@neaps/tide-predictor 0.0.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.eslintrc.js +22 -0
- package/.github/workflows/test.yml +15 -0
- package/.prettierrc +4 -0
- package/Gruntfile.js +87 -0
- package/LICENSE +21 -0
- package/README.md +199 -0
- package/babel.config.js +9 -0
- package/dist/tide-predictor.js +1013 -0
- package/examples/browser/index.html +51 -0
- package/jest.config.js +14 -0
- package/lib/astronomy/coefficients.js +31 -0
- package/lib/astronomy/constants.js +10 -0
- package/lib/astronomy/index.js +199 -0
- package/lib/constituents/compound-constituent.js +67 -0
- package/lib/constituents/constituent.js +74 -0
- package/lib/constituents/index.js +140 -0
- package/lib/harmonics/index.js +113 -0
- package/lib/harmonics/prediction.js +195 -0
- package/lib/index.es6.js +1005 -0
- package/lib/index.js +53 -0
- package/lib/node-corrections/index.js +147 -0
- package/package.json +45 -0
- package/rollup.config.js +21 -0
- package/src/__mocks__/constituents.js +335 -0
- package/src/__mocks__/secondary-station.js +11 -0
- package/src/__tests__/index.js +81 -0
- package/src/__tests__/noaa.js +92 -0
- package/src/astronomy/__tests__/coefficients.js +12 -0
- package/src/astronomy/__tests__/index.js +96 -0
- package/src/astronomy/coefficients.js +72 -0
- package/src/astronomy/constants.js +4 -0
- package/src/astronomy/index.js +201 -0
- package/src/constituents/__tests__/compound-constituent.js +44 -0
- package/src/constituents/__tests__/constituent.js +65 -0
- package/src/constituents/__tests__/index.js +34 -0
- package/src/constituents/compound-constituent.js +55 -0
- package/src/constituents/constituent.js +74 -0
- package/src/constituents/index.js +119 -0
- package/src/harmonics/__mocks__/water-levels.js +0 -0
- package/src/harmonics/__tests__/index.js +123 -0
- package/src/harmonics/__tests__/prediction.js +148 -0
- package/src/harmonics/index.js +87 -0
- package/src/harmonics/prediction.js +175 -0
- package/src/index.js +45 -0
- package/src/node-corrections/__tests__/index.js +114 -0
- package/src/node-corrections/index.js +208 -0
package/lib/index.es6.js
ADDED
|
@@ -0,0 +1,1005 @@
|
|
|
1
|
+
const d2r = Math.PI / 180.0;
|
|
2
|
+
const r2d = 180.0 / Math.PI;
|
|
3
|
+
|
|
4
|
+
// Convert a sexagesimal angle into decimal degrees
|
|
5
|
+
const sexagesimalToDecimal = (degrees, arcmins, arcsecs, mas, muas) => {
|
|
6
|
+
arcmins = typeof arcmins !== 'undefined' ? arcmins : 0;
|
|
7
|
+
arcsecs = typeof arcsecs !== 'undefined' ? arcsecs : 0;
|
|
8
|
+
mas = typeof mas !== 'undefined' ? mas : 0;
|
|
9
|
+
muas = typeof muas !== 'undefined' ? muas : 0;
|
|
10
|
+
|
|
11
|
+
return (
|
|
12
|
+
degrees +
|
|
13
|
+
arcmins / 60.0 +
|
|
14
|
+
arcsecs / (60.0 * 60.0) +
|
|
15
|
+
mas / (60.0 * 60.0 * 1e3) +
|
|
16
|
+
muas / (60.0 * 60.0 * 1e6)
|
|
17
|
+
)
|
|
18
|
+
};
|
|
19
|
+
|
|
20
|
+
const coefficients = {
|
|
21
|
+
// Meeus formula 21.3
|
|
22
|
+
terrestrialObliquity: [
|
|
23
|
+
sexagesimalToDecimal(23, 26, 21.448),
|
|
24
|
+
-sexagesimalToDecimal(0, 0, 4680.93),
|
|
25
|
+
-sexagesimalToDecimal(0, 0, 1.55),
|
|
26
|
+
sexagesimalToDecimal(0, 0, 1999.25),
|
|
27
|
+
-sexagesimalToDecimal(0, 0, 51.38),
|
|
28
|
+
-sexagesimalToDecimal(0, 0, 249.67),
|
|
29
|
+
-sexagesimalToDecimal(0, 0, 39.05),
|
|
30
|
+
sexagesimalToDecimal(0, 0, 7.12),
|
|
31
|
+
sexagesimalToDecimal(0, 0, 27.87),
|
|
32
|
+
sexagesimalToDecimal(0, 0, 5.79),
|
|
33
|
+
sexagesimalToDecimal(0, 0, 2.45)
|
|
34
|
+
].map((number, index) => {
|
|
35
|
+
return number * Math.pow(1e-2, index)
|
|
36
|
+
}),
|
|
37
|
+
|
|
38
|
+
solarPerigee: [
|
|
39
|
+
280.46645 - 357.5291,
|
|
40
|
+
36000.76932 - 35999.0503,
|
|
41
|
+
0.0003032 + 0.0001559,
|
|
42
|
+
0.00000048
|
|
43
|
+
],
|
|
44
|
+
|
|
45
|
+
solarLongitude: [280.46645, 36000.76983, 0.0003032],
|
|
46
|
+
|
|
47
|
+
lunarInclination: [5.145],
|
|
48
|
+
|
|
49
|
+
lunarLongitude: [
|
|
50
|
+
218.3164591,
|
|
51
|
+
481267.88134236,
|
|
52
|
+
-0.0013268,
|
|
53
|
+
1 / 538841.0 - 1 / 65194000.0
|
|
54
|
+
],
|
|
55
|
+
|
|
56
|
+
lunarNode: [
|
|
57
|
+
125.044555,
|
|
58
|
+
-1934.1361849,
|
|
59
|
+
0.0020762,
|
|
60
|
+
1 / 467410.0,
|
|
61
|
+
-1 / 60616000.0
|
|
62
|
+
],
|
|
63
|
+
|
|
64
|
+
lunarPerigee: [
|
|
65
|
+
83.353243,
|
|
66
|
+
4069.0137111,
|
|
67
|
+
-0.0103238,
|
|
68
|
+
-1 / 80053.0,
|
|
69
|
+
1 / 18999000.0
|
|
70
|
+
]
|
|
71
|
+
};
|
|
72
|
+
|
|
73
|
+
// Evaluates a polynomial at argument
|
|
74
|
+
const polynomial = (coefficients, argument) => {
|
|
75
|
+
const result = [];
|
|
76
|
+
coefficients.forEach((coefficient, index) => {
|
|
77
|
+
result.push(coefficient * Math.pow(argument, index));
|
|
78
|
+
});
|
|
79
|
+
return result.reduce((a, b) => {
|
|
80
|
+
return a + b
|
|
81
|
+
})
|
|
82
|
+
};
|
|
83
|
+
|
|
84
|
+
// Evaluates a derivative polynomial at argument
|
|
85
|
+
const derivativePolynomial = (coefficients, argument) => {
|
|
86
|
+
const result = [];
|
|
87
|
+
coefficients.forEach((coefficient, index) => {
|
|
88
|
+
result.push(coefficient * index * Math.pow(argument, index - 1));
|
|
89
|
+
});
|
|
90
|
+
return result.reduce((a, b) => {
|
|
91
|
+
return a + b
|
|
92
|
+
})
|
|
93
|
+
};
|
|
94
|
+
|
|
95
|
+
// Meeus formula 11.1
|
|
96
|
+
const T = t => {
|
|
97
|
+
return (JD(t) - 2451545.0) / 36525
|
|
98
|
+
};
|
|
99
|
+
|
|
100
|
+
// Meeus formula 7.1
|
|
101
|
+
const JD = t => {
|
|
102
|
+
let Y = t.getFullYear();
|
|
103
|
+
let M = t.getMonth() + 1;
|
|
104
|
+
const D =
|
|
105
|
+
t.getDate() +
|
|
106
|
+
t.getHours() / 24.0 +
|
|
107
|
+
t.getMinutes() / (24.0 * 60.0) +
|
|
108
|
+
t.getSeconds() / (24.0 * 60.0 * 60.0) +
|
|
109
|
+
t.getMilliseconds() / (24.0 * 60.0 * 60.0 * 1e6);
|
|
110
|
+
if (M <= 2) {
|
|
111
|
+
Y = Y - 1;
|
|
112
|
+
M = M + 12;
|
|
113
|
+
}
|
|
114
|
+
const A = Math.floor(Y / 100.0);
|
|
115
|
+
const B = 2 - A + Math.floor(A / 4.0);
|
|
116
|
+
return (
|
|
117
|
+
Math.floor(365.25 * (Y + 4716)) +
|
|
118
|
+
Math.floor(30.6001 * (M + 1)) +
|
|
119
|
+
D +
|
|
120
|
+
B -
|
|
121
|
+
1524.5
|
|
122
|
+
)
|
|
123
|
+
};
|
|
124
|
+
|
|
125
|
+
/**
|
|
126
|
+
* @todo - What's with the array returned from the arccos?
