@needle-tools/engine 4.12.0-next.de80571 → 4.12.0-next.e42c144
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +1 -1
- package/components.needle.json +1 -1
- package/dist/generateMeshBVH.worker-iyfPIK6R.js +21 -0
- package/dist/{gltf-progressive-DZrY8VT6.min.js → gltf-progressive-BmSygnAC.min.js} +2 -2
- package/dist/{gltf-progressive-DgYz5BYa.js → gltf-progressive-DnLBuGK5.js} +24 -24
- package/dist/{gltf-progressive-DWcmTMCh.umd.cjs → gltf-progressive-Rs-ojtXy.umd.cjs} +1 -1
- package/dist/{loader.worker-Dip-PthR.js → loader.worker-DWzfDpAl.js} +4 -4
- package/dist/needle-engine.bundle-CW5U4a3u.umd.cjs +1647 -0
- package/dist/needle-engine.bundle-HNQiYV9e.min.js +1647 -0
- package/dist/{needle-engine.bundle-CbrIHiN8.js → needle-engine.bundle-qrrKb_xn.js} +8886 -8598
- package/dist/needle-engine.d.ts +108 -43
- package/dist/needle-engine.js +48 -48
- package/dist/needle-engine.min.js +1 -1
- package/dist/needle-engine.umd.cjs +1 -1
- package/dist/{postprocessing-DYDtB188.min.js → postprocessing-B5ksn9-G.min.js} +54 -54
- package/dist/{postprocessing-CMgoN5t5.umd.cjs → postprocessing-DZtb9Nnn.umd.cjs} +81 -81
- package/dist/{postprocessing-BTW9pD_s.js → postprocessing-__7s9wON.js} +450 -441
- package/dist/{three-DfMvBzXi.js → three-BCCkyCA5.js} +1 -7
- package/dist/{three-qj71I7J3.umd.cjs → three-Bf2NBxAw.umd.cjs} +2 -2
- package/dist/{three-B7CT31Bt.min.js → three-W7zWTcfP.min.js} +1 -1
- package/dist/{three-examples-CsW4_6LI.umd.cjs → three-examples-Dho7cuu4.umd.cjs} +4 -4
- package/dist/{three-examples-D1P7eEhn.min.js → three-examples-MsJjauyk.min.js} +10 -10
- package/dist/{three-examples-D1SK93ek.js → three-examples-y2GeYlze.js} +2 -20
- package/dist/{three-mesh-ui-C_uSB5dD.js → three-mesh-ui-3nSSizT4.js} +1 -1
- package/dist/{three-mesh-ui-LQ44s0AL.min.js → three-mesh-ui-CIez6qJQ.min.js} +1 -1
- package/dist/{three-mesh-ui-DpATDXwU.umd.cjs → three-mesh-ui-zsOOA5Pq.umd.cjs} +1 -1
- package/dist/{vendor-D0zoswDa.js → vendor-DMZcbVO1.js} +3707 -3527
- package/dist/vendor-sURMCFSI.min.js +1116 -0
- package/dist/{vendor-UCpFAwt1.umd.cjs → vendor-tyBvnMF-.umd.cjs} +39 -39
- package/lib/engine/codegen/register_types.js +0 -2
- package/lib/engine/codegen/register_types.js.map +1 -1
- package/lib/engine/debug/debug_console.js +403 -1
- package/lib/engine/debug/debug_console.js.map +1 -1
- package/lib/engine/engine_components.js +3 -3
- package/lib/engine/engine_components.js.map +1 -1
- package/lib/engine/engine_context.js +2 -0
- package/lib/engine/engine_context.js.map +1 -1
- package/lib/engine/engine_input.d.ts +5 -0
- package/lib/engine/engine_input.js +6 -0
- package/lib/engine/engine_input.js.map +1 -1
- package/lib/engine/engine_license.d.ts +18 -0
- package/lib/engine/engine_license.js +115 -18
- package/lib/engine/engine_license.js.map +1 -1
- package/lib/engine/engine_networking.js +5 -5
- package/lib/engine/engine_networking.js.map +1 -1
- package/lib/engine/engine_physics.js.map +1 -1
- package/lib/engine/engine_physics_rapier.js +1 -1
- package/lib/engine/engine_physics_rapier.js.map +1 -1
- package/lib/engine/engine_serialization_builtin_serializer.js +1 -1
- package/lib/engine/engine_serialization_builtin_serializer.js.map +1 -1
- package/lib/engine/engine_utils.d.ts +4 -1
- package/lib/engine/engine_utils.js +28 -4
- package/lib/engine/engine_utils.js.map +1 -1
- package/lib/engine/extensions/extensions.d.ts +29 -7
- package/lib/engine/extensions/extensions.js.map +1 -1
- package/lib/engine/webcomponents/WebXRButtons.js +13 -5
- package/lib/engine/webcomponents/WebXRButtons.js.map +1 -1
- package/lib/engine/webcomponents/needle menu/needle-menu.js +4 -5
- package/lib/engine/webcomponents/needle menu/needle-menu.js.map +1 -1
- package/lib/engine/webcomponents/needle-engine.ar-overlay.js +4 -0
- package/lib/engine/webcomponents/needle-engine.ar-overlay.js.map +1 -1
- package/lib/engine/webcomponents/needle-engine.js +1 -1
- package/lib/engine/webcomponents/needle-engine.js.map +1 -1
- package/lib/engine/xr/NeedleXRSession.d.ts +1 -1
- package/lib/engine/xr/NeedleXRSession.js +101 -22
- package/lib/engine/xr/NeedleXRSession.js.map +1 -1
- package/lib/engine/xr/TempXRContext.js +12 -2
- package/lib/engine/xr/TempXRContext.js.map +1 -1
- package/lib/engine/xr/usdz.js +6 -2
- package/lib/engine/xr/usdz.js.map +1 -1
- package/lib/engine-components/AlignmentConstraint.d.ts +1 -1
- package/lib/engine-components/AlignmentConstraint.js +1 -1
- package/lib/engine-components/Animation.d.ts +1 -1
- package/lib/engine-components/Animation.js +1 -1
- package/lib/engine-components/Animator.d.ts +1 -1
- package/lib/engine-components/Animator.js +1 -1
- package/lib/engine-components/AudioListener.d.ts +1 -1
- package/lib/engine-components/AudioListener.js +1 -1
- package/lib/engine-components/AudioSource.d.ts +1 -1
- package/lib/engine-components/AudioSource.js +1 -1
- package/lib/engine-components/Camera.d.ts +1 -1
- package/lib/engine-components/Camera.js +5 -2
- package/lib/engine-components/Camera.js.map +1 -1
- package/lib/engine-components/CharacterController.d.ts +6 -2
- package/lib/engine-components/CharacterController.js +6 -2
- package/lib/engine-components/CharacterController.js.map +1 -1
- package/lib/engine-components/Collider.d.ts +1 -1
- package/lib/engine-components/Collider.js.map +1 -1
- package/lib/engine-components/Component.d.ts +2 -1
- package/lib/engine-components/Component.js +3 -2
- package/lib/engine-components/Component.js.map +1 -1
- package/lib/engine-components/DragControls.js +4 -1
- package/lib/engine-components/DragControls.js.map +1 -1
- package/lib/engine-components/Joints.d.ts +14 -0
- package/lib/engine-components/Joints.js +14 -0
- package/lib/engine-components/Joints.js.map +1 -1
- package/lib/engine-components/LookAtConstraint.d.ts +1 -1
- package/lib/engine-components/LookAtConstraint.js +1 -1
- package/lib/engine-components/OrbitControls.d.ts +1 -1
- package/lib/engine-components/OrbitControls.js +1 -1
- package/lib/engine-components/Renderer.d.ts +6 -0
- package/lib/engine-components/Renderer.js +6 -0
- package/lib/engine-components/Renderer.js.map +1 -1
- package/lib/engine-components/RendererInstancing.js +5 -3
- package/lib/engine-components/RendererInstancing.js.map +1 -1
- package/lib/engine-components/SceneSwitcher.js +18 -14
- package/lib/engine-components/SceneSwitcher.js.map +1 -1
- package/lib/engine-components/SpectatorCamera.js +15 -7
- package/lib/engine-components/SpectatorCamera.js.map +1 -1
- package/lib/engine-components/SpriteRenderer.d.ts +2 -1
- package/lib/engine-components/SpriteRenderer.js +2 -1
- package/lib/engine-components/SpriteRenderer.js.map +1 -1
- package/lib/engine-components/api.d.ts +1 -0
- package/lib/engine-components/api.js +1 -0
- package/lib/engine-components/api.js.map +1 -1
- package/lib/engine-components/codegen/components.d.ts +0 -1
- package/lib/engine-components/codegen/components.js +0 -1
- package/lib/engine-components/codegen/components.js.map +1 -1
- package/lib/engine-components/timeline/SignalAsset.d.ts +1 -1
- package/lib/engine-components/timeline/SignalAsset.js +1 -1
- package/lib/engine-components/ui/Raycaster.d.ts +3 -2
- package/lib/engine-components/ui/Raycaster.js +3 -2
- package/lib/engine-components/ui/Raycaster.js.map +1 -1
- package/lib/engine-components/ui/RectTransform.d.ts +6 -0
- package/lib/engine-components/ui/RectTransform.js +6 -0
- package/lib/engine-components/ui/RectTransform.js.map +1 -1
- package/lib/engine-components/utils/LookAt.d.ts +2 -1
- package/lib/engine-components/utils/LookAt.js +2 -1
- package/lib/engine-components/utils/LookAt.js.map +1 -1
- package/lib/engine-components/web/CursorFollow.d.ts +1 -1
- package/lib/engine-components/web/CursorFollow.js +1 -1
- package/lib/engine-components/web/HoverAnimation.d.ts +1 -1
- package/lib/engine-components/web/HoverAnimation.js +1 -1
- package/lib/engine-components/web/ViewBox.d.ts +1 -1
- package/lib/engine-components/web/ViewBox.js +1 -1
- package/lib/engine-components/webxr/Avatar.js +2 -0
- package/lib/engine-components/webxr/Avatar.js.map +1 -1
- package/lib/engine-components/webxr/WebXR.js +18 -12
- package/lib/engine-components/webxr/WebXR.js.map +1 -1
- package/package.json +3 -3
- package/plugins/vite/poster-client.js +8 -1
- package/src/engine/codegen/register_types.ts +0 -2
- package/src/engine/debug/debug_console.ts +449 -1
- package/src/engine/engine_components.ts +4 -4
- package/src/engine/engine_context.ts +2 -0
- package/src/engine/engine_input.ts +7 -0
- package/src/engine/engine_license.ts +128 -17
- package/src/engine/engine_networking.ts +5 -5
- package/src/engine/engine_physics.ts +3 -3
- package/src/engine/engine_physics_rapier.ts +1 -1
- package/src/engine/engine_serialization_builtin_serializer.ts +1 -1
- package/src/engine/engine_utils.ts +23 -4
- package/src/engine/extensions/extensions.ts +30 -6
- package/src/engine/webcomponents/WebXRButtons.ts +15 -5
- package/src/engine/webcomponents/needle menu/needle-menu.ts +4 -5
- package/src/engine/webcomponents/needle-engine.ar-overlay.ts +6 -0
- package/src/engine/webcomponents/needle-engine.ts +2 -2
- package/src/engine/xr/NeedleXRSession.ts +114 -24
- package/src/engine/xr/TempXRContext.ts +12 -2
- package/src/engine/xr/usdz.ts +6 -1
- package/src/engine-components/AlignmentConstraint.ts +1 -1
- package/src/engine-components/Animation.ts +1 -1
- package/src/engine-components/Animator.ts +1 -1
- package/src/engine-components/AudioListener.ts +1 -1
- package/src/engine-components/AudioSource.ts +1 -1
- package/src/engine-components/Camera.ts +5 -2
- package/src/engine-components/CharacterController.ts +6 -2
- package/src/engine-components/Collider.ts +1 -1
- package/src/engine-components/Component.ts +5 -4
- package/src/engine-components/DragControls.ts +5 -1
- package/src/engine-components/Joints.ts +14 -0
- package/src/engine-components/LookAtConstraint.ts +1 -1
- package/src/engine-components/OrbitControls.ts +1 -1
- package/src/engine-components/Renderer.ts +6 -0
- package/src/engine-components/RendererInstancing.ts +6 -3
- package/src/engine-components/SceneSwitcher.ts +17 -17
- package/src/engine-components/SpectatorCamera.ts +21 -10
- package/src/engine-components/SpriteRenderer.ts +2 -1
- package/src/engine-components/api.ts +2 -1
- package/src/engine-components/codegen/components.ts +0 -1
- package/src/engine-components/timeline/SignalAsset.ts +1 -1
- package/src/engine-components/ui/Raycaster.ts +3 -2
- package/src/engine-components/ui/RectTransform.ts +6 -0
- package/src/engine-components/utils/LookAt.ts +2 -1
- package/src/engine-components/web/CursorFollow.ts +1 -1
- package/src/engine-components/web/HoverAnimation.ts +1 -1
- package/src/engine-components/web/ViewBox.ts +1 -1
- package/src/engine-components/webxr/Avatar.ts +4 -0
- package/src/engine-components/webxr/WebXR.ts +19 -11
- package/dist/generateMeshBVH.worker-mO20N_b8.js +0 -21
- package/dist/needle-engine.bundle-BGixCtrn.umd.cjs +0 -1647
- package/dist/needle-engine.bundle-S3PalR7r.min.js +0 -1647
- package/dist/vendor-BKGa4GE0.min.js +0 -1116
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
import { Uniform$1 as u, Vector4 as de, Color as Q, Vector2 as p, CanvasTexture as Qi, RepeatWrapping as se, ShaderMaterial as T, NoBlending as z, WebGLRenderTarget as w, NearestFilter as P, EventDispatcher as wt, SRGBColorSpace as S, UnsignedByteType as Y, PerspectiveCamera as Be, BasicDepthPacking as W, REVISION as Pe, AlwaysDepth as Kt, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Pt, Vector3 as F, MeshDepthMaterial as Vi, LinearSRGBColorSpace as Je, NoColorSpace as tt, DepthTexture as Ce, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Oe, RGBAFormat as H, Scene as dt, Matrix4 as O, HalfFloatType as $, Data3DTexture as Ze, Loader as Et, LoadingManager as ve, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Wi, BackSide as Qe, DoubleSide as Ve, FrontSide as Yi, OrthographicCamera as Jt, Mesh as qt, Texture as qe, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Ki, GreaterDepth as Xi, GreaterEqualDepth as Zi, LessEqualDepth as ji, NeverDepth as Ji, Material as $t, BufferGeometry as ei, BufferAttribute as _e, RGFormat as qi, DepthFormat as It, Sphere as _i } from "./three-
|
|
2
|
-
import { Pass as $i } from "./three-examples-
|
|
3
|
-
var er = "6.38.
|
|
1
|
+
import { Uniform$1 as u, Vector4 as de, Color as Q, Vector2 as p, CanvasTexture as Qi, RepeatWrapping as se, ShaderMaterial as T, NoBlending as z, WebGLRenderTarget as w, NearestFilter as P, EventDispatcher as wt, SRGBColorSpace as S, UnsignedByteType as Y, PerspectiveCamera as Be, BasicDepthPacking as W, REVISION as Pe, AlwaysDepth as Kt, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Pt, Vector3 as F, MeshDepthMaterial as Vi, LinearSRGBColorSpace as Je, NoColorSpace as tt, DepthTexture as Ce, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Oe, RGBAFormat as H, Scene as dt, Matrix4 as O, HalfFloatType as $, Data3DTexture as Ze, Loader as Et, LoadingManager as ve, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Wi, BackSide as Qe, DoubleSide as Ve, FrontSide as Yi, OrthographicCamera as Jt, Mesh as qt, Texture as qe, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Ki, GreaterDepth as Xi, GreaterEqualDepth as Zi, LessEqualDepth as ji, NeverDepth as Ji, Material as $t, BufferGeometry as ei, BufferAttribute as _e, RGFormat as qi, DepthFormat as It, Sphere as _i } from "./three-BCCkyCA5.js";
|
|
2
|
+
import { Pass as $i } from "./three-examples-y2GeYlze.js";
|
|
3
|
+
var er = "6.38.2", tr = class {
|
|
4
4
|
/**
|
|
5
5
|
* Frees internal resources.
|
|
6
6
|
*/
|
|
@@ -321,6 +321,7 @@ gl_FragDepth=readDepth(vUv);
|
|
|
321
321
|
super({
|
|
322
322
|
name: "CopyMaterial",
|
|
323
323
|
defines: {
|
|
324
|
+
COLOR_SPACE_CONVERSION: "1",
|
|
324
325
|
DEPTH_PACKING: "0",
|
|
325
326
|
COLOR_WRITE: "1"
|
|
326
327
|
},
|
|
@@ -370,6 +371,17 @@ gl_FragDepth=readDepth(vUv);
|
|
|
370
371
|
set depthPacking(e) {
|
|
371
372
|
this.defines.DEPTH_PACKING = e.toFixed(0), this.needsUpdate = !0;
|
|
372
373
|
}
|
|
374
|
+
/**
|
|
375
|
+
* Indicates whether output color space conversion is enabled.
|
|
376
|
+
*
|
|
377
|
+
* @type {Boolean}
|
|
378
|
+
*/
|
|
379
|
+
get colorSpaceConversion() {
|
|
380
|
+
return this.defines.COLOR_SPACE_CONVERSION !== void 0;
|
|
381
|
+
}
|
|
382
|
+
set colorSpaceConversion(e) {
|
|
383
|
+
this.colorSpaceConversion !== e && (e ? this.defines.COLOR_SPACE_CONVERSION = !0 : delete this.defines.COLOR_SPACE_CONVERSION, this.needsUpdate = !0);
|
|
384
|
+
}
|
|
373
385
|
/**
|
|
374
386
|
* Color channel weights that modulate texels from the input buffer.
|
|
375
387
|
*
|
|
@@ -900,7 +912,7 @@ gl_FragDepth=readDepth(vUv);
|
|
|
900
912
|
]), this.defines = /* @__PURE__ */ new Map(), this.uniforms = /* @__PURE__ */ new Map(), this.blendModes = /* @__PURE__ */ new Map(), this.extensions = /* @__PURE__ */ new Set(), this.attributes = V.NONE, this.varyings = /* @__PURE__ */ new Set(), this.uvTransformation = !1, this.readDepth = !1, this.colorSpace = Je;
|
|
901
913
|
}
|
|
902
914
|
};
|
|
903
|
-
function
|
|
915
|
+
function bt(e) {
|
|
904
916
|
let t;
|
|
905
917
|
if (e === 0)
|
|
906
918
|
t = new Float64Array(0);
|
|
@@ -952,10 +964,10 @@ var si = class {
|
|
|
952
964
|
generate(e, t) {
|
|
953
965
|
if (e < 3 || e > 1020)
|
|
954
966
|
throw new Error("The kernel size must be in the range [3, 1020]");
|
|
955
|
-
const i = e + t * 2, r = t > 0 ?
|
|
967
|
+
const i = e + t * 2, r = t > 0 ? bt(i).slice(t, -t) : bt(i), a = Math.floor((r.length - 1) / 2), n = r.reduce((h, d) => h + d, 0), s = r.slice(a), o = [...Array(a + 1).keys()], l = new Float64Array(Math.floor(o.length / 2)), c = new Float64Array(l.length);
|
|
956
968
|
l[0] = s[0] / n;
|
|
957
969
|
for (let h = 1, d = 1, v = o.length - 1; h < v; h += 2, ++d) {
|
|
958
|
-
const A = o[h],
|
|
970
|
+
const A = o[h], m = o[h + 1], x = s[h], y = s[h + 1], C = x + y, E = (A * x + m * y) / C;
|
|
959
971
|
l[d] = C / n, c[d] = E;
|
|
960
972
|
}
|
|
961
973
|
for (let h = 0, d = s.length, v = 1 / n; h < d; ++h)
|
|
@@ -1573,11 +1585,11 @@ var si = class {
|
|
|
1573
1585
|
e ? t.layers.enable(0) : t.layers.disable(0);
|
|
1574
1586
|
return this;
|
|
1575
1587
|
}
|
|
1576
|
-
},
|
|
1588
|
+
}, g = {
|
|
1577
1589
|
SKIP: 9,
|
|
1578
1590
|
SET: 30,
|
|
1579
1591
|
ADD: 0,
|
|
1580
|
-
ALPHA:
|
|
1592
|
+
ALPHA: 1,
|
|
1581
1593
|
AVERAGE: 2,
|
|
1582
1594
|
COLOR: 3,
|
|
1583
1595
|
COLOR_BURN: 4,
|
|
@@ -1609,39 +1621,40 @@ var si = class {
|
|
|
1609
1621
|
SRC: 30,
|
|
1610
1622
|
SUBTRACT: 31,
|
|
1611
1623
|
VIVID_LIGHT: 32
|
|
1612
|
-
}, cr = "vec4 blend(const in vec4
|
|
1613
|
-
[
|
|
1614
|
-
[
|
|
1615
|
-
[
|
|
1616
|
-
[
|
|
1617
|
-
[
|
|
1618
|
-
[
|
|
1619
|
-
[
|
|
1620
|
-
[
|
|
1621
|
-
[
|
|
1622
|
-
[
|
|
1623
|
-
[
|
|
1624
|
-
[
|
|
1625
|
-
[
|
|
1626
|
-
[
|
|
1627
|
-
[
|
|
1628
|
-
[
|
|
1629
|
-
[
|
|
1630
|
-
[
|
|
1631
|
-
[
|
|
1632
|
-
[
|
|
1633
|
-
[
|
|
1634
|
-
[
|
|
1635
|
-
[
|
|
1636
|
-
[
|
|
1637
|
-
[
|
|
1638
|
-
[
|
|
1639
|
-
[
|
|
1640
|
-
[
|
|
1641
|
-
[
|
|
1642
|
-
[
|
|
1643
|
-
[
|
|
1644
|
-
[
|
|
1624
|
+
}, cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,src.a*opacity);}", hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=(dst.rgb+src.rgb)*0.5;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.xy,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", vr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/max(b,1e-9))),vec3(1.0),step(1.0,a));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=abs(dst.rgb-src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ar = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb/max(src.rgb,1e-9);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", xr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-2.0*dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb,1.0);vec3 b=min(src.rgb,1.0);vec3 c=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Tr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=step(1.0,dst.rgb+src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", wr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.x,a.yz));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Er = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Sr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=src.rgb*max(1.0-dst.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", yr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb+src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(2.0*src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.xy,b.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ir = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Rr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-abs(1.0-dst.rgb-src.rgb),0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,opacity);}", Ur = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=2.0*src.rgb*dst.rgb;vec3 b=1.0-2.0*(1.0-src.rgb)*(1.0-dst.rgb);vec3 c=mix(a,b,step(0.5,dst.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 c=mix(mix(src2,dst.rgb,step(0.5*dst.rgb,src.rgb)),max(src2-1.0,vec3(0.0)),step(dst.rgb,src2-1.0));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Lr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb*dst.rgb/max(1.0-src.rgb,1e-9),1.0);vec3 c=mix(a,src.rgb,step(1.0,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Or = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.x,b.y,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Nr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-min(dst.rgb*src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 d=dst.rgb+(src2-1.0);vec3 w=step(0.5,src.rgb);vec3 a=dst.rgb-(1.0-src2)*dst.rgb*(1.0-dst.rgb);vec3 b=mix(d*(sqrt(dst.rgb)-dst.rgb),d*dst.rgb*((16.0*dst.rgb-12.0)*dst.rgb+3.0),w*(1.0-step(0.25,dst.rgb)));vec3 c=mix(a,b,w);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", zr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return src;}", Gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", kr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=mix(max(1.0-min((1.0-dst.rgb)/(2.0*src.rgb),1.0),0.0),min(dst.rgb/(2.0*(1.0-src.rgb)),1.0),step(0.5,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Qr = /* @__PURE__ */ new Map([
|
|
1625
|
+
[g.ADD, cr],
|
|
1626
|
+
[g.ALPHA, fr],
|
|
1627
|
+
[g.AVERAGE, hr],
|
|
1628
|
+
[g.COLOR, dr],
|
|
1629
|
+
[g.COLOR_BURN, vr],
|
|
1630
|
+
[g.COLOR_DODGE, pr],
|
|
1631
|
+
[g.DARKEN, gr],
|
|
1632
|
+
[g.DIFFERENCE, mr],
|
|
1633
|
+
[g.DIVIDE, Ar],
|
|
1634
|
+
[g.DST, null],
|
|
1635
|
+
[g.EXCLUSION, xr],
|
|
1636
|
+
[g.HARD_LIGHT, Dr],
|
|
1637
|
+
[g.HARD_MIX, Tr],
|
|
1638
|
+
[g.HUE, wr],
|
|
1639
|
+
[g.INVERT, Er],
|
|
1640
|
+
[g.INVERT_RGB, Sr],
|
|
1641
|
+
[g.LIGHTEN, Cr],
|
|
1642
|
+
[g.LINEAR_BURN, Mr],
|
|
1643
|
+
[g.LINEAR_DODGE, yr],
|
|
1644
|
+
[g.LINEAR_LIGHT, Br],
|
|
1645
|
+
[g.LUMINOSITY, Pr],
|
|
1646
|
+
[g.MULTIPLY, Ir],
|
|
1647
|
+
[g.NEGATION, Rr],
|
|
1648
|
+
[g.NORMAL, br],
|
|
1649
|
+
[g.OVERLAY, Ur],
|
|
1650
|
+
[g.PIN_LIGHT, Fr],
|
|
1651
|
+
[g.REFLECT, Lr],
|
|
1652
|
+
[g.SATURATION, Or],
|
|
1653
|
+
[g.SCREEN, Nr],
|
|
1654
|
+
[g.SOFT_LIGHT, Hr],
|
|
1655
|
+
[g.SRC, zr],
|
|
1656
|
+
[g.SUBTRACT, Gr],
|
|
1657
|
+
[g.VIVID_LIGHT, kr]
|
|
1645
1658
|
]), ni = class extends wt {
|
|
1646
1659
|
/**
|
|
1647
1660
|
* Constructs a new blend mode.
