@needle-tools/engine 4.12.0-next.0b39d59 → 4.12.0-next.c6c0281

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,12 +1,12 @@
1
- import { Uniform$1 as u, Vector4 as de, Color as k, Vector2 as p, CanvasTexture as Qi, RepeatWrapping as se, ShaderMaterial as T, NoBlending as W, WebGLRenderTarget as w, NearestFilter as P, EventDispatcher as wt, SRGBColorSpace as S, UnsignedByteType as Y, PerspectiveCamera as Be, BasicDepthPacking as V, REVISION as Pe, AlwaysDepth as Kt, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Pt, Vector3 as F, MeshDepthMaterial as Vi, LinearSRGBColorSpace as Je, NoColorSpace as tt, DepthTexture as Ce, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Oe, NormalBlending as Wi, RGBAFormat as H, Scene as dt, Matrix4 as O, HalfFloatType as $, Data3DTexture as Ze, Loader as Et, LoadingManager as ve, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Yi, BackSide as Qe, DoubleSide as Ve, FrontSide as Ki, OrthographicCamera as Jt, Mesh as qt, Texture as qe, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Xi, GreaterDepth as Zi, GreaterEqualDepth as ji, LessEqualDepth as Ji, NeverDepth as qi, Material as $t, BufferGeometry as ei, BufferAttribute as _e, RGFormat as _i, DepthFormat as It, Sphere as $i } from "./three-BCCkyCA5.js";
2
- import { Pass as er } from "./three-examples-y2GeYlze.js";
3
- var tr = "6.38.1", ir = class {
1
+ import { Uniform$1 as u, Vector4 as de, Color as Q, Vector2 as p, CanvasTexture as Qi, RepeatWrapping as se, ShaderMaterial as T, NoBlending as z, WebGLRenderTarget as w, NearestFilter as P, EventDispatcher as wt, SRGBColorSpace as S, UnsignedByteType as Y, PerspectiveCamera as Be, BasicDepthPacking as W, REVISION as Pe, AlwaysDepth as Kt, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Pt, Vector3 as F, MeshDepthMaterial as Vi, LinearSRGBColorSpace as Je, NoColorSpace as tt, DepthTexture as Ce, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Oe, RGBAFormat as H, Scene as dt, Matrix4 as O, HalfFloatType as $, Data3DTexture as Ze, Loader as Et, LoadingManager as ve, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Wi, BackSide as Qe, DoubleSide as Ve, FrontSide as Yi, OrthographicCamera as Jt, Mesh as qt, Texture as qe, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Ki, GreaterDepth as Xi, GreaterEqualDepth as Zi, LessEqualDepth as ji, NeverDepth as Ji, Material as $t, BufferGeometry as ei, BufferAttribute as _e, RGFormat as qi, DepthFormat as It, Sphere as _i } from "./three-BCCkyCA5.js";
2
+ import { Pass as $i } from "./three-examples-y2GeYlze.js";
3
+ var er = "6.38.2", tr = class {
4
4
  /**
5
5
  * Frees internal resources.
6
6
  */
7
7
  dispose() {
8
8
  }
9
- }, nt = 1 / 1e3, rr = 1e3, ti = class {
9
+ }, nt = 1 / 1e3, ir = 1e3, ti = class {
10
10
  /**
11
11
  * Constructs a new timer.
12
12
  */
@@ -35,7 +35,7 @@ var tr = "6.38.1", ir = class {
35
35
  return this._fixedDelta * nt;
36
36
  }
37
37
  set fixedDelta(e) {
38
- this._fixedDelta = e * rr;
38
+ this._fixedDelta = e * ir;
39
39
  }
40
40
  get elapsed() {
41
41
  return this._elapsed * nt;
@@ -66,7 +66,7 @@ var tr = "6.38.1", ir = class {
66
66
  dispose() {
67
67
  this.autoReset = !1;
68
68
  }
69
- }, ar = /* @__PURE__ */ (() => {
69
+ }, rr = /* @__PURE__ */ (() => {
70
70
  const e = new Float32Array([-1, -1, 0, 3, -1, 0, -1, 3, 0]), t = new Float32Array([0, 0, 2, 0, 0, 2]), i = new ei();
71
71
  return i.setAttribute("position", new _e(e, 3)), i.setAttribute("uv", new _e(t, 2)), i;
72
72
  })(), N = class pt {
@@ -79,7 +79,7 @@ var tr = "6.38.1", ir = class {
79
79
  * @internal
80
80
  */
81
81
  static get fullscreenGeometry() {
82
- return ar;
82
+ return rr;
83
83
  }
84
84
  /**
85
85
  * Constructs a new pass.
@@ -196,7 +196,7 @@ var tr = "6.38.1", ir = class {
196
196
  * @param {Texture} depthTexture - A depth texture.
197
197
  * @param {DepthPackingStrategy} [depthPacking=BasicDepthPacking] - The depth packing.
198
198
  */
199
- setDepthTexture(t, i = V) {
199
+ setDepthTexture(t, i = W) {
200
200
  }
201
201
  /**
202
202
  * Renders this pass.
@@ -269,7 +269,7 @@ var tr = "6.38.1", ir = class {
269
269
  const n = e.state.buffers.stencil;
270
270
  n.setLocked(!1), n.setTest(!1);
271
271
  }
272
- }, sr = `#ifdef COLOR_WRITE
272
+ }, ar = `#ifdef COLOR_WRITE
273
273
  #include <common>
274
274
  #include <dithering_pars_fragment>
275
275
  #ifdef FRAMEBUFFER_PRECISION_HIGH
@@ -331,11 +331,11 @@ gl_FragDepth=readDepth(vUv);
331
331
  channelWeights: new u(null),
332
332
  opacity: new u(1)
333
333
  },
334
- blending: W,
334
+ blending: z,
335
335
  toneMapped: !1,
336
336
  depthWrite: !1,
337
337
  depthTest: !1,
338
- fragmentShader: sr,
338
+ fragmentShader: ar,
339
339
  vertexShader: ue
340
340
  }), this.depthFunc = Kt;
341
341
  }
@@ -506,7 +506,7 @@ gl_FragDepth=readDepth(vUv);
506
506
  initialize(e, t, i) {
507
507
  i !== void 0 && (this.renderTarget.texture.type = i, i !== Y ? this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1" : e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S));
508
508
  }
509
- }, Rt = /* @__PURE__ */ new k(), Ie = class extends N {
509
+ }, Rt = /* @__PURE__ */ new Q(), Ie = class extends N {
510
510
  /**
511
511
  * Constructs a new clear pass.
512
512
  *
@@ -655,7 +655,7 @@ gl_FragDepth=readDepth(vUv);
655
655
  const n = e.getContext(), s = e.state.buffers, o = this.scene, l = this.camera, c = this.clearPass, f = this.inverted ? 0 : 1, h = 1 - f;
656
656
  s.color.setMask(!1), s.depth.setMask(!1), s.color.setLocked(!0), s.depth.setLocked(!0), s.stencil.setTest(!0), s.stencil.setOp(n.REPLACE, n.REPLACE, n.REPLACE), s.stencil.setFunc(n.ALWAYS, f, 4294967295), s.stencil.setClear(h), s.stencil.setLocked(!0), this.clearPass.enabled && (this.renderToScreen ? c.render(e, null) : (c.render(e, t), c.render(e, i))), this.renderToScreen ? (e.setRenderTarget(null), e.render(o, l)) : (e.setRenderTarget(t), e.render(o, l), e.setRenderTarget(i), e.render(o, l)), s.color.setLocked(!1), s.depth.setLocked(!1), s.stencil.setLocked(!1), s.stencil.setFunc(n.EQUAL, 1, 4294967295), s.stencil.setOp(n.KEEP, n.KEEP, n.KEEP), s.stencil.setLocked(!0);
657
657
  }
658
- }, nr = class {
658
+ }, sr = class {
659
659
  /**
660
660
  * Constructs a new effect composer.
661
661
  *
@@ -888,7 +888,7 @@ gl_FragDepth=readDepth(vUv);
888
888
  e.dispose();
889
889
  this.passes = [], this.inputBuffer !== null && this.inputBuffer.dispose(), this.outputBuffer !== null && this.outputBuffer.dispose(), this.deleteDepthTexture(), this.copyPass.dispose(), this.timer.dispose(), N.fullscreenGeometry.dispose();
890
890
  }
891
- }, Q = {
891
+ }, V = {
892
892
  NONE: 0,
893
893
  DEPTH: 1,
894
894
  CONVOLUTION: 2
@@ -909,7 +909,7 @@ gl_FragDepth=readDepth(vUv);
909
909
  [B.FRAGMENT_MAIN_IMAGE, null],
910
910
  [B.VERTEX_HEAD, null],
911
911
  [B.VERTEX_MAIN_SUPPORT, null]
912
- ]), this.defines = /* @__PURE__ */ new Map(), this.uniforms = /* @__PURE__ */ new Map(), this.blendModes = /* @__PURE__ */ new Map(), this.extensions = /* @__PURE__ */ new Set(), this.attributes = Q.NONE, this.varyings = /* @__PURE__ */ new Set(), this.uvTransformation = !1, this.readDepth = !1, this.colorSpace = Je;
912
+ ]), this.defines = /* @__PURE__ */ new Map(), this.uniforms = /* @__PURE__ */ new Map(), this.blendModes = /* @__PURE__ */ new Map(), this.extensions = /* @__PURE__ */ new Set(), this.attributes = V.NONE, this.varyings = /* @__PURE__ */ new Set(), this.uvTransformation = !1, this.readDepth = !1, this.colorSpace = Je;
913
913
  }
914
914
  };
915
915
  function bt(e) {
@@ -978,7 +978,7 @@ var si = class {
978
978
  l[h] *= v;
979
979
  this.offsets = o, this.weights = s, this.linearOffsets = c, this.linearWeights = l;
980
980
  }
981
- }, or = class {
981
+ }, nr = class {
982
982
  /**
983
983
  * The current delta time in seconds.
984
984
  *
@@ -995,7 +995,7 @@ var si = class {
995
995
  getElapsed() {
996
996
  return NaN;
997
997
  }
998
- }, lr = class {
998
+ }, or = class {
999
999
  /**
1000
1000
  * Performs initialization tasks.
1001
1001
  *
@@ -1076,7 +1076,7 @@ var si = class {
1076
1076
  this.cloneMaterial(e)
1077
1077
  ];
1078
1078
  for (const i of t)
1079
- i.uniforms = Object.assign({}, e.uniforms), i.side = Ki;
1079
+ i.uniforms = Object.assign({}, e.uniforms), i.side = Yi;
1080
1080
  t[2].skinning = !0, this.materialsBackSide = t.map((i) => {
1081
1081
  const r = this.cloneMaterial(i);
1082
1082
  return r.uniforms = Object.assign({}, e.uniforms), r.side = Qe, r;
@@ -1153,7 +1153,7 @@ var si = class {
1153
1153
  static set workaroundEnabled(e) {
1154
1154
  ot = e;
1155
1155
  }
1156
- }, ur = class {
1156
+ }, lr = class {
1157
1157
  /**
1158
1158
  * Sets the size of this object.
1159
1159
  *
@@ -1419,7 +1419,7 @@ var si = class {
1419
1419
  static get AUTO_SIZE() {
1420
1420
  return oe;
1421
1421
  }
1422
- }, cr = class {
1422
+ }, ur = class {
1423
1423
  /**
1424
1424
  * Constructs a new ID manager.
1425
1425
  *
@@ -1445,7 +1445,7 @@ var si = class {
1445
1445
  reset(e = 0) {
1446
1446
  return this.nextId = e, this;
1447
1447
  }
1448
- }, lt = /* @__PURE__ */ new cr(2), St = class extends Set {
1448
+ }, lt = /* @__PURE__ */ new ur(2), St = class extends Set {
1449
1449
  /**
1450
1450
  * Constructs a new selection.
1451
1451
  *
@@ -1621,40 +1621,40 @@ var si = class {
1621
1621
  SRC: 30,
1622
1622
  SUBTRACT: 31,
1623
1623
  VIVID_LIGHT: 32
1624
- }, fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,src.a*opacity);}", dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=(dst.rgb+src.rgb)*0.5;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", vr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.xy,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/max(b,1e-9))),vec3(1.0),step(1.0,a));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ar = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=abs(dst.rgb-src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", xr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb/max(src.rgb,1e-9);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-2.0*dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Tr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb,1.0);vec3 b=min(src.rgb,1.0);vec3 c=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", wr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=step(1.0,dst.rgb+src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Er = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.x,a.yz));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Sr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=src.rgb*max(1.0-dst.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", yr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb+src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(2.0*src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ir = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.xy,b.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Rr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-abs(1.0-dst.rgb-src.rgb),0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ur = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,opacity);}", Fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=2.0*src.rgb*dst.rgb;vec3 b=1.0-2.0*(1.0-src.rgb)*(1.0-dst.rgb);vec3 c=mix(a,b,step(0.5,dst.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Lr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 c=mix(mix(src2,dst.rgb,step(0.5*dst.rgb,src.rgb)),max(src2-1.0,vec3(0.0)),step(dst.rgb,src2-1.0));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Or = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb*dst.rgb/max(1.0-src.rgb,1e-9),1.0);vec3 c=mix(a,src.rgb,step(1.0,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Nr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.x,b.y,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-min(dst.rgb*src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", zr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 d=dst.rgb+(src2-1.0);vec3 w=step(0.5,src.rgb);vec3 a=dst.rgb-(1.0-src2)*dst.rgb*(1.0-dst.rgb);vec3 b=mix(d*(sqrt(dst.rgb)-dst.rgb),d*dst.rgb*((16.0*dst.rgb-12.0)*dst.rgb+3.0),w*(1.0-step(0.25,dst.rgb)));vec3 c=mix(a,b,w);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return src;}", kr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Qr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=mix(max(1.0-min((1.0-dst.rgb)/(2.0*src.rgb),1.0),0.0),min(dst.rgb/(2.0*(1.0-src.rgb)),1.0),step(0.5,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Vr = /* @__PURE__ */ new Map([
1625
- [g.ADD, fr],
1626
- [g.ALPHA, hr],
1627
- [g.AVERAGE, dr],
1628
- [g.COLOR, vr],
1629
- [g.COLOR_BURN, pr],
1630
- [g.COLOR_DODGE, gr],
1631
- [g.DARKEN, mr],
1632
- [g.DIFFERENCE, Ar],
1633
- [g.DIVIDE, xr],
1624
+ }, cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,src.a*opacity);}", hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=(dst.rgb+src.rgb)*0.5;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.xy,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", vr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/max(b,1e-9))),vec3(1.0),step(1.0,a));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=dst.rgb,b=src.rgb;vec3 c=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=abs(dst.rgb-src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ar = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb/max(src.rgb,1e-9);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", xr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-2.0*dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Dr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb,1.0);vec3 b=min(src.rgb,1.0);vec3 c=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Tr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=step(1.0,dst.rgb+src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", wr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(b.x,a.yz));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Er = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Sr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=src.rgb*max(1.0-dst.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Cr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb,src.rgb);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Mr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", yr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=min(dst.rgb+src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=clamp(2.0*src.rgb+dst.rgb-1.0,0.0,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Pr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.xy,b.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Ir = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb*src.rgb;return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Rr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(1.0-abs(1.0-dst.rgb-src.rgb),0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", br = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return mix(dst,src,opacity);}", Ur = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=2.0*src.rgb*dst.rgb;vec3 b=1.0-2.0*(1.0-src.rgb)*(1.0-dst.rgb);vec3 c=mix(a,b,step(0.5,dst.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Fr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 c=mix(mix(src2,dst.rgb,step(0.5*dst.rgb,src.rgb)),max(src2-1.0,vec3(0.0)),step(dst.rgb,src2-1.0));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Lr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=min(dst.rgb*dst.rgb/max(1.0-src.rgb,1e-9),1.0);vec3 c=mix(a,src.rgb,step(1.0,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Or = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 a=RGBToHSL(dst.rgb);vec3 b=RGBToHSL(src.rgb);vec3 c=HSLToRGB(vec3(a.x,b.y,a.z));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Nr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=dst.rgb+src.rgb-min(dst.rgb*src.rgb,1.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Hr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 src2=2.0*src.rgb;vec3 d=dst.rgb+(src2-1.0);vec3 w=step(0.5,src.rgb);vec3 a=dst.rgb-(1.0-src2)*dst.rgb*(1.0-dst.rgb);vec3 b=mix(d*(sqrt(dst.rgb)-dst.rgb),d*dst.rgb*((16.0*dst.rgb-12.0)*dst.rgb+3.0),w*(1.0-step(0.25,dst.rgb)));vec3 c=mix(a,b,w);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", zr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){return src;}", Gr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=max(dst.rgb-src.rgb,0.0);return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", kr = "vec4 blend(const in vec4 dst,const in vec4 src,const in float opacity){vec3 c=mix(max(1.0-min((1.0-dst.rgb)/(2.0*src.rgb),1.0),0.0),min(dst.rgb/(2.0*(1.0-src.rgb)),1.0),step(0.5,src.rgb));return mix(dst,vec4(c,max(dst.a,src.a)),opacity);}", Qr = /* @__PURE__ */ new Map([
1625
+ [g.ADD, cr],
1626
+ [g.ALPHA, fr],
1627
+ [g.AVERAGE, hr],
1628
+ [g.COLOR, dr],
1629
+ [g.COLOR_BURN, vr],
1630
+ [g.COLOR_DODGE, pr],
1631
+ [g.DARKEN, gr],
1632
+ [g.DIFFERENCE, mr],
1633
+ [g.DIVIDE, Ar],
1634
1634
  [g.DST, null],
1635
- [g.EXCLUSION, Dr],
1636
- [g.HARD_LIGHT, Tr],
1637
- [g.HARD_MIX, wr],
1638
- [g.HUE, Er],
1639
- [g.INVERT, Sr],
1640
- [g.INVERT_RGB, Cr],
1641
- [g.LIGHTEN, Mr],
1642
- [g.LINEAR_BURN, yr],
1643
- [g.LINEAR_DODGE, Br],
1644
- [g.LINEAR_LIGHT, Pr],
1645
- [g.LUMINOSITY, Ir],
1646
- [g.MULTIPLY, Rr],
1647
- [g.NEGATION, br],
1648
- [g.NORMAL, Ur],
1649
- [g.OVERLAY, Fr],
1650
- [g.PIN_LIGHT, Lr],
1651
- [g.REFLECT, Or],
1652
- [g.SATURATION, Nr],
1653
- [g.SCREEN, Hr],
1654
- [g.SOFT_LIGHT, zr],
1655
- [g.SRC, Gr],
1656
- [g.SUBTRACT, kr],
1657
- [g.VIVID_LIGHT, Qr]
1635
+ [g.EXCLUSION, xr],
1636
+ [g.HARD_LIGHT, Dr],
1637
+ [g.HARD_MIX, Tr],
1638
+ [g.HUE, wr],
1639
+ [g.INVERT, Er],
1640
+ [g.INVERT_RGB, Sr],
1641
+ [g.LIGHTEN, Cr],
1642
+ [g.LINEAR_BURN, Mr],
1643
+ [g.LINEAR_DODGE, yr],
1644
+ [g.LINEAR_LIGHT, Br],
1645
+ [g.LUMINOSITY, Pr],
1646
+ [g.MULTIPLY, Ir],
1647
+ [g.NEGATION, Rr],
1648
+ [g.NORMAL, br],
1649
+ [g.OVERLAY, Ur],
1650
+ [g.PIN_LIGHT, Fr],
1651
+ [g.REFLECT, Lr],
1652
+ [g.SATURATION, Or],
1653
+ [g.SCREEN, Nr],
1654
+ [g.SOFT_LIGHT, Hr],
1655
+ [g.SRC, zr],
1656
+ [g.SUBTRACT, Gr],
1657
+ [g.VIVID_LIGHT, kr]
1658
1658
  ]), ni = class extends wt {
1659
1659
  /**
1660
1660
  * Constructs a new blend mode.
@@ -1716,7 +1716,7 @@ var si = class {
1716
1716
  * @return {String} The blend function shader code.
