@n8n/n8n-nodes-langchain 1.92.0 → 1.92.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,14 +1,14 @@
1
1
  [
2
2
  {"displayName":"OpenAI","name":"openAi","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8],"subtitle":"={{((resource, operation) => {\n if (operation === \"deleteAssistant\") {\n return \"Delete Assistant\";\n }\n if (operation === \"deleteFile\") {\n return \"Delete File\";\n }\n if (operation === \"classify\") {\n return \"Classify Text\";\n }\n if (operation === \"message\" && resource === \"text\") {\n return \"Message Model\";\n }\n const capitalize = (str) => {\n const chars = str.split(\"\");\n chars[0] = chars[0].toUpperCase();\n return chars.join(\"\");\n };\n if ([\"transcribe\", \"translate\"].includes(operation)) {\n resource = \"recording\";\n }\n if (operation === \"list\") {\n resource = resource + \"s\";\n }\n return `${capitalize(operation)} ${capitalize(resource)}`;\n})($parameter.resource, $parameter.operation)}}","description":"Message an assistant or GPT, analyze images, generate audio, etc.","defaults":{"name":"OpenAI"},"codex":{"alias":["LangChain","ChatGPT","DallE","whisper","audio","transcribe","tts","assistant"],"categories":["AI"],"subcategories":{"AI":["Agents","Miscellaneous","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-langchain.openai/"}]}},"inputs":"={{((resource, operation, hideTools, memory) => {\n if (resource === \"assistant\" && operation === \"message\") {\n const inputs = [\n { type: \"main\" },\n { type: \"ai_tool\", displayName: \"Tools\" }\n ];\n if (memory !== \"threadId\") {\n inputs.push({ type: \"ai_memory\", displayName: \"Memory\", maxConnections: 1 });\n }\n return inputs;\n }\n if (resource === \"text\" && operation === \"message\") {\n if (hideTools === \"hide\") {\n return [\"main\"];\n }\n return [{ type: \"main\" }, { type: \"ai_tool\", displayName: \"Tools\" }];\n }\n return [\"main\"];\n})($parameter.resource, $parameter.operation, $parameter.hideTools, $parameter.memory ?? undefined)}}","outputs":["main"],"credentials":[{"name":"openAiApi","required":true}],"properties":[{"displayName":"Resource","name":"resource","type":"options","noDataExpression":true,"options":[{"name":"Assistant","value":"assistant"},{"name":"Text","value":"text"},{"name":"Image","value":"image"},{"name":"Audio","value":"audio"},{"name":"File","value":"file"}],"default":"text"},{"displayName":"Operation","name":"operation","type":"options","noDataExpression":true,"options":[{"name":"Create an Assistant","value":"create","action":"Create an assistant","description":"Create a new assistant"},{"name":"Delete an Assistant","value":"deleteAssistant","action":"Delete an assistant","description":"Delete an assistant from the account"},{"name":"List Assistants","value":"list","action":"List assistants","description":"List assistants in the organization"},{"name":"Message an Assistant","value":"message","action":"Message an assistant","description":"Send messages to an assistant"},{"name":"Update an Assistant","value":"update","action":"Update an assistant","description":"Update an existing assistant"}],"default":"message","displayOptions":{"show":{"resource":["assistant"]}}},{"displayName":"Model","name":"modelId","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"modelSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. gpt-4"}],"displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Name","name":"name","type":"string","default":"","description":"The name of the assistant. The maximum length is 256 characters.","placeholder":"e.g. My Assistant","required":true,"displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Description","name":"description","type":"string","default":"","description":"The description of the assistant. The maximum length is 512 characters.","placeholder":"e.g. My personal assistant","displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Instructions","name":"instructions","type":"string","description":"The system instructions that the assistant uses. The maximum length is 32768 characters.","default":"","typeOptions":{"rows":2},"displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Code Interpreter","name":"codeInterpreter","type":"boolean","default":false,"description":"Whether to enable the code interpreter that allows the assistants to write and run Python code in a sandboxed execution environment, find more <a href=\"https://platform.openai.com/docs/assistants/tools/code-interpreter\" target=\"_blank\">here</a>","displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Knowledge Retrieval","name":"knowledgeRetrieval","type":"boolean","default":false,"description":"Whether to augments the assistant with knowledge from outside its model, such as proprietary product information or documents, find more <a href=\"https://platform.openai.com/docs/assistants/tools/knowledge-retrieval\" target=\"_blank\">here</a>","displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Files","name":"file_ids","type":"multiOptions","description":"The files to be used by the assistant, there can be a maximum of 20 files attached to the assistant. You can use expression to pass file IDs as an array or comma-separated string.","typeOptions":{"loadOptionsMethod":"getFiles"},"default":[],"hint":"Add more files by using the 'Upload a File' operation","displayOptions":{"show":{"codeInterpreter":[true],"operation":["create"],"resource":["assistant"]},"hide":{"knowledgeRetrieval":[true]}}},{"displayName":"Files","name":"file_ids","type":"multiOptions","description":"The files to be used by the assistant, there can be a maximum of 20 files attached to the assistant","typeOptions":{"loadOptionsMethod":"getFiles"},"default":[],"hint":"Add more files by using the 'Upload a File' operation","displayOptions":{"show":{"knowledgeRetrieval":[true],"operation":["create"],"resource":["assistant"]},"hide":{"codeInterpreter":[true]}}},{"displayName":"Files","name":"file_ids","type":"multiOptions","description":"The files to be used by the assistant, there can be a maximum of 20 files attached to the assistant","typeOptions":{"loadOptionsMethod":"getFiles"},"default":[],"hint":"Add more files by using the 'Upload a File' operation","displayOptions":{"show":{"knowledgeRetrieval":[true],"codeInterpreter":[true],"operation":["create"],"resource":["assistant"]}}},{"displayName":"Add custom n8n tools when you <i>message</i> your assistant (rather than when creating it)","name":"noticeTools","type":"notice","default":"","displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Output Randomness (Temperature)","name":"temperature","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. We generally recommend altering this or temperature but not both.","type":"number"},{"displayName":"Output Randomness (Top P)","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"An alternative to sampling with temperature, controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number"},{"displayName":"Fail if Assistant Already Exists","name":"failIfExists","type":"boolean","default":false,"description":"Whether to fail an operation if the assistant with the same name already exists"}],"displayOptions":{"show":{"operation":["create"],"resource":["assistant"]}}},{"displayName":"Assistant","name":"assistantId","type":"resourceLocator","description":"Assistant to respond to the message. You can add, modify or remove assistants in the <a href=\"https://platform.openai.com/playground?mode=assistant\" target=\"_blank\">playground</a>.","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"assistantSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. asst_abc123"}],"displayOptions":{"show":{"operation":["deleteAssistant"],"resource":["assistant"]}}},{"displayName":"Assistant","name":"assistantId","type":"resourceLocator","description":"Assistant to respond to the message. You can add, modify or remove assistants in the <a href=\"https://platform.openai.com/playground?mode=assistant\" target=\"_blank\">playground</a>.","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"assistantSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. asst_abc123"}],"displayOptions":{"show":{"operation":["message"],"resource":["assistant"]}}},{"displayName":"Source for Prompt (User Message)","name":"prompt","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"show":{"operation":["message"],"resource":["assistant"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"prompt":["define"],"operation":["message"],"resource":["assistant"]}}},{"displayName":"Memory","name":"memory","type":"options","options":[{"name":"Use memory connector","value":"connector","description":"Connect one of the supported memory nodes"},{"name":"Use thread ID","value":"threadId","description":"Specify the ID of the thread to continue"}],"displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.6}}],"operation":["message"],"resource":["assistant"]}},"default":"connector"},{"displayName":"Thread ID","name":"threadId","type":"string","default":"","placeholder":"","description":"The ID of the thread to continue, a new thread will be created if not specified","hint":"If the thread ID is empty or undefined a new thread will be created and included in the response","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.6}}],"memory":["threadId"],"operation":["message"],"resource":["assistant"]}}},{"displayName":"Connect your own custom n8n tools to this node on the canvas","name":"noticeTools","type":"notice","default":"","displayOptions":{"show":{"operation":["message"],"resource":["assistant"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Base URL","name":"baseURL","default":"https://api.openai.com/v1","description":"Override the default base URL for the API","type":"string","displayOptions":{"hide":{"@version":[{"_cnd":{"gte":1.8}}]}}},{"displayName":"Max Retries","name":"maxRetries","default":2,"description":"Maximum number of retries to attempt","type":"number"},{"displayName":"Timeout","name":"timeout","default":10000,"description":"Maximum amount of time a request is allowed to take in milliseconds","type":"number"},{"displayName":"Preserve Original Tools","name":"preserveOriginalTools","type":"boolean","default":true,"description":"Whether to preserve the original tools of the assistant after the execution of this node, otherwise the tools will be replaced with the connected tools, if any, default is true","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.3}}]}}}],"displayOptions":{"show":{"operation":["message"],"resource":["assistant"]}}},{"displayName":"Simplify Output","name":"simplify","type":"boolean","default":true,"description":"Whether to return a simplified version of the response instead of the raw data","displayOptions":{"show":{"operation":["list"],"resource":["assistant"]}}},{"displayName":"Assistant","name":"assistantId","type":"resourceLocator","description":"Assistant to respond to the message. You can add, modify or remove assistants in the <a href=\"https://platform.openai.com/playground?mode=assistant\" target=\"_blank\">playground</a>.","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"assistantSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. asst_abc123"}],"displayOptions":{"show":{"operation":["update"],"resource":["assistant"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Code Interpreter","name":"codeInterpreter","type":"boolean","default":false,"description":"Whether to enable the code interpreter that allows the assistants to write and run Python code in a sandboxed execution environment, find more <a href=\"https://platform.openai.com/docs/assistants/tools/code-interpreter\" target=\"_blank\">here</a>"},{"displayName":"Description","name":"description","type":"string","default":"","description":"The description of the assistant. The maximum length is 512 characters.","placeholder":"e.g. My personal assistant"},{"displayName":"Files","name":"file_ids","type":"multiOptions","description":"The files to be used by the assistant, there can be a maximum of 20 files attached to the assistant. You can use expression to pass file IDs as an array or comma-separated string.","typeOptions":{"loadOptionsMethod":"getFiles"},"default":[],"hint":"Add more files by using the 'Upload a File' operation, any existing files not selected here will be removed."},{"displayName":"Instructions","name":"instructions","type":"string","description":"The system instructions that the assistant uses. The maximum length is 32768 characters.","default":"","typeOptions":{"rows":2}},{"displayName":"Knowledge Retrieval","name":"knowledgeRetrieval","type":"boolean","default":false,"description":"Whether to augments the assistant with knowledge from outside its model, such as proprietary product information or documents, find more <a href=\"https://platform.openai.com/docs/assistants/tools/knowledge-retrieval\" target=\"_blank\">here</a>"},{"displayName":"Model","name":"modelId","type":"resourceLocator","default":{"mode":"list","value":""},"required":false,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"modelSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. gpt-4"}]},{"displayName":"Name","name":"name","type":"string","default":"","description":"The name of the assistant. The maximum length is 256 characters.","placeholder":"e.g. My Assistant"},{"displayName":"Remove All Custom Tools (Functions)","name":"removeCustomTools","type":"boolean","default":false,"description":"Whether to remove all custom tools (functions) from the assistant"},{"displayName":"Output Randomness (Temperature)","name":"temperature","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. We generally recommend altering this or temperature but not both.","type":"number"},{"displayName":"Output Randomness (Top P)","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"An alternative to sampling with temperature, controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number"}],"displayOptions":{"show":{"operation":["update"],"resource":["assistant"]}}},{"displayName":"Operation","name":"operation","type":"options","noDataExpression":true,"options":[{"name":"Generate Audio","value":"generate","action":"Generate audio","description":"Creates audio from a text prompt"},{"name":"Transcribe a Recording","value":"transcribe","action":"Transcribe a recording","description":"Transcribes audio into the text"},{"name":"Translate a Recording","value":"translate","action":"Translate a recording","description":"Translate audio into the text in the english language"}],"default":"generate","displayOptions":{"show":{"resource":["audio"]}}},{"displayName":"OpenAI API limits the size of the audio file to 25 MB","name":"fileSizeLimitNotice","type":"notice","default":" ","displayOptions":{"show":{"resource":["audio"],"operation":["translate","transcribe"]}}},{"displayName":"Model","name":"model","type":"options","default":"tts-1","options":[{"name":"TTS-1","value":"tts-1"},{"name":"TTS-1-HD","value":"tts-1-hd"}],"displayOptions":{"show":{"operation":["generate"],"resource":["audio"]}}},{"displayName":"Text Input","name":"input","type":"string","placeholder":"e.g. The quick brown fox jumped over the lazy dog","description":"The text to generate audio for. The maximum length is 4096 characters.","default":"","typeOptions":{"rows":2},"displayOptions":{"show":{"operation":["generate"],"resource":["audio"]}}},{"displayName":"Voice","name":"voice","type":"options","default":"alloy","description":"The voice to use when generating the audio","options":[{"name":"Alloy","value":"alloy"},{"name":"Echo","value":"echo"},{"name":"Fable","value":"fable"},{"name":"Nova","value":"nova"},{"name":"Onyx","value":"onyx"},{"name":"Shimmer","value":"shimmer"}],"displayOptions":{"show":{"operation":["generate"],"resource":["audio"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Response Format","name":"response_format","type":"options","default":"mp3","options":[{"name":"MP3","value":"mp3"},{"name":"OPUS","value":"opus"},{"name":"AAC","value":"aac"},{"name":"FLAC","value":"flac"}]},{"displayName":"Audio Speed","name":"speed","type":"number","default":1,"typeOptions":{"minValue":0.25,"maxValue":4,"numberPrecision":1}},{"displayName":"Put Output in Field","name":"binaryPropertyOutput","type":"string","default":"data","hint":"The name of the output field to