@n8n/n8n-nodes-langchain 1.61.0 → 1.62.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/build.tsbuildinfo +1 -1
- package/dist/nodes/agents/Agent/agents/ToolsAgent/execute.js +40 -16
- package/dist/nodes/agents/Agent/agents/ToolsAgent/execute.js.map +1 -1
- package/dist/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.js +44 -1
- package/dist/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.js.map +1 -1
- package/dist/nodes/chains/TextClassifier/TextClassifier.node.js +6 -2
- package/dist/nodes/chains/TextClassifier/TextClassifier.node.js.map +1 -1
- package/dist/nodes/document_loaders/DocumentGithubLoader/DocumentGithubLoader.node.js +5 -0
- package/dist/nodes/document_loaders/DocumentGithubLoader/DocumentGithubLoader.node.js.map +1 -1
- package/dist/nodes/tools/ToolHttpRequest/ToolHttpRequest.node.js +3 -1
- package/dist/nodes/tools/ToolHttpRequest/ToolHttpRequest.node.js.map +1 -1
- package/dist/nodes/trigger/ChatTrigger/ChatTrigger.node.js +10 -3
- package/dist/nodes/trigger/ChatTrigger/ChatTrigger.node.js.map +1 -1
- package/dist/nodes/vector_store/shared/createVectorStoreNode.js +4 -4
- package/dist/nodes/vector_store/shared/createVectorStoreNode.js.map +1 -1
- package/dist/types/credentials.json +15 -15
- package/dist/types/nodes.json +8 -8
- package/package.json +7 -7
package/dist/types/nodes.json
CHANGED
|
@@ -5,7 +5,7 @@
|
|
|
5
5
|
{"displayName":"Summarization Chain","name":"@n8n/n8n-nodes-langchain.chainSummarization","icon":"fa:link","group":["transform"],"description":"Transforms text into a concise summary","codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainsummarization/"}]}},"defaultVersion":2,"version":[2],"defaults":{"name":"Summarization Chain","color":"#909298"},"inputs":"={{ ((parameter) => { function getInputs(parameters) {\n const chunkingMode = parameters?.chunkingMode;\n const operationMode = parameters?.operationMode;\n const inputs = [\n { displayName: '', type: \"main\" },\n {\n displayName: 'Model',\n maxConnections: 1,\n type: \"ai_languageModel\",\n required: true,\n },\n ];\n if (operationMode === 'documentLoader') {\n inputs.push({\n displayName: 'Document',\n type: \"ai_document\",\n required: true,\n maxConnections: 1,\n });\n return inputs;\n }\n if (chunkingMode === 'advanced') {\n inputs.push({\n displayName: 'Text Splitter',\n type: \"ai_textSplitter\",\n required: false,\n maxConnections: 1,\n });\n return inputs;\n }\n return inputs;\n}; return getInputs(parameter) })($parameter) }}","outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1951\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Data to Summarize","name":"operationMode","noDataExpression":true,"type":"options","description":"How to pass data into the summarization chain","default":"nodeInputJson","options":[{"name":"Use Node Input (JSON)","value":"nodeInputJson","description":"Summarize the JSON data coming into this node from the previous one"},{"name":"Use Node Input (Binary)","value":"nodeInputBinary","description":"Summarize the binary data coming into this node from the previous one"},{"name":"Use Document Loader","value":"documentLoader","description":"Use a loader sub-node with more configuration options"}]},{"displayName":"Chunking Strategy","name":"chunkingMode","noDataExpression":true,"type":"options","description":"Chunk splitting strategy","default":"simple","options":[{"name":"Simple (Define Below)","value":"simple"},{"name":"Advanced","value":"advanced","description":"Use a splitter sub-node with more configuration options"}],"displayOptions":{"show":{"/operationMode":["nodeInputJson","nodeInputBinary"]}}},{"displayName":"Characters Per Chunk","name":"chunkSize","description":"Controls the max size (in terms of number of characters) of the final document chunk","type":"number","default":1000,"displayOptions":{"show":{"/chunkingMode":["simple"]}}},{"displayName":"Chunk Overlap (Characters)","name":"chunkOverlap","type":"number","description":"Specifies how much characters overlap there should be between chunks","default":200,"displayOptions":{"show":{"/chunkingMode":["simple"]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Input Data Field Name","name":"binaryDataKey","type":"string","default":"data","description":"The name of the field in the agent or