: Ua,
13191
- HueSaturationEffect: Fa,
13200
+ HueSaturationEffect: La,
13192
13201
  ImmutableTimer: nr,
13193
13202
  Initializable: or,
13194
13203
  KawaseBlurMaterial: $e,
13195
13204
  KawaseBlurPass: pe,
13196
13205
  KernelSize: te,
13197
- LUT1DEffect: Ha,
13206
+ LUT1DEffect: za,
13198
13207
  LUT3DEffect: Ot,
13199
- LUT3dlLoader: Ns,
13200
- LUTCubeLoader: Hs,
13208
+ LUT3dlLoader: Hs,
13209
+ LUTCubeLoader: zs,
13201
13210
  LUTEffect: Ot,
13202
13211
  LUTOperation: gi,
13203
- LambdaPass: an,
13204
- LensDistortionEffect: Oa,
13212
+ LambdaPass: sn,
13213
+ LensDistortionEffect: Na,
13205
13214
  LookupTexture: He,
13206
13215
  LookupTexture3D: He,
13207
13216
  LuminanceMaterial: li,
13208
13217
  LuminancePass: Ct,
13209
- MaskFunction: yt,
13218
+ MaskFunction: Mt,
13210
13219
  MaskMaterial: vi,
13211
13220
  MaskPass: ri,
13212
13221
  MipmapBlurPass: fi,
13213
- NoiseEffect: Va,
13222
+ NoiseEffect: Wa,
13214
13223
  NoiseTexture: et,
13215
- NormalPass: sn,
13224
+ NormalPass: nn,
13216
13225
  OutlineEdgesMaterial: mt,
13217
- OutlineEffect: Ja,
13226
+ OutlineEffect: qa,
13218
13227
  OutlineMaterial: mt,
13219
13228
  OverrideMaterialManager: gt,
13220
13229
  Pass: N,
13221
- PixelationEffect: _a,
13230
+ PixelationEffect: $a,
13222
13231
  PredicationMode: Ai,
13223
13232
  RawImageData: le,
13224
- RealisticBokehEffect: es,
13233
+ RealisticBokehEffect: ts,
13225
13234
  RenderPass: Ge,
13226
13235
  Resizable: lr,
13227
13236
  Resizer: D,
13228
13237
  Resolution: D,
13229
- SMAAAreaImageData: vn,
13230
- SMAAEffect: ms,
13231
- SMAAImageGenerator: mn,
13232
- SMAAImageLoader: zs,
13238
+ SMAAAreaImageData: pn,
13239
+ SMAAEffect: As,
13240
+ SMAAImageGenerator: An,
13241
+ SMAAImageLoader: Gs,
13233
13242
  SMAAPreset: we,
13234
- SMAASearchImageData: Dn,
13243
+ SMAASearchImageData: Tn,
13235
13244
  SMAAWeightsMaterial: Ti,
13236
- SSAOEffect: Es,
13245
+ SSAOEffect: Ss,
13237
13246
  SSAOMaterial: wi,
13238
13247
  SavePass: Ne,
13239
- ScanlineEffect: is,
13248
+ ScanlineEffect: rs,
13240
13249
  Section: B,
13241
13250
  Selection: St,
13242
- SelectiveBloomEffect: ls,
13243
- SepiaEffect: cs,
13251
+ SelectiveBloomEffect: us,
13252
+ SepiaEffect: fs,
13244
13253
  ShaderPass: _,
13245
- ShockWaveEffect: ns,
13246
- TetrahedralUpscaler: on,
13254
+ ShockWaveEffect: os,
13255
+ TetrahedralUpscaler: ln,
13247
13256
  TextureEffect: ys,
13248
13257
  TiltShiftBlurMaterial: Ci,
13249
- TiltShiftBlurPass: yi,
13250
- TiltShiftEffect: Rs,
13258
+ TiltShiftBlurPass: Mi,
13259
+ TiltShiftEffect: bs,
13251
13260
  Timer: ti,
13252
- ToneMappingEffect: Fs,
13261
+ ToneMappingEffect: Ls,
13253
13262
  ToneMappingMode: j,
13254
13263
  UpsamplingMaterial: ci,
13255
- VignetteEffect: Os,
13264
+ VignetteEffect: Ns,
13256
13265
  VignetteTechnique: Ee,
13257
- WebGLExtension: ka,
13266
+ WebGLExtension: Qa,
13258
13267
  version: er
13259
13268
  }, Symbol.toStringTag, { value: "Module" }));
13260
- class Tn extends ei {
13269
+ class wn extends ei {
13261
13270
  boundingSphere = new _i();
13262
13271
  constructor() {
13263
13272
  super(), this.setAttribute("position", new _e(new Float32Array([
@@ -13279,13 +13288,13 @@ class Tn extends ei {
13279
13288
  computeBoundingSphere() {
13280
13289
  }
13281
13290
  }
13282
- const wn = /* @__PURE__ */ new Tn(), En = /* @__PURE__ */ new Jt();
13291
+ const En = /* @__PURE__ */ new wn(), Sn = /* @__PURE__ */ new Jt();
13283
13292
  class q {
13284
13293
  constructor(t) {
13285
- this._mesh = new qt(wn, t), this._mesh.frustumCulled = !1;
13294
+ this._mesh = new qt(En, t), this._mesh.frustumCulled = !1;
13286
13295
  }
13287
13296
  render(t) {
13288
- t.render(this._mesh, En);
13297
+ t.render(this._mesh, Sn);
13289
13298
  }
