@n8n/n8n-nodes-langchain 1.94.0 → 1.95.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -24,7 +24,7 @@
24
24
  {"displayName":"Embeddings Mistral Cloud","name":"embeddingsMistralCloud","credentials":[{"name":"mistralCloudApi","required":true}],"group":["transform"],"version":1,"description":"Use Embeddings Mistral Cloud","defaults":{"name":"Embeddings Mistral Cloud"},"codex":{"categories":["AI"],"subcategories":{"AI":["Embeddings"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsmistralcloud/"}]}},"inputs":[],"outputs":["ai_embedding"],"outputNames":["Embeddings"],"requestDefaults":{"ignoreHttpStatusErrors":true,"baseURL":"https://api.mistral.ai/v1"},"properties":[{"displayName":"This node must be connected to a vector store. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_vectorStore'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Model","name":"model","type":"options","description":"The model which will compute the embeddings. <a href=\"https://docs.mistral.ai/platform/endpoints/\">Learn more</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"/models"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"data"}},{"type":"filter","properties":{"pass":"={{ $responseItem.id.includes('embed') }}"}},{"type":"setKeyValue","properties":{"name":"={{ $responseItem.id }}","value":"={{ $responseItem.id }}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"default":"mistral-embed"},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":512,"typeOptions":{"maxValue":2048},"description":"Maximum number of documents to send in each request","type":"number"},{"displayName":"Strip New Lines","name":"stripNewLines","default":true,"description":"Whether to strip new lines from the input text","type":"boolean"}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/embeddings/EmbeddingsMistralCloud/mistral.svg"},
25
25
  {"displayName":"Embeddings OpenAI","name":"embeddingsOpenAi","credentials":[{"name":"openAiApi","required":true}],"group":["transform"],"version":[1,1.1,1.2],"description":"Use Embeddings OpenAI","defaults":{"name":"Embeddings OpenAI"},"codex":{"categories":["AI"],"subcategories":{"AI":["Embeddings"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsopenai/"}]}},"inputs":[],"outputs":["ai_embedding"],"outputNames":["Embeddings"],"requestDefaults":{"ignoreHttpStatusErrors":true,"baseURL":"={{ $parameter.options?.baseURL?.split(\"/\").slice(0,-1).join(\"/\") || $credentials.url?.split(\"/\").slice(0,-1).join(\"/\") || \"https://api.openai.com\" }}"},"properties":[{"displayName":"This node must be connected to a vector store. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_vectorStore'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Model","name":"model","type":"options","description":"The model which will generate the embeddings. <a href=\"https://platform.openai.com/docs/models/overview\">Learn more</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"={{ $parameter.options?.baseURL?.split(\"/\").slice(-1).pop() || $credentials?.url?.split(\"/\").slice(-1).pop() || \"v1\" }}/models"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"data"}},{"type":"filter","properties":{"pass":"={{ $responseItem.id.includes('embed') }}"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.id}}","value":"={{$responseItem.id}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"default":"text-embedding-ada-002","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Model","name":"model","type":"options","description":"The model which will generate the embeddings. <a href=\"https://platform.openai.com/docs/models/overview\">Learn more</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"={{ $parameter.options?.baseURL?.split(\"/\").slice(-1).pop() || $credentials?.url?.split(\"/\").slice(-1).pop() || \"v1\" }}/models"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"data"}},{"type":"filter","properties":{"pass":"={{ $responseItem.id.includes('embed') }}"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.id}}","value":"={{$responseItem.id}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"default":"text-embedding-3-small","displayOptions":{"hide":{"@version":[1]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Dimensions","name":"dimensions","description":"The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.","type":"options","options":[{"name":"256","value":256},{"name":"512","value":512},{"name":"1024","value":1024},{"name":"1536","value":1536},{"name":"3072","value":3072}]},{"displayName":"Base URL","name":"baseURL","default":"https://api.openai.com/v1","description":"Override the default base URL for the API","type":"string","displayOptions":{"hide":{"@version":[{"_cnd":{"gte":1.2}}]}}},{"displayName":"Batch Size","name":"batchSize","default":512,"typeOptions":{"maxValue":2048},"description":"Maximum number of documents to send in each request","type":"number"},{"displayName":"Strip New Lines","name":"stripNewLines","default":true,"description":"Whether to strip new lines from the input text","type":"boolean"},{"displayName":"Timeout","name":"timeout","default":-1,"description":"Maximum amount of time a request is allowed to take in seconds. Set to -1 for no timeout.","type":"number"}]}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/embeddings/EmbeddingsOpenAI/openAiLight.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/embeddings/EmbeddingsOpenAI/openAiLight.dark.svg"}},
26
26
  {"displayName":"Embeddings Ollama","name":"embeddingsOllama","group":["transform"],"version":1,"description":"Use Ollama Embeddings","defaults":{"name":"Embeddings Ollama"},"credentials":[{"name":"ollamaApi","required":true}],"requestDefaults":{"ignoreHttpStatusErrors":true,"baseURL":"={{ $credentials.baseUrl.replace(new RegExp(\"/$\"), \"\") }}"},"codex":{"categories":["AI"],"subcategories":{"AI":["Embeddings"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsollama/"}]}},"inputs":[],"outputs":["ai_embedding"],"outputNames":["Embeddings"],"properties":[{"displayName":"This node must be connected to a vector store. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_vectorStore'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Model","name":"model","type":"options","default":"llama3.2","description":"The model which will generate the completion. To download models, visit <a href=\"https://ollama.ai/library\">Ollama Models Library</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"/api/tags"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"models"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.name}}","value":"={{$responseItem.name}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"required":true}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/embeddings/EmbeddingsOllama/ollama.svg"},
27
- {"displayName":"Anthropic Chat Model","name":"lmChatAnthropic","group":["transform"],"version":[1,1.1,1.2,1.3],"defaultVersion":1.3,"description":"Language Model Anthropic","defaults":{"name":"Anthropic Chat Model"},"codex":{"categories":["AI"],"subcategories":{"AI":["Language Models","Root Nodes"],"Language Models":["Chat Models (Recommended)"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmchatanthropic/"}]},"alias":["claude","sonnet","opus"]},"inputs":[],"outputs":["ai_languageModel"],"outputNames":["Model"],"credentials":[{"name":"anthropicApi","required":true}],"properties":[{"displayName":"This node must be connected to an AI chain. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Model","name":"model","type":"options","options":[{"name":"Claude 3.5 Sonnet(20241022)","value":"claude-3-5-sonnet-20241022"},{"name":"Claude 3 Opus(20240229)","value":"claude-3-opus-20240229"},{"name":"Claude 3.5 Sonnet(20240620)","value":"claude-3-5-sonnet-20240620"},{"name":"Claude 3 Sonnet(20240229)","value":"claude-3-sonnet-20240229"},{"name":"Claude 3.5 Haiku(20241022)","value":"claude-3-5-haiku-20241022"},{"name":"Claude 3 Haiku(20240307)","value":"claude-3-haiku-20240307"},{"name":"LEGACY: Claude 2","value":"claude-2"},{"name":"LEGACY: Claude 2.1","value":"claude-2.1"},{"name":"LEGACY: Claude Instant 1.2","value":"claude-instant-1.2"},{"name":"LEGACY: Claude Instant 1","value":"claude-instant-1"}],"description":"The model which will generate the completion. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","default":"claude-2","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Model","name":"model","type":"options","options":[{"name":"Claude 3.5 Sonnet(20241022)","value":"claude-3-5-sonnet-20241022"},{"name":"Claude 3 Opus(20240229)","value":"claude-3-opus-20240229"},{"name":"Claude 3.5 Sonnet(20240620)","value":"claude-3-5-sonnet-20240620"},{"name":"Claude 3 Sonnet(20240229)","value":"claude-3-sonnet-20240229"},{"name":"Claude 3.5 Haiku(20241022)","value":"claude-3-5-haiku-20241022"},{"name":"Claude 3 Haiku(20240307)","value":"claude-3-haiku-20240307"},{"name":"LEGACY: Claude 2","value":"claude-2"},{"name":"LEGACY: Claude 2.1","value":"claude-2.1"},{"name":"LEGACY: Claude Instant 1.2","value":"claude-instant-1.2"},{"name":"LEGACY: Claude Instant 1","value":"claude-instant-1"}],"description":"The model which will generate the completion. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","default":"claude-3-sonnet-20240229","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"Model","name":"model","type":"options","options":[{"name":"Claude 3.5 Sonnet(20241022)","value":"claude-3-5-sonnet-20241022"},{"name":"Claude 3 Opus(20240229)","value":"claude-3-opus-20240229"},{"name":"Claude 3.5 Sonnet(20240620)","value":"claude-3-5-sonnet-20240620"},{"name":"Claude 3 Sonnet(20240229)","value":"claude-3-sonnet-20240229"},{"name":"Claude 3.5 Haiku(20241022)","value":"claude-3-5-haiku-20241022"},{"name":"Claude 3 Haiku(20240307)","value":"claude-3-haiku-20240307"}],"description":"The model which will generate the completion. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","default":"claude-3-5-sonnet-20240620","displayOptions":{"show":{"@version":[{"_cnd":{"lte":1.2}}]}}},{"displayName":"Model","name":"model","type":"resourceLocator","default":{"mode":"list","value":"claude-3-7-sonnet-20250219","cachedResultName":"Claude 3.7 Sonnet"},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","placeholder":"Select a model...","typeOptions":{"searchListMethod":"searchModels","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"Claude Sonnet"}],"description":"The model. Choose from the list, or specify an ID. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.3}}]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Maximum Number of Tokens","name":"maxTokensToSample","default":4096,"description":"The maximum number of tokens to generate in the completion","type":"number"},{"displayName":"Sampling Temperature","name":"temperature","default":0.7,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.","type":"number","displayOptions":{"hide":{"thinking":[true]}}},{"displayName":"Top K","name":"topK","default":-1,"typeOptions":{"maxValue":1,"minValue":-1,"numberPrecision":1},"description":"Used to remove \"long tail\" low probability responses. Defaults to -1, which disables it.","type":"number","displayOptions":{"hide":{"thinking":[true]}}},{"displayName":"Top P","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number","displayOptions":{"hide":{"thinking":[true]}}},{"displayName":"Enable Thinking","name":"thinking","type":"boolean","default":false,"description":"Whether to enable thinking mode for the model"},{"displayName":"Thinking Budget (Tokens)","name":"thinkingBudget","type":"number","default":1024,"description":"The maximum number of tokens to use for thinking","displayOptions":{"show":{"thinking":[true]}}}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/llms/LMChatAnthropic/anthropic.svg"},
27
+ {"displayName":"Anthropic Chat Model","name":"lmChatAnthropic","group":["transform"],"version":[1,1.1,1.2,1.3],"defaultVersion":1.3,"description":"Language Model Anthropic","defaults":{"name":"Anthropic Chat Model"},"codex":{"categories":["AI"],"subcategories":{"AI":["Language Models","Root Nodes"],"Language Models":["Chat Models (Recommended)"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmchatanthropic/"}]},"alias":["claude","sonnet","opus"]},"inputs":[],"outputs":["ai_languageModel"],"outputNames":["Model"],"credentials":[{"name":"anthropicApi","required":true}],"properties":[{"displayName":"This node must be connected to an AI chain. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Model","name":"model","type":"options","options":[{"name":"Claude 3.5 Sonnet(20241022)","value":"claude-3-5-sonnet-20241022"},{"name":"Claude 3 Opus(20240229)","value":"claude-3-opus-20240229"},{"name":"Claude 3.5 Sonnet(20240620)","value":"claude-3-5-sonnet-20240620"},{"name":"Claude 3 Sonnet(20240229)","value":"claude-3-sonnet-20240229"},{"name":"Claude 3.5 Haiku(20241022)","value":"claude-3-5-haiku-20241022"},{"name":"Claude 3 Haiku(20240307)","value":"claude-3-haiku-20240307"},{"name":"LEGACY: Claude 2","value":"claude-2"},{"name":"LEGACY: Claude 2.1","value":"claude-2.1"},{"name":"LEGACY: Claude Instant 1.2","value":"claude-instant-1.2"},{"name":"LEGACY: Claude Instant 1","value":"claude-instant-1"}],"description":"The model which will generate the completion. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","default":"claude-2","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Model","name":"model","type":"options","options":[{"name":"Claude 3.5 Sonnet(20241022)","value":"claude-3-5-sonnet-20241022"},{"name":"Claude 3 Opus(20240229)","value":"claude-3-opus-20240229"},{"name":"Claude 3.5 Sonnet(20240620)","value":"claude-3-5-sonnet-20240620"},{"name":"Claude 3 Sonnet(20240229)","value":"claude-3-sonnet-20240229"},{"name":"Claude 3.5 Haiku(20241022)","value":"claude-3-5-haiku-20241022"},{"name":"Claude 3 Haiku(20240307)","value":"claude-3-haiku-20240307"},{"name":"LEGACY: Claude 2","value":"claude-2"},{"name":"LEGACY: Claude 2.1","value":"claude-2.1"},{"name":"LEGACY: Claude Instant 1.2","value":"claude-instant-1.2"},{"name":"LEGACY: Claude Instant 1","value":"claude-instant-1"}],"description":"The model which will generate the completion. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","default":"claude-3-sonnet-20240229","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"Model","name":"model","type":"options","options":[{"name":"Claude 3.5 Sonnet(20241022)","value":"claude-3-5-sonnet-20241022"},{"name":"Claude 3 Opus(20240229)","value":"claude-3-opus-20240229"},{"name":"Claude 3.5 Sonnet(20240620)","value":"claude-3-5-sonnet-20240620"},{"name":"Claude 3 Sonnet(20240229)","value":"claude-3-sonnet-20240229"},{"name":"Claude 3.5 Haiku(20241022)","value":"claude-3-5-haiku-20241022"},{"name":"Claude 3 Haiku(20240307)","value":"claude-3-haiku-20240307"}],"description":"The model which will generate the completion. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","default":"claude-3-5-sonnet-20240620","displayOptions":{"show":{"@version":[{"_cnd":{"lte":1.2}}]}}},{"displayName":"Model","name":"model","type":"resourceLocator","default":{"mode":"list","value":"claude-sonnet-4-20250514","cachedResultName":"Claude 4 Sonnet"},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","placeholder":"Select a model...","typeOptions":{"searchListMethod":"searchModels","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"Claude Sonnet"}],"description":"The model. Choose from the list, or specify an ID. <a href=\"https://docs.anthropic.com/claude/docs/models-overview\">Learn more</a>.","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.3}}]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Maximum Number of Tokens","name":"maxTokensToSample","default":4096,"description":"The maximum number of tokens to generate in the completion","type":"number"},{"displayName":"Sampling Temperature","name":"temperature","default":0.7,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.","type":"number","displayOptions":{"hide":{"thinking":[true]}}},{"displayName":"Top K","name":"topK","default":-1,"typeOptions":{"maxValue":1,"minValue":-1,"numberPrecision":1},"description":"Used to remove \"long tail\" low probability responses. Defaults to -1, which disables it.","type":"number","displayOptions":{"hide":{"thinking":[true]}}},{"displayName":"Top P","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number","displayOptions":{"hide":{"thinking":[true]}}},{"displayName":"Enable Thinking","name":"thinking","type":"boolean","default":false,"description":"Whether to enable thinking mode for the model"},{"displayName":"Thinking Budget (Tokens)","name":"thinkingBudget","type":"number","default":1024,"description":"The maximum number of tokens to use for thinking","displayOptions":{"show":{"thinking":[true]}}}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/llms/LMChatAnthropic/anthropic.svg"},
28
28