chain’s input that contains the binary file to be processed","displayOptions":{"show":{"/operationMode":["nodeInputBinary"]}}},{"displayName":"Summarization Method and Prompts","name":"summarizationMethodAndPrompts","type":"fixedCollection","default":{"values":{"summarizationMethod":"map_reduce","prompt":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","combineMapPrompt":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:"}},"placeholder":"Add Option","typeOptions":{},"options":[{"name":"values","displayName":"Values","values":[{"displayName":"Summarization Method","name":"summarizationMethod","type":"options","description":"The type of summarization to run","default":"map_reduce","options":[{"name":"Map Reduce (Recommended)","value":"map_reduce","description":"Summarize each document (or chunk) individually, then summarize those summaries"},{"name":"Refine","value":"refine","description":"Summarize the first document (or chunk). Then update that summary based on the next document (or chunk), and repeat."},{"name":"Stuff","value":"stuff","description":"Pass all documents (or chunks) at once. Ideal for small datasets."}]},{"displayName":"Individual Summary Prompt","name":"combineMapPrompt","type":"string","hint":"The prompt to summarize an individual document (or chunk)","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","refine"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","typeOptions":{"rows":9}},{"displayName":"Final Prompt to Combine","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt to combine individual summaries","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","refine"]}},"typeOptions":{"rows":9}},{"displayName":"Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["refine","map_reduce"]}},"typeOptions":{"rows":9}},{"displayName":"Subsequent (Refine) Prompt","name":"refinePrompt","type":"string","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","map_reduce"]}},"default":"Your job is to produce a final summary\nWe have provided an existing summary up to a certain point: \"{existing_answer}\"\nWe have the opportunity to refine the existing summary\n(only if needed) with some more context below.\n------------\n\"{text}\"\n------------\n\nGiven the new context, refine the original summary\nIf the context isn't useful, return the original summary.\n\nREFINED SUMMARY:","hint":"The prompt to refine the summary based on the next document (or chunk)","typeOptions":{"rows":9}},{"displayName":"Initial Prompt","name":"refineQuestionPrompt","type":"string","displayOptions":{"hide":{"/options.summarizationMethodAndPrompts.values.summarizationMethod":["stuff","map_reduce"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt for the first document (or chunk)","typeOptions":{"rows":9}}]}]}]}]},
|
|
6
6
|
{"displayName":"Summarization Chain","name":"@n8n/n8n-nodes-langchain.chainSummarization","icon":"fa:link","group":["transform"],"description":"Transforms text into a concise summary","codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainsummarization/"}]}},"defaultVersion":2,"version":1,"defaults":{"name":"Summarization Chain","color":"#909298"},"inputs":["main",{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true},{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true}],"outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1951\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Type","name":"type","type":"options","description":"The type of summarization to run","default":"map_reduce","options":[{"name":"Map Reduce (Recommended)","value":"map_reduce","description":"Summarize each document (or chunk) individually, then summarize those summaries"},{"name":"Refine","value":"refine","description":"Summarize the first document (or chunk). Then update that summary based on the next document (or chunk), and repeat."},{"name":"Stuff","value":"stuff","description":"Pass all documents (or chunks) at once. Ideal for small datasets."