|
|
127
|
+
* @param {*} N
|
|
128
|
+
* @param {*} i
|
|
129
|
+
* @param {*} omega
|
|
130
|
+
*/
|
|
131
|
+
const _I = (N, i, omega) => {
|
|
132
|
+
N = d2r * N;
|
|
133
|
+
i = d2r * i;
|
|
134
|
+
omega = d2r * omega;
|
|
135
|
+
const cosI =
|
|
136
|
+
Math.cos(i) * Math.cos(omega) - Math.sin(i) * Math.sin(omega) * Math.cos(N);
|
|
137
|
+
return r2d * Math.acos(cosI)
|
|
138
|
+
};
|
|
139
|
+
|
|
140
|
+
const _xi = (N, i, omega) => {
|
|
141
|
+
N = d2r * N;
|
|
142
|
+
i = d2r * i;
|
|
143
|
+
omega = d2r * omega;
|
|
144
|
+
let e1 =
|
|
145
|
+
(Math.cos(0.5 * (omega - i)) / Math.cos(0.5 * (omega + i))) *
|
|
146
|
+
Math.tan(0.5 * N);
|
|
147
|
+
let e2 =
|
|
148
|
+
(Math.sin(0.5 * (omega - i)) / Math.sin(0.5 * (omega + i))) *
|
|
149
|
+
Math.tan(0.5 * N);
|
|
150
|
+
e1 = Math.atan(e1);
|
|
151
|
+
e2 = Math.atan(e2);
|
|
152
|
+
e1 = e1 - 0.5 * N;
|
|
153
|
+
e2 = e2 - 0.5 * N;
|
|
154
|
+
return -(e1 + e2) * r2d
|
|
155
|
+
};
|
|
156
|
+
|
|
157
|
+
const _nu = (N, i, omega) => {
|
|
158
|
+
N = d2r * N;
|
|
159
|
+
i = d2r * i;
|
|
160
|
+
omega = d2r * omega;
|
|
161
|
+
let e1 =
|
|
162
|
+
(Math.cos(0.5 * (omega - i)) / Math.cos(0.5 * (omega + i))) *
|
|
163
|
+
Math.tan(0.5 * N);
|
|
164
|
+
let e2 =
|
|
165
|
+
(Math.sin(0.5 * (omega - i)) / Math.sin(0.5 * (omega + i))) *
|
|
166
|
+
Math.tan(0.5 * N);
|
|
167
|
+
e1 = Math.atan(e1);
|
|
168
|
+
e2 = Math.atan(e2);
|
|
169
|
+
e1 = e1 - 0.5 * N;
|
|
170
|
+
e2 = e2 - 0.5 * N;
|
|
171
|
+
return (e1 - e2) * r2d
|
|
172
|
+
};
|
|
173
|
+
|
|
174
|
+
// Schureman equation 224
|
|
175
|
+
const _nup = (N, i, omega) => {
|
|
176
|
+
const I = d2r * _I(N, i, omega);
|
|
177
|
+
const nu = d2r * _nu(N, i, omega);
|
|
178
|
+
return (
|
|
179
|
+
r2d *
|
|
180
|
+
Math.atan(
|
|
181
|
+
(Math.sin(2 * I) * Math.sin(nu)) /
|
|
182
|
+
(Math.sin(2 * I) * Math.cos(nu) + 0.3347)
|
|
183
|
+
)
|
|
184
|
+
)
|
|
185
|
+
};
|
|
186
|
+
|
|
187
|
+
// Schureman equation 232
|
|
188
|
+
const _nupp = (N, i, omega) => {
|
|
189
|
+
const I = d2r * _I(N, i, omega);
|
|
190
|
+
const nu = d2r * _nu(N, i, omega);
|
|
191
|
+
const tan2nupp =
|
|
192
|
+
(Math.sin(I) ** 2 * Math.sin(2 * nu)) /
|
|
193
|
+
(Math.sin(I) ** 2 * Math.cos(2 * nu) + 0.0727);
|
|
194
|
+
return r2d * 0.5 * Math.atan(tan2nupp)
|
|
195
|
+
};
|
|
196
|
+
|
|
197
|
+
const modulus = (a, b) => {
|
|
198
|
+
return ((a % b) + b) % b
|
|
199
|
+
};
|
|
200
|
+
|
|
201
|
+
const astro = time => {
|
|
202
|
+
const result = {};
|
|
203
|
+
const polynomials = {
|
|
204
|
+
s: coefficients.lunarLongitude,
|
|
205
|
+
h: coefficients.solarLongitude,
|
|
206
|
+
p: coefficients.lunarPerigee,
|
|
207
|
+
N: coefficients.lunarNode,
|
|
208
|
+
pp: coefficients.solarPerigee,
|
|
209
|
+
90: [90.0],
|
|
210
|
+
omega: coefficients.terrestrialObliquity,
|
|
211
|
+
i: coefficients.lunarInclination
|
|
212
|
+
};
|
|
213
|
+
|
|
214
|
+
// Polynomials are in T, that is Julian Centuries; we want our speeds to be
|
|
215
|
+
// in the more convenient unit of degrees per hour.