13290
13299
  get material() {
13291
13300
  return this._mesh.material;
@@ -14331,8 +14340,8 @@ void main() {
14331
14340
  ), 0.0);
14332
14341
  }`
14333
14342
  )
14334
- }, Sn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Cn = Uint8Array.from(atob(Sn), (e) => e.charCodeAt(0));
14335
- var Hi = Cn;
14343
+ }, Cn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Mn = Uint8Array.from(atob(Cn), (e) => e.charCodeAt(0));
14344
+ var Hi = Mn;
14336
14345
  const yn = parseInt(Pe.replace(/\D+/g, "")), zi = yn >= 162 ? class extends w {
14337
14346
  constructor(e = 1, t = 1, i = 1, r = {}) {
14338
14347
  super(e, t, {
@@ -14376,7 +14385,7 @@ function Gi(e, t, i) {
14376
14385
  Gi(e, t, i);
14377
14386
  }, 1);
14378
14387
  }
14379
- class Mn extends N {
14388
+ class Bn extends N {
14380
14389
  /**
14381
14390
  *
14382
14391
  * @param {THREE.Scene} scene
@@ -14404,7 +14413,7 @@ class Mn extends N {
14404
14413
  biasMultiplier: 0,
14405
14414
  color: new Q(0, 0, 0),
14406
14415
  gammaCorrection: !0,
14407
- depthBufferType: y.Default,
14416
+ depthBufferType: M.Default,
14408
14417
  screenSpaceRadius: !1,
14409
14418
  halfRes: !1,
14410
14419
  depthAwareUpsampling: !0,
@@ -14516,7 +14525,7 @@ class Mn extends N {
14516
14525
  value: this.depthTexture
14517
14526
  },
14518
14527
  reverseDepthBuffer: {
14519
- value: this.configuration.depthBufferType === y.Reverse
14528
+ value: this.configuration.depthBufferType === M.Reverse
14520
14529
  }
14521
14530
  },
14522
14531
  vertexShader: (
@@ -14555,7 +14564,7 @@ class Mn extends N {
14555
14564
  const i = this.scene.background, r = t.getClearColor(new Q()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
14556
14565
  this.scene.traverse((o) => {
14557
14566
  n.set(o, o.visible);
14558
- }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === y.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14567
+ }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14559
14568
  o.material && (o.visible = n.get(o) && (o.material.transparent && !o.material.depthWrite && !o.userData.treatAsOpaque || !!o.userData.cannotReceiveAO));
14560
14569
  }), t.clear(!0, !0, !0), this.depthCopyPass.render(t), t.render(this.scene, this.camera), t.setRenderTarget(this.transparencyRenderTargetDWTrue), this.scene.traverse((o) => {
14561
14570
  o.material && (o.visible = n.get(o) && o.material.transparent && o.material.depthWrite && !o.userData.treatAsOpaque);
@@ -14566,34 +14575,34 @@ class Mn extends N {
14566
14575
  configureSampleDependentPasses() {
14567
14576
  this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera);
14568
14577
  }
14569
- configureAOPass(t = y.Default, i = !1) {
14578
+ configureAOPass(t = M.Default, i = !1) {
14570
14579
  this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
14571
14580
  const r = {
14572
14581
  ...Fi
14573
14582
  };
14574
- r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === y.Log ? r.fragmentShader = `#define LOGDEPTH
14575
- ` + r.fragmentShader : t === y.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14583
+ r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14584
+ ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14576
14585
  ` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
14577
14586
  ` + r.fragmentShader), this.configuration.halfRes && (r.fragmentShader = `#define HALFRES
14578
14587
  ` + r.fragmentShader), this.effectShaderQuad ? (this.effectShaderQuad.material.dispose(), this.effectShaderQuad.material = new T(r)) : this.effectShaderQuad = new q(new T(r));
14579
14588
  }
14580
- configureDenoisePass(t = y.Default, i = !1) {
14589
+ configureDenoisePass(t = M.Default, i = !1) {
14581
14590
  this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
14582