put the binary file data in"}],"displayOptions":{"show":{"operation":["generate"],"resource":["audio"]}}},{"displayName":"Input Data Field Name","name":"binaryPropertyName","type":"string","default":"data","placeholder":"e.g. data","hint":"The name of the input field containing the binary file data to be processed","description":"Name of the binary property which contains the audio file in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm","displayOptions":{"show":{"operation":["transcribe"],"resource":["audio"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Language of the Audio File","name":"language","type":"string","description":"The language of the input audio. Supplying the input language in <a href=\"https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes\" target=\"_blank\">ISO-639-1</a> format will improve accuracy and latency.","default":""},{"displayName":"Output Randomness (Temperature)","name":"temperature","type":"number","default":0,"typeOptions":{"minValue":0,"maxValue":1,"numberPrecision":1}}],"displayOptions":{"show":{"operation":["transcribe"],"resource":["audio"]}}},{"displayName":"Input Data Field Name","name":"binaryPropertyName","type":"string","default":"data","hint":"The name of the input field containing the binary file data to be processed","placeholder":"e.g. data","description":"Name of the binary property which contains the audio file in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm","displayOptions":{"show":{"operation":["translate"],"resource":["audio"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Output Randomness (Temperature)","name":"temperature","type":"number","default":0,"typeOptions":{"minValue":0,"maxValue":1,"numberPrecision":1}}],"displayOptions":{"show":{"operation":["translate"],"resource":["audio"]}}},{"displayName":"Operation","name":"operation","type":"options","noDataExpression":true,"options":[{"name":"Delete a File","value":"deleteFile","action":"Delete a file","description":"Delete a file from the server"},{"name":"List Files","value":"list","action":"List files","description":"Returns a list of files that belong to the user's organization"},{"name":"Upload a File","value":"upload","action":"Upload a file","description":"Upload a file that can be used across various endpoints"}],"default":"upload","displayOptions":{"show":{"resource":["file"]}}},{"displayName":"Input Data Field Name","name":"binaryPropertyName","type":"string","default":"data","hint":"The name of the input field containing the binary file data to be processed","placeholder":"e.g. data","description":"Name of the binary property which contains the file. The size of individual files can be a maximum of 512 MB or 2 million tokens for Assistants.","displayOptions":{"show":{"operation":["upload"],"resource":["file"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Purpose","name":"purpose","type":"options","default":"assistants","description":"The intended purpose of the uploaded file, the 'Fine-tuning' only supports .jsonl files","options":[{"name":"Assistants","value":"assistants"},{"name":"Fine-Tune","value":"fine-tune"}]}],"displayOptions":{"show":{"operation":["upload"],"resource":["file"]}}},{"displayName":"File","name":"fileId","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"fileSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","validation":[{"type":"regex","properties":{"regex":"file-[a-zA-Z0-9]","errorMessage":"Not a valid File ID"}}],"placeholder":"e.g. file-1234567890"}],"displayOptions":{"show":{"operation":["deleteFile"],"resource":["file"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Purpose","name":"purpose","type":"options","default":"any","description":"Only return files with the given purpose","options":[{"name":"Any [Default]","value":"any"},{"name":"Assistants","value":"assistants"},{"name":"Fine-Tune","value":"fine-tune"}]}],"displayOptions":{"show":{"operation":["list"],"resource":["file"]}}},{"displayName":"Operation","name":"operation","type":"options","noDataExpression":true,"options":[{"name":"Analyze Image","value":"analyze","action":"Analyze image","description":"Take in images and answer questions about them"},{"name":"Generate an Image","value":"generate","action":"Generate an image","description":"Creates an image from a text prompt"}],"default":"generate","displayOptions":{"show":{"resource":["image"]}}},{"displayName":"Model","name":"model","type":"options","default":"dall-e-3","description":"The model to use for image generation","options":[{"name":"DALL·E 2","value":"dall-e-2"},{"name":"DALL·E 3","value":"dall-e-3"},{"name":"GPT Image 1","value":"gpt-image-1"}],"displayOptions":{"show":{"operation":["generate"],"resource":["image"]}}},{"displayName":"Prompt","name":"prompt","type":"string","placeholder":"e.g. A cute cat eating a dinosaur","description":"A text description of the desired image(s). The maximum length is 1000 characters for dall-e-2 and 4000 characters for dall-e-3.","default":"","typeOptions":{"rows":2},"displayOptions":{"show":{"operation":["generate"],"resource":["image"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Number of Images","name":"n","default":1,"description":"Number of images to generate","type":"number","typeOptions":{"minValue":1,"maxValue":10},"displayOptions":{"show":{"/model":["dall-e-2"]}}},{"displayName":"Quality","name":"dalleQuality","type":"options","description":"The quality of the image that will be generated, HD creates images with finer details and greater consistency across the image","options":[{"name":"HD","value":"hd"},{"name":"Standard","value":"standard"}],"displayOptions":{"show":{"/model":["dall-e-3"]}},"default":"standard"},{"displayName":"Quality","name":"quality","type":"options","description":"The quality of the image that will be generated, High creates images with finer details and greater consistency across the image","options":[{"name":"High","value":"high"},{"name":"Medium","value":"medium"},{"name":"Low","value":"low"}],"displayOptions":{"show":{"/model":["gpt-image-1"]}},"default":"medium"},{"displayName":"Resolution","name":"size","type":"options","options":[{"name":"256x256","value":"256x256"},{"name":"512x512","value":"512x512"},{"name":"1024x1024","value":"1024x1024"}],"displayOptions":{"show":{"/model":["dall-e-2"]}},"default":"1024x1024"},{"displayName":"Resolution","name":"size","type":"options","options":[{"name":"1024x1024","value":"1024x1024"},{"name":"1792x1024","value":"1792x1024"},{"name":"1024x1792","value":"1024x1792"}],"displayOptions":{"show":{"/model":["dall-e-3"]}},"default":"1024x1024"},{"displayName":"Resolution","name":"size","type":"options","options":[{"name":"1024x1024","value":"1024x1024"},{"name":"1024x1536","value":"1024x1536"},{"name":"1536x1024","value":"1536x1024"}],"displayOptions":{"show":{"/model":["gpt-image-1"]}},"default":"1024x1024"},{"displayName":"Style","name":"style","type":"options","options":[{"name":"Natural","value":"natural","description":"Produce more natural looking images"},{"name":"Vivid","value":"vivid","description":"Lean towards generating hyper-real and dramatic images"}],"displayOptions":{"show":{"/model":["dall-e-3"]}},"default":"vivid"},{"displayName":"Respond with Image URL(s)","name":"returnImageUrls","type":"boolean","default":false,"description":"Whether to return image URL(s) instead of binary file(s)"},{"displayName":"Put Output in Field","name":"binaryPropertyOutput","type":"string","default":"data","hint":"The name of the output field to put the binary file data in","displayOptions":{"show":{"returnImageUrls":[false]}}}],"displayOptions":{"show":{"operation":["generate"],"resource":["image"]}}},{"displayName":"Model","name":"modelId","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"imageModelSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. gpt-4"}],"displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.4}}],"operation":["analyze"],"resource":["image"]}}},{"displayName":"Text Input","name":"text","type":"string","placeholder":"e.g. What's in this image?","default":"What's in this image?","typeOptions":{"rows":2},"displayOptions":{"show":{"operation":["analyze"],"resource":["image"]}}},{"displayName":"Input Type","name":"inputType","type":"options","default":"url","options":[{"name":"Image URL(s)","value":"url"},{"name":"Binary File(s)","value":"base64"}],"displayOptions":{"show":{"operation":["analyze"],"resource":["image"]}}},{"displayName":"URL(s)","name":"imageUrls","type":"string","placeholder":"e.g. https://example.com/image.jpeg","description":"URL(s) of the image(s) to analyze, multiple URLs can be added separated by comma","default":"","displayOptions":{"show":{"inputType":["url"],"operation":["analyze"],"resource":["image"]}}},{"displayName":"Input Data Field Name","name":"binaryPropertyName","type":"string","default":"data","placeholder":"e.g. data","hint":"The name of the input field containing the binary file data to be processed","description":"Name of the binary property which contains the image(s)","displayOptions":{"show":{"inputType":["base64"],"operation":["analyze"],"resource":["image"]}}},{"displayName":"Simplify Output","name":"simplify","type":"boolean","default":true,"description":"Whether to simplify the response or not","displayOptions":{"show":{"operation":["analyze"],"resource":["image"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Detail","name":"detail","type":"options","default":"auto","options":[{"name":"Auto","value":"auto","description":"Model will look at the image input size and decide if it should use the low or high setting"},{"name":"Low","value":"low","description":"Return faster responses and consume fewer tokens"},{"name":"High","value":"high","description":"Return more detailed responses, consumes more tokens"}]},{"displayName":"Length of Description (Max Tokens)","description":"Fewer tokens will result in shorter, less detailed image description","name":"maxTokens","type":"number","default":300,"typeOptions":{"minValue":1}}],"displayOptions":{"show":{"operation":["analyze"],"resource":["image"]}}},{"displayName":"Operation","name":"operation","type":"options","noDataExpression":true,"options":[{"name":"Message a Model","value":"message","action":"Message a model","description":"Create a completion with GPT 3, 4, etc."},{"name":"Classify Text for Violations","value":"classify","action":"Classify text for violations","description":"Check whether content complies with usage policies"}],"default":"message","displayOptions":{"show":{"resource":["text"]}}},{"displayName":"Text Input","name":"input","type":"string","placeholder":"e.g. Sample text goes here","description":"The input text to classify if it is violates the moderation policy","default":"","typeOptions":{"rows":2},"displayOptions":{"show":{"operation":["classify"],"resource":["text"]}}},{"displayName":"Simplify Output","name":"simplify","type":"boolean","default":false,"description":"Whether to return a simplified version of the response instead of the raw data","displayOptions":{"show":{"operation":["classify"],"resource":["text"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Use Stable Model","name":"useStableModel","type":"boolean","default":false,"description":"Whether to use the stable version of the model instead of the latest version, accuracy may be slightly lower"}],"displayOptions":{"show":{"operation":["classify"],"resource":["text"]}}},{"displayName":"Model","name":"modelId","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"modelSearch","searchable":true}},{"displayName":"ID","name":"id","type":"string","placeholder":"e.g. gpt-4"}],"displayOptions":{"show":{"operation":["message"],"resource":["text"]}}},{"displayName":"Messages","name":"messages","type":"fixedCollection","typeOptions":{"sortable":true,"multipleValues":true},"placeholder":"Add Message","default":{"values":[{"content":""}]},"options":[{"displayName":"Values","name":"values","values":[{"displayName":"Prompt","name":"content","type":"string","description":"The content of the message to be send","default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2}},{"displayName":"Role","name":"role","type":"options","description":"Role in shaping the model's response, it tells the model how it should behave and interact with the user","options":[{"name":"User","value":"user","description":"Send a message as a user and get a response from the model"},{"name":"Assistant","value":"assistant","description":"Tell the model to adopt a specific tone or personality"},{"name":"System","value":"system","description":"Usually used to set the model's behavior or context for the next user message"}],"default":"user"}]}],"displayOptions":{"show":{"operation":["message"],"resource":["text"]}}},{"displayName":"Simplify Output","name":"simplify","type":"boolean","default":true,"description":"Whether to return a simplified version of the response instead of the raw data","displayOptions":{"show":{"operation":["message"],"resource":["text"]}}},{"displayName":"Output Content as JSON","name":"jsonOutput","type":"boolean","description":"Whether to attempt to return the response in JSON format. Compatible with GPT-4 Turbo and all GPT-3.5 Turbo models newer than gpt-3.5-turbo-1106.","default":false,"displayOptions":{"show":{"operation":["message"],"resource":["text"]}}},{"displayName":"Hide Tools","name":"hideTools","type":"hidden","default":"hide","displayOptions":{"show":{"modelId":["gpt-3.5-turbo-16k-0613","dall-e-3","text-embedding-3-large","dall-e-2","whisper-1","tts-1-hd-1106","tts-1-hd","gpt-4-0314","text-embedding-3-small","gpt-4-32k-0314","gpt-3.5-turbo-0301","gpt-4-vision-preview","gpt-3.5-turbo-16k","gpt-3.5-turbo-instruct-0914","tts-1","davinci-002","gpt-3.5-turbo-instruct","babbage-002","tts-1-1106","text-embedding-ada-002"],"@version":[{"_cnd":{"gte":1.2}}],"operation":["message"],"resource":["text"]}}},{"displayName":"Connect your own custom n8n tools to this node on the canvas","name":"noticeTools","type":"notice","default":"","displayOptions":{"hide":{"hideTools":["hide"]},"show":{"operation":["message"],"resource":["text"]}}},{"displayName":"Options","name":"options","placeholder":"Add Option","type":"collection","default":{},"options":[{"displayName":"Frequency Penalty","name":"frequency_penalty","default":0,"typeOptions":{"maxValue":2,"minValue":-2,"numberPrecision":1},"description":"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim","type":"number"},{"displayName":"Maximum Number of Tokens","name":"maxTokens","default":16,"description":"The maximum number of tokens to generate in the completion. Most models have a context length of 2048 tokens (except for the newest models, which support 32,768).","type":"number","typeOptions":{"maxValue":32768}},{"displayName":"Number of Completions","name":"n","default":1,"description":"How many completions to generate for each prompt. Note: Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for max_tokens and stop.","type":"number"},{"displayName":"Presence Penalty","name":"presence_penalty","default":0,"typeOptions":{"maxValue":2,"minValue":-2,"numberPrecision":1},"description":"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics","type":"number"},{"displayName":"Output Randomness (Temperature)","name":"temperature","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. We generally recommend altering this or temperature but not both.","type":"number"},{"displayName":"Output Randomness (Top P)","name":"topP","default":1,"typeOptions":{"maxValue":1,"minValue":0,"numberPrecision":1},"description":"An alternative to sampling with temperature, controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.","type":"number"},{"displayName":"Max Tool Calls Iterations","name":"maxToolsIterations","type":"number","default":15,"description":"The maximum number of tool iteration cycles the LLM will run before stopping. A single iteration can contain multiple tool calls. Set to 0 for no limit.","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.5}}]}}}],"displayOptions":{"show":{"operation":["message"],"resource":["text"]}}}],"iconUrl":{"light":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vendors/OpenAi/openAi.svg","dark":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vendors/OpenAi/openAi.dark.svg"}},
3