|
|
216
|
+
const dTdHour = 1 / (24 * 365.25 * 100);
|
|
217
|
+
Object.keys(polynomials).forEach(name => {
|
|
218
|
+
result[name] = {
|
|
219
|
+
value: modulus(polynomial(polynomials[name], T(time)), 360.0),
|
|
220
|
+
speed: derivativePolynomial(polynomials[name], T(time)) * dTdHour
|
|
221
|
+
};
|
|
222
|
+
});
|
|
223
|
+
|
|
224
|
+
// Some other parameters defined by Schureman which are dependent on the
|
|
225
|
+
// parameters N, i, omega for use in node factor calculations. We don't need
|
|
226
|
+
// their speeds.
|
|
227
|
+
const functions = {
|
|
228
|
+
I: _I,
|
|
229
|
+
xi: _xi,
|
|
230
|
+
nu: _nu,
|
|
231
|
+
nup: _nup,
|
|
232
|
+
nupp: _nupp
|
|
233
|
+
};
|
|
234
|
+
Object.keys(functions).forEach(name => {
|
|
235
|
+
const functionCall = functions[name];
|
|
236
|
+
result[name] = {
|
|
237
|
+
value: modulus(
|
|
238
|
+
functionCall(result.N.value, result.i.value, result.omega.value),
|
|
239
|
+
360.0
|
|
240
|
+
),
|
|
241
|
+
speed: null
|
|
242
|
+
};
|
|
243
|
+
});
|
|
244
|
+
|
|
245
|
+
// We don't work directly with the T (hours) parameter, instead our spanning
|
|
246
|
+
// set for equilibrium arguments #is given by T+h-s, s, h, p, N, pp, 90.
|
|
247
|
+
// This is in line with convention.
|
|
248
|
+
const hour = {
|
|
249
|
+
value: (JD(time) - Math.floor(JD(time))) * 360.0,
|
|
250
|
+
speed: 15.0
|
|
251
|
+
};
|
|
252
|
+
|
|
253
|
+
result['T+h-s'] = {
|
|
254
|
+
value: hour.value + result.h.value - result.s.value,
|
|
255
|
+
speed: hour.speed + result.h.speed - result.s.speed
|
|
256
|
+
};
|
|
257
|
+
|
|
258
|
+
// It is convenient to calculate Schureman's P here since several node
|
|
259
|
+
// factors need it, although it could be argued that these
|
|
260
|
+
// (along with I, xi, nu etc) belong somewhere else.
|
|
261
|
+
result.P = {
|
|
262
|
+
value: result.p.value - (result.xi.value % 360.0),
|
|
263
|
+
speed: null
|
|
264
|
+
};
|
|
265
|
+
|
|
266
|
+
return result
|
|
267
|
+
};
|
|
268
|
+
|
|
269
|
+
const modulus$1 = (a, b) => {
|
|
270
|
+
return ((a % b) + b) % b
|
|
271
|
+
};
|
|
272
|
+
|
|
273
|
+
const addExtremesOffsets = (extreme, offsets) => {
|
|
274
|
+
if (typeof offsets === 'undefined' || !offsets) {
|
|
275
|
+
return extreme
|
|
276
|
+
}
|
|
277
|
+
if (extreme.high && offsets.height_offset && offsets.height_offset.high) {
|
|
278
|
+
extreme.level *= offsets.height_offset.high;
|
|
279
|
+
}
|
|
280
|
+
if (extreme.low && offsets.height_offset && offsets.height_offset.low) {
|
|
281
|
+
extreme.level *= offsets.height_offset.low;
|
|
282
|
+
}
|
|
283
|
+
if (extreme.high && offsets.time_offset && offsets.time_offset.high) {
|
|
284
|
+
extreme.time = new Date(
|
|
285
|
+
extreme.time.getTime() + offsets.time_offset.high * 60 * 1000
|
|
286
|
+
);
|
|
287
|
+
}
|
|
288
|
+
if (extreme.low && offsets.time_offset && offsets.time_offset.low) {
|
|
289
|
+
extreme.time = new Date(
|
|
290
|
+
extreme.time.getTime() + offsets.time_offset.low * 60 * 1000
|
|
291
|
+
);
|
|
292
|
+
}
|
|
293
|
+
return extreme
|
|
294
|
+
};
|
|
295
|
+
|
|
296
|
+
const getExtremeLabel = (label, highLowLabels) => {
|
|
297
|
+
if (
|
|
298
|
+
typeof highLowLabels !== 'undefined' &&
|
|
299
|
+
typeof highLowLabels[label] !== 'undefined'
|
|
300
|
+
) {
|
|
301
|
+
return highLowLabels[label]
|
|
302
|
+
}
|
|
303
|
+
const labels = {
|
|
304
|
+
high: 'High',
|
|
305
|
+
low: 'Low'
|
|
306
|
+
};
|
|
307
|
+
return labels[label]
|
|
308
|
+
};
|
|
309
|
+
|
|
310
|
+
const predictionFactory = ({ timeline, constituents, start }) => {
|
|
311
|
+
const getLevel = (hour, modelBaseSpeed, modelU, modelF, modelBaseValue) => {
|
|
312
|
+
const amplitudes = [];
|
|
313
|
+
let result = 0;
|
|
314
|
+
|
|
315
|
+
constituents.forEach(constituent => {
|
|
316
|
+
const amplitude = constituent.amplitude;
|
|
317
|
+
const phase = constituent._phase;
|
|
318
|
+
const f = modelF[constituent.name];
|
|
319
|
+
const speed = modelBaseSpeed[constituent.name];
|
|
320
|
+
const u = modelU[constituent.name];
|
|
321
|
+
const V0 = modelBaseValue[constituent.name];
|
|
322
|
+
amplitudes.push(amplitude * f * Math.cos(speed * hour + (V0 + u) - phase));
|
|
323
|
+
});
|
|
324
|
+
// sum up each row
|
|
325
|
+
amplitudes.forEach(item => {
|
|
326
|
+
result += item;
|
|
327
|
+
});
|
|
328
|
+
return result
|
|
329
|
+
};
|
|
330
|
+
|
|
331
|
+
const prediction = {};
|
|
332
|
+
|
|
333
|
+
prediction.getExtremesPrediction = options => {
|
|
334
|
+
const { labels, offsets } = typeof options !== 'undefined' ? options : {};
|
|
335
|
+
const results = [];
|
|
336
|
+
const { baseSpeed, u, f, baseValue } = prepare();
|
|
337
|
+
let goingUp = false;
|
|
338
|
+
let goingDown = false;
|
|
339
|
+
let lastLevel = getLevel(0, baseSpeed, u[0], f[0], baseValue);
|
|
340
|
+
timeline.items.forEach((time, index) => {
|
|
341
|
+
const hour = timeline.hours[index];
|
|
342
|
+
const level = getLevel(hour, baseSpeed, u[index], f[index], baseValue);
|
|
343
|
+
// Compare this level to the last one, if we
|
|
344
|
+
// are changing angle, then the last one was high or low
|
|
345
|
+
if (level > lastLevel && goingDown) {
|
|
346
|
+
results.push(
|
|
347
|
+
addExtremesOffsets(
|
|
348
|
+
{
|
|
349
|
+
time: timeline.items[index - 1],
|
|
350
|
+
level: lastLevel,
|
|
351
|
+