|
|
@@ -1703,7 +1716,7 @@ var si = class {
|
|
|
1703
1716
|
* @return {String} The blend function shader code.
|
|
1704
1717
|
*/
|
|
1705
1718
|
getShaderCode() {
|
|
1706
|
-
return
|
|
1719
|
+
return Qr.get(this.blendFunction);
|
|
1707
1720
|
}
|
|
1708
1721
|
}, oi = class extends Qi {
|
|
1709
1722
|
/**
|
|
@@ -1755,7 +1768,7 @@ var si = class {
|
|
|
1755
1768
|
*/
|
|
1756
1769
|
constructor(e, t, {
|
|
1757
1770
|
attributes: i = V.NONE,
|
|
1758
|
-
blendFunction: r =
|
|
1771
|
+
blendFunction: r = g.NORMAL,
|
|
1759
1772
|
defines: a = /* @__PURE__ */ new Map(),
|
|
1760
1773
|
uniforms: n = /* @__PURE__ */ new Map(),
|
|
1761
1774
|
extensions: s = null,
|
|
@@ -1992,7 +2005,7 @@ var si = class {
|
|
|
1992
2005
|
(t instanceof w || t instanceof $t || t instanceof qe || t instanceof N) && this[e].dispose();
|
|
1993
2006
|
}
|
|
1994
2007
|
}
|
|
1995
|
-
},
|
|
2008
|
+
}, Vr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
|
|
1996
2009
|
#ifdef USE_COLOR
|
|
1997
2010
|
uniform vec3 color;
|
|
1998
2011
|
#endif
|
|
@@ -2006,7 +2019,7 @@ outputColor=vec4(color*asciiCharacter,inputColor.a);
|
|
|
2006
2019
|
#else
|
|
2007
2020
|
outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
|
|
2008
2021
|
#endif
|
|
2009
|
-
}`,
|
|
2022
|
+
}`, Wr = class extends I {
|
|
2010
2023
|
/**
|
|
2011
2024
|
* Constructs a new ASCII effect.
|
|
2012
2025
|
*
|
|
@@ -2022,7 +2035,7 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
|
|
|
2022
2035
|
color: i = null,
|
|
2023
2036
|
inverted: r = !1
|
|
2024
2037
|
} = {}) {
|
|
2025
|
-
super("ASCIIEffect",
|
|
2038
|
+
super("ASCIIEffect", Vr, {
|
|
2026
2039
|
uniforms: /* @__PURE__ */ new Map([
|
|
2027
2040
|
["asciiTexture", new u(null)],
|
|
2028
2041
|
["cellCount", new u(new de())],
|
|
@@ -2109,14 +2122,14 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
|
|
|
2109
2122
|
LARGE: 3,
|
|
2110
2123
|
VERY_LARGE: 4,
|
|
2111
2124
|
HUGE: 5
|
|
2112
|
-
},
|
|
2125
|
+
}, Yr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2113
2126
|
uniform mediump sampler2D inputBuffer;
|
|
2114
2127
|
#else
|
|
2115
2128
|
uniform lowp sampler2D inputBuffer;
|
|
2116
2129
|
#endif
|
|
2117
2130
|
varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec4 sum=texture2D(inputBuffer,vUv0);sum+=texture2D(inputBuffer,vUv1);sum+=texture2D(inputBuffer,vUv2);sum+=texture2D(inputBuffer,vUv3);gl_FragColor=sum*0.25;
|
|
2118
2131
|
#include <colorspace_fragment>
|
|
2119
|
-
}`,
|
|
2132
|
+
}`, Kr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Xr = [
|
|
2120
2133
|
new Float32Array([0, 0]),
|
|
2121
2134
|
new Float32Array([0, 1, 1]),
|
|
2122
2135
|
new Float32Array([0, 1, 1, 2]),
|
|
@@ -2143,8 +2156,8 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
|
|
|
2143
2156
|
toneMapped: !1,
|
|
2144
2157
|
depthWrite: !1,
|
|
2145
2158
|
depthTest: !1,
|
|
2146
|
-
fragmentShader:
|
|
2147
|
-
vertexShader:
|
|
2159
|
+
fragmentShader: Yr,
|
|
2160
|
+
vertexShader: Kr
|
|
2148
2161
|
}), this.setTexelSize(e.x, e.y), this.kernelSize = te.MEDIUM;
|
|
2149
2162
|
}
|
|
2150
2163
|
/**
|
|
@@ -2170,7 +2183,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
|
|
|
2170
2183
|
* @type {Float32Array}
|
|
2171
2184
|
*/
|
|
2172
2185
|
get kernelSequence() {
|
|
2173
|
-
return
|
|
2186
|
+
return Xr[this.kernelSize];
|
|
2174
2187
|
}
|
|
2175
2188
|
/**
|
|
2176
2189
|
* The blur scale.
|
|
@@ -2478,7 +2491,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
|
|
|
2478
2491
|
static get AUTO_SIZE() {
|
|
2479
2492
|
return D.AUTO_SIZE;
|
|
2480
2493
|
}
|
|
2481
|
-
},
|
|
2494
|
+
}, Zr = `#include <common>
|
|
2482
2495
|
#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2483
2496
|
uniform mediump sampler2D inputBuffer;
|
|
2484
2497
|
#else
|
|
@@ -2523,7 +2536,7 @@ gl_FragColor=vec4(l*mask);
|
|
|
2523
2536
|
toneMapped: !1,
|
|
2524
2537
|
depthWrite: !1,
|
|
2525
2538
|
depthTest: !1,
|
|
2526
|
-
fragmentShader:
|
|
2539
|
+
fragmentShader: Zr,
|
|
2527
2540
|
vertexShader: ue
|
|
2528
2541
|
}), this.colorOutput = e, this.luminanceRange = t;
|
|
2529
2542
|
}
|
|
@@ -2768,7 +2781,7 @@ gl_FragColor=vec4(l*mask);
|
|
|
2768
2781
|
initialize(e, t, i) {
|
|
2769
2782
|
i !== void 0 && i !== Y && (this.renderTarget.texture.type = i, this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
|
|
2770
2783
|
}
|
|
2771
|
-
},
|
|
2784
|
+
}, jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2772
2785
|
uniform mediump sampler2D inputBuffer;
|
|
2773
2786
|
#else
|
|
2774
2787
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -2777,7 +2790,7 @@ uniform lowp sampler2D inputBuffer;
|
|
|
2777
2790
|
#define WEIGHT_OUTER 0.0555555
|
|
2778
2791
|
varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;float clampToBorder(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void main(){vec4 c=vec4(0.0);vec4 w=WEIGHT_INNER*vec4(clampToBorder(vUv00),clampToBorder(vUv01),clampToBorder(vUv02),clampToBorder(vUv03));c+=w.x*texture2D(inputBuffer,vUv00);c+=w.y*texture2D(inputBuffer,vUv01);c+=w.z*texture2D(inputBuffer,vUv02);c+=w.w*texture2D(inputBuffer,vUv03);w=WEIGHT_OUTER*vec4(clampToBorder(vUv04),clampToBorder(vUv05),clampToBorder(vUv06),clampToBorder(vUv07));c+=w.x*texture2D(inputBuffer,vUv04);c+=w.y*texture2D(inputBuffer,vUv05);c+=w.z*texture2D(inputBuffer,vUv06);c+=w.w*texture2D(inputBuffer,vUv07);w=WEIGHT_OUTER*vec4(clampToBorder(vUv08),clampToBorder(vUv09),clampToBorder(vUv10),clampToBorder(vUv11));c+=w.x*texture2D(inputBuffer,vUv08);c+=w.y*texture2D(inputBuffer,vUv09);c+=w.z*texture2D(inputBuffer,vUv10);c+=w.w*texture2D(inputBuffer,vUv11);c+=WEIGHT_OUTER*texture2D(inputBuffer,vUv);gl_FragColor=c;
|
|
2779
2792
|
#include <colorspace_fragment>
|
|
2780
|
-
}`,
|
|
2793
|
+
}`, Jr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends T {
|
|
2781
2794
|
/**
|
|
2782
2795
|
* Constructs a new downsampling material.
|
|
2783
2796
|
*/
|
|
@@ -2792,8 +2805,8 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
|
|
|
2792
2805
|
toneMapped: !1,
|
|
2793
2806
|
depthWrite: !1,
|
|
2794
2807
|
depthTest: !1,
|
|
2795
|
-
fragmentShader:
|
|
2796
|
-
vertexShader:
|
|
2808
|
+
fragmentShader: jr,
|
|
2809
|
+
vertexShader: Jr
|
|
2797
2810
|
});
|
|
2798
2811
|
}
|
|
2799
2812
|
/**
|
|
@@ -2813,14 +2826,14 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
|
|
|
2813
2826
|
setSize(e, t) {
|
|
2814
2827
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
2815
2828
|
}
|
|
2816
|
-
},
|
|
2829
|
+
}, qr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2817
2830
|
uniform mediump sampler2D inputBuffer;uniform mediump sampler2D supportBuffer;
|
|
2818
2831
|
#else
|
|
2819
2832
|
uniform lowp sampler2D inputBuffer;uniform lowp sampler2D supportBuffer;
|
|
2820
2833
|
#endif
|
|
2821
2834
|
uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vec4 c=vec4(0.0);c+=texture2D(inputBuffer,vUv0)*0.0625;c+=texture2D(inputBuffer,vUv1)*0.125;c+=texture2D(inputBuffer,vUv2)*0.0625;c+=texture2D(inputBuffer,vUv3)*0.125;c+=texture2D(inputBuffer,vUv)*0.25;c+=texture2D(inputBuffer,vUv4)*0.125;c+=texture2D(inputBuffer,vUv5)*0.0625;c+=texture2D(inputBuffer,vUv6)*0.125;c+=texture2D(inputBuffer,vUv7)*0.0625;vec4 baseColor=texture2D(supportBuffer,vUv);gl_FragColor=mix(baseColor,c,radius);
|
|
2822
2835
|
#include <colorspace_fragment>
|
|
2823
|
-
}`,
|
|
2836
|
+
}`, _r = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ci = class extends T {
|
|
2824
2837
|
/**
|
|
2825
2838
|
* Constructs a new upsampling material.
|
|
2826
2839
|
*/
|
|
@@ -2837,8 +2850,8 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
|
|
|
2837
2850
|
toneMapped: !1,
|
|
2838
2851
|
depthWrite: !1,
|
|
2839
2852
|
depthTest: !1,
|
|
2840
|
-
fragmentShader:
|
|
2841
|
-
vertexShader:
|
|
2853
|
+
fragmentShader: qr,
|
|
2854
|
+
vertexShader: _r
|
|
2842
2855
|
});
|
|
2843
2856
|
}
|
|
2844
2857
|
/**
|
|
@@ -2992,12 +3005,12 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
|
|
|
2992
3005
|
for (const e of this.downsamplingMipmaps.concat(this.upsamplingMipmaps))
|
|
2993
3006
|
e.dispose();
|
|
2994
3007
|
}
|
|
2995
|
-
},
|
|
3008
|
+
}, $r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2996
3009
|
uniform mediump sampler2D map;
|
|
2997
3010
|
#else
|
|
2998
3011
|
uniform lowp sampler2D map;
|
|
2999
3012
|
#endif
|
|
3000
|
-
uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){
|
|
3013
|
+
uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv)*intensity;}`, hi = class extends I {
|
|
3001
3014
|
/**
|
|
3002
3015
|
* Constructs a new bloom effect.
|
|
3003
3016
|
*
|
|
@@ -3017,7 +3030,7 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
|
|
|
3017
3030
|
* @param {Number} [options.height=Resolution.AUTO_SIZE] - Deprecated. Use mipmapBlur instead.
|
|
3018
3031
|
*/
|
|
3019
3032
|
constructor({
|
|
3020
|
-
blendFunction: e =
|
|
3033
|
+
blendFunction: e = g.SCREEN,
|
|
3021
3034
|
luminanceThreshold: t = 1,
|
|
3022
3035
|
luminanceSmoothing: i = 0.03,
|
|
3023
3036
|
mipmapBlur: r = !0,
|
|
@@ -3031,7 +3044,7 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
|
|
|
3031
3044
|
resolutionX: h = c,
|
|
3032
3045
|
resolutionY: d = f
|
|
3033
3046
|
} = {}) {
|
|
3034
|
-
super("BloomEffect",
|
|
3047
|
+
super("BloomEffect", $r, {
|
|
3035
3048
|
blendFunction: e,
|
|
3036
3049
|
uniforms: /* @__PURE__ */ new Map([
|
|
3037
3050
|
["map", new u(null)],
|
|
@@ -3238,13 +3251,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
|
|
|
3238
3251
|
initialize(e, t, i) {
|
|
3239
3252
|
this.blurPass.initialize(e, t, i), this.luminancePass.initialize(e, t, i), this.mipmapBlurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S));
|
|
3240
3253
|
}
|
|
3241
|
-
},
|
|
3254
|
+
}, ea = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
|
|
3242
3255
|
#ifdef PERSPECTIVE_CAMERA
|
|
3243
3256
|
float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDepth=viewZToOrthographicDepth(viewZ,cameraNear,cameraFar);
|
|
3244
3257
|
#else
|
|
3245
3258
|
float linearDepth=depth;
|
|
3246
3259
|
#endif
|
|
3247
|
-
float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`,
|
|
3260
|
+
float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ta = class extends I {
|
|
3248
3261
|
/**
|
|
3249
3262
|
* Constructs a new bokeh effect.
|
|
3250
3263
|
*
|
|
@@ -3262,7 +3275,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3262
3275
|
aperture: r = 0.015,
|
|
3263
3276
|
maxBlur: a = 1
|
|
3264
3277
|
} = {}) {
|
|
3265
|
-
super("BokehEffect",
|
|
3278
|
+
super("BokehEffect", ea, {
|
|
3266
3279
|
blendFunction: e,
|
|
3267
3280
|
attributes: V.CONVOLUTION | V.DEPTH,
|
|
3268
3281
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -3273,7 +3286,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3273
3286
|
])
|
|
3274
3287
|
});
|
|
3275
3288
|
}
|
|
3276
|
-
},
|
|
3289
|
+
}, ia = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", ra = class extends I {
|
|
3277
3290
|
/**
|
|
3278
3291
|
* Constructs a new brightness/contrast effect.
|
|
3279
3292
|
*
|
|
@@ -3282,8 +3295,8 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3282
3295
|
* @param {Number} [options.brightness=0.0] - The brightness factor, ranging from -1 to 1, where 0 means no change.
|
|
3283
3296
|
* @param {Number} [options.contrast=0.0] - The contrast factor, ranging from -1 to 1, where 0 means no change.
|
|
3284
3297
|
*/
|
|
3285
|
-
constructor({ blendFunction: e =
|
|
3286
|
-
super("BrightnessContrastEffect",
|
|
3298
|
+
constructor({ blendFunction: e = g.SRC, brightness: t = 0, contrast: i = 0 } = {}) {
|
|
3299
|
+
super("BrightnessContrastEffect", ia, {
|
|
3287
3300
|
blendFunction: e,
|
|
3288
3301
|
uniforms: /* @__PURE__ */ new Map([
|
|
3289
3302
|
["brightness", new u(t)],
|
|
@@ -3349,16 +3362,16 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3349
3362
|
setContrast(e) {
|
|
3350
3363
|
this.contrast = e;
|
|
3351
3364
|
}
|
|
3352
|
-
},
|
|
3365
|
+
}, aa = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", sa = class extends I {
|
|
3353
3366
|
/**
|
|
3354
3367
|
* Constructs a new color average effect.
|
|
3355
3368
|
*
|
|
3356
3369
|
* @param {BlendFunction} [blendFunction] - The blend function of this effect.
|
|
3357
3370
|
*/
|
|
3358
3371
|
constructor(e) {
|
|
3359
|
-
super("ColorAverageEffect",
|
|
3372
|
+
super("ColorAverageEffect", aa, { blendFunction: e });
|
|
3360
3373
|
}
|
|
3361
|
-
},
|
|
3374
|
+
}, na = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", oa = class extends I {
|
|
3362
3375
|
/**
|
|
3363
3376
|
* Constructs a new color depth effect.
|
|
3364
3377
|
*
|
|
@@ -3367,7 +3380,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3367
3380
|
* @param {Number} [options.bits=16] - The color bit depth.
|
|
3368
3381
|
*/
|
|
3369
3382
|
constructor({ blendFunction: e, bits: t = 16 } = {}) {
|
|
3370
|
-
super("ColorDepthEffect",
|
|
3383
|
+
super("ColorDepthEffect", na, {
|
|
3371
3384
|
blendFunction: e,
|
|
3372
3385
|
uniforms: /* @__PURE__ */ new Map([
|
|
3373
3386
|
["factor", new u(1)]
|
|
@@ -3403,7 +3416,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3403
3416
|
setBitDepth(e) {
|
|
3404
3417
|
this.bitDepth = e;
|
|
3405
3418
|
}
|
|
3406
|
-
},
|
|
3419
|
+
}, la = `#ifdef RADIAL_MODULATION
|
|
3407
3420
|
uniform float modulationOffset;
|
|
3408
3421
|
#endif
|
|
3409
3422
|
varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec2 ra=inputColor.ra;vec2 ba=inputColor.ba;
|
|
@@ -3412,7 +3425,7 @@ const vec2 center=vec2(0.5);float d=distance(uv,center)*2.0;d=max(d-modulationOf
|
|
|
3412
3425
|
#else
|
|
3413
3426
|
if(vActive>0.0){ra=texture2D(inputBuffer,vUvR).ra;ba=texture2D(inputBuffer,vUvB).ba;}
|
|
3414
3427
|
#endif
|
|
3415
|
-
outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`,
|
|
3428
|
+
outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ua = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", ca = class extends I {
|
|
3416
3429
|
/**
|
|
3417
3430
|
* Constructs a new chromatic aberration effect.
|
|
3418
3431
|
*
|
|
@@ -3426,8 +3439,8 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, la
|
|
|
3426
3439
|
radialModulation: t = !1,
|
|
3427
3440
|
modulationOffset: i = 0.15
|
|
3428
3441
|
} = {}) {
|
|
3429
|
-
super("ChromaticAberrationEffect",
|
|
3430
|
-
vertexShader:
|
|
3442
|
+
super("ChromaticAberrationEffect", la, {
|
|
3443
|
+
vertexShader: ua,
|
|
3431
3444
|
attributes: V.CONVOLUTION,
|
|
3432
3445
|
uniforms: /* @__PURE__ */ new Map([
|
|
3433
3446
|
["offset", new u(e)],
|
|
@@ -3488,13 +3501,13 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, la
|
|
|
3488
3501
|
setOffset(e) {
|
|
3489
3502
|
this.offset = e;
|
|
3490
3503
|
}
|
|
3491
|
-
},
|
|
3504
|
+
}, fa = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
|
|
3492
3505
|
#ifdef INVERTED
|
|
3493
3506
|
vec3 color=vec3(1.0-depth);
|
|
3494
3507
|
#else
|
|
3495
3508
|
vec3 color=vec3(depth);
|
|
3496
3509
|
#endif
|
|
3497
|
-
outputColor=vec4(color,inputColor.a);}`,
|
|
3510
|
+
outputColor=vec4(color,inputColor.a);}`, ha = class extends I {
|
|
3498
3511
|
/**
|
|
3499
3512
|
* Constructs a new depth effect.
|
|
3500
3513
|
*
|
|
@@ -3502,8 +3515,8 @@ outputColor=vec4(color,inputColor.a);}`, fa = class extends I {
|
|
|
3502
3515
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
|
|
3503
3516
|
* @param {Boolean} [options.inverted=false] - Whether the depth should be inverted.
|
|
3504
3517
|
*/
|
|
3505
|
-
constructor({ blendFunction: e =
|
|
3506
|
-
super("DepthEffect",
|
|
3518
|
+
constructor({ blendFunction: e = g.SRC, inverted: t = !1 } = {}) {
|
|
3519
|
+
super("DepthEffect", fa, {
|
|
3507
3520
|
blendFunction: e,
|
|
3508
3521
|
attributes: V.DEPTH
|
|
3509
3522
|
}), this.inverted = t;
|
|
@@ -3542,12 +3555,12 @@ outputColor=vec4(color,inputColor.a);}`, fa = class extends I {
|
|
|
3542
3555
|
GREEN: 1,
|
|
3543
3556
|
BLUE: 2,
|
|
3544
3557
|
ALPHA: 3
|
|
3545
|
-
},
|
|
3558
|
+
}, Mt = {
|
|
3546
3559
|
DISCARD: 0,
|
|
3547
3560
|
MULTIPLY: 1,
|
|
3548
3561
|
MULTIPLY_RGB_SET_ALPHA: 2,
|
|
3549
3562
|
MULTIPLY_RGB: 3
|
|
3550
|
-
},
|
|
3563
|
+
}, da = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
3551
3564
|
uniform mediump sampler2D inputBuffer;
|
|
3552
3565
|
#else
|
|
3553
3566
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -3574,7 +3587,7 @@ vec4 acc=vec4(0.0);for(int i=0;i<32;++i){vec4 kernel=kernel64[i];vec2 uv=step*ke
|
|
|
3574
3587
|
#else
|
|
3575
3588
|
vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel16[i];vec2 uv=step*kernel.xy+vUv;maxValue=max(texture2D(inputBuffer,uv),maxValue);uv=step*kernel.zw+vUv;maxValue=max(texture2D(inputBuffer,uv),maxValue);}gl_FragColor=maxValue;
|
|
3576
3589
|
#endif
|
|
3577
|
-
}}`,
|
|
3590
|
+
}}`, Ue = class extends T {
|
|
3578
3591
|
/**
|
|
3579
3592
|
* Constructs a new bokeh material.