1717
1717
  */
1718
1718
  getShaderCode() {
1719
- return Vr.get(this.blendFunction);
1719
+ return Qr.get(this.blendFunction);
1720
1720
  }
1721
1721
  }, oi = class extends Qi {
1722
1722
  /**
@@ -1767,7 +1767,7 @@ var si = class {
1767
1767
  * @param {String} [options.vertexShader=null] - The vertex shader. Most effects don't need one.
1768
1768
  */
1769
1769
  constructor(e, t, {
1770
- attributes: i = Q.NONE,
1770
+ attributes: i = V.NONE,
1771
1771
  blendFunction: r = g.NORMAL,
1772
1772
  defines: a = /* @__PURE__ */ new Map(),
1773
1773
  uniforms: n = /* @__PURE__ */ new Map(),
@@ -1955,7 +1955,7 @@ var si = class {
1955
1955
  * @param {Texture} depthTexture - A depth texture.
1956
1956
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
1957
1957
  */
1958
- setDepthTexture(e, t = V) {
1958
+ setDepthTexture(e, t = W) {
1959
1959
  }
1960
1960
  /**
1961
1961
  * Updates this effect by performing supporting operations.
@@ -2005,7 +2005,7 @@ var si = class {
2005
2005
  (t instanceof w || t instanceof $t || t instanceof qe || t instanceof N) && this[e].dispose();
2006
2006
  }
2007
2007
  }
2008
- }, Wr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
2008
+ }, Vr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
2009
2009
  #ifdef USE_COLOR
2010
2010
  uniform vec3 color;
2011
2011
  #endif
@@ -2019,7 +2019,7 @@ outputColor=vec4(color*asciiCharacter,inputColor.a);
2019
2019
  #else
2020
2020
  outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2021
2021
  #endif
2022
- }`, Yr = class extends I {
2022
+ }`, Wr = class extends I {
2023
2023
  /**
2024
2024
  * Constructs a new ASCII effect.
2025
2025
  *
@@ -2035,11 +2035,11 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2035
2035
  color: i = null,
2036
2036
  inverted: r = !1
2037
2037
  } = {}) {
2038
- super("ASCIIEffect", Wr, {
2038
+ super("ASCIIEffect", Vr, {
2039
2039
  uniforms: /* @__PURE__ */ new Map([
2040
2040
  ["asciiTexture", new u(null)],
2041
2041
  ["cellCount", new u(new de())],
2042
- ["color", new u(new k())]
2042
+ ["color", new u(new Q())]
2043
2043
  ])
2044
2044
  }), this._cellSize = -1, this.resolution = new p(), this.asciiTexture = e, this.cellSize = t, this.color = i, this.inverted = r;
2045
2045
  }
@@ -2122,14 +2122,14 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2122
2122
  LARGE: 3,
2123
2123
  VERY_LARGE: 4,
2124
2124
  HUGE: 5
2125
- }, Kr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2125
+ }, Yr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2126
2126
  uniform mediump sampler2D inputBuffer;
2127
2127
  #else
2128
2128
  uniform lowp sampler2D inputBuffer;
2129
2129
  #endif
2130
2130
  varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec4 sum=texture2D(inputBuffer,vUv0);sum+=texture2D(inputBuffer,vUv1);sum+=texture2D(inputBuffer,vUv2);sum+=texture2D(inputBuffer,vUv3);gl_FragColor=sum*0.25;
2131
2131
  #include <colorspace_fragment>
2132
- }`, Xr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Zr = [
2132
+ }`, Kr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Xr = [
2133
2133
  new Float32Array([0, 0]),
2134
2134
  new Float32Array([0, 1, 1]),
2135
2135
  new Float32Array([0, 1, 1, 2]),
@@ -2152,12 +2152,12 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2152
2152
  scale: new u(1),
2153
2153
  kernel: new u(0)
2154
2154
  },
2155
- blending: W,
2155
+ blending: z,
2156
2156
  toneMapped: !1,
2157
2157
  depthWrite: !1,
2158
2158
  depthTest: !1,
2159
- fragmentShader: Kr,
2160
- vertexShader: Xr
2159
+ fragmentShader: Yr,
2160
+ vertexShader: Kr
2161
2161
  }), this.setTexelSize(e.x, e.y), this.kernelSize = te.MEDIUM;
2162
2162
  }
2163
2163
  /**
@@ -2183,7 +2183,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2183
2183
  * @type {Float32Array}
2184
2184
  */
2185
2185
  get kernelSequence() {
2186
- return Zr[this.kernelSize];
2186
+ return Xr[this.kernelSize];
2187
2187
  }
2188
2188
  /**
2189
2189
  * The blur scale.
@@ -2491,7 +2491,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2491
2491
  static get AUTO_SIZE() {
2492
2492
  return D.AUTO_SIZE;
2493
2493
  }
2494
- }, jr = `#include <common>
2494
+ }, Zr = `#include <common>
2495
2495
  #ifdef FRAMEBUFFER_PRECISION_HIGH
2496
2496
  uniform mediump sampler2D inputBuffer;
2497
2497
  #else
@@ -2532,11 +2532,11 @@ gl_FragColor=vec4(l*mask);
2532
2532
  smoothing: new u(1),
2533
2533
  range: new u(null)
2534
2534
  },
2535
- blending: W,
2535
+ blending: z,
2536
2536
  toneMapped: !1,
2537
2537
  depthWrite: !1,
2538
2538
  depthTest: !1,
2539
- fragmentShader: jr,
2539
+ fragmentShader: Zr,
2540
2540
  vertexShader: ue
2541
2541
  }), this.colorOutput = e, this.luminanceRange = t;
2542
2542
  }
@@ -2781,7 +2781,7 @@ gl_FragColor=vec4(l*mask);
2781
2781
  initialize(e, t, i) {
2782
2782
  i !== void 0 && i !== Y && (this.renderTarget.texture.type = i, this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
2783
2783
  }
2784
- }, Jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2784
+ }, jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2785
2785
  uniform mediump sampler2D inputBuffer;
2786
2786
  #else
2787
2787
  uniform lowp sampler2D inputBuffer;
@@ -2790,7 +2790,7 @@ uniform lowp sampler2D inputBuffer;
2790
2790
  #define WEIGHT_OUTER 0.0555555
2791
2791
  varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;float clampToBorder(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void main(){vec4 c=vec4(0.0);vec4 w=WEIGHT_INNER*vec4(clampToBorder(vUv00),clampToBorder(vUv01),clampToBorder(vUv02),clampToBorder(vUv03));c+=w.x*texture2D(inputBuffer,vUv00);c+=w.y*texture2D(inputBuffer,vUv01);c+=w.z*texture2D(inputBuffer,vUv02);c+=w.w*texture2D(inputBuffer,vUv03);w=WEIGHT_OUTER*vec4(clampToBorder(vUv04),clampToBorder(vUv05),clampToBorder(vUv06),clampToBorder(vUv07));c+=w.x*texture2D(inputBuffer,vUv04);c+=w.y*texture2D(inputBuffer,vUv05);c+=w.z*texture2D(inputBuffer,vUv06);c+=w.w*texture2D(inputBuffer,vUv07);w=WEIGHT_OUTER*vec4(clampToBorder(vUv08),clampToBorder(vUv09),clampToBorder(vUv10),clampToBorder(vUv11));c+=w.x*texture2D(inputBuffer,vUv08);c+=w.y*texture2D(inputBuffer,vUv09);c+=w.z*texture2D(inputBuffer,vUv10);c+=w.w*texture2D(inputBuffer,vUv11);c+=WEIGHT_OUTER*texture2D(inputBuffer,vUv);gl_FragColor=c;
2792
2792
  #include <colorspace_fragment>
2793
- }`, qr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends T {
2793
+ }`, Jr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends T {
2794
2794
  /**
2795
2795
  * Constructs a new downsampling material.
2796
2796
  */
@@ -2801,12 +2801,12 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
2801
2801
  inputBuffer: new u(null),
2802
2802
  texelSize: new u(new p())
2803
2803
  },
2804
- blending: W,
2804
+ blending: z,
2805
2805
  toneMapped: !1,
2806
2806
  depthWrite: !1,
2807
2807
  depthTest: !1,
2808
- fragmentShader: Jr,
2809
- vertexShader: qr
2808
+ fragmentShader: jr,
2809
+ vertexShader: Jr
2810
2810
  });
2811
2811
  }
2812
2812
  /**
@@ -2826,14 +2826,14 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
2826
2826
  setSize(e, t) {
2827
2827
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
2828
2828
  }
2829
- }, _r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2829
+ }, qr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2830
2830
  uniform mediump sampler2D inputBuffer;uniform mediump sampler2D supportBuffer;
2831
2831
  #else
2832
2832
  uniform lowp sampler2D inputBuffer;uniform lowp sampler2D supportBuffer;
2833
2833
  #endif
2834
2834
  uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vec4 c=vec4(0.0);c+=texture2D(inputBuffer,vUv0)*0.0625;c+=texture2D(inputBuffer,vUv1)*0.125;c+=texture2D(inputBuffer,vUv2)*0.0625;c+=texture2D(inputBuffer,vUv3)*0.125;c+=texture2D(inputBuffer,vUv)*0.25;c+=texture2D(inputBuffer,vUv4)*0.125;c+=texture2D(inputBuffer,vUv5)*0.0625;c+=texture2D(inputBuffer,vUv6)*0.125;c+=texture2D(inputBuffer,vUv7)*0.0625;vec4 baseColor=texture2D(supportBuffer,vUv);gl_FragColor=mix(baseColor,c,radius);
2835
2835
  #include <colorspace_fragment>
2836
- }`, $r = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ci = class extends T {
2836
+ }`, _r = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ci = class extends T {
2837
2837
  /**
2838
2838
  * Constructs a new upsampling material.
2839
2839
  */
@@ -2846,12 +2846,12 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
2846
2846
  texelSize: new u(new p()),
2847
2847
  radius: new u(0.85)
2848
2848
  },
2849
- blending: W,
2849
+ blending: z,
2850
2850
  toneMapped: !1,
2851
2851
  depthWrite: !1,
2852
2852
  depthTest: !1,
2853
- fragmentShader: _r,
2854
- vertexShader: $r
2853
+ fragmentShader: qr,
2854
+ vertexShader: _r
2855
2855
  });
2856
2856
  }
2857
2857
  /**
@@ -3005,7 +3005,7 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
3005
3005
  for (const e of this.downsamplingMipmaps.concat(this.upsamplingMipmaps))
3006
3006
  e.dispose();
3007
3007
  }
3008
- }, ea = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3008
+ }, $r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3009
3009
  uniform mediump sampler2D map;
3010
3010
  #else
3011
3011
  uniform lowp sampler2D map;
@@ -3044,7 +3044,7 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
3044
3044
  resolutionX: h = c,
3045
3045
  resolutionY: d = f
3046
3046
  } = {}) {
3047
- super("BloomEffect", ea, {
3047
+ super("BloomEffect", $r, {
3048
3048
  blendFunction: e,
3049
3049
  uniforms: /* @__PURE__ */ new Map([
3050
3050
  ["map", new u(null)],
@@ -3251,13 +3251,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
3251
3251
  initialize(e, t, i) {
3252
3252
  this.blurPass.initialize(e, t, i), this.luminancePass.initialize(e, t, i), this.mipmapBlurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S));
3253
3253
  }
3254
- }, ta = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
3254
+ }, ea = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
3255
3255
  #ifdef PERSPECTIVE_CAMERA
3256
3256
  float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDepth=viewZToOrthographicDepth(viewZ,cameraNear,cameraFar);
3257
3257
  #else
3258
3258
  float linearDepth=depth;
3259
3259
  #endif
3260
- float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ia = class extends I {
3260
+ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ta = class extends I {
3261
3261
  /**
3262
3262
  * Constructs a new bokeh effect.
3263
3263
  *
@@ -3275,9 +3275,9 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3275
3275
  aperture: r = 0.015,
3276
3276
  maxBlur: a = 1
3277
3277
  } = {}) {
3278
- super("BokehEffect", ta, {
3278
+ super("BokehEffect", ea, {
3279
3279
  blendFunction: e,
3280
- attributes: Q.CONVOLUTION | Q.DEPTH,
3280
+ attributes: V.CONVOLUTION | V.DEPTH,
3281
3281
  uniforms: /* @__PURE__ */ new Map([
3282
3282
  ["focus", new u(t)],
3283
3283
  ["dof", new u(i)],
@@ -3286,7 +3286,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3286
3286
  ])
3287
3287
  });
3288
3288
  }
3289
- }, ra = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", aa = class extends I {
3289
+ }, ia = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", ra = class extends I {
3290
3290
  /**
3291
3291
  * Constructs a new brightness/contrast effect.
3292
3292
  *
@@ -3296,7 +3296,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3296
3296
  * @param {Number} [options.contrast=0.0] - The contrast factor, ranging from -1 to 1, where 0 means no change.
3297
3297
  */
3298
3298
  constructor({ blendFunction: e = g.SRC, brightness: t = 0, contrast: i = 0 } = {}) {
3299
- super("BrightnessContrastEffect", ra, {
3299
+ super("BrightnessContrastEffect", ia, {
3300
3300
  blendFunction: e,
3301
3301
  uniforms: /* @__PURE__ */ new Map([
3302
3302
  ["brightness", new u(t)],
@@ -3362,16 +3362,16 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3362
3362
  setContrast(e) {
3363
3363
  this.contrast = e;
3364
3364
  }
3365
- }, sa = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", na = class extends I {
3365
+ }, aa = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", sa = class extends I {
3366
3366
  /**
3367
3367
  * Constructs a new color average effect.
3368
3368
  *
3369
3369
  * @param {BlendFunction} [blendFunction] - The blend function of this effect.
3370
3370
  */
3371
3371
  constructor(e) {
3372
- super("ColorAverageEffect", sa, { blendFunction: e });
3372
+ super("ColorAverageEffect", aa, { blendFunction: e });
3373
3373
  }
3374
- }, oa = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", la = class extends I {
3374
+ }, na = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", oa = class extends I {
3375
3375
  /**
3376
3376
  * Constructs a new color depth effect.
3377
3377
  *
@@ -3380,7 +3380,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3380
3380
  * @param {Number} [options.bits=16] - The color bit depth.
3381
3381
  */
3382
3382
  constructor({ blendFunction: e, bits: t = 16 } = {}) {
3383
- super("ColorDepthEffect", oa, {
3383
+ super("ColorDepthEffect", na, {
3384
3384
  blendFunction: e,
3385
3385
  uniforms: /* @__PURE__ */ new Map([
3386
3386
  ["factor", new u(1)]
@@ -3416,7 +3416,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3416
3416
  setBitDepth(e) {
3417
3417
  this.bitDepth = e;
3418
3418
  }
3419
- }, ua = `#ifdef RADIAL_MODULATION
3419
+ }, la = `#ifdef RADIAL_MODULATION
3420
3420
  uniform float modulationOffset;
3421
3421
  #endif
3422
3422
  varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec2 ra=inputColor.ra;vec2 ba=inputColor.ba;
@@ -3425,7 +3425,7 @@ const vec2 center=vec2(0.5);float d=distance(uv,center)*2.0;d=max(d-modulationOf
3425
3425
  #else
3426
3426
  if(vActive>0.0){ra=texture2D(inputBuffer,vUvR).ra;ba=texture2D(inputBuffer,vUvB).ba;}
3427
3427
  #endif
3428
- outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ca = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", fa = class extends I {
3428
+ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ua = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", ca = class extends I {
3429
3429
  /**
3430
3430
  * Constructs a new chromatic aberration effect.
3431
3431
  *
@@ -3439,9 +3439,9 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ca
3439
3439
  radialModulation: t = !1,
3440
3440
  modulationOffset: i = 0.15
3441
3441
  } = {}) {
3442
- super("ChromaticAberrationEffect", ua, {
3443
- vertexShader: ca,
3444
- attributes: Q.CONVOLUTION,
3442
+ super("ChromaticAberrationEffect", la, {
3443
+ vertexShader: ua,
3444
+ attributes: V.CONVOLUTION,
3445
3445
  uniforms: /* @__PURE__ */ new Map([
3446
3446
  ["offset", new u(e)],
3447
3447
  ["modulationOffset", new u(i)]
@@ -3501,13 +3501,13 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ca
3501
3501
  setOffset(e) {
3502
3502
  this.offset = e;
3503
3503
  }
3504
- }, ha = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
3504
+ }, fa = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
3505
3505
  #ifdef INVERTED
3506
3506
  vec3 color=vec3(1.0-depth);
3507
3507
  #else
3508
3508
  vec3 color=vec3(depth);
3509
3509
  #endif
3510
- outputColor=vec4(color,inputColor.a);}`, da = class extends I {
3510
+ outputColor=vec4(color,inputColor.a);}`, ha = class extends I {
3511
3511
  /**
3512
3512
  * Constructs a new depth effect.
3513
3513
  *
@@ -3516,9 +3516,9 @@ outputColor=vec4(color,inputColor.a);}`, da = class extends I {
3516
3516
  * @param {Boolean} [options.inverted=false] - Whether the depth should be inverted.
3517
3517
  */
3518
3518
  constructor({ blendFunction: e = g.SRC, inverted: t = !1 } = {}) {
3519
- super("DepthEffect", ha, {
3519
+ super("DepthEffect", fa, {
3520
3520
  blendFunction: e,
3521
- attributes: Q.DEPTH
3521
+ attributes: V.DEPTH
3522
3522
  }), this.inverted = t;
3523
3523
  }
3524
3524
  /**
@@ -3560,7 +3560,7 @@ outputColor=vec4(color,inputColor.a);}`, da = class extends I {
3560
3560
  MULTIPLY: 1,
3561
3561
  MULTIPLY_RGB_SET_ALPHA: 2,
3562
3562
  MULTIPLY_RGB: 3
3563
- }, va = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3563
+ }, da = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3564
3564
  uniform mediump sampler2D inputBuffer;
3565
3565
  #else
3566
3566
  uniform lowp sampler2D inputBuffer;
@@ -3608,11 +3608,11 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
3608
3608
  kernel16: new u(null),
3609
3609
  scale: new u(1)
3610
3610
  },
3611
- blending: W,
3611
+ blending: z,
3612
3612
  toneMapped: !1,
3613
3613
  depthWrite: !1,
3614
3614
  depthTest: !1,
3615
- fragmentShader: va,
3615
+ fragmentShader: da,
3616
3616
  vertexShader: ue
3617
3617
  }), t && (this.defines.FOREGROUND = "1"), this.generateKernel();
3618
3618
  }
@@ -3712,7 +3712,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
3712
3712
  setSize(e, t) {
3713
3713
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
3714
3714
  }
3715
- }, pa = `#include <common>
3715
+ }, va = `#include <common>
3716
3716
  #include <packing>
3717
3717
  #ifdef GL_FRAGMENT_PRECISION_HIGH
3718
3718
  uniform highp sampler2D depthBuffer;
@@ -3759,11 +3759,11 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
3759
3759
  focusDistance: new u(0),
3760
3760
  focusRange: new u(0)
3761
3761
  },
3762
- blending: W,
3762
+ blending: z,
3763
3763
  toneMapped: !1,
3764
3764
  depthWrite: !1,
3765
3765
  depthTest: !1,
3766
- fragmentShader: pa,
3766
+ fragmentShader: va,
3767
3767
  vertexShader: ue
3768
3768
  }), this.uniforms.focalLength = this.uniforms.focusRange, e !== null && this.copyCameraSettings(e);
3769
3769
  }
@@ -3790,7 +3790,7 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
3790
3790
  * @param {Texture} buffer - The depth texture.