high: false,
|
|
352
|
+
low: true,
|
|
353
|
+
label: getExtremeLabel('low', labels)
|
|
354
|
+
},
|
|
355
|
+
offsets
|
|
356
|
+
)
|
|
357
|
+
);
|
|
358
|
+
}
|
|
359
|
+
if (level < lastLevel && goingUp) {
|
|
360
|
+
results.push(
|
|
361
|
+
addExtremesOffsets(
|
|
362
|
+
{
|
|
363
|
+
time: timeline.items[index - 1],
|
|
364
|
+
level: lastLevel,
|
|
365
|
+
high: true,
|
|
366
|
+
low: false,
|
|
367
|
+
label: getExtremeLabel('high', labels)
|
|
368
|
+
},
|
|
369
|
+
offsets
|
|
370
|
+
)
|
|
371
|
+
);
|
|
372
|
+
}
|
|
373
|
+
if (level > lastLevel) {
|
|
374
|
+
goingUp = true;
|
|
375
|
+
goingDown = false;
|
|
376
|
+
}
|
|
377
|
+
if (level < lastLevel) {
|
|
378
|
+
goingUp = false;
|
|
379
|
+
goingDown = true;
|
|
380
|
+
}
|
|
381
|
+
lastLevel = level;
|
|
382
|
+
});
|
|
383
|
+
return results
|
|
384
|
+
};
|
|
385
|
+
|
|
386
|
+
prediction.getTimelinePrediction = () => {
|
|
387
|
+
const results = [];
|
|
388
|
+
const { baseSpeed, u, f, baseValue } = prepare();
|
|
389
|
+
timeline.items.forEach((time, index) => {
|
|
390
|
+
const hour = timeline.hours[index];
|
|
391
|
+
const prediction = {
|
|
392
|
+
time: time,
|
|
393
|
+
hour: hour,
|
|
394
|
+
level: getLevel(hour, baseSpeed, u[index], f[index], baseValue)
|
|
395
|
+
};
|
|
396
|
+
|
|
397
|
+
results.push(prediction);
|
|
398
|
+
});
|
|
399
|
+
return results
|
|
400
|
+
};
|
|
401
|
+
|
|
402
|
+
const prepare = () => {
|
|
403
|
+
const baseAstro = astro(start);
|
|
404
|
+
|
|
405
|
+
const baseValue = {};
|
|
406
|
+
const baseSpeed = {};
|
|
407
|
+
const u = [];
|
|
408
|
+
const f = [];
|
|
409
|
+
constituents.forEach(constituent => {
|
|
410
|
+
const value = constituent._model.value(baseAstro);
|
|
411
|
+
const speed = constituent._model.speed(baseAstro);
|
|
412
|
+
baseValue[constituent.name] = d2r * value;
|
|
413
|
+
baseSpeed[constituent.name] = d2r * speed;
|
|
414
|
+
});
|
|
415
|
+
timeline.items.forEach(time => {
|
|
416
|
+
const uItem = {};
|
|
417
|
+
const fItem = {};
|
|
418
|
+
const itemAstro = astro(time);
|
|
419
|
+
constituents.forEach(constituent => {
|
|
420
|
+
const constituentU = modulus$1(constituent._model.u(itemAstro), 360);
|
|
421
|
+
|
|
422
|
+
uItem[constituent.name] = d2r * constituentU;
|
|
423
|
+
fItem[constituent.name] = modulus$1(constituent._model.f(itemAstro), 360);
|
|
424
|
+
});
|
|
425
|
+
u.push(uItem);
|
|
426
|
+
f.push(fItem);
|
|
427
|
+
});
|
|
428
|
+
|
|
429
|
+
return {
|
|
430
|
+
baseValue: baseValue,
|
|
431
|
+
baseSpeed: baseSpeed,
|
|
432
|
+
u: u,
|
|
433
|
+
f: f
|
|
434
|
+
}
|
|
435
|
+
};
|
|
436
|
+
|
|
437
|
+
return Object.freeze(prediction)
|
|
438
|
+
};
|
|
439
|
+
|
|
440
|
+
const corrections = {
|
|
441
|
+
fUnity() {
|
|
442
|
+
return 1
|
|
443
|
+
},
|
|
444
|
+
|
|
445
|
+
// Schureman equations 73, 65
|
|
446
|
+
fMm(a) {
|
|
447
|
+
const omega = d2r * a.omega.value;
|
|
448
|
+
const i = d2r * a.i.value;
|
|
449
|
+
const I = d2r * a.I.value;
|
|
450
|
+
const mean =
|
|
451
|
+
(2 / 3.0 - Math.pow(Math.sin(omega), 2)) *
|
|
452
|
+
(1 - (3 / 2.0) * Math.pow(Math.sin(i), 2));
|
|
453
|
+
return (2 / 3.0 - Math.pow(Math.sin(I), 2)) / mean
|
|
454
|
+
},
|
|
455
|
+
|
|
456
|
+
// Schureman equations 74, 66
|
|
457
|
+
fMf(a) {
|
|
458
|
+
const omega = d2r * a.omega.value;
|
|
459
|
+
const i = d2r * a.i.value;
|
|
460
|
+
const I = d2r * a.I.value;
|
|
461
|
+
const mean = Math.pow(Math.sin(omega), 2) * Math.pow(Math.cos(0.5 * i), 4);
|
|
462
|
+
return Math.pow(Math.sin(I), 2) / mean
|
|
463
|
+
},
|
|
464
|
+
|
|
465
|
+
// Schureman equations 75, 67
|
|
466
|
+
fO1(a) {
|
|
467
|
+
const omega = d2r * a.omega.value;
|
|
468
|
+
const i = d2r * a.i.value;
|
|
469
|
+
const I = d2r * a.I.value;
|
|
470
|
+
const mean =
|
|
471
|
+
Math.sin(omega) *
|
|
472
|
+
Math.pow(Math.cos(0.5 * omega), 2) *
|
|
473
|
+
Math.pow(Math.cos(0.5 * i), 4);
|
|
474
|
+
return (Math.sin(I) * Math.pow(Math.cos(0.5 * I), 2)) / mean
|
|
475
|
+
},
|
|
476
|
+
|
|
477
|
+
// Schureman equations 76, 68
|
|
478
|
+
fJ1(a) {
|
|
479
|
+
const omega = d2r * a.omega.value;
|
|
480
|
+
const i = d2r * a.i.value;
|
|
481
|
+
const I = d2r * a.I.value;
|
|
482
|
+
const mean =
|
|
483
|
+
Math.sin(2 * omega) * (1 - (3 / 2.0) * Math.pow(Math.sin(i), 2));
|
|
484
|
+
return Math.sin(2 * I) / mean
|
|
485
|
+
},
|
|
486
|
+
|
|
487
|
+
// Schureman equations 77, 69
|
|
488
|
+
fOO1(a) {
|
|
489
|
+
const omega = d2r * a.omega.value;
|
|
490
|
+
const i = d2r * a.i.value;
|
|
491
|
+
const I = d2r * a.I.value;
|
|
492
|
+
const mean =
|
|
493
|
+
Math.sin(omega) *
|
|
494
|
+
Math.pow(Math.sin(0.5 * omega), 2) *
|
|
495
|
+
Math.pow(Math.cos(0.5 * i), 4);
|
|
496
|
+
return (Math.sin(I) * Math.pow(Math.sin(0.5 * I), 2)) / mean
|
|
497
|
+
},
|
|
498
|
+
|
|
499
|
+
// Schureman equations 78, 70
|
|
500
|
+
fM2(a) {
|
|
501
|
+
const omega = d2r * a.omega.value;
|
|
502
|
+
const i = d2r * a.i.value;
|
|
503
|
+
const I = d2r * a.I.value;
|
|
504
|
+
const mean =
|
|
505
|
+
Math.pow(Math.cos(0.5 * omega), 4) * Math.pow(Math.cos(0.5 * i), 4);
|
|
506
|
+
return Math.pow(Math.cos(0.5 * I), 4) / mean
|
|
507
|
+
},
|
|
508
|
+
|
|
509
|
+
// Schureman equations 227, 226, 68
|
|
510
|
+
// Should probably eventually include the derivations of the magic numbers (0.5023 etc).