|
|
3580
3593
|
*
|
|
@@ -3599,7 +3612,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
|
|
|
3599
3612
|
toneMapped: !1,
|
|
3600
3613
|
depthWrite: !1,
|
|
3601
3614
|
depthTest: !1,
|
|
3602
|
-
fragmentShader:
|
|
3615
|
+
fragmentShader: da,
|
|
3603
3616
|
vertexShader: ue
|
|
3604
3617
|
}), t && (this.defines.FOREGROUND = "1"), this.generateKernel();
|
|
3605
3618
|
}
|
|
@@ -3699,7 +3712,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
|
|
|
3699
3712
|
setSize(e, t) {
|
|
3700
3713
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
3701
3714
|
}
|
|
3702
|
-
},
|
|
3715
|
+
}, va = `#include <common>
|
|
3703
3716
|
#include <packing>
|
|
3704
3717
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
3705
3718
|
uniform highp sampler2D depthBuffer;
|
|
@@ -3750,7 +3763,7 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
|
|
|
3750
3763
|
toneMapped: !1,
|
|
3751
3764
|
depthWrite: !1,
|
|
3752
3765
|
depthTest: !1,
|
|
3753
|
-
fragmentShader:
|
|
3766
|
+
fragmentShader: va,
|
|
3754
3767
|
vertexShader: ue
|
|
3755
3768
|
}), this.uniforms.focalLength = this.uniforms.focusRange, e !== null && this.copyCameraSettings(e);
|
|
3756
3769
|
}
|
|
@@ -3893,7 +3906,7 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
|
|
|
3893
3906
|
const t = this.defines.PERSPECTIVE_CAMERA !== void 0;
|
|
3894
3907
|
e instanceof Be ? t || (this.defines.PERSPECTIVE_CAMERA = !0, this.needsUpdate = !0) : t && (delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
|
|
3895
3908
|
}
|
|
3896
|
-
},
|
|
3909
|
+
}, pa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
3897
3910
|
uniform mediump sampler2D inputBuffer;
|
|
3898
3911
|
#else
|
|
3899
3912
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -3953,9 +3966,9 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
|
|
|
3953
3966
|
toneMapped: !1,
|
|
3954
3967
|
depthWrite: !1,
|
|
3955
3968
|
depthTest: !1,
|
|
3956
|
-
fragmentShader:
|
|
3969
|
+
fragmentShader: pa,
|
|
3957
3970
|
vertexShader: ue
|
|
3958
|
-
}), this.colorChannel = fe.RED, this.maskFunction =
|
|
3971
|
+
}), this.colorChannel = fe.RED, this.maskFunction = Mt.DISCARD;
|
|
3959
3972
|
}
|
|
3960
3973
|
/**
|
|
3961
3974
|
* The input buffer.
|
|
@@ -4129,7 +4142,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
|
|
|
4129
4142
|
initialize(e, t, i) {
|
|
4130
4143
|
i !== void 0 && i !== Y && (this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
|
|
4131
4144
|
}
|
|
4132
|
-
},
|
|
4145
|
+
}, ga = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
4133
4146
|
uniform mediump sampler2D nearColorBuffer;uniform mediump sampler2D farColorBuffer;
|
|
4134
4147
|
#else
|
|
4135
4148
|
uniform lowp sampler2D nearColorBuffer;uniform lowp sampler2D farColorBuffer;
|
|
@@ -4143,7 +4156,7 @@ vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,colorFar.a);cocNearFar.x=min(
|
|
|
4143
4156
|
#else
|
|
4144
4157
|
vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,texture2D(farCoCBuffer,uv).g);cocNearFar=min(cocNearFar*scale,1.0);colorFar.a*=cocNearFar.y;
|
|
4145
4158
|
#endif
|
|
4146
|
-
vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`,
|
|
4159
|
+
vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, ma = /* @__PURE__ */ new F(), Aa = class extends I {
|
|
4147
4160
|
/**
|
|
4148
4161
|
* Constructs a new depth of field effect.
|
|
4149
4162
|
*
|
|
@@ -4176,7 +4189,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4176
4189
|
resolutionX: h = c || D.AUTO_SIZE,
|
|
4177
4190
|
resolutionY: d = f || D.AUTO_SIZE
|
|
4178
4191
|
} = {}) {
|
|
4179
|
-
super("DepthOfFieldEffect",
|
|
4192
|
+
super("DepthOfFieldEffect", ga, {
|
|
4180
4193
|
blendFunction: t,
|
|
4181
4194
|
attributes: V.DEPTH,
|
|
4182
4195
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -4190,9 +4203,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4190
4203
|
const v = this.cocMaterial;
|
|
4191
4204
|
v.focusDistance = n, v.focusRange = s, this.blurPass = new pe({ resolutionScale: l, resolutionX: h, resolutionY: d, kernelSize: te.MEDIUM }), this.maskPass = new _(new vi(this.renderTargetCoC.texture));
|
|
4192
4205
|
const A = this.maskPass.fullscreenMaterial;
|
|
4193
|
-
A.colorChannel = fe.GREEN, this.maskFunction =
|
|
4194
|
-
const
|
|
4195
|
-
|
|
4206
|
+
A.colorChannel = fe.GREEN, this.maskFunction = Mt.MULTIPLY_RGB, this.bokehNearBasePass = new _(new Ue(!1, !0)), this.bokehNearBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehNearFillPass = new _(new Ue(!0, !0)), this.bokehNearFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehFarBasePass = new _(new Ue(!1, !1)), this.bokehFarBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.bokehFarFillPass = new _(new Ue(!0, !1)), this.bokehFarFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.target = null;
|
|
4207
|
+
const m = this.resolution = new D(this, h, d, l);
|
|
4208
|
+
m.addEventListener("change", (x) => this.setSize(m.baseWidth, m.baseHeight)), this.bokehScale = o;
|
|
4196
4209
|
}
|
|
4197
4210
|
set mainCamera(e) {
|
|
4198
4211
|
this.camera = e, this.cocMaterial.copyCameraSettings(e);
|
|
@@ -4314,7 +4327,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4314
4327
|
* @return {Number} The focus distance in world units.
|
|
4315
4328
|
*/
|
|
4316
4329
|
calculateFocusDistance(e) {
|
|
4317
|
-
return this.camera.getWorldPosition(
|
|
4330
|
+
return this.camera.getWorldPosition(ma).distanceTo(e);
|
|
4318
4331
|
}
|
|
4319
4332
|
/**
|
|
4320
4333
|
* Sets the depth texture.
|
|
@@ -4362,7 +4375,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4362
4375
|
initialize(e, t, i) {
|
|
4363
4376
|
this.cocPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.bokehNearBasePass.initialize(e, t, i), this.bokehNearFillPass.initialize(e, t, i), this.bokehFarBasePass.initialize(e, t, i), this.bokehFarFillPass.initialize(e, t, i), this.blurPass.initialize(e, t, Y), e.capabilities.logarithmicDepthBuffer && (this.cocPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTarget.texture.type = i, this.renderTargetNear.texture.type = i, this.renderTargetFar.texture.type = i, this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S, this.renderTargetNear.texture.colorSpace = S, this.renderTargetFar.texture.colorSpace = S, this.renderTargetMasked.texture.colorSpace = S));
|
|
4364
4377
|
}
|
|
4365
|
-
},
|
|
4378
|
+
}, xa = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Da = class extends I {
|
|
4366
4379
|
/**
|
|
4367
4380
|
* Constructs a new dot screen effect.
|
|
4368
4381
|
*
|
|
@@ -4372,7 +4385,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4372
4385
|
* @param {Number} [options.scale=1.0] - The scale of the dot pattern.
|
|
4373
4386
|
*/
|
|
4374
4387
|
constructor({ blendFunction: e, angle: t = Math.PI * 0.5, scale: i = 1 } = {}) {
|
|
4375
|
-
super("DotScreenEffect",
|
|
4388
|
+
super("DotScreenEffect", xa, {
|
|
4376
4389
|
blendFunction: e,
|
|
4377
4390
|
uniforms: /* @__PURE__ */ new Map([
|
|
4378
4391
|
["angle", new u(new p())],
|
|
@@ -4420,18 +4433,18 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4420
4433
|
set scale(e) {
|
|
4421
4434
|
this.uniforms.get("scale").value = e;
|
|
4422
4435
|
}
|
|
4423
|
-
},
|
|
4436
|
+
}, Ta = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
|
|
4424
4437
|
#define ONE_OVER_TWELVE 0.08333333333333333
|
|
4425
|
-
varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`,
|
|
4438
|
+
varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, wa = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", Ea = class extends I {
|
|
4426
4439
|
/**
|
|
4427
4440
|
* Constructs a new FXAA effect.
|
|
4428
4441
|
*
|
|
4429
4442
|
* @param {Object} [options] - The options.
|
|
4430
4443
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
|
|
4431
4444
|
*/
|
|
4432
|
-
constructor({ blendFunction: e =
|
|
4433
|
-
super("FXAAEffect",
|
|
4434
|
-
vertexShader:
|
|
4445
|
+
constructor({ blendFunction: e = g.SRC } = {}) {
|
|
4446
|
+
super("FXAAEffect", Ta, {
|
|
4447
|
+
vertexShader: wa,
|
|
4435
4448
|
blendFunction: e,
|
|
4436
4449
|
defines: /* @__PURE__ */ new Map([
|
|
4437
4450
|
["EDGE_THRESHOLD_MIN", "0.0312"],
|
|
@@ -4485,7 +4498,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4485
4498
|
set samples(e) {
|
|
4486
4499
|
this.defines.set("SAMPLES", e.toFixed(0)), this.setChanged();
|
|
4487
4500
|
}
|
|
4488
|
-
},
|
|
4501
|
+
}, Sa = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ca = class extends I {
|
|
4489
4502
|
/**
|
|
4490
4503
|
* Constructs a new gamma correction effect.
|
|
4491
4504
|
*
|
|
@@ -4493,8 +4506,8 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4493
4506
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
|
|
4494
4507
|
* @param {Number} [options.gamma=2.0] - The gamma factor.
|
|
4495
4508
|
*/
|
|
4496
|
-
constructor({ blendFunction: e =
|
|
4497
|
-
super("GammaCorrectionEffect",
|
|
4509
|
+
constructor({ blendFunction: e = g.SRC, gamma: t = 2 } = {}) {
|
|
4510
|
+
super("GammaCorrectionEffect", Sa, {
|
|
4498
4511
|
blendFunction: e,
|
|
4499
4512
|
uniforms: /* @__PURE__ */ new Map([
|
|
4500
4513
|
["gamma", new u(t)]
|
|
@@ -4507,7 +4520,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4507
4520
|
CONSTANT_MILD: 2,
|
|
4508
4521
|
CONSTANT_WILD: 3
|
|
4509
4522
|
};
|
|
4510
|
-
function
|
|
4523
|
+
function Ma(e, t, i) {
|
|
4511
4524
|
const r = /* @__PURE__ */ new Map([
|
|
4512
4525
|
[rt, 1],
|
|
4513
4526
|
[qi, 2],
|
|
@@ -4537,13 +4550,13 @@ var et = class extends it {
|
|
|
4537
4550
|
* @param {Number} [type=UnsignedByteType] - The texture type.
|
|
4538
4551
|
*/
|
|
4539
4552
|
constructor(e, t, i = rt, r = Y) {
|
|
4540
|
-
super(
|
|
4553
|
+
super(Ma(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
|
|
4541
4554
|
}
|
|
4542
4555
|
}, ya = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", We = "Glitch.Generated";
|
|
4543
4556
|
function Z(e, t) {
|
|
4544
4557
|
return e + Math.random() * (t - e);
|
|
4545
4558
|
}
|
|
4546
|
-
var
|
|
4559
|
+
var Ba = class extends I {
|
|
4547
4560
|
/**
|
|
4548
4561
|
* Constructs a new glitch effect.
|
|
4549
4562
|
*
|
|
@@ -4935,7 +4948,7 @@ var Ma = class extends I {
|
|
|
4935
4948
|
const e = this.perturbationMap;
|
|
4936
4949
|
e !== null && e.name === We && e.dispose();
|
|
4937
4950
|
}
|
|
4938
|
-
},
|
|
4951
|
+
}, Pa = `#include <common>
|
|
4939
4952
|
#include <dithering_pars_fragment>
|
|
4940
4953
|
#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
4941
4954
|
uniform mediump sampler2D inputBuffer;
|
|
@@ -4971,7 +4984,7 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
|
|
|
4971
4984
|
toneMapped: !1,
|
|
4972
4985
|
depthWrite: !1,
|
|
4973
4986
|
depthTest: !1,
|
|
4974
|
-
fragmentShader:
|
|
4987
|
+
fragmentShader: Pa,
|
|
4975
4988
|
vertexShader: ue
|
|
4976
4989
|
});
|
|
4977
4990
|
}
|
|
@@ -5335,12 +5348,12 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
|
|
|
5335
5348
|
const n = this.scene, s = this.camera, o = this.selection, l = s.layers.mask, c = n.background, f = e.shadowMap.autoUpdate, h = this.renderToScreen ? null : t;
|
|
5336
5349
|
o !== null && s.layers.set(o.getLayer()), this.skipShadowMapUpdate && (e.shadowMap.autoUpdate = !1), (this.ignoreBackground || this.clearPass.overrideClearColor !== null) && (n.background = null), this.clearPass.enabled && this.clearPass.render(e, t), e.setRenderTarget(h), this.overrideMaterialManager !== null ? this.overrideMaterialManager.render(e, n, s) : e.render(n, s), s.layers.mask = l, n.background = c, e.shadowMap.autoUpdate = f;
|
|
5337
5350
|
}
|
|
5338
|
-
},
|
|
5351
|
+
}, Ia = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
5339
5352
|
uniform mediump sampler2D map;
|
|
5340
5353
|
#else
|
|
5341
5354
|
uniform lowp sampler2D map;
|
|
5342
5355
|
#endif
|
|
5343
|
-
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new F(),
|
|
5356
|
+
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new F(), Ut = /* @__PURE__ */ new O(), Ra = class extends I {
|
|
5344
5357
|
/**
|
|
5345
5358
|
* Constructs a new god rays effect.
|
|
5346
5359
|
*
|
|
@@ -5363,7 +5376,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5363
5376
|
* @param {Boolean} [options.blur=true] - Whether the god rays should be blurred to reduce artifacts.
|
|
5364
5377
|
*/
|
|
5365
5378
|
constructor(e, t, {
|
|
5366
|
-
blendFunction: i =
|
|
5379
|
+
blendFunction: i = g.SCREEN,
|
|
5367
5380
|
samples: r = 60,
|
|
5368
5381
|
density: a = 0.96,
|
|
5369
5382
|
decay: n = 0.9,
|
|
@@ -5376,9 +5389,9 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5376
5389
|
width: d = D.AUTO_SIZE,
|
|
5377
5390
|
height: v = D.AUTO_SIZE,
|
|
5378
5391
|
resolutionX: A = d,
|
|
5379
|
-
resolutionY:
|
|
5392
|
+
resolutionY: m = v
|
|
5380
5393
|
} = {}) {
|
|
5381
|
-
super("GodRaysEffect",
|
|
5394
|
+
super("GodRaysEffect", Ia, {
|
|
5382
5395
|
blendFunction: i,
|
|
5383
5396
|
attributes: V.DEPTH,
|
|
5384
5397
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -5387,8 +5400,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5387
5400
|
}), this.camera = e, this._lightSource = t, this.lightSource = t, this.lightScene = new dt(), this.screenPosition = new p(), this.renderTargetA = new w(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "GodRays.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "GodRays.Target.B", this.uniforms.get("map").value = this.renderTargetB.texture, this.renderTargetLight = new w(1, 1), this.renderTargetLight.texture.name = "GodRays.Light", this.renderTargetLight.depthTexture = new Ce(), this.renderPassLight = new Ge(this.lightScene, e), this.renderPassLight.clearPass.enabled = !1, this.blurPass = new pe({ kernelSize: f }), this.blurPass.enabled = c, this.copyPass = new Ne(this.renderTargetLight), this.copyPass.fullscreenMaterial.channelWeights = new de(0, 0, 0, 1), this.godRaysPass = new _(new pi(this.screenPosition));
|
|
5388
5401
|
const x = this.godRaysMaterial;
|
|
5389
5402
|
x.density = a, x.decay = n, x.weight = s, x.exposure = o, x.maxIntensity = l, x.samples = r;
|
|
5390
|
-
const
|
|
5391
|
-
|
|
5403
|
+
const y = this.resolution = new D(this, A, m, h);
|
|
5404
|
+
y.addEventListener("change", (C) => this.setSize(y.baseWidth, y.baseHeight));
|
|
5392
5405
|
}
|
|
5393
5406
|
set mainCamera(e) {
|
|
5394
5407
|
this.camera = e, this.renderPassLight.mainCamera = e;
|
|
@@ -5571,7 +5584,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5571
5584
|
*/
|
|
5572
5585
|
update(e, t, i) {
|
|
5573
5586
|
const r = this.lightSource, a = r.parent, n = r.matrixAutoUpdate, s = this.renderTargetA, o = this.renderTargetLight;
|
|
5574
|
-
r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n ||
|
|
5587
|
+
r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n || Ut.copy(r.matrix), r.matrix.copy(r.matrixWorld)), this.lightScene.add(r), this.copyPass.render(e, t), this.renderPassLight.render(e, o), r.material.depthWrite = !1, r.matrixAutoUpdate = n, a !== null && (n || r.matrix.copy(Ut), a.add(r)), ut.setFromMatrixPosition(r.matrixWorld).project(this.camera), this.screenPosition.set(
|
|
5575
5588
|
Math.min(Math.max((ut.x + 1) * 0.5, -1), 2),
|
|
5576
5589
|
Math.min(Math.max((ut.y + 1) * 0.5, -1), 2)
|
|
5577
5590
|
);
|
|
@@ -5600,7 +5613,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5600
5613
|
initialize(e, t, i) {
|
|
5601
5614
|
this.blurPass.initialize(e, t, i), this.renderPassLight.initialize(e, t, i), this.copyPass.initialize(e, t, i), this.godRaysPass.initialize(e, t, i), i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, this.renderTargetLight.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTargetA.texture.colorSpace = S, this.renderTargetB.texture.colorSpace = S, this.renderTargetLight.texture.colorSpace = S));
|
|
5602
5615
|
}
|
|
5603
|
-
},
|
|
5616
|
+
}, ba = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Ua = class extends I {
|
|
5604
5617
|
/**
|
|
5605
5618
|
* Constructs a new grid effect.
|
|
5606
5619
|
*
|
|
@@ -5609,8 +5622,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5609
5622
|
* @param {Number} [options.scale=1.0] - The scale of the grid pattern.
|
|
5610
5623
|
* @param {Number} [options.lineWidth=0.0] - The line width of the grid pattern.
|
|
5611
5624
|
*/
|
|
5612
|
-
constructor({ blendFunction: e =
|
|
5613
|
-
super("GridEffect",
|
|
5625
|
+
constructor({ blendFunction: e = g.OVERLAY, scale: t = 1, lineWidth: i = 0 } = {}) {
|
|
5626
|
+
super("GridEffect", ba, {
|
|
5614
5627
|
blendFunction: e,
|
|
5615
5628
|
uniforms: /* @__PURE__ */ new Map([
|
|
5616
5629
|
["scale", new u(new p())],
|
|
@@ -5687,7 +5700,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5687
5700
|
const i = e / t, r = this.scale * (t * 0.125);
|
|
5688
5701
|
this.uniforms.get("scale").value.set(i * r, r), this.uniforms.get("lineWidth").value = r / t + this.lineWidth;
|
|
5689
5702
|
}
|
|
5690
|
-
},
|
|
5703
|
+
}, Fa = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", La = class extends I {
|
|
5691
5704
|
/**
|
|
5692
5705
|
* Constructs a new hue/saturation effect.
|
|
5693
5706
|
*
|
|
@@ -5696,8 +5709,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5696
5709
|
* @param {Number} [options.hue=0.0] - The hue in radians.
|
|
5697
5710
|
* @param {Number} [options.saturation=0.0] - The saturation factor, ranging from -1 to 1, where 0 means no change.
|
|
5698
5711
|
*/
|
|
5699
|
-
constructor({ blendFunction: e =
|
|
5700
|
-
super("HueSaturationEffect",
|
|
5712
|
+
constructor({ blendFunction: e = g.SRC, hue: t = 0, saturation: i = 0 } = {}) {
|
|
5713
|
+
super("HueSaturationEffect", Fa, {
|
|
5701
5714
|
blendFunction: e,
|
|
5702
5715
|
uniforms: /* @__PURE__ */ new Map([
|
|
5703
5716
|
["hue", new u(new F())],
|
|
@@ -5769,7 +5782,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5769
5782
|
setHue(e) {
|
|
5770
5783
|
this.hue = e;
|
|
5771
5784
|
}
|
|
5772
|
-
},
|
|
5785
|
+
}, Oa = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Na = class extends I {
|
|
5773
5786
|
/**
|
|
5774
5787
|
* Constructs a new lens distortion effect.
|
|
5775
5788
|
*
|
|
@@ -5785,7 +5798,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5785
5798
|
focalLength: i = new p(1, 1),
|
|
5786
5799
|
skew: r = 0
|
|
5787
5800
|
} = {}) {
|
|
5788
|
-
super("LensDistortionEffect",
|
|
5801
|
+
super("LensDistortionEffect", Oa, {
|
|
5789
5802
|
uniforms: /* @__PURE__ */ new Map([
|
|
5790
5803
|
["distortion", new u(e)],
|
|
5791
5804
|
["principalPoint", new u(t)],
|
|
@@ -5838,7 +5851,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5838
5851
|
set skew(e) {
|
|
5839
5852
|
this.uniforms.get("skew").value = e;
|
|
5840
5853
|
}
|
|
5841
|
-
},
|
|
5854
|
+
}, Ha = `#ifdef LUT_PRECISION_HIGH
|
|
5842
5855
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
5843
5856
|
uniform highp sampler2D lut;
|
|
5844
5857
|
#else
|
|
@@ -5847,7 +5860,7 @@ uniform mediump sampler2D lut;
|
|
|
5847
5860
|
#else
|
|
5848
5861
|
uniform lowp sampler2D lut;
|
|
5849
5862
|
#endif
|
|
5850
|
-
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`,
|
|
5863
|
+
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, za = class extends I {
|
|
5851
5864
|
/**
|
|
5852
5865
|
* Constructs a new color grading effect.
|
|
5853
5866
|
*
|
|
@@ -5855,8 +5868,8 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5855
5868
|
* @param {Object} [options] - The options.
|
|
5856
5869
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
|
|
5857
5870
|
*/
|
|
5858
|
-
constructor(e, { blendFunction: t =
|
|
5859
|
-
super("LUT1DEffect",
|
|
5871
|
+
constructor(e, { blendFunction: t = g.SRC } = {}) {
|
|
5872
|
+
super("LUT1DEffect", Ha, {
|
|
5860
5873
|
blendFunction: t,
|
|
5861
5874
|
uniforms: /* @__PURE__ */ new Map([["lut", new u(null)]])
|
|
5862
5875
|
}), this.lut = e;
|
|
@@ -5920,7 +5933,7 @@ var le = class mi {
|
|
|
5920
5933
|
a = t.data;
|
|
5921
5934
|
return new mi(i, r, a);
|
|
5922
5935
|
}
|
|
5923
|
-
},
|
|
5936
|
+
}, Ga = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;t.operation===O.SCALE_UP&&(r=v.expand(r,t.size)),postMessage(r,[r.buffer]),close()});})();
|
|
5924
5937
|
`, Lt = /* @__PURE__ */ new Q(), He = class je extends Ze {
|
|
5925
5938
|
/**
|
|
5926
5939
|
* Constructs a cubic 3D lookup texture.
|
|
@@ -5951,7 +5964,7 @@ var le = class mi {
|
|
|
5951
5964
|
const r = this.image;
|
|
5952
5965
|
let a;
|
|
5953
5966
|
return t <= r.width ? a = Promise.reject(new Error("The target size must be greater than the current size")) : a = new Promise((n, s) => {
|
|
5954
|
-
const o = URL.createObjectURL(new Blob([
|
|
5967
|
+
const o = URL.createObjectURL(new Blob([Ga], {
|
|
5955
5968
|
type: "text/javascript"
|
|
5956
5969
|
})), l = new Worker(o);
|
|
5957
5970
|
l.addEventListener("error", (f) => s(f.error)), l.addEventListener("message", (f) => {
|
|
@@ -5983,8 +5996,8 @@ var le = class mi {
|
|
|
5983
5996
|
else {
|
|
5984
5997
|
const s = i.data, o = r.data, l = a, c = l ** 2, f = l - 1;
|
|
5985
5998
|
for (let h = 0, d = l ** 3; h < d; ++h) {
|
|
5986
|
-
const v = h * 4, A = s[v + 0] * f,
|
|
5987
|
-
s[v + 0] = o[
|
|
5999
|
+
const v = h * 4, A = s[v + 0] * f, m = s[v + 1] * f, x = s[v + 2] * f, y = Math.round(A + m * l + x * c) * 4;
|
|
6000
|
+
s[v + 0] = o[y + 0], s[v + 1] = o[y + 1], s[v + 2] = o[y + 2];
|
|
5988
6001
|
}
|
|
5989
6002
|
this.needsUpdate = !0;
|
|
5990
6003
|
}
|
|
@@ -6115,7 +6128,7 @@ var le = class mi {
|
|
|
6115
6128
|
const n = new je(i, t);
|
|
6116
6129
|
return n.name = "neutral", n;
|
|
6117
6130
|
}
|
|
6118
|
-
},
|
|
6131
|
+
}, ka = `uniform vec3 scale;uniform vec3 offset;
|
|
6119
6132
|
#ifdef CUSTOM_INPUT_DOMAIN
|
|
6120
6133
|
uniform vec3 domainMin;uniform vec3 domainMax;
|
|
6121
6134
|
#endif
|
|
@@ -6174,11 +6187,11 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
|
|
|
6174
6187
|
* @param {ColorSpace} [options.inputColorSpace=SRGBColorSpace] - The input color space.