3791
3791
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
3792
3792
  */
3793
- setDepthBuffer(e, t = V) {
3793
+ setDepthBuffer(e, t = W) {
3794
3794
  this.depthBuffer = e, this.depthPacking = t;
3795
3795
  }
3796
3796
  /**
@@ -3906,7 +3906,7 @@ void main(){float depth=readDepth(vUv);vec3 viewPosition=getViewPosition(vUv,dep
3906
3906
  const t = this.defines.PERSPECTIVE_CAMERA !== void 0;
3907
3907
  e instanceof Be ? t || (this.defines.PERSPECTIVE_CAMERA = !0, this.needsUpdate = !0) : t && (delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
3908
3908
  }
3909
- }, ga = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3909
+ }, pa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3910
3910
  uniform mediump sampler2D inputBuffer;
3911
3911
  #else
3912
3912
  uniform lowp sampler2D inputBuffer;
@@ -3962,11 +3962,11 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
3962
3962
  inputBuffer: new u(null),
3963
3963
  strength: new u(1)
3964
3964
  },
3965
- blending: W,
3965
+ blending: z,
3966
3966
  toneMapped: !1,
3967
3967
  depthWrite: !1,
3968
3968
  depthTest: !1,
3969
- fragmentShader: ga,
3969
+ fragmentShader: pa,
3970
3970
  vertexShader: ue
3971
3971
  }), this.colorChannel = fe.RED, this.maskFunction = Mt.DISCARD;
3972
3972
  }
@@ -4142,7 +4142,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
4142
4142
  initialize(e, t, i) {
4143
4143
  i !== void 0 && i !== Y && (this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
4144
4144
  }
4145
- }, ma = `#ifdef FRAMEBUFFER_PRECISION_HIGH
4145
+ }, ga = `#ifdef FRAMEBUFFER_PRECISION_HIGH
4146
4146
  uniform mediump sampler2D nearColorBuffer;uniform mediump sampler2D farColorBuffer;
4147
4147
  #else
4148
4148
  uniform lowp sampler2D nearColorBuffer;uniform lowp sampler2D farColorBuffer;
@@ -4156,7 +4156,7 @@ vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,colorFar.a);cocNearFar.x=min(
4156
4156
  #else
4157
4157
  vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,texture2D(farCoCBuffer,uv).g);cocNearFar=min(cocNearFar*scale,1.0);colorFar.a*=cocNearFar.y;
4158
4158
  #endif
4159
- vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, Aa = /* @__PURE__ */ new F(), xa = class extends I {
4159
+ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, ma = /* @__PURE__ */ new F(), Aa = class extends I {
4160
4160
  /**
4161
4161
  * Constructs a new depth of field effect.
4162
4162
  *
@@ -4189,9 +4189,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4189
4189
  resolutionX: h = c || D.AUTO_SIZE,
4190
4190
  resolutionY: d = f || D.AUTO_SIZE
4191
4191
  } = {}) {
4192
- super("DepthOfFieldEffect", ma, {
4192
+ super("DepthOfFieldEffect", ga, {
4193
4193
  blendFunction: t,
4194
- attributes: Q.DEPTH,
4194
+ attributes: V.DEPTH,
4195
4195
  uniforms: /* @__PURE__ */ new Map([
4196
4196
  ["nearColorBuffer", new u(null)],
4197
4197
  ["farColorBuffer", new u(null)],
@@ -4327,7 +4327,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4327
4327
  * @return {Number} The focus distance in world units.
4328
4328
  */
4329
4329
  calculateFocusDistance(e) {
4330
- return this.camera.getWorldPosition(Aa).distanceTo(e);
4330
+ return this.camera.getWorldPosition(ma).distanceTo(e);
4331
4331
  }
4332
4332
  /**
4333
4333
  * Sets the depth texture.
@@ -4335,7 +4335,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4335
4335
  * @param {Texture} depthTexture - A depth texture.
4336
4336
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
4337
4337
  */
4338
- setDepthTexture(e, t = V) {
4338
+ setDepthTexture(e, t = W) {
4339
4339
  this.cocMaterial.depthBuffer = e, this.cocMaterial.depthPacking = t;
4340
4340
  }
4341
4341
  /**
@@ -4375,7 +4375,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4375
4375
  initialize(e, t, i) {
4376
4376
  this.cocPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.bokehNearBasePass.initialize(e, t, i), this.bokehNearFillPass.initialize(e, t, i), this.bokehFarBasePass.initialize(e, t, i), this.bokehFarFillPass.initialize(e, t, i), this.blurPass.initialize(e, t, Y), e.capabilities.logarithmicDepthBuffer && (this.cocPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTarget.texture.type = i, this.renderTargetNear.texture.type = i, this.renderTargetFar.texture.type = i, this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S, this.renderTargetNear.texture.colorSpace = S, this.renderTargetFar.texture.colorSpace = S, this.renderTargetMasked.texture.colorSpace = S));
4377
4377
  }
4378
- }, Da = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Ta = class extends I {
4378
+ }, xa = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Da = class extends I {
4379
4379
  /**
4380
4380
  * Constructs a new dot screen effect.
4381
4381
  *
@@ -4385,7 +4385,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4385
4385
  * @param {Number} [options.scale=1.0] - The scale of the dot pattern.
4386
4386
  */
4387
4387
  constructor({ blendFunction: e, angle: t = Math.PI * 0.5, scale: i = 1 } = {}) {
4388
- super("DotScreenEffect", Da, {
4388
+ super("DotScreenEffect", xa, {
4389
4389
  blendFunction: e,
4390
4390
  uniforms: /* @__PURE__ */ new Map([
4391
4391
  ["angle", new u(new p())],
@@ -4433,9 +4433,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4433
4433
  set scale(e) {
4434
4434
  this.uniforms.get("scale").value = e;
4435
4435
  }
4436
- }, wa = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
4436
+ }, Ta = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
4437
4437
  #define ONE_OVER_TWELVE 0.08333333333333333
4438
- varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, Ea = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", Sa = class extends I {
4438
+ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, wa = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", Ea = class extends I {
4439
4439
  /**
4440
4440
  * Constructs a new FXAA effect.
4441
4441
  *
@@ -4443,8 +4443,8 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4443
4443
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
4444
4444
  */
4445
4445
  constructor({ blendFunction: e = g.SRC } = {}) {
4446
- super("FXAAEffect", wa, {
4447
- vertexShader: Ea,
4446
+ super("FXAAEffect", Ta, {
4447
+ vertexShader: wa,
4448
4448
  blendFunction: e,
4449
4449
  defines: /* @__PURE__ */ new Map([
4450
4450
  ["EDGE_THRESHOLD_MIN", "0.0312"],
@@ -4498,7 +4498,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4498
4498
  set samples(e) {
4499
4499
  this.defines.set("SAMPLES", e.toFixed(0)), this.setChanged();
4500
4500
  }
4501
- }, Ca = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ma = class extends I {
4501
+ }, Sa = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ca = class extends I {
4502
4502
  /**
4503
4503
  * Constructs a new gamma correction effect.
4504
4504
  *
@@ -4507,7 +4507,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4507
4507
  * @param {Number} [options.gamma=2.0] - The gamma factor.
4508
4508
  */
4509
4509
  constructor({ blendFunction: e = g.SRC, gamma: t = 2 } = {}) {
4510
- super("GammaCorrectionEffect", Ca, {
4510
+ super("GammaCorrectionEffect", Sa, {
4511
4511
  blendFunction: e,
4512
4512
  uniforms: /* @__PURE__ */ new Map([
4513
4513
  ["gamma", new u(t)]
@@ -4520,10 +4520,10 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4520
4520
  CONSTANT_MILD: 2,
4521
4521
  CONSTANT_WILD: 3
4522
4522
  };
4523
- function ya(e, t, i) {
4523
+ function Ma(e, t, i) {
4524
4524
  const r = /* @__PURE__ */ new Map([
4525
4525
  [rt, 1],
4526
- [_i, 2],
4526
+ [qi, 2],
4527
4527
  [H, 4]
4528
4528
  ]);
4529
4529
  let a;
@@ -4550,13 +4550,13 @@ var et = class extends it {
4550
4550
  * @param {Number} [type=UnsignedByteType] - The texture type.
4551
4551
  */
4552
4552
  constructor(e, t, i = rt, r = Y) {
4553
- super(ya(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
4553
+ super(Ma(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
4554
4554
  }
4555
- }, Ba = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", We = "Glitch.Generated";
4555
+ }, ya = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", We = "Glitch.Generated";
4556
4556
  function Z(e, t) {
4557
4557
  return e + Math.random() * (t - e);
4558
4558
  }
4559
- var Pa = class extends I {
4559
+ var Ba = class extends I {
4560
4560
  /**
4561
4561
  * Constructs a new glitch effect.
4562
4562
  *
@@ -4581,7 +4581,7 @@ var Pa = class extends I {
4581
4581
  perturbationMap: s = null,
4582
4582
  dtSize: o = 64
4583
4583
  } = {}) {
4584
- if (super("GlitchEffect", Ba, {
4584
+ if (super("GlitchEffect", ya, {
4585
4585
  uniforms: /* @__PURE__ */ new Map([
4586
4586
  ["perturbationMap", new u(null)],
4587
4587
  ["columns", new u(a)],
@@ -4948,7 +4948,7 @@ var Pa = class extends I {
4948
4948
  const e = this.perturbationMap;
4949
4949
  e !== null && e.name === We && e.dispose();
4950
4950
  }
4951
- }, Ia = `#include <common>
4951
+ }, Pa = `#include <common>
4952
4952
  #include <dithering_pars_fragment>
4953
4953
  #ifdef FRAMEBUFFER_PRECISION_HIGH
4954
4954
  uniform mediump sampler2D inputBuffer;
@@ -4980,11 +4980,11 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
4980
4980
  exposure: new u(1),
4981
4981
  clampMax: new u(1)
4982
4982
  },
4983
- blending: W,
4983
+ blending: z,
4984
4984
  toneMapped: !1,
4985
4985
  depthWrite: !1,
4986
4986
  depthTest: !1,
4987
- fragmentShader: Ia,
4987
+ fragmentShader: Pa,
4988
4988
  vertexShader: ue
4989
4989
  });
4990
4990
  }
@@ -5348,12 +5348,12 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
5348
5348
  const n = this.scene, s = this.camera, o = this.selection, l = s.layers.mask, c = n.background, f = e.shadowMap.autoUpdate, h = this.renderToScreen ? null : t;
5349
5349
  o !== null && s.layers.set(o.getLayer()), this.skipShadowMapUpdate && (e.shadowMap.autoUpdate = !1), (this.ignoreBackground || this.clearPass.overrideClearColor !== null) && (n.background = null), this.clearPass.enabled && this.clearPass.render(e, t), e.setRenderTarget(h), this.overrideMaterialManager !== null ? this.overrideMaterialManager.render(e, n, s) : e.render(n, s), s.layers.mask = l, n.background = c, e.shadowMap.autoUpdate = f;
5350
5350
  }
5351
- }, Ra = `#ifdef FRAMEBUFFER_PRECISION_HIGH
5351
+ }, Ia = `#ifdef FRAMEBUFFER_PRECISION_HIGH
5352
5352
  uniform mediump sampler2D map;
5353
5353
  #else
5354
5354
  uniform lowp sampler2D map;
5355
5355
  #endif
5356
- void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new F(), Ut = /* @__PURE__ */ new O(), ba = class extends I {
5356
+ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new F(), Ut = /* @__PURE__ */ new O(), Ra = class extends I {
5357
5357
  /**
5358
5358
  * Constructs a new god rays effect.
5359
5359
  *
@@ -5391,9 +5391,9 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5391
5391
  resolutionX: A = d,
5392
5392
  resolutionY: m = v
5393
5393
  } = {}) {
5394
- super("GodRaysEffect", Ra, {
5394
+ super("GodRaysEffect", Ia, {
5395
5395
  blendFunction: i,
5396
- attributes: Q.DEPTH,
5396
+ attributes: V.DEPTH,
5397
5397
  uniforms: /* @__PURE__ */ new Map([
5398
5398
  ["map", new u(null)]
5399
5399
  ])
@@ -5572,7 +5572,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5572
5572
  * @param {Texture} depthTexture - A depth texture.
5573
5573
  * @param {Number} [depthPacking=BasicDepthPacking] - The depth packing.
5574
5574
  */
5575
- setDepthTexture(e, t = V) {
5575
+ setDepthTexture(e, t = W) {
5576
5576
  this.copyPass.fullscreenMaterial.depthBuffer = e, this.copyPass.fullscreenMaterial.depthPacking = t;
5577
5577
  }
5578
5578
  /**
@@ -5613,7 +5613,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5613
5613
  initialize(e, t, i) {
5614
5614
  this.blurPass.initialize(e, t, i), this.renderPassLight.initialize(e, t, i), this.copyPass.initialize(e, t, i), this.godRaysPass.initialize(e, t, i), i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, this.renderTargetLight.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTargetA.texture.colorSpace = S, this.renderTargetB.texture.colorSpace = S, this.renderTargetLight.texture.colorSpace = S));
5615
5615
  }
5616
- }, Ua = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Fa = class extends I {
5616
+ }, ba = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Ua = class extends I {
5617
5617
  /**
5618
5618
  * Constructs a new grid effect.
5619
5619
  *
@@ -5623,7 +5623,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5623
5623
  * @param {Number} [options.lineWidth=0.0] - The line width of the grid pattern.
5624
5624
  */
5625
5625
  constructor({ blendFunction: e = g.OVERLAY, scale: t = 1, lineWidth: i = 0 } = {}) {
5626
- super("GridEffect", Ua, {
5626
+ super("GridEffect", ba, {
5627
5627
  blendFunction: e,
5628
5628
  uniforms: /* @__PURE__ */ new Map([
5629
5629
  ["scale", new u(new p())],
@@ -5700,7 +5700,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5700
5700
  const i = e / t, r = this.scale * (t * 0.125);
5701
5701
  this.uniforms.get("scale").value.set(i * r, r), this.uniforms.get("lineWidth").value = r / t + this.lineWidth;
5702
5702
  }
5703
- }, La = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", Oa = class extends I {
5703
+ }, Fa = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", La = class extends I {
5704
5704
  /**
5705
5705
  * Constructs a new hue/saturation effect.
5706
5706
  *
@@ -5710,7 +5710,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5710
5710
  * @param {Number} [options.saturation=0.0] - The saturation factor, ranging from -1 to 1, where 0 means no change.
5711
5711
  */
5712
5712
  constructor({ blendFunction: e = g.SRC, hue: t = 0, saturation: i = 0 } = {}) {
5713
- super("HueSaturationEffect", La, {
5713
+ super("HueSaturationEffect", Fa, {
5714
5714
  blendFunction: e,
5715
5715
  uniforms: /* @__PURE__ */ new Map([
5716
5716
  ["hue", new u(new F())],
@@ -5782,7 +5782,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5782
5782
  setHue(e) {
5783
5783
  this.hue = e;
5784
5784
  }
5785
- }, Na = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Ha = class extends I {
5785
+ }, Oa = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Na = class extends I {
5786
5786
  /**
5787
5787
  * Constructs a new lens distortion effect.
5788
5788
  *
@@ -5798,7 +5798,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5798
5798
  focalLength: i = new p(1, 1),
5799
5799
  skew: r = 0
5800
5800
  } = {}) {
5801
- super("LensDistortionEffect", Na, {
5801
+ super("LensDistortionEffect", Oa, {
5802
5802
  uniforms: /* @__PURE__ */ new Map([
5803
5803
  ["distortion", new u(e)],
5804
5804
  ["principalPoint", new u(t)],
@@ -5851,7 +5851,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5851
5851
  set skew(e) {
5852
5852
  this.uniforms.get("skew").value = e;
5853
5853
  }
5854
- }, za = `#ifdef LUT_PRECISION_HIGH
5854
+ }, Ha = `#ifdef LUT_PRECISION_HIGH
5855
5855
  #ifdef GL_FRAGMENT_PRECISION_HIGH
5856
5856
  uniform highp sampler2D lut;
5857
5857
  #else
@@ -5860,7 +5860,7 @@ uniform mediump sampler2D lut;
5860
5860
  #else
5861
5861
  uniform lowp sampler2D lut;
5862
5862
  #endif
5863
- void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, Ga = class extends I {
5863
+ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, za = class extends I {
5864
5864
  /**
5865
5865
  * Constructs a new color grading effect.
5866
5866
  *
@@ -5869,7 +5869,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5869
5869
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
5870
5870
  */
5871
5871
  constructor(e, { blendFunction: t = g.SRC } = {}) {
5872
- super("LUT1DEffect", za, {
5872
+ super("LUT1DEffect", Ha, {
5873
5873
  blendFunction: t,
5874
5874
  uniforms: /* @__PURE__ */ new Map([["lut", new u(null)]])
5875
5875
  }), this.lut = e;
@@ -5933,8 +5933,8 @@ var le = class mi {
5933
5933
  a = t.data;
5934
5934
  return new mi(i, r, a);
5935
5935
  }
5936
- }, ka = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;switch(t.operation){case O.SCALE_UP:r=v.expand(r,t.size);break}postMessage(r,[r.buffer]),close()});})();
5937
- `, Lt = /* @__PURE__ */ new k(), He = class je extends Ze {
5936
+ }, Ga = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;t.operation===O.SCALE_UP&&(r=v.expand(r,t.size)),postMessage(r,[r.buffer]),close()});})();
5937
+ `, Lt = /* @__PURE__ */ new Q(), He = class je extends Ze {
5938
5938
  /**
5939
5939
  * Constructs a cubic 3D lookup texture.
5940
5940
  *
@@ -5964,7 +5964,7 @@ var le = class mi {
5964
5964
  const r = this.image;
5965
5965
  let a;
5966
5966
  return t <= r.width ? a = Promise.reject(new Error("The target size must be greater than the current size")) : a = new Promise((n, s) => {
5967
- const o = URL.createObjectURL(new Blob([ka], {
5967
+ const o = URL.createObjectURL(new Blob([Ga], {
5968
5968
  type: "text/javascript"
5969
5969
  })), l = new Worker(o);
5970
5970
  l.addEventListener("error", (f) => s(f.error)), l.addEventListener("message", (f) => {
@@ -6128,7 +6128,7 @@ var le = class mi {
6128
6128
  const n = new je(i, t);
6129
6129
  return n.name = "neutral", n;
6130
6130
  }
6131
- }, Qa = `uniform vec3 scale;uniform vec3 offset;
6131
+ }, ka = `uniform vec3 scale;uniform vec3 offset;
6132
6132
  #ifdef CUSTOM_INPUT_DOMAIN
6133
6133
  uniform vec3 domainMin;uniform vec3 domainMax;
6134
6134
  #endif
@@ -6191,7 +6191,7 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
6191
6191
  tetrahedralInterpolation: i = !1,
6192
6192
  inputColorSpace: r = S
6193
6193
  } = {}) {
6194
- super("LUT3DEffect", Qa, {
6194
+ super("LUT3DEffect", ka, {
6195
6195
  blendFunction: t,
6196
6196
  uniforms: /* @__PURE__ */ new Map([
6197
6197
  ["lut", new u(null)],
@@ -6326,18 +6326,18 @@ outputColor=vec4(c,inputColor.a);}`, Ot = class extends I {
6326
6326
  }, Ee = {
6327
6327
  DEFAULT: 0,
6328
6328
  ESKIL: 1
6329
- }, Va = {
6329
+ }, Qa = {
6330
6330
  DERIVATIVES: "derivatives",
6331
6331
  FRAG_DEPTH: "fragDepth",
6332
6332
  DRAW_BUFFERS: "drawBuffers",
6333
6333
  SHADER_TEXTURE_LOD: "shaderTextureLOD"
6334
- }, Wa = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
6334
+ }, Va = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
6335
6335
  #ifdef PREMULTIPLY
6336
6336
  outputColor=vec4(min(inputColor.rgb*noise,vec3(1.0)),inputColor.a);
6337
6337
  #else
6338
6338
  outputColor=vec4(noise,inputColor.a);
6339
6339
  #endif
6340
- }`, Ya = class extends I {
6340
+ }`, Wa = class extends I {
6341
6341
  /**
6342
6342
  * Constructs a new noise effect.
6343
6343
  *
@@ -6346,7 +6346,7 @@ outputColor=vec4(noise,inputColor.a);
6346
6346
  * @param {Boolean} [options.premultiply=false] - Whether the noise should be multiplied with the input colors prior to blending.