- {"displayName":"AI Agent","name":"agent","icon":"fa:robot","iconColor":"black","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9],"description":"Generates an action plan and executes it. Can use external tools.","subtitle":"={{ {\ttoolsAgent: 'Tools Agent', conversationalAgent: 'Conversational Agent', openAiFunctionsAgent: 'OpenAI Functions Agent', reActAgent: 'ReAct Agent', sqlAgent: 'SQL Agent', planAndExecuteAgent: 'Plan and Execute Agent' }[$parameter.agent] }}","defaults":{"name":"AI Agent","color":"#404040"},"codex":{"alias":["LangChain","Chat","Conversational","Plan and Execute","ReAct","Tools"],"categories":["AI"],"subcategories":{"AI":["Agents","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent/"}]}},"inputs":"={{\n\t\t\t((agent, hasOutputParser) => {\n\t\t\t\tfunction getInputs(agent, hasOutputParser) {\n const getInputData = (inputs) => {\n const displayNames = {\n ai_languageModel: \"Model\",\n ai_memory: \"Memory\",\n ai_tool: \"Tool\",\n ai_outputParser: \"Output Parser\"\n };\n return inputs.map(({ type, filter }) => {\n const isModelType = type === \"ai_languageModel\";\n let displayName = type in displayNames ? displayNames[type] : void 0;\n if (isModelType && [\"openAiFunctionsAgent\", \"toolsAgent\", \"conversationalAgent\"].includes(agent)) {\n displayName = \"Chat Model\";\n }\n const input = {\n type,\n displayName,\n required: isModelType,\n maxConnections: [\"ai_languageModel\", \"ai_memory\", \"ai_outputParser\"].includes(\n type\n ) ? 1 : void 0\n };\n if (filter) {\n input.filter = filter;\n }\n return input;\n });\n };\n let specialInputs = [];\n if (agent === \"conversationalAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\",\n filter: {\n nodes: [\n \"@n8n/n8n-nodes-langchain.lmChatAnthropic\",\n \"@n8n/n8n-nodes-langchain.lmChatAwsBedrock\",\n \"@n8n/n8n-nodes-langchain.lmChatGroq\",\n \"@n8n/n8n-nodes-langchain.lmChatOllama\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleGemini\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleVertex\",\n \"@n8n/n8n-nodes-langchain.lmChatMistralCloud\",\n \"@n8n/n8n-nodes-langchain.lmChatAzureOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatDeepSeek\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenRouter\",\n \"@n8n/n8n-nodes-langchain.lmChatXAiGrok\"\n ]\n }\n },\n {\n type: \"ai_memory\"\n },\n {\n type: \"ai_tool\"\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"toolsAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\",\n filter: {\n nodes: [\n \"@n8n/n8n-nodes-langchain.lmChatAnthropic\",\n \"@n8n/n8n-nodes-langchain.lmChatAzureOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatAwsBedrock\",\n \"@n8n/n8n-nodes-langchain.lmChatMistralCloud\",\n \"@n8n/n8n-nodes-langchain.lmChatOllama\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatGroq\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleVertex\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleGemini\",\n \"@n8n/n8n-nodes-langchain.lmChatDeepSeek\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenRouter\",\n \"@n8n/n8n-nodes-langchain.lmChatXAiGrok\"\n ]\n }\n },\n {\n type: \"ai_memory\"\n },\n {\n type: \"ai_tool\",\n required: true\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"openAiFunctionsAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\",\n filter: {\n nodes: [\n \"@n8n/n8n-nodes-langchain.lmChatOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatAzureOpenAi\"\n ]\n }\n },\n {\n type: \"ai_memory\"\n },\n {\n type: \"ai_tool\",\n required: true\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"reActAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\"\n },\n {\n type: \"ai_tool\"\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"sqlAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\"\n },\n {\n type: \"ai_memory\"\n }\n ];\n } else if (agent === \"planAndExecuteAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\"\n },\n {\n type: \"ai_tool\"\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n }\n if (hasOutputParser === false) {\n specialInputs = specialInputs.filter((input) => input.type !== \"ai_outputParser\");\n }\n return [\"main\", ...getInputData(specialInputs)];\n};\n\t\t\t\treturn getInputs(agent, hasOutputParser)\n\t\t\t})($parameter.agent, $parameter.hasOutputParser === undefined || $parameter.hasOutputParser === true)\n\t\t}}","outputs":["main"],"credentials":[{"name":"mySql","required":true,"testedBy":"mysqlConnectionTest","displayOptions":{"show":{"agent":["sqlAgent"],"/dataSource":["mysql"]}}},{"name":"postgres","required":true,"displayOptions":{"show":{"agent":["sqlAgent"],"/dataSource":["postgres"]}}}],"properties":[{"displayName":"Tip: Get a feel for agents with our quick <a href=\"https://docs.n8n.io/advanced-ai/intro-tutorial/\" target=\"_blank\">tutorial</a> or see an <a href=\"/templates/1954\" target=\"_blank\">example</a> of how this node works","name":"notice_tip","type":"notice","default":"","displayOptions":{"show":{"agent":["conversationalAgent","toolsAgent"]}}},{"displayName":"This node is using Agent that has been deprecated. Please switch to using 'Tools Agent' instead.","name":"deprecated","type":"notice","default":"","displayOptions":{"show":{"agent":["conversationalAgent","openAiFunctionsAgent","planAndExecuteAgent","reActAgent","sqlAgent"]}}},{"displayName":"Agent","name":"agent","type":"options","noDataExpression":true,"options":[{"name":"Conversational Agent","value":"conversationalAgent","description":"Describes tools in the system prompt and parses JSON responses for tool calls. More flexible but potentially less reliable than the Tools Agent. Suitable for simpler interactions or with models not supporting structured schemas."},{"name":"OpenAI Functions Agent","value":"openAiFunctionsAgent","description":"Leverages OpenAI's function calling capabilities to precisely select and execute tools. Excellent for tasks requiring structured outputs when working with OpenAI models."},{"name":"Plan and Execute Agent","value":"planAndExecuteAgent","description":"Creates a high-level plan for complex tasks and then executes each step. Suitable for multi-stage problems or when a strategic approach is needed."},{"name":"ReAct Agent","value":"reActAgent","description":"Combines reasoning and action in an iterative process. Effective for tasks that require careful analysis and step-by-step problem-solving."},{"name":"SQL Agent","value":"sqlAgent","description":"Specializes in interacting with SQL databases. Ideal for data analysis tasks, generating queries, or extracting insights from structured data."}],"default":"conversationalAgent","displayOptions":{"show":{"@version":[{"_cnd":{"lte":1.5}}]}}},{"displayName":"Agent","name":"agent","type":"options","noDataExpression":true,"options":[{"name":"Tools Agent","value":"toolsAgent","description":"Utilizes structured tool schemas for precise and reliable tool selection and execution. Recommended for complex tasks requiring accurate and consistent tool usage, but only usable with models that support tool calling."},{"name":"Conversational Agent","value":"conversationalAgent","description":"Describes tools in the system prompt and parses JSON responses for tool calls. More flexible but potentially less reliable than the Tools Agent. Suitable for simpler interactions or with models not supporting structured schemas."},{"name":"OpenAI Functions Agent","value":"openAiFunctionsAgent","description":"Leverages OpenAI's function calling capabilities to precisely select and execute tools. Excellent for tasks requiring structured outputs when working with OpenAI models."},{"name":"Plan and Execute Agent","value":"planAndExecuteAgent","description":"Creates a high-level plan for complex tasks and then executes each step. Suitable for multi-stage problems or when a strategic approach is needed."},{"name":"ReAct Agent","value":"reActAgent","description":"Combines reasoning and action in an iterative process. Effective for tasks that require careful analysis and step-by-step problem-solving."},{"name":"SQL Agent","value":"sqlAgent","description":"Specializes in interacting with SQL databases. Ideal for data analysis tasks, generating queries, or extracting insights from structured data."}],"default":"toolsAgent","displayOptions":{"show":{"@version":[{"_cnd":{"between":{"from":1.6,"to":1.7}}}]}}},{"displayName":"Agent","name":"agent","type":"hidden","noDataExpression":true,"options":[{"name":"Tools Agent","value":"toolsAgent","description":"Utilizes structured tool schemas for precise and reliable tool selection and execution. Recommended for complex tasks requiring accurate and consistent tool usage, but only usable with models that support tool calling."},{"name":"Conversational Agent","value":"conversationalAgent","description":"Describes tools in the system prompt and parses JSON responses for tool calls. More flexible but potentially less reliable than the Tools Agent. Suitable for simpler interactions or with models not supporting structured schemas."},{"name":"OpenAI Functions Agent","value":"openAiFunctionsAgent","description":"Leverages OpenAI's function calling capabilities to precisely select and execute tools. Excellent for tasks requiring structured outputs when working with OpenAI models."},{"name":"Plan and Execute Agent","value":"planAndExecuteAgent","description":"Creates a high-level plan for complex tasks and then executes each step. Suitable for multi-stage problems or when a strategic approach is needed."},{"name":"ReAct Agent","value":"reActAgent","description":"Combines reasoning and action in an iterative process. Effective for tasks that require careful analysis and step-by-step problem-solving."},{"name":"SQL Agent","value":"sqlAgent","description":"Specializes in interacting with SQL databases. Ideal for data analysis tasks, generating queries, or extracting insights from structured data."}],"default":"toolsAgent","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.8}}]}}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}],"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.7}}]},"hide":{"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]},"hide":{"agent":["sqlAgent"]}}},{"displayName":"For more reliable structured output parsing, consider using the Tools agent","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true],"agent":["conversationalAgent","reActAgent","planAndExecuteAgent","openAiFunctionsAgent"]}}},{"displayName":"Require Specific Output Format","name":"hasOutputParser","type":"boolean","default":false,"noDataExpression":true,"displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}],"agent":["sqlAgent"]}}},{"displayName":"Connect an <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_outputParser'>output parser</a> on the canvas to specify the output format you require","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true],"agent":["toolsAgent"]}}},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["toolsAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"System Message","name":"systemMessage","type":"string","default":"You are a helpful assistant","description":"The message that will be sent to the agent before the conversation starts","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"},{"displayName":"Automatically Passthrough Binary Images","name":"passthroughBinaryImages","type":"boolean","default":true,"description":"Whether or not binary images should be automatically passed through to the agent as image type messages"},{"displayName":"Batch Processing","name":"batching","type":"collection","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":1,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting, but will impact the ordering in the agents log output."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":0,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["conversationalAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["conversationalAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["conversationalAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["conversationalAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Human Message","name":"humanMessage","type":"string","default":"TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{tools}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{input}}","description":"The message that will provide the agent with a list of tools to use","typeOptions":{"rows":6}},{"displayName":"System Message","name":"systemMessage","type":"string","default":"Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.","description":"The message that will be sent to the agent before the conversation starts","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["openAiFunctionsAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["openAiFunctionsAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["openAiFunctionsAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["openAiFunctionsAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"System Message","name":"systemMessage","type":"string","default":"You are a helpful AI assistant.","description":"The message that will be sent to the agent before the conversation starts","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["reActAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["reActAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["reActAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["reActAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Human Message Template","name":"humanMessageTemplate","type":"string","default":"{input}\n\n{agent_scratchpad}","description":"String to use directly as the human message template","typeOptions":{"rows":6}},{"displayName":"Prefix Message","name":"prefix","type":"string","default":"Answer the following questions as best you can. You have access to the following tools:","description":"String to put before the list of tools","typeOptions":{"rows":6}},{"displayName":"Suffix Message for Chat Model","name":"suffixChat","type":"string","default":"Begin! Reminder to always use the exact characters `Final Answer` when responding.","description":"String to put after the list of tools that will be used if chat model is used","typeOptions":{"rows":6}},{"displayName":"Suffix Message for Regular Model","name":"suffix","type":"string","default":"Begin!\n\n\tQuestion: {input}\n\tThought:{agent_scratchpad}","description":"String to put after the list of tools that will be used if regular model is used","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"}]},{"displayName":"Data Source","name":"dataSource","type":"options","displayOptions":{"show":{"agent":["sqlAgent"],"@version":[{"_cnd":{"lt":1.4}}]}},"default":"sqlite","description":"SQL database to connect to","options":[{"name":"MySQL","value":"mysql","description":"Connect to a MySQL database"},{"name":"Postgres","value":"postgres","description":"Connect to a Postgres database"},{"name":"SQLite","value":"sqlite","description":"Use SQLite by connecting a database file as binary input"}]},{"displayName":"Data Source","name":"dataSource","type":"options","displayOptions":{"show":{"agent":["sqlAgent"],"@version":[{"_cnd":{"gte":1.4}}]}},"default":"postgres","description":"SQL database to connect to","options":[{"name":"MySQL","value":"mysql","description":"Connect to a MySQL database"},{"name":"Postgres","value":"postgres","description":"Connect to a Postgres database"},{"name":"SQLite","value":"sqlite","description":"Use SQLite by connecting a database file as binary input"}]},{"displayName":"Credentials","name":"credentials","type":"credentials","default":""},{"displayName":"Pass the SQLite database into this node as binary data, e.g. by inserting a 'Read/Write Files from Disk' node beforehand","name":"sqLiteFileNotice","type":"notice","default":"","displayOptions":{"show":{"agent":["sqlAgent"],"dataSource":["sqlite"]}}},{"displayName":"Input Binary Field","name":"binaryPropertyName","type":"string","default":"data","required":true,"placeholder":"e.g data","hint":"The name of the input binary field containing the file to be extracted","displayOptions":{"show":{"agent":["sqlAgent"],"dataSource":["sqlite"]}}},{"displayName":"Prompt","name":"input","type":"string","displayOptions":{"show":{"agent":["sqlAgent"],"@version":[{"_cnd":{"lte":1.2}}]}},"default":"","required":true,"typeOptions":{"rows":5}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}]},"show":{"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.7}}],"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"],"agent":["sqlAgent"]}}},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["sqlAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Ignored Tables","name":"ignoredTables","type":"string","default":"","description":"Comma-separated list of tables to ignore from the database. If empty, no tables are ignored."