}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Final Prompt to Combine","name":"combineMapPrompt","type":"string","hint":"The prompt to combine individual summaries","displayOptions":{"show":{"/type":["map_reduce"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","typeOptions":{"rows":6}},{"displayName":"Individual Summary Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt to summarize an individual document (or chunk)","displayOptions":{"show":{"/type":["map_reduce"]}},"typeOptions":{"rows":6}},{"displayName":"Prompt","name":"prompt","type":"string","default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","displayOptions":{"show":{"/type":["stuff"]}},"typeOptions":{"rows":6}},{"displayName":"Subsequent (Refine) Prompt","name":"refinePrompt","type":"string","displayOptions":{"show":{"/type":["refine"]}},"default":"Your job is to produce a final summary\nWe have provided an existing summary up to a certain point: \"{existing_answer}\"\nWe have the opportunity to refine the existing summary\n(only if needed) with some more context below.\n------------\n\"{text}\"\n------------\n\nGiven the new context, refine the original summary\nIf the context isn't useful, return the original summary.\n\nREFINED SUMMARY:","hint":"The prompt to refine the summary based on the next document (or chunk)","typeOptions":{"rows":6}},{"displayName":"Initial Prompt","name":"refineQuestionPrompt","type":"string","displayOptions":{"show":{"/type":["refine"]}},"default":"Write a concise summary of the following:\n\n\n\"{text}\"\n\n\nCONCISE SUMMARY:","hint":"The prompt for the first document (or chunk)","typeOptions":{"rows":6}}]}]},
|
|
7
7
|
{"displayName":"Basic LLM Chain","name":"@n8n/n8n-nodes-langchain.chainLlm","icon":"fa:link","group":["transform"],"version":[1,1.1,1.2,1.3,1.4],"description":"A simple chain to prompt a large language model","defaults":{"name":"Basic LLM Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/"}]}},"inputs":"={{ ((parameter) => { function getInputs(parameters) {\n const hasOutputParser = parameters?.hasOutputParser;\n const inputs = [\n { displayName: '', type: \"main\" },\n {\n displayName: 'Model',\n maxConnections: 1,\n type: \"ai_languageModel\",\n required: true,\n },\n ];\n if (hasOutputParser === undefined || hasOutputParser === true) {\n inputs.push({ displayName: 'Output Parser', type: \"ai_outputParser\" });\n }\n return inputs;\n}; return getInputs(parameter) })($parameter) }}","outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1978\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1,1.2]}}},{"displayName":"Prompt","name":"prompt","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.3]}}},{"displayName":"Prompt","name":"promptType","type":"options","options":[{"name":"Take from previous node automatically","value":"auto","description":"Looks for an input field called chatInput"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"displayOptions":{"hide":{"@version":[1,1.1,1.2,1.3]}},"default":"auto"},{"displayName":"Text","name":"text","type":"string","required":true,"default":"","placeholder":"e.g. Hello, how can you help me?","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}},{"displayName":"Require Specific Output Format","name":"hasOutputParser","type":"boolean","default":false,"noDataExpression":true,"displayOptions":{"hide":{"@version":[1,1.1,1.3]}}},{"displayName":"Chat Messages (if Using a Chat Model)","name":"messages","type":"fixedCollection","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add prompt","options":[{"name":"messageValues","displayName":"Prompt","values":[{"displayName":"Type Name or ID","name":"type","type":"options","options":[{"name":"AI","value":"AIMessagePromptTemplate"},{"name":"System","value":"SystemMessagePromptTemplate"},{"name":"User","value":"HumanMessagePromptTemplate"}],"default":"SystemMessagePromptTemplate"},{"displayName":"Message Type","name":"messageType","type":"options","displayOptions":{"show":{"type":["HumanMessagePromptTemplate"]}},"options":[{"name":"Text","value":"text","description":"Simple text message"},{"name":"Image (Binary)","value":"imageBinary","description":"Process the binary input from the previous node"},{"name":"Image (URL)","value":"imageUrl","description":"Process the image from the specified URL"}],"default":"text"},{"displayName":"Image Data Field Name","name":"binaryImageDataKey","type":"string","default":"data","required":true,"description":"The name of the field in the chain’s input that contains the binary image file to be processed","displayOptions":{"show":{"messageType":["imageBinary"]}}},{"displayName":"Image