  {"displayName":"Azure OpenAI Chat Model","name":"lmChatAzureOpenAi","group":["transform"],"version":1,"description":"For advanced usage with an AI chain","defaults":{"name":"Azure OpenAI Chat Model"},"codex":{"categories":["AI"],"subcategories":{"AI":["Language Models","Root Nodes"],"Language Models":["Chat Models (Recommended)"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmchatazureopenai/"}]}},"inputs":[],"outputs":["ai_languageModel"],"outputNames":["Model"],"credentials":[{"name":"azureOpenAiApi","required":true,"displayOptions":{"show":{"authentication":["azureOpenAiApi"]}}},{"name":"azureEntraCognitiveServicesOAuth2Api","required":true,"displayOptions":{"show":{"authentication":["azureEntraCognitiveServicesOAuth2Api"]}}}],"properties":[{"displayName":"Authentication","name":"authentication","type":"options","default":"azureOpenAiApi","options":[{"name":"API Key","value":"azureOpenAiApi"},{"name":"Azure Entra ID (OAuth2)","value":"azureEntraCognitiveServicesOAuth2Api"}]},{"displayName":"This node must be connected to an AI chain. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"If using JSON response format, you must include word \"json\" in the prompt in your chain or agent. Also, make sure to select latest models released post November 2023.","name":"notice","type":"notice","default":"","displayOptions":{"show":{"/options.responseFormat":["json_object"]}}},{"displayName":"Model (Deployment) Name","name":"model","type":"string","description":"The name of the model(deployment) to use (e.g., gpt-4, gpt-35-turbo)","required":true,"default":""},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Frequency Penalty","name":"frequencyPenalty","default":0,"typeOptions":{"maxValue":2,"minValue":-2,"numberPrecision":1},"description":"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim","type":"number"},{"displayName":"Maximum Number of Tokens","name":"maxTokens","default":-1,"description":"The maximum number of tokens to generate in the completion. Most models have a context length of 2048 tokens (except for the newest models, which support 32,768). Use -1 for default.","type":"number","typeOptions":{"maxValue":128000}},{"displayName":"Response Format","name":"responseFormat","default":"text","type":"options","options":[{"name":"Text","value":"text","description":"Regular text response"},{"name":"JSON","value":"json_object","description":"Enables JSON mode, which should guarantee the message the model generates is valid JSON"}]},{"displayName":"Presence Penalty","name":"presencePenalty","default":0,"typeOptions":{"maxValue":2,"minValue":-2,"numberPrecision":1},"description":"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics","type":"number"},{"displayName":"Sampling Temperature","name":"temperature","default":0.7,"typeOptions":{"maxValue":2,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.","type":"number"},{"displayName":"Timeout (Ms)","name":"timeout","default":60000,"description":"Maximum amount of time a request is allowed to take in milliseconds","type":"number"},{"displayName":"Max Retries","name":"maxRetries","default":2,"description":"Maximum number of retries to attempt on failure","type":"number"},{"displayName":"Top P","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number"}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/llms/LmChatAzureOpenAi/azure.svg"},
29
29
  {"displayName":"AWS Bedrock Chat Model","name":"lmChatAwsBedrock","group":["transform"],"version":1,"description":"Language Model AWS Bedrock","defaults":{"name":"AWS Bedrock Chat Model"},"codex":{"categories":["AI"],"subcategories":{"AI":["Language Models","Root Nodes"],"Language Models":["Chat Models (Recommended)"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmchatawsbedrock/"}]}},"inputs":[],"outputs":["ai_languageModel"],"outputNames":["Model"],"credentials":[{"name":"aws","required":true}],"requestDefaults":{"ignoreHttpStatusErrors":true,"baseURL":"=https://bedrock.{{$credentials?.region ?? \"eu-central-1\"}}.amazonaws.com"},"properties":[{"displayName":"This node must be connected to an AI chain. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Model","name":"model","type":"options","description":"The model which will generate the completion. <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/foundation-models.html\">Learn more</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"/foundation-models?&byOutputModality=TEXT&byInferenceType=ON_DEMAND"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"modelSummaries"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.modelName}}","description":"={{$responseItem.modelArn}}","value":"={{$responseItem.modelId}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"default":""},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Maximum Number of Tokens","name":"maxTokensToSample","default":2000,"description":"The maximum number of tokens to generate in the completion","type":"number"},{"displayName":"Sampling Temperature","name":"temperature","default":0.7,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.","type":"number"}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/llms/LmChatAwsBedrock/bedrock.svg"},
30
30
  {"displayName":"DeepSeek Chat Model","name":"lmChatDeepSeek","group":["transform"],"version":[1],"description":"For advanced usage with an AI chain","defaults":{"name":"DeepSeek Chat Model"},"codex":{"categories":["AI"],"subcategories":{"AI":["Language Models","Root Nodes"],"Language Models":["Chat Models (Recommended)"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmchatdeepseek/"}]}},"inputs":[],"outputs":["ai_languageModel"],"outputNames":["Model"],"credentials":[{"name":"deepSeekApi","required":true}],"requestDefaults":{"ignoreHttpStatusErrors":true,"baseURL":"={{ $credentials?.url }}"},"properties":[{"displayName":"This node must be connected to an AI chain. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"If using JSON response format, you must include word \"json\" in the prompt in your chain or agent. Also, make sure to select latest models released post November 2023.","name":"notice","type":"notice","default":"","displayOptions":{"show":{"/options.responseFormat":["json_object"]}}},{"displayName":"Model","name":"model","type":"options","description":"The model which will generate the completion. <a href=\"https://api-docs.deepseek.com/quick_start/pricing\">Learn more</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"/models"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"data"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.id}}","value":"={{$responseItem.id}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"default":"deepseek-chat"},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Frequency Penalty","name":"frequencyPenalty","default":0,"typeOptions":{"maxValue":2,"minValue":-2,"numberPrecision":1},"description":"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim","type":"number"},{"displayName":"Maximum Number of Tokens","name":"maxTokens","default":-1,"description":"The maximum number of tokens to generate in the completion. Most models have a context length of 2048 tokens (except for the newest models, which support 32,768).","type":"number","typeOptions":{"maxValue":32768}},{"displayName":"Response Format","name":"responseFormat","default":"text","type":"options","options":[{"name":"Text","value":"text","description":"Regular text response"},{"name":"JSON","value":"json_object","description":"Enables JSON mode, which should guarantee the message the model generates is valid JSON"}]},{"displayName":"Presence Penalty","name":"presencePenalty","default":0,"typeOptions":{"maxValue":2,"minValue":-2,"numberPrecision":1},"description":"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics","type":"number"},{"displayName":"Sampling Temperature","name":"temperature","default":0.7,"typeOptions":{"maxValue":2,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.","type":"number"},{"displayName":"Timeout","name":"timeout","default":360000,"description":"Maximum amount of time a request is allowed to take in milliseconds","type":"number"},{"displayName":"Max Retries","name":"maxRetries","default":2,"description":"Maximum number of retries to attempt","type":"number"},{"displayName":"Top P","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number"}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/llms/LmChatDeepSeek/deepseek.svg"},
@@ -74,20 +74,20 @@
74
74