},{"displayName":"Include Sample Rows","name":"includedSampleRows","type":"number","description":"Number of sample rows to include in the prompt to the agent. It helps the agent to understand the schema of the database but it also increases the amount of tokens used.","default":3},{"displayName":"Included Tables","name":"includedTables","type":"string","default":"","description":"Comma-separated list of tables to include in the database. If empty, all tables are included."},{"displayName":"Prefix Prompt","name":"prefixPrompt","type":"string","default":"You are an agent designed to interact with an SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results using the LIMIT clause.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return \"I don't know\" as the answer.","description":"Prefix prompt to use for the agent","typeOptions":{"rows":10}},{"displayName":"Suffix Prompt","name":"suffixPrompt","type":"string","default":"Begin!\nChat History:\n{chatHistory}\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}","description":"Suffix prompt to use for the agent","typeOptions":{"rows":4}},{"displayName":"Limit","name":"topK","type":"number","default":10,"description":"The maximum number of results to return"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["planAndExecuteAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["planAndExecuteAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["planAndExecuteAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["planAndExecuteAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Human Message Template","name":"humanMessageTemplate","type":"string","default":"Previous steps: {previous_steps}\n\nCurrent objective: {current_step}\n\n{agent_scratchpad}\n\nYou may extract and combine relevant data from your previous steps when responding to me.","description":"The message that will be sent to the agent during each step execution","typeOptions":{"rows":6}}]}]},
3
+ {"displayName":"AI Agent","name":"agent","icon":"fa:robot","iconColor":"black","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9],"description":"Generates an action plan and executes it. Can use external tools.","subtitle":"={{ {\ttoolsAgent: 'Tools Agent', conversationalAgent: 'Conversational Agent', openAiFunctionsAgent: 'OpenAI Functions Agent', reActAgent: 'ReAct Agent', sqlAgent: 'SQL Agent', planAndExecuteAgent: 'Plan and Execute Agent' }[$parameter.agent] }}","defaults":{"name":"AI Agent","color":"#404040"},"codex":{"alias":["LangChain","Chat","Conversational","Plan and Execute","ReAct","Tools"],"categories":["AI"],"subcategories":{"AI":["Agents","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent/"}]}},"inputs":"={{\n\t\t\t((agent, hasOutputParser) => {\n\t\t\t\tfunction getInputs(agent, hasOutputParser) {\n const getInputData = (inputs) => {\n const displayNames = {\n ai_languageModel: \"Model\",\n ai_memory: \"Memory\",\n ai_tool: \"Tool\",\n ai_outputParser: \"Output Parser\"\n };\n return inputs.map(({ type, filter }) => {\n const isModelType = type === \"ai_languageModel\";\n let displayName = type in displayNames ? displayNames[type] : void 0;\n if (isModelType && [\"openAiFunctionsAgent\", \"toolsAgent\", \"conversationalAgent\"].includes(agent)) {\n displayName = \"Chat Model\";\n }\n const input = {\n type,\n displayName,\n required: isModelType,\n maxConnections: [\"ai_languageModel\", \"ai_memory\", \"ai_outputParser\"].includes(\n type\n ) ? 1 : void 0\n };\n if (filter) {\n input.filter = filter;\n }\n return input;\n });\n };\n let specialInputs = [];\n if (agent === \"conversationalAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\",\n filter: {\n nodes: [\n \"@n8n/n8n-nodes-langchain.lmChatAnthropic\",\n \"@n8n/n8n-nodes-langchain.lmChatAwsBedrock\",\n \"@n8n/n8n-nodes-langchain.lmChatGroq\",\n \"@n8n/n8n-nodes-langchain.lmChatOllama\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleGemini\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleVertex\",\n \"@n8n/n8n-nodes-langchain.lmChatMistralCloud\",\n \"@n8n/n8n-nodes-langchain.lmChatAzureOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatDeepSeek\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenRouter\",\n \"@n8n/n8n-nodes-langchain.lmChatXAiGrok\"\n ]\n }\n },\n {\n type: \"ai_memory\"\n },\n {\n type: \"ai_tool\"\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"toolsAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\",\n filter: {\n nodes: [\n \"@n8n/n8n-nodes-langchain.lmChatAnthropic\",\n \"@n8n/n8n-nodes-langchain.lmChatAzureOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatAwsBedrock\",\n \"@n8n/n8n-nodes-langchain.lmChatMistralCloud\",\n \"@n8n/n8n-nodes-langchain.lmChatOllama\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatGroq\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleVertex\",\n \"@n8n/n8n-nodes-langchain.lmChatGoogleGemini\",\n \"@n8n/n8n-nodes-langchain.lmChatDeepSeek\",\n \"@n8n/n8n-nodes-langchain.lmChatOpenRouter\",\n \"@n8n/n8n-nodes-langchain.lmChatXAiGrok\"\n ]\n }\n },\n {\n type: \"ai_memory\"\n },\n {\n type: \"ai_tool\",\n required: true\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"openAiFunctionsAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\",\n filter: {\n nodes: [\n \"@n8n/n8n-nodes-langchain.lmChatOpenAi\",\n \"@n8n/n8n-nodes-langchain.lmChatAzureOpenAi\"\n ]\n }\n },\n {\n type: \"ai_memory\"\n },\n {\n type: \"ai_tool\",\n required: true\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"reActAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\"\n },\n {\n type: \"ai_tool\"\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n } else if (agent === \"sqlAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\"\n },\n {\n type: \"ai_memory\"\n }\n ];\n } else if (agent === \"planAndExecuteAgent\") {\n specialInputs = [\n {\n type: \"ai_languageModel\"\n },\n {\n type: \"ai_tool\"\n },\n {\n type: \"ai_outputParser\"\n }\n ];\n }\n if (hasOutputParser === false) {\n specialInputs = specialInputs.filter((input) => input.type !== \"ai_outputParser\");\n }\n return [\"main\", ...getInputData(specialInputs)];\n};\n\t\t\t\treturn getInputs(agent, hasOutputParser)\n\t\t\t})($parameter.agent, $parameter.hasOutputParser === undefined || $parameter.hasOutputParser === true)\n\t\t}}","outputs":["main"],"credentials":[{"name":"mySql","required":true,"testedBy":"mysqlConnectionTest","displayOptions":{"show":{"agent":["sqlAgent"],"/dataSource":["mysql"]}}},{"name":"postgres","required":true,"displayOptions":{"show":{"agent":["sqlAgent"],"/dataSource":["postgres"]}}}],"properties":[{"displayName":"Tip: Get a feel for agents with our quick <a href=\"https://docs.n8n.io/advanced-ai/intro-tutorial/\" target=\"_blank\">tutorial</a> or see an <a href=\"/templates/1954\" target=\"_blank\">example</a> of how this node works","name":"notice_tip","type":"notice","default":"","displayOptions":{"show":{"agent":["conversationalAgent","toolsAgent"]}}},{"displayName":"This node is using Agent that has been deprecated. Please switch to using 'Tools Agent' instead.","name":"deprecated","type":"notice","default":"","displayOptions":{"show":{"agent":["conversationalAgent","openAiFunctionsAgent","planAndExecuteAgent","reActAgent","sqlAgent"]}}},{"displayName":"Agent","name":"agent","type":"options","noDataExpression":true,"options":[{"name":"Conversational Agent","value":"conversationalAgent","description":"Describes tools in the system prompt and parses JSON responses for tool calls. More flexible but potentially less reliable than the Tools Agent. Suitable for simpler interactions or with models not supporting structured schemas."},{"name":"OpenAI Functions Agent","value":"openAiFunctionsAgent","description":"Leverages OpenAI's function calling capabilities to precisely select and execute tools. Excellent for tasks requiring structured outputs when working with OpenAI models."},{"name":"Plan and Execute Agent","value":"planAndExecuteAgent","description":"Creates a high-level plan for complex tasks and then executes each step. Suitable for multi-stage problems or when a strategic approach is needed."},{"name":"ReAct Agent","value":"reActAgent","description":"Combines reasoning and action in an iterative process. Effective for tasks that require careful analysis and step-by-step problem-solving."},{"name":"SQL Agent","value":"sqlAgent","description":"Specializes in interacting with SQL databases. Ideal for data analysis tasks, generating queries, or extracting insights from structured data."}],"default":"conversationalAgent","displayOptions":{"show":{"@version":[{"_cnd":{"lte":1.5}}]}}},{"displayName":"Agent","name":"agent","type":"options","noDataExpression":true,"options":[{"name":"Tools Agent","value":"toolsAgent","description":"Utilizes structured tool schemas for precise and reliable tool selection and execution. Recommended for complex tasks requiring accurate and consistent tool usage, but only usable with models that support tool calling."},{"name":"Conversational Agent","value":"conversationalAgent","description":"Describes tools in the system prompt and parses JSON responses for tool calls. More flexible but potentially less reliable than the Tools Agent. Suitable for simpler interactions or with models not supporting structured schemas."},{"name":"OpenAI Functions Agent","value":"openAiFunctionsAgent","description":"Leverages OpenAI's function calling capabilities to precisely select and execute tools. Excellent for tasks requiring structured outputs when working with OpenAI models."},{"name":"Plan and Execute Agent","value":"planAndExecuteAgent","description":"Creates a high-level plan for complex tasks and then executes each step. Suitable for multi-stage problems or when a strategic approach is needed."},{"name":"ReAct Agent","value":"reActAgent","description":"Combines reasoning and action in an iterative process. Effective for tasks that require careful analysis and step-by-step problem-solving."},{"name":"SQL Agent","value":"sqlAgent","description":"Specializes in interacting with SQL databases. Ideal for data analysis tasks, generating queries, or extracting insights from structured data."}],"default":"toolsAgent","displayOptions":{"show":{"@version":[{"_cnd":{"between":{"from":1.6,"to":1.7}}}]}}},{"displayName":"Agent","name":"agent","type":"hidden","noDataExpression":true,"options":[{"name":"Tools Agent","value":"toolsAgent","description":"Utilizes structured tool schemas for precise and reliable tool selection and execution. Recommended for complex tasks requiring accurate and consistent tool usage, but only usable with models that support tool calling."},{"name":"Conversational Agent","value":"conversationalAgent","description":"Describes tools in the system prompt and parses JSON responses for tool calls. More flexible but potentially less reliable than the Tools Agent. Suitable for simpler interactions or with models not supporting structured schemas."},{"name":"OpenAI Functions Agent","value":"openAiFunctionsAgent","description":"Leverages OpenAI's function calling capabilities to precisely select and execute tools. Excellent for tasks requiring structured outputs when working with OpenAI models."},{"name":"Plan and Execute Agent","value":"planAndExecuteAgent","description":"Creates a high-level plan for complex tasks and then executes each step. Suitable for multi-stage problems or when a strategic approach is needed."},{"name":"ReAct Agent","value":"reActAgent","description":"Combines reasoning and action in an iterative process. Effective for tasks that require careful analysis and step-by-step problem-solving."},{"name":"SQL Agent","value":"sqlAgent","description":"Specializes in interacting with SQL databases. Ideal for data analysis tasks, generating queries, or extracting insights from structured data."}],"default":"toolsAgent","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.8}}]}}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}],"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.7}}]},"hide":{"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]},"hide":{"agent":["sqlAgent"]}}},{"displayName":"For more reliable structured output parsing, consider using the Tools agent","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true],"agent":["conversationalAgent","reActAgent","planAndExecuteAgent","openAiFunctionsAgent"]}}},{"displayName":"Require Specific Output Format","name":"hasOutputParser","type":"boolean","default":false,"noDataExpression":true,"displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}],"agent":["sqlAgent"]}}},{"displayName":"Connect an <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_outputParser'>output parser</a> on the canvas to specify the output format you require","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true],"agent":["toolsAgent"]}}},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["toolsAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"System Message","name":"systemMessage","type":"string","default":"You are a helpful assistant","description":"The message that will be sent to the agent before the conversation starts","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"},{"displayName":"Automatically Passthrough Binary Images","name":"passthroughBinaryImages","type":"boolean","default":true,"description":"Whether or not binary images should be automatically passed through to the agent as image type messages"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["conversationalAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["conversationalAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["conversationalAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["conversationalAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Human Message","name":"humanMessage","type":"string","default":"TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{tools}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{input}}","description":"The message that will provide the agent with a list of tools to use","typeOptions":{"rows":6}},{"displayName":"System Message","name":"systemMessage","type":"string","default":"Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.","description":"The message that will be sent to the agent before the conversation starts","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["openAiFunctionsAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["openAiFunctionsAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["openAiFunctionsAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["openAiFunctionsAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"System Message","name":"systemMessage","type":"string","default":"You are a helpful AI assistant.","description":"The message that will be sent to the agent before the conversation starts","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["reActAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["reActAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["reActAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["reActAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Human Message Template","name":"humanMessageTemplate","type":"string","default":"{input}\n\n{agent_scratchpad}","description":"String to use directly as the human message template","typeOptions":{"rows":6}},{"displayName":"Prefix Message","name":"prefix","type":"string","default":"Answer the following questions as best you can. You have access to the following tools:","description":"String to put before the list of tools","typeOptions":{"rows":6}},{"displayName":"Suffix Message for Chat Model","name":"suffixChat","type":"string","default":"Begin! Reminder to always use the exact characters `Final Answer` when responding.","description":"String to put after the list of tools that will be used if chat model is used","typeOptions":{"rows":6}},{"displayName":"Suffix Message for Regular Model","name":"suffix","type":"string","default":"Begin!