14591
  const r = {
14583
14592
  ...Oi
14584
14593
  };
14585
- r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === y.Log ? r.fragmentShader = `#define LOGDEPTH
14586
- ` + r.fragmentShader : t === y.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14594
+ r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14595
+ ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14587
14596
  ` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
14588
14597
  ` + r.fragmentShader), this.poissonBlurQuad ? (this.poissonBlurQuad.material.dispose(), this.poissonBlurQuad.material = new T(r)) : this.poissonBlurQuad = new q(new T(r));
14589
14598
  }
14590
- configureEffectCompositer(t = y.Default, i = !1) {
14599
+ configureEffectCompositer(t = M.Default, i = !1) {
14591
14600
  this.firstFrame();
14592
14601
  const r = {
14593
14602
  ...Li
14594
14603
  };
14595
- t === y.Log ? r.fragmentShader = `#define LOGDEPTH
14596
- ` + r.fragmentShader : t === y.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14604
+ t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14605
+ ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14597
14606
  ` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
14598
14607
  ` + r.fragmentShader), this.configuration.halfRes && this.configuration.depthAwareUpsampling && (r.fragmentShader = `#define HALFRES
14599
14608
  ` + r.fragmentShader), this.effectCompositerQuad ? (this.effectCompositerQuad.material.dispose(), this.effectCompositerQuad.material = new T(r)) : this.effectCompositerQuad = new q(new T(r));
@@ -14637,7 +14646,7 @@ class Mn extends N {
14637
14646
  }
14638
14647
  render(t, i, r) {
14639
14648
  const a = t.xr.enabled;
14640
- t.xr.enabled = !1, (t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !== y.Log || t.capabilities.reverseDepthBuffer && this.configuration.depthBufferType !== y.Reverse) && (this.configuration.depthBufferType = t.capabilities.logarithmicDepthBuffer ? y.Log : t.capabilities.reverseDepthBuffer ? y.Reverse : y.Default, this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera)), this.detectTransparency(), (i.texture.type !== this.outputTargetInternal.texture.type || i.texture.format !== this.outputTargetInternal.texture.format) && (this.outputTargetInternal.texture.type = i.texture.type, this.outputTargetInternal.texture.format = i.texture.format, this.outputTargetInternal.texture.needsUpdate = !0), this.camera.updateMatrixWorld(), this.lastViewMatrix.equals(this.camera.matrixWorldInverse) && this.lastProjectionMatrix.equals(this.camera.projectionMatrix) && this.configuration.accumulate && !this.needsFrame ? this.frame++ : (this.configuration.accumulate && (t.setRenderTarget(this.accumulationRenderTarget), t.clear(!0, !0, !0)), this.frame = 0, this.needsFrame = !1), this.lastViewMatrix.copy(this.camera.matrixWorldInverse), this.lastProjectionMatrix.copy(this.camera.projectionMatrix);
14649
+ t.xr.enabled = !1, (t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !== M.Log || t.capabilities.reverseDepthBuffer && this.configuration.depthBufferType !== M.Reverse) && (this.configuration.depthBufferType = t.capabilities.logarithmicDepthBuffer ? M.Log : t.capabilities.reverseDepthBuffer ? M.Reverse : M.Default, this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera)), this.detectTransparency(), (i.texture.type !== this.outputTargetInternal.texture.type || i.texture.format !== this.outputTargetInternal.texture.format) && (this.outputTargetInternal.texture.type = i.texture.type, this.outputTargetInternal.texture.format = i.texture.format, this.outputTargetInternal.texture.needsUpdate = !0), this.camera.updateMatrixWorld(), this.lastViewMatrix.equals(this.camera.matrixWorldInverse) && this.lastProjectionMatrix.equals(this.camera.projectionMatrix) && this.configuration.accumulate && !this.needsFrame ? this.frame++ : (this.configuration.accumulate && (t.setRenderTarget(this.accumulationRenderTarget), t.clear(!0, !0, !0)), this.frame = 0, this.needsFrame = !1), this.lastViewMatrix.copy(this.camera.matrixWorldInverse), this.lastProjectionMatrix.copy(this.camera.projectionMatrix);