  {"displayName":"Call n8n Workflow Tool","name":"toolWorkflow","icon":"fa:network-wired","iconColor":"black","group":["transform"],"description":"Uses another n8n workflow as a tool. Allows packaging any n8n node(s) as a tool.","codex":{"categories":["AI"],"subcategories":{"AI":["Tools"],"Tools":["Recommended Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.toolworkflow/"}]}},"defaultVersion":2.2,"version":[1,1.1,1.2,1.3],"defaults":{"name":"Call n8n Workflow Tool"},"inputs":[],"outputs":["ai_tool"],"outputNames":["Tool"],"properties":[{"displayName":"This node must be connected to an AI agent. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"See an example of a workflow to suggest meeting slots using AI <a href=\"/templates/1953\" target=\"_blank\">here</a>.","name":"noticeTemplateExample","type":"notice","default":""},{"displayName":"Name","name":"name","type":"string","default":"","placeholder":"My_Color_Tool","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Name","name":"name","type":"string","default":"","placeholder":"e.g. My_Color_Tool","validateType":"string-alphanumeric","description":"The name of the function to be called, could contain letters, numbers, and underscores only","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Description","name":"description","type":"string","default":"","placeholder":"Call this tool to get a random color. The input should be a string with comma separted names of colors to exclude.","typeOptions":{"rows":3}},{"displayName":"This tool will call the workflow you define below, and look in the last node for the response. The workflow needs to start with an Execute Workflow trigger","name":"executeNotice","type":"notice","default":""},{"displayName":"Source","name":"source","type":"options","options":[{"name":"Database","value":"database","description":"Load the workflow from the database by ID"},{"name":"Define Below","value":"parameter","description":"Pass the JSON code of a workflow"}],"default":"database","description":"Where to get the workflow to execute from"},{"displayName":"Workflow ID","name":"workflowId","type":"string","displayOptions":{"show":{"source":["database"],"@version":[{"_cnd":{"lte":1.1}}]}},"default":"","required":true,"description":"The workflow to execute","hint":"Can be found in the URL of the workflow"},{"displayName":"Workflow","name":"workflowId","type":"workflowSelector","displayOptions":{"show":{"source":["database"],"@version":[{"_cnd":{"gte":1.2}}]}},"default":"","required":true},{"displayName":"Workflow JSON","name":"workflowJson","type":"json","typeOptions":{"rows":10},"displayOptions":{"show":{"source":["parameter"]}},"default":"\n\n\n\n\n\n\n\n\n","required":true,"description":"The workflow JSON code to execute"},{"displayName":"Field to Return","name":"responsePropertyName","type":"string","default":"response","required":true,"hint":"The field in the last-executed node of the workflow that contains the response","description":"Where to find the data that this tool should return. n8n will look in the output of the last-executed node of the workflow for a field with this name, and return its value.","displayOptions":{"show":{"@version":[{"_cnd":{"lt":1.3}}]}}},{"displayName":"Extra Workflow Inputs","name":"fields","placeholder":"Add Value","type":"fixedCollection","description":"These will be output by the 'execute workflow' trigger of the workflow being called","typeOptions":{"multipleValues":true,"sortable":true},"default":{},"options":[{"name":"values","displayName":"Values","values":[{"displayName":"Name","name":"name","type":"string","default":"","placeholder":"e.g. fieldName","description":"Name of the field to set the value of. Supports dot-notation. Example: data.person[0].name.","requiresDataPath":"single"},{"displayName":"Type","name":"type","type":"options","description":"The field value type","options":[{"name":"String","value":"stringValue"},{"name":"Number","value":"numberValue"},{"name":"Boolean","value":"booleanValue"},{"name":"Array","value":"arrayValue"},{"name":"Object","value":"objectValue"}],"default":"stringValue"},{"displayName":"Value","name":"stringValue","type":"string","default":"","displayOptions":{"show":{"type":["stringValue"]}},"validateType":"string","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"numberValue","type":"string","default":"","displayOptions":{"show":{"type":["numberValue"]}},"validateType":"number","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"booleanValue","type":"options","default":"true","options":[{"name":"True","value":"true"},{"name":"False","value":"false"}],"displayOptions":{"show":{"type":["booleanValue"]}},"validateType":"boolean","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"arrayValue","type":"string","default":"","placeholder":"e.g. [ arrayItem1, arrayItem2, arrayItem3 ]","displayOptions":{"show":{"type":["arrayValue"]}},"validateType":"array","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"objectValue","type":"json","default":"={}","typeOptions":{"rows":2},"displayOptions":{"show":{"type":["objectValue"]}},"validateType":"object","ignoreValidationDuringExecution":true}]}]},{"displayName":"Specify Input Schema","name":"specifyInputSchema","type":"boolean","description":"Whether to specify the schema for the function. This would require the LLM to provide the input in the correct format and would validate it against the schema.","noDataExpression":true,"default":false},{"displayName":"Schema Type","name":"schemaType","type":"options","noDataExpression":true,"options":[{"name":"Generate From JSON Example","value":"fromJson","description":"Generate a schema from an example JSON object"},{"name":"Define Below","value":"manual","description":"Define the JSON schema manually"}],"default":"fromJson","description":"How to specify the schema for the function","displayOptions":{"show":{"specifyInputSchema":[true]}}},{"displayName":"JSON Example","name":"jsonSchemaExample","type":"json","default":"{\n\t\"some_input\": \"some_value\"\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["fromJson"]}},"description":"Example JSON object to use to generate the schema"},{"displayName":"Input Schema","name":"inputSchema","type":"json","default":"{\n\"type\": \"object\",\n\"properties\": {\n\t\"some_input\": {\n\t\t\"type\": \"string\",\n\t\t\"description\": \"Some input to the function\"\n\t\t}\n\t}\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["manual"]}},"description":"Schema to use for the function"}]},
75
75
  {"displayName":"Manual Chat Trigger","name":"manualChatTrigger","icon":"fa:comments","group":["trigger"],"version":[1,1.1],"description":"Runs the flow on new manual chat message","eventTriggerDescription":"","maxNodes":1,"hidden":true,"defaults":{"name":"When chat message received","color":"#909298"},"codex":{"categories":["Core Nodes"],"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-langchain.chattrigger/"}]},"subcategories":{"Core Nodes":["Other Trigger Nodes"]}},"inputs":[],"outputs":["main"],"properties":[{"displayName":"This node is where a manual chat workflow execution starts. To make one, go back to the canvas and click ‘Chat’","name":"notice","type":"notice","default":""},{"displayName":"Chat and execute workflow","name":"openChat","type":"button","typeOptions":{"buttonConfig":{"action":"openChat"}},"default":""}]},
76
76
  {"displayName":"Chat Trigger","name":"chatTrigger","icon":"fa:comments","iconColor":"black","group":["trigger"],"version":[1,1.1],"description":"Runs the workflow when an n8n generated webchat is submitted","defaults":{"name":"When chat message received"},"codex":{"categories":["Core Nodes"],"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-langchain.chattrigger/"}]}},"maxNodes":1,"inputs":"={{ (() => {\n\t\t\tif (!['hostedChat', 'webhook'].includes($parameter.mode)) {\n\t\t\t\treturn [];\n\t\t\t}\n\t\t\tif ($parameter.options?.loadPreviousSession !== 'memory') {\n\t\t\t\treturn [];\n\t\t\t}\n\n\t\t\treturn [\n\t\t\t\t{\n\t\t\t\t\tdisplayName: 'Memory',\n\t\t\t\t\tmaxConnections: 1,\n\t\t\t\t\ttype: 'ai_memory',\n\t\t\t\t\trequired: true,\n\t\t\t\t}\n\t\t\t];\n\t\t })() }}","outputs":["main"],"credentials":[{"name":"httpBasicAuth","required":true,"displayOptions":{"show":{"authentication":["basicAuth"]}}}],"webhooks":[{"name":"setup","httpMethod":"GET","responseMode":"onReceived","path":"chat","ndvHideUrl":true},{"name":"default","httpMethod":"POST","responseMode":"={{$parameter.options?.[\"responseMode\"] || \"lastNode\" }}","path":"chat","ndvHideMethod":true,"ndvHideUrl":"={{ !