\n\n\tQuestion: {input}\n\tThought:{agent_scratchpad}","description":"String to put after the list of tools that will be used if regular model is used","typeOptions":{"rows":6}},{"displayName":"Max Iterations","name":"maxIterations","type":"number","default":10,"description":"The maximum number of iterations the agent will run before stopping"},{"displayName":"Return Intermediate Steps","name":"returnIntermediateSteps","type":"boolean","default":false,"description":"Whether or not the output should include intermediate steps the agent took"}]},{"displayName":"Data Source","name":"dataSource","type":"options","displayOptions":{"show":{"agent":["sqlAgent"],"@version":[{"_cnd":{"lt":1.4}}]}},"default":"sqlite","description":"SQL database to connect to","options":[{"name":"MySQL","value":"mysql","description":"Connect to a MySQL database"},{"name":"Postgres","value":"postgres","description":"Connect to a Postgres database"},{"name":"SQLite","value":"sqlite","description":"Use SQLite by connecting a database file as binary input"}]},{"displayName":"Data Source","name":"dataSource","type":"options","displayOptions":{"show":{"agent":["sqlAgent"],"@version":[{"_cnd":{"gte":1.4}}]}},"default":"postgres","description":"SQL database to connect to","options":[{"name":"MySQL","value":"mysql","description":"Connect to a MySQL database"},{"name":"Postgres","value":"postgres","description":"Connect to a Postgres database"},{"name":"SQLite","value":"sqlite","description":"Use SQLite by connecting a database file as binary input"}]},{"displayName":"Credentials","name":"credentials","type":"credentials","default":""},{"displayName":"Pass the SQLite database into this node as binary data, e.g. by inserting a 'Read/Write Files from Disk' node beforehand","name":"sqLiteFileNotice","type":"notice","default":"","displayOptions":{"show":{"agent":["sqlAgent"],"dataSource":["sqlite"]}}},{"displayName":"Input Binary Field","name":"binaryPropertyName","type":"string","default":"data","required":true,"placeholder":"e.g data","hint":"The name of the input binary field containing the file to be extracted","displayOptions":{"show":{"agent":["sqlAgent"],"dataSource":["sqlite"]}}},{"displayName":"Prompt","name":"input","type":"string","displayOptions":{"show":{"agent":["sqlAgent"],"@version":[{"_cnd":{"lte":1.2}}]}},"default":"","required":true,"typeOptions":{"rows":5}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}]},"show":{"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.7}}],"agent":["sqlAgent"]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"],"agent":["sqlAgent"]}}},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["sqlAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Ignored Tables","name":"ignoredTables","type":"string","default":"","description":"Comma-separated list of tables to ignore from the database. If empty, no tables are ignored."},{"displayName":"Include Sample Rows","name":"includedSampleRows","type":"number","description":"Number of sample rows to include in the prompt to the agent. It helps the agent to understand the schema of the database but it also increases the amount of tokens used.","default":3},{"displayName":"Included Tables","name":"includedTables","type":"string","default":"","description":"Comma-separated list of tables to include in the database. If empty, all tables are included."},{"displayName":"Prefix Prompt","name":"prefixPrompt","type":"string","default":"You are an agent designed to interact with an SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results using the LIMIT clause.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return \"I don't know\" as the answer.","description":"Prefix prompt to use for the agent","typeOptions":{"rows":10}},{"displayName":"Suffix Prompt","name":"suffixPrompt","type":"string","default":"Begin!\nChat History:\n{chatHistory}\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}","description":"Suffix prompt to use for the agent","typeOptions":{"rows":4}},{"displayName":"Limit","name":"topK","type":"number","default":10,"description":"The maximum number of results to return"}]},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["planAndExecuteAgent"],"@version":[1]}},"default":"={{ $json.input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["planAndExecuteAgent"],"@version":[1.1]}},"default":"={{ $json.chat_input }}"},{"displayName":"Text","name":"text","type":"string","required":true,"displayOptions":{"show":{"agent":["planAndExecuteAgent"],"@version":[1.2]}},"default":"={{ $json.chatInput }}"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"agent":["planAndExecuteAgent"]}},"default":{},"placeholder":"Add Option","options":[{"displayName":"Human Message Template","name":"humanMessageTemplate","type":"string","default":"Previous steps: {previous_steps}\n\nCurrent objective: {current_step}\n\n{agent_scratchpad}\n\nYou may extract and combine relevant data from your previous steps when responding to me.","description":"The message that will be sent to the agent during each step execution","typeOptions":{"rows":6}}]}]},
4
4
  {"displayName":"OpenAI Assistant","name":"openAiAssistant","hidden":true,"icon":"fa:robot","group":["transform"],"version":[1,1.1],"description":"Utilizes Assistant API from Open AI.","subtitle":"Open AI Assistant","defaults":{"name":"OpenAI Assistant","color":"#404040"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Agents","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.openaiassistant/"}]}},"inputs":[{"type":"main"},{"type":"ai_tool","displayName":"Tools"}],"outputs":["main"],"credentials":[{"name":"openAiApi","required":true}],"requestDefaults":{"ignoreHttpStatusErrors":true,"baseURL":"={{ $parameter.options?.baseURL?.split(\"/\").slice(0,-1).join(\"/\") || \"https://api.openai.com\" }}"},"properties":[{"displayName":"Operation","name":"mode","type":"options","noDataExpression":true,"default":"existing","options":[{"name":"Use New Assistant","value":"new"},{"name":"Use Existing Assistant","value":"existing"}]},{"displayName":"Name","name":"name","type":"string","default":"","required":true,"displayOptions":{"show":{"/mode":["new"]}}},{"displayName":"Instructions","name":"instructions","type":"string","description":"How the Assistant and model should behave or respond","default":"","typeOptions":{"rows":5},"displayOptions":{"show":{"/mode":["new"]}}},{"displayName":"Model","name":"model","type":"options","description":"The model which will be used to power the assistant. <a href=\"https://beta.openai.com/docs/models/overview\">Learn more</a>. The Retrieval tool requires gpt-3.5-turbo-1106 and gpt-4-1106-preview models.","required":true,"displayOptions":{"show":{"/mode":["new"]}},"typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","url":"={{ $parameter.options?.baseURL?.split(\"/\").slice(-1).pop() || \"v1\" }}/models"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"data"}},{"type":"filter","properties":{"pass":"={{ $responseItem.id.startsWith('gpt-') && !$responseItem.id.includes('instruct') }}"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.id}}","value":"={{$responseItem.id}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"model"}},"default":"gpt-3.5-turbo-1106"},{"displayName":"Assistant","name":"assistantId","type":"options","noDataExpression":true,"displayOptions":{"show":{"/mode":["existing"]}},"description":"The assistant to use. <a href=\"https://beta.openai.com/docs/assistants/overview\">Learn more</a>.","typeOptions":{"loadOptions":{"routing":{"request":{"method":"GET","headers":{"OpenAI-Beta":"assistants=v1"},"url":"={{ $parameter.options?.baseURL?.split(\"/\").slice(-1).pop() || \"v1\" }}/assistants"},"output":{"postReceive":[{"type":"rootProperty","properties":{"property":"data"}},{"type":"setKeyValue","properties":{"name":"={{$responseItem.name}}","value":"={{$responseItem.id}}","description":"={{$responseItem.model}}"}},{"type":"sort","properties":{"key":"name"}}]}}}},"routing":{"send":{"type":"body","property":"assistant"}},"required":true,"default":""},{"displayName":"Text","name":"text","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Text","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"OpenAI Tools","name":"nativeTools","type":"multiOptions","default":[],"options":[{"name":"Code Interpreter","value":"code_interpreter"},{"name":"Knowledge Retrieval","value":"retrieval"}]},{"displayName":"Connect your own custom tools to this node on the canvas","name":"noticeTools","type":"notice","default":""},{"displayName":"Upload files for retrieval using the <a href=\"https://platform.openai.com/playground\" target=\"_blank\">OpenAI website<a/>","name":"noticeTools","type":"notice","typeOptions":{"noticeTheme":"info"},"displayOptions":{"show":{"/nativeTools":["retrieval"]}},"default":""},{"displayName":"Options","name":"options","placeholder":"Add Option","description":"Additional options to add","type":"collection","default":{},"options":[{"displayName":"Base URL","name":"baseURL","default":"https://api.openai.com/v1","description":"Override the default base URL for the API","type":"string"},{"displayName":"Max Retries","name":"maxRetries","default":2,"description":"Maximum number of retries to attempt","type":"number"},{"displayName":"Timeout","name":"timeout","default":10000,"description":"Maximum amount of time a request is allowed to take in milliseconds","type":"number"}]}]},
5
- {"displayName":"Summarization Chain","name":"chainSummarization","icon":"fa:link","iconColor":"black","group":["transform"],"description":"Transforms text into a concise summary","codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainsummarization/"}]}},"defaultVersion":2,"version":[2],"defaults":{"name":"Summarization Chain","color":"#909298"},"inputs":"={{ ((parameter) => { function getInputs(parameters) {\n const chunkingMode = parameters?.chunkingMode;\n const operationMode = parameters?.operationMode;\n const inputs = [\n { displayName: \"\", type: \"main\" },\n {\n displayName: \"Model\",\n maxConnections: 1,\n type: \"ai_languageModel\",\n required: true\n }\n ];\n if (operationMode === \"documentLoader\") {\n inputs.push({\n displayName: \"Document\",\n type: \"ai_document\",\n required: true,\n maxConnections: 1\n });\n return inputs;\n }\n if (chunkingMode === \"advanced\") {\n inputs.push({\n displayName: \"Text Splitter\",\n type: \"ai_textSplitter\",\n required: false,\n maxConnections: 1\n });\n return inputs;\n }\n return inputs;\n}; return getInputs(parameter) })($parameter) }}","outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1951\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Data to Summarize","name":"operationMode","noDataExpression":true,"type":"options","description":"How to pass data into the summarization chain","default":"nodeInputJson","options":[{"name":"Use Node Input (JSON)","value":"nodeInputJson","description":"Summarize the JSON data coming into this node from the previous one"},{"name":"Use Node Input (Binary)","value":"nodeInputBinary","description":"Summarize the binary data coming into this node from the previous one"},{"name":"Use Document Loader","value":"documentLoader","description":"Use a loader sub-node with more configuration options"}]},{"displayName":"Chunking Strategy","name":"chunkingMode","noDataExpression":true,"type":"options","description":"Chunk splitting strategy","default":"simple","options":[{"name":"Simple (Define Below)","value":"simple"},{"name":"Advanced","value":"advanced","description":"Use a splitter sub-node with more configuration options"}],"displayOptions":{"show":{"/operationMode":["nodeInputJson","nodeInputBinary"]}}},{"displayName":"Characters Per Chunk","name":"chunkSize","description":"Controls the max size (in terms of number of characters) of the final document chunk","type":"number","default":1000,"displayOptions":{"show":{"/chunkingMode":["simple"]}}},{"displayName":"Chunk Overlap (Characters)","name":"chunkOverlap","type":"number","description":"Specifies how much characters overlap there should be between chunks","default":200,"displayOptions":{"show":{"/chunkingMode":["simple"]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Input Data Field Name","name":"binaryDataKey","type":"string","default":"data","description":"The name of the field in the agent or chain’s input that contains the binary file to be processed","displayOptions":{"show":{"/operationMode":["nodeInputBinary"]}}},{"displayName":"Summarization Method and Prompts","name":"summarizationMethodAndPrompts","type":"fixedCollection","default":{"values":{"summarizationMethod":"map_reduce","prompt":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","combineMapPrompt":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:"}},"placeholder":"Add Option","typeOptions":{},"options":[{"name":"values","displayName":"Values","values":[{"displayName":"Summarization Method","name":"summarizationMethod","type":"options","description":"The type of summarization to run","default":"map_reduce","options":[{"name":"Map Reduce (Recommended)","value":"map_reduce","description":"Summarize each document (or chunk) individually, then summarize those summaries"},{"name":"Refine","value":"refine","description":"Summarize the first document (or chunk). Then update that summary based on the next document (or chunk), and repeat."},{"name":"Stuff","value":"stuff","description":"Pass all documents (or chunks) at once. Ideal for small datasets."}]},{"displayName":"Individual Summary Prompt","name":"combineMapPrompt","type":"string","hint":"The prompt to summarize an individual document (or chunk)","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","refine"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","typeOptions":{"rows":9}},{"displayName":"Final Prompt to Combine","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt to combine individual summaries","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","refine"]}},"typeOptions":{"rows":9}},{"displayName":"Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["refine","map_reduce"]}},"typeOptions":{"rows":9}},{"displayName":"Subsequent (Refine) Prompt","name":"refinePrompt","type":"string","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","map_reduce"]}},"default":"Your job is to produce a final summary\nWe have provided an existing summary up to a certain point: \"{existing_answer}\"\nWe have the opportunity to refine the existing summary\n(only if needed) with some more context below.\n------------\n\"{text}\"\n------------\n\nGiven the new context, refine the original summary\nIf the context isn't useful, return the original summary.\n\nREFINED SUMMARY:","hint":"The prompt to refine the summary based on the next document (or chunk)","typeOptions":{"rows":9}},{"displayName":"Initial Prompt","name":"refineQuestionPrompt","type":"string","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","map_reduce"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt for the first document (or chunk)","typeOptions":{"rows":9}}]}]},{"displayName":"Batch Processing","name":"batching","type":"collection","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":100,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":0,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]}]},
5