URL","name":"imageUrl","type":"string","default":"","required":true,"description":"URL to the image to be processed","displayOptions":{"show":{"messageType":["imageUrl"]}}},{"displayName":"Image Details","description":"Control how the model processes the image and generates its textual understanding","name":"imageDetail","type":"options","displayOptions":{"show":{"type":["HumanMessagePromptTemplate"],"messageType":["imageBinary","imageUrl"]}},"options":[{"name":"Auto","value":"auto","description":"Model will use the auto setting which will look at the image input size and decide if it should use the low or high setting"},{"name":"Low","value":"low","description":"The model will receive a low-res 512px x 512px version of the image, and represent the image with a budget of 65 tokens. This allows the API to return faster responses and consume fewer input tokens for use cases that do not require high detail."},{"name":"High","value":"high","description":"Allows the model to see the low res image and then creates detailed crops of input images as 512px squares based on the input image size. Each of the detailed crops uses twice the token budget (65 tokens) for a total of 129 tokens."}],"default":"auto"},{"displayName":"Message","name":"message","type":"string","required":true,"displayOptions":{"hide":{"messageType":["imageBinary","imageUrl"]}},"default":""}]}]},{"displayName":"Connect an <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_outputParser'>output parser</a> on the canvas to specify the output format you require","name":"notice","type":"notice","default":"","displayOptions":{"show":{"hasOutputParser":[true]}}}]},
|
|
8
|
-
{"displayName":"Question and Answer Chain","name":"@n8n/n8n-nodes-langchain.chainRetrievalQa","icon":"fa:link","group":["transform"],"version":[1,1.1,1.2,1.3],"description":"Answer questions about retrieved documents","defaults":{"name":"Question and Answer Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/"}]}},"inputs":["main",{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true},{"displayName":"Retriever","maxConnections":1,"type":"ai_retriever","required":true}],"outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1960\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.2]}}},{"displayName":"Prompt","name":"promptType","type":"options","options":[{"name":"Take from previous node automatically","value":"auto","description":"Looks for an input field called chatInput"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}]}},"default":"auto"},{"displayName":"Text","name":"text","type":"string","required":true,"default":"","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}}]},
|
|
8
|
+
{"displayName":"Question and Answer Chain","name":"@n8n/n8n-nodes-langchain.chainRetrievalQa","icon":"fa:link","group":["transform"],"version":[1,1.1,1.2,1.3],"description":"Answer questions about retrieved documents","defaults":{"name":"Question and Answer Chain","color":"#909298"},"codex":{"alias":["LangChain"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/"}]}},"inputs":["main",{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true},{"displayName":"Retriever","maxConnections":1,"type":"ai_retriever","required":true}],"outputs":["main"],"credentials":[],"properties":[{"displayName":"Save time with an <a href=\"/templates/1960\" target=\"_blank\">example</a> of how this node works","name":"notice","type":"notice","default":""},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.input }}","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chat_input }}","displayOptions":{"show":{"@version":[1.1]}}},{"displayName":"Query","name":"query","type":"string","required":true,"default":"={{ $json.chatInput }}","displayOptions":{"show":{"@version":[1.2]}}},{"displayName":"Prompt","name":"promptType","type":"options","options":[{"name":"Take from previous node automatically","value":"auto","description":"Looks for an input field called chatInput"},{"name":"Define below","value":"define","description":"Use an expression to reference data in previous nodes or enter static text"}],"displayOptions":{"hide":{"@version":[{"_cnd":{"lte":1.2}}]}},"default":"auto"},{"displayName":"Text","name":"text","type":"string","required":true,"default":"","typeOptions":{"rows":2},"displayOptions":{"show":{"promptType":["define"]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"Use the following pieces of context to answer the users question. \nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\n{context}","description":"Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the user’s query.","typeOptions":{"rows":6}}]}]},