$parameter.public }}"}],"eventTriggerDescription":"Waiting for you to submit the chat","activationMessage":"You can now make calls to your production chat URL.","triggerPanel":false,"properties":[{"displayName":"Make Chat Publicly Available","name":"public","type":"boolean","default":false,"description":"Whether the chat should be publicly available or only accessible through the manual chat interface"},{"displayName":"Mode","name":"mode","type":"options","options":[{"name":"Hosted Chat","value":"hostedChat","description":"Chat on a page served by n8n"},{"name":"Embedded Chat","value":"webhook","description":"Chat through a widget embedded in another page, or by calling a webhook"}],"default":"hostedChat","displayOptions":{"show":{"public":[true]}}},{"displayName":"Chat will be live at the URL above once you activate this workflow. Live executions will show up in the ‘executions’ tab","name":"hostedChatNotice","type":"notice","displayOptions":{"show":{"mode":["hostedChat"],"public":[true]}},"default":""},{"displayName":"Follow the instructions <a href=\"https://www.npmjs.com/package/@n8n/chat\" target=\"_blank\">here</a> to embed chat in a webpage (or just call the webhook URL at the top of this section). Chat will be live once you activate this workflow","name":"embeddedChatNotice","type":"notice","displayOptions":{"show":{"mode":["webhook"],"public":[true]}},"default":""},{"displayName":"Authentication","name":"authentication","type":"options","displayOptions":{"show":{"public":[true]}},"options":[{"name":"Basic Auth","value":"basicAuth","description":"Simple username and password (the same one for all users)"},{"name":"n8n User Auth","value":"n8nUserAuth","description":"Require user to be logged in with their n8n account"},{"name":"None","value":"none"}],"default":"none","description":"The way to authenticate"},{"displayName":"Initial Message(s)","name":"initialMessages","type":"string","displayOptions":{"show":{"mode":["hostedChat"],"public":[true]}},"typeOptions":{"rows":3},"default":"Hi there! 👋\nMy name is Nathan. How can I assist you today?","description":"Default messages shown at the start of the chat, one per line"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"public":[false],"@version":[{"_cnd":{"gte":1.1}}]}},"placeholder":"Add Field","default":{},"options":[{"displayName":"Allow File Uploads","name":"allowFileUploads","type":"boolean","default":false,"description":"Whether to allow file uploads in the chat"},{"displayName":"Allowed File Mime Types","name":"allowedFilesMimeTypes","type":"string","default":"*","placeholder":"e.g. image/*, text/*, application/pdf","description":"Allowed file types for upload. Comma-separated list of <a href=\"https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types\" target=\"_blank\">MIME types</a>."}]},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"mode":["hostedChat","webhook"],"public":[true]}},"placeholder":"Add Field","default":{},"options":[{"displayName":"Allowed Origins (CORS)","name":"allowedOrigins","type":"string","default":"*","description":"Comma-separated list of URLs allowed for cross-origin non-preflight requests. Use * (default) to allow all origins.","displayOptions":{"show":{"/mode":["hostedChat","webhook"]}}},{"displayName":"Allow File Uploads","name":"allowFileUploads","type":"boolean","default":false,"description":"Whether to allow file uploads in the chat","displayOptions":{"show":{"/mode":["hostedChat"]}}},{"displayName":"Allowed File Mime Types","name":"allowedFilesMimeTypes","type":"string","default":"*","placeholder":"e.g. image/*, text/*, application/pdf","description":"Allowed file types for upload. Comma-separated list of <a href=\"https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types\" target=\"_blank\">MIME types</a>.","displayOptions":{"show":{"/mode":["hostedChat"]}}},{"displayName":"Input Placeholder","name":"inputPlaceholder","type":"string","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":"Type your question..","placeholder":"e.g. Type your message here","description":"Shown as placeholder text in the chat input field"},{"displayName":"Load Previous Session","name":"loadPreviousSession","type":"options","options":[{"name":"Off","value":"notSupported","description":"Loading messages of previous session is turned off"},{"name":"From Memory","value":"memory","description":"Load session messages from memory"},{"name":"Manually","value":"manually","description":"Manually return messages of session"}],"default":"notSupported","description":"If loading messages of a previous session should be enabled"},{"displayName":"Response Mode","name":"responseMode","type":"options","options":[{"name":"When Last Node Finishes","value":"lastNode","description":"Returns data of the last-executed node"},{"name":"Using 'Respond to Webhook' Node","value":"responseNode","description":"Response defined in that node"}],"default":"lastNode","description":"When and how to respond to the webhook"},{"displayName":"Require Button Click to Start Chat","name":"showWelcomeScreen","type":"boolean","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":false,"description":"Whether to show the welcome screen at the start of the chat"},{"displayName":"Start Conversation Button Text","name":"getStarted","type":"string","displayOptions":{"show":{"showWelcomeScreen":[true],"/mode":["hostedChat"]}},"default":"New Conversation","placeholder":"e.g. New Conversation","description":"Shown as part of the welcome screen, in the middle of the chat window"},{"displayName":"Subtitle","name":"subtitle","type":"string","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":"Start a chat. We're here to help you 24/7.","placeholder":"e.g. We're here for you","description":"Shown at the top of the chat, under the title"},{"displayName":"Title","name":"title","type":"string","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":"Hi there! 👋","placeholder":"e.g. Welcome","description":"Shown at the top of the chat"},{"displayName":"Custom Chat Styling","name":"customCss","type":"string","typeOptions":{"rows":10,"editor":"cssEditor"},"displayOptions":{"show":{"/mode":["hostedChat"]}},"default":":root {\n /* Colors */\n --chat--color-primary: #e74266;\n --chat--color-primary-shade-50: #db4061;\n --chat--color-primary-shade-100: #cf3c5c;\n --chat--color-secondary: #20b69e;\n --chat--color-secondary-shade-50: #1ca08a;\n --chat--color-white: #ffffff;\n --chat--color-light: #f2f4f8;\n --chat--color-light-shade-50: #e6e9f1;\n --chat--color-light-shade-100: #c2c5cc;\n --chat--color-medium: #d2d4d9;\n --chat--color-dark: #101330;\n --chat--color-disabled: #777980;\n --chat--color-typing: #404040;\n\n /* Base Layout */\n --chat--spacing: 1rem;\n --chat--border-radius: 0.25rem;\n --chat--transition-duration: 0.15s;\n --chat--font-family: (\n -apple-system,\n BlinkMacSystemFont,\n 'Segoe UI',\n Roboto,\n Oxygen-Sans,\n Ubuntu,\n Cantarell,\n 'Helvetica Neue',\n sans-serif\n );\n\n /* Window Dimensions */\n --chat--window--width: 400px;\n --chat--window--height: 600px;\n --chat--window--bottom: var(--chat--spacing);\n --chat--window--right: var(--chat--spacing);\n --chat--window--z-index: 9999;\n --chat--window--border: 1px solid var(--chat--color-light-shade-50);\n --chat--window--border-radius: var(--chat--border-radius);\n --chat--window--margin-bottom: var(--chat--spacing);\n\n /* Header Styles */\n --chat--header-height: auto;\n --chat--header--padding: var(--chat--spacing);\n --chat--header--background: var(--chat--color-dark);\n --chat--header--color: var(--chat--color-light);\n --chat--header--border-top: none;\n --chat--header--border-bottom: none;\n --chat--header--border-left: none;\n --chat--header--border-right: none;\n --chat--heading--font-size: 2em;\n --chat--subtitle--font-size: inherit;\n --chat--subtitle--line-height: 1.8;\n\n /* Message Styles */\n --chat--message--font-size: 1rem;\n --chat--message--padding: var(--chat--spacing);\n --chat--message--border-radius: var(--chat--border-radius);\n --chat--message-line-height: 1.5;\n --chat--message--margin-bottom: calc(var(--chat--spacing) * 1);\n --chat--message--bot--background: var(--chat--color-white);\n --chat--message--bot--color: var(--chat--color-dark);\n --chat--message--bot--border: none;\n --chat--message--user--background: var(--chat--color-secondary);\n --chat--message--user--color: var(--chat--color-white);\n --chat--message--user--border: none;\n --chat--message--pre--background: rgba(0, 0, 0, 0.05);\n --chat--messages-list--padding: var(--chat--spacing);\n\n /* Toggle Button */\n --chat--toggle--size: 64px;\n --chat--toggle--width: var(--chat--toggle--size);\n --chat--toggle--height: var(--chat--toggle--size);\n --chat--toggle--border-radius: 50%;\n --chat--toggle--background: var(--chat--color-primary);\n --chat--toggle--hover--background: var(--chat--color-primary-shade-50);\n --chat--toggle--active--background: var(--chat--color-primary-shade-100);\n --chat--toggle--color: var(--chat--color-white);\n\n /* Input Area */\n --chat--textarea--height: 50px;\n --chat--textarea--max-height: 30rem;\n --chat--input--font-size: inherit;\n --chat--input--border: 0;\n --chat--input--border-radius: 0;\n --chat--input--padding: 0.8rem;\n --chat--input--background: var(--chat--color-white);\n --chat--input--text-color: initial;\n --chat--input--line-height: 1.5;\n --chat--input--placeholder--font-size: var(--chat--input--font-size);\n --chat--input--border-active: 0;\n --chat--input--left--panel--width: 2rem;\n\n /* Button Styles */\n --chat--button--color: var(--chat--color-light);\n --chat--button--background: var(--chat--color-primary);\n --chat--button--padding: calc(var(--chat--spacing) * 1 / 2) var(--chat--spacing);\n --chat--button--border-radius: var(--chat--border-radius);\n --chat--button--hover--color: var(--chat--color-light);\n --chat--button--hover--background: var(--chat--color-primary-shade-50);\n --chat--close--button--color-hover: var(--chat--color-primary);\n\n /* Send and File Buttons */\n --chat--input--send--button--background: var(--chat--color-white);\n --chat--input--send--button--color: var(--chat--color-light);\n --chat--input--send--button--background-hover: var(--chat--color-primary-shade-50);\n --chat--input--send--button--color-hover: var(--chat--color-secondary-shade-50);\n --chat--input--file--button--background: var(--chat--color-white);\n --chat--input--file--button--color: var(--chat--color-secondary);\n --chat--input--file--button--background-hover: var(--chat--input--file--button--background);\n --chat--input--file--button--color-hover: var(--chat--color-secondary-shade-50);\n --chat--files-spacing: 0.25rem;\n\n /* Body and Footer */\n --chat--body--background: var(--chat--color-light);\n --chat--footer--background: var(--chat--color-light);\n --chat--footer--color: var(--chat--color-dark);\n}\n\n\n/* You can override any class styles, too. Right-click inspect in Chat UI to find class to override. */\n.chat-message {\n\tmax-width: 50%;\n}","description":"Override default styling of the public chat interface with CSS"}]}]},
77
- {"displayName":"Simple Vector Store","name":"vectorStoreInMemory","description":"Work with your data in a Simple Vector Store. Don't use this for production usage.","icon":"fa:database","iconColor":"black","group":["transform"],"version":[1,1.1],"defaults":{"name":"Simple Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in a Simple Vector Store. Don't use this for production usage.","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions."},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"<strong>For experimental use only</strong>: Data is stored in memory and will be lost if n8n restarts. Data may also be cleared if available memory gets low. <a href=\"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/\">More info</a>","name":"notice","type":"notice","default":"","displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Clear Store","name":"clearStore","type":"boolean","default":false,"description":"Whether to clear the store before inserting new data","displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}}]},
77
+ {"displayName":"Simple Vector Store","name":"vectorStoreInMemory","description":"Work with your data in a Simple Vector Store. Don't use this for production usage.","icon":"fa:database","iconColor":"black","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Simple Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in a Simple Vector Store. Don't use this for production usage.","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions.","displayOptions":{"show":{"@version":[{"_cnd":{"lte":1.1}}]}}},{"displayName":"Memory Key","name":"memoryKey","type":"resourceLocator","required":true,"default":{"mode":"list","value":"vector_store_key"},"description":"The key to use to store the vector memory in the workflow data. These keys are shared between workflows.","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.2}}]}},"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"vectorStoresSearch","searchable":true,"allowNewResource":{"label":"resourceLocator.mode.list.addNewResource.vectorStoreInMemory","defaultName":"vector_store_key","method":"createVectorStore"}}},{"displayName":"Manual","name":"id","type":"string","placeholder":"vector_store_key"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Clear Store","name":"clearStore","type":"boolean","default":false,"description":"Whether to clear the store before inserting new data","displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"<strong>For experimental use only</strong>: Data is stored in memory and will be lost if n8n restarts. Data may also be cleared if available memory gets low, and is accessible to all users of this instance. <a href=\"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/\">More info</a>","name":"notice","type":"notice","default":"","displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"<strong>For experimental use only</strong>: Data is stored in memory and will be lost if n8n restarts. Data may also be cleared if available memory gets low, and is accessible to all users of this instance. <a href=\"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/\">More info</a>","name":"notice","type":"notice","default":"","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"<strong>For experimental use only</strong>: Data is stored in memory and will be lost if n8n restarts. Data may also be cleared if available memory gets low, and is accessible to all users of this instance. <a href=\"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/\">More info</a>","name":"notice","type":"notice","default":"","displayOptions":{"show":{"mode":["retrieve"]}}}]},
78
78
  {"displayName":"In Memory Vector Store Insert","name":"vectorStoreInMemoryInsert","icon":"fa:database","group":["transform"],"version":1,"hidden":true,"description":"Insert data into an in-memory vector store","defaults":{"name":"In Memory Vector Store Insert"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"The embbded data are stored in the server memory, so they will be lost when the server is restarted. Additionally, if the amount of data is too large, it may cause the server to crash due to insufficient memory.","name":"notice","type":"notice","default":""},{"displayName":"Clear Store","name":"clearStore","type":"boolean","default":false,"description":"Whether to clear the store before inserting new data"},{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions."}]},
79
79
  {"displayName":"In Memory Vector Store Load","name":"vectorStoreInMemoryLoad","icon":"fa:database","group":["transform"],"version":1,"hidden":true,"description":"Load embedded data from an in-memory vector store","defaults":{"name":"In Memory Vector Store Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions."}]},
80
- {"displayName":"Milvus Vector Store","name":"vectorStoreMilvus","description":"Work with your data in Milvus Vector Store","group":["transform"],"version":[1,1.1],"defaults":{"name":"Milvus Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoremilvus/"}]}},"credentials":[{"name":"milvusApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Milvus Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Milvus Collection","name":"milvusCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"milvusCollectionsSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Collection","name":"clearCollection","type":"boolean","default":false,"description":"Whether to clear the collection before inserting new data"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMilvus/milvus-icon-black.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMilvus/milvus-icon-white.svg"}},
81
- {"displayName":"MongoDB Atlas Vector Store","name":"vectorStoreMongoDBAtlas","description":"Work with your data in MongoDB Atlas Vector Store","group":["transform"],"version":[1,1.1],"defaults":{"name":"MongoDB Atlas Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoremongodbatlas/"}]}},"credentials":[{"name":"mongoDb","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in MongoDB Atlas Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"MongoDB Collection","name":"mongoCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"mongoCollectionSearch"}},{"displayName":"Name","name":"name","type":"string","placeholder":"e.g. my_collection"}]},{"displayName":"Embedding","name":"embedding","type":"string","default":"embedding","description":"The field with the embedding array","required":true},{"displayName":"Metadata Field","name":"metadata_field","type":"string","default":"text","description":"The text field of the raw data","required":true},{"displayName":"Vector Index Name","name":"vectorIndexName","type":"string","default":"","description":"The name of the vector index","required":true},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear documents in the namespace before inserting new data"},{"displayName":"Namespace","name":"namespace","type":"string","description":"Logical partition for documents. Uses metadata.namespace field for filtering.","default":""}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Namespace","name":"namespace","type":"string","description":"Logical partition for documents. Uses metadata.namespace field for filtering.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Namespace","name":"namespace","type":"string","description":"Logical partition for documents. Uses metadata.namespace field for filtering.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMongoDBAtlas/mongodb.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMongoDBAtlas/mongodb.dark.svg"}},