|
|
6175
6188
|
*/
|
|
6176
6189
|
constructor(e, {
|
|
6177
|
-
blendFunction: t =
|
|
6190
|
+
blendFunction: t = g.SRC,
|
|
6178
6191
|
tetrahedralInterpolation: i = !1,
|
|
6179
6192
|
inputColorSpace: r = S
|
|
6180
6193
|
} = {}) {
|
|
6181
|
-
super("LUT3DEffect",
|
|
6194
|
+
super("LUT3DEffect", ka, {
|
|
6182
6195
|
blendFunction: t,
|
|
6183
6196
|
uniforms: /* @__PURE__ */ new Map([
|
|
6184
6197
|
["lut", new u(null)],
|
|
@@ -6282,11 +6295,11 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
|
|
|
6282
6295
|
}, Se = {
|
|
6283
6296
|
FULL: 0,
|
|
6284
6297
|
SINGLE: 1
|
|
6285
|
-
},
|
|
6298
|
+
}, Me = {
|
|
6286
6299
|
DEFAULT: 0,
|
|
6287
6300
|
KEEP_MAX_DEPTH: 1,
|
|
6288
6301
|
DISCARD_MAX_DEPTH: 2
|
|
6289
|
-
},
|
|
6302
|
+
}, yt = {
|
|
6290
6303
|
DEPTH: 0,
|
|
6291
6304
|
LUMA: 1,
|
|
6292
6305
|
COLOR: 2
|
|
@@ -6313,18 +6326,18 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
|
|
|
6313
6326
|
}, Ee = {
|
|
6314
6327
|
DEFAULT: 0,
|
|
6315
6328
|
ESKIL: 1
|
|
6316
|
-
},
|
|
6329
|
+
}, Qa = {
|
|
6317
6330
|
DERIVATIVES: "derivatives",
|
|
6318
6331
|
FRAG_DEPTH: "fragDepth",
|
|
6319
6332
|
DRAW_BUFFERS: "drawBuffers",
|
|
6320
6333
|
SHADER_TEXTURE_LOD: "shaderTextureLOD"
|
|
6321
|
-
},
|
|
6334
|
+
}, Va = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
|
|
6322
6335
|
#ifdef PREMULTIPLY
|
|
6323
6336
|
outputColor=vec4(min(inputColor.rgb*noise,vec3(1.0)),inputColor.a);
|
|
6324
6337
|
#else
|
|
6325
6338
|
outputColor=vec4(noise,inputColor.a);
|
|
6326
6339
|
#endif
|
|
6327
|
-
}`,
|
|
6340
|
+
}`, Wa = class extends I {
|
|
6328
6341
|
/**
|
|
6329
6342
|
* Constructs a new noise effect.
|
|
6330
6343
|
*
|
|
@@ -6332,8 +6345,8 @@ outputColor=vec4(noise,inputColor.a);
|
|
|
6332
6345
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SCREEN] - The blend function of this effect.
|
|
6333
6346
|
* @param {Boolean} [options.premultiply=false] - Whether the noise should be multiplied with the input colors prior to blending.
|
|
6334
6347
|
*/
|
|
6335
|
-
constructor({ blendFunction: e =
|
|
6336
|
-
super("NoiseEffect",
|
|
6348
|
+
constructor({ blendFunction: e = g.SCREEN, premultiply: t = !1 } = {}) {
|
|
6349
|
+
super("NoiseEffect", Va, { blendFunction: e }), this.premultiply = t;
|
|
6337
6350
|
}
|
|
6338
6351
|
/**
|
|
6339
6352
|
* Indicates whether noise will be multiplied with the input colors prior to blending.
|
|
@@ -6364,7 +6377,7 @@ outputColor=vec4(noise,inputColor.a);
|
|
|
6364
6377
|
setPremultiplied(e) {
|
|
6365
6378
|
this.premultiply = e;
|
|
6366
6379
|
}
|
|
6367
|
-
},
|
|
6380
|
+
}, Ya = `#include <packing>
|
|
6368
6381
|
#include <clipping_planes_pars_fragment>
|
|
6369
6382
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
6370
6383
|
uniform highp sampler2D depthBuffer;
|
|
@@ -6389,7 +6402,7 @@ float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
6389
6402
|
#else
|
|
6390
6403
|
float viewZ=orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
6391
6404
|
#endif
|
|
6392
|
-
float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`,
|
|
6405
|
+
float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Ka = `#include <common>
|
|
6393
6406
|
#include <morphtarget_pars_vertex>
|
|
6394
6407
|
#include <skinning_pars_vertex>
|
|
6395
6408
|
#include <clipping_planes_pars_vertex>
|
|
@@ -6423,8 +6436,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6423
6436
|
toneMapped: !1,
|
|
6424
6437
|
depthWrite: !1,
|
|
6425
6438
|
depthTest: !1,
|
|
6426
|
-
fragmentShader:
|
|
6427
|
-
vertexShader:
|
|
6439
|
+
fragmentShader: Ya,
|
|
6440
|
+
vertexShader: Ka
|
|
6428
6441
|
}), this.depthBuffer = e, this.depthPacking = ae, this.copyCameraSettings(t);
|
|
6429
6442
|
}
|
|
6430
6443
|
/**
|
|
@@ -6470,7 +6483,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6470
6483
|
copyCameraSettings(e) {
|
|
6471
6484
|
e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Be ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
|
|
6472
6485
|
}
|
|
6473
|
-
},
|
|
6486
|
+
}, Xa = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", Za = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends T {
|
|
6474
6487
|
/**
|
|
6475
6488
|
* Constructs a new outline material.
|
|
6476
6489
|
*
|
|
@@ -6488,8 +6501,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6488
6501
|
toneMapped: !1,
|
|
6489
6502
|
depthWrite: !1,
|
|
6490
6503
|
depthTest: !1,
|
|
6491
|
-
fragmentShader:
|
|
6492
|
-
vertexShader:
|
|
6504
|
+
fragmentShader: Xa,
|
|
6505
|
+
vertexShader: Za
|
|
6493
6506
|
}), this.uniforms.texelSize.value.set(e.x, e.y), this.uniforms.maskTexture = this.uniforms.inputBuffer;
|
|
6494
6507
|
}
|
|
6495
6508
|
/**
|
|
@@ -6645,7 +6658,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6645
6658
|
const r = e.capabilities.reversedDepthBuffer ? 0 : 16777215, a = this.renderPass.clearPass;
|
|
6646
6659
|
a.overrideClearColor = new Q(r), a.overrideClearAlpha = 1;
|
|
6647
6660
|
}
|
|
6648
|
-
},
|
|
6661
|
+
}, ja = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
|
|
6649
6662
|
#ifdef USE_PATTERN
|
|
6650
6663
|
uniform lowp sampler2D patternTexture;varying vec2 vUvPattern;
|
|
6651
6664
|
#endif
|
|
@@ -6669,7 +6682,7 @@ outputColor=vec4(color,alpha);
|
|
|
6669
6682
|
#else
|
|
6670
6683
|
outputColor=vec4(color,max(alpha,inputColor.a));
|
|
6671
6684
|
#endif
|
|
6672
|
-
}`,
|
|
6685
|
+
}`, Ja = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", qa = class extends I {
|
|
6673
6686
|
/**
|
|
6674
6687
|
* Constructs a new outline effect.
|
|
6675
6688
|
*
|
|
@@ -6694,7 +6707,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
6694
6707
|
* @param {Number} [options.height=Resolution.AUTO_SIZE] - Deprecated. Use resolutionY instead.
|
|
6695
6708
|
*/
|
|
6696
6709
|
constructor(e, t, {
|
|
6697
|
-
blendFunction: i =
|
|
6710
|
+
blendFunction: i = g.SCREEN,
|
|
6698
6711
|
patternTexture: r = null,
|
|
6699
6712
|
patternScale: a = 1,
|
|
6700
6713
|
edgeStrength: n = 1,
|
|
@@ -6707,11 +6720,11 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
6707
6720
|
multisampling: d = 0,
|
|
6708
6721
|
resolutionScale: v = 0.5,
|
|
6709
6722
|
width: A = D.AUTO_SIZE,
|
|
6710
|
-
height:
|
|
6723
|
+
height: m = D.AUTO_SIZE,
|
|
6711
6724
|
resolutionX: x = A,
|
|
6712
|
-
resolutionY:
|
|
6725
|
+
resolutionY: y = m
|
|
6713
6726
|
} = {}) {
|
|
6714
|
-
super("OutlineEffect",
|
|
6727
|
+
super("OutlineEffect", ja, {
|
|
6715
6728
|
uniforms: /* @__PURE__ */ new Map([
|
|
6716
6729
|
["maskTexture", new u(null)],
|
|
6717
6730
|
["edgeTexture", new u(null)],
|
|
@@ -6723,10 +6736,10 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
6723
6736
|
["patternTexture", new u(null)]
|
|
6724
6737
|
])
|
|
6725
6738
|
}), this.blendMode.addEventListener("change", (ee) => {
|
|
6726
|
-
this.blendMode.blendFunction ===
|
|
6739
|
+
this.blendMode.blendFunction === g.ALPHA ? this.defines.set("ALPHA", "1") : this.defines.delete("ALPHA"), this.setChanged();
|
|
6727
6740
|
}), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new w(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new w(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new Ie(), this.clearPass.overrideClearColor = new Q(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Bt(e, t), this.maskPass = new Ge(e, t, new xi(this.depthPass.texture, t));
|
|
6728
6741
|
const C = this.maskPass.clearPass;
|
|
6729
|
-
C.overrideClearColor = new Q(16777215), C.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: x, resolutionY:
|
|
6742
|
+
C.overrideClearColor = new Q(16777215), C.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: x, resolutionY: y, kernelSize: c }), this.blurPass.enabled = f;
|
|
6730
6743
|
const E = this.blurPass.resolution;
|
|
6731
6744
|
E.addEventListener("change", (ee) => this.setSize(E.baseWidth, E.baseHeight)), this.outlinePass = new _(new mt());
|
|
6732
6745
|
const K = this.outlinePass.fullscreenMaterial;
|
|
@@ -6958,7 +6971,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
6958
6971
|
return this.uniforms.get("patternTexture").value;
|
|
6959
6972
|
}
|
|
6960
6973
|
set patternTexture(e) {
|
|
6961
|
-
e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(
|
|
6974
|
+
e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(Ja)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
|
|
6962
6975
|
}
|
|
6963
6976
|
/**
|
|
6964
6977
|
* Sets the pattern texture.
|
|
@@ -7060,14 +7073,14 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
7060
7073
|
initialize(e, t, i) {
|
|
7061
7074
|
this.blurPass.initialize(e, t, Y), i !== void 0 && (this.depthPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.outlinePass.initialize(e, t, i));
|
|
7062
7075
|
}
|
|
7063
|
-
},
|
|
7076
|
+
}, _a = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", $a = class extends I {
|
|
7064
7077
|
/**
|
|
7065
7078
|
* Constructs a new pixelation effect.
|
|
7066
7079
|
*
|
|
7067
7080
|
* @param {Object} [granularity=30.0] - The pixel granularity.
|
|
7068
7081
|
*/
|
|
7069
7082
|
constructor(e = 30) {
|
|
7070
|
-
super("PixelationEffect",
|
|
7083
|
+
super("PixelationEffect", _a, {
|
|
7071
7084
|
uniforms: /* @__PURE__ */ new Map([
|
|
7072
7085
|
["active", new u(!1)],
|
|
7073
7086
|
["d", new u(new de())]
|
|
@@ -7118,7 +7131,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
7118
7131
|
const r = this.granularity, a = r / i.x, n = r / i.y;
|
|
7119
7132
|
this.uniforms.get("d").value.set(a, n, 1 / a, 1 / n);
|
|
7120
7133
|
}
|
|
7121
|
-
},
|
|
7134
|
+
}, es = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
|
|
7122
7135
|
#ifdef MANUAL_DOF
|
|
7123
7136
|
uniform vec4 dof;
|
|
7124
7137
|
#endif
|
|
@@ -7146,7 +7159,7 @@ const int MAX_RING_SAMPLES=RINGS_INT*SAMPLES_INT;blur=clamp(blur,0.0,1.0);vec3 c
|
|
|
7146
7159
|
#ifdef SHOW_FOCUS
|
|
7147
7160
|
float edge=0.002*linearDepth;float m=clamp(smoothstep(0.0,edge,blur),0.0,1.0);float e=clamp(smoothstep(1.0-edge,1.0,blur),0.0,1.0);color=mix(color,vec3(1.0,0.5,0.0),(1.0-m)*0.6);color=mix(color,vec3(0.0,0.5,1.0),((1.0-e)-(1.0-m))*0.2);
|
|
7148
7161
|
#endif
|
|
7149
|
-
outputColor=vec4(color,inputColor.a);}`,
|
|
7162
|
+
outputColor=vec4(color,inputColor.a);}`, ts = class extends I {
|
|
7150
7163
|
/**
|
|
7151
7164
|
* Constructs a new bokeh effect.
|
|
7152
7165
|
*
|
|
@@ -7182,7 +7195,7 @@ outputColor=vec4(color,inputColor.a);}`, es = class extends I {
|
|
|
7182
7195
|
manualDoF: d = !1,
|
|
7183
7196
|
pentagon: v = !1
|
|
7184
7197
|
} = {}) {
|
|
7185
|
-
super("RealisticBokehEffect",
|
|
7198
|
+
super("RealisticBokehEffect", es, {
|
|
7186
7199
|
blendFunction: e,
|
|
7187
7200
|
attributes: V.CONVOLUTION | V.DEPTH,
|
|
7188
7201
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -7257,7 +7270,7 @@ outputColor=vec4(color,inputColor.a);}`, es = class extends I {
|
|
|
7257
7270
|
set pentagon(e) {
|
|
7258
7271
|
this.pentagon !== e && (e ? this.defines.set("PENTAGON", "1") : this.defines.delete("PENTAGON"), this.setChanged());
|
|
7259
7272
|
}
|
|
7260
|
-
},
|
|
7273
|
+
}, is = `uniform float count;
|
|
7261
7274
|
#ifdef SCROLL
|
|
7262
7275
|
uniform float scrollSpeed;
|
|
7263
7276
|
#endif
|
|
@@ -7265,7 +7278,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){f
|
|
|
7265
7278
|
#ifdef SCROLL
|
|
7266
7279
|
y+=time*scrollSpeed;
|
|
7267
7280
|
#endif
|
|
7268
|
-
vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`,
|
|
7281
|
+
vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, rs = class extends I {
|
|
7269
7282
|
/**
|
|
7270
7283
|
* Constructs a new scanline effect.
|
|
7271
7284
|
*
|
|
@@ -7274,8 +7287,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7274
7287
|
* @param {Number} [options.density=1.25] - The scanline density.
|
|
7275
7288
|
* @param {Number} [options.scrollSpeed=0.0] - The scanline scroll speed.
|
|
7276
7289
|
*/
|
|
7277
|
-
constructor({ blendFunction: e =
|
|
7278
|
-
super("ScanlineEffect",
|
|
7290
|
+
constructor({ blendFunction: e = g.OVERLAY, density: t = 1.25, scrollSpeed: i = 0 } = {}) {
|
|
7291
|
+
super("ScanlineEffect", is, {
|
|
7279
7292
|
blendFunction: e,
|
|
7280
7293
|
uniforms: /* @__PURE__ */ new Map([
|
|
7281
7294
|
["count", new u(0)],
|
|
@@ -7332,7 +7345,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7332
7345
|
setSize(e, t) {
|
|
7333
7346
|
this.resolution.set(e, t), this.uniforms.get("count").value = Math.round(t * this.density);
|
|
7334
7347
|
}
|
|
7335
|
-
},
|
|
7348
|
+
}, as = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", ss = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", ns = Math.PI * 0.5, Re = /* @__PURE__ */ new F(), Nt = /* @__PURE__ */ new F(), os = class extends I {
|
|
7336
7349
|
/**
|
|
7337
7350
|
* Constructs a new shock wave effect.
|
|
7338
7351
|
*
|
|
@@ -7350,8 +7363,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7350
7363
|
waveSize: a = 0.2,
|
|
7351
7364
|
amplitude: n = 0.05
|
|
7352
7365
|
} = {}) {
|
|
7353
|
-
super("ShockWaveEffect",
|
|
7354
|
-
vertexShader:
|
|
7366
|
+
super("ShockWaveEffect", as, {
|
|
7367
|
+
vertexShader: ss,
|
|
7355
7368
|
uniforms: /* @__PURE__ */ new Map([
|
|
7356
7369
|
["active", new u(!1)],
|
|
7357
7370
|
["center", new u(new p(0.5, 0.5))],
|
|
@@ -7465,12 +7478,12 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7465
7478
|
const r = this.position, a = this.camera, n = this.uniforms, s = n.get("active");
|
|
7466
7479
|
if (this.active) {
|
|
7467
7480
|
const o = n.get("waveSize").value;
|
|
7468
|
-
a.getWorldDirection(Re), Nt.copy(a.position).sub(r), s.value = Re.angleTo(Nt) >
|
|
7481
|
+
a.getWorldDirection(Re), Nt.copy(a.position).sub(r), s.value = Re.angleTo(Nt) > ns, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), Re.copy(r).project(a), this.screenPosition.set((Re.x + 1) * 0.5, (Re.y + 1) * 0.5)), this.time += i * this.speed;
|
|
7469
7482
|
const l = this.time - o;
|
|
7470
7483
|
n.get("radius").value = l, l >= (n.get("maxRadius").value + o) * 2 && (this.active = !1, s.value = !1);
|
|
7471
7484
|
}
|
|
7472
7485
|
}
|
|
7473
|
-
},
|
|
7486
|
+
}, ls = `#include <common>
|
|
7474
7487
|
#include <packing>
|
|
7475
7488
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
7476
7489
|
uniform highp sampler2D depthBuffer0;uniform highp sampler2D depthBuffer1;
|
|
@@ -7521,7 +7534,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7521
7534
|
DEPTH_EPSILON: "0.0001",
|
|
7522
7535
|
DEPTH_PACKING_0: "0",
|
|
7523
7536
|
DEPTH_PACKING_1: "0",
|
|
7524
|
-
DEPTH_TEST_STRATEGY:
|
|
7537
|
+
DEPTH_TEST_STRATEGY: Me.KEEP_MAX_DEPTH
|
|
7525
7538
|
},
|
|
7526
7539
|
uniforms: {
|
|
7527
7540
|
inputBuffer: new u(null),
|
|
@@ -7533,7 +7546,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7533
7546
|
toneMapped: !1,
|
|
7534
7547
|
depthWrite: !1,
|
|
7535
7548
|
depthTest: !1,
|
|
7536
|
-
fragmentShader:
|
|
7549
|
+
fragmentShader: ls,
|
|
7537
7550
|
vertexShader: ue
|
|
7538
7551
|
}), this.depthMode = Pt;
|
|
7539
7552
|
}
|
|
@@ -7610,7 +7623,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7610
7623
|
return this.maxDepthStrategy;
|
|
7611
7624
|
}
|
|
7612
7625
|
set keepFar(e) {
|
|
7613
|
-
this.maxDepthStrategy = e ?
|
|
7626
|
+
this.maxDepthStrategy = e ? Me.KEEP_MAX_DEPTH : Me.DISCARD_MAX_DEPTH;
|
|
7614
7627
|
}
|
|
7615
7628
|
/**
|
|
7616
7629
|
* Returns the strategy for dealing with maximum depth values.
|
|
@@ -7734,7 +7747,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7734
7747
|
copyCameraSettings(e) {
|
|
7735
7748
|
e && (this.uniforms.cameraNearFar.value.set(e.near, e.far), e instanceof Be ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
|
|
7736
7749
|
}
|
|
7737
|
-
},
|
|
7750
|
+
}, us = class extends hi {
|
|
7738
7751
|
/**
|
|
7739
7752
|
* Constructs a new selective bloom effect.
|
|
7740
7753
|
*
|
|
@@ -7809,7 +7822,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7809
7822
|
return this._ignoreBackground;
|
|
7810
7823
|
}
|
|
7811
7824
|
set ignoreBackground(e) {
|
|
7812
|
-
this._ignoreBackground = e, this.depthMaskMaterial.maxDepthStrategy = e ?
|
|
7825
|
+
this._ignoreBackground = e, this.depthMaskMaterial.maxDepthStrategy = e ? Me.DISCARD_MAX_DEPTH : Me.KEEP_MAX_DEPTH;
|
|
7813
7826
|
}
|
|
7814
7827
|
/**
|
|
7815
7828
|
* Indicates whether the background is disabled.
|
|
@@ -7873,7 +7886,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7873
7886
|
initialize(e, t, i) {
|
|
7874
7887
|
super.initialize(e, t, i), this.clearPass.initialize(e, t, i), this.depthPass.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), e !== null && e.capabilities.logarithmicDepthBuffer && (this.depthMaskPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTargetMasked.texture.colorSpace = S));
|
|
7875
7888
|
}
|
|
7876
|
-
},
|
|
7889
|
+
}, cs = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", fs = class extends I {
|
|
7877
7890
|
/**
|
|
7878
7891
|
* Constructs a new sepia effect.
|
|
7879
7892
|
*
|
|
@@ -7882,7 +7895,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7882
7895
|
* @param {Number} [options.intensity=1.0] - The intensity of the effect.
|
|
7883
7896
|
*/
|
|
7884
7897
|
constructor({ blendFunction: e, intensity: t = 1 } = {}) {
|
|
7885
|
-
super("SepiaEffect",
|
|
7898
|
+
super("SepiaEffect", cs, {
|
|
7886
7899
|
blendFunction: e,
|
|
7887
7900
|
uniforms: /* @__PURE__ */ new Map([
|
|
7888
7901
|
["weightsR", new u(new F(0.393, 0.769, 0.189))],
|
|
@@ -7945,7 +7958,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
|
|
|
7945
7958
|
get weightsB() {
|
|
7946
7959
|
return this.uniforms.get("weightsB").value;
|
|
7947
7960
|
}
|
|
7948
|
-
},
|
|
7961
|
+
}, hs = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
|
|
7949
7962
|
#if EDGE_DETECTION_MODE != 0
|
|
7950
7963
|
varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
|
|
7951
7964
|
#endif
|
|
@@ -7989,7 +8002,7 @@ float l=luminance(texture2D(inputBuffer,vUv).rgb);float lLeft=luminance(texture2
|
|
|
7989
8002
|
#elif EDGE_DETECTION_MODE == 2
|
|
7990
8003
|
vec4 delta;vec3 c=texture2D(inputBuffer,vUv).rgb;vec3 cLeft=texture2D(inputBuffer,vUv0).rgb;vec3 t=abs(c-cLeft);delta.x=max(max(t.r,t.g),t.b);vec3 cTop=texture2D(inputBuffer,vUv1).rgb;t=abs(c-cTop);delta.y=max(max(t.r,t.g),t.b);vec2 edges=step(threshold,delta.xy);if(dot(edges,vec2(1.0))==0.0){discard;}vec3 cRight=texture2D(inputBuffer,vUv2).rgb;t=abs(c-cRight);delta.z=max(max(t.r,t.g),t.b);vec3 cBottom=texture2D(inputBuffer,vUv3).rgb;t=abs(c-cBottom);delta.w=max(max(t.r,t.g),t.b);vec2 maxDelta=max(delta.xy,delta.zw);vec3 cLeftLeft=texture2D(inputBuffer,vUv4).rgb;t=abs(c-cLeftLeft);delta.z=max(max(t.r,t.g),t.b);vec3 cTopTop=texture2D(inputBuffer,vUv5).rgb;t=abs(c-cTopTop);delta.w=max(max(t.r,t.g),t.b);maxDelta=max(maxDelta.xy,delta.zw);float finalDelta=max(maxDelta.x,maxDelta.y);edges*=step(finalDelta,LOCAL_CONTRAST_ADAPTATION_FACTOR*delta.xy);gl_FragColor=vec4(edges,0.0,1.0);
|
|
7991
8004
|
#endif
|
|
7992
|
-
}`,
|
|
8005
|
+
}`, ds = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
|
|
7993
8006
|
#if EDGE_DETECTION_MODE != 0
|
|
7994
8007
|
varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
|
|
7995
8008
|
#endif
|
|
@@ -8005,7 +8018,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
|
|
|
8005
8018
|
* @param {Vector2} [texelSize] - The screen texel size.