14641
14650
  let n, s, o;
14642
14651
  this.debugMode && (n = t.getContext(), s = n.getExtension("EXT_disjoint_timer_query_webgl2"), s === null && (console.error("EXT_disjoint_timer_query_webgl2 not available, disabling debug mode."), this.debugMode = !1)), this.debugMode && (o = n.createQuery(), n.beginQuery(s.TIME_ELAPSED_EXT, o)), this.configuration.transparencyAware && this.renderTransparency(t), this._r.set(this.width, this.height);
14643
14652
  let l = this.configuration.aoRadius;
@@ -14700,12 +14709,12 @@ function ki(e, t, i) {
14700
14709
  ki(e, t, i);
14701
14710
  }, 1);
14702
14711
  }
14703
- const y = {
14712
+ const M = {
14704
14713
  Default: 1,
14705
14714
  Log: 2,
14706
14715
  Reverse: 3
14707
14716
  };
14708
- class Bn extends $i {
14717
+ class Pn extends $i {
14709
14718
  /**
14710
14719
  *
14711
14720
  * @param {THREE.Scene} scene
@@ -14733,7 +14742,7 @@ class Bn extends $i {
14733
14742
  biasMultiplier: 0,
14734
14743
  color: new Q(0, 0, 0),
14735
14744
  gammaCorrection: !0,
14736
- depthBufferType: y.Default,
14745
+ depthBufferType: M.Default,
14737
14746
  screenSpaceRadius: !1,
14738
14747
  halfRes: !1,
14739
14748
  depthAwareUpsampling: !0,
@@ -14812,7 +14821,7 @@ class Bn extends $i {
14812
14821
  const t = {
14813
14822
  ...Ni
14814
14823
  };
14815
- this.configuration.depthBufferType === y.Reverse && (t.fragmentShader = `#define REVERSEDEPTH
14824
+ this.configuration.depthBufferType === M.Reverse && (t.fragmentShader = `#define REVERSEDEPTH
14816
14825
  ` + t.fragmentShader), this.depthDownsampleQuad = new q(new T(t));
14817
14826
  } else
14818
14827
  this.depthDownsampleTarget && (this.depthDownsampleTarget.dispose(), this.depthDownsampleTarget = null), this.depthDownsampleQuad && (this.depthDownsampleQuad.dispose(), this.depthDownsampleQuad = null);
@@ -14842,7 +14851,7 @@ class Bn extends $i {
14842
14851
  value: this.depthTexture
14843
14852
  },
14844
14853
  reverseDepthBuffer: {
14845
- value: this.configuration.depthBufferType === y.Reverse
14854
+ value: this.configuration.depthBufferType === M.Reverse
14846
14855
  }
14847
14856
  },
14848
14857
  vertexShader: (
@@ -14881,7 +14890,7 @@ class Bn extends $i {
14881
14890
  const i = this.scene.background, r = t.getClearColor(new Q()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
14882
14891
  this.scene.traverse((o) => {
14883
14892
  n.set(o, o.visible);
14884
- }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.beautyRenderTarget.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === y.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14893
+ }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.beautyRenderTarget.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14885
14894
  o.material && (o.visible = n.get(o) && (o.material.transparent && !o.material.depthWrite && !o.userData.treatAsOpaque || !!o.userData.cannotReceiveAO));
14886
14895
  }), t.clear(!0, !0, !0), this.depthCopyPass.render(t), t.render(this.scene, this.camera), t.setRenderTarget(this.transparencyRenderTargetDWTrue), this.scene.traverse((o) => {
14887
14896
  o.material && (o.visible = n.get(o) && o.material.transparent && o.material.depthWrite && !o.userData.treatAsOpaque);
@@ -14892,34 +14901,34 @@ class Bn extends $i {
14892
14901
  configureSampleDependentPasses() {
14893
14902
  this.firstFrame(), this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera);