6347
6347
  */
6348
6348
  constructor({ blendFunction: e = g.SCREEN, premultiply: t = !1 } = {}) {
6349
- super("NoiseEffect", Wa, { blendFunction: e }), this.premultiply = t;
6349
+ super("NoiseEffect", Va, { blendFunction: e }), this.premultiply = t;
6350
6350
  }
6351
6351
  /**
6352
6352
  * Indicates whether noise will be multiplied with the input colors prior to blending.
@@ -6377,7 +6377,7 @@ outputColor=vec4(noise,inputColor.a);
6377
6377
  setPremultiplied(e) {
6378
6378
  this.premultiply = e;
6379
6379
  }
6380
- }, Ka = `#include <packing>
6380
+ }, Ya = `#include <packing>
6381
6381
  #include <clipping_planes_pars_fragment>
6382
6382
  #ifdef GL_FRAGMENT_PRECISION_HIGH
6383
6383
  uniform highp sampler2D depthBuffer;
@@ -6402,7 +6402,7 @@ float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);
6402
6402
  #else
6403
6403
  float viewZ=orthographicDepthToViewZ(depth,cameraNear,cameraFar);
6404
6404
  #endif
6405
- float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Xa = `#include <common>
6405
+ float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Ka = `#include <common>
6406
6406
  #include <morphtarget_pars_vertex>
6407
6407
  #include <skinning_pars_vertex>
6408
6408
  #include <clipping_planes_pars_vertex>
@@ -6432,12 +6432,12 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6432
6432
  cameraNear: new u(0.3),
6433
6433
  cameraFar: new u(1e3)
6434
6434
  },
6435
- blending: W,
6435
+ blending: z,
6436
6436
  toneMapped: !1,
6437
6437
  depthWrite: !1,
6438
6438
  depthTest: !1,
6439
- fragmentShader: Ka,
6440
- vertexShader: Xa
6439
+ fragmentShader: Ya,
6440
+ vertexShader: Ka
6441
6441
  }), this.depthBuffer = e, this.depthPacking = ae, this.copyCameraSettings(t);
6442
6442
  }
6443
6443
  /**
@@ -6483,7 +6483,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6483
6483
  copyCameraSettings(e) {
6484
6484
  e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Be ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
6485
6485
  }
6486
- }, Za = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", ja = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends T {
6486
+ }, Xa = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", Za = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends T {
6487
6487
  /**
6488
6488
  * Constructs a new outline material.
6489
6489
  *
@@ -6497,12 +6497,12 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6497
6497
  inputBuffer: new u(null),
6498
6498
  texelSize: new u(new p())
6499
6499
  },
6500
- blending: W,
6500
+ blending: z,
6501
6501
  toneMapped: !1,
6502
6502
  depthWrite: !1,
6503
6503
  depthTest: !1,
6504
- fragmentShader: Za,
6505
- vertexShader: ja
6504
+ fragmentShader: Xa,
6505
+ vertexShader: Za
6506
6506
  }), this.uniforms.texelSize.value.set(e.x, e.y), this.uniforms.maskTexture = this.uniforms.inputBuffer;
6507
6507
  }
6508
6508
  /**
@@ -6656,9 +6656,9 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6656
6656
  */
6657
6657
  initialize(e, t, i) {
6658
6658
  const r = e.capabilities.reversedDepthBuffer ? 0 : 16777215, a = this.renderPass.clearPass;
6659
- a.overrideClearColor = new k(r), a.overrideClearAlpha = 1;
6659
+ a.overrideClearColor = new Q(r), a.overrideClearAlpha = 1;
6660
6660
  }
6661
- }, Ja = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
6661
+ }, ja = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
6662
6662
  #ifdef USE_PATTERN
6663
6663
  uniform lowp sampler2D patternTexture;varying vec2 vUvPattern;
6664
6664
  #endif
@@ -6682,7 +6682,7 @@ outputColor=vec4(color,alpha);
6682
6682
  #else
6683
6683
  outputColor=vec4(color,max(alpha,inputColor.a));
6684
6684
  #endif
6685
- }`, qa = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", _a = class extends I {
6685
+ }`, Ja = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", qa = class extends I {
6686
6686
  /**
6687
6687
  * Constructs a new outline effect.
6688
6688
  *
@@ -6724,22 +6724,22 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6724
6724
  resolutionX: x = A,
6725
6725
  resolutionY: y = m
6726
6726
  } = {}) {
6727
- super("OutlineEffect", Ja, {
6727
+ super("OutlineEffect", ja, {
6728
6728
  uniforms: /* @__PURE__ */ new Map([
6729
6729
  ["maskTexture", new u(null)],
6730
6730
  ["edgeTexture", new u(null)],
6731
6731
  ["edgeStrength", new u(n)],
6732
- ["visibleEdgeColor", new u(new k(o))],
6733
- ["hiddenEdgeColor", new u(new k(l))],
6732
+ ["visibleEdgeColor", new u(new Q(o))],
6733
+ ["hiddenEdgeColor", new u(new Q(l))],
6734
6734
  ["pulse", new u(1)],
6735
6735
  ["patternScale", new u(a)],
6736
6736
  ["patternTexture", new u(null)]
6737
6737
  ])
6738
6738
  }), this.blendMode.addEventListener("change", (ee) => {
6739
6739
  this.blendMode.blendFunction === g.ALPHA ? this.defines.set("ALPHA", "1") : this.defines.delete("ALPHA"), this.setChanged();
6740
- }), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new w(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new w(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new Ie(), this.clearPass.overrideClearColor = new k(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Bt(e, t), this.maskPass = new Ge(e, t, new xi(this.depthPass.texture, t));
6740
+ }), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new w(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new w(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new Ie(), this.clearPass.overrideClearColor = new Q(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Bt(e, t), this.maskPass = new Ge(e, t, new xi(this.depthPass.texture, t));
6741
6741
  const C = this.maskPass.clearPass;
6742
- C.overrideClearColor = new k(16777215), C.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: x, resolutionY: y, kernelSize: c }), this.blurPass.enabled = f;
6742
+ C.overrideClearColor = new Q(16777215), C.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: x, resolutionY: y, kernelSize: c }), this.blurPass.enabled = f;
6743
6743
  const E = this.blurPass.resolution;
6744
6744
  E.addEventListener("change", (ee) => this.setSize(E.baseWidth, E.baseHeight)), this.outlinePass = new _(new mt());
6745
6745
  const K = this.outlinePass.fullscreenMaterial;
@@ -6971,7 +6971,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6971
6971
  return this.uniforms.get("patternTexture").value;
6972
6972
  }
6973
6973
  set patternTexture(e) {
6974
- e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(qa)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
6974
+ e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(Ja)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
6975
6975
  }
6976
6976
  /**
6977
6977
  * Sets the pattern texture.
@@ -7073,14 +7073,14 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7073
7073
  initialize(e, t, i) {
7074
7074
  this.blurPass.initialize(e, t, Y), i !== void 0 && (this.depthPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.outlinePass.initialize(e, t, i));
7075
7075
  }
7076
- }, $a = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", es = class extends I {
7076
+ }, _a = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", $a = class extends I {
7077
7077
  /**
7078
7078
  * Constructs a new pixelation effect.
7079
7079
  *
7080
7080
  * @param {Object} [granularity=30.0] - The pixel granularity.
7081
7081
  */
7082
7082
  constructor(e = 30) {
7083
- super("PixelationEffect", $a, {
7083
+ super("PixelationEffect", _a, {
7084
7084
  uniforms: /* @__PURE__ */ new Map([
7085
7085
  ["active", new u(!1)],
7086
7086
  ["d", new u(new de())]
@@ -7131,7 +7131,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7131
7131
  const r = this.granularity, a = r / i.x, n = r / i.y;
7132
7132
  this.uniforms.get("d").value.set(a, n, 1 / a, 1 / n);
7133
7133
  }
7134
- }, ts = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
7134
+ }, es = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
7135
7135
  #ifdef MANUAL_DOF
7136
7136
  uniform vec4 dof;
7137
7137
  #endif
@@ -7159,7 +7159,7 @@ const int MAX_RING_SAMPLES=RINGS_INT*SAMPLES_INT;blur=clamp(blur,0.0,1.0);vec3 c
7159
7159
  #ifdef SHOW_FOCUS
7160
7160
  float edge=0.002*linearDepth;float m=clamp(smoothstep(0.0,edge,blur),0.0,1.0);float e=clamp(smoothstep(1.0-edge,1.0,blur),0.0,1.0);color=mix(color,vec3(1.0,0.5,0.0),(1.0-m)*0.6);color=mix(color,vec3(0.0,0.5,1.0),((1.0-e)-(1.0-m))*0.2);
7161
7161
  #endif
7162
- outputColor=vec4(color,inputColor.a);}`, is = class extends I {
7162
+ outputColor=vec4(color,inputColor.a);}`, ts = class extends I {
7163
7163
  /**
7164
7164
  * Constructs a new bokeh effect.
7165
7165
  *
@@ -7195,9 +7195,9 @@ outputColor=vec4(color,inputColor.a);}`, is = class extends I {
7195
7195
  manualDoF: d = !1,
7196
7196
  pentagon: v = !1
7197
7197
  } = {}) {
7198
- super("RealisticBokehEffect", ts, {
7198
+ super("RealisticBokehEffect", es, {
7199
7199
  blendFunction: e,
7200
- attributes: Q.CONVOLUTION | Q.DEPTH,
7200
+ attributes: V.CONVOLUTION | V.DEPTH,
7201
7201
  uniforms: /* @__PURE__ */ new Map([
7202
7202
  ["focus", new u(t)],
7203
7203
  ["focalLength", new u(i)],
@@ -7270,7 +7270,7 @@ outputColor=vec4(color,inputColor.a);}`, is = class extends I {
7270
7270
  set pentagon(e) {
7271
7271
  this.pentagon !== e && (e ? this.defines.set("PENTAGON", "1") : this.defines.delete("PENTAGON"), this.setChanged());
7272
7272
  }
7273
- }, rs = `uniform float count;
7273
+ }, is = `uniform float count;
7274
7274
  #ifdef SCROLL
7275
7275
  uniform float scrollSpeed;
7276
7276
  #endif
@@ -7278,7 +7278,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){f
7278
7278
  #ifdef SCROLL
7279
7279
  y+=time*scrollSpeed;
7280
7280
  #endif
7281
- vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, as = class extends I {
7281
+ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, rs = class extends I {
7282
7282
  /**
7283
7283
  * Constructs a new scanline effect.
7284
7284
  *
@@ -7288,7 +7288,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7288
7288
  * @param {Number} [options.scrollSpeed=0.0] - The scanline scroll speed.
7289
7289
  */
7290
7290
  constructor({ blendFunction: e = g.OVERLAY, density: t = 1.25, scrollSpeed: i = 0 } = {}) {
7291
- super("ScanlineEffect", rs, {
7291
+ super("ScanlineEffect", is, {
7292
7292
  blendFunction: e,
7293
7293
  uniforms: /* @__PURE__ */ new Map([
7294
7294
  ["count", new u(0)],
@@ -7345,7 +7345,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7345
7345
  setSize(e, t) {
7346
7346
  this.resolution.set(e, t), this.uniforms.get("count").value = Math.round(t * this.density);
7347
7347
  }
7348
- }, ss = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", ns = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", os = Math.PI * 0.5, Re = /* @__PURE__ */ new F(), Nt = /* @__PURE__ */ new F(), ls = class extends I {
7348
+ }, as = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", ss = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", ns = Math.PI * 0.5, Re = /* @__PURE__ */ new F(), Nt = /* @__PURE__ */ new F(), os = class extends I {
7349
7349
  /**
7350
7350
  * Constructs a new shock wave effect.
7351
7351
  *
@@ -7363,8 +7363,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7363
7363
  waveSize: a = 0.2,
7364
7364
  amplitude: n = 0.05
7365
7365
  } = {}) {
7366
- super("ShockWaveEffect", ss, {
7367
- vertexShader: ns,
7366
+ super("ShockWaveEffect", as, {
7367
+ vertexShader: ss,
7368
7368
  uniforms: /* @__PURE__ */ new Map([
7369
7369
  ["active", new u(!1)],
7370
7370
  ["center", new u(new p(0.5, 0.5))],
@@ -7478,12 +7478,12 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7478
7478
  const r = this.position, a = this.camera, n = this.uniforms, s = n.get("active");
7479
7479
  if (this.active) {
7480
7480
  const o = n.get("waveSize").value;
7481
- a.getWorldDirection(Re), Nt.copy(a.position).sub(r), s.value = Re.angleTo(Nt) > os, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), Re.copy(r).project(a), this.screenPosition.set((Re.x + 1) * 0.5, (Re.y + 1) * 0.5)), this.time += i * this.speed;
7481
+ a.getWorldDirection(Re), Nt.copy(a.position).sub(r), s.value = Re.angleTo(Nt) > ns, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), Re.copy(r).project(a), this.screenPosition.set((Re.x + 1) * 0.5, (Re.y + 1) * 0.5)), this.time += i * this.speed;
7482
7482
  const l = this.time - o;
7483
7483
  n.get("radius").value = l, l >= (n.get("maxRadius").value + o) * 2 && (this.active = !1, s.value = !1);
7484
7484
  }
7485
7485
  }
7486
- }, us = `#include <common>
7486
+ }, ls = `#include <common>
7487
7487
  #include <packing>
7488
7488
  #ifdef GL_FRAGMENT_PRECISION_HIGH
7489
7489
  uniform highp sampler2D depthBuffer0;uniform highp sampler2D depthBuffer1;
@@ -7542,11 +7542,11 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7542
7542
  depthBuffer1: new u(null),
7543
7543
  cameraNearFar: new u(new p(1, 1))
7544
7544
  },
7545
- blending: W,
7545
+ blending: z,
7546
7546
  toneMapped: !1,
7547
7547
  depthWrite: !1,
7548
7548
  depthTest: !1,
7549
- fragmentShader: us,
7549
+ fragmentShader: ls,
7550
7550
  vertexShader: ue
7551
7551
  }), this.depthMode = Pt;
7552
7552
  }
@@ -7573,7 +7573,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7573
7573
  * @param {Texture} buffer - The depth texture.
7574
7574
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
7575
7575
  */
7576
- setDepthBuffer0(e, t = V) {
7576
+ setDepthBuffer0(e, t = W) {
7577
7577
  this.depthBuffer0 = e, this.depthPacking0 = t;
7578
7578
  }
7579
7579
  /**
@@ -7599,7 +7599,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7599
7599
  * @param {Texture} buffer - The depth texture.
7600
7600
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
7601
7601
  */
7602
- setDepthBuffer1(e, t = V) {
7602
+ setDepthBuffer1(e, t = W) {
7603
7603
  this.depthBuffer1 = e, this.depthPacking1 = t;
7604
7604
  }
7605
7605
  /**
@@ -7684,7 +7684,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7684
7684
  set depthMode(e) {
7685
7685
  let t;
7686
7686
  switch (e) {
7687
- case qi:
7687
+ case Ji:
7688
7688
  t = "false";
7689
7689
  break;
7690
7690
  case Kt:
@@ -7699,13 +7699,13 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7699
7699
  case Pt:
7700
7700
  t = "d0 > d1";
7701
7701
  break;
7702
- case Ji:
7702
+ case ji:
7703
7703
  t = "d0 >= d1";
7704
7704
  break;
7705
- case ji:
7705
+ case Zi:
7706
7706
  t = "d0 <= d1";
7707
7707
  break;
7708
- case Zi:
7708
+ case Xi:
7709
7709
  default:
7710
7710
  t = "d0 < d1";
7711
7711
  break;
@@ -7747,7 +7747,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7747
7747
  copyCameraSettings(e) {
7748
7748
  e && (this.uniforms.cameraNearFar.value.set(e.near, e.far), e instanceof Be ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
7749
7749
  }
7750
- }, cs = class extends hi {
7750
+ }, us = class extends hi {
7751
7751
  /**
7752
7752
  * Constructs a new selective bloom effect.
7753
7753
  *
@@ -7756,7 +7756,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7756
7756
  * @param {Object} [options] - The options. See {@link BloomEffect} for details.
7757
7757
  */
7758
7758
  constructor(e, t, i) {
7759
- super(i), this.setAttributes(this.getAttributes() | Q.DEPTH), this.camera = t, this.depthPass = new Bt(e, t), this.clearPass = new Ie(!0, !1, !1), this.clearPass.overrideClearColor = new k(0), this.depthMaskPass = new _(new Di());
7759
+ super(i), this.setAttributes(this.getAttributes() | V.DEPTH), this.camera = t, this.depthPass = new Bt(e, t), this.clearPass = new Ie(!0, !1, !1), this.clearPass.overrideClearColor = new Q(0), this.depthMaskPass = new _(new Di());
7760
7760
  const r = this.depthMaskMaterial;
7761
7761
  r.copyCameraSettings(t), r.depthBuffer1 = this.depthPass.texture, r.depthPacking1 = ae, r.depthMode = vt, this.renderTargetMasked = new w(1, 1, { depthBuffer: !1 }), this.renderTargetMasked.texture.name = "Bloom.Masked", this.selection = new St(), this._inverted = !1, this._ignoreBackground = !1;
7762
7762
  }
@@ -7848,7 +7848,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7848
7848
  * @param {Texture} depthTexture - A depth texture.
7849
7849
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
7850
7850
  */
7851
- setDepthTexture(e, t = V) {
7851
+ setDepthTexture(e, t = W) {
7852
7852
  this.depthMaskMaterial.depthBuffer0 = e, this.depthMaskMaterial.depthPacking0 = t;
7853
7853
  }
7854
7854
  /**
@@ -7886,7 +7886,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7886
7886
  initialize(e, t, i) {
7887
7887
  super.initialize(e, t, i), this.clearPass.initialize(e, t, i), this.depthPass.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), e !== null && e.capabilities.logarithmicDepthBuffer && (this.depthMaskPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTargetMasked.texture.colorSpace = S));
7888
7888
  }
7889
- }, fs = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", hs = class extends I {
7889
+ }, cs = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", fs = class extends I {
7890
7890
  /**
7891
7891
  * Constructs a new sepia effect.
7892
7892
  *
@@ -7895,7 +7895,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7895
7895
  * @param {Number} [options.intensity=1.0] - The intensity of the effect.
7896
7896
  */
7897
7897
  constructor({ blendFunction: e, intensity: t = 1 } = {}) {
7898
- super("SepiaEffect", fs, {
7898
+ super("SepiaEffect", cs, {
7899
7899
  blendFunction: e,
7900
7900
  uniforms: /* @__PURE__ */ new Map([
7901
7901
  ["weightsR", new u(new F(0.393, 0.769, 0.189))],
@@ -7958,7 +7958,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Di = class e
7958
7958
  get weightsB() {
7959
7959
  return this.uniforms.get("weightsB").value;
7960
7960
  }
7961
- }, ds = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7961
+ }, hs = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7962
7962
  #if EDGE_DETECTION_MODE != 0
7963
7963
  varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
7964
7964
  #endif
@@ -8002,7 +8002,7 @@ float l=luminance(texture2D(inputBuffer,vUv).rgb);float lLeft=luminance(texture2
8002
8002
  #elif EDGE_DETECTION_MODE == 2
8003
8003
  vec4 delta;vec3 c=texture2D(inputBuffer,vUv).rgb;vec3 cLeft=texture2D(inputBuffer,vUv0).rgb;vec3 t=abs(c-cLeft);delta.x=max(max(t.r,t.g),t.b);vec3 cTop=texture2D(inputBuffer,vUv1).rgb;t=abs(c-cTop);delta.y=max(max(t.r,t.g),t.b);vec2 edges=step(threshold,delta.xy);if(dot(edges,vec2(1.0))==0.0){discard;}vec3 cRight=texture2D(inputBuffer,vUv2).rgb;t=abs(c-cRight);delta.z=max(max(t.r,t.g),t.b);vec3 cBottom=texture2D(inputBuffer,vUv3).rgb;t=abs(c-cBottom);delta.w=max(max(t.r,t.g),t.b);vec2 maxDelta=max(delta.xy,delta.zw);vec3 cLeftLeft=texture2D(inputBuffer,vUv4).rgb;t=abs(c-cLeftLeft);delta.z=max(max(t.r,t.g),t.b);vec3 cTopTop=texture2D(inputBuffer,vUv5).rgb;t=abs(c-cTopTop);delta.w=max(max(t.r,t.g),t.b);maxDelta=max(maxDelta.xy,delta.zw);float finalDelta=max(maxDelta.x,maxDelta.y);edges*=step(finalDelta,LOCAL_CONTRAST_ADAPTATION_FACTOR*delta.xy);gl_FragColor=vec4(edges,0.0,1.0);
8004
8004
  #endif
8005
- }`, vs = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
8005
+ }`, ds = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
8006
8006
  #if EDGE_DETECTION_MODE != 0
8007
8007
  varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
8008
8008
  #endif
@@ -8038,12 +8038,12 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
8038
8038
  predicationBuffer: new u(null),
8039
8039
  texelSize: new u(e)
8040
8040
  },
8041
- blending: W,
8041
+ blending: z,
8042
8042
  toneMapped: !1,
8043
8043
  depthWrite: !1,
8044
8044
  depthTest: !1,
8045
- fragmentShader: ds,
8046
- vertexShader: vs
8045
+ fragmentShader: hs,
8046
+ vertexShader: ds
8047
8047
  }), this.edgeDetectionMode = t;
8048
8048
  }
8049
8049
  /**
@@ -8069,7 +8069,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
8069
8069
  * @param {Texture} buffer - The depth texture.