|
|
8006
8019
|
* @param {EdgeDetectionMode} [mode=EdgeDetectionMode.COLOR] - The edge detection mode.
|
|
8007
8020
|
*/
|
|
8008
|
-
constructor(e = new p(), t =
|
|
8021
|
+
constructor(e = new p(), t = yt.COLOR) {
|
|
8009
8022
|
super({
|
|
8010
8023
|
name: "EdgeDetectionMaterial",
|
|
8011
8024
|
defines: {
|
|
@@ -8029,8 +8042,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
|
|
|
8029
8042
|
toneMapped: !1,
|
|
8030
8043
|
depthWrite: !1,
|
|
8031
8044
|
depthTest: !1,
|
|
8032
|
-
fragmentShader:
|
|
8033
|
-
vertexShader:
|
|
8045
|
+
fragmentShader: hs,
|
|
8046
|
+
vertexShader: ds
|
|
8034
8047
|
}), this.edgeDetectionMode = t;
|
|
8035
8048
|
}
|
|
8036
8049
|
/**
|
|
@@ -8307,7 +8320,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
|
|
|
8307
8320
|
setSize(e, t) {
|
|
8308
8321
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
8309
8322
|
}
|
|
8310
|
-
},
|
|
8323
|
+
}, vs = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
|
|
8311
8324
|
#if __VERSION__ < 300
|
|
8312
8325
|
#define round(v) floor(v + 0.5)
|
|
8313
8326
|
#endif
|
|
@@ -8332,7 +8345,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8332
8345
|
#if !defined(DISABLE_DIAG_DETECTION)
|
|
8333
8346
|
}else{e.r=0.0;}
|
|
8334
8347
|
#endif
|
|
8335
|
-
}if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`,
|
|
8348
|
+
}if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, ps = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", Ti = class extends T {
|
|
8336
8349
|
/**
|
|
8337
8350
|
* Constructs a new SMAA weights material.
|
|
8338
8351
|
*
|
|
@@ -8369,8 +8382,8 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8369
8382
|
toneMapped: !1,
|
|
8370
8383
|
depthWrite: !1,
|
|
8371
8384
|
depthTest: !1,
|
|
8372
|
-
fragmentShader:
|
|
8373
|
-
vertexShader:
|
|
8385
|
+
fragmentShader: vs,
|
|
8386
|
+
vertexShader: ps
|
|
8374
8387
|
});
|
|
8375
8388
|
}
|
|
8376
8389
|
/**
|
|
@@ -8561,7 +8574,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8561
8574
|
const i = this.uniforms;
|
|
8562
8575
|
i.texelSize.value.set(1 / e, 1 / t), i.resolution.value.set(e, t);
|
|
8563
8576
|
}
|
|
8564
|
-
}, xt = "", Dt = "", ps = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", gs = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", ms = class extends I {
|
|
8577
|
+
}, xt = "", Dt = "", gs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", ms = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", As = class extends I {
|
|
8565
8578
|
/**
|
|
8566
8579
|
* Constructs a new SMAA effect.
|
|
8567
8580
|
*
|
|
@@ -8572,13 +8585,13 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8572
8585
|
* @param {PredicationMode} [options.predicationMode=PredicationMode.DISABLED] - The predication mode.
|
|
8573
8586
|
*/
|
|
8574
8587
|
constructor({
|
|
8575
|
-
blendFunction: e =
|
|
8588
|
+
blendFunction: e = g.SRC,
|
|
8576
8589
|
preset: t = we.MEDIUM,
|
|
8577
|
-
edgeDetectionMode: i =
|
|
8590
|
+
edgeDetectionMode: i = yt.COLOR,
|
|
8578
8591
|
predicationMode: r = Ai.DISABLED
|
|
8579
8592
|
} = {}) {
|
|
8580
|
-
super("SMAAEffect",
|
|
8581
|
-
vertexShader:
|
|
8593
|
+
super("SMAAEffect", gs, {
|
|
8594
|
+
vertexShader: ms,
|
|
8582
8595
|
blendFunction: e,
|
|
8583
8596
|
attributes: V.CONVOLUTION | V.DEPTH,
|
|
8584
8597
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -8776,7 +8789,7 @@ function Fe(e, t, i) {
|
|
|
8776
8789
|
function Le(e, t, i) {
|
|
8777
8790
|
return Math.min(Math.max((e + t) / (t - i), 0), 1);
|
|
8778
8791
|
}
|
|
8779
|
-
var
|
|
8792
|
+
var xs = `#include <common>
|
|
8780
8793
|
#include <packing>
|
|
8781
8794
|
uniform vec2 cameraNearFar;
|
|
8782
8795
|
#define cameraNear cameraNearFar.x
|
|
@@ -8843,7 +8856,7 @@ if(linearDepth<distanceCutoff.y){vec3 viewPosition=getViewPosition(vUv,depth,vie
|
|
|
8843
8856
|
#ifdef LEGACY_INTENSITY
|
|
8844
8857
|
ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
|
|
8845
8858
|
#endif
|
|
8846
|
-
}gl_FragColor.r=ao;}`,
|
|
8859
|
+
}gl_FragColor.r=ao;}`, Ds = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends T {
|
|
8847
8860
|
/**
|
|
8848
8861
|
* Constructs a new SSAO material.
|
|
8849
8862
|
*
|
|
@@ -8882,8 +8895,8 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
|
|
|
8882
8895
|
toneMapped: !1,
|
|
8883
8896
|
depthWrite: !1,
|
|
8884
8897
|
depthTest: !1,
|
|
8885
|
-
fragmentShader:
|
|
8886
|
-
vertexShader:
|
|
8898
|
+
fragmentShader: xs,
|
|
8899
|
+
vertexShader: Ds
|
|
8887
8900
|
}), this.copyCameraSettings(e), this.resolution = new p(), this.r = 1;
|
|
8888
8901
|
}
|
|
8889
8902
|
/**
|
|
@@ -9383,7 +9396,7 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
|
|
|
9383
9396
|
t / r.image.height
|
|
9384
9397
|
), i.texelSize.value.set(1 / e, 1 / t), this.resolution.set(e, t), this.updateRadius();
|
|
9385
9398
|
}
|
|
9386
|
-
},
|
|
9399
|
+
}, Ts = `#include <packing>
|
|
9387
9400
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
9388
9401
|
uniform highp sampler2D depthBuffer;
|
|
9389
9402
|
#else
|
|
@@ -9404,7 +9417,7 @@ vec3 n[4];n[0]=texture2D(normalBuffer,vUv0).rgb;n[1]=texture2D(normalBuffer,vUv1
|
|
|
9404
9417
|
#else
|
|
9405
9418
|
vec3 n[4];n[0]=vec3(0.0);n[1]=vec3(0.0);n[2]=vec3(0.0);n[3]=vec3(0.0);
|
|
9406
9419
|
#endif
|
|
9407
|
-
gl_FragColor=vec4(n[index],d[index]);}`,
|
|
9420
|
+
gl_FragColor=vec4(n[index],d[index]);}`, ws = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", Ei = class extends T {
|
|
9408
9421
|
/**
|
|
9409
9422
|
* Constructs a new depth downsampling material.
|
|
9410
9423
|
*/
|
|
@@ -9423,8 +9436,8 @@ gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying ve
|
|
|
9423
9436
|
toneMapped: !1,
|
|
9424
9437
|
depthWrite: !1,
|
|
9425
9438
|
depthTest: !1,
|
|
9426
|
-
fragmentShader:
|
|
9427
|
-
vertexShader:
|
|
9439
|
+
fragmentShader: Ts,
|
|
9440
|
+
vertexShader: ws
|
|
9428
9441
|
});
|
|
9429
9442
|
}
|
|
9430
9443
|
/**
|
|
@@ -9589,7 +9602,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying ve
|
|
|
9589
9602
|
if (!(r.getExtension("EXT_color_buffer_float") || r.getExtension("EXT_color_buffer_half_float")))
|
|
9590
9603
|
throw new Error("Rendering to float texture is not supported.");
|
|
9591
9604
|
}
|
|
9592
|
-
},
|
|
9605
|
+
}, Es = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
|
|
9593
9606
|
#if defined(DEPTH_AWARE_UPSAMPLING) && defined(NORMAL_DEPTH)
|
|
9594
9607
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
9595
9608
|
uniform highp sampler2D normalDepthBuffer;
|
|
@@ -9612,7 +9625,7 @@ outputColor=vec4(1.0-ao*(1.0-color),inputColor.a);
|
|
|
9612
9625
|
#else
|
|
9613
9626
|
outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
9614
9627
|
#endif
|
|
9615
|
-
}`, Ht = 64,
|
|
9628
|
+
}`, Ht = 64, Ss = class extends I {
|
|
9616
9629
|
/**
|
|
9617
9630
|
* Constructs a new SSAO effect.
|
|
9618
9631
|
*
|
|
@@ -9648,7 +9661,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9648
9661
|
* @param {Number} [options.height=Resolution.AUTO_SIZE] - Deprecated. Use resolutionY instead.
|
|
9649
9662
|
*/
|
|
9650
9663
|
constructor(e, t, {
|
|
9651
|
-
blendFunction: i =
|
|
9664
|
+
blendFunction: i = g.MULTIPLY,
|
|
9652
9665
|
samples: r = 9,
|
|
9653
9666
|
rings: a = 7,
|
|
9654
9667
|
normalDepthBuffer: n = null,
|
|
@@ -9661,9 +9674,9 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9661
9674
|
distanceFalloff: d = 0.03,
|
|
9662
9675
|
rangeThreshold: v = 5e-4,
|
|
9663
9676
|
rangeFalloff: A = 1e-3,
|
|
9664
|
-
minRadiusScale:
|
|
9677
|
+
minRadiusScale: m = 0.1,
|
|
9665
9678
|
luminanceInfluence: x = 0.7,
|
|
9666
|
-
radius:
|
|
9679
|
+
radius: y = 0.1825,
|
|
9667
9680
|
intensity: C = 1,
|
|
9668
9681
|
bias: E = 0.025,
|
|
9669
9682
|
fade: K = 0.01,
|
|
@@ -9674,7 +9687,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9674
9687
|
resolutionX: ge = re,
|
|
9675
9688
|
resolutionY: me = L
|
|
9676
9689
|
} = {}) {
|
|
9677
|
-
super("SSAOEffect",
|
|
9690
|
+
super("SSAOEffect", Es, {
|
|
9678
9691
|
blendFunction: i,
|
|
9679
9692
|
attributes: V.DEPTH,
|
|
9680
9693
|
defines: /* @__PURE__ */ new Map([
|
|
@@ -9695,7 +9708,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9695
9708
|
const ce = new et(Ht, Ht, H);
|
|
9696
9709
|
ce.wrapS = ce.wrapT = se;
|
|
9697
9710
|
const G = this.ssaoMaterial;
|
|
9698
|
-
G.normalBuffer = t, G.noiseTexture = ce, G.minRadiusScale =
|
|
9711
|
+
G.normalBuffer = t, G.noiseTexture = ce, G.minRadiusScale = m, G.samples = r, G.radius = y, G.rings = a, G.fade = K, G.bias = E, G.distanceThreshold = h, G.distanceFalloff = d, G.proximityThreshold = v, G.proximityFalloff = A, o !== void 0 && (G.worldDistanceThreshold = o), l !== void 0 && (G.worldDistanceFalloff = l), c !== void 0 && (G.worldProximityThreshold = c), f !== void 0 && (G.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
|
|
9699
9712
|
}
|
|
9700
9713
|
set mainCamera(e) {
|
|
9701
9714
|
this.camera = e, this.ssaoMaterial.copyCameraSettings(e);
|
|
@@ -9932,7 +9945,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9932
9945
|
this.depthDownsamplingPass.enabled = !1;
|
|
9933
9946
|
}
|
|
9934
9947
|
}
|
|
9935
|
-
},
|
|
9948
|
+
}, Cs = `#ifdef TEXTURE_PRECISION_HIGH
|
|
9936
9949
|
uniform mediump sampler2D map;
|
|
9937
9950
|
#else
|
|
9938
9951
|
uniform lowp sampler2D map;
|
|
@@ -9943,7 +9956,7 @@ vec4 texel=texture2D(map,vUv2);
|
|
|
9943
9956
|
#else
|
|
9944
9957
|
vec4 texel=texture2D(map,uv);
|
|
9945
9958
|
#endif
|
|
9946
|
-
outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`,
|
|
9959
|
+
outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, Ms = `#ifdef ASPECT_CORRECTION
|
|
9947
9960
|
uniform float scale;
|
|
9948
9961
|
#else
|
|
9949
9962
|
uniform mat3 uvTransform;
|
|
@@ -9964,7 +9977,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
|
9964
9977
|
* @param {Boolean} [options.aspectCorrection=false] - Deprecated. Adjust the texture's offset, repeat and center instead.
|
|
9965
9978
|
*/
|
|
9966
9979
|
constructor({ blendFunction: e, texture: t = null, aspectCorrection: i = !1 } = {}) {
|
|
9967
|
-
super("TextureEffect",
|
|
9980
|
+
super("TextureEffect", Cs, {
|
|
9968
9981
|
blendFunction: e,
|
|
9969
9982
|
defines: /* @__PURE__ */ new Map([
|
|
9970
9983
|
["TEXEL", "texel"]
|
|
@@ -9986,7 +9999,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
|
9986
9999
|
}
|
|
9987
10000
|
set texture(e) {
|
|
9988
10001
|
const t = this.texture, i = this.uniforms, r = this.defines;
|
|
9989
|
-
t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(
|
|
10002
|
+
t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(Ms)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
|
|
9990
10003
|
}
|
|
9991
10004
|
/**
|
|
9992
10005
|
* Returns the texture.
|
|
@@ -10055,14 +10068,14 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
|
10055
10068
|
update(e, t, i) {
|
|
10056
10069
|
this.texture.matrixAutoUpdate && this.texture.updateMatrix();
|
|
10057
10070
|
}
|
|
10058
|
-
},
|
|
10071
|
+
}, Bs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
10059
10072
|
uniform mediump sampler2D inputBuffer;
|
|
10060
10073
|
#else
|
|
10061
10074
|
uniform lowp sampler2D inputBuffer;
|
|
10062
10075
|
#endif
|
|
10063
10076
|
uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;float linearGradientMask(const in float x){return smoothstep(maskParams.x,maskParams.y,x)-smoothstep(maskParams.w,maskParams.z,x);}void main(){vec2 dUv=vOffset*(1.0-linearGradientMask(vUv2.y));vec4 sum=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y-dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y-dUv.y));gl_FragColor=sum*0.25;
|
|
10064
10077
|
#include <colorspace_fragment>
|
|
10065
|
-
}`,
|
|
10078
|
+
}`, Ps = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Ci = class extends $e {
|
|
10066
10079
|
/**
|
|
10067
10080
|
* Constructs a new tilt shift blur material.
|
|
10068
10081
|
*
|
|
@@ -10079,7 +10092,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
|
|
|
10079
10092
|
focusArea: r = 0.4,
|
|
10080
10093
|
feather: a = 0.3
|
|
10081
10094
|
} = {}) {
|
|
10082
|
-
super(), this.fragmentShader =
|
|
10095
|
+
super(), this.fragmentShader = Bs, this.vertexShader = Ps, this.kernelSize = e, this.uniforms.aspect = new u(1), this.uniforms.rotation = new u(new p()), this.uniforms.maskParams = new u(new de()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
|
|
10083
10096
|
}
|
|
10084
10097
|
/**
|
|
10085
10098
|
* The relative offset of the focus area.
|
|
@@ -10148,7 +10161,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
|
|
|
10148
10161
|
setSize(e, t) {
|
|
10149
10162
|
super.setSize(e, t), this.uniforms.aspect.value = e / t;
|
|
10150
10163
|
}
|
|
10151
|
-
},
|
|
10164
|
+
}, Mi = class extends pe {
|
|
10152
10165
|
/**
|
|
10153
10166
|
* Constructs a new Kawase blur pass.
|
|
10154
10167
|
*
|
|
@@ -10174,12 +10187,12 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
|
|
|
10174
10187
|
} = {}) {
|
|
10175
10188
|
super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new Ci({ kernelSize: a, offset: e, rotation: t, focusArea: i, feather: r });
|
|
10176
10189
|
}
|
|
10177
|
-
},
|
|
10190
|
+
}, Is = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
10178
10191
|
uniform mediump sampler2D map;
|
|
10179
10192
|
#else
|
|
10180
10193
|
uniform lowp sampler2D map;
|
|
10181
10194
|
#endif
|
|
10182
|
-
uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`,
|
|
10195
|
+
uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Rs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", bs = class extends I {
|
|
10183
10196
|
/**
|
|
10184
10197
|
* Constructs a new tilt shift Effect
|
|
10185
10198
|
*
|
|
@@ -10206,15 +10219,15 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
|
|
|
10206
10219
|
resolutionX: o = D.AUTO_SIZE,
|
|
10207
10220
|
resolutionY: l = D.AUTO_SIZE
|
|
10208
10221
|
} = {}) {
|
|
10209
|
-
super("TiltShiftEffect",
|
|
10210
|
-
vertexShader:
|
|
10222
|
+
super("TiltShiftEffect", Is, {
|
|
10223
|
+
vertexShader: Rs,
|
|
10211
10224
|
blendFunction: e,
|
|
10212
10225
|
uniforms: /* @__PURE__ */ new Map([
|
|
10213
10226
|
["rotation", new u(new p())],
|
|
10214
10227
|
["maskParams", new u(new p())],
|
|
10215
10228
|
["map", new u(null)]
|
|
10216
10229
|
])
|
|
10217
|
-
}), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new w(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new
|
|
10230
|
+
}), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new w(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new Mi({
|
|
10218
10231
|
kernelSize: n,
|
|
10219
10232
|
resolutionScale: s,
|
|
10220
10233
|
resolutionX: o,
|
|
@@ -10330,7 +10343,7 @@ float l1=texture2DLodEXT(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
|
|
|
10330
10343
|
#else
|
|
10331
10344
|
float l1=textureLod(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
|
|
10332
10345
|
#endif
|
|
10333
|
-
l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`,
|
|
10346
|
+
l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`, yi = class extends T {
|
|
10334
10347
|
/**
|
|
10335
10348
|
* Constructs a new adaptive luminance material.
|
|
10336
10349
|
*/
|
|
@@ -10496,7 +10509,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
|
|
|
10496
10509
|
* @param {Number} [options.adaptationRate=1.0] - The luminance adaptation rate.
|
|
10497
10510
|
*/
|
|
10498
10511
|
constructor(e, { minLuminance: t = 0.01, adaptationRate: i = 1 } = {}) {
|
|
10499
|
-
super("AdaptiveLuminancePass"), this.fullscreenMaterial = new
|
|
10512
|
+
super("AdaptiveLuminancePass"), this.fullscreenMaterial = new yi(), this.needsSwap = !1, this.renderTargetPrevious = new w(1, 1, {
|
|
10500
10513
|
minFilter: P,
|
|
10501
10514
|
magFilter: P,
|
|
10502
10515
|
depthBuffer: !1
|
|
@@ -10561,7 +10574,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
|
|
|
10561
10574
|
render(e, t, i, r, a) {
|
|
10562
10575
|
this.fullscreenMaterial.deltaTime = r, e.setRenderTarget(this.renderToScreen ? null : this.renderTargetAdapted), e.render(this.scene, this.camera), this.copyPass.render(e, this.renderTargetAdapted);
|
|
10563
10576
|
}
|
|
10564
|
-
},
|
|
10577
|
+
}, Fs = `#include <tonemapping_pars_fragment>
|
|
10565
10578
|
uniform float whitePoint;
|
|
10566
10579
|
#if TONE_MAPPING_MODE == 2 || TONE_MAPPING_MODE == 3
|
|
10567
10580
|
uniform float middleGrey;
|
|
@@ -10594,7 +10607,7 @@ outputColor=vec4(Uncharted2ToneMapping(inputColor.rgb),inputColor.a);
|
|
|
10594
10607
|
#else
|
|
10595
10608
|
outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
10596
10609
|
#endif
|
|
10597
|
-
}`,
|
|
10610
|
+
}`, Ls = class extends I {
|
|
10598
10611
|
/**
|
|
10599
10612
|
* Constructs a new tone mapping effect.
|
|
10600
10613
|
*
|
|
@@ -10613,7 +10626,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
|
10613
10626
|
* @param {Number} [options.adaptationRate=1.0] - The luminance adaptation rate.
|
|
10614
10627
|
*/
|
|
10615
10628
|
constructor({
|
|
10616
|
-
blendFunction: e =
|
|
10629
|
+
blendFunction: e = g.SRC,
|
|
10617
10630
|
adaptive: t = !1,
|
|
10618
10631
|
mode: i = t ? j.REINHARD2_ADAPTIVE : j.AGX,
|
|
10619
10632
|
resolution: r = 256,
|
|
@@ -10624,7 +10637,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
|
10624
10637
|
averageLuminance: l = 1,
|
|
10625
10638
|
adaptationRate: c = 1
|
|
10626
10639
|
} = {}) {
|
|
10627
|
-
super("ToneMappingEffect",
|
|
10640
|
+
super("ToneMappingEffect", Fs, {
|
|
10628
10641
|
blendFunction: e,
|
|
10629
10642
|
uniforms: /* @__PURE__ */ new Map([
|
|
10630
10643
|
["luminanceBuffer", new u(null)],
|
|
@@ -10840,13 +10853,13 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
|
10840
10853
|
initialize(e, t, i) {
|
|
10841
10854
|
this.adaptiveLuminancePass.initialize(e, t, i);
|
|
10842
10855
|
}
|
|
10843
|
-
},
|
|
10856
|
+
}, Os = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
|
|
10844
10857
|
#if VIGNETTE_TECHNIQUE == 0
|
|
10845
10858
|
float d=distance(uv,center);color*=smoothstep(0.8,offset*0.799,d*(darkness+offset));
|
|
10846
10859
|
#else
|
|
10847
10860
|
vec2 coord=(uv-center)*vec2(offset);color=mix(color,vec3(1.0-darkness),dot(coord,coord));
|
|
10848
10861
|
#endif
|
|
10849
|
-
outputColor=vec4(color,inputColor.a);}`,
|
|
10862
|
+
outputColor=vec4(color,inputColor.a);}`, Ns = class extends I {
|
|
10850
10863
|
/**
|
|
10851
10864
|
* Constructs a new Vignette effect.
|
|
10852
10865
|
*
|
|
@@ -10864,7 +10877,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
|
|
|
10864
10877
|
offset: r = 0.5,
|
|
10865
10878
|
darkness: a = 0.5
|
|
10866
10879
|
} = {}) {
|
|
10867
|
-
super("VignetteEffect",
|
|
10880
|
+
super("VignetteEffect", Os, {
|
|
10868
10881
|
blendFunction: e,
|
|
10869
10882
|
defines: /* @__PURE__ */ new Map([
|
|
10870
10883
|
["VIGNETTE_TECHNIQUE", i.toFixed(0)]
|
|
@@ -10980,7 +10993,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
|
|
|
10980
10993
|
setDarkness(e) {
|
|
10981
10994
|
this.darkness = e;
|
|
10982
10995
|
}
|
|
10983
|
-
},
|
|
10996
|
+
}, Hs = class extends Et {
|
|
10984
10997
|
/**
|
|
10985
10998
|
* Loads a LUT.