|
|
9
9
|
{"displayName":"Sentiment Analysis","name":"@n8n/n8n-nodes-langchain.sentimentAnalysis","icon":"fa:balance-scale-left","iconColor":"black","group":["transform"],"version":1,"description":"Analyze the sentiment of your text","codex":{"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/"}]}},"defaults":{"name":"Sentiment Analysis"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":"={{((parameters, defaultCategories) => {\n const options = (parameters?.options ?? {});\n const categories = options?.categories ?? defaultCategories;\n const categoriesArray = categories.split(',').map((cat) => cat.trim());\n const ret = categoriesArray.map((cat) => ({ type: \"main\", displayName: cat }));\n return ret;\n})($parameter, \"Positive, Neutral, Negative\")}}","properties":[{"displayName":"Text to Analyze","name":"inputText","type":"string","required":true,"default":"","description":"Use an expression to reference data in previous nodes or enter static text","typeOptions":{"rows":2}},{"displayName":"Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.","name":"detailedResultsNotice","type":"notice","default":"","displayOptions":{"show":{"/options.includeDetailedResults":[true]}}},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Sentiment Categories","name":"categories","type":"string","default":"Positive, Neutral, Negative","description":"A comma-separated list of categories to analyze","noDataExpression":true,"typeOptions":{"rows":2}},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Include Detailed Results","name":"includeDetailedResults","type":"boolean","default":false,"description":"Whether to include sentiment strength and confidence scores in the output"},{"displayName":"Enable Auto-Fixing","name":"enableAutoFixing","type":"boolean","default":true,"description":"Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)"}]}]},
|
|
10
10
|
{"displayName":"Information Extractor","name":"@n8n/n8n-nodes-langchain.informationExtractor","icon":"fa:project-diagram","iconColor":"black","group":["transform"],"version":1,"description":"Extract information from text in a structured format","codex":{"alias":["NER","parse","parsing","JSON","data extraction","structured"],"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor/"}]}},"defaults":{"name":"Information Extractor"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":["main"],"properties":[{"displayName":"Text","name":"text","type":"string","default":"","description":"The text to extract information from","typeOptions":{"rows":2}},{"displayName":"Schema Type","name":"schemaType","type":"options","noDataExpression":true,"options":[{"name":"From Attribute Descriptions","value":"fromAttributes","description":"Extract specific attributes from the text based on types and descriptions"},{"name":"Generate From JSON Example","value":"fromJson","description":"Generate a schema from an example JSON object"},{"name":"Define Below","value":"manual","description":"Define the JSON schema manually"}],"default":"fromAttributes","description":"How to specify the schema for the desired output"},{"displayName":"JSON Example","name":"jsonSchemaExample","type":"json","default":"{\n\t\"state\": \"California\",\n\t\"cities\": [\"Los Angeles\", \"San Francisco\", \"San Diego\"]\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["fromJson"]}},"description":"Example JSON object to use to generate the schema"},{"displayName":"Input Schema","name":"inputSchema","type":"json","default":"{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"state\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"cities\": {\n\t\t\t\"type\": \"array\",\n\t\t\t\"items\": {\n\t\t\t\t\"type\": \"string\"\n\t\t\t}\n\t\t}\n\t}\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["manual"]}},"description":"Schema to use for the function"},{"displayName":"The schema has to be defined in the <a target=\"_blank\" href=\"https://json-schema.org/\">JSON