8070
8070
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
8071
8071
  */
8072
- setDepthBuffer(e, t = V) {
8072
+ setDepthBuffer(e, t = W) {
8073
8073
  this.depthBuffer = e, this.depthPacking = t;
8074
8074
  }
8075
8075
  /**
@@ -8320,7 +8320,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends T {
8320
8320
  setSize(e, t) {
8321
8321
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
8322
8322
  }
8323
- }, ps = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
8323
+ }, vs = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
8324
8324
  #if __VERSION__ < 300
8325
8325
  #define round(v) floor(v + 0.5)
8326
8326
  #endif
@@ -8345,7 +8345,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8345
8345
  #if !defined(DISABLE_DIAG_DETECTION)
8346
8346
  }else{e.r=0.0;}
8347
8347
  #endif
8348
- }if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, gs = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", Ti = class extends T {
8348
+ }if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, ps = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", Ti = class extends T {
8349
8349
  /**
8350
8350
  * Constructs a new SMAA weights material.
8351
8351
  *
@@ -8378,12 +8378,12 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8378
8378
  resolution: new u(t),
8379
8379
  texelSize: new u(e)
8380
8380
  },
8381
- blending: W,
8381
+ blending: z,
8382
8382
  toneMapped: !1,
8383
8383
  depthWrite: !1,
8384
8384
  depthTest: !1,
8385
- fragmentShader: ps,
8386
- vertexShader: gs
8385
+ fragmentShader: vs,
8386
+ vertexShader: ps
8387
8387
  });
8388
8388
  }
8389
8389
  /**
@@ -8574,7 +8574,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8574
8574
  const i = this.uniforms;
8575
8575
  i.texelSize.value.set(1 / e, 1 / t), i.resolution.value.set(e, t);
8576
8576
  }
8577
- }, xt = "", Dt = "", ms = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", As = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", xs = class extends I {
8577
+ }, xt = "", Dt = "", gs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", ms = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", As = class extends I {
8578
8578
  /**
8579
8579
  * Constructs a new SMAA effect.
8580
8580
  *
@@ -8590,16 +8590,16 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8590
8590
  edgeDetectionMode: i = yt.COLOR,
8591
8591
  predicationMode: r = Ai.DISABLED
8592
8592
  } = {}) {
8593
- super("SMAAEffect", ms, {
8594
- vertexShader: As,
8593
+ super("SMAAEffect", gs, {
8594
+ vertexShader: ms,
8595
8595
  blendFunction: e,
8596
- attributes: Q.CONVOLUTION | Q.DEPTH,
8596
+ attributes: V.CONVOLUTION | V.DEPTH,
8597
8597
  uniforms: /* @__PURE__ */ new Map([
8598
8598
  ["weightMap", new u(null)]
8599
8599
  ])
8600
8600
  });
8601
8601
  let a, n;
8602
- arguments.length > 1 && (a = arguments[0], n = arguments[1], arguments.length > 2 && (t = arguments[2]), arguments.length > 3 && (i = arguments[3])), this.renderTargetEdges = new w(1, 1, { depthBuffer: !1 }), this.renderTargetEdges.texture.name = "SMAA.Edges", this.renderTargetWeights = this.renderTargetEdges.clone(), this.renderTargetWeights.texture.name = "SMAA.Weights", this.uniforms.get("weightMap").value = this.renderTargetWeights.texture, this.clearPass = new Ie(!0, !1, !1), this.clearPass.overrideClearColor = new k(0), this.clearPass.overrideClearAlpha = 1, this.edgeDetectionPass = new _(new At()), this.edgeDetectionMaterial.edgeDetectionMode = i, this.edgeDetectionMaterial.predicationMode = r, this.weightsPass = new _(new Ti());
8602
+ arguments.length > 1 && (a = arguments[0], n = arguments[1], arguments.length > 2 && (t = arguments[2]), arguments.length > 3 && (i = arguments[3])), this.renderTargetEdges = new w(1, 1, { depthBuffer: !1 }), this.renderTargetEdges.texture.name = "SMAA.Edges", this.renderTargetWeights = this.renderTargetEdges.clone(), this.renderTargetWeights.texture.name = "SMAA.Weights", this.uniforms.get("weightMap").value = this.renderTargetWeights.texture, this.clearPass = new Ie(!0, !1, !1), this.clearPass.overrideClearColor = new Q(0), this.clearPass.overrideClearAlpha = 1, this.edgeDetectionPass = new _(new At()), this.edgeDetectionMaterial.edgeDetectionMode = i, this.edgeDetectionMaterial.predicationMode = r, this.weightsPass = new _(new Ti());
8603
8603
  const s = new ve();
8604
8604
  s.onLoad = () => {
8605
8605
  const o = new qe(a);
@@ -8735,7 +8735,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8735
8735
  * @param {Texture} depthTexture - A depth texture.
8736
8736
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
8737
8737
  */
8738
- setDepthTexture(e, t = V) {
8738
+ setDepthTexture(e, t = W) {
8739
8739
  this.edgeDetectionMaterial.depthBuffer = e, this.edgeDetectionMaterial.depthPacking = t;
8740
8740
  }
8741
8741
  /**
@@ -8789,7 +8789,7 @@ function Fe(e, t, i) {
8789
8789
  function Le(e, t, i) {
8790
8790
  return Math.min(Math.max((e + t) / (t - i), 0), 1);
8791
8791
  }
8792
- var Ds = `#include <common>
8792
+ var xs = `#include <common>
8793
8793
  #include <packing>
8794
8794
  uniform vec2 cameraNearFar;
8795
8795
  #define cameraNear cameraNearFar.x
@@ -8856,7 +8856,7 @@ if(linearDepth<distanceCutoff.y){vec3 viewPosition=getViewPosition(vUv,depth,vie
8856
8856
  #ifdef LEGACY_INTENSITY
8857
8857
  ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8858
8858
  #endif
8859
- }gl_FragColor.r=ao;}`, Ts = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends T {
8859
+ }gl_FragColor.r=ao;}`, Ds = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends T {
8860
8860
  /**
8861
8861
  * Constructs a new SSAO material.
8862
8862
  *
@@ -8891,12 +8891,12 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8891
8891
  fade: new u(0.01),
8892
8892
  bias: new u(0)
8893
8893
  },
8894
- blending: W,
8894
+ blending: z,
8895
8895
  toneMapped: !1,
8896
8896
  depthWrite: !1,
8897
8897
  depthTest: !1,
8898
- fragmentShader: Ds,
8899
- vertexShader: Ts
8898
+ fragmentShader: xs,
8899
+ vertexShader: Ds
8900
8900
  }), this.copyCameraSettings(e), this.resolution = new p(), this.r = 1;
8901
8901
  }
8902
8902
  /**
@@ -8974,7 +8974,7 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8974
8974
  * @param {Texture} buffer - The depth texture.
8975
8975
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
8976
8976
  */
8977
- setDepthBuffer(e, t = V) {
8977
+ setDepthBuffer(e, t = W) {
8978
8978
  this.depthBuffer = e, this.depthPacking = t;
8979
8979
  }
8980
8980
  /**
@@ -9396,7 +9396,7 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
9396
9396
  t / r.image.height
9397
9397
  ), i.texelSize.value.set(1 / e, 1 / t), this.resolution.set(e, t), this.updateRadius();
9398
9398
  }
9399
- }, ws = `#include <packing>
9399
+ }, Ts = `#include <packing>
9400
9400
  #ifdef GL_FRAGMENT_PRECISION_HIGH
9401
9401
  uniform highp sampler2D depthBuffer;
9402
9402
  #else
@@ -9417,7 +9417,7 @@ vec3 n[4];n[0]=texture2D(normalBuffer,vUv0).rgb;n[1]=texture2D(normalBuffer,vUv1
9417
9417
  #else
9418
9418
  vec3 n[4];n[0]=vec3(0.0);n[1]=vec3(0.0);n[2]=vec3(0.0);n[3]=vec3(0.0);
9419
9419
  #endif
9420
- gl_FragColor=vec4(n[index],d[index]);}`, Es = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", Ei = class extends T {
9420
+ gl_FragColor=vec4(n[index],d[index]);}`, ws = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", Ei = class extends T {
9421
9421
  /**
9422
9422
  * Constructs a new depth downsampling material.
9423
9423
  */
@@ -9432,12 +9432,12 @@ gl_FragColor=vec4(n[index],d[index]);}`, Es = "uniform vec2 texelSize;varying ve
9432
9432
  normalBuffer: new u(null),
9433
9433
  texelSize: new u(new p())
9434
9434
  },
9435
- blending: W,
9435
+ blending: z,
9436
9436
  toneMapped: !1,
9437
9437
  depthWrite: !1,
9438
9438
  depthTest: !1,
9439
- fragmentShader: ws,
9440
- vertexShader: Es
9439
+ fragmentShader: Ts,
9440
+ vertexShader: ws
9441
9441
  });
9442
9442
  }
9443
9443
  /**
@@ -9463,7 +9463,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Es = "uniform vec2 texelSize;varying ve
9463
9463
  * @param {Texture} buffer - The depth texture.
9464
9464
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
9465
9465
  */
9466
- setDepthBuffer(e, t = V) {
9466
+ setDepthBuffer(e, t = W) {
9467
9467
  this.depthBuffer = e, this.depthPacking = t;
9468
9468
  }
9469
9469
  /**
@@ -9565,7 +9565,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Es = "uniform vec2 texelSize;varying ve
9565
9565
  * @param {Texture} depthTexture - A depth texture.
9566
9566
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
9567
9567
  */
9568
- setDepthTexture(e, t = V) {
9568
+ setDepthTexture(e, t = W) {
9569
9569
  this.fullscreenMaterial.depthBuffer = e, this.fullscreenMaterial.depthPacking = t;
9570
9570
  }
9571
9571
  /**
@@ -9602,7 +9602,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Es = "uniform vec2 texelSize;varying ve
9602
9602
  if (!(r.getExtension("EXT_color_buffer_float") || r.getExtension("EXT_color_buffer_half_float")))
9603
9603
  throw new Error("Rendering to float texture is not supported.");
9604
9604
  }
9605
- }, Ss = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
9605
+ }, Es = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
9606
9606
  #if defined(DEPTH_AWARE_UPSAMPLING) && defined(NORMAL_DEPTH)
9607
9607
  #ifdef GL_FRAGMENT_PRECISION_HIGH
9608
9608
  uniform highp sampler2D normalDepthBuffer;
@@ -9625,7 +9625,7 @@ outputColor=vec4(1.0-ao*(1.0-color),inputColor.a);
9625
9625
  #else
9626
9626
  outputColor=vec4(vec3(1.0-ao),inputColor.a);
9627
9627
  #endif
9628
- }`, Ht = 64, Cs = class extends I {
9628
+ }`, Ht = 64, Ss = class extends I {
9629
9629
  /**
9630
9630
  * Constructs a new SSAO effect.
9631
9631
  *
@@ -9687,9 +9687,9 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9687
9687
  resolutionX: ge = re,
9688
9688
  resolutionY: me = L
9689
9689
  } = {}) {
9690
- super("SSAOEffect", Ss, {
9690
+ super("SSAOEffect", Es, {
9691
9691
  blendFunction: i,
9692
- attributes: Q.DEPTH,
9692
+ attributes: V.DEPTH,
9693
9693
  defines: /* @__PURE__ */ new Map([
9694
9694
  ["THRESHOLD", "0.997"]
9695
9695
  ]),
@@ -9707,8 +9707,8 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9707
9707
  ne.addEventListener("change", (ke) => this.setSize(ne.baseWidth, ne.baseHeight)), this.camera = e, this.depthDownsamplingPass = new Si({ normalBuffer: t, resolutionScale: ie }), this.depthDownsamplingPass.enabled = n === null, this.ssaoPass = new _(new wi(e));
9708
9708
  const ce = new et(Ht, Ht, H);
9709
9709
  ce.wrapS = ce.wrapT = se;
9710
- const z = this.ssaoMaterial;
9711
- z.normalBuffer = t, z.noiseTexture = ce, z.minRadiusScale = m, z.samples = r, z.radius = y, z.rings = a, z.fade = K, z.bias = E, z.distanceThreshold = h, z.distanceFalloff = d, z.proximityThreshold = v, z.proximityFalloff = A, o !== void 0 && (z.worldDistanceThreshold = o), l !== void 0 && (z.worldDistanceFalloff = l), c !== void 0 && (z.worldProximityThreshold = c), f !== void 0 && (z.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
9710
+ const G = this.ssaoMaterial;
9711
+ G.normalBuffer = t, G.noiseTexture = ce, G.minRadiusScale = m, G.samples = r, G.radius = y, G.rings = a, G.fade = K, G.bias = E, G.distanceThreshold = h, G.distanceFalloff = d, G.proximityThreshold = v, G.proximityFalloff = A, o !== void 0 && (G.worldDistanceThreshold = o), l !== void 0 && (G.worldDistanceFalloff = l), c !== void 0 && (G.worldProximityThreshold = c), f !== void 0 && (G.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
9712
9712
  }
9713
9713
  set mainCamera(e) {
9714
9714
  this.camera = e, this.ssaoMaterial.copyCameraSettings(e);
@@ -9836,7 +9836,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9836
9836
  }
9837
9837
  set color(e) {
9838
9838
  const t = this.uniforms, i = this.defines;
9839
- e !== null ? i.has("COLORIZE") ? t.get("color").value.set(e) : (i.set("COLORIZE", "1"), t.get("color").value = new k(e), this.setChanged()) : i.has("COLORIZE") && (i.delete("COLORIZE"), t.get("color").value = null, this.setChanged());
9839
+ e !== null ? i.has("COLORIZE") ? t.get("color").value.set(e) : (i.set("COLORIZE", "1"), t.get("color").value = new Q(e), this.setChanged()) : i.has("COLORIZE") && (i.delete("COLORIZE"), t.get("color").value = null, this.setChanged());
9840
9840
  }
9841
9841
  /**
9842
9842
  * The luminance influence factor. Range: [0.0, 1.0].
@@ -9904,7 +9904,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9904
9904
  * @param {Texture} depthTexture - A depth texture.
9905
9905
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
9906
9906
  */
9907
- setDepthTexture(e, t = V) {
9907
+ setDepthTexture(e, t = W) {
9908
9908
  this.depthDownsamplingPass.setDepthTexture(e, t), this.ssaoMaterial.depthBuffer = e, this.ssaoMaterial.depthPacking = t;
9909
9909
  }
9910
9910
  /**
@@ -9945,7 +9945,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9945
9945
  this.depthDownsamplingPass.enabled = !1;
9946
9946
  }
9947
9947
  }
9948
- }, Ms = `#ifdef TEXTURE_PRECISION_HIGH
9948
+ }, Cs = `#ifdef TEXTURE_PRECISION_HIGH
9949
9949
  uniform mediump sampler2D map;
9950
9950
  #else
9951
9951
  uniform lowp sampler2D map;
@@ -9956,7 +9956,7 @@ vec4 texel=texture2D(map,vUv2);
9956
9956
  #else
9957
9957
  vec4 texel=texture2D(map,uv);
9958
9958
  #endif
9959
- outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, ys = `#ifdef ASPECT_CORRECTION
9959
+ outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, Ms = `#ifdef ASPECT_CORRECTION
9960
9960
  uniform float scale;
9961
9961
  #else
9962
9962
  uniform mat3 uvTransform;
@@ -9967,7 +9967,7 @@ vUv2=uv*vec2(aspect,1.0)*scale;
9967
9967
  #else
9968
9968
  vUv2=(uvTransform*vec3(uv,1.0)).xy;
9969
9969
  #endif
9970
- }`, Bs = class extends I {
9970
+ }`, ys = class extends I {
9971
9971
  /**
9972
9972
  * Constructs a new texture effect.
9973
9973
  *
@@ -9977,7 +9977,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9977
9977
  * @param {Boolean} [options.aspectCorrection=false] - Deprecated. Adjust the texture's offset, repeat and center instead.
9978
9978
  */
9979
9979
  constructor({ blendFunction: e, texture: t = null, aspectCorrection: i = !1 } = {}) {
9980
- super("TextureEffect", Ms, {
9980
+ super("TextureEffect", Cs, {
9981
9981
  blendFunction: e,
9982
9982
  defines: /* @__PURE__ */ new Map([
9983
9983
  ["TEXEL", "texel"]
@@ -9999,7 +9999,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9999
9999
  }
10000
10000
  set texture(e) {
10001
10001
  const t = this.texture, i = this.uniforms, r = this.defines;
10002
- t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(ys)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
10002
+ t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(Ms)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
10003
10003
  }
10004
10004
  /**
10005
10005
  * Returns the texture.
@@ -10068,14 +10068,14 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
10068
10068
  update(e, t, i) {
10069
10069
  this.texture.matrixAutoUpdate && this.texture.updateMatrix();
10070
10070
  }
10071
- }, Ps = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10071
+ }, Bs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10072
10072
  uniform mediump sampler2D inputBuffer;
10073
10073
  #else
10074
10074
  uniform lowp sampler2D inputBuffer;
10075
10075
  #endif
10076
10076
  uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;float linearGradientMask(const in float x){return smoothstep(maskParams.x,maskParams.y,x)-smoothstep(maskParams.w,maskParams.z,x);}void main(){vec2 dUv=vOffset*(1.0-linearGradientMask(vUv2.y));vec4 sum=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y-dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y-dUv.y));gl_FragColor=sum*0.25;
10077
10077
  #include <colorspace_fragment>
10078
- }`, Is = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Ci = class extends $e {
10078
+ }`, Ps = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Ci = class extends $e {
10079
10079
  /**
10080
10080
  * Constructs a new tilt shift blur material.
10081
10081
  *
@@ -10092,7 +10092,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10092
10092
  focusArea: r = 0.4,
10093
10093
  feather: a = 0.3
10094
10094
  } = {}) {
10095
- super(), this.fragmentShader = Ps, this.vertexShader = Is, this.kernelSize = e, this.uniforms.aspect = new u(1), this.uniforms.rotation = new u(new p()), this.uniforms.maskParams = new u(new de()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
10095
+ super(), this.fragmentShader = Bs, this.vertexShader = Ps, this.kernelSize = e, this.uniforms.aspect = new u(1), this.uniforms.rotation = new u(new p()), this.uniforms.maskParams = new u(new de()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
10096
10096
  }
10097
10097
  /**
10098
10098
  * The relative offset of the focus area.