82
- {"displayName":"Postgres PGVector Store","name":"vectorStorePGVector","description":"Work with your data in Postgresql with the PGVector extension","group":["transform"],"version":[1,1.1],"defaults":{"name":"Postgres PGVector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepgvector/"}]}},"credentials":[{"name":"postgres","required":true,"testedBy":"postgresConnectionTest"}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Postgresql with the PGVector extension","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Table Name","name":"tableName","type":"string","default":"n8n_vectors","description":"The table name to store the vectors in. If table does not exist, it will be created."},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePGVector/postgres.svg"},
83
- {"displayName":"Pinecone Vector Store","name":"vectorStorePinecone","description":"Work with your data in Pinecone Vector Store","group":["transform"],"version":[1,1.1],"defaults":{"name":"Pinecone Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Pinecone Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear the namespace before inserting new data"},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePinecone/pinecone.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePinecone/pinecone.dark.svg"}},
80
+ {"displayName":"Milvus Vector Store","name":"vectorStoreMilvus","description":"Work with your data in Milvus Vector Store","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Milvus Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoremilvus/"}]}},"credentials":[{"name":"milvusApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Milvus Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Milvus Collection","name":"milvusCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"milvusCollectionsSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Collection","name":"clearCollection","type":"boolean","default":false,"description":"Whether to clear the collection before inserting new data"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMilvus/milvus-icon-black.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMilvus/milvus-icon-white.svg"}},
81
+ {"displayName":"MongoDB Atlas Vector Store","name":"vectorStoreMongoDBAtlas","description":"Work with your data in MongoDB Atlas Vector Store","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"MongoDB Atlas Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoremongodbatlas/"}]}},"credentials":[{"name":"mongoDb","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in MongoDB Atlas Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"MongoDB Collection","name":"mongoCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"mongoCollectionSearch"}},{"displayName":"Name","name":"name","type":"string","placeholder":"e.g. my_collection"}]},{"displayName":"Embedding","name":"embedding","type":"string","default":"embedding","description":"The field with the embedding array","required":true},{"displayName":"Metadata Field","name":"metadata_field","type":"string","default":"text","description":"The text field of the raw data","required":true},{"displayName":"Vector Index Name","name":"vectorIndexName","type":"string","default":"","description":"The name of the vector index","required":true},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear documents in the namespace before inserting new data"},{"displayName":"Namespace","name":"namespace","type":"string","description":"Logical partition for documents. Uses metadata.namespace field for filtering.","default":""}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Namespace","name":"namespace","type":"string","description":"Logical partition for documents. Uses metadata.namespace field for filtering.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Namespace","name":"namespace","type":"string","description":"Logical partition for documents. Uses metadata.namespace field for filtering.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMongoDBAtlas/mongodb.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreMongoDBAtlas/mongodb.dark.svg"}},
82
+ {"displayName":"Postgres PGVector Store","name":"vectorStorePGVector","description":"Work with your data in Postgresql with the PGVector extension","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Postgres PGVector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepgvector/"}]}},"credentials":[{"name":"postgres","required":true,"testedBy":"postgresConnectionTest"}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Postgresql with the PGVector extension","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Table Name","name":"tableName","type":"string","default":"n8n_vectors","description":"The table name to store the vectors in. If table does not exist, it will be created."},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePGVector/postgres.svg"},
83
+ {"displayName":"Pinecone Vector Store","name":"vectorStorePinecone","description":"Work with your data in Pinecone Vector Store","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Pinecone Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Pinecone Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear the namespace before inserting new data"},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePinecone/pinecone.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePinecone/pinecone.dark.svg"}},
84
84
  {"displayName":"Pinecone: Insert","hidden":true,"name":"vectorStorePineconeInsert","group":["transform"],"version":1,"description":"Insert data into Pinecone Vector Store index","defaults":{"name":"Pinecone: Insert","color":"#1321A7"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","default":""},{"displayName":"Specify the document to load in the document loader sub-node","name":"notice","type":"notice","default":""},{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear the namespace before inserting new data"}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePineconeInsert/pinecone.svg"},
85
85
  {"displayName":"Pinecone: Load","hidden":true,"name":"vectorStorePineconeLoad","group":["transform"],"version":1,"description":"Load data from Pinecone Vector Store index","defaults":{"name":"Pinecone: Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","default":""},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePineconeLoad/pinecone.svg"},
86
- {"displayName":"Qdrant Vector Store","name":"vectorStoreQdrant","description":"Work with your data in a Qdrant collection","group":["transform"],"version":[1,1.1],"defaults":{"name":"Qdrant Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant/"}]}},"credentials":[{"name":"qdrantApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in a Qdrant collection","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Qdrant Collection","name":"qdrantCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"qdrantCollectionsSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection Config","name":"collectionConfig","type":"json","default":"","description":"JSON options for creating a collection. <a href=\"https://qdrant.tech/documentation/concepts/collections\">Learn more</a>."}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Search Filter","name":"searchFilterJson","type":"json","typeOptions":{"rows":5},"default":"{\n \"should\": [\n {\n \"key\": \"metadata.batch\",\n \"match\": {\n \"value\": 12345\n }\n }\n ]\n}","validateType":"object","description":"Filter pageContent or metadata using this <a href=\"https://qdrant.tech/documentation/concepts/filtering/\" target=\"_blank\">filtering syntax</a>"}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Search Filter","name":"searchFilterJson","type":"json","typeOptions":{"rows":5},"default":"{\n \"should\": [\n {\n \"key\": \"metadata.batch\",\n \"match\": {\n \"value\": 12345\n }\n }\n ]\n}","validateType":"object","description":"Filter pageContent or metadata using this <a href=\"https://qdrant.tech/documentation/concepts/filtering/\" target=\"_blank\">filtering syntax</a>"}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreQdrant/qdrant.svg"},