+ {"displayName":"Summarization Chain","name":"chainSummarization","icon":"fa:link","iconColor":"black","group":["transform"],"description":"Transforms text into a concise summary","codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainsummarization/"}]}},"defaultVersion":2,"version":[2],"defaults":{"name":"Summarization Chain","color":"#909298"},"inputs":"={{ ((parameter) => { function getInputs(parameters) {\n const chunkingMode = parameters?.chunkingMode;\n const operationMode = parameters?.operationMode;\n const inputs = [\n { displayName: \"\", type: \"main\" },\n {\n displayName: \"Model\",\n maxConnections: 1,\n type: \"ai_languageModel\",\n required: true\n }\n ];\n if (operationMode === \"documentLoader\") {\n inputs.push({\n displayName: \"Document\",\n type: \"ai_document\",\n required: true,\n maxConnections: 1\n });\n return inputs;\n }\n if (chunkingMode === \"advanced\") {\n inputs.push({\n displayName: \"Text Splitter\",\n type: \"ai_textSplitter\",\n required: false,\n maxConnections: 1\n });\n return inputs;\n }\n return inputs;\n}; return getInputs(parameter) })($parameter) }}","outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1951\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Data to Summarize","name":"operationMode","noDataExpression":true,"type":"options","description":"How to pass data into the summarization chain","default":"nodeInputJson","options":[{"name":"Use Node Input (JSON)","value":"nodeInputJson","description":"Summarize the JSON data coming into this node from the previous one"},{"name":"Use Node Input (Binary)","value":"nodeInputBinary","description":"Summarize the binary data coming into this node from the previous one"},{"name":"Use Document Loader","value":"documentLoader","description":"Use a loader sub-node with more configuration options"}]},{"displayName":"Chunking Strategy","name":"chunkingMode","noDataExpression":true,"type":"options","description":"Chunk splitting strategy","default":"simple","options":[{"name":"Simple (Define Below)","value":"simple"},{"name":"Advanced","value":"advanced","description":"Use a splitter sub-node with more configuration options"}],"displayOptions":{"show":{"/operationMode":["nodeInputJson","nodeInputBinary"]}}},{"displayName":"Characters Per Chunk","name":"chunkSize","description":"Controls the max size (in terms of number of characters) of the final document chunk","type":"number","default":1000,"displayOptions":{"show":{"/chunkingMode":["simple"]}}},{"displayName":"Chunk Overlap (Characters)","name":"chunkOverlap","type":"number","description":"Specifies how much characters overlap there should be between chunks","default":200,"displayOptions":{"show":{"/chunkingMode":["simple"]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Input Data Field Name","name":"binaryDataKey","type":"string","default":"data","description":"The name of the field in the agent or chain’s input that contains the binary file to be processed","displayOptions":{"show":{"/operationMode":["nodeInputBinary"]}}},{"displayName":"Summarization Method and Prompts","name":"summarizationMethodAndPrompts","type":"fixedCollection","default":{"values":{"summarizationMethod":"map_reduce","prompt":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","combineMapPrompt":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:"}},"placeholder":"Add Option","typeOptions":{},"options":[{"name":"values","displayName":"Values","values":[{"displayName":"Summarization Method","name":"summarizationMethod","type":"options","description":"The type of summarization to run","default":"map_reduce","options":[{"name":"Map Reduce (Recommended)","value":"map_reduce","description":"Summarize each document (or chunk) individually, then summarize those summaries"},{"name":"Refine","value":"refine","description":"Summarize the first document (or chunk). Then update that summary based on the next document (or chunk), and repeat."},{"name":"Stuff","value":"stuff","description":"Pass all documents (or chunks) at once. Ideal for small datasets."}]},{"displayName":"Individual Summary Prompt","name":"combineMapPrompt","type":"string","hint":"The prompt to summarize an individual document (or chunk)","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","refine"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","typeOptions":{"rows":9}},{"displayName":"Final Prompt to Combine","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt to combine individual summaries","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","refine"]}},"typeOptions":{"rows":9}},{"displayName":"Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["refine","map_reduce"]}},"typeOptions":{"rows":9}},{"displayName":"Subsequent (Refine) Prompt","name":"refinePrompt","type":"string","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","map_reduce"]}},"default":"Your job is to produce a final summary\nWe have provided an existing summary up to a certain point: \"{existing_answer}\"\nWe have the opportunity to refine the existing summary\n(only if needed) with some more context below.\n------------\n\"{text}\"\n------------\n\nGiven the new context, refine the original summary\nIf the context isn't useful, return the original summary.\n\nREFINED SUMMARY:","hint":"The prompt to refine the summary based on the next document (or chunk)","typeOptions":{"rows":9}},{"displayName":"Initial Prompt","name":"refineQuestionPrompt","type":"string","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","map_reduce"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt for the first document (or chunk)","typeOptions":{"rows":9}}]}]}]}]},
6
6
  {"displayName":"Summarization Chain","name":"chainSummarization","icon":"fa:link","iconColor":"black","group":["transform"],"description":"Transforms text into a concise summary","codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainsummarization/"}]}},"defaultVersion":2,"version":1,"defaults":{"name":"Summarization Chain","color":"#909298"},"inputs":["main",{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true},{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true}],"outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1951\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Type","name":"type","type":"options","description":"The type of summarization to run","default":"map_reduce","options":[{"name":"Map Reduce (Recommended)","value":"map_reduce","description":"Summarize each document (or chunk) individually, then summarize those summaries"},{"name":"Refine","value":"refine","description":"Summarize the first document (or chunk). Then update that summary based on the next document (or chunk), and repeat."},{"name":"Stuff","value":"stuff","description":"Pass all documents (or chunks) at once. Ideal for small datasets."}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Final Prompt to Combine","name":"combineMapPrompt","type":"string","hint":"The prompt to combine individual summaries","displayOptions":{"show":{"/type":["map_reduce"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","typeOptions":{"rows":6}},{"displayName":"Individual Summary Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt to summarize an individual document (or chunk)","displayOptions":{"show":{"/type":["map_reduce"]}},"typeOptions":{"rows":6}},{"displayName":"Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","displayOptions":{"show":{"/type":["stuff"]}},"typeOptions":{"rows":6}},{"displayName":"Subsequent (Refine) Prompt","name":"refinePrompt","type":"string","displayOptions":{"show":{"/type":["refine"]}},"default":"Your job is to produce a final summary\nWe have provided an existing summary up to a certain point: \"{existing_answer}\"\nWe have the opportunity to refine the existing summary\n(only if needed) with some more context below.\n------------\n\"{text}\"\n------------\n\nGiven the new context, refine the original summary\nIf the context isn't useful, return the original summary.\n\nREFINED SUMMARY:","hint":"The prompt to refine the summary based on the next document (or chunk)","typeOptions":{"rows":6}},{"displayName":"Initial Prompt","name":"refineQuestionPrompt","type":"string","displayOptions":{"show":{"/type":["refine"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt for the first document (or chunk)","typeOptions":{"rows":6}}]}]},
7
- {"displayName":"Basic LLM Chain","name":"chainLlm","icon":"fa:link","iconColor":"black","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5,1.6],"description":"A simple chain to prompt a large language model","defaults":{"name":"Basic LLM Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/"}]}},"inputs":"={{ ((parameter) => { function getInputs(parameters) {\n const inputs = [\n { displayName: \"\", type: \"main\" },\n {\n displayName: \"Model\",\n maxConnections: 1,\n type: \"ai_languageModel\",\n required: true\n }\n ];\n const hasOutputParser = parameters?.hasOutputParser;\n if (hasOutputParser === void 0 || hasOutputParser === true) {\n inputs.push({\n displayName: \"Output Parser\",\n type: \"ai_outputParser\",\n maxConnections: 1,\n required: false\n });\n }\n return inputs;\n}; return getInputs(parameter) })($parameter) }}","outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1978\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1,1.2]}}},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.3]}}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[1,1.1,1.2,1.3]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.5}}]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}},{"displayName":"Require Specific Output Format","name":"hasOutputParser","type":"boolean","default":false,"noDataExpression":true,"displayOptions":{"hide":{"@version":[1,1.1,1.3]}}},{"displayName":"Chat Messages (if Using a Chat Model)","name":"messages","type":"fixedCollection","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add prompt","options":[{"name":"messageValues","displayName":"Prompt","values":[{"displayName":"Type Name or ID","name":"type","type":"options","options":[{"name":"AI","value":"AIMessagePromptTemplate"},{"name":"System","value":"SystemMessagePromptTemplate"},{"name":"User","value":"HumanMessagePromptTemplate"}],"default":"SystemMessagePromptTemplate"},{"displayName":"Message Type","name":"messageType","type":"options","displayOptions":{"show":{"type":["HumanMessagePromptTemplate"]}},"options":[{"name":"Text","value":"text","description":"Simple text message"},{"name":"Image (Binary)","value":"imageBinary","description":"Process the binary input from the previous node"},{"name":"Image (URL)","value":"imageUrl","description":"Process the image from the specified URL"}],"default":"text"},{"displayName":"Image Data Field Name","name":"binaryImageDataKey","type":"string","default":"data","required":true,"description":"The name of the field in the chain's input that contains the binary image file to be processed","displayOptions":{"show":{"messageType":["imageBinary"]}}},{"displayName":"Image URL","name":"imageUrl","type":"string","default":"","required":true,"description":"URL to the image to be processed","displayOptions":{"show":{"messageType":["imageUrl"]}}},{"displayName":"Image Details","description":"Control how the model processes the image and generates its textual understanding","name":"imageDetail","type":"options","displayOptions":{"show":{"type":["HumanMessagePromptTemplate"],"messageType":["imageBinary","imageUrl"]}},"options":[{"name":"Auto","value":"auto","description":"Model will use the auto setting which will look at the image input size and decide if it should use the low or high setting"},{"name":"Low","value":"low","description":"The model will receive a low-res 512px x 512px version of the image, and represent the image with a budget of 65 tokens. This allows the API to return faster responses and consume fewer input tokens for use cases that do not require high detail."},{"name":"High","value":"high","description":"Allows the model to see the low res image and then creates detailed crops of input images as 512px squares based on the input image size. Each of the detailed crops uses twice the token budget (65 tokens) for a total of 129 tokens."}],"default":"auto"},{"displayName":"Message","name":"message","type":"string","required":true,"displayOptions":{"hide":{"messageType":["imageBinary","imageUrl"]}},"default":""}]}]},{"displayName":"Connect an <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_outputParser'>output parser</a> on the canvas to specify the output format you require","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true]}}},{"displayName":"Batch Processing","name":"batching","type":"collection","placeholder":"Add Batch Processing Option","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":100,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting, but will impact the agents log output."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":1000,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]},
8
- {"displayName":"Question and Answer Chain","name":"chainRetrievalQa","icon":"fa:link","iconColor":"black","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5],"description":"Answer questions about retrieved documents","defaults":{"name":"Question and Answer Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/"}]}},"inputs":["main",{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true},{"displayName":"Retriever","maxConnections":1,"type":"ai_retriever","required":true}],"outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1960\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.2]}}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.4}}]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question.\nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\nContext: {context}","typeOptions":{"rows":6},"description":"Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the user’s query.","displayOptions":{"show":{"@version":[{"_cnd":{"lt":1.5}}]}}},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question.\nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\nContext: {context}","typeOptions":{"rows":6},"description":"Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{input}` for the user’s query.","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.5}}]}}},{"displayName":"Batch Processing","name":"batching","type":"collection","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":100,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":0,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]}]},
9
- {"displayName":"Sentiment Analysis","name":"sentimentAnalysis","icon":"fa:balance-scale-left","iconColor":"black","group":["transform"],"version":1,"description":"Analyze the sentiment of your text","codex":{"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/"}]}},"defaults":{"name":"Sentiment Analysis"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":"={{((parameters, defaultCategories) => {\n const options = parameters?.options ?? {};\n const categories = options?.categories ?? defaultCategories;\n const categoriesArray = categories.split(\",\").map((cat) => cat.trim());\n const ret = categoriesArray.map((cat) => ({ type: \"main\", displayName: cat }));\n return ret;\n})($parameter, \"Positive, Neutral, Negative\")}}","properties":[{"displayName":"Text to Analyze","name":"inputText","type":"string","required":true,"default":"","description":"Use an expression to reference data in previous nodes or enter static text","typeOptions":{"rows":2}},{"displayName":"Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.","name":"detailedResultsNotice","type":"notice","default":"","displayOptions":{"show":{"/options.includeDetailedResults":[true]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Sentiment Categories","name":"categories","type":"string","default":"Positive, Neutral, Negative","description":"A comma-separated list of categories to analyze","noDataExpression":true,"typeOptions":{"rows":2}},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Include Detailed Results","name":"includeDetailedResults","type":"boolean","default":false,"description":"Whether to include sentiment strength and confidence scores in the output"},{"displayName":"Enable Auto-Fixing","name":"enableAutoFixing","type":"boolean","default":true,"description":"Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)"},{"displayName":"Batch Processing","name":"batching","type":"collection","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":100,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":0,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]}]},
10