@@ -10187,12 +10187,12 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10187
10187
  } = {}) {
10188
10188
  super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new Ci({ kernelSize: a, offset: e, rotation: t, focusArea: i, feather: r });
10189
10189
  }
10190
- }, Rs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10190
+ }, Is = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10191
10191
  uniform mediump sampler2D map;
10192
10192
  #else
10193
10193
  uniform lowp sampler2D map;
10194
10194
  #endif
10195
- uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, bs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", Us = class extends I {
10195
+ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Rs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", bs = class extends I {
10196
10196
  /**
10197
10197
  * Constructs a new tilt shift Effect
10198
10198
  *
@@ -10219,8 +10219,8 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
10219
10219
  resolutionX: o = D.AUTO_SIZE,
10220
10220
  resolutionY: l = D.AUTO_SIZE
10221
10221
  } = {}) {
10222
- super("TiltShiftEffect", Rs, {
10223
- vertexShader: bs,
10222
+ super("TiltShiftEffect", Is, {
10223
+ vertexShader: Rs,
10224
10224
  blendFunction: e,
10225
10225
  uniforms: /* @__PURE__ */ new Map([
10226
10226
  ["rotation", new u(new p())],
@@ -10334,7 +10334,7 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
10334
10334
  initialize(e, t, i) {
10335
10335
  this.blurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === S && (this.renderTarget.texture.colorSpace = S));
10336
10336
  }
10337
- }, Fs = `#include <packing>
10337
+ }, Us = `#include <packing>
10338
10338
  #define packFloatToRGBA(v) packDepthToRGBA(v)
10339
10339
  #define unpackRGBAToFloat(v) unpackRGBAToDepth(v)
10340
10340
  uniform lowp sampler2D luminanceBuffer0;uniform lowp sampler2D luminanceBuffer1;uniform float minLuminance;uniform float deltaTime;uniform float tau;varying vec2 vUv;void main(){float l0=unpackRGBAToFloat(texture2D(luminanceBuffer0,vUv));
@@ -10363,11 +10363,11 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10363
10363
  extensions: {
10364
10364
  shaderTextureLOD: !0
10365
10365
  },
10366
- blending: W,
10366
+ blending: z,
10367
10367
  toneMapped: !1,
10368
10368
  depthWrite: !1,
10369
10369
  depthTest: !1,
10370
- fragmentShader: Fs,
10370
+ fragmentShader: Us,
10371
10371
  vertexShader: ue
10372
10372
  });
10373
10373
  }
@@ -10574,7 +10574,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10574
10574
  render(e, t, i, r, a) {
10575
10575
  this.fullscreenMaterial.deltaTime = r, e.setRenderTarget(this.renderToScreen ? null : this.renderTargetAdapted), e.render(this.scene, this.camera), this.copyPass.render(e, this.renderTargetAdapted);
10576
10576
  }
10577
- }, Ls = `#include <tonemapping_pars_fragment>
10577
+ }, Fs = `#include <tonemapping_pars_fragment>
10578
10578
  uniform float whitePoint;
10579
10579
  #if TONE_MAPPING_MODE == 2 || TONE_MAPPING_MODE == 3
10580
10580
  uniform float middleGrey;
@@ -10607,7 +10607,7 @@ outputColor=vec4(Uncharted2ToneMapping(inputColor.rgb),inputColor.a);
10607
10607
  #else
10608
10608
  outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10609
10609
  #endif
10610
- }`, Os = class extends I {
10610
+ }`, Ls = class extends I {
10611
10611
  /**
10612
10612
  * Constructs a new tone mapping effect.
10613
10613
  *
@@ -10637,7 +10637,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10637
10637
  averageLuminance: l = 1,
10638
10638
  adaptationRate: c = 1
10639
10639
  } = {}) {
10640
- super("ToneMappingEffect", Ls, {
10640
+ super("ToneMappingEffect", Fs, {
10641
10641
  blendFunction: e,
10642
10642
  uniforms: /* @__PURE__ */ new Map([
10643
10643
  ["luminanceBuffer", new u(null)],
@@ -10648,7 +10648,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10648
10648
  ["averageLuminance", new u(l)]
10649
10649
  ])
10650
10650
  }), this.renderTargetLuminance = new w(1, 1, {
10651
- minFilter: Xi,
10651
+ minFilter: Ki,
10652
10652
  depthBuffer: !1
10653
10653
  }), this.renderTargetLuminance.texture.generateMipmaps = !0, this.renderTargetLuminance.texture.name = "Luminance", this.luminancePass = new Ct({
10654
10654
  renderTarget: this.renderTargetLuminance
@@ -10853,13 +10853,13 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10853
10853
  initialize(e, t, i) {
10854
10854
  this.adaptiveLuminancePass.initialize(e, t, i);
10855
10855
  }
10856
- }, Ns = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
10856
+ }, Os = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
10857
10857
  #if VIGNETTE_TECHNIQUE == 0
10858
10858
  float d=distance(uv,center);color*=smoothstep(0.8,offset*0.799,d*(darkness+offset));
10859
10859
  #else
10860
10860
  vec2 coord=(uv-center)*vec2(offset);color=mix(color,vec3(1.0-darkness),dot(coord,coord));
10861
10861
  #endif
10862
- outputColor=vec4(color,inputColor.a);}`, Hs = class extends I {
10862
+ outputColor=vec4(color,inputColor.a);}`, Ns = class extends I {
10863
10863
  /**
10864
10864
  * Constructs a new Vignette effect.
10865
10865
  *
@@ -10877,7 +10877,7 @@ outputColor=vec4(color,inputColor.a);}`, Hs = class extends I {
10877
10877
  offset: r = 0.5,
10878
10878
  darkness: a = 0.5
10879
10879
  } = {}) {
10880
- super("VignetteEffect", Ns, {
10880
+ super("VignetteEffect", Os, {
10881
10881
  blendFunction: e,
10882
10882
  defines: /* @__PURE__ */ new Map([
10883
10883
  ["VIGNETTE_TECHNIQUE", i.toFixed(0)]
@@ -10993,7 +10993,7 @@ outputColor=vec4(color,inputColor.a);}`, Hs = class extends I {
10993
10993
  setDarkness(e) {
10994
10994
  this.darkness = e;
10995
10995
  }
10996
- }, zs = class extends Et {
10996
+ }, Hs = class extends Et {
10997
10997
  /**
10998
10998
  * Loads a LUT.
10999
10999
  *
@@ -11060,7 +11060,7 @@ outputColor=vec4(color,inputColor.a);}`, Hs = class extends I {
11060
11060
  l[v + 0] /= d, l[v + 1] /= d, l[v + 2] /= d;
11061
11061
  return new He(l, s);
11062
11062
  }
11063
- }, Gs = class extends Et {
11063
+ }, zs = class extends Et {
11064
11064
  /**
11065
11065
  * Loads a LUT.
11066
11066
  *
@@ -11120,7 +11120,7 @@ outputColor=vec4(color,inputColor.a);}`, Hs = class extends I {
11120
11120
  const v = new He(c, l);
11121
11121
  return v.domainMin.copy(f), v.domainMax.copy(h), o !== null && (v.name = o), v;
11122
11122
  }
11123
- }, ks = class extends Et {
11123
+ }, Gs = class extends Et {
11124
11124
  /**
11125
11125
  * Loads the SMAA data images.
11126
11126
  *
@@ -11150,7 +11150,7 @@ outputColor=vec4(color,inputColor.a);}`, Hs = class extends I {
11150
11150
  }), i.itemStart("smaa-search"), i.itemStart("smaa-area"), r.itemStart("smaa-search"), r.itemStart("smaa-area"), s.src = xt, o.src = Dt;
11151
11151
  });
11152
11152
  }
11153
- }, Qs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11153
+ }, ks = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11154
11154
  uniform mediump sampler2D inputBuffer;
11155
11155
  #else
11156
11156
  uniform lowp sampler2D inputBuffer;
@@ -11244,7 +11244,7 @@ vec2 s=texelSize*scale;for(int x=-KERNEL_SIZE_HALF;x<=KERNEL_SIZE_HALF;++x){for(
11244
11244
  #endif
11245
11245
  gl_FragColor=result*INV_KERNEL_SIZE_SQ;
11246
11246
  #endif
11247
- }`, Vs = `uniform vec2 texelSize;uniform float scale;
11247
+ }`, Qs = `uniform vec2 texelSize;uniform float scale;
11248
11248
  #if KERNEL_SIZE == 3
11249
11249
  varying vec2 vUv00,vUv01,vUv02;varying vec2 vUv03,vUv04,vUv05;varying vec2 vUv06,vUv07,vUv08;
11250
11250
  #elif KERNEL_SIZE == 5 && MAX_VARYING_VECTORS >= 13
@@ -11283,12 +11283,12 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends T {
11283
11283
  cameraNearFar: new u(new p()),
11284
11284
  scale: new u(1)
11285
11285
  },
11286
- blending: W,
11286
+ blending: z,
11287
11287
  toneMapped: !1,
11288
11288
  depthWrite: !1,
11289
11289
  depthTest: !1,
11290
- fragmentShader: Qs,
11291
- vertexShader: Vs
11290
+ fragmentShader: ks,
11291
+ vertexShader: Qs
11292
11292
  }), this.bilateral = e, this.kernelSize = t, this.maxVaryingVectors = 8;
11293
11293
  }
11294
11294
  /**
@@ -11419,7 +11419,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends T {
11419
11419
  setSize(e, t) {
11420
11420
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
11421
11421
  }
11422
- }, Ws = `#include <packing>
11422
+ }, Vs = `#include <packing>
11423
11423
  varying vec2 vUv;
11424
11424
  #ifdef NORMAL_DEPTH
11425
11425
  #ifdef GL_FRAGMENT_PRECISION_HIGH
@@ -11455,7 +11455,7 @@ gl_FragColor=(depth==1.0)?vec4(1.0):packDepthToRGBA(depth);
11455
11455
  gl_FragColor=vec4(vec3(depth),1.0);
11456
11456
  #endif
11457
11457
  #endif
11458
- }`, Ys = `varying vec2 vUv;
11458
+ }`, Ws = `varying vec2 vUv;
11459
11459
  #if DEPTH_COPY_MODE == 1
11460
11460
  uniform vec2 texelPosition;
11461
11461
  #endif
@@ -11481,12 +11481,12 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
11481
11481
  depthBuffer: new u(null),
11482
11482
  texelPosition: new u(new p())
11483
11483
  },
11484
- blending: W,
11484
+ blending: z,
11485
11485
  toneMapped: !1,
11486
11486
  depthWrite: !1,
11487
11487
  depthTest: !1,
11488
- fragmentShader: Ws,
11489
- vertexShader: Ys
11488
+ fragmentShader: Vs,
11489
+ vertexShader: Ws
11490
11490
  }), this.depthCopyMode = Se.FULL;
11491
11491
  }
11492
11492
  /**
@@ -11526,7 +11526,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
11526
11526
  * @param {Texture} buffer - The depth texture.
11527
11527
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
11528
11528
  */
11529
- setDepthBuffer(e, t = V) {
11529
+ setDepthBuffer(e, t = W) {
11530
11530
  this.depthBuffer = e, this.inputDepthPacking = t;
11531
11531
  }
11532
11532
  /**
@@ -11620,7 +11620,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Ii = class extends T {
11620
11620
  setMode(e) {
11621
11621
  this.mode = e;
11622
11622
  }
11623
- }, Ks = `#include <common>
11623
+ }, Ys = `#include <common>
11624
11624
  #include <packing>
11625
11625
  #include <dithering_pars_fragment>
11626
11626
  #define packFloatToRGBA(v) packDepthToRGBA(v)
@@ -11659,7 +11659,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11659
11659
  #include <colorspace_fragment>
11660
11660
  #endif
11661
11661
  #include <dithering_fragment>
11662
- }`, Xs = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Ri = class extends T {
11662
+ }`, Ks = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Ri = class extends T {
11663
11663
  /**
11664
11664
  * Constructs a new effect material.
11665
11665
  *
@@ -11687,7 +11687,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11687
11687
  aspect: new u(1),
11688
11688
  time: new u(0)
11689
11689
  },
11690
- blending: Wi,
11690
+ blending: z,
11691
11691
  toneMapped: !1,
11692
11692
  depthWrite: !1,
11693
11693
  depthTest: !1,
@@ -11740,7 +11740,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11740
11740
  * @param {Texture} buffer - The depth texture.
11741
11741
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
11742
11742
  */
11743
- setDepthBuffer(e, t = V) {
11743
+ setDepthBuffer(e, t = W) {
11744
11744
  this.depthBuffer = e, this.depthPacking = t;
11745
11745
  }
11746
11746
  /**
@@ -11760,7 +11760,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11760
11760
  * @return {EffectMaterial} This material.
11761
11761
  */
11762
11762
  setShaderParts(e) {
11763
- return this.fragmentShader = Ks.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Xs.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
11763
+ return this.fragmentShader = Ys.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Ks.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
11764
11764
  }
11765
11765
  /**
11766
11766
  * Sets the shader macros.
@@ -11884,14 +11884,14 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11884
11884
  static get Section() {
11885
11885
  return B;
11886
11886
  }
11887
- }, Zs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11887
+ }, Xs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11888
11888
  uniform mediump sampler2D inputBuffer;
11889
11889
  #else
11890
11890
  uniform lowp sampler2D inputBuffer;
11891
11891
  #endif
11892
11892
  uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec4 result=texture2D(inputBuffer,vUv)*kernel[0].y;for(int i=1;i<STEPS;++i){vec2 offset=kernel[i].x*vOffset;vec4 c0=texture2D(inputBuffer,vUv+offset);vec4 c1=texture2D(inputBuffer,vUv-offset);result+=(c0+c1)*kernel[i].y;}gl_FragColor=result;
11893
11893
  #include <colorspace_fragment>
11894
- }`, js = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", bi = class extends T {
11894
+ }`, Zs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", bi = class extends T {
11895
11895
  /**
11896
11896
  * Constructs a new convolution material.
11897
11897
  *
@@ -11908,12 +11908,12 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11908
11908
  kernel: new u(null),
11909
11909
  scale: new u(1)
11910
11910
  },
11911
- blending: W,
11911
+ blending: z,
11912
11912
  toneMapped: !1,
11913
11913
  depthWrite: !1,
11914
11914
  depthTest: !1,
11915
- fragmentShader: Zs,
11916
- vertexShader: js
11915
+ fragmentShader: Xs,
11916
+ vertexShader: Zs
11917
11917
  }), this._kernelSize = 0, this.kernelSize = e;
11918
11918
  }
11919
11919
  /**
@@ -11975,7 +11975,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11975
11975
  setSize(e, t) {
11976
11976
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
11977
11977
  }
11978
- }, Js = class extends N {
11978
+ }, js = class extends N {
11979
11979
  /**
11980
11980
  * Constructs a new box blur pass.
11981
11981
  *
@@ -12008,7 +12008,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
12008
12008
  * @param {Texture} depthTexture - A depth texture.
12009
12009
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing strategy.
12010
12010
  */
12011
- setDepthTexture(e, t = V) {
12011
+ setDepthTexture(e, t = W) {
12012
12012
  this.blurMaterial.depthBuffer = e, this.blurMaterial.depthPacking = t;
12013
12013
  }
12014
12014
  /**
@@ -12109,7 +12109,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
12109
12109
  * @param {Texture} depthTexture - A depth texture.
12110
12110
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
12111
12111
  */
12112
- setDepthTexture(e, t = V) {
12112
+ setDepthTexture(e, t = W) {
12113
12113
  this.fullscreenMaterial.depthBuffer = e, this.fullscreenMaterial.inputDepthPacking = t;
12114
12114
  }
12115
12115
  /**
@@ -12133,22 +12133,22 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
12133
12133
  setSize(e, t) {
12134
12134
  this.renderTarget.setSize(e, t);
12135
12135
  }
12136
- }, qs = Number(Pe.replace(/\D+/g, "")), he = 255 / 256, _s = new Float32Array([
12136
+ }, Js = Number(Pe.replace(/\D+/g, "")), he = 255 / 256, qs = new Float32Array([
12137
12137
  he / 256 ** 3,
12138
12138
  he / 256 ** 2,
12139
12139
  he / 256,
12140
12140
  he
12141
- ]), $s = new Float32Array([
12141
+ ]), _s = new Float32Array([
12142
12142
  he,
12143
12143
  he / 256,
12144
12144
  he / 256 ** 2,
12145
12145
  1 / 256 ** 3
12146
12146
  ]);
12147
- function en(e) {
12148
- const t = qs >= 167 ? $s : _s;
12147
+ function $s(e) {
12148
+ const t = Js >= 167 ? _s : qs;
12149
12149
  return (e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]) / 255;
12150
12150
  }
12151
- var tn = class extends Tt {
12151
+ var en = class extends Tt {
12152
12152
  /**
12153
12153
  * Constructs a new depth picking pass.
12154
12154
  *
@@ -12157,7 +12157,7 @@ var tn = class extends Tt {
12157
12157
  * @param {Number} [options.mode=DepthCopyMode.SINGLE] - The depth copy mode.
12158
12158
  */
12159
12159
  constructor({ depthPacking: e = ae, mode: t = Se.SINGLE } = {}) {
12160
- if (e !== ae && e !== V)
12160
+ if (e !== ae && e !== W)
12161
12161
  throw new Error(`Unsupported depth packing: ${e}`);
12162
12162
  super({ depthPacking: e }), this.name = "DepthPickingPass", this.fullscreenMaterial.mode = t, this.pixelBuffer = e === ae ? new Uint8Array(4) : new Float32Array(4), this.callback = null;
12163
12163
  }
@@ -12207,7 +12207,7 @@ var tn = class extends Tt {
12207
12207
  const d = n.texelPosition;
12208
12208
  f = Math.round(d.x * o.width), h = Math.round(d.y * o.height);
12209
12209
  }
12210
- e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(c ? en(l) : l[0]), this.callback = null;
12210
+ e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(c ? $s(l) : l[0]), this.callback = null;
12211
12211
  }
12212
12212
  }
12213
12213
  /**
@@ -12227,12 +12227,12 @@ function zt(e, t, i) {
12227
12227
  s[1] !== null && i.set(s[0], s[1].replace(n, a));
12228
12228
  }
12229
12229
  }
12230
- function rn(e, t, i) {
12230
+ function tn(e, t, i) {
12231
12231
  let r = t.getFragmentShader(), a = t.getVertexShader();
12232
12232
  const n = r !== void 0 && /mainImage/.test(r), s = r !== void 0 && /mainUv/.test(r);
12233
12233
  if (i.attributes |= t.getAttributes(), r === void 0)
12234
12234
  throw new Error(`Missing fragment shader (${t.name})`);
12235
- if (s && (i.attributes & Q.CONVOLUTION) !== 0)
12235
+ if (s && (i.attributes & V.CONVOLUTION) !== 0)
12236
12236
  throw new Error(`Effects that transform UVs are incompatible with convolution effects (${t.name})`);
12237
12237
  if (!n && !s)
12238
12238
  throw new Error(`Could not find mainImage or mainUv function (${t.name})`);
@@ -12267,7 +12267,7 @@ function rn(e, t, i) {
12267
12267
  ` : `color0 = sRGBToLinear(color0);
12268
12268
  `), t.outputColorSpace !== tt ? i.colorSpace = t.outputColorSpace : t.inputColorSpace !== null && (i.colorSpace = t.inputColorSpace);
12269
12269
  const C = /MainImage *\([\w\s,]*?depth[\w\s,]*?\)/;
12270
- h += `${e}MainImage(color0, UV, `, (i.attributes & Q.DEPTH) !== 0 && C.test(r) && (h += "depth, ", i.readDepth = !0), h += `color1);
12270
+ h += `${e}MainImage(color0, UV, `, (i.attributes & V.DEPTH) !== 0 && C.test(r) && (h += "depth, ", i.readDepth = !0), h += `color1);
12271
12271
  `;
12272
12272
  const E = e + "BlendOpacity";
12273
12273
  i.uniforms.set(E, y.opacity), h += `color0 = blend${y.blendFunction}(color0, color1, ${E});
@@ -12283,7 +12283,7 @@ function rn(e, t, i) {
12283
12283
  i.extensions.add(C);
12284
12284
  }
12285
12285
  }
12286
- var an = class extends N {
12286
+ var rn = class extends N {
12287
12287
  /**
12288
12288
  * Constructs a new effect pass.