|
|
10986
10999
|
*
|
|
@@ -11037,17 +11050,17 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
|
|
|
11037
11050
|
const l = new Float32Array(s ** 3 * 4);
|
|
11038
11051
|
let c = 0, f = 0;
|
|
11039
11052
|
for (; (r = i.exec(e)) !== null; ) {
|
|
11040
|
-
const v = Number(r[1]), A = Number(r[2]),
|
|
11041
|
-
c = Math.max(c, v, A,
|
|
11042
|
-
const x = f % s,
|
|
11043
|
-
l[E + 0] = v, l[E + 1] = A, l[E + 2] =
|
|
11053
|
+
const v = Number(r[1]), A = Number(r[2]), m = Number(r[3]);
|
|
11054
|
+
c = Math.max(c, v, A, m);
|
|
11055
|
+
const x = f % s, y = Math.floor(f / s) % s, C = Math.floor(f / o) % s, E = (x * o + y * s + C) * 4;
|
|
11056
|
+
l[E + 0] = v, l[E + 1] = A, l[E + 2] = m, l[E + 3] = 1, ++f;
|
|
11044
11057
|
}
|
|
11045
11058
|
const h = Math.ceil(Math.log2(c)), d = Math.pow(2, h);
|
|
11046
11059
|
for (let v = 0, A = l.length; v < A; v += 4)
|
|
11047
11060
|
l[v + 0] /= d, l[v + 1] /= d, l[v + 2] /= d;
|
|
11048
11061
|
return new He(l, s);
|
|
11049
11062
|
}
|
|
11050
|
-
},
|
|
11063
|
+
}, zs = class extends Et {
|
|
11051
11064
|
/**
|
|
11052
11065
|
* Loads a LUT.
|
|
11053
11066
|
*
|
|
@@ -11107,7 +11120,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
|
|
|
11107
11120
|
const v = new He(c, l);
|
|
11108
11121
|
return v.domainMin.copy(f), v.domainMax.copy(h), o !== null && (v.name = o), v;
|
|
11109
11122
|
}
|
|
11110
|
-
},
|
|
11123
|
+
}, Gs = class extends Et {
|
|
11111
11124
|
/**
|
|
11112
11125
|
* Loads the SMAA data images.
|
|
11113
11126
|
*
|
|
@@ -11137,7 +11150,7 @@ outputColor=vec4(color,inputColor.a);}`, Os = class extends I {
|
|
|
11137
11150
|
}), i.itemStart("smaa-search"), i.itemStart("smaa-area"), r.itemStart("smaa-search"), r.itemStart("smaa-area"), s.src = xt, o.src = Dt;
|
|
11138
11151
|
});
|
|
11139
11152
|
}
|
|
11140
|
-
},
|
|
11153
|
+
}, ks = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
11141
11154
|
uniform mediump sampler2D inputBuffer;
|
|
11142
11155
|
#else
|
|
11143
11156
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -11231,7 +11244,7 @@ vec2 s=texelSize*scale;for(int x=-KERNEL_SIZE_HALF;x<=KERNEL_SIZE_HALF;++x){for(
|
|
|
11231
11244
|
#endif
|
|
11232
11245
|
gl_FragColor=result*INV_KERNEL_SIZE_SQ;
|
|
11233
11246
|
#endif
|
|
11234
|
-
}`,
|
|
11247
|
+
}`, Qs = `uniform vec2 texelSize;uniform float scale;
|
|
11235
11248
|
#if KERNEL_SIZE == 3
|
|
11236
11249
|
varying vec2 vUv00,vUv01,vUv02;varying vec2 vUv03,vUv04,vUv05;varying vec2 vUv06,vUv07,vUv08;
|
|
11237
11250
|
#elif KERNEL_SIZE == 5 && MAX_VARYING_VECTORS >= 13
|
|
@@ -11274,8 +11287,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends T {
|
|
|
11274
11287
|
toneMapped: !1,
|
|
11275
11288
|
depthWrite: !1,
|
|
11276
11289
|
depthTest: !1,
|
|
11277
|
-
fragmentShader:
|
|
11278
|
-
vertexShader:
|
|
11290
|
+
fragmentShader: ks,
|
|
11291
|
+
vertexShader: Qs
|
|
11279
11292
|
}), this.bilateral = e, this.kernelSize = t, this.maxVaryingVectors = 8;
|
|
11280
11293
|
}
|
|
11281
11294
|
/**
|
|
@@ -11406,7 +11419,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends T {
|
|
|
11406
11419
|
setSize(e, t) {
|
|
11407
11420
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
11408
11421
|
}
|
|
11409
|
-
},
|
|
11422
|
+
}, Vs = `#include <packing>
|
|
11410
11423
|
varying vec2 vUv;
|
|
11411
11424
|
#ifdef NORMAL_DEPTH
|
|
11412
11425
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
@@ -11442,7 +11455,7 @@ gl_FragColor=(depth==1.0)?vec4(1.0):packDepthToRGBA(depth);
|
|
|
11442
11455
|
gl_FragColor=vec4(vec3(depth),1.0);
|
|
11443
11456
|
#endif
|
|
11444
11457
|
#endif
|
|
11445
|
-
}`,
|
|
11458
|
+
}`, Ws = `varying vec2 vUv;
|
|
11446
11459
|
#if DEPTH_COPY_MODE == 1
|
|
11447
11460
|
uniform vec2 texelPosition;
|
|
11448
11461
|
#endif
|
|
@@ -11472,8 +11485,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
|
|
|
11472
11485
|
toneMapped: !1,
|
|
11473
11486
|
depthWrite: !1,
|
|
11474
11487
|
depthTest: !1,
|
|
11475
|
-
fragmentShader:
|
|
11476
|
-
vertexShader:
|
|
11488
|
+
fragmentShader: Vs,
|
|
11489
|
+
vertexShader: Ws
|
|
11477
11490
|
}), this.depthCopyMode = Se.FULL;
|
|
11478
11491
|
}
|
|
11479
11492
|
/**
|
|
@@ -11607,7 +11620,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
|
|
|
11607
11620
|
setMode(e) {
|
|
11608
11621
|
this.mode = e;
|
|
11609
11622
|
}
|
|
11610
|
-
},
|
|
11623
|
+
}, Ys = `#include <common>
|
|
11611
11624
|
#include <packing>
|
|
11612
11625
|
#include <dithering_pars_fragment>
|
|
11613
11626
|
#define packFloatToRGBA(v) packDepthToRGBA(v)
|
|
@@ -11646,7 +11659,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
11646
11659
|
#include <colorspace_fragment>
|
|
11647
11660
|
#endif
|
|
11648
11661
|
#include <dithering_fragment>
|
|
11649
|
-
}`,
|
|
11662
|
+
}`, Ks = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Ri = class extends T {
|
|
11650
11663
|
/**
|
|
11651
11664
|
* Constructs a new effect material.
|
|
11652
11665
|
*
|
|
@@ -11747,7 +11760,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
11747
11760
|
* @return {EffectMaterial} This material.
|
|
11748
11761
|
*/
|
|
11749
11762
|
setShaderParts(e) {
|
|
11750
|
-
return this.fragmentShader =
|
|
11763
|
+
return this.fragmentShader = Ys.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Ks.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
|
|
11751
11764
|
}
|
|
11752
11765
|
/**
|
|
11753
11766
|
* Sets the shader macros.
|
|
@@ -11871,14 +11884,14 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
11871
11884
|
static get Section() {
|
|
11872
11885
|
return B;
|
|
11873
11886
|
}
|
|
11874
|
-
},
|
|
11887
|
+
}, Xs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
11875
11888
|
uniform mediump sampler2D inputBuffer;
|
|
11876
11889
|
#else
|
|
11877
11890
|
uniform lowp sampler2D inputBuffer;
|
|
11878
11891
|
#endif
|
|
11879
11892
|
uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec4 result=texture2D(inputBuffer,vUv)*kernel[0].y;for(int i=1;i<STEPS;++i){vec2 offset=kernel[i].x*vOffset;vec4 c0=texture2D(inputBuffer,vUv+offset);vec4 c1=texture2D(inputBuffer,vUv-offset);result+=(c0+c1)*kernel[i].y;}gl_FragColor=result;
|
|
11880
11893
|
#include <colorspace_fragment>
|
|
11881
|
-
}`,
|
|
11894
|
+
}`, Zs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", bi = class extends T {
|
|
11882
11895
|
/**
|
|
11883
11896
|
* Constructs a new convolution material.
|
|
11884
11897
|
*
|
|
@@ -11899,8 +11912,8 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11899
11912
|
toneMapped: !1,
|
|
11900
11913
|
depthWrite: !1,
|
|
11901
11914
|
depthTest: !1,
|
|
11902
|
-
fragmentShader:
|
|
11903
|
-
vertexShader:
|
|
11915
|
+
fragmentShader: Xs,
|
|
11916
|
+
vertexShader: Zs
|
|
11904
11917
|
}), this._kernelSize = 0, this.kernelSize = e;
|
|
11905
11918
|
}
|
|
11906
11919
|
/**
|
|
@@ -11962,7 +11975,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11962
11975
|
setSize(e, t) {
|
|
11963
11976
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
11964
11977
|
}
|
|
11965
|
-
},
|
|
11978
|
+
}, js = class extends N {
|
|
11966
11979
|
/**
|
|
11967
11980
|
* Constructs a new box blur pass.
|
|
11968
11981
|
*
|
|
@@ -12120,22 +12133,22 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
12120
12133
|
setSize(e, t) {
|
|
12121
12134
|
this.renderTarget.setSize(e, t);
|
|
12122
12135
|
}
|
|
12123
|
-
},
|
|
12136
|
+
}, Js = Number(Pe.replace(/\D+/g, "")), he = 255 / 256, qs = new Float32Array([
|
|
12124
12137
|
he / 256 ** 3,
|
|
12125
12138
|
he / 256 ** 2,
|
|
12126
12139
|
he / 256,
|
|
12127
12140
|
he
|
|
12128
|
-
]),
|
|
12141
|
+
]), _s = new Float32Array([
|
|
12129
12142
|
he,
|
|
12130
12143
|
he / 256,
|
|
12131
12144
|
he / 256 ** 2,
|
|
12132
12145
|
1 / 256 ** 3
|
|
12133
12146
|
]);
|
|
12134
|
-
function
|
|
12135
|
-
const t =
|
|
12147
|
+
function $s(e) {
|
|
12148
|
+
const t = Js >= 167 ? _s : qs;
|
|
12136
12149
|
return (e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]) / 255;
|
|
12137
12150
|
}
|
|
12138
|
-
var
|
|
12151
|
+
var en = class extends Tt {
|
|
12139
12152
|
/**
|
|
12140
12153
|
* Constructs a new depth picking pass.
|
|
12141
12154
|
*
|
|
@@ -12194,7 +12207,7 @@ var $s = class extends Tt {
|
|
|
12194
12207
|
const d = n.texelPosition;
|
|
12195
12208
|
f = Math.round(d.x * o.width), h = Math.round(d.y * o.height);
|
|
12196
12209
|
}
|
|
12197
|
-
e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(c ?
|
|
12210
|
+
e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(c ? $s(l) : l[0]), this.callback = null;
|
|
12198
12211
|
}
|
|
12199
12212
|
}
|
|
12200
12213
|
/**
|
|
@@ -12214,7 +12227,7 @@ function zt(e, t, i) {
|
|
|
12214
12227
|
s[1] !== null && i.set(s[0], s[1].replace(n, a));
|
|
12215
12228
|
}
|
|
12216
12229
|
}
|
|
12217
|
-
function
|
|
12230
|
+
function tn(e, t, i) {
|
|
12218
12231
|
let r = t.getFragmentShader(), a = t.getVertexShader();
|
|
12219
12232
|
const n = r !== void 0 && /mainImage/.test(r), s = r !== void 0 && /mainUv/.test(r);
|
|
12220
12233
|
if (i.attributes |= t.getAttributes(), r === void 0)
|
|
@@ -12226,7 +12239,7 @@ function en(e, t, i) {
|
|
|
12226
12239
|
{
|
|
12227
12240
|
const o = /\w+\s+(\w+)\([\w\s,]*\)\s*{/g, l = i.shaderParts;
|
|
12228
12241
|
let c = l.get(B.FRAGMENT_HEAD) || "", f = l.get(B.FRAGMENT_MAIN_UV) || "", h = l.get(B.FRAGMENT_MAIN_IMAGE) || "", d = l.get(B.VERTEX_HEAD) || "", v = l.get(B.VERTEX_MAIN_SUPPORT) || "";
|
|
12229
|
-
const A = /* @__PURE__ */ new Set(),
|
|
12242
|
+
const A = /* @__PURE__ */ new Set(), m = /* @__PURE__ */ new Set();
|
|
12230
12243
|
if (s && (f += ` ${e}MainUv(UV);
|
|
12231
12244
|
`, i.uvTransformation = !0), a !== null && /mainSupport/.test(a)) {
|
|
12232
12245
|
const C = /mainSupport *\([\w\s]*?uv\s*?\)/.test(a);
|
|
@@ -12235,21 +12248,21 @@ function en(e, t, i) {
|
|
|
12235
12248
|
`;
|
|
12236
12249
|
for (const E of a.matchAll(/(?:varying\s+\w+\s+([\S\s]*?);)/g))
|
|
12237
12250
|
for (const K of E[1].split(/\s*,\s*/))
|
|
12238
|
-
i.varyings.add(K), A.add(K),
|
|
12251
|
+
i.varyings.add(K), A.add(K), m.add(K);
|
|
12239
12252
|
for (const E of a.matchAll(o))
|
|
12240
|
-
|
|
12253
|
+
m.add(E[1]);
|
|
12241
12254
|
}
|
|
12242
12255
|
for (const C of r.matchAll(o))
|
|
12243
|
-
|
|
12256
|
+
m.add(C[1]);
|
|
12244
12257
|
for (const C of t.defines.keys())
|
|
12245
|
-
|
|
12258
|
+
m.add(C.replace(/\([\w\s,]*\)/g, ""));
|
|
12246
12259
|
for (const C of t.uniforms.keys())
|
|
12247
|
-
|
|
12248
|
-
|
|
12260
|
+
m.add(C);
|
|
12261
|
+
m.delete("while"), m.delete("for"), m.delete("if"), t.uniforms.forEach((C, E) => i.uniforms.set(e + E.charAt(0).toUpperCase() + E.slice(1), C)), t.defines.forEach((C, E) => i.defines.set(e + E.charAt(0).toUpperCase() + E.slice(1), C));
|
|
12249
12262
|
const x = /* @__PURE__ */ new Map([["fragment", r], ["vertex", a]]);
|
|
12250
|
-
zt(e,
|
|
12251
|
-
const
|
|
12252
|
-
if (i.blendModes.set(
|
|
12263
|
+
zt(e, m, i.defines), zt(e, m, x), r = x.get("fragment"), a = x.get("vertex");
|
|
12264
|
+
const y = t.blendMode;
|
|
12265
|
+
if (i.blendModes.set(y.blendFunction, y), n) {
|
|
12253
12266
|
t.inputColorSpace !== null && t.inputColorSpace !== i.colorSpace && (h += t.inputColorSpace === S ? `color0 = sRGBTransferOETF(color0);
|
|
12254
12267
|
` : `color0 = sRGBToLinear(color0);
|
|
12255
12268
|
`), t.outputColorSpace !== tt ? i.colorSpace = t.outputColorSpace : t.inputColorSpace !== null && (i.colorSpace = t.inputColorSpace);
|
|
@@ -12257,7 +12270,7 @@ function en(e, t, i) {
|
|
|
12257
12270
|
h += `${e}MainImage(color0, UV, `, (i.attributes & V.DEPTH) !== 0 && C.test(r) && (h += "depth, ", i.readDepth = !0), h += `color1);
|
|
12258
12271
|
`;
|
|
12259
12272
|
const E = e + "BlendOpacity";
|
|
12260
|
-
i.uniforms.set(E,
|
|
12273
|
+
i.uniforms.set(E, y.opacity), h += `color0 = blend${y.blendFunction}(color0, color1, ${E});
|
|
12261
12274
|
|
|
12262
12275
|
`, c += `uniform float ${E};
|
|
12263
12276
|
|
|
@@ -12270,7 +12283,7 @@ function en(e, t, i) {
|
|
|
12270
12283
|
i.extensions.add(C);
|
|
12271
12284
|
}
|
|
12272
12285
|
}
|
|
12273
|
-
var
|
|
12286
|
+
var rn = class extends N {
|
|
12274
12287
|
/**
|
|
12275
12288
|
* Constructs a new effect pass.
|
|
12276
12289
|
*
|
|
@@ -12335,12 +12348,12 @@ var tn = class extends N {
|
|
|
12335
12348
|
const e = new ai();
|
|
12336
12349
|
let t = 0;
|
|
12337
12350
|
for (const s of this.effects)
|
|
12338
|
-
if (s.blendMode.blendFunction ===
|
|
12351
|
+
if (s.blendMode.blendFunction === g.DST)
|
|
12339
12352
|
e.attributes |= s.getAttributes() & V.DEPTH;
|
|
12340
12353
|
else {
|
|
12341
12354
|
if ((e.attributes & s.getAttributes() & V.CONVOLUTION) !== 0)
|
|
12342
12355
|
throw new Error(`Convolution effects cannot be merged (${s.name})`);
|
|
12343
|
-
|
|
12356
|
+
tn("e" + t++, s, e);
|
|
12344
12357
|
}
|
|
12345
12358
|
let i = e.shaderParts.get(B.FRAGMENT_HEAD), r = e.shaderParts.get(B.FRAGMENT_MAIN_IMAGE), a = e.shaderParts.get(B.FRAGMENT_MAIN_UV);
|
|
12346
12359
|
const n = /\bblend\b/g;
|
|
@@ -12437,13 +12450,9 @@ var tn = class extends N {
|
|
|
12437
12450
|
* @param {Event} event - An event.
|
|
12438
12451
|
*/
|
|
12439
12452
|
handleEvent(e) {
|
|
12440
|
-
|
|
12441
|
-
case "change":
|
|
12442
|
-
this.recompile();
|
|
12443
|
-
break;
|
|
12444
|
-
}
|
|
12453
|
+
e.type === "change" && this.recompile();
|
|
12445
12454
|
}
|
|
12446
|
-
},
|
|
12455
|
+
}, an = class extends N {
|
|
12447
12456
|
/**
|
|
12448
12457
|
* Constructs a new Gaussian blur pass.
|
|
12449
12458
|
*
|
|
@@ -12461,7 +12470,7 @@ var tn = class extends N {
|
|
|
12461
12470
|
resolutionX: r = D.AUTO_SIZE,
|
|
12462
12471
|
resolutionY: a = D.AUTO_SIZE
|
|
12463
12472
|
} = {}) {
|
|
12464
|
-
super("GaussianBlurPass"), this.renderTargetA = new w(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new
|
|
12473
|
+
super("GaussianBlurPass"), this.renderTargetA = new w(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new bi({ kernelSize: e }), this.copyMaterial = new ze(), this.copyMaterial.inputBuffer = this.renderTargetB.texture;
|
|
12465
12474
|
const n = this.resolution = new D(this, r, a, i);
|
|
12466
12475
|
n.addEventListener("change", (s) => this.setSize(n.baseWidth, n.baseHeight)), this.iterations = t;
|
|
12467
12476
|
}
|
|
@@ -12504,7 +12513,7 @@ var tn = class extends N {
|
|
|
12504
12513
|
initialize(e, t, i) {
|
|
12505
12514
|
i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, i !== Y ? (this.blurMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1", this.copyMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1") : e !== null && e.outputColorSpace === S && (this.renderTargetA.texture.colorSpace = S, this.renderTargetB.texture.colorSpace = S));
|
|
12506
12515
|
}
|
|
12507
|
-
},
|
|
12516
|
+
}, sn = class extends N {
|
|
12508
12517
|
/**
|
|
12509
12518
|
* Constructs a new lambda pass.
|
|
12510
12519
|
*
|
|
@@ -12525,7 +12534,7 @@ var tn = class extends N {
|
|
|
12525
12534
|
render(e, t, i, r, a) {
|
|
12526
12535
|
this.f();
|
|
12527
12536
|
}
|
|
12528
|
-
},
|
|
12537
|
+
}, nn = class extends N {
|
|
12529
12538
|
/**
|
|
12530
12539
|
* Constructs a new normal pass.
|
|
12531
12540
|
*
|
|
@@ -12634,7 +12643,7 @@ var tn = class extends N {
|
|
|
12634
12643
|
}, Gt = [
|
|
12635
12644
|
new Float32Array(3),
|
|
12636
12645
|
new Float32Array(3)
|
|
12637
|
-
],
|
|
12646
|
+
], U = [
|
|
12638
12647
|
new Float32Array(3),
|
|
12639
12648
|
new Float32Array(3),
|
|
12640
12649
|
new Float32Array(3),
|
|
@@ -12678,29 +12687,29 @@ var tn = class extends N {
|
|
|
12678
12687
|
]
|
|
12679
12688
|
];
|
|
12680
12689
|
function Ye(e, t, i, r) {
|
|
12681
|
-
const a = i[0] - t[0], n = i[1] - t[1], s = i[2] - t[2], o = e[0] - t[0], l = e[1] - t[1], c = e[2] - t[2], f = n * c - s * l, h = s * o - a * c, d = a * l - n * o, v = Math.sqrt(f * f + h * h + d * d), A = v * 0.5,
|
|
12690
|
+
const a = i[0] - t[0], n = i[1] - t[1], s = i[2] - t[2], o = e[0] - t[0], l = e[1] - t[1], c = e[2] - t[2], f = n * c - s * l, h = s * o - a * c, d = a * l - n * o, v = Math.sqrt(f * f + h * h + d * d), A = v * 0.5, m = f / v, x = h / v, y = d / v, C = -(e[0] * m + e[1] * x + e[2] * y), E = r[0] * m + r[1] * x + r[2] * y;
|
|
12682
12691
|
return Math.abs(E + C) * A / 3;
|
|
12683
12692
|
}
|
|
12684
|
-
function
|
|
12693
|
+
function be(e, t, i, r, a, n) {
|
|
12685
12694
|
const s = (i + r * t + a * t * t) * 4;
|
|
12686
12695
|
n[0] = e[s + 0], n[1] = e[s + 1], n[2] = e[s + 2];
|
|
12687
12696
|
}
|
|
12688
|
-
function
|
|
12689
|
-
const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), c = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l),
|
|
12697
|
+
function on(e, t, i, r, a, n) {
|
|
12698
|
+
const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), c = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l), m = s - c, x = o - f, y = l - h;
|
|
12690
12699
|
if (c === s && f === o && h === l)
|
|
12691
|
-
|
|
12700
|
+
be(e, t, s, o, l, n);
|
|
12692
12701
|
else {
|
|
12693
12702
|
let C;
|
|
12694
|
-
|
|
12703
|
+
m >= x && x >= y ? C = Ae[0] : m >= y && y >= x ? C = Ae[1] : y >= m && m >= x ? C = Ae[2] : x >= m && m >= y ? C = Ae[3] : x >= y && y >= m ? C = Ae[4] : y >= x && x >= m && (C = Ae[5]);
|
|
12695
12704
|
const [E, K, ee, ie] = C, re = Gt[0];
|
|
12696
|
-
re[0] =
|
|
12705
|
+
re[0] = m, re[1] = x, re[2] = y;
|
|
12697
12706
|
const L = Gt[1], ge = d - c, me = v - f, ne = A - h;
|
|
12698
|
-
L[0] = ge * E[0] + c, L[1] = me * E[1] + f, L[2] = ne * E[2] + h,
|
|
12707
|
+
L[0] = ge * E[0] + c, L[1] = me * E[1] + f, L[2] = ne * E[2] + h, be(e, t, L[0], L[1], L[2], U[0]), L[0] = ge * K[0] + c, L[1] = me * K[1] + f, L[2] = ne * K[2] + h, be(e, t, L[0], L[1], L[2], U[1]), L[0] = ge * ee[0] + c, L[1] = me * ee[1] + f, L[2] = ne * ee[2] + h, be(e, t, L[0], L[1], L[2], U[2]), L[0] = ge * ie[0] + c, L[1] = me * ie[1] + f, L[2] = ne * ie[2] + h, be(e, t, L[0], L[1], L[2], U[3]);
|
|
12699
12708
|
const ce = Ye(K, ee, ie, re) * 6, G = Ye(E, ee, ie, re) * 6, ke = Ye(E, K, ie, re) * 6, at = Ye(E, K, ee, re) * 6;
|
|
12700
|
-
|
|
12709
|
+
U[0][0] *= ce, U[0][1] *= ce, U[0][2] *= ce, U[1][0] *= G, U[1][1] *= G, U[1][2] *= G, U[2][0] *= ke, U[2][1] *= ke, U[2][2] *= ke, U[3][0] *= at, U[3][1] *= at, U[3][2] *= at, n[0] = U[0][0] + U[1][0] + U[2][0] + U[3][0], n[1] = U[0][1] + U[1][1] + U[2][1] + U[3][1], n[2] = U[0][2] + U[1][2] + U[2][2] + U[3][2];
|
|
12701
12710
|
}
|
|
12702
12711
|
}
|
|
12703
|
-
var
|
|
12712
|
+
var ln = class {
|
|
12704
12713
|
/**
|
|
12705
12714
|
* Expands the given data to the target size.