- {"displayName":"Information Extractor","name":"informationExtractor","icon":"fa:project-diagram","iconColor":"black","group":["transform"],"version":1,"description":"Extract information from text in a structured format","codex":{"alias":["NER","parse","parsing","JSON","data extraction","structured"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor/"}]}},"defaults":{"name":"Information Extractor"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":["main"],"properties":[{"displayName":"Text","name":"text","type":"string","default":"","description":"The text to extract information from","typeOptions":{"rows":2}},{"displayName":"Schema Type","name":"schemaType","type":"options","noDataExpression":true,"options":[{"name":"From Attribute Descriptions","value":"fromAttributes","description":"Extract specific attributes from the text based on types and descriptions"},{"name":"Generate From JSON Example","value":"fromJson","description":"Generate a schema from an example JSON object"},{"name":"Define Below","value":"manual","description":"Define the JSON schema manually"}],"default":"fromAttributes","description":"How to specify the schema for the desired output"},{"displayName":"JSON Example","name":"jsonSchemaExample","type":"json","default":"{\n\t\"state\": \"California\",\n\t\"cities\": [\"Los Angeles\", \"San Francisco\", \"San Diego\"]\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["fromJson"]}},"description":"Example JSON object to use to generate the schema"},{"displayName":"Input Schema","name":"inputSchema","type":"json","default":"{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"state\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"cities\": {\n\t\t\t\"type\": \"array\",\n\t\t\t\"items\": {\n\t\t\t\t\"type\": \"string\"\n\t\t\t}\n\t\t}\n\t}\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["manual"]}},"description":"Schema to use for the function"},{"displayName":"The schema has to be defined in the <a target=\"_blank\" href=\"https://json-schema.org/\">JSON Schema</a> format. Look at <a target=\"_blank\" href=\"https://json-schema.org/learn/miscellaneous-examples.html\">this</a> page for examples.","name":"notice","type":"notice","default":"","displayOptions":{"show":{"schemaType":["manual"]}}},{"displayName":"Attributes","name":"attributes","placeholder":"Add Attribute","type":"fixedCollection","default":{},"displayOptions":{"show":{"schemaType":["fromAttributes"]}},"typeOptions":{"multipleValues":true},"options":[{"name":"attributes","displayName":"Attribute List","values":[{"displayName":"Name","name":"name","type":"string","default":"","description":"Attribute to extract","placeholder":"e.g. company_name","required":true},{"displayName":"Type","name":"type","type":"options","description":"Data type of the attribute","required":true,"options":[{"name":"Boolean","value":"boolean"},{"name":"Date","value":"date"},{"name":"Number","value":"number"},{"name":"String","value":"string"}],"default":"string"},{"displayName":"Description","name":"description","type":"string","default":"","description":"Describe your attribute","placeholder":"Add description for the attribute","required":true},{"displayName":"Required","name":"required","type":"boolean","default":false,"description":"Whether attribute is required","required":true}]}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an expert extraction algorithm.\nOnly extract relevant information from the text.\nIf you do not know the value of an attribute asked to extract, you may omit the attribute's value.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Batch Processing","name":"batching","type":"collection","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":100,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting, but will impact the agents log output."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":0,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]}]},
11
- {"displayName":"Text Classifier","name":"textClassifier","icon":"fa:tags","iconColor":"black","group":["transform"],"version":1,"description":"Classify your text into distinct categories","codex":{"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.text-classifier/"}]}},"defaults":{"name":"Text Classifier"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":"={{((parameters) => {\n const categories = parameters.categories?.categories ?? [];\n const fallback = parameters.options?.fallback;\n const ret = categories.map((cat) => {\n return { type: \"main\", displayName: cat.category };\n });\n if (fallback === \"other\") ret.push({ type: \"main\", displayName: \"Other\" });\n return ret;\n})($parameter)}}","properties":[{"displayName":"Text to Classify","name":"inputText","type":"string","required":true,"default":"","description":"Use an expression to reference data in previous nodes or enter static text","typeOptions":{"rows":2}},{"displayName":"Categories","name":"categories","placeholder":"Add Category","type":"fixedCollection","default":{},"typeOptions":{"multipleValues":true},"options":[{"name":"categories","displayName":"Categories","values":[{"displayName":"Category","name":"category","type":"string","default":"","description":"Category to add","required":true},{"displayName":"Description","name":"description","type":"string","default":"","description":"Describe your category if it's not obvious"}]}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Allow Multiple Classes To Be True","name":"multiClass","type":"boolean","default":false},{"displayName":"When No Clear Match","name":"fallback","type":"options","default":"discard","description":"What to do with items that don’t match the categories exactly","options":[{"name":"Discard Item","value":"discard","description":"Ignore the item and drop it from the output"},{"name":"Output on Extra, 'Other' Branch","value":"other","description":"Create a separate output branch called 'Other'"}]},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"Please classify the text provided by the user into one of the following categories: {categories}, and use the provided formatting instructions below. Don't explain, and only output the json.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Enable Auto-Fixing","name":"enableAutoFixing","type":"boolean","default":true,"description":"Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)"},{"displayName":"Batch Processing","name":"batching","type":"collection","description":"Batch processing options for rate limiting","default":{},"options":[{"displayName":"Batch Size","name":"batchSize","default":100,"type":"number","description":"How many items to process in parallel. This is useful for rate limiting."},{"displayName":"Delay Between Batches","name":"delayBetweenBatches","default":0,"type":"number","description":"Delay in milliseconds between batches. This is useful for rate limiting."}]}]}]},
7
+ {"displayName":"Basic LLM Chain","name":"chainLlm","icon":"fa:link","iconColor":"black","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5,1.6],"description":"A simple chain to prompt a large language model","defaults":{"name":"Basic LLM Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/"}]}},"inputs":"={{ ((parameter) => { function getInputs(parameters) {\n const inputs = [\n { displayName: \"\", type: \"main\" },\n {\n displayName: \"Model\",\n maxConnections: 1,\n type: \"ai_languageModel\",\n required: true\n }\n ];\n const hasOutputParser = parameters?.hasOutputParser;\n if (hasOutputParser === void 0 || hasOutputParser === true) {\n inputs.push({\n displayName: \"Output Parser\",\n type: \"ai_outputParser\",\n maxConnections: 1,\n required: false\n });\n }\n return inputs;\n}; return getInputs(parameter) })($parameter) }}","outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1978\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1,1.2]}}},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.3]}}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[1,1.1,1.2,1.3]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.5}}]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}},{"displayName":"Require Specific Output Format","name":"hasOutputParser","type":"boolean","default":false,"noDataExpression":true,"displayOptions":{"hide":{"@version":[1,1.1,1.3]}}},{"displayName":"Chat Messages (if Using a Chat Model)","name":"messages","type":"fixedCollection","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add prompt","options":[{"name":"messageValues","displayName":"Prompt","values":[{"displayName":"Type Name or ID","name":"type","type":"options","options":[{"name":"AI","value":"AIMessagePromptTemplate"},{"name":"System","value":"SystemMessagePromptTemplate"},{"name":"User","value":"HumanMessagePromptTemplate"}],"default":"SystemMessagePromptTemplate"},{"displayName":"Message Type","name":"messageType","type":"options","displayOptions":{"show":{"type":["HumanMessagePromptTemplate"]}},"options":[{"name":"Text","value":"text","description":"Simple text message"},{"name":"Image (Binary)","value":"imageBinary","description":"Process the binary input from the previous node"},{"name":"Image (URL)","value":"imageUrl","description":"Process the image from the specified URL"}],"default":"text"},{"displayName":"Image Data Field Name","name":"binaryImageDataKey","type":"string","default":"data","required":true,"description":"The name of the field in the chain's input that contains the binary image file to be processed","displayOptions":{"show":{"messageType":["imageBinary"]}}},{"displayName":"Image URL","name":"imageUrl","type":"string","default":"","required":true,"description":"URL to the image to be processed","displayOptions":{"show":{"messageType":["imageUrl"]}}},{"displayName":"Image Details","description":"Control how the model processes the image and generates its textual understanding","name":"imageDetail","type":"options","displayOptions":{"show":{"type":["HumanMessagePromptTemplate"],"messageType":["imageBinary","imageUrl"]}},"options":[{"name":"Auto","value":"auto","description":"Model will use the auto setting which will look at the image input size and decide if it should use the low or high setting"},{"name":"Low","value":"low","description":"The model will receive a low-res 512px x 512px version of the image, and represent the image with a budget of 65 tokens. This allows the API to return faster responses and consume fewer input tokens for use cases that do not require high detail."},{"name":"High","value":"high","description":"Allows the model to see the low res image and then creates detailed crops of input images as 512px squares based on the input image size. Each of the detailed crops uses twice the token budget (65 tokens) for a total of 129 tokens."}],"default":"auto"},{"displayName":"Message","name":"message","type":"string","required":true,"displayOptions":{"hide":{"messageType":["imageBinary","imageUrl"]}},"default":""}]}]},{"displayName":"Connect an <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_outputParser'>output parser</a> on the canvas to specify the output format you require","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true]}}}]},
8
+ {"displayName":"Question and Answer Chain","name":"chainRetrievalQa","icon":"fa:link","iconColor":"black","group":["transform"],"version":[1,1.1,1.2,1.3,1.4,1.5],"description":"Answer questions about retrieved documents","defaults":{"name":"Question and Answer Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/"}]}},"inputs":["main",{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true},{"displayName":"Retriever","maxConnections":1,"type":"ai_retriever","required":true}],"outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1960\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.2]}}},{"displayName":"Source for Prompt (User Message)","name":"promptType","type":"options","options":[{"name":"Connected Chat Trigger Node","value":"auto","description":"Looks for an input field called 'chatInput' that is coming from a directly connected Chat Trigger"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"default":"auto","displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"={{ $json.chatInput }}","typeOptions":{"rows":2},"disabledOptions":{"show":{"promptType":["auto"]}},"displayOptions":{"show":{"promptType":["auto"],"@version":[{"_cnd":{"gte":1.4}}]}}},{"displayName":"Prompt (User Message)","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question.\nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\nContext: {context}","typeOptions":{"rows":6},"description":"Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the user’s query.","displayOptions":{"show":{"@version":[{"_cnd":{"lt":1.5}}]}}},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question.\nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\nContext: {context}","typeOptions":{"rows":6},"description":"Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{input}` for the user’s query.","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.5}}]}}}]}]},
9
+ {"displayName":"Sentiment Analysis","name":"sentimentAnalysis","icon":"fa:balance-scale-left","iconColor":"black","group":["transform"],"version":1,"description":"Analyze the sentiment of your text","codex":{"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/"}]}},"defaults":{"name":"Sentiment Analysis"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":"={{((parameters, defaultCategories) => {\n const options = parameters?.options ?? {};\n const categories = options?.categories ?? defaultCategories;\n const categoriesArray = categories.split(\",\").map((cat) => cat.trim());\n const ret = categoriesArray.map((cat) => ({ type: \"main\", displayName: cat }));\n return ret;\n})($parameter, \"Positive, Neutral, Negative\")}}","properties":[{"displayName":"Text to Analyze","name":"inputText","type":"string","required":true,"default":"","description":"Use an expression to reference data in previous nodes or enter static text","typeOptions":{"rows":2}},{"displayName":"Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.","name":"detailedResultsNotice","type":"notice","default":"","displayOptions":{"show":{"/options.includeDetailedResults":[true]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Sentiment Categories","name":"categories","type":"string","default":"Positive, Neutral, Negative","description":"A comma-separated list of categories to analyze","noDataExpression":true,"typeOptions":{"rows":2}},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Include Detailed Results","name":"includeDetailedResults","type":"boolean","default":false,"description":"Whether to include sentiment strength and confidence scores in the output"},{"displayName":"Enable Auto-Fixing","name":"enableAutoFixing","type":"boolean","default":true,"description":"Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)"}]}]},
10
+ {"displayName":"Information Extractor","name":"informationExtractor","icon":"fa:project-diagram","iconColor":"black","group":["transform"],"version":1,"description":"Extract information from text in a structured format","codex":{"alias":["NER","parse","parsing","JSON","data extraction","structured"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor/"}]}},"defaults":{"name":"Information Extractor"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":["main"],"properties":[{"displayName":"Text","name":"text","type":"string","default":"","description":"The text to extract information from","typeOptions":{"rows":2}},{"displayName":"Schema Type","name":"schemaType","type":"options","noDataExpression":true,"options":[{"name":"From Attribute Descriptions","value":"fromAttributes","description":"Extract specific attributes from the text based on types and descriptions"},{"name":"Generate From JSON Example","value":"fromJson","description":"Generate a schema from an example JSON object"},{"name":"Define Below","value":"manual","description":"Define the JSON schema manually"}],"default":"fromAttributes","description":"How to specify the schema for the desired output"},{"displayName":"JSON Example","name":"jsonSchemaExample","type":"json","default":"{\n\t\"state\": \"California\",\n\t\"cities\": [\"Los Angeles\", \"San Francisco\", \"San Diego\"]\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["fromJson"]}},"description":"Example JSON object to use to generate the schema"},{"displayName":"Input Schema","name":"inputSchema","type":"json","default":"{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"state\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"cities\": {\n\t\t\t\"type\": \"array\",\n\t\t\t\"items\": {\n\t\t\t\t\"type\": \"string\"\n\t\t\t}\n\t\t}\n\t}\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["manual"]}},"description":"Schema to use for the function"},{"displayName":"The schema has to be defined in the <a target=\"_blank\" href=\"https://json-schema.org/\">JSON Schema</a> format. Look at <a target=\"_blank\" href=\"https://json-schema.org/learn/miscellaneous-examples.html\">this</a> page for examples.","name":"notice","type":"notice","default":"","displayOptions":{"show":{"schemaType":["manual"]}}},{"displayName":"Attributes","name":"attributes","placeholder":"Add Attribute","type":"fixedCollection","default":{},"displayOptions":{"show":{"schemaType":["fromAttributes"]}},"typeOptions":{"multipleValues":true},"options":[{"name":"attributes","displayName":"Attribute List","values":[{"displayName":"Name","name":"name","type":"string","default":"","description":"Attribute to extract","placeholder":"e.g. company_name","required":true},{"displayName":"Type","name":"type","type":"options","description":"Data type of the attribute","required":true,"options":[{"name":"Boolean","value":"boolean"},{"name":"Date","value":"date"},{"name":"Number","value":"number"},{"name":"String","value":"string"}],"default":"string"},{"displayName":"Description","name":"description","type":"string","default":"","description":"Describe your attribute","placeholder":"Add description for the attribute","required":true},{"displayName":"Required","name":"required","type":"boolean","default":false,"description":"Whether attribute is required","required":true}]}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an expert extraction algorithm.\nOnly extract relevant information from the text.\nIf you do not know the value of an attribute asked to extract, you may omit the attribute's value.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}}]}]},