|
|
511
|
+
fK1(a) {
|
|
512
|
+
const omega = d2r * a.omega.value;
|
|
513
|
+
const i = d2r * a.i.value;
|
|
514
|
+
const I = d2r * a.I.value;
|
|
515
|
+
const nu = d2r * a.nu.value;
|
|
516
|
+
const sin2IcosnuMean =
|
|
517
|
+
Math.sin(2 * omega) * (1 - (3 / 2.0) * Math.pow(Math.sin(i), 2));
|
|
518
|
+
const mean = 0.5023 * sin2IcosnuMean + 0.1681;
|
|
519
|
+
return (
|
|
520
|
+
Math.pow(
|
|
521
|
+
0.2523 * Math.pow(Math.sin(2 * I), 2) +
|
|
522
|
+
0.1689 * Math.sin(2 * I) * Math.cos(nu) +
|
|
523
|
+
0.0283,
|
|
524
|
+
0.5
|
|
525
|
+
) / mean
|
|
526
|
+
)
|
|
527
|
+
},
|
|
528
|
+
|
|
529
|
+
// Schureman equations 215, 213, 204
|
|
530
|
+
// It can be (and has been) confirmed that the exponent for R_a reads 1/2 via Schureman Table 7
|
|
531
|
+
fL2(a) {
|
|
532
|
+
const P = d2r * a.P.value;
|
|
533
|
+
const I = d2r * a.I.value;
|
|
534
|
+
const rAInv = Math.pow(
|
|
535
|
+
1 -
|
|
536
|
+
12 * Math.pow(Math.tan(0.5 * I), 2) * Math.cos(2 * P) +
|
|
537
|
+
36 * Math.pow(Math.tan(0.5 * I), 4),
|
|
538
|
+
0.5
|
|
539
|
+
);
|
|
540
|
+
return corrections.fM2(a) * rAInv
|
|
541
|
+
},
|
|
542
|
+
|
|
543
|
+
// Schureman equations 235, 234, 71
|
|
544
|
+
// Again, magic numbers
|
|
545
|
+
fK2(a) {
|
|
546
|
+
const omega = d2r * a.omega.value;
|
|
547
|
+
const i = d2r * a.i.value;
|
|
548
|
+
const I = d2r * a.I.value;
|
|
549
|
+
const nu = d2r * a.nu.value;
|
|
550
|
+
const sinsqIcos2nuMean =
|
|
551
|
+
Math.sin(omega) ** 2 * (1 - (3 / 2.0) * Math.sin(i) ** 2);
|
|
552
|
+
const mean = 0.5023 * sinsqIcos2nuMean + 0.0365;
|
|
553
|
+
return (
|
|
554
|
+
Math.pow(
|
|
555
|
+
0.2523 * Math.pow(Math.sin(I), 4) +
|
|
556
|
+
0.0367 * Math.pow(Math.sin(I), 2) * Math.cos(2 * nu) +
|
|
557
|
+
0.0013,
|
|
558
|
+
0.5
|
|
559
|
+
) / mean
|
|
560
|
+
)
|
|
561
|
+
},
|
|
562
|
+
// Schureman equations 206, 207, 195
|
|
563
|
+
fM1(a) {
|
|
564
|
+
const P = d2r * a.P.value;
|
|
565
|
+
const I = d2r * a.I.value;
|
|
566
|
+
const qAInv = Math.pow(
|
|
567
|
+
0.25 +
|
|
568
|
+
1.5 *
|
|
569
|
+
Math.cos(I) *
|
|
570
|
+
Math.cos(2 * P) *
|
|
571
|
+
Math.pow(Math.cos(0.5 * I), -0.5) +
|
|
572
|
+
2.25 * Math.pow(Math.cos(I), 2) * Math.pow(Math.cos(0.5 * I), -4),
|
|
573
|
+
0.5
|
|
574
|
+
);
|
|
575
|
+
return corrections.fO1(a) * qAInv
|
|
576
|
+
},
|
|
577
|
+
|
|
578
|
+
// See e.g. Schureman equation 149
|
|
579
|
+
fModd(a, n) {
|
|
580
|
+
return Math.pow(corrections.fM2(a), n / 2.0)
|
|
581
|
+
},
|
|
582
|
+
|
|
583
|
+
// Node factors u, see Table 2 of Schureman.