|
|
12706
12715
|
*
|
|
@@ -12714,14 +12723,14 @@ var on = class {
|
|
|
12714
12723
|
for (let c = 0; c < t; ++c)
|
|
12715
12724
|
for (let f = 0; f < t; ++f) {
|
|
12716
12725
|
const h = f * o, d = c * o, v = l * o, A = Math.round(f + c * t + l * s) * 4;
|
|
12717
|
-
|
|
12726
|
+
on(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
|
|
12718
12727
|
}
|
|
12719
12728
|
return a;
|
|
12720
12729
|
}
|
|
12721
|
-
},
|
|
12730
|
+
}, ye = [
|
|
12722
12731
|
new Float32Array(2),
|
|
12723
12732
|
new Float32Array(2)
|
|
12724
|
-
], xe = 16, ct = 20, De = 30,
|
|
12733
|
+
], xe = 16, ct = 20, De = 30, un = 32, ft = new Float32Array([
|
|
12725
12734
|
0,
|
|
12726
12735
|
-0.25,
|
|
12727
12736
|
0.25,
|
|
@@ -12735,7 +12744,7 @@ var on = class {
|
|
|
12735
12744
|
new Float32Array([-0.25, 0.25]),
|
|
12736
12745
|
new Float32Array([0.125, -0.125]),
|
|
12737
12746
|
new Float32Array([-0.125, 0.125])
|
|
12738
|
-
],
|
|
12747
|
+
], cn = [
|
|
12739
12748
|
new Uint8Array([0, 0]),
|
|
12740
12749
|
new Uint8Array([3, 0]),
|
|
12741
12750
|
new Uint8Array([0, 3]),
|
|
@@ -12752,7 +12761,7 @@ var on = class {
|
|
|
12752
12761
|
new Uint8Array([4, 1]),
|
|
12753
12762
|
new Uint8Array([1, 4]),
|
|
12754
12763
|
new Uint8Array([4, 4])
|
|
12755
|
-
],
|
|
12764
|
+
], Ui = [
|
|
12756
12765
|
new Uint8Array([0, 0]),
|
|
12757
12766
|
new Uint8Array([1, 0]),
|
|
12758
12767
|
new Uint8Array([0, 2]),
|
|
@@ -12773,11 +12782,11 @@ var on = class {
|
|
|
12773
12782
|
function Ke(e, t, i) {
|
|
12774
12783
|
return e + (t - e) * i;
|
|
12775
12784
|
}
|
|
12776
|
-
function
|
|
12785
|
+
function fn(e) {
|
|
12777
12786
|
return Math.min(Math.max(e, 0), 1);
|
|
12778
12787
|
}
|
|
12779
12788
|
function Qt(e) {
|
|
12780
|
-
const t =
|
|
12789
|
+
const t = ye[0], i = ye[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = fn(e / un);
|
|
12781
12790
|
t[0] = Ke(r, t[0], o), t[1] = Ke(a, t[1], o), i[0] = Ke(n, i[0], o), i[1] = Ke(s, i[1], o);
|
|
12782
12791
|
}
|
|
12783
12792
|
function k(e, t, i, r, a, n) {
|
|
@@ -12787,15 +12796,15 @@ function k(e, t, i, r, a, n) {
|
|
|
12787
12796
|
const d = (f + h) / 2;
|
|
12788
12797
|
d < 0 ? (n[0] = Math.abs(d), n[1] = 0) : (n[0] = 0, n[1] = Math.abs(d));
|
|
12789
12798
|
} else {
|
|
12790
|
-
const d = -t * s / o + e, v = Math.trunc(d), A = d > e ? f * (d - v) / 2 : 0,
|
|
12791
|
-
(Math.abs(A) > Math.abs(
|
|
12799
|
+
const d = -t * s / o + e, v = Math.trunc(d), A = d > e ? f * (d - v) / 2 : 0, m = d < i ? h * (1 - (d - v)) / 2 : 0;
|
|
12800
|
+
(Math.abs(A) > Math.abs(m) ? A : -m) < 0 ? (n[0] = Math.abs(A), n[1] = Math.abs(m)) : (n[0] = Math.abs(m), n[1] = Math.abs(A));
|
|
12792
12801
|
}
|
|
12793
12802
|
else
|
|
12794
12803
|
n[0] = 0, n[1] = 0;
|
|
12795
12804
|
return n;
|
|
12796
12805
|
}
|
|
12797
|
-
function
|
|
12798
|
-
const n =
|
|
12806
|
+
function hn(e, t, i, r, a) {
|
|
12807
|
+
const n = ye[0], s = ye[1], o = 0.5 + r, l = 0.5 + r - 1, c = t + i + 1;
|
|
12799
12808
|
switch (e) {
|
|
12800
12809
|
case 0: {
|
|
12801
12810
|
a[0] = 0, a[1] = 0;
|
|
@@ -12864,7 +12873,7 @@ function fn(e, t, i, r, a) {
|
|
|
12864
12873
|
}
|
|
12865
12874
|
return a;
|
|
12866
12875
|
}
|
|
12867
|
-
function
|
|
12876
|
+
function dn(e, t, i, r, a, n) {
|
|
12868
12877
|
let s = e === i && t === r;
|
|
12869
12878
|
if (!s) {
|
|
12870
12879
|
const o = (e + i) / 2, l = (t + r) / 2, c = r - t, f = e - i;
|
|
@@ -12877,79 +12886,79 @@ function Vt(e, t, i, r, a, n) {
|
|
|
12877
12886
|
for (let o = 0; o < De; ++o)
|
|
12878
12887
|
for (let l = 0; l < De; ++l) {
|
|
12879
12888
|
const c = l / (De - 1), f = o / (De - 1);
|
|
12880
|
-
|
|
12889
|
+
dn(e, t, i, r, a + c, n + f) && ++s;
|
|
12881
12890
|
}
|
|
12882
12891
|
return s / (De * De);
|
|
12883
12892
|
}
|
|
12884
|
-
function
|
|
12885
|
-
const l =
|
|
12893
|
+
function b(e, t, i, r, a, n, s, o) {
|
|
12894
|
+
const l = Ui[e], c = l[0], f = l[1];
|
|
12886
12895
|
return c > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 - Vt(t, i, r, a, 1 + n, 0 + n), o[1] = Vt(t, i, r, a, 1 + n, 1 + n), o;
|
|
12887
12896
|
}
|
|
12888
|
-
function
|
|
12889
|
-
const n =
|
|
12897
|
+
function vn(e, t, i, r, a) {
|
|
12898
|
+
const n = ye[0], s = ye[1], o = t + i + 1;
|
|
12890
12899
|
switch (e) {
|
|
12891
12900
|
case 0: {
|
|
12892
|
-
|
|
12901
|
+
b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12893
12902
|
break;
|
|
12894
12903
|
}
|
|
12895
12904
|
case 1: {
|
|
12896
|
-
|
|
12905
|
+
b(e, 1, 0, 0 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12897
12906
|
break;
|
|
12898
12907
|
}
|
|
12899
12908
|
case 2: {
|
|
12900
|
-
|
|
12909
|
+
b(e, 0, 0, 1 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12901
12910
|
break;
|
|
12902
12911
|
}
|
|
12903
12912
|
case 3: {
|
|
12904
|
-
|
|
12913
|
+
b(e, 1, 0, 1 + o, 0 + o, t, r, a);
|
|
12905
12914
|
break;
|
|
12906
12915
|
}
|
|
12907
12916
|
case 4: {
|
|
12908
|
-
|
|
12917
|
+
b(e, 1, 1, 0 + o, 0 + o, t, r, n), b(e, 1, 1, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12909
12918
|
break;
|
|
12910
12919
|
}
|
|
12911
12920
|
case 5: {
|
|
12912
|
-
|
|
12921
|
+
b(e, 1, 1, 0 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12913
12922
|
break;
|
|
12914
12923
|
}
|
|
12915
12924
|
case 6: {
|
|
12916
|
-
|
|
12925
|
+
b(e, 1, 1, 1 + o, 0 + o, t, r, a);
|
|
12917
12926
|
break;
|
|
12918
12927
|
}
|
|
12919
12928
|
case 7: {
|
|
12920
|
-
|
|
12929
|
+
b(e, 1, 1, 1 + o, 0 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12921
12930
|
break;
|
|
12922
12931
|
}
|
|
12923
12932
|
case 8: {
|
|
12924
|
-
|
|
12933
|
+
b(e, 0, 0, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 1 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12925
12934
|
break;
|
|
12926
12935
|
}
|
|
12927
12936
|
case 9: {
|
|
12928
|
-
|
|
12937
|
+
b(e, 1, 0, 1 + o, 1 + o, t, r, a), b(e, 1, 0, 1 + o, 1 + o, t, r, a);
|
|
12929
12938
|
break;
|
|
12930
12939
|
}
|
|
12931
12940
|
case 10: {
|
|
12932
|
-
|
|
12941
|
+
b(e, 0, 0, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12933
12942
|
break;
|
|
12934
12943
|
}
|
|
12935
12944
|
case 11: {
|
|
12936
|
-
|
|
12945
|
+
b(e, 1, 0, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12937
12946
|
break;
|
|
12938
12947
|
}
|
|
12939
12948
|
case 12: {
|
|
12940
|
-
|
|
12949
|
+
b(e, 1, 1, 1 + o, 1 + o, t, r, a);
|
|
12941
12950
|
break;
|
|
12942
12951
|
}
|
|
12943
12952
|
case 13: {
|
|
12944
|
-
|
|
12953
|
+
b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 1 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12945
12954
|
break;
|
|
12946
12955
|
}
|
|
12947
12956
|
case 14: {
|
|
12948
|
-
|
|
12957
|
+
b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 1, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12949
12958
|
break;
|
|
12950
12959
|
}
|
|
12951
12960
|
case 15: {
|
|
12952
|
-
|
|
12961
|
+
b(e, 1, 1, 1 + o, 1 + o, t, r, n), b(e, 1, 0, 1 + o, 0 + o, t, r, s), a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2;
|
|
12953
12962
|
break;
|
|
12954
12963
|
}
|
|
12955
12964
|
}
|
|
@@ -12961,7 +12970,7 @@ function Wt(e, t, i) {
|
|
|
12961
12970
|
const s = e[a], o = s.data, l = s.width;
|
|
12962
12971
|
for (let c = 0; c < l; ++c)
|
|
12963
12972
|
for (let f = 0; f < l; ++f) {
|
|
12964
|
-
i ?
|
|
12973
|
+
i ? hn(a, f, c, t, r) : vn(a, f, c, t, r);
|
|
12965
12974
|
const h = (c * l + f) * 2;
|
|
12966
12975
|
o[h] = r[0] * 255, o[h + 1] = r[1] * 255;
|
|
12967
12976
|
}
|
|
@@ -12971,14 +12980,14 @@ function Yt(e, t, i, r, a, n, s) {
|
|
|
12971
12980
|
const o = s.data, l = s.width;
|
|
12972
12981
|
for (let c = 0, f = i.length; c < f; ++c) {
|
|
12973
12982
|
const h = r[c], d = i[c], v = d.data, A = d.width;
|
|
12974
|
-
for (let
|
|
12983
|
+
for (let m = 0; m < a; ++m)
|
|
12975
12984
|
for (let x = 0; x < a; ++x) {
|
|
12976
|
-
const
|
|
12985
|
+
const y = h[0] * a + e + x, E = ((h[1] * a + t + m) * l + y) * 4, K = n ? (m * m * A + x * x) * 2 : (m * A + x) * 2;
|
|
12977
12986
|
o[E] = v[K], o[E + 1] = v[K + 1], o[E + 2] = 0, o[E + 3] = 255;
|
|
12978
12987
|
}
|
|
12979
12988
|
}
|
|
12980
12989
|
}
|
|
12981
|
-
var
|
|
12990
|
+
var pn = class {
|
|
12982
12991
|
/**
|
|
12983
12992
|
* Creates a new area image.
|
|
12984
12993
|
*
|
|
@@ -13005,7 +13014,7 @@ var vn = class {
|
|
|
13005
13014
|
0,
|
|
13006
13015
|
5 * xe * l,
|
|
13007
13016
|
s,
|
|
13008
|
-
|
|
13017
|
+
cn,
|
|
13009
13018
|
xe,
|
|
13010
13019
|
!0,
|
|
13011
13020
|
r
|
|
@@ -13015,17 +13024,17 @@ var vn = class {
|
|
|
13015
13024
|
5 * xe,
|
|
13016
13025
|
4 * ct * l,
|
|
13017
13026
|
o,
|
|
13018
|
-
|
|
13027
|
+
Ui,
|
|
13019
13028
|
ct,
|
|
13020
13029
|
!1,
|
|
13021
13030
|
r
|
|
13022
13031
|
);
|
|
13023
13032
|
return r;
|
|
13024
13033
|
}
|
|
13025
|
-
},
|
|
13034
|
+
}, gn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
|
|
13026
13035
|
`;
|
|
13027
|
-
function
|
|
13028
|
-
const t = URL.createObjectURL(new Blob([
|
|
13036
|
+
function mn(e = !0) {
|
|
13037
|
+
const t = URL.createObjectURL(new Blob([gn], {
|
|
13029
13038
|
type: "text/javascript"
|
|
13030
13039
|
})), i = new Worker(t);
|
|
13031
13040
|
return URL.revokeObjectURL(t), new Promise((r, a) => {
|
|
@@ -13038,7 +13047,7 @@ function gn(e = !0) {
|
|
|
13038
13047
|
}), i.postMessage(null);
|
|
13039
13048
|
});
|
|
13040
13049
|
}
|
|
13041
|
-
var
|
|
13050
|
+
var An = class {
|
|
13042
13051
|
/**
|
|
13043
13052
|
* Constructs a new SMAA image generator.
|
|
13044
13053
|
*/
|
|
@@ -13067,7 +13076,7 @@ var mn = class {
|
|
|
13067
13076
|
localStorage.getItem("smaa-search"),
|
|
13068
13077
|
localStorage.getItem("smaa-area")
|
|
13069
13078
|
] : [null, null];
|
|
13070
|
-
return (t[0] !== null && t[1] !== null ? Promise.resolve(t) :
|
|
13079
|
+
return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : mn(e)).then((r) => new Promise((a, n) => {
|
|
13071
13080
|
const s = new Image(), o = new Image(), l = new ve();
|
|
13072
13081
|
l.onLoad = () => a([s, o]), l.onError = n, s.addEventListener("error", (c) => l.itemError("smaa-search")), o.addEventListener("error", (c) => l.itemError("smaa-area")), s.addEventListener("load", () => l.itemEnd("smaa-search")), o.addEventListener("load", () => l.itemEnd("smaa-area")), l.itemStart("smaa-search"), l.itemStart("smaa-area"), s.src = r[0], o.src = r[1];
|
|
13073
13082
|
}));
|
|
@@ -13097,15 +13106,15 @@ function X(e, t, i, r) {
|
|
|
13097
13106
|
const a = ht(e, t, 0.75), n = ht(i, r, 1 - 0.25);
|
|
13098
13107
|
return ht(a, n, 1 - 0.125);
|
|
13099
13108
|
}
|
|
13100
|
-
function
|
|
13109
|
+
function xn(e, t) {
|
|
13101
13110
|
let i = 0;
|
|
13102
13111
|
return t[3] === 1 && (i += 1), i === 1 && t[2] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i;
|
|
13103
13112
|
}
|
|
13104
|
-
function
|
|
13113
|
+
function Dn(e, t) {
|
|
13105
13114
|
let i = 0;
|
|
13106
13115
|
return t[3] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i === 1 && t[2] === 1 && e[0] !== 1 && e[2] !== 1 && (i += 1), i;
|
|
13107
13116
|
}
|
|
13108
|
-
var
|
|
13117
|
+
var Tn = class {
|
|
13109
13118
|
/**
|
|
13110
13119
|
* Creates a new search image.
|
|
13111
13120
|
*
|
|
@@ -13118,7 +13127,7 @@ var Dn = class {
|
|
|
13118
13127
|
const c = 0.03125 * l, f = 0.03125 * o;
|
|
13119
13128
|
if (Xe.has(c) && Xe.has(f)) {
|
|
13120
13129
|
const h = Xe.get(c), d = Xe.get(f), v = o * 66 + l;
|
|
13121
|
-
n[v] = 127 *
|
|
13130
|
+
n[v] = 127 * xn(h, d), n[v + 33] = 127 * Dn(h, d);
|
|
13122
13131
|
}
|
|
13123
13132
|
}
|
|
13124
13133
|
for (let o = 0, l = 17; l < 33; ++l)
|
|
@@ -13127,28 +13136,28 @@ var Dn = class {
|
|
|
13127
13136
|
return new le(64, 16, s);
|
|
13128
13137
|
}
|
|
13129
13138
|
};
|
|
13130
|
-
const
|
|
13139
|
+
const bn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
|
|
13131
13140
|
__proto__: null,
|
|
13132
|
-
ASCIIEffect:
|
|
13141
|
+
ASCIIEffect: Wr,
|
|
13133
13142
|
ASCIITexture: oi,
|
|
13134
|
-
AdaptiveLuminanceMaterial:
|
|
13143
|
+
AdaptiveLuminanceMaterial: yi,
|
|
13135
13144
|
AdaptiveLuminancePass: Bi,
|
|
13136
|
-
BlendFunction:
|
|
13145
|
+
BlendFunction: g,
|
|
13137
13146
|
BlendMode: ni,
|
|
13138
13147
|
BloomEffect: hi,
|
|
13139
13148
|
BlurPass: pe,
|
|
13140
|
-
BokehEffect:
|
|
13141
|
-
BokehMaterial:
|
|
13149
|
+
BokehEffect: ta,
|
|
13150
|
+
BokehMaterial: Ue,
|
|
13142
13151
|
BoxBlurMaterial: Pi,
|
|
13143
|
-
BoxBlurPass:
|
|
13144
|
-
BrightnessContrastEffect:
|
|
13145
|
-
ChromaticAberrationEffect:
|
|
13152
|
+
BoxBlurPass: js,
|
|
13153
|
+
BrightnessContrastEffect: ra,
|
|
13154
|
+
ChromaticAberrationEffect: ca,
|
|
13146
13155
|
CircleOfConfusionMaterial: di,
|
|
13147
13156
|
ClearMaskPass: ii,
|
|
13148
13157
|
ClearPass: Ie,
|
|
13149
|
-
ColorAverageEffect:
|
|
13158
|
+
ColorAverageEffect: sa,
|
|
13150
13159
|
ColorChannel: fe,
|
|
13151
|
-
ColorDepthEffect:
|
|
13160
|
+
ColorDepthEffect: oa,
|
|
13152
13161
|
ColorEdgesMaterial: At,
|
|
13153
13162
|
ConvolutionMaterial: $e,
|
|
13154
13163
|
CopyMaterial: ze,
|
|
@@ -13159,105 +13168,105 @@ const Rn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
|
|
|
13159
13168
|
DepthCopyPass: Tt,
|
|
13160
13169
|
DepthDownsamplingMaterial: Ei,
|
|
13161
13170
|
DepthDownsamplingPass: Si,
|
|
13162
|
-
DepthEffect:
|
|
13171
|
+
DepthEffect: ha,
|
|
13163
13172
|
DepthMaskMaterial: Di,
|
|
13164
|
-
DepthOfFieldEffect:
|
|
13173
|
+
DepthOfFieldEffect: Aa,
|
|
13165
13174
|
DepthPass: Bt,
|
|
13166
|
-
DepthPickingPass:
|
|
13175
|
+
DepthPickingPass: en,
|
|
13167
13176
|
DepthSavePass: Tt,
|
|
13168
|
-
DepthTestStrategy:
|
|
13177
|
+
DepthTestStrategy: Me,
|
|
13169
13178
|
Disposable: tr,
|
|
13170
|
-
DotScreenEffect:
|
|
13179
|
+
DotScreenEffect: Da,
|
|
13171
13180
|
DownsamplingMaterial: ui,
|
|
13172
13181
|
EdgeDetectionMaterial: At,
|
|
13173
|
-
EdgeDetectionMode:
|
|
13182
|
+
EdgeDetectionMode: yt,
|
|
13174
13183
|
Effect: I,
|
|
13175
13184
|
EffectAttribute: V,
|
|
13176
13185
|
EffectComposer: sr,
|
|
13177
13186
|
EffectMaterial: Ri,
|
|
13178
|
-
EffectPass:
|
|
13187
|
+
EffectPass: rn,
|
|
13179
13188
|
EffectShaderData: ai,
|
|
13180
13189
|
EffectShaderSection: B,
|
|
13181
|
-
FXAAEffect:
|
|
13182
|
-
GammaCorrectionEffect:
|
|
13190
|
+
FXAAEffect: Ea,
|
|
13191
|
+
GammaCorrectionEffect: Ca,
|
|
13183
13192
|
GaussKernel: si,
|
|
13184
|
-
GaussianBlurMaterial:
|
|
13185
|
-
GaussianBlurPass:
|
|
13186
|
-
GlitchEffect:
|
|
13193
|
+
GaussianBlurMaterial: bi,
|
|
13194
|
+
GaussianBlurPass: an,
|
|
13195
|
+
GlitchEffect: Ba,
|
|
13187
13196
|
GlitchMode: Te,
|
|
13188
|
-
GodRaysEffect:
|
|
13197
|
+
GodRaysEffect: Ra,
|
|
13189
13198
|
GodRaysMaterial: pi,
|
|
13190
13199
|
GridEffect: Ua,
|
|
13191
|
-
HueSaturationEffect:
|
|
13200
|
+
HueSaturationEffect: La,
|
|
13192
13201
|
ImmutableTimer: nr,
|
|
13193
13202
|
Initializable: or,
|
|
13194
13203
|
KawaseBlurMaterial: $e,
|
|
13195
13204
|
KawaseBlurPass: pe,
|
|
13196
13205
|
KernelSize: te,
|
|
13197
|
-
LUT1DEffect:
|
|
13206
|
+
LUT1DEffect: za,
|
|
13198
13207
|
LUT3DEffect: Ot,
|
|
13199
|
-
LUT3dlLoader:
|
|
13200
|
-
LUTCubeLoader:
|
|
13208
|
+
LUT3dlLoader: Hs,
|
|
13209
|
+
LUTCubeLoader: zs,
|
|
13201
13210
|
LUTEffect: Ot,
|
|
13202
13211
|
LUTOperation: gi,
|
|
13203
|
-
LambdaPass:
|
|
13204
|
-
LensDistortionEffect:
|
|
13212
|
+
LambdaPass: sn,
|
|
13213
|
+
LensDistortionEffect: Na,
|
|
13205
13214
|
LookupTexture: He,
|
|
13206
13215
|
LookupTexture3D: He,
|
|
13207
13216
|
LuminanceMaterial: li,
|
|
13208
13217
|
LuminancePass: Ct,
|
|
13209
|
-
MaskFunction:
|
|
13218
|
+
MaskFunction: Mt,
|
|
13210
13219
|
MaskMaterial: vi,
|
|
13211
13220
|
MaskPass: ri,
|
|
13212
13221
|
MipmapBlurPass: fi,
|
|
13213
|
-
NoiseEffect:
|
|
13222
|
+
NoiseEffect: Wa,
|
|
13214
13223
|
NoiseTexture: et,
|
|
13215
|
-
NormalPass:
|
|
13224
|
+
NormalPass: nn,
|
|
13216
13225
|
OutlineEdgesMaterial: mt,
|
|
13217
|
-
OutlineEffect:
|
|
13226
|
+
OutlineEffect: qa,
|
|
13218
13227
|
OutlineMaterial: mt,
|
|
13219
13228
|
OverrideMaterialManager: gt,
|
|
13220
13229
|
Pass: N,
|
|
13221
|
-
PixelationEffect:
|
|
13230
|
+
PixelationEffect: $a,
|
|
13222
13231
|
PredicationMode: Ai,
|
|
13223
13232
|
RawImageData: le,
|
|
13224
|
-
RealisticBokehEffect:
|
|
13233
|
+
RealisticBokehEffect: ts,
|
|
13225
13234
|
RenderPass: Ge,
|
|
13226
13235
|
Resizable: lr,
|
|
13227
13236
|
Resizer: D,
|
|
13228
13237
|
Resolution: D,
|
|
13229
|
-
SMAAAreaImageData:
|
|
13230
|
-
SMAAEffect:
|
|
13231
|
-
SMAAImageGenerator:
|
|
13232
|
-
SMAAImageLoader:
|
|
13238
|
+
SMAAAreaImageData: pn,
|
|
13239
|
+
SMAAEffect: As,
|
|
13240
|
+
SMAAImageGenerator: An,
|
|
13241
|
+
SMAAImageLoader: Gs,
|
|
13233
13242
|
SMAAPreset: we,
|
|
13234
|
-
SMAASearchImageData:
|
|
13243
|
+
SMAASearchImageData: Tn,
|
|
13235
13244
|
SMAAWeightsMaterial: Ti,
|
|
13236
|
-
SSAOEffect:
|
|
13245
|
+
SSAOEffect: Ss,
|
|
13237
13246
|
SSAOMaterial: wi,
|
|
13238
13247
|
SavePass: Ne,
|
|
13239
|
-
ScanlineEffect:
|
|
13248
|
+
ScanlineEffect: rs,
|
|
13240
13249
|
Section: B,
|
|
13241
13250
|
Selection: St,
|
|
13242
|
-
SelectiveBloomEffect:
|
|
13243
|
-
SepiaEffect:
|
|
13251
|
+
SelectiveBloomEffect: us,
|
|
13252
|
+
SepiaEffect: fs,
|
|
13244
13253
|
ShaderPass: _,
|
|
13245
|
-
ShockWaveEffect:
|
|
13246
|
-
TetrahedralUpscaler:
|
|
13254
|
+
ShockWaveEffect: os,
|
|
13255
|
+
TetrahedralUpscaler: ln,
|
|
13247
13256
|
TextureEffect: ys,
|
|
13248
13257
|
TiltShiftBlurMaterial: Ci,
|
|
13249
|
-
TiltShiftBlurPass:
|
|
13250
|
-
TiltShiftEffect:
|
|
13258
|
+
TiltShiftBlurPass: Mi,
|
|
13259
|
+
TiltShiftEffect: bs,
|
|
13251
13260
|
Timer: ti,
|
|
13252
|
-
ToneMappingEffect:
|
|
13261
|
+
ToneMappingEffect: Ls,
|
|
13253
13262
|
ToneMappingMode: j,
|
|
13254
13263
|
UpsamplingMaterial: ci,
|
|
13255
|
-
VignetteEffect:
|
|
13264
|
+
VignetteEffect: Ns,
|
|
13256
13265
|
VignetteTechnique: Ee,
|
|
13257
|
-
WebGLExtension:
|
|
13266
|
+
WebGLExtension: Qa,
|
|
13258
13267
|
version: er
|
|
13259
13268
|
}, Symbol.toStringTag, { value: "Module" }));
|
|
13260
|
-
class
|
|
13269
|
+
class wn extends ei {
|
|
13261
13270
|
boundingSphere = new _i();
|
|
13262
13271
|
constructor() {
|
|
13263
13272
|
super(), this.setAttribute("position", new _e(new Float32Array([
|
|
@@ -13279,13 +13288,13 @@ class Tn extends ei {
|
|
|
13279
13288
|
computeBoundingSphere() {
|
|
13280
13289
|
}
|
|
13281
13290
|
}
|
|
13282
|
-
const
|
|
13291
|
+
const En = /* @__PURE__ */ new wn(), Sn = /* @__PURE__ */ new Jt();
|
|
13283
13292
|
class q {
|
|
13284
13293
|
constructor(t) {
|
|
13285
|
-
this._mesh = new qt(
|
|
13294
|
+
this._mesh = new qt(En, t), this._mesh.frustumCulled = !1;
|
|
13286
13295
|
}
|
|
13287
13296
|
render(t) {
|
|
13288
|
-
t.render(this._mesh,
|
|
13297
|
+
t.render(this._mesh, Sn);
|
|
13289
13298
|
}
|
|
13290