Schema</a> format. Look at <a target=\"_blank\" href=\"https://json-schema.org/learn/miscellaneous-examples.html\">this</a> page for examples.","name":"notice","type":"notice","default":"","displayOptions":{"show":{"schemaType":["manual"]}}},{"displayName":"Attributes","name":"attributes","placeholder":"Add Attribute","type":"fixedCollection","default":{},"displayOptions":{"show":{"schemaType":["fromAttributes"]}},"typeOptions":{"multipleValues":true},"options":[{"name":"attributes","displayName":"Attribute List","values":[{"displayName":"Name","name":"name","type":"string","default":"","description":"Attribute to extract","placeholder":"e.g. company_name","required":true},{"displayName":"Type","name":"type","type":"options","description":"Data type of the attribute","required":true,"options":[{"name":"Boolean","value":"boolean"},{"name":"Date","value":"date"},{"name":"Number","value":"number"},{"name":"String","value":"string"}],"default":"string"},{"displayName":"Description","name":"description","type":"string","default":"","description":"Describe your attribute","placeholder":"Add description for the attribute","required":true},{"displayName":"Required","name":"required","type":"boolean","default":false,"description":"Whether attribute is required","required":true}]}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"You are an expert extraction algorithm.\nOnly extract relevant information from the text.\nIf you do not know the value of an attribute asked to extract, you may omit the attribute's value.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}}]}]},
|
|
11
11
|
{"displayName":"Text Classifier","name":"@n8n/n8n-nodes-langchain.textClassifier","icon":"fa:tags","iconColor":"black","group":["transform"],"version":1,"description":"Classify your text into distinct categories","codex":{"categories":["AI"],"subcategories":{"AI":["Chains","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.text-classifier/"}]}},"defaults":{"name":"Text Classifier"},"inputs":[{"displayName":"","type":"main"},{"displayName":"Model","maxConnections":1,"type":"ai_languageModel","required":true}],"outputs":"={{((parameters) => {\n const categories = parameters.categories?.categories ?? [];\n const fallback = parameters.options?.fallback;\n const ret = categories.map((cat) => {\n return { type: \"main\", displayName: cat.category };\n });\n if (fallback === 'other')\n ret.push({ type: \"main\", displayName: 'Other' });\n return ret;\n})($parameter)}}","properties":[{"displayName":"Text to Classify","name":"inputText","type":"string","required":true,"default":"","description":"Use an expression to reference data in previous nodes or enter static text","typeOptions":{"rows":2}},{"displayName":"Categories","name":"categories","placeholder":"Add Category","type":"fixedCollection","default":{},"typeOptions":{"multipleValues":true},"options":[{"name":"categories","displayName":"Categories","values":[{"displayName":"Category","name":"category","type":"string","default":"","description":"Category to add","required":true},{"displayName":"Description","name":"description","type":"string","default":"","description":"Describe your category if it's not obvious"}]}]},{"displayName":"Options","name":"options","type":"collection","default":{},"placeholder":"Add Option","options":[{"displayName":"Allow Multiple Classes To Be True","name":"multiClass","type":"boolean","default":false},{"displayName":"When No Clear Match","name":"fallback","type":"options","default":"discard","description":"What to do with items that don’t match the categories exactly","options":[{"name":"Discard Item","value":"discard","description":"Ignore the item and drop it from the output"},{"name":"Output on Extra, 'Other' Branch","value":"other","description":"Create a separate output branch called 'Other'"}]},{"displayName":"System Prompt Template","name":"systemPromptTemplate","type":"string","default":"Please classify the text provided by the user into one of the following categories: {categories}, and use the provided formatting instructions below. Don't explain, and only output the json.","description":"String to use directly as the system prompt template","typeOptions":{"rows":6}},{"displayName":"Enable Auto-Fixing","name":"enableAutoFixing","type":"boolean","default":true,"description":"Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)"}]}]},