14894
14903
  }
14895
- configureAOPass(t = y.Default, i = !1) {
14904
+ configureAOPass(t = M.Default, i = !1) {
14896
14905
  this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
14897
14906
  const r = {
14898
14907
  ...Fi
14899
14908
  };
14900
- r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === y.Log ? r.fragmentShader = `#define LOGDEPTH
14901
- ` + r.fragmentShader : t === y.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14909
+ r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14910
+ ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14902
14911
  ` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
14903
14912
  ` + r.fragmentShader), this.configuration.halfRes && (r.fragmentShader = `#define HALFRES
14904
14913
  ` + r.fragmentShader), this.effectShaderQuad ? (this.effectShaderQuad.material.dispose(), this.effectShaderQuad.material = new T(r)) : this.effectShaderQuad = new q(new T(r));
14905
14914
  }
14906
- configureDenoisePass(t = y.Default, i = !1) {
14915
+ configureDenoisePass(t = M.Default, i = !1) {
14907
14916
  this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
14908
14917
  const r = {
14909
14918
  ...Oi
14910
14919
  };
14911
- r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === y.Log ? r.fragmentShader = `#define LOGDEPTH
14912
- ` + r.fragmentShader : t === y.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14920
+ r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14921
+ ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14913
14922
  ` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
14914
14923
  ` + r.fragmentShader), this.poissonBlurQuad ? (this.poissonBlurQuad.material.dispose(), this.poissonBlurQuad.material = new T(r)) : this.poissonBlurQuad = new q(new T(r));
14915
14924
  }
14916
- configureEffectCompositer(t = y.Default, i = !1) {
14925
+ configureEffectCompositer(t = M.Default, i = !1) {
14917
14926
  this.firstFrame();
14918
14927
  const r = {
14919
14928
  ...Li
14920
14929
  };
14921
- t === y.Log ? r.fragmentShader = `#define LOGDEPTH
14922
- ` + r.fragmentShader : t === y.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14930
+ t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14931
+ ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
14923
14932
  ` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
14924
14933
  ` + r.fragmentShader), this.configuration.halfRes && this.configuration.depthAwareUpsampling && (r.fragmentShader = `#define HALFRES
14925
14934
  ` + r.fragmentShader), this.effectCompositerQuad ? (this.effectCompositerQuad.material.dispose(), this.effectCompositerQuad.material = new T(r)) : this.effectCompositerQuad = new q(new T(r));
@@ -14961,14 +14970,14 @@ class Bn extends $i {
14961
14970
  this.needsFrame = !0;
14962
14971
  }
14963
14972
  render(t, i, r, a, n) {
14964
- (t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !== y.Log || t.capabilities.reverseDepthBuffer && this.configuration.depthBufferType !== y.Reverse) && (this.configuration.depthBufferType = t.capabilities.logarithmicDepthBuffer ? y.Log : t.capabilities.reverseDepthBuffer ? y.Reverse : y.Default, this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera)), this.detectTransparency(), this.camera.updateMatrixWorld(), this.lastViewMatrix.equals(this.camera.matrixWorldInverse) && this.lastProjectionMatrix.equals(this.camera.projectionMatrix) && this.configuration.accumulate && !this.needsFrame ? this.frame++ : (this.configuration.accumulate && (t.setRenderTarget(this.accumulationRenderTarget), t.clear(!0, !0, !0)), this.frame = 0, this.needsFrame = !1), this.lastViewMatrix.copy(this.camera.matrixWorldInverse), this.lastProjectionMatrix.copy(this.camera.projectionMatrix);
14973