|
|
584
|
+
|
|
585
|
+
uZero(a) {
|
|
586
|
+
return 0.0
|
|
587
|
+
},
|
|
588
|
+
|
|
589
|
+
uMf(a) {
|
|
590
|
+
return -2.0 * a.xi.value
|
|
591
|
+
},
|
|
592
|
+
|
|
593
|
+
uO1(a) {
|
|
594
|
+
return 2.0 * a.xi.value - a.nu.value
|
|
595
|
+
},
|
|
596
|
+
|
|
597
|
+
uJ1(a) {
|
|
598
|
+
return -a.nu.value
|
|
599
|
+
},
|
|
600
|
+
|
|
601
|
+
uOO1(a) {
|
|
602
|
+
return -2.0 * a.xi.value - a.nu.value
|
|
603
|
+
},
|
|
604
|
+
|
|
605
|
+
uM2(a) {
|
|
606
|
+
return 2.0 * a.xi.value - 2.0 * a.nu.value
|
|
607
|
+
},
|
|
608
|
+
|
|
609
|
+
uK1(a) {
|
|
610
|
+
return -a.nup.value
|
|
611
|
+
},
|
|
612
|
+
|
|
613
|
+
// Schureman 214
|
|
614
|
+
uL2(a) {
|
|
615
|
+
const I = d2r * a.I.value;
|
|
616
|
+
const P = d2r * a.P.value;
|
|
617
|
+
const R =
|
|
618
|
+
r2d *
|
|
619
|
+
Math.atan(
|
|
620
|
+
Math.sin(2 * P) /
|
|
621
|
+
((1 / 6.0) * Math.pow(Math.tan(0.5 * I), -2) - Math.cos(2 * P))
|
|
622
|
+
);
|
|
623
|
+
return 2.0 * a.xi.value - 2.0 * a.nu.value - R
|
|
624
|
+
},
|
|
625
|
+
|
|
626
|
+
uK2(a) {
|
|
627
|
+
return -2.0 * a.nupp.value
|
|
628
|
+
},
|
|
629
|
+
|
|
630
|
+
// Schureman 202
|
|
631
|
+
uM1(a) {
|
|
632
|
+
const I = d2r * a.I.value;
|
|
633
|
+
const P = d2r * a.P.value;
|
|
634
|
+
const Q =
|
|
635
|
+
r2d *
|
|
636
|
+
Math.atan(((5 * Math.cos(I) - 1) / (7 * Math.cos(I) + 1)) * Math.tan(P));
|
|
637
|
+
return a.xi.value - a.nu.value + Q
|
|
638
|
+
},
|
|
639
|
+
|
|
640
|
+
uModd(a, n) {
|
|
641
|
+
return (n / 2.0) * corrections.uM2(a)
|
|
642
|
+
}
|
|
643
|
+
};
|
|
644
|
+
|
|
645
|
+
/**
|
|
646
|
+
* Computes the dot notation of two arrays
|
|
647
|
+
* @param {*} a
|
|
648
|
+
* @param {*} b
|
|
649
|
+
*/
|
|
650
|
+
const dotArray = (a, b) => {
|
|
651
|
+
const results = [];
|
|
652
|
+
a.forEach((value, index) => {
|
|
653
|
+
results.push(value * b[index]);
|
|
654
|
+
});
|
|
655
|
+
return results.reduce((total, value) => {
|
|
656
|
+
return total + value
|
|
657
|
+
})
|
|
658
|
+
};
|
|
659
|
+
|
|
660
|
+
const astronimicDoodsonNumber = astro => {
|
|
661
|
+
return [
|
|
662
|
+
astro['T+h-s'],
|
|
663
|
+
astro.s,
|
|
664
|
+
astro.h,
|
|
665
|
+
astro.p,
|
|
666
|
+
astro.N,
|
|
667
|
+
astro.pp,
|
|
668
|
+
astro['90']
|
|
669
|
+
]
|
|
670
|
+
};
|
|
671
|
+
|
|
672
|
+
const astronomicSpeed = astro => {
|
|
673
|
+
const results = [];
|
|
674
|
+
astronimicDoodsonNumber(astro).forEach(number => {
|
|
675
|
+
results.push(number.speed);
|
|
676
|
+
});
|
|
677
|
+
return results
|
|
678
|
+
};
|
|
679
|
+
|
|
680
|
+
const astronomicValues = astro => {
|
|
681
|
+
const results = [];
|
|
682
|
+
astronimicDoodsonNumber(astro).forEach(number => {
|
|
683
|
+
results.push(number.value);
|
|
684
|
+
});
|
|
685
|
+
return results
|
|
686
|
+
};
|
|
687
|
+
|
|
688
|
+
const constituentFactory = (name, coefficients, u, f) => {
|
|
689
|
+
if (!coefficients) {
|
|
690
|
+
throw new Error('Coefficient must be defined for a constituent')
|
|
691
|
+
}
|
|
692
|
+
|
|
693
|
+
const constituent = {
|
|
694
|
+
name: name,
|
|
695
|
+
|
|
696
|
+
coefficients: coefficients,
|
|
697
|
+
|
|
698
|
+
value: astro => {
|
|
699
|
+
return dotArray(coefficients, astronomicValues(astro))
|
|
700
|
+
},
|
|
701
|
+
|
|
702
|
+
speed(astro) {
|
|
703
|
+
return dotArray(coefficients, astronomicSpeed(astro))
|
|
704
|
+
},
|
|
705
|
+
|
|
706
|
+
u: typeof u !== 'undefined' ? u : corrections.uZero,
|
|
707
|
+
|
|
708
|
+
f: typeof f !== 'undefined' ? f : corrections.fUnity
|
|
709
|
+
};
|
|
710
|
+
|
|
711
|
+
return Object.freeze(constituent)
|
|
712
|
+
};
|
|
713
|
+
|
|
714
|
+
const compoundConstituentFactory = (name, members) => {
|
|
715
|
+
const coefficients = [];
|
|
716
|
+
members.forEach(({ constituent, factor }) => {
|
|
717
|
+
constituent.coefficients.forEach((coefficient, index) => {
|
|
718
|
+
if (typeof coefficients[index] === 'undefined') {
|
|
719
|
+
coefficients[index] = 0;
|
|
720
|
+
}
|
|
721
|
+
coefficients[index] += coefficient * factor;
|
|
722
|
+
});
|
|
723
|
+
});
|
|
724
|
+
|
|
725
|
+
const compoundConstituent = {
|
|
726
|
+
name: name,
|
|
727
|
+
|
|
728
|
+
coefficients: coefficients,
|
|
729
|
+
|
|
730
|
+
speed: astro => {
|
|
731
|
+
let speed = 0;
|
|
732
|
+
members.forEach(({ constituent, factor }) => {
|
|
733
|
+
speed += constituent.speed(astro) * factor;
|
|
734
|
+
});
|
|
735
|
+
return speed
|
|
736
|
+
},
|
|
737
|
+
|
|
738
|
+
value: astro => {
|
|
739
|
+
let value = 0;
|
|
740
|
+
members.forEach(({ constituent, factor }) => {
|
|
741
|
+
value += constituent.value(astro) * factor;
|
|
742
|
+
});
|
|
743
|
+
return value
|
|
744
|
+
},
|
|
745
|
+
|
|
746
|
+
u: astro => {
|
|
747
|
+
let u = 0;
|
|
748
|
+
members.forEach(({ constituent, factor }) => {
|
|
749
|
+
u += constituent.u(astro) * factor;
|
|
750
|
+
});
|
|
751
|
+
return u
|
|
752
|
+
},
|
|
753
|
+
|
|
754
|
+
f: astro => {
|
|
755
|
+
const f = [];
|
|
756
|
+
members.forEach(({ constituent, factor }) => {
|
|
757
|
+
f.push(Math.pow(constituent.f(astro), Math.abs(factor)));
|
|
758
|
+
});
|
|
759
|
+
return f.reduce((previous, value) => {
|
|
760
|
+
return previous * value
|
|
761
|
+
})
|
|
762
|
+
}
|
|
763
|
+
};
|
|
764
|
+
|
|
765
|
+