|
|
@@ -62,19 +62,19 @@
|
|
|
62
62
|
{"displayName":"Wolfram|Alpha","name":"@n8n/n8n-nodes-langchain.toolWolframAlpha","group":["transform"],"version":1,"description":"Connects to WolframAlpha's computational intelligence engine.","defaults":{"name":"Wolfram Alpha"},"credentials":[{"name":"wolframAlphaApi","required":true}],"codex":{"categories":["AI"],"subcategories":{"AI":["Tools"],"Tools":["Other Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.toolwolframalpha/"}]}},"inputs":[],"outputs":["ai_tool"],"outputNames":["Tool"],"properties":[{"displayName":"This node must be connected to an AI agent. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/tools/ToolWolframAlpha/wolfram-alpha.svg"},
|
|
63
63
|
{"displayName":"Call n8n Workflow Tool","name":"@n8n/n8n-nodes-langchain.toolWorkflow","icon":"fa:network-wired","group":["transform"],"version":[1,1.1,1.2],"description":"Uses another n8n workflow as a tool. Allows packaging any n8n node(s) as a tool.","defaults":{"name":"Call n8n Workflow Tool"},"codex":{"categories":["AI"],"subcategories":{"AI":["Tools"],"Tools":["Recommended Tools"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.toolworkflow/"}]}},"inputs":[],"outputs":["ai_tool"],"outputNames":["Tool"],"properties":[{"displayName":"This node must be connected to an AI agent. <a data-action='openSelectiveNodeCreator' data-action-parameter-creatorview='AI'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"}},{"displayName":"See an example of a workflow to suggest meeting slots using AI <a href=\"/templates/1953\" target=\"_blank\">here</a>.","name":"noticeTemplateExample","type":"notice","default":""},{"displayName":"Name","name":"name","type":"string","default":"","placeholder":"My_Color_Tool","displayOptions":{"show":{"@version":[1]}}},{"displayName":"Name","name":"name","type":"string","default":"","placeholder":"e.g. My_Color_Tool","validateType":"string-alphanumeric","description":"The name of the function to be called, could contain letters, numbers, and underscores only","displayOptions":{"show":{"@version":[{"_cnd":{"gte":1.1}}]}}},{"displayName":"Description","name":"description","type":"string","default":"","placeholder":"Call this tool to get a random color. The input should be a string with comma separted names of colors to exclude.","typeOptions":{"rows":3}},{"displayName":"This tool will call the workflow you define below, and look in the last node for the response. The workflow needs to start with an Execute Workflow trigger","name":"executeNotice","type":"notice","default":""},{"displayName":"Source","name":"source","type":"options","options":[{"name":"Database","value":"database","description":"Load the workflow from the database by ID"},{"name":"Define Below","value":"parameter","description":"Pass the JSON code of a workflow"}],"default":"database","description":"Where to get the workflow to execute from"},{"displayName":"Workflow ID","name":"workflowId","type":"string","displayOptions":{"show":{"source":["database"],"@version":[{"_cnd":{"lte":1.1}}]}},"default":"","required":true,"description":"The workflow to execute","hint":"Can be found in the URL of the workflow"},{"displayName":"Workflow","name":"workflowId","type":"workflowSelector","displayOptions":{"show":{"source":["database"],"@version":[{"_cnd":{"gte":1.2}}]}},"default":"","required":true},{"displayName":"Workflow JSON","name":"workflowJson","type":"json","typeOptions":{"rows":10},"displayOptions":{"show":{"source":["parameter"]}},"default":"\n\n\n\n\n\n\n\n\n","required":true,"description":"The workflow JSON code to execute"},{"displayName":"Field to Return","name":"responsePropertyName","type":"string","default":"response","required":true,"hint":"The field in the last-executed node of the workflow that contains the response","description":"Where to find the data that this tool should return. n8n will look in the output of the last-executed node of the workflow for a field with this name, and return its value."