+ (t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !== M.Log || t.capabilities.reverseDepthBuffer && this.configuration.depthBufferType !== M.Reverse) && (this.configuration.depthBufferType = t.capabilities.logarithmicDepthBuffer ? M.Log : t.capabilities.reverseDepthBuffer ? M.Reverse : M.Default, this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera)), this.detectTransparency(), this.camera.updateMatrixWorld(), this.lastViewMatrix.equals(this.camera.matrixWorldInverse) && this.lastProjectionMatrix.equals(this.camera.projectionMatrix) && this.configuration.accumulate && !this.needsFrame ? this.frame++ : (this.configuration.accumulate && (t.setRenderTarget(this.accumulationRenderTarget), t.clear(!0, !0, !0)), this.frame = 0, this.needsFrame = !1), this.lastViewMatrix.copy(this.camera.matrixWorldInverse), this.lastProjectionMatrix.copy(this.camera.projectionMatrix);
14965
14974
  let s, o, l;
14966
14975
  this.debugMode && (s = t.getContext(), o = s.getExtension("EXT_disjoint_timer_query_webgl2"), o === null && (console.error("EXT_disjoint_timer_query_webgl2 not available, disabling debug mode."), this.debugMode = !1)), this.configuration.autoRenderBeauty && (t.setRenderTarget(this.beautyRenderTarget), t.render(this.scene, this.camera), this.configuration.transparencyAware && this.renderTransparency(t)), this.debugMode && (l = s.createQuery(), s.beginQuery(o.TIME_ELAPSED_EXT, l));
14967
14976
  const c = t.xr.enabled;
14968
14977
  t.xr.enabled = !1, this._r.set(this.width, this.height);
14969
14978
  let f = this.configuration.aoRadius;
14970
14979
  if (this.configuration.halfRes && this.configuration.screenSpaceRadius && (f *= 0.5), this.frame < 1024 / this.configuration.aoSamples) {
14971
- this.configuration.halfRes && (t.setRenderTarget(this.depthDownsampleTarget), this.depthDownsampleQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.depthDownsampleQuad.material.uniforms.resolution.value = this._r, this.depthDownsampleQuad.material.uniforms.near.value = this.camera.near, this.depthDownsampleQuad.material.uniforms.far.value = this.camera.far, this.depthDownsampleQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.depthDownsampleQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.depthDownsampleQuad.material.uniforms.logDepth.value = this.configuration.depthBufferType === y.Log, this.depthDownsampleQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.depthDownsampleQuad.render(t)), this.effectShaderQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectShaderQuad.material.uniforms.sceneDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectShaderQuad.material.uniforms.sceneNormal.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[1] : null, this.effectShaderQuad.material.uniforms.projMat.value = this.camera.projectionMatrix, this.effectShaderQuad.material.uniforms.viewMat.value = this.camera.matrixWorldInverse, this.effectShaderQuad.material.uniforms.projViewMat.value = this.camera.projectionMatrix.clone().multiply(this.camera.matrixWorldInverse.clone()), this.effectShaderQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectShaderQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectShaderQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new F()), this.effectShaderQuad.material.uniforms.biasAdjustment.value = new p(this.configuration.biasOffset, this.configuration.biasMultiplier), this.effectShaderQuad.material.uniforms.resolution.value = this.configuration.halfRes ? this._r.clone().multiplyScalar(0.5).floor() : this._r, this.effectShaderQuad.material.uniforms.time.value = performance.now() / 1e3, this.effectShaderQuad.material.uniforms.samples.value = this.samples, this.effectShaderQuad.material.uniforms.bluenoise.value = this.bluenoise, this.effectShaderQuad.material.uniforms.radius.value = f, this.effectShaderQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectShaderQuad.material.uniforms.near.value = this.camera.near, this.effectShaderQuad.material.uniforms.far.value = this.camera.far, this.effectShaderQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectShaderQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectShaderQuad.material.uniforms.frame.value = this.frame, t.setRenderTarget(this.writeTargetInternal), this.effectShaderQuad.render(t);