12289
12289
  *
@@ -12326,15 +12326,6 @@ var an = class extends N {
12326
12326
  const t = this.fullscreenMaterial;
12327
12327
  t.dithering = e, t.needsUpdate = !0;
12328
12328
  }
12329
- /**
12330
- * Indicates whether the renderer uses alpha.
12331
- *
12332
- * @private
12333
- * @type {Boolean}
12334
- */
12335
- get alpha() {
12336
- return this.renderer !== null && this.renderer.getContext().getContextAttributes().alpha;
12337
- }
12338
12329
  /**
12339
12330
  * Sets the effects.
12340
12331
  *
@@ -12358,18 +12349,18 @@ var an = class extends N {
12358
12349
  let t = 0;
12359
12350
  for (const s of this.effects)
12360
12351
  if (s.blendMode.blendFunction === g.DST)
12361
- e.attributes |= s.getAttributes() & Q.DEPTH;
12352
+ e.attributes |= s.getAttributes() & V.DEPTH;
12362
12353
  else {
12363
- if ((e.attributes & s.getAttributes() & Q.CONVOLUTION) !== 0)
12354
+ if ((e.attributes & s.getAttributes() & V.CONVOLUTION) !== 0)
12364
12355
  throw new Error(`Convolution effects cannot be merged (${s.name})`);
12365
- rn("e" + t++, s, e);
12356
+ tn("e" + t++, s, e);
12366
12357
  }
12367
12358
  let i = e.shaderParts.get(B.FRAGMENT_HEAD), r = e.shaderParts.get(B.FRAGMENT_MAIN_IMAGE), a = e.shaderParts.get(B.FRAGMENT_MAIN_UV);
12368
12359
  const n = /\bblend\b/g;
12369
12360
  for (const s of e.blendModes.values())
12370
12361
  i += s.getShaderCode().replace(n, `blend${s.blendFunction}`) + `
12371
12362
  `;
12372
- (e.attributes & Q.DEPTH) !== 0 ? (e.readDepth && (r = `float depth = readDepth(UV);
12363
+ (e.attributes & V.DEPTH) !== 0 ? (e.readDepth && (r = `float depth = readDepth(UV);
12373
12364
 
12374
12365
  ` + r), this.needsDepthTexture = this.getDepthTexture() === null) : this.needsDepthTexture = !1, e.colorSpace === S && (r += `color0 = sRGBToLinear(color0);
12375
12366
  `), e.uvTransformation ? (a = `vec2 transformedUv = vUv;
@@ -12399,7 +12390,7 @@ var an = class extends N {
12399
12390
  * @param {Texture} depthTexture - A depth texture.
12400
12391
  * @param {DepthPackingStrategies} [depthPacking=BasicDepthPacking] - The depth packing.
12401
12392
  */
12402
- setDepthTexture(e, t = V) {
12393
+ setDepthTexture(e, t = W) {
12403
12394
  this.fullscreenMaterial.depthBuffer = e, this.fullscreenMaterial.depthPacking = t;
12404
12395
  for (const i of this.effects)
12405
12396
  i.setDepthTexture(e, t);
@@ -12418,7 +12409,7 @@ var an = class extends N {
12418
12409
  n.update(e, t, r);
12419
12410
  if (!this.skipRendering || this.renderToScreen) {
12420
12411
  const n = this.fullscreenMaterial;
12421
- n.transparent = this.renderToScreen && this.alpha, n.inputBuffer = t.texture, n.time += r * this.timeScale, e.setRenderTarget(this.renderToScreen ? null : i), e.render(this.scene, this.camera);
12412
+ n.inputBuffer = t.texture, n.time += r * this.timeScale, e.setRenderTarget(this.renderToScreen ? null : i), e.render(this.scene, this.camera);
12422
12413
  }
12423
12414
  }
12424
12415
  /**
@@ -12461,7 +12452,7 @@ var an = class extends N {
12461
12452
  handleEvent(e) {
12462
12453
  e.type === "change" && this.recompile();
12463
12454
  }
12464
- }, sn = class extends N {
12455
+ }, an = class extends N {
12465
12456
  /**
12466
12457
  * Constructs a new Gaussian blur pass.
12467
12458
  *
@@ -12522,7 +12513,7 @@ var an = class extends N {
12522
12513
  initialize(e, t, i) {
12523
12514
  i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, i !== Y ? (this.blurMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1", this.copyMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1") : e !== null && e.outputColorSpace === S && (this.renderTargetA.texture.colorSpace = S, this.renderTargetB.texture.colorSpace = S));
12524
12515
  }
12525
- }, nn = class extends N {
12516
+ }, sn = class extends N {
12526
12517
  /**
12527
12518
  * Constructs a new lambda pass.
12528
12519
  *
@@ -12543,7 +12534,7 @@ var an = class extends N {
12543
12534
  render(e, t, i, r, a) {
12544
12535
  this.f();
12545
12536
  }
12546
- }, on = class extends N {
12537
+ }, nn = class extends N {
12547
12538
  /**
12548
12539
  * Constructs a new normal pass.
12549
12540
  *
@@ -12565,11 +12556,11 @@ var an = class extends N {
12565
12556
  resolutionX: s = a,
12566
12557
  resolutionY: o = n
12567
12558
  } = {}) {
12568
- super("NormalPass"), this.needsSwap = !1, this.renderPass = new Ge(e, t, new Yi());
12559
+ super("NormalPass"), this.needsSwap = !1, this.renderPass = new Ge(e, t, new Wi());
12569
12560
  const l = this.renderPass;
12570
12561
  l.ignoreBackground = !0, l.skipShadowMapUpdate = !0;
12571
12562
  const c = l.getClearPass();
12572
- c.overrideClearColor = new k(7829503), c.overrideClearAlpha = 1, this.renderTarget = i, this.renderTarget === void 0 && (this.renderTarget = new w(1, 1, {
12563
+ c.overrideClearColor = new Q(7829503), c.overrideClearAlpha = 1, this.renderTarget = i, this.renderTarget === void 0 && (this.renderTarget = new w(1, 1, {
12573
12564
  minFilter: P,
12574
12565
  magFilter: P
12575
12566
  }), this.renderTarget.texture.name = "NormalPass.Target");
@@ -12703,7 +12694,7 @@ function be(e, t, i, r, a, n) {
12703
12694
  const s = (i + r * t + a * t * t) * 4;
12704
12695
  n[0] = e[s + 0], n[1] = e[s + 1], n[2] = e[s + 2];
12705
12696
  }
12706
- function ln(e, t, i, r, a, n) {
12697
+ function on(e, t, i, r, a, n) {
12707
12698
  const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), c = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l), m = s - c, x = o - f, y = l - h;
12708
12699
  if (c === s && f === o && h === l)
12709
12700
  be(e, t, s, o, l, n);
@@ -12714,11 +12705,11 @@ function ln(e, t, i, r, a, n) {
12714
12705
  re[0] = m, re[1] = x, re[2] = y;
12715
12706
  const L = Gt[1], ge = d - c, me = v - f, ne = A - h;
12716
12707
  L[0] = ge * E[0] + c, L[1] = me * E[1] + f, L[2] = ne * E[2] + h, be(e, t, L[0], L[1], L[2], U[0]), L[0] = ge * K[0] + c, L[1] = me * K[1] + f, L[2] = ne * K[2] + h, be(e, t, L[0], L[1], L[2], U[1]), L[0] = ge * ee[0] + c, L[1] = me * ee[1] + f, L[2] = ne * ee[2] + h, be(e, t, L[0], L[1], L[2], U[2]), L[0] = ge * ie[0] + c, L[1] = me * ie[1] + f, L[2] = ne * ie[2] + h, be(e, t, L[0], L[1], L[2], U[3]);
12717
- const ce = Ye(K, ee, ie, re) * 6, z = Ye(E, ee, ie, re) * 6, ke = Ye(E, K, ie, re) * 6, at = Ye(E, K, ee, re) * 6;
12718
- U[0][0] *= ce, U[0][1] *= ce, U[0][2] *= ce, U[1][0] *= z, U[1][1] *= z, U[1][2] *= z, U[2][0] *= ke, U[2][1] *= ke, U[2][2] *= ke, U[3][0] *= at, U[3][1] *= at, U[3][2] *= at, n[0] = U[0][0] + U[1][0] + U[2][0] + U[3][0], n[1] = U[0][1] + U[1][1] + U[2][1] + U[3][1], n[2] = U[0][2] + U[1][2] + U[2][2] + U[3][2];
12708
+ const ce = Ye(K, ee, ie, re) * 6, G = Ye(E, ee, ie, re) * 6, ke = Ye(E, K, ie, re) * 6, at = Ye(E, K, ee, re) * 6;
12709
+ U[0][0] *= ce, U[0][1] *= ce, U[0][2] *= ce, U[1][0] *= G, U[1][1] *= G, U[1][2] *= G, U[2][0] *= ke, U[2][1] *= ke, U[2][2] *= ke, U[3][0] *= at, U[3][1] *= at, U[3][2] *= at, n[0] = U[0][0] + U[1][0] + U[2][0] + U[3][0], n[1] = U[0][1] + U[1][1] + U[2][1] + U[3][1], n[2] = U[0][2] + U[1][2] + U[2][2] + U[3][2];
12719
12710
  }
12720
12711
  }
12721
- var un = class {
12712
+ var ln = class {
12722
12713
  /**
12723
12714
  * Expands the given data to the target size.
12724
12715
  *
@@ -12732,14 +12723,14 @@ var un = class {
12732
12723
  for (let c = 0; c < t; ++c)
12733
12724
  for (let f = 0; f < t; ++f) {
12734
12725
  const h = f * o, d = c * o, v = l * o, A = Math.round(f + c * t + l * s) * 4;
12735
- ln(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
12726
+ on(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
12736
12727
  }
12737
12728
  return a;
12738
12729
  }
12739
12730
  }, ye = [
12740
12731
  new Float32Array(2),
12741
12732
  new Float32Array(2)
12742
- ], xe = 16, ct = 20, De = 30, cn = 32, ft = new Float32Array([
12733
+ ], xe = 16, ct = 20, De = 30, un = 32, ft = new Float32Array([
12743
12734
  0,
12744
12735
  -0.25,
12745
12736
  0.25,
@@ -12753,7 +12744,7 @@ var un = class {
12753
12744
  new Float32Array([-0.25, 0.25]),
12754
12745
  new Float32Array([0.125, -0.125]),
12755
12746
  new Float32Array([-0.125, 0.125])
12756
- ], fn = [
12747
+ ], cn = [
12757
12748
  new Uint8Array([0, 0]),
12758
12749
  new Uint8Array([3, 0]),
12759
12750
  new Uint8Array([0, 3]),
@@ -12791,14 +12782,14 @@ var un = class {
12791
12782
  function Ke(e, t, i) {
12792
12783
  return e + (t - e) * i;
12793
12784
  }
12794
- function hn(e) {
12785
+ function fn(e) {
12795
12786
  return Math.min(Math.max(e, 0), 1);
12796
12787
  }
12797
12788
  function Qt(e) {
12798
- const t = ye[0], i = ye[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = hn(e / cn);
12789
+ const t = ye[0], i = ye[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = fn(e / un);
12799
12790
  t[0] = Ke(r, t[0], o), t[1] = Ke(a, t[1], o), i[0] = Ke(n, i[0], o), i[1] = Ke(s, i[1], o);
12800
12791
  }
12801
- function G(e, t, i, r, a, n) {
12792
+ function k(e, t, i, r, a, n) {
12802
12793
  const s = i - e, o = r - t, l = a, c = a + 1, f = t + o * (l - e) / s, h = t + o * (c - e) / s;
12803
12794
  if (l >= e && l < i || c > e && c <= i)
12804
12795
  if (Math.sign(f) === Math.sign(h) || Math.abs(f) < 1e-4 || Math.abs(h) < 1e-4) {
@@ -12812,7 +12803,7 @@ function G(e, t, i, r, a, n) {
12812
12803
  n[0] = 0, n[1] = 0;
12813
12804
  return n;
12814
12805
  }
12815
- function dn(e, t, i, r, a) {
12806
+ function hn(e, t, i, r, a) {
12816
12807
  const n = ye[0], s = ye[1], o = 0.5 + r, l = 0.5 + r - 1, c = t + i + 1;
12817
12808
  switch (e) {
12818
12809
  case 0: {
@@ -12820,19 +12811,19 @@ function dn(e, t, i, r, a) {
12820
12811
  break;
12821
12812
  }
12822
12813
  case 1: {
12823
- t <= i ? G(0, l, c / 2, 0, t, a) : (a[0] = 0, a[1] = 0);
12814
+ t <= i ? k(0, l, c / 2, 0, t, a) : (a[0] = 0, a[1] = 0);
12824
12815
  break;
12825
12816
  }
12826
12817
  case 2: {
12827
- t >= i ? G(c / 2, 0, c, l, t, a) : (a[0] = 0, a[1] = 0);
12818
+ t >= i ? k(c / 2, 0, c, l, t, a) : (a[0] = 0, a[1] = 0);
12828
12819
  break;
12829
12820
  }
12830
12821
  case 3: {
12831
- G(0, l, c / 2, 0, t, n), G(c / 2, 0, c, l, t, s), Qt(c), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12822
+ k(0, l, c / 2, 0, t, n), k(c / 2, 0, c, l, t, s), Qt(c), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12832
12823
  break;
12833
12824
  }
12834
12825
  case 4: {
12835
- t <= i ? G(0, o, c / 2, 0, t, a) : (a[0] = 0, a[1] = 0);
12826
+ t <= i ? k(0, o, c / 2, 0, t, a) : (a[0] = 0, a[1] = 0);
12836
12827
  break;
12837
12828
  }
12838
12829
  case 5: {
@@ -12840,19 +12831,19 @@ function dn(e, t, i, r, a) {
12840
12831
  break;
12841
12832
  }
12842
12833
  case 6: {
12843
- Math.abs(r) > 0 ? (G(0, o, c, l, t, n), G(0, o, c / 2, 0, t, s), G(c / 2, 0, c, l, t, a), s[0] = s[0] + a[0], s[1] = s[1] + a[1], a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2) : G(0, o, c, l, t, a);
12834
+ Math.abs(r) > 0 ? (k(0, o, c, l, t, n), k(0, o, c / 2, 0, t, s), k(c / 2, 0, c, l, t, a), s[0] = s[0] + a[0], s[1] = s[1] + a[1], a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2) : k(0, o, c, l, t, a);
12844
12835
  break;
12845
12836
  }
12846
12837
  case 7: {
12847
- G(0, o, c, l, t, a);
12838
+ k(0, o, c, l, t, a);
12848
12839
  break;
12849
12840
  }
12850
12841
  case 8: {
12851
- t >= i ? G(c / 2, 0, c, o, t, a) : (a[0] = 0, a[1] = 0);
12842
+ t >= i ? k(c / 2, 0, c, o, t, a) : (a[0] = 0, a[1] = 0);
12852
12843
  break;
12853
12844
  }
12854
12845
  case 9: {
12855
- Math.abs(r) > 0 ? (G(0, l, c, o, t, n), G(0, l, c / 2, 0, t, s), G(c / 2, 0, c, o, t, a), s[0] = s[0] + a[0], s[1] = s[1] + a[1], a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2) : G(0, l, c, o, t, a);
12846
+ Math.abs(r) > 0 ? (k(0, l, c, o, t, n), k(0, l, c / 2, 0, t, s), k(c / 2, 0, c, o, t, a), s[0] = s[0] + a[0], s[1] = s[1] + a[1], a[0] = (n[0] + s[0]) / 2, a[1] = (n[1] + s[1]) / 2) : k(0, l, c, o, t, a);
12856
12847
  break;
12857
12848
  }
12858
12849
  case 10: {
@@ -12860,19 +12851,19 @@ function dn(e, t, i, r, a) {
12860
12851
  break;
12861
12852
  }
12862
12853
  case 11: {
12863
- G(0, l, c, o, t, a);
12854
+ k(0, l, c, o, t, a);
12864
12855
  break;
12865
12856
  }
12866
12857
  case 12: {
12867
- G(0, o, c / 2, 0, t, n), G(c / 2, 0, c, o, t, s), Qt(c), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12858
+ k(0, o, c / 2, 0, t, n), k(c / 2, 0, c, o, t, s), Qt(c), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12868
12859
  break;
12869
12860
  }
12870
12861
  case 13: {
12871
- G(0, l, c, o, t, a);
12862
+ k(0, l, c, o, t, a);
12872
12863
  break;
12873
12864
  }
12874
12865
  case 14: {
12875
- G(0, o, c, l, t, a);
12866
+ k(0, o, c, l, t, a);
12876
12867
  break;
12877
12868
  }
12878
12869
  case 15: {
@@ -12882,7 +12873,7 @@ function dn(e, t, i, r, a) {
12882
12873
  }
12883
12874
  return a;
12884
12875
  }
12885
- function vn(e, t, i, r, a, n) {
12876
+ function dn(e, t, i, r, a, n) {
12886
12877
  let s = e === i && t === r;
12887
12878
  if (!s) {
12888
12879
  const o = (e + i) / 2, l = (t + r) / 2, c = r - t, f = e - i;
@@ -12895,7 +12886,7 @@ function Vt(e, t, i, r, a, n) {
12895
12886
  for (let o = 0; o < De; ++o)
12896
12887
  for (let l = 0; l < De; ++l) {
12897
12888
  const c = l / (De - 1), f = o / (De - 1);
12898
- vn(e, t, i, r, a + c, n + f) && ++s;
12889
+ dn(e, t, i, r, a + c, n + f) && ++s;
12899
12890
  }
12900
12891
  return s / (De * De);
12901
12892
  }
@@ -12903,7 +12894,7 @@ function b(e, t, i, r, a, n, s, o) {
12903
12894
  const l = Ui[e], c = l[0], f = l[1];
12904
12895
  return c > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 - Vt(t, i, r, a, 1 + n, 0 + n), o[1] = Vt(t, i, r, a, 1 + n, 1 + n), o;
12905
12896
  }
12906
- function pn(e, t, i, r, a) {
12897
+ function vn(e, t, i, r, a) {
12907
12898
  const n = ye[0], s = ye[1], o = t + i + 1;
12908
12899
  switch (e) {
12909
12900
  case 0: {
@@ -12979,7 +12970,7 @@ function Wt(e, t, i) {
12979
12970
  const s = e[a], o = s.data, l = s.width;
12980
12971
  for (let c = 0; c < l; ++c)
12981
12972
  for (let f = 0; f < l; ++f) {
12982
- i ? dn(a, f, c, t, r) : pn(a, f, c, t, r);
12973
+ i ? hn(a, f, c, t, r) : vn(a, f, c, t, r);
12983
12974
  const h = (c * l + f) * 2;
12984
12975
  o[h] = r[0] * 255, o[h + 1] = r[1] * 255;
12985
12976
  }
@@ -12996,7 +12987,7 @@ function Yt(e, t, i, r, a, n, s) {
12996
12987
  }
12997
12988
  }
12998
12989
  }
12999
- var gn = class {
12990
+ var pn = class {
13000
12991
  /**
13001
12992
  * Creates a new area image.
13002
12993
  *
@@ -13023,7 +13014,7 @@ var gn = class {
13023
13014
  0,
13024
13015
  5 * xe * l,
13025
13016
  s,
13026
- fn,
13017
+ cn,
13027
13018
  xe,
13028
13019
  !0,
13029
13020
  r
@@ -13040,10 +13031,10 @@ var gn = class {
13040
13031
  );
13041
13032
  return r;
13042
13033
  }
13043
- }, mn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
13034
+ }, gn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
13044
13035
  `;
13045
- function An(e = !0) {
13046
- const t = URL.createObjectURL(new Blob([mn], {
13036
+ function mn(e = !0) {
13037
+ const t = URL.createObjectURL(new Blob([gn], {
13047
13038
  type: "text/javascript"
13048
13039
  })), i = new Worker(t);
13049
13040
  return URL.revokeObjectURL(t), new Promise((r, a) => {
@@ -13056,7 +13047,7 @@ function An(e = !0) {
13056
13047
  }), i.postMessage(null);
13057
13048
  });
13058
13049
  }
13059
- var xn = class {
13050
+ var An = class {
13060
13051
  /**
13061
13052
  * Constructs a new SMAA image generator.