return Object.freeze(compoundConstituent)
|
|
766
|
+
};
|
|
767
|
+
|
|
768
|
+
const constituents = {};
|
|
769
|
+
// Long Term
|
|
770
|
+
constituents.Z0 = constituentFactory('Z0', [0, 0, 0, 0, 0, 0, 0], corrections.uZero, corrections.fUnity);
|
|
771
|
+
constituents.SA = constituentFactory('Sa', [0, 0, 1, 0, 0, 0, 0], corrections.uZero, corrections.fUnity);
|
|
772
|
+
constituents.SSA = constituentFactory(
|
|
773
|
+
'Ssa',
|
|
774
|
+
[0, 0, 2, 0, 0, 0, 0],
|
|
775
|
+
corrections.uZero,
|
|
776
|
+
corrections.fUnity
|
|
777
|
+
);
|
|
778
|
+
constituents.MM = constituentFactory('MM', [0, 1, 0, -1, 0, 0, 0], corrections.uZero, corrections.fMm);
|
|
779
|
+
constituents.MF = constituentFactory('MF', [0, 2, 0, 0, 0, 0, 0], corrections.uMf, corrections.fMf);
|
|
780
|
+
// Diurnals
|
|
781
|
+
constituents.Q1 = constituentFactory('Q1', [1, -2, 0, 1, 0, 0, 1], corrections.uO1, corrections.fO1);
|
|
782
|
+
constituents.O1 = constituentFactory('O1', [1, -1, 0, 0, 0, 0, 1], corrections.uO1, corrections.fO1);
|
|
783
|
+
constituents.K1 = constituentFactory('K1', [1, 1, 0, 0, 0, 0, -1], corrections.uK1, corrections.fK1);
|
|
784
|
+
constituents.J1 = constituentFactory('J1', [1, 2, 0, -1, 0, 0, -1], corrections.uJ1, corrections.fJ1);
|
|
785
|
+
constituents.M1 = constituentFactory('M1', [1, 0, 0, 0, 0, 0, 1], corrections.uM1, corrections.fM1);
|
|
786
|
+
constituents.P1 = constituentFactory('P1', [1, 1, -2, 0, 0, 0, 1], corrections.uZero, corrections.fUnity);
|
|
787
|
+
constituents.S1 = constituentFactory('S1', [1, 1, -1, 0, 0, 0, 0], corrections.uZero, corrections.fUnity);
|
|
788
|
+
constituents.OO1 = constituentFactory('OO1', [1, 3, 0, 0, 0, 0, -1], corrections.uOO1, corrections.fOO1);
|
|
789
|
+
// Semi diurnals
|
|
790
|
+
constituents['2N2'] = constituentFactory('2N2', [2, -2, 0, 2, 0, 0, 0], corrections.uM2, corrections.fM2);
|
|
791
|
+
constituents.N2 = constituentFactory('N2', [2, -1, 0, 1, 0, 0, 0], corrections.uM2, corrections.fM2);
|
|
792
|
+
constituents.NU2 = constituentFactory('NU2', [2, -1, 2, -1, 0, 0, 0], corrections.uM2, corrections.fM2);
|
|
793
|
+
constituents.M2 = constituentFactory('M2', [2, 0, 0, 0, 0, 0, 0], corrections.uM2, corrections.fM2);
|
|
794
|
+
constituents.LAM2 = constituentFactory('LAM2', [2, 1, -2, 1, 0, 0, 2], corrections.uM2, corrections.fM2);
|
|
795
|
+
constituents.L2 = constituentFactory('L2', [2, 1, 0, -1, 0, 0, 2], corrections.uL2, corrections.fL2);
|
|
796
|
+
constituents.T2 = constituentFactory('T2', [2, 2, -3, 0, 0, 1, 0], corrections.uZero, corrections.fUnity);
|
|
797
|
+
constituents.S2 = constituentFactory('S2', [2, 2, -2, 0, 0, 0, 0], corrections.uZero, corrections.fUnity);
|
|
798
|
+
constituents.R2 = constituentFactory(
|
|
799
|
+
'R2',
|
|
800
|
+
[2, 2, -1, 0, 0, -1, 2],
|
|
801
|
+
corrections.uZero,
|
|
802
|
+
corrections.fUnity
|
|
803
|
+
);
|
|
804
|
+
constituents.K2 = constituentFactory('K2', [2, 2, 0, 0, 0, 0, 0], corrections.uK2, corrections.fK2);
|
|
805
|
+
// Third diurnal
|
|
806
|
+
constituents.M3 = constituentFactory(
|
|
807
|
+
'M3',
|
|
808
|
+
[3, 0, 0, 0, 0, 0, 0],
|
|
809
|
+
a => {
|
|
810
|
+
return corrections.uModd(a, 3)
|
|
811
|
+
},
|
|
812
|
+
a => {
|
|
813
|
+
return corrections.fModd(a, 3)
|
|
814
|
+
}
|
|
815
|
+
);
|
|
816
|
+
// Compound
|
|
817
|
+
constituents.MSF = compoundConstituentFactory('MSF', [
|
|
818
|
+
{ constituent: constituents.S2, factor: 1 },
|
|
819
|
+
{ constituent: constituents.M2, factor: -1 }
|
|
820
|
+
]);
|
|
821
|
+
|
|
822
|
+
// Diurnal
|
|
823
|
+
constituents['2Q1'] = compoundConstituentFactory('2Q1', [
|
|
824
|
+
{ constituent: constituents.N2, factor: 1 },
|
|
825
|
+
{ constituent: constituents.J1, factor: -1 }
|
|
826
|
+
]);
|
|
827
|
+
constituents.RHO = compoundConstituentFactory('RHO', [
|
|
828
|
+
{ constituent: constituents.NU2, factor: 1 },
|
|
829
|
+
{ constituent: constituents.K1, factor: -1 }
|
|
830
|
+
]);
|
|
831
|
+
|
|
832
|
+
// Semi-Diurnal
|
|
833
|
+
|
|
834
|
+
constituents.MU2 = compoundConstituentFactory('MU2', [
|
|
835
|
+
{ constituent: constituents.M2, factor: 2 },
|
|
836
|
+
{ constituent: constituents.S2, factor: -1 }
|
|
837
|
+
]);
|
|
838
|
+
constituents['2SM2'] = compoundConstituentFactory('2SM2', [
|
|
839
|
+
{ constituent: constituents.S2, factor: 2 },
|
|
840
|
+
{ constituent: constituents.M2, factor: -1 }
|
|
841
|
+
]);
|
|
842
|
+
|
|
843
|
+
// Third-Diurnal
|
|
844
|
+
constituents['2MK3'] = compoundConstituentFactory('2MK3', [
|
|
845
|
+
{ constituent: constituents.M2, factor: 1 },
|
|
846
|
+
{ constituent: constituents.O1, factor: 1 }
|
|
847
|
+
]);
|
|
848
|
+
constituents.MK3 = compoundConstituentFactory('MK3', [
|
|
849
|
+
{ constituent: constituents.M2, factor: 1 },
|
|
850
|
+
{ constituent: constituents.K1, factor: 1 }
|
|
851
|
+
]);
|
|
852
|
+
|
|
853
|
+
// Quarter-Diurnal
|
|
854
|
+
constituents.MN4 = compoundConstituentFactory('MN4', [
|
|
855
|
+
{ constituent: constituents.M2, factor: 1 },
|
|
856
|
+
{ constituent: constituents.N2, factor: 1 }
|
|
857
|
+
]);
|
|
858
|
+
constituents.M4 = compoundConstituentFactory('M4', [
|
|
859
|
+
{ constituent: constituents.M2, factor: 2 }
|
|
860
|
+
]);
|
|
861
|
+
constituents.MS4 = compoundConstituentFactory('MS4', [