87
- {"displayName":"Supabase Vector Store","name":"vectorStoreSupabase","description":"Work with your data in Supabase Vector Store","group":["transform"],"version":[1,1.1],"defaults":{"name":"Supabase Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Supabase Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"}],"displayOptions":{"show":{"mode":["update"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabase/supabase.svg"},
86
+ {"displayName":"Qdrant Vector Store","name":"vectorStoreQdrant","description":"Work with your data in a Qdrant collection","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Qdrant Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant/"}]}},"credentials":[{"name":"qdrantApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in a Qdrant collection","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Qdrant Collection","name":"qdrantCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"qdrantCollectionsSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection Config","name":"collectionConfig","type":"json","default":"","description":"JSON options for creating a collection. <a href=\"https://qdrant.tech/documentation/concepts/collections\">Learn more</a>."}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Search Filter","name":"searchFilterJson","type":"json","typeOptions":{"rows":5},"default":"{\n \"should\": [\n {\n \"key\": \"metadata.batch\",\n \"match\": {\n \"value\": 12345\n }\n }\n ]\n}","validateType":"object","description":"Filter pageContent or metadata using this <a href=\"https://qdrant.tech/documentation/concepts/filtering/\" target=\"_blank\">filtering syntax</a>"}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Search Filter","name":"searchFilterJson","type":"json","typeOptions":{"rows":5},"default":"{\n \"should\": [\n {\n \"key\": \"metadata.batch\",\n \"match\": {\n \"value\": 12345\n }\n }\n ]\n}","validateType":"object","description":"Filter pageContent or metadata using this <a href=\"https://qdrant.tech/documentation/concepts/filtering/\" target=\"_blank\">filtering syntax</a>"}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreQdrant/qdrant.svg"},
87
+ {"displayName":"Supabase Vector Store","name":"vectorStoreSupabase","description":"Work with your data in Supabase Vector Store","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Supabase Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Supabase Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"}],"displayOptions":{"show":{"mode":["update"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabase/supabase.svg"},
88
88
  {"displayName":"Supabase: Insert","hidden":true,"name":"vectorStoreSupabaseInsert","group":["transform"],"version":1,"description":"Insert data into Supabase Vector Store index [https://supabase.com/docs/guides/ai/langchain]","defaults":{"name":"Supabase: Insert"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"Please refer to the <a href=\"https://supabase.com/docs/guides/ai/langchain\" target=\"_blank\">Supabase documentation</a> for more information on how to setup your database as a Vector Store.","name":"setupNotice","type":"notice","default":""},{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","required":true,"description":"Name of the query to use for matching documents"},{"displayName":"Specify the document to load in the document loader sub-node","name":"notice","type":"notice","default":""}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabaseInsert/supabase.svg"},
89
89
  {"displayName":"Supabase: Load","name":"vectorStoreSupabaseLoad","hidden":true,"group":["transform"],"version":1,"description":"Load data from Supabase Vector Store index","defaults":{"name":"Supabase: Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","required":true,"description":"Name of the query to use for matching documents"},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabaseLoad/supabase.svg"},
90
- {"displayName":"Zep Vector Store","name":"vectorStoreZep","description":"Work with your data in Zep Vector Store","group":["transform"],"version":[1,1.1],"defaults":{"name":"Zep Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Zep Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Is Auto Embedded","name":"isAutoEmbedded","type":"boolean","default":true,"description":"Whether to automatically embed documents when they are added"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZep/zep.png"},
90
+ {"displayName":"Zep Vector Store","name":"vectorStoreZep","description":"Work with your data in Zep Vector Store","group":["transform"],"version":[1,1.1,1.2],"defaults":{"name":"Zep Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Tools","Root Nodes"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn inputs;\n\t\t\t\t}\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\n\t\t\t\tif (mode === 'retrieve-as-tool') {\n\t\t\t\t\treturn [{ displayName: \"Tool\", type: \"ai_tool\"}]\n\t\t\t\t}\n\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (As Vector Store for Chain/Tool)","value":"retrieve","description":"Retrieve documents from vector store to be used as vector store with AI nodes","action":"Retrieve documents for Chain/Tool as Vector Store","outputConnectionType":"ai_vectorStore"},{"name":"Retrieve Documents (As Tool for AI Agent)","value":"retrieve-as-tool","description":"Retrieve documents from vector store to be used as tool with AI nodes","action":"Retrieve documents for AI Agent as Tool","outputConnectionType":"ai_tool"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Name","name":"toolName","type":"string","default":"","required":true,"description":"Name of the vector store","placeholder":"e.g. company_knowledge_base","validateType":"string-alphanumeric","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Description","name":"toolDescription","type":"string","default":"","required":true,"typeOptions":{"rows":2},"description":"Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often","placeholder":"e.g. Work with your data in Zep Vector Store","displayOptions":{"show":{"mode":["retrieve-as-tool"]}}},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Embedding Batch Size","name":"embeddingBatchSize","type":"number","default":200,"description":"Number of documents to embed in a single batch","displayOptions":{"show":{"mode":["insert"],"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Is Auto Embedded","name":"isAutoEmbedded","type":"boolean","default":true,"description":"Whether to automatically embed documents when they are added"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Include Metadata","name":"includeDocumentMetadata","type":"boolean","default":true,"description":"Whether or not to include document metadata","displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load","retrieve-as-tool"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZep/zep.png"},
91
91
  {"displayName":"Zep Vector Store: Insert","name":"vectorStoreZepInsert","hidden":true,"group":["transform"],"version":1,"description":"Insert data into Zep Vector Store index","defaults":{"name":"Zep: Insert"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Specify the document to load in the document loader sub-node","name":"notice","type":"notice","default":""},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Is Auto Embedded","name":"isAutoEmbedded","type":"boolean","default":true,"description":"Whether to automatically embed documents when they are added"}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZepInsert/zep.png"},
92
92
  {"displayName":"Zep Vector Store: Load","name":"vectorStoreZepLoad","hidden":true,"group":["transform"],"version":1,"description":"Load data from Zep Vector Store index","defaults":{"name":"Zep: Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZepLoad/zep.png"},
93
93
  {"displayName":"Tool Executor","name":"toolExecutor","version":1,"defaults":{"name":"Tool Executor"},"hidden":true,"inputs":["main","ai_tool"],"outputs":["main"],"properties":[{"displayName":"Query","name":"query","type":"json","default":"{}","description":"Parameters to pass to the tool as JSON or string"},{"displayName":"Tool Name","name":"toolName","type":"string","default":"","description":"Name of the tool to execute if the connected tool is a toolkit"}],"group":["transform"],"description":"Node to execute tools without an AI Agent","codex":{"categories":["Core Nodes"],"subcategories":{"Core Nodes":["Helpers"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.editimage/"}]}}}