13062
13053
  */
@@ -13085,7 +13076,7 @@ var xn = class {
13085
13076
  localStorage.getItem("smaa-search"),
13086
13077
  localStorage.getItem("smaa-area")
13087
13078
  ] : [null, null];
13088
- return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : An(e)).then((r) => new Promise((a, n) => {
13079
+ return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : mn(e)).then((r) => new Promise((a, n) => {
13089
13080
  const s = new Image(), o = new Image(), l = new ve();
13090
13081
  l.onLoad = () => a([s, o]), l.onError = n, s.addEventListener("error", (c) => l.itemError("smaa-search")), o.addEventListener("error", (c) => l.itemError("smaa-area")), s.addEventListener("load", () => l.itemEnd("smaa-search")), o.addEventListener("load", () => l.itemEnd("smaa-area")), l.itemStart("smaa-search"), l.itemStart("smaa-area"), s.src = r[0], o.src = r[1];
13091
13082
  }));
@@ -13115,15 +13106,15 @@ function X(e, t, i, r) {
13115
13106
  const a = ht(e, t, 0.75), n = ht(i, r, 1 - 0.25);
13116
13107
  return ht(a, n, 1 - 0.125);
13117
13108
  }
13118
- function Dn(e, t) {
13109
+ function xn(e, t) {
13119
13110
  let i = 0;
13120
13111
  return t[3] === 1 && (i += 1), i === 1 && t[2] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i;
13121
13112
  }
13122
- function Tn(e, t) {
13113
+ function Dn(e, t) {
13123
13114
  let i = 0;
13124
13115
  return t[3] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i === 1 && t[2] === 1 && e[0] !== 1 && e[2] !== 1 && (i += 1), i;
13125
13116
  }
13126
- var wn = class {
13117
+ var Tn = class {
13127
13118
  /**
13128
13119
  * Creates a new search image.
13129
13120
  *
@@ -13136,7 +13127,7 @@ var wn = class {
13136
13127
  const c = 0.03125 * l, f = 0.03125 * o;
13137
13128
  if (Xe.has(c) && Xe.has(f)) {
13138
13129
  const h = Xe.get(c), d = Xe.get(f), v = o * 66 + l;
13139
- n[v] = 127 * Dn(h, d), n[v + 33] = 127 * Tn(h, d);
13130
+ n[v] = 127 * xn(h, d), n[v + 33] = 127 * Dn(h, d);
13140
13131
  }
13141
13132
  }
13142
13133
  for (let o = 0, l = 17; l < 33; ++l)
@@ -13145,9 +13136,9 @@ var wn = class {
13145
13136
  return new le(64, 16, s);
13146
13137
  }
13147
13138
  };
13148
- const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13139
+ const bn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13149
13140
  __proto__: null,
13150
- ASCIIEffect: Yr,
13141
+ ASCIIEffect: Wr,
13151
13142
  ASCIITexture: oi,
13152
13143
  AdaptiveLuminanceMaterial: yi,
13153
13144
  AdaptiveLuminancePass: Bi,
@@ -13155,18 +13146,18 @@ const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13155
13146
  BlendMode: ni,
13156
13147
  BloomEffect: hi,
13157
13148
  BlurPass: pe,
13158
- BokehEffect: ia,
13149
+ BokehEffect: ta,
13159
13150
  BokehMaterial: Ue,
13160
13151
  BoxBlurMaterial: Pi,
13161
- BoxBlurPass: Js,
13162
- BrightnessContrastEffect: aa,
13163
- ChromaticAberrationEffect: fa,
13152
+ BoxBlurPass: js,
13153
+ BrightnessContrastEffect: ra,
13154
+ ChromaticAberrationEffect: ca,
13164
13155
  CircleOfConfusionMaterial: di,
13165
13156
  ClearMaskPass: ii,
13166
13157
  ClearPass: Ie,
13167
- ColorAverageEffect: na,
13158
+ ColorAverageEffect: sa,
13168
13159
  ColorChannel: fe,
13169
- ColorDepthEffect: la,
13160
+ ColorDepthEffect: oa,
13170
13161
  ColorEdgesMaterial: At,
13171
13162
  ConvolutionMaterial: $e,
13172
13163
  CopyMaterial: ze,
@@ -13177,49 +13168,49 @@ const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13177
13168
  DepthCopyPass: Tt,
13178
13169
  DepthDownsamplingMaterial: Ei,
13179
13170
  DepthDownsamplingPass: Si,
13180
- DepthEffect: da,
13171
+ DepthEffect: ha,
13181
13172
  DepthMaskMaterial: Di,
13182
- DepthOfFieldEffect: xa,
13173
+ DepthOfFieldEffect: Aa,
13183
13174
  DepthPass: Bt,
13184
- DepthPickingPass: tn,
13175
+ DepthPickingPass: en,
13185
13176
  DepthSavePass: Tt,
13186
13177
  DepthTestStrategy: Me,
13187
- Disposable: ir,
13188
- DotScreenEffect: Ta,
13178
+ Disposable: tr,
13179
+ DotScreenEffect: Da,
13189
13180
  DownsamplingMaterial: ui,
13190
13181
  EdgeDetectionMaterial: At,
13191
13182
  EdgeDetectionMode: yt,
13192
13183
  Effect: I,
13193
- EffectAttribute: Q,
13194
- EffectComposer: nr,
13184
+ EffectAttribute: V,
13185
+ EffectComposer: sr,
13195
13186
  EffectMaterial: Ri,
13196
- EffectPass: an,
13187
+ EffectPass: rn,
13197
13188
  EffectShaderData: ai,
13198
13189
  EffectShaderSection: B,
13199
- FXAAEffect: Sa,
13200
- GammaCorrectionEffect: Ma,
13190
+ FXAAEffect: Ea,
13191
+ GammaCorrectionEffect: Ca,
13201
13192
  GaussKernel: si,
13202
13193
  GaussianBlurMaterial: bi,
13203
- GaussianBlurPass: sn,
13204
- GlitchEffect: Pa,
13194
+ GaussianBlurPass: an,
13195
+ GlitchEffect: Ba,
13205
13196
  GlitchMode: Te,
13206
- GodRaysEffect: ba,
13197
+ GodRaysEffect: Ra,
13207
13198
  GodRaysMaterial: pi,
13208
- GridEffect: Fa,
13209
- HueSaturationEffect: Oa,
13210
- ImmutableTimer: or,
13211
- Initializable: lr,
13199
+ GridEffect: Ua,
13200
+ HueSaturationEffect: La,
13201
+ ImmutableTimer: nr,
13202
+ Initializable: or,
13212
13203
  KawaseBlurMaterial: $e,
13213
13204
  KawaseBlurPass: pe,
13214
13205
  KernelSize: te,
13215
- LUT1DEffect: Ga,
13206
+ LUT1DEffect: za,
13216
13207
  LUT3DEffect: Ot,
13217
- LUT3dlLoader: zs,
13218
- LUTCubeLoader: Gs,
13208
+ LUT3dlLoader: Hs,
13209
+ LUTCubeLoader: zs,
13219
13210
  LUTEffect: Ot,
13220
13211
  LUTOperation: gi,
13221
- LambdaPass: nn,
13222
- LensDistortionEffect: Ha,
13212
+ LambdaPass: sn,
13213
+ LensDistortionEffect: Na,
13223
13214
  LookupTexture: He,
13224
13215
  LookupTexture3D: He,
13225
13216
  LuminanceMaterial: li,
@@ -13228,55 +13219,55 @@ const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13228
13219
  MaskMaterial: vi,
13229
13220
  MaskPass: ri,
13230
13221
  MipmapBlurPass: fi,
13231
- NoiseEffect: Ya,
13222
+ NoiseEffect: Wa,
13232
13223
  NoiseTexture: et,
13233
- NormalPass: on,
13224
+ NormalPass: nn,
13234
13225
  OutlineEdgesMaterial: mt,
13235
- OutlineEffect: _a,
13226
+ OutlineEffect: qa,
13236
13227
  OutlineMaterial: mt,
13237
13228
  OverrideMaterialManager: gt,
13238
13229
  Pass: N,
13239
- PixelationEffect: es,
13230
+ PixelationEffect: $a,
13240
13231
  PredicationMode: Ai,
13241
13232
  RawImageData: le,
13242
- RealisticBokehEffect: is,
13233
+ RealisticBokehEffect: ts,
13243
13234
  RenderPass: Ge,
13244
- Resizable: ur,
13235
+ Resizable: lr,
13245
13236
  Resizer: D,
13246
13237
  Resolution: D,
13247
- SMAAAreaImageData: gn,
13248
- SMAAEffect: xs,
13249
- SMAAImageGenerator: xn,
13250
- SMAAImageLoader: ks,
13238
+ SMAAAreaImageData: pn,
13239
+ SMAAEffect: As,
13240
+ SMAAImageGenerator: An,
13241
+ SMAAImageLoader: Gs,
13251
13242
  SMAAPreset: we,
13252
- SMAASearchImageData: wn,
13243
+ SMAASearchImageData: Tn,
13253
13244
  SMAAWeightsMaterial: Ti,
13254
- SSAOEffect: Cs,
13245
+ SSAOEffect: Ss,
13255
13246
  SSAOMaterial: wi,
13256
13247
  SavePass: Ne,
13257
- ScanlineEffect: as,
13248
+ ScanlineEffect: rs,
13258
13249
  Section: B,
13259
13250
  Selection: St,
13260
- SelectiveBloomEffect: cs,
13261
- SepiaEffect: hs,
13251
+ SelectiveBloomEffect: us,
13252
+ SepiaEffect: fs,
13262
13253
  ShaderPass: _,
13263
- ShockWaveEffect: ls,
13264
- TetrahedralUpscaler: un,
13265
- TextureEffect: Bs,
13254
+ ShockWaveEffect: os,
13255
+ TetrahedralUpscaler: ln,
13256
+ TextureEffect: ys,
13266
13257
  TiltShiftBlurMaterial: Ci,
13267
13258
  TiltShiftBlurPass: Mi,
13268
- TiltShiftEffect: Us,
13259
+ TiltShiftEffect: bs,
13269
13260
  Timer: ti,
13270
- ToneMappingEffect: Os,
13261
+ ToneMappingEffect: Ls,
13271
13262
  ToneMappingMode: j,
13272
13263
  UpsamplingMaterial: ci,
13273
- VignetteEffect: Hs,
13264
+ VignetteEffect: Ns,
13274
13265
  VignetteTechnique: Ee,
13275
- WebGLExtension: Va,
13276
- version: tr
13266
+ WebGLExtension: Qa,
13267
+ version: er
13277
13268
  }, Symbol.toStringTag, { value: "Module" }));
13278
- class En extends ei {
13279
- boundingSphere = new $i();
13269
+ class wn extends ei {
13270
+ boundingSphere = new _i();
13280
13271
  constructor() {
13281
13272
  super(), this.setAttribute("position", new _e(new Float32Array([
13282
13273
  -1,
@@ -13297,13 +13288,13 @@ class En extends ei {
13297
13288
  computeBoundingSphere() {
13298
13289
  }
13299
13290
  }
13300
- const Sn = /* @__PURE__ */ new En(), Cn = /* @__PURE__ */ new Jt();
13291
+ const En = /* @__PURE__ */ new wn(), Sn = /* @__PURE__ */ new Jt();
13301
13292
  class q {
13302
13293
  constructor(t) {
13303
- this._mesh = new qt(Sn, t), this._mesh.frustumCulled = !1;
13294
+ this._mesh = new qt(En, t), this._mesh.frustumCulled = !1;
13304
13295
  }
13305
13296
  render(t) {
13306
- t.render(this._mesh, Cn);
13297
+ t.render(this._mesh, Sn);
13307
13298
  }
13308
13299
  get material() {
13309
13300
  return this._mesh.material;
@@ -14349,9 +14340,9 @@ void main() {
14349
14340
  ), 0.0);
14350
14341
  }`
14351
14342
  )
14352
- }, Mn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", yn = Uint8Array.from(atob(Mn), (e) => e.charCodeAt(0));
14353
- var Hi = yn;
14354
- const Bn = parseInt(Pe.replace(/\D+/g, "")), zi = Bn >= 162 ? class extends w {
14343
+ }, Cn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Mn = Uint8Array.from(atob(Cn), (e) => e.charCodeAt(0));
14344
+ var Hi = Mn;
14345
+ const yn = parseInt(Pe.replace(/\D+/g, "")), zi = yn >= 162 ? class extends w {
14355
14346
  constructor(e = 1, t = 1, i = 1, r = {}) {
14356
14347
  super(e, t, {
14357
14348
  ...r,
@@ -14394,7 +14385,7 @@ function Gi(e, t, i) {
14394
14385
  Gi(e, t, i);
14395
14386
  }, 1);
14396
14387
  }
14397
- class Pn extends N {
14388
+ class Bn extends N {
14398
14389
  /**
14399
14390
  *
14400
14391
  * @param {THREE.Scene} scene
@@ -14420,7 +14411,7 @@ class Pn extends N {
14420
14411
  renderMode: 0,
14421
14412
  biasOffset: 0,
14422
14413
  biasMultiplier: 0,
14423
- color: new k(0, 0, 0),
14414
+ color: new Q(0, 0, 0),
14424
14415
  gammaCorrection: !0,
14425
14416
  depthBufferType: M.Default,
14426
14417
  screenSpaceRadius: !1,
@@ -14504,7 +14495,7 @@ class Pn extends N {
14504
14495
  gl_FragColor = vec4(color.rgb, 1.0 / (frame + 1.0));
14505
14496
  }
14506
14497
  `
14507
- })), this.bluenoise = new it(Hi, 128, 128), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this.needsDepthTexture = !0, this.needsSwap = !0, this._r = new p(), this._c = new k();
14498
+ })), this.bluenoise = new it(Hi, 128, 128), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this.needsDepthTexture = !0, this.needsSwap = !0, this._r = new p(), this._c = new Q();
14508
14499
  }
14509
14500
  configureHalfResTargets() {
14510
14501
  this.firstFrame(), this.configuration.halfRes ? (this.depthDownsampleTarget = new zi(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = H, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1, this.depthDownsampleQuad = new q(new T(Ni))) : (this.depthDownsampleTarget && (this.depthDownsampleTarget.dispose(), this.depthDownsampleTarget = null), this.depthDownsampleQuad && (this.depthDownsampleQuad.dispose(), this.depthDownsampleQuad = null));
@@ -14570,10 +14561,10 @@ class Pn extends N {
14570
14561
  }))) : (this.transparencyRenderTargetDWFalse && (this.transparencyRenderTargetDWFalse.dispose(), this.transparencyRenderTargetDWFalse = null), this.transparencyRenderTargetDWTrue && (this.transparencyRenderTargetDWTrue.dispose(), this.transparencyRenderTargetDWTrue = null), this.depthCopyPass && (this.depthCopyPass.dispose(), this.depthCopyPass = null));
14571
14562
  }
14572
14563
  renderTransparency(t) {
14573
- const i = this.scene.background, r = t.getClearColor(new k()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
14564
+ const i = this.scene.background, r = t.getClearColor(new Q()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
14574
14565
  this.scene.traverse((o) => {
14575
14566
  n.set(o, o.visible);
14576
- }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new k(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14567
+ }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14577
14568
  o.material && (o.visible = n.get(o) && (o.material.transparent && !o.material.depthWrite && !o.userData.treatAsOpaque || !!o.userData.cannotReceiveAO));
14578
14569
  }), t.clear(!0, !0, !0), this.depthCopyPass.render(t), t.render(this.scene, this.camera), t.setRenderTarget(this.transparencyRenderTargetDWTrue), this.scene.traverse((o) => {
14579
14570
  o.material && (o.visible = n.get(o) && o.material.transparent && o.material.depthWrite && !o.userData.treatAsOpaque);
@@ -14723,7 +14714,7 @@ const M = {
14723
14714
  Log: 2,
14724
14715
  Reverse: 3
14725
14716
  };
14726
- class In extends er {
14717
+ class Pn extends $i {
14727
14718
  /**
14728
14719
  *
14729
14720
  * @param {THREE.Scene} scene
@@ -14749,7 +14740,7 @@ class In extends er {
14749
14740
  renderMode: 0,
14750
14741
  biasOffset: 0,
14751
14742
  biasMultiplier: 0,
14752
- color: new k(0, 0, 0),
14743
+ color: new Q(0, 0, 0),
14753
14744
  gammaCorrection: !0,
14754
14745
  depthBufferType: M.Default,
14755
14746
  screenSpaceRadius: !1,
@@ -14822,7 +14813,7 @@ class In extends er {
14822
14813
  gl_FragColor = vec4(color.rgb, 1.0 / (frame + 1.0));
14823
14814
  }
14824
14815
  `
14825
- })), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this._r = new p(), this._c = new k();
14816
+ })), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this._r = new p(), this._c = new Q();
14826
14817
  }
14827
14818
  configureHalfResTargets() {
14828
14819
  if (this.firstFrame(), this.configuration.halfRes) {
@@ -14896,10 +14887,10 @@ class In extends er {
14896
14887
  }))) : (this.transparencyRenderTargetDWFalse && (this.transparencyRenderTargetDWFalse.dispose(), this.transparencyRenderTargetDWFalse = null), this.transparencyRenderTargetDWTrue && (this.transparencyRenderTargetDWTrue.dispose(), this.transparencyRenderTargetDWTrue = null), this.depthCopyPass && (this.depthCopyPass.dispose(), this.depthCopyPass = null));
14897
14888
  }
14898
14889
  renderTransparency(t) {
14899
- const i = this.scene.background, r = t.getClearColor(new k()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
14890
+ const i = this.scene.background, r = t.getClearColor(new Q()), a = t.getClearAlpha(), n = /* @__PURE__ */ new Map(), s = t.autoClearDepth;
14900
14891
  this.scene.traverse((o) => {
14901
14892
  n.set(o, o.visible);
14902
- }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new k(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.beautyRenderTarget.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14893
+ }), this.scene.background = null, t.autoClearDepth = !1, t.setClearColor(new Q(0, 0, 0), 0), this.depthCopyPass.material.uniforms.depthTexture.value = this.beautyRenderTarget.depthTexture, this.depthCopyPass.material.uniforms.reverseDepthBuffer.value = this.configuration.depthBufferType === M.Reverse, t.setRenderTarget(this.transparencyRenderTargetDWFalse), this.scene.traverse((o) => {
14903
14894
  o.material && (o.visible = n.get(o) && (o.material.transparent && !o.material.depthWrite && !o.userData.treatAsOpaque || !!o.userData.cannotReceiveAO));
14904
14895
  }), t.clear(!0, !0, !0), this.depthCopyPass.render(t), t.render(this.scene, this.camera), t.setRenderTarget(this.transparencyRenderTargetDWTrue), this.scene.traverse((o) => {
14905
14896
  o.material && (o.visible = n.get(o) && o.material.transparent && o.material.depthWrite && !o.userData.treatAsOpaque);
@@ -15031,14 +15022,14 @@ class In extends er {
15031
15022
  t === "Performance" ? (this.configuration.aoSamples = 8, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Low" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Medium" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 12) : t === "High" ? (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 6) : t === "Ultra" && (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 16, this.configuration.denoiseRadius = 6);
15032
15023
  }
15033
15024
  }
15034
- const Fn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
15025
+ const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
15035
15026
  __proto__: null,
15036
15027
  DepthType: M,
15037
- N8AOPass: In,
15038
- N8AOPostPass: Pn
15028
+ N8AOPass: Pn,
15029
+ N8AOPostPass: Bn
15039
15030
  }, Symbol.toStringTag, { value: "Module" }));
15040
15031
  export {
15041
- Q as EffectAttribute,
15042
- Fn as N8AO,
15043
- Un as index
15032
+ V as EffectAttribute,
15033
+ Un as N8AO,
15034
+ bn as index
15044
15035
  };