|
|
862
|
+
{ constituent: constituents.M2, factor: 1 },
|
|
863
|
+
{ constituent: constituents.S2, factor: 1 }
|
|
864
|
+
]);
|
|
865
|
+
constituents.S4 = compoundConstituentFactory('S4', [
|
|
866
|
+
{ constituent: constituents.S2, factor: 2 }
|
|
867
|
+
]);
|
|
868
|
+
|
|
869
|
+
// Sixth-Diurnal
|
|
870
|
+
constituents.M6 = compoundConstituentFactory('M6', [
|
|
871
|
+
{ constituent: constituents.M2, factor: 3 }
|
|
872
|
+
]);
|
|
873
|
+
constituents.S6 = compoundConstituentFactory('S6', [
|
|
874
|
+
{ constituent: constituents.S2, factor: 3 }
|
|
875
|
+
]);
|
|
876
|
+
|
|
877
|
+
// Eighth-Diurnals
|
|
878
|
+
constituents.M8 = compoundConstituentFactory('M8', [
|
|
879
|
+
{ constituent: constituents.M2, factor: 4 }
|
|
880
|
+
]);
|
|
881
|
+
|
|
882
|
+
const getDate = time => {
|
|
883
|
+
if (time instanceof Date) {
|
|
884
|
+
return time
|
|
885
|
+
}
|
|
886
|
+
if (typeof time === 'number') {
|
|
887
|
+
return new Date(time * 1000)
|
|
888
|
+
}
|
|
889
|
+
throw new Error('Invalid date format, should be a Date object, or timestamp')
|
|
890
|
+
};
|
|
891
|
+
|
|
892
|
+
const getTimeline = (start, end, seconds) => {
|
|
893
|
+
seconds = typeof seconds !== 'undefined' ? seconds : 10 * 60;
|
|
894
|
+
const timeline = [];
|
|
895
|
+
const endTime = end.getTime() / 1000;
|
|
896
|
+
let lastTime = start.getTime() / 1000;
|
|
897
|
+
const startTime = lastTime;
|
|
898
|
+
const hours = [];
|
|
899
|
+
while (lastTime <= endTime) {
|
|
900
|
+
timeline.push(new Date(lastTime * 1000));
|
|
901
|
+
hours.push((lastTime - startTime) / (60 * 60));
|
|
902
|
+
lastTime += seconds;
|
|
903
|
+
}
|
|
904
|
+
|
|
905
|
+
return {
|
|
906
|
+
items: timeline,
|
|
907
|
+
hours: hours
|
|
908
|
+
}
|
|
909
|
+
};
|
|
910
|
+
|
|
911
|
+
const harmonicsFactory = ({ harmonicConstituents, phaseKey, offset }) => {
|
|
912
|
+
if (!Array.isArray(harmonicConstituents)) {
|
|
913
|
+
throw new Error('Harmonic constituents are not an array')
|
|
914
|
+
}
|
|
915
|
+
const constituents$1 = [];
|
|
916
|
+
harmonicConstituents.forEach((constituent, index) => {
|
|
917
|
+
if (typeof constituent.name === 'undefined') {
|
|
918
|
+
throw new Error('Harmonic constituents must have a name property')
|
|
919
|
+
}
|
|
920
|
+
if (typeof constituents[constituent.name] !== 'undefined') {
|
|
921
|
+
constituent._model = constituents[constituent.name];
|
|
922
|
+
constituent._phase = d2r * constituent[phaseKey];
|
|
923
|
+
constituents$1.push(constituent);
|
|
924
|
+
}
|
|
925
|
+
});
|
|
926
|
+
|
|
927
|
+
if (offset !== false) {
|
|
928
|
+
constituents$1.push({
|
|
929
|
+
name: 'Z0',
|
|
930
|
+
_model: constituents.Z0,
|
|
931
|
+
_phase: 0,
|
|
932
|
+
amplitude: offset
|
|
933
|
+
});
|
|
934
|
+
}
|
|
935
|
+
|
|
936
|
+
let start = new Date();
|
|
937
|
+
let end = new Date();
|
|
938
|
+
|
|
939
|
+
const harmonics = {};
|
|
940
|
+
|
|
941
|
+
harmonics.setTimeSpan = (startTime, endTime) => {
|
|
942
|
+
start = getDate(startTime);
|
|
943
|
+
end = getDate(endTime);
|
|
944
|
+
if (start.getTime() >= end.getTime()) {
|
|
945
|
+
throw new Error('Start time must be before end time')
|
|
946
|
+
}
|
|
947
|
+
return harmonics
|
|
948
|
+
};
|
|
949
|
+
|
|
950
|
+
harmonics.prediction = options => {
|
|
951
|
+
options =
|
|
952
|
+
typeof options !== 'undefined' ? options : { timeFidelity: 10 * 60 };
|
|
953
|
+
return predictionFactory({
|
|
954
|
+
timeline: getTimeline(start, end, options.timeFidelity),
|
|
955
|
+
constituents: constituents$1,
|
|
956
|
+
start: start
|
|
957
|
+
})
|
|
958
|
+
};
|
|
959
|
+
|
|
960
|
+
return Object.freeze(harmonics)
|
|
961
|
+
};
|
|
962
|
+
|
|
963
|
+
const tidePredictionFactory = (constituents, options) => {
|
|
964
|
+
const harmonicsOptions = {
|
|
965
|
+
harmonicConstituents: constituents,
|
|
966
|
+
phaseKey: 'phase_GMT',
|
|
967
|
+
offset: false
|
|
968
|
+
};
|
|
969
|
+
|
|
970
|
+
if (typeof options !== 'undefined') {
|
|
971
|
+
Object.keys(harmonicsOptions).forEach(key => {
|
|
972
|
+
if (typeof options[key] !== 'undefined') {
|
|
973
|
+
harmonicsOptions[key] = options[key];
|
|
974
|
+
}
|
|
975
|
+
});
|
|
976
|
+
}
|
|
977
|
+
|
|
978
|
+
const tidePrediction = {
|
|
979
|
+
getTimelinePrediction: ({ start, end }) => {
|
|
980
|
+
return harmonicsFactory(harmonicsOptions)
|
|
981
|
+
.setTimeSpan(start, end)
|
|
982
|
+
.prediction()
|
|
983
|
+
.getTimelinePrediction()
|
|
984
|
+
},
|
|
985
|
+
|
|
986
|
+
getExtremesPrediction: ({ start, end, labels, offsets, timeFidelity }) => {
|
|
987
|
+
return harmonicsFactory(harmonicsOptions)
|
|
988
|
+
.setTimeSpan(start, end)
|
|
989
|
+
.prediction({ timeFidelity: timeFidelity })
|
|
990
|
+
.getExtremesPrediction(labels, offsets)
|
|
991
|
+
},
|
|
992
|
+
|
|
993
|
+
getWaterLevelAtTime: ({ time }) => {
|
|
994
|
+
const endDate = new Date(time.getTime() + 10 * 60 * 1000);
|
|
995
|
+
return harmonicsFactory(harmonicsOptions)
|
|
996
|
+
.setTimeSpan(time, endDate)
|
|
997
|
+
.prediction()
|
|
998
|
+
.getTimelinePrediction()[0]
|
|
999
|
+
}
|
|
1000
|
+
};
|
|
1001
|
+
|
|
1002
|
+
return tidePrediction
|
|
1003
|
+
};
|
|
1004
|
+
|
|
1005
|
+
export default tidePredictionFactory;
|