14980
+ this.configuration.halfRes && (t.setRenderTarget(this.depthDownsampleTarget), this.depthDownsampleQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.depthDownsampleQuad.material.uniforms.resolution.value = this._r, this.depthDownsampleQuad.material.uniforms.near.value = this.camera.near, this.depthDownsampleQuad.material.uniforms.far.value = this.camera.far, this.depthDownsampleQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.depthDownsampleQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.depthDownsampleQuad.material.uniforms.logDepth.value = this.configuration.depthBufferType === M.Log, this.depthDownsampleQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.depthDownsampleQuad.render(t)), this.effectShaderQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectShaderQuad.material.uniforms.sceneDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectShaderQuad.material.uniforms.sceneNormal.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[1] : null, this.effectShaderQuad.material.uniforms.projMat.value = this.camera.projectionMatrix, this.effectShaderQuad.material.uniforms.viewMat.value = this.camera.matrixWorldInverse, this.effectShaderQuad.material.uniforms.projViewMat.value = this.camera.projectionMatrix.clone().multiply(this.camera.matrixWorldInverse.clone()), this.effectShaderQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectShaderQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectShaderQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new F()), this.effectShaderQuad.material.uniforms.biasAdjustment.value = new p(this.configuration.biasOffset, this.configuration.biasMultiplier), this.effectShaderQuad.material.uniforms.resolution.value = this.configuration.halfRes ? this._r.clone().multiplyScalar(0.5).floor() : this._r, this.effectShaderQuad.material.uniforms.time.value = performance.now() / 1e3, this.effectShaderQuad.material.uniforms.samples.value = this.samples, this.effectShaderQuad.material.uniforms.bluenoise.value = this.bluenoise, this.effectShaderQuad.material.uniforms.radius.value = f, this.effectShaderQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectShaderQuad.material.uniforms.near.value = this.camera.near, this.effectShaderQuad.material.uniforms.far.value = this.camera.far, this.effectShaderQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectShaderQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectShaderQuad.material.uniforms.frame.value = this.frame, t.setRenderTarget(this.writeTargetInternal), this.effectShaderQuad.render(t);
14972
14981
  for (let d = 0; d < this.configuration.denoiseIterations; d++)
14973
14982
  [this.writeTargetInternal, this.readTargetInternal] = [
14974
14983
  this.readTargetInternal,
@@ -15015,12 +15024,12 @@ class Bn extends $i {
15015
15024
  }
15016
15025
  const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
15017
15026
  __proto__: null,
15018
- DepthType: y,
15019
- N8AOPass: Bn,
15020
- N8AOPostPass: Mn
15027
+ DepthType: M,
15028
+ N8AOPass: Pn,
15029
+ N8AOPostPass: Bn
15021
15030
  }, Symbol.toStringTag, { value: "Module" }));
15022
15031
  export {
15023
15032
  V as EffectAttribute,
15024
15033
  Un as N8AO,
15025
- Rn as index
15034
+ bn as index
15026
15035
  };