13299
|
get material() {
|
|
13291
13300
|
return this._mesh.material;
|
|
@@ -14331,8 +14340,8 @@ void main() {
|
|
|
14331
14340
|
), 0.0);
|
|
14332
14341
|
}`
|
|
14333
14342
|
)
|
|
14334
|
-
}, Sn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Cn = Uint8Array.from(atob(Sn), (e) => e.charCodeAt(0));
|
|
14335
|
-
var Hi =
|
|
14343
|
+
}, Cn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Mn = Uint8Array.from(atob(Cn), (e) => e.charCodeAt(0));
|
|
14344
|
+
var Hi = Mn;
|
|
14336
14345
|
const yn = parseInt(Pe.replace(/\D+/g, "")), zi = yn >= 162 ? class extends w {
|
|
14337
14346
|
constructor(e = 1, t = 1, i = 1, r = {}) {
|
|
14338
14347
|
super(e, t, {
|
|
@@ -14376,7 +14385,7 @@ function Gi(e, t, i) {
|
|
|
14376
14385
|
Gi(e, t, i);
|
|
14377
14386
|
}, 1);
|
|
14378
14387
|
}
|
|
14379
|
-
class
|
|
14388
|
+
class Bn extends N {
|
|
14380
14389
|
/**
|
|
14381
14390
|
*
|
|
14382
14391
|
* @param {THREE.Scene} scene
|
|
@@ -14404,7 +14413,7 @@ class Mn extends N {
|
|
|
14404
14413
|
biasMultiplier: 0,
|
|
14405
14414
|
color: new Q(0, 0, 0),
|
|
14406
14415
|
gammaCorrection: !0,
|
|
14407
|
-
depthBufferType:
|
|
14416
|
+
depthBufferType: M.Default,
|
|
14408
14417
|
screenSpaceRadius: !1,
|
|
14409
14418
|
halfRes: !1,
|
|
14410
14419
|
depthAwareUpsampling: !0,
|
|
@@ -14516,7 +14525,7 @@ class Mn extends N {
|
|
|
14516
14525
|
value: this.depthTexture
|
|
14517
14526
|
},
|
|
14518
14527
|
reverseDepthBuffer: {
|
|
14519
|
-
value: this.configuration.depthBufferType ===
|
|
14528
|
+
value: this.configuration.depthBufferType === M.Reverse
|
|
14520
14529
|
}
|
|
14521
14530
|
},
|
|
14522
14531
|
vertexShader: (
|
|
@@ -14555,7 +14564,7 @@ class Mn extends N {
|
|
|
14555
14564
|
const i = this.scene.background, r = t.getClearColor(new Q()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
|
|
14556
14565
|
this.scene.traverse((o) => {
|
|
14557
14566
|
n.set(o, o.visible);
|
|
14558
|
-
}), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType ===
|
|
14567
|
+
}), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
|
|
14559
14568
|
o.material && (o.visible = n.get(o) && (o.material.transparent && !o.material.depthWrite && !o.userData.treatAsOpaque || !!o.userData.cannotReceiveAO));
|
|
14560
14569
|
}), t.clear(!0, !0, !0), this.depthCopyPass.render(t), t.render(this.scene, this.camera), t.setRenderTarget(this.transparencyRenderTargetDWTrue), this.scene.traverse((o) => {
|
|
14561
14570
|
o.material && (o.visible = n.get(o) && o.material.transparent && o.material.depthWrite && !o.userData.treatAsOpaque);
|
|
@@ -14566,34 +14575,34 @@ class Mn extends N {
|
|
|
14566
14575
|
configureSampleDependentPasses() {
|
|
14567
14576
|
this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera);
|
|
14568
14577
|
}
|
|
14569
|
-
configureAOPass(t =
|
|
14578
|
+
configureAOPass(t = M.Default, i = !1) {
|
|
14570
14579
|
this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
|
|
14571
14580
|
const r = {
|
|
14572
14581
|
...Fi
|
|
14573
14582
|
};
|
|
14574
|
-
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t ===
|
|
14575
|
-
` + r.fragmentShader : t ===
|
|
14583
|
+
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14584
|
+
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
14576
14585
|
` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
|
|
14577
14586
|
` + r.fragmentShader), this.configuration.halfRes && (r.fragmentShader = `#define HALFRES
|
|
14578
14587
|
` + r.fragmentShader), this.effectShaderQuad ? (this.effectShaderQuad.material.dispose(), this.effectShaderQuad.material = new T(r)) : this.effectShaderQuad = new q(new T(r));
|
|
14579
14588
|
}
|
|
14580
|
-
configureDenoisePass(t =
|
|
14589
|
+
configureDenoisePass(t = M.Default, i = !1) {
|
|
14581
14590
|
this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
|
|
14582
14591
|
const r = {
|
|
14583
14592
|
...Oi
|
|
14584
14593
|
};
|
|
14585
|
-
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t ===
|
|
14586
|
-
` + r.fragmentShader : t ===
|
|
14594
|
+
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14595
|
+
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
14587
14596
|
` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
|
|
14588
14597
|
` + r.fragmentShader), this.poissonBlurQuad ? (this.poissonBlurQuad.material.dispose(), this.poissonBlurQuad.material = new T(r)) : this.poissonBlurQuad = new q(new T(r));
|
|
14589
14598
|
}
|
|
14590
|
-
configureEffectCompositer(t =
|
|
14599
|
+
configureEffectCompositer(t = M.Default, i = !1) {
|
|
14591
14600
|
this.firstFrame();
|
|
14592
14601
|
const r = {
|
|
14593
14602
|
...Li
|
|
14594
14603
|
};
|
|
14595
|
-
t ===
|
|
14596
|
-
` + r.fragmentShader : t ===
|
|
14604
|
+
t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14605
|
+
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
14597
14606
|
` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
|
|
14598
14607
|
` + r.fragmentShader), this.configuration.halfRes && this.configuration.depthAwareUpsampling && (r.fragmentShader = `#define HALFRES
|
|
14599
14608
|
` + r.fragmentShader), this.effectCompositerQuad ? (this.effectCompositerQuad.material.dispose(), this.effectCompositerQuad.material = new T(r)) : this.effectCompositerQuad = new q(new T(r));
|
|
@@ -14637,7 +14646,7 @@ class Mn extends N {
|
|
|
14637
14646
|
}
|
|
14638
14647
|
render(t, i, r) {
|
|
14639
14648
|
const a = t.xr.enabled;
|
|
14640
|
-
t.xr.enabled = !1, (t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !==
|
|
14649
|
+
t.xr.enabled = !1, (t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !== M.Log || t.capabilities.reverseDepthBuffer && this.configuration.depthBufferType !== M.Reverse) && (this.configuration.depthBufferType = t.capabilities.logarithmicDepthBuffer ? M.Log : t.capabilities.reverseDepthBuffer ? M.Reverse : M.Default, this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera)), this.detectTransparency(), (i.texture.type !== this.outputTargetInternal.texture.type || i.texture.format !== this.outputTargetInternal.texture.format) && (this.outputTargetInternal.texture.type = i.texture.type, this.outputTargetInternal.texture.format = i.texture.format, this.outputTargetInternal.texture.needsUpdate = !0), this.camera.updateMatrixWorld(), this.lastViewMatrix.equals(this.camera.matrixWorldInverse) && this.lastProjectionMatrix.equals(this.camera.projectionMatrix) && this.configuration.accumulate && !this.needsFrame ? this.frame++ : (this.configuration.accumulate && (t.setRenderTarget(this.accumulationRenderTarget), t.clear(!0, !0, !0)), this.frame = 0, this.needsFrame = !1), this.lastViewMatrix.copy(this.camera.matrixWorldInverse), this.lastProjectionMatrix.copy(this.camera.projectionMatrix);
|
|
14641
14650
|
let n, s, o;
|
|
14642
14651
|
this.debugMode && (n = t.getContext(), s = n.getExtension("EXT_disjoint_timer_query_webgl2"), s === null && (console.error("EXT_disjoint_timer_query_webgl2 not available, disabling debug mode."), this.debugMode = !1)), this.debugMode && (o = n.createQuery(), n.beginQuery(s.TIME_ELAPSED_EXT, o)), this.configuration.transparencyAware && this.renderTransparency(t), this._r.set(this.width, this.height);
|
|
14643
14652
|
let l = this.configuration.aoRadius;
|
|
@@ -14700,12 +14709,12 @@ function ki(e, t, i) {
|
|
|
14700
14709
|
ki(e, t, i);
|
|
14701
14710
|
}, 1);
|
|
14702
14711
|
}
|
|
14703
|
-
const
|
|
14712
|
+
const M = {
|
|
14704
14713
|
Default: 1,
|
|
14705
14714
|
Log: 2,
|
|
14706
14715
|
Reverse: 3
|
|
14707
14716
|
};
|
|
14708
|
-
class
|
|
14717
|
+
class Pn extends $i {
|
|
14709
14718
|
/**
|
|
14710
14719
|
*
|
|
14711
14720
|
* @param {THREE.Scene} scene
|
|
@@ -14733,7 +14742,7 @@ class Bn extends $i {
|
|
|
14733
14742
|
biasMultiplier: 0,
|
|
14734
14743
|
color: new Q(0, 0, 0),
|
|
14735
14744
|
gammaCorrection: !0,
|
|
14736
|
-
depthBufferType:
|
|
14745
|
+
depthBufferType: M.Default,
|
|
14737
14746
|
screenSpaceRadius: !1,
|
|
14738
14747
|
halfRes: !1,
|
|
14739
14748
|
depthAwareUpsampling: !0,
|
|
@@ -14812,7 +14821,7 @@ class Bn extends $i {
|
|
|
14812
14821
|
const t = {
|
|
14813
14822
|
...Ni
|
|
14814
14823
|
};
|
|
14815
|
-
this.configuration.depthBufferType ===
|
|
14824
|
+
this.configuration.depthBufferType === M.Reverse && (t.fragmentShader = `#define REVERSEDEPTH
|
|
14816
14825
|
` + t.fragmentShader), this.depthDownsampleQuad = new q(new T(t));
|
|
14817
14826
|
} else
|
|
14818
14827
|
this.depthDownsampleTarget && (this.depthDownsampleTarget.dispose(), this.depthDownsampleTarget = null), this.depthDownsampleQuad && (this.depthDownsampleQuad.dispose(), this.depthDownsampleQuad = null);
|
|
@@ -14842,7 +14851,7 @@ class Bn extends $i {
|
|
|
14842
14851
|
value: this.depthTexture
|
|
14843
14852
|
},
|
|
14844
14853
|
reverseDepthBuffer: {
|
|
14845
|
-
value: this.configuration.depthBufferType ===
|
|
14854
|
+
value: this.configuration.depthBufferType === M.Reverse
|
|
14846
14855
|
}
|
|
14847
14856
|
},
|
|
14848
14857
|
vertexShader: (
|
|
@@ -14881,7 +14890,7 @@ class Bn extends $i {
|
|
|
14881
14890
|
const i = this.scene.background, r = t.getClearColor(new Q()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
|
|
14882
14891
|
this.scene.traverse((o) => {
|
|
14883
14892
|
n.set(o, o.visible);
|
|
14884
|
-
}), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.beautyRenderTarget.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType ===
|
|
14893
|
+
}), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.beautyRenderTarget.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
|
|
14885
14894
|
o.material && (o.visible = n.get(o) && (o.material.transparent && !o.material.depthWrite && !o.userData.treatAsOpaque || !!o.userData.cannotReceiveAO));
|
|
14886
14895
|
}), t.clear(!0, !0, !0), this.depthCopyPass.render(t), t.render(this.scene, this.camera), t.setRenderTarget(this.transparencyRenderTargetDWTrue), this.scene.traverse((o) => {
|
|
14887
14896
|
o.material && (o.visible = n.get(o) && o.material.transparent && o.material.depthWrite && !o.userData.treatAsOpaque);
|
|
@@ -14892,34 +14901,34 @@ class Bn extends $i {
|
|
|
14892
14901
|
configureSampleDependentPasses() {
|
|
14893
14902
|
this.firstFrame(), this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera);
|
|
14894
14903
|
}
|
|
14895
|
-
configureAOPass(t =
|
|
14904
|
+
configureAOPass(t = M.Default, i = !1) {
|
|
14896
14905
|
this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
|
|
14897
14906
|
const r = {
|
|
14898
14907
|
...Fi
|
|
14899
14908
|
};
|
|
14900
|
-
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t ===
|
|
14901
|
-
` + r.fragmentShader : t ===
|
|
14909
|
+
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14910
|
+
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
14902
14911
|
` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
|
|
14903
14912
|
` + r.fragmentShader), this.configuration.halfRes && (r.fragmentShader = `#define HALFRES
|
|
14904
14913
|
` + r.fragmentShader), this.effectShaderQuad ? (this.effectShaderQuad.material.dispose(), this.effectShaderQuad.material = new T(r)) : this.effectShaderQuad = new q(new T(r));
|
|
14905
14914
|
}
|
|
14906
|
-
configureDenoisePass(t =
|
|
14915
|
+
configureDenoisePass(t = M.Default, i = !1) {
|
|
14907
14916
|
this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
|
|
14908
14917
|
const r = {
|
|
14909
14918
|
...Oi
|
|
14910
14919
|
};
|
|
14911
|
-
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t ===
|
|
14912
|
-
` + r.fragmentShader : t ===
|
|
14920
|
+
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14921
|
+
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
14913
14922
|
` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
|
|
14914
14923
|
` + r.fragmentShader), this.poissonBlurQuad ? (this.poissonBlurQuad.material.dispose(), this.poissonBlurQuad.material = new T(r)) : this.poissonBlurQuad = new q(new T(r));
|
|
14915
14924
|
}
|
|
14916
|
-
configureEffectCompositer(t =
|
|
14925
|
+
configureEffectCompositer(t = M.Default, i = !1) {
|
|
14917
14926
|
this.firstFrame();
|
|
14918
14927
|
const r = {
|
|
14919
14928
|
...Li
|
|
14920
14929
|
};
|
|
14921
|
-
t ===
|
|
14922
|
-
` + r.fragmentShader : t ===
|
|
14930
|
+
t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14931
|
+
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
14923
14932
|
` + r.fragmentShader), i && (r.fragmentShader = `#define ORTHO
|
|
14924
14933
|
` + r.fragmentShader), this.configuration.halfRes && this.configuration.depthAwareUpsampling && (r.fragmentShader = `#define HALFRES
|
|
14925
14934
|
` + r.fragmentShader), this.effectCompositerQuad ? (this.effectCompositerQuad.material.dispose(), this.effectCompositerQuad.material = new T(r)) : this.effectCompositerQuad = new q(new T(r));
|
|
@@ -14961,14 +14970,14 @@ class Bn extends $i {
|
|
|
14961
14970
|
this.needsFrame = !0;
|
|
14962
14971
|
}
|
|
14963
14972
|
render(t, i, r, a, n) {
|
|
14964
|
-
(t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !==
|
|
14973
|
+
(t.capabilities.logarithmicDepthBuffer && this.configuration.depthBufferType !== M.Log || t.capabilities.reverseDepthBuffer && this.configuration.depthBufferType !== M.Reverse) && (this.configuration.depthBufferType = t.capabilities.logarithmicDepthBuffer ? M.Log : t.capabilities.reverseDepthBuffer ? M.Reverse : M.Default, this.configureAOPass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureDenoisePass(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera)), this.detectTransparency(), this.camera.updateMatrixWorld(), this.lastViewMatrix.equals(this.camera.matrixWorldInverse) && this.lastProjectionMatrix.equals(this.camera.projectionMatrix) && this.configuration.accumulate && !this.needsFrame ? this.frame++ : (this.configuration.accumulate && (t.setRenderTarget(this.accumulationRenderTarget), t.clear(!0, !0, !0)), this.frame = 0, this.needsFrame = !1), this.lastViewMatrix.copy(this.camera.matrixWorldInverse), this.lastProjectionMatrix.copy(this.camera.projectionMatrix);
|
|
14965
14974
|
let s, o, l;
|
|
14966
14975
|
this.debugMode && (s = t.getContext(), o = s.getExtension("EXT_disjoint_timer_query_webgl2"), o === null && (console.error("EXT_disjoint_timer_query_webgl2 not available, disabling debug mode."), this.debugMode = !1)), this.configuration.autoRenderBeauty && (t.setRenderTarget(this.beautyRenderTarget), t.render(this.scene, this.camera), this.configuration.transparencyAware && this.renderTransparency(t)), this.debugMode && (l = s.createQuery(), s.beginQuery(o.TIME_ELAPSED_EXT, l));
|
|
14967
14976
|
const c = t.xr.enabled;
|
|
14968
14977
|
t.xr.enabled = !1, this._r.set(this.width, this.height);
|
|
14969
14978
|
let f = this.configuration.aoRadius;
|
|
14970
14979
|
if (this.configuration.halfRes && this.configuration.screenSpaceRadius && (f *= 0.5), this.frame < 1024 / this.configuration.aoSamples) {
|
|
14971
|
-
this.configuration.halfRes && (t.setRenderTarget(this.depthDownsampleTarget), this.depthDownsampleQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.depthDownsampleQuad.material.uniforms.resolution.value = this._r, this.depthDownsampleQuad.material.uniforms.near.value = this.camera.near, this.depthDownsampleQuad.material.uniforms.far.value = this.camera.far, this.depthDownsampleQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.depthDownsampleQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.depthDownsampleQuad.material.uniforms.logDepth.value = this.configuration.depthBufferType ===
|
|
14980
|
+
this.configuration.halfRes && (t.setRenderTarget(this.depthDownsampleTarget), this.depthDownsampleQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.depthDownsampleQuad.material.uniforms.resolution.value = this._r, this.depthDownsampleQuad.material.uniforms.near.value = this.camera.near, this.depthDownsampleQuad.material.uniforms.far.value = this.camera.far, this.depthDownsampleQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.depthDownsampleQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.depthDownsampleQuad.material.uniforms.logDepth.value = this.configuration.depthBufferType === M.Log, this.depthDownsampleQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.depthDownsampleQuad.render(t)), this.effectShaderQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectShaderQuad.material.uniforms.sceneDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectShaderQuad.material.uniforms.sceneNormal.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[1] : null, this.effectShaderQuad.material.uniforms.projMat.value = this.camera.projectionMatrix, this.effectShaderQuad.material.uniforms.viewMat.value = this.camera.matrixWorldInverse, this.effectShaderQuad.material.uniforms.projViewMat.value = this.camera.projectionMatrix.clone().multiply(this.camera.matrixWorldInverse.clone()), this.effectShaderQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectShaderQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectShaderQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new F()), this.effectShaderQuad.material.uniforms.biasAdjustment.value = new p(this.configuration.biasOffset, this.configuration.biasMultiplier), this.effectShaderQuad.material.uniforms.resolution.value = this.configuration.halfRes ? this._r.clone().multiplyScalar(0.5).floor() : this._r, this.effectShaderQuad.material.uniforms.time.value = performance.now() / 1e3, this.effectShaderQuad.material.uniforms.samples.value = this.samples, this.effectShaderQuad.material.uniforms.bluenoise.value = this.bluenoise, this.effectShaderQuad.material.uniforms.radius.value = f, this.effectShaderQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectShaderQuad.material.uniforms.near.value = this.camera.near, this.effectShaderQuad.material.uniforms.far.value = this.camera.far, this.effectShaderQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectShaderQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectShaderQuad.material.uniforms.frame.value = this.frame, t.setRenderTarget(this.writeTargetInternal), this.effectShaderQuad.render(t);
|
|
14972
14981
|
for (let d = 0; d < this.configuration.denoiseIterations; d++)
|
|
14973
14982
|
[this.writeTargetInternal, this.readTargetInternal] = [
|
|
14974
14983
|
this.readTargetInternal,
|
|
@@ -15015,12 +15024,12 @@ class Bn extends $i {
|
|
|
15015
15024
|
}
|
|
15016
15025
|
const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
|
|
15017
15026
|
__proto__: null,
|
|
15018
|
-
DepthType:
|
|
15019
|
-
N8AOPass:
|
|
15020
|
-
N8AOPostPass:
|
|
15027
|
+
DepthType: M,
|
|
15028
|
+
N8AOPass: Pn,
|
|
15029
|
+
N8AOPostPass: Bn
|
|
15021
15030
|
}, Symbol.toStringTag, { value: "Module" }));
|
|
15022
15031
|
export {
|
|
15023
15032
|
V as EffectAttribute,
|
|
15024
15033
|
Un as N8AO,
|
|
15025
|
-
|
|
15034
|
+
bn as index
|
|
15026
15035
|
};
|