11
+ {"displayName":"Text Classifier","name":"textClassifier","icon":"fa:tags","iconColor":"black","group":["transform"],"version":1,"description":"Classify your text into distinct categories","codex":{"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.text-classifier/"}]}},"defaults":{"name":"Text Classifier"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":"={{((parameters) => {\n const categories = parameters.categories?.categories ?? [];\n const fallback = parameters.options?.fallback;\n const ret = categories.map((cat) => {\n return { type: \"main\", displayName: cat.category };\n });\n if (fallback === \"other\") ret.push({ type: \"main\", displayName: \"Other\" });\n return ret;\n})($parameter)}}","properties":[{"displayName":"Text to Classify","name":"inputText","type":"string","required":true,"default":"","description":"Use an expression to reference data in previous nodes or enter static text","typeOptions":{"rows":2}},{"displayName":"Categories","name":"categories","placeholder":"Add Category","type":"fixedCollection","default":{},"typeOptions":{"multipleValues":true},"options":[{"name":"categories","displayName":"Categories","values":[{"displayName":"Category","name":"category","type":"string","default":"","description":"Category to add","required":true},{"displayName":"Description","name":"description","type":"string","default":"","description":"Describe your category if it's not obvious"}]}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Allow Multiple Classes To Be True","name":"multiClass","type":"boolean","default":false},{"displayName":"When No Clear Match","name":"fallback","type":"options","default":"discard","description":"What to do with items that don’t match the categories exactly","options":[{"name":"Discard Item","value":"discard","description":"Ignore the item and drop it from the output"},{"name":"Output on Extra, 'Other' Branch","value":"other","description":"Create a separate output branch called 'Other'"}]},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"Please classify the text provided by the user into one of the following categories: {categories}, and use the provided formatting instructions below. Don't explain, and only output the json.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Enable Auto-Fixing","name":"enableAutoFixing","type":"boolean","default":true,"description":"Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)"}]}]},
12
12
  {"displayName":"LangChain Code","name":"code","icon":"fa:code","iconColor":"black","group":["transform"],"version":1,"description":"LangChain Code Node","defaults":{"name":"LangChain Code"},"codex":{"categories":["AI"],"subcategories":{"AI":["Miscellaneous"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.code/"}]}},"inputs":"={{ ((values) => { const connectorTypes = {\"ai_chain\":\"Chain\",\"ai_document\":\"Document\",\"ai_embedding\":\"Embedding\",\"ai_languageModel\":\"Language Model\",\"ai_memory\":\"Memory\",\"ai_outputParser\":\"Output Parser\",\"ai_textSplitter\":\"Text Splitter\",\"ai_tool\":\"Tool\",\"ai_vectorStore\":\"Vector Store\",\"main\":\"Main\"}; return values.map(value => { return { type: value.type, required: value.required, maxConnections: value.maxConnections === -1 ? undefined : value.maxConnections, displayName: connectorTypes[value.type] !== 'Main' ? connectorTypes[value.type] : undefined } } ) })($parameter.inputs.input) }}","outputs":"={{ ((values) => { const connectorTypes = {\"ai_chain\":\"Chain\",\"ai_document\":\"Document\",\"ai_embedding\":\"Embedding\",\"ai_languageModel\":\"Language Model\",\"ai_memory\":\"Memory\",\"ai_outputParser\":\"Output Parser\",\"ai_textSplitter\":\"Text Splitter\",\"ai_tool\":\"Tool\",\"ai_vectorStore\":\"Vector Store\",\"main\":\"Main\"}; return values.map(value => { return { type: value.type, displayName: connectorTypes[value.type] !== 'Main' ? connectorTypes[value.type] : undefined } } ) })($parameter.outputs.output) }}","properties":[{"displayName":"Code","name":"code","placeholder":"Add Code","type":"fixedCollection","noDataExpression":true,"default":{},"options":[{"name":"execute","displayName":"Execute","values":[{"displayName":"JavaScript - Execute","name":"code","type":"string","typeOptions":{"editor":"jsEditor"},"default":"const { PromptTemplate } = require('@langchain/core/prompts');\n\nconst query = 'Tell me a joke';\nconst prompt = PromptTemplate.fromTemplate(query);\n\n// If you are allowing more than one language model input connection (-1 or\n// anything greater than 1), getInputConnectionData returns an array, so you\n// will have to change the code below it to deal with that. For example, use\n// llm[0] in the chain definition\n\nconst llm = await this.getInputConnectionData('ai_languageModel', 0);\nlet chain = prompt.pipe(llm);\nconst output = await chain.invoke();\nreturn [ {json: { output } } ];","hint":"This code will only run and return data if a \"Main\" input & output got created.","noDataExpression":true}]},{"name":"supplyData","displayName":"Supply Data","values":[{"displayName":"JavaScript - Supply Data","name":"code","type":"string","typeOptions":{"editor":"jsEditor"},"default":"const { WikipediaQueryRun } = require( '@langchain/community/tools/wikipedia_query_run');\nreturn new WikipediaQueryRun();","hint":"This code will only run and return data if an output got created which is not \"Main\".","noDataExpression":true}]}]},{"displayName":"You can import LangChain and use all available functionality. Debug by using <code>console.log()</code> statements and viewing their output in the browser console.","name":"notice","type":"notice","default":""},{"displayName":"Inputs","name":"inputs","placeholder":"Add Input","type":"fixedCollection","noDataExpression":true,"typeOptions":{"multipleValues":true,"sortable":true},"description":"The input to add","default":{},"options":[{"name":"input","displayName":"Input","values":[{"displayName":"Type","name":"type","type":"options","options":[{"name":"Chain","value":"ai_chain"},{"name":"Document","value":"ai_document"},{"name":"Embedding","value":"ai_embedding"},{"name":"Language Model","value":"ai_languageModel"},{"name":"Memory","value":"ai_memory"},{"name":"Output Parser","value":"ai_outputParser"},{"name":"Text Splitter","value":"ai_textSplitter"},{"name":"Tool","value":"ai_tool"},{"name":"Vector Store","value":"ai_vectorStore"},{"name":"Main","value":"main"}],"noDataExpression":true,"default":"","required":true,"description":"The type of the input"},{"displayName":"Max Connections","name":"maxConnections","type":"number","noDataExpression":true,"default":-1,"required":true,"description":"How many nodes of this type are allowed to be connected. Set it to -1 for unlimited."},{"displayName":"Required","name":"required","type":"boolean","noDataExpression":true,"default":false,"required":true,"description":"Whether the input needs a connection"}]}]},{"displayName":"Outputs","name":"outputs","placeholder":"Add Output","type":"fixedCollection","noDataExpression":true,"typeOptions":{"multipleValues":true,"sortable":true},"description":"The output to add","default":{},"options":[{"name":"output","displayName":"Output","values":[{"displayName":"Type","name":"type","type":"options","options":[{"name":"Chain","value":"ai_chain"},{"name":"Document","value":"ai_document"},{"name":"Embedding","value":"ai_embedding"},{"name":"Language Model","value":"ai_languageModel"},{"name":"Memory","value":"ai_memory"},{"name":"Output Parser","value":"ai_outputParser"},{"name":"Text Splitter","value":"ai_textSplitter"},{"name":"Tool","value":"ai_tool"},{"name":"Vector Store","value":"ai_vectorStore"},{"name":"Main","value":"main"}],"noDataExpression":true,"default":"","required":true,"description":"The type of the input"}]}]}]},
13
13
  {"displayName":"Default Data Loader","name":"documentDefaultDataLoader","group":["transform"],"version":1,"description":"Load data from previous step in the workflow","defaults":{"name":"Default Data Loader"},"codex":{"categories":["AI"],"subcategories":{"AI":["Document Loaders"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.documentdefaultdataloader/"}]}},"inputs":[{"displayName":"Text Splitter","maxConnections":1,"type":"ai_textSplitter","required":true}],"outputs":["ai_document"],"outputNames":["Document"],"properties":[{"displayName":"This will load data from a previous step in the workflow. <a href=\"/templates/1962\" target=\"_blank\">Example</a>","name":"notice","type":"notice","default":""},{"displayName":"Type of Data","name":"dataType","type":"options","default":"json","required":true,"noDataExpression":true,"options":[{"name":"JSON","value":"json","description":"Process JSON data from previous step in the workflow"},{"name":"Binary","value":"binary","description":"Process binary data from previous step in the workflow"}]},{"displayName":"Mode","name":"jsonMode","type":"options","default":"allInputData","required":true,"displayOptions":{"show":{"dataType":["json"]}},"options":[{"name":"Load All Input Data","value":"allInputData","description":"Use all JSON data that flows into the parent agent or chain"},{"name":"Load Specific Data","value":"expressionData","description":"Load a subset of data, and/or data from any previous step in the workflow"}]},{"displayName":"Mode","name":"binaryMode","type":"options","default":"allInputData","required":true,"displayOptions":{"show":{"dataType":["binary"]}},"options":[{"name":"Load All Input Data","value":"allInputData","description":"Use all Binary data that flows into the parent agent or chain"},{"name":"Load Specific Data","value":"specificField","description":"Load data from a specific field in the parent agent or chain"}]},{"displayName":"Data Format","name":"loader","type":"options","default":"auto","required":true,"displayOptions":{"show":{"dataType":["binary"]}},"options":[{"name":"Automatically Detect by Mime Type","value":"auto","description":"Uses the mime type to detect the format"},{"name":"CSV","value":"csvLoader","description":"Load CSV files"},{"name":"Docx","value":"docxLoader","description":"Load Docx documents"},{"name":"EPub","value":"epubLoader","description":"Load EPub files"},{"name":"JSON","value":"jsonLoader","description":"Load JSON files"},{"name":"PDF","value":"pdfLoader","description":"Load PDF documents"},{"name":"Text","value":"textLoader","description":"Load plain text files"}]},{"displayName":"Data","name":"jsonData","type":"string","typeOptions":{"rows":6},"default":"","required":true,"description":"Drag and drop fields from the input pane, or use an expression","displayOptions":{"show":{"dataType":["json"],"jsonMode":["expressionData"]}}},{"displayName":"Input Data Field Name","name":"binaryDataKey","type":"string","default":"data","required":true,"description":"The name of the field in the agent or chain’s input that contains the binary file to be processed","displayOptions":{"show":{"dataType":["binary"]},"hide":{"binaryMode":["allInputData"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"JSON Pointers","name":"pointers","type":"string","default":"","description":"Pointers to extract from JSON, e.g. \"/text\" or \"/text, /meta/title\"","displayOptions":{"show":{"/loader":["jsonLoader","auto"]}}},{"displayName":"CSV Separator","name":"separator","type":"string","description":"Separator to use for CSV","default":",","displayOptions":{"show":{"/loader":["csvLoader","auto"]}}},{"displayName":"CSV Column","name":"column","type":"string","default":"","description":"Column to extract from CSV","displayOptions":{"show":{"/loader":["csvLoader","auto"]}}},{"displayName":"Split Pages in PDF","description":"Whether to split PDF pages into separate documents","name":"splitPages","type":"boolean","default":true,"displayOptions":{"show":{"/loader":["pdfLoader","auto"]}}},{"displayName":"Metadata","name":"metadata","type":"fixedCollection","description":"Metadata to add to each document. Could be used for filtering during retrieval","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add property","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/document_loaders/DocumentDefaultDataLoader/binary.svg"},
14
14
  {"hidden":true,"displayName":"Binary Input Loader","name":"documentBinaryInputLoader","group":["transform"],"version":1,"description":"Use binary data from a previous step in the workflow","defaults":{"name":"Binary Input Loader"},"codex":{"categories":["AI"],"subcategories":{"AI":["Document Loaders"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.documentdefaultdataloader/"}]}},"inputs":[{"displayName":"Text Splitter","maxConnections":1,"type":"ai_textSplitter","required":true}],"outputs":["ai_document"],"outputNames":["Document"],"properties":[{"displayName":"This node must be connected to a vector store. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_vectorStore'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"Loader Type","name":"loader","type":"options","default":"jsonLoader","required":true,"options":[{"name":"CSV Loader","value":"csvLoader","description":"Load CSV files"},{"name":"Docx Loader","value":"docxLoader","description":"Load Docx documents"},{"name":"EPub Loader","value":"epubLoader","description":"Load EPub files"},{"name":"JSON Loader","value":"jsonLoader","description":"Load JSON files"},{"name":"PDF Loader","value":"pdfLoader","description":"Load PDF documents"},{"name":"Text Loader","value":"textLoader","description":"Load plain text files"}]},{"displayName":"Binary Data Key","name":"binaryDataKey","type":"string","default":"data","required":true,"description":"Name of the binary property from which to read the file buffer"},{"displayName":"Split Pages","name":"splitPages","type":"boolean","default":true,"displayOptions":{"show":{"loader":["pdfLoader"]}}},{"displayName":"Column","name":"column","type":"string","default":"","description":"Column to extract from CSV","displayOptions":{"show":{"loader":["csvLoader"]}}},{"displayName":"Separator","name":"separator","type":"string","description":"Separator to use for CSV","default":",","displayOptions":{"show":{"loader":["csvLoader"]}}},{"displayName":"Pointers","name":"pointers","type":"string","default":"","description":"Pointers to extract from JSON, e.g. \"/text\" or \"/text, /meta/title\"","displayOptions":{"show":{"loader":["jsonLoader"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Metadata","name":"metadata","type":"fixedCollection","description":"Metadata to add to each document. Could be used for filtering during retrieval","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add property","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/document_loaders/DocumentBinaryInputLoader/binary.svg"},