},{"displayName":"Extra Workflow Inputs","name":"fields","placeholder":"Add Value","type":"fixedCollection","description":"These will be output by the 'execute workflow' trigger of the workflow being called","typeOptions":{"multipleValues":true,"sortable":true},"default":{},"options":[{"name":"values","displayName":"Values","values":[{"displayName":"Name","name":"name","type":"string","default":"","placeholder":"e.g. fieldName","description":"Name of the field to set the value of. Supports dot-notation. Example: data.person[0].name.","requiresDataPath":"single"},{"displayName":"Type","name":"type","type":"options","description":"The field value type","options":[{"name":"String","value":"stringValue"},{"name":"Number","value":"numberValue"},{"name":"Boolean","value":"booleanValue"},{"name":"Array","value":"arrayValue"},{"name":"Object","value":"objectValue"}],"default":"stringValue"},{"displayName":"Value","name":"stringValue","type":"string","default":"","displayOptions":{"show":{"type":["stringValue"]}},"validateType":"string","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"numberValue","type":"string","default":"","displayOptions":{"show":{"type":["numberValue"]}},"validateType":"number","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"booleanValue","type":"options","default":"true","options":[{"name":"True","value":"true"},{"name":"False","value":"false"}],"displayOptions":{"show":{"type":["booleanValue"]}},"validateType":"boolean","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"arrayValue","type":"string","default":"","placeholder":"e.g. [ arrayItem1, arrayItem2, arrayItem3 ]","displayOptions":{"show":{"type":["arrayValue"]}},"validateType":"array","ignoreValidationDuringExecution":true},{"displayName":"Value","name":"objectValue","type":"json","default":"={}","typeOptions":{"rows":2},"displayOptions":{"show":{"type":["objectValue"]}},"validateType":"object","ignoreValidationDuringExecution":true}]}]},{"displayName":"Specify Input Schema","name":"specifyInputSchema","type":"boolean","description":"Whether to specify the schema for the function. This would require the LLM to provide the input in the correct format and would validate it against the schema.","noDataExpression":true,"default":false},{"displayName":"Schema Type","name":"schemaType","type":"options","noDataExpression":true,"options":[{"name":"Generate From JSON Example","value":"fromJson","description":"Generate a schema from an example JSON object"},{"name":"Define Below","value":"manual","description":"Define the JSON schema manually"}],"default":"fromJson","description":"How to specify the schema for the function","displayOptions":{"show":{"specifyInputSchema":[true]}}},{"displayName":"JSON Example","name":"jsonSchemaExample","type":"json","default":"{\n\t\"some_input\": \"some_value\"\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["fromJson"]}},"description":"Example JSON object to use to generate the schema"},{"displayName":"Input Schema","name":"inputSchema","type":"json","default":"{\n\"type\": \"object\",\n\"properties\": {\n\t\"some_input\": {\n\t\t\"type\": \"string\",\n\t\t\"description\": \"Some input to the function\"\n\t\t}\n\t}\n}","noDataExpression":true,"typeOptions":{"rows":10},"displayOptions":{"show":{"schemaType":["manual"]}},"description":"Schema to use for the function"}]},
|
|
64
64
|
{"displayName":"Manual Chat Trigger","name":"@n8n/n8n-nodes-langchain.manualChatTrigger","icon":"fa:comments","group":["trigger"],"version":[1,1.1],"description":"Runs the flow on new manual chat message","eventTriggerDescription":"","maxNodes":1,"hidden":true,"defaults":{"name":"When chat message received","color":"#909298"},"codex":{"categories":["Core Nodes"],"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-langchain.chattrigger/"}]},"subcategories":{"Core Nodes":["Other Trigger Nodes"]}},"inputs":[],"outputs":["main"],"properties":[{"displayName":"This node is where a manual chat workflow execution starts. To make one, go back to the canvas and click ‘Chat’","name":"notice","type":"notice","default":""},{"displayName":"Chat and execute workflow","name":"openChat","type":"button","typeOptions":{"buttonConfig":{"action":"openChat"}},"default":""}]},
|
|
65
|
-
{"displayName":"Chat Trigger","name":"@n8n/n8n-nodes-langchain.chatTrigger","icon":"fa:comments","iconColor":"black","group":["trigger"],"version":[1,1.1],"description":"Runs the workflow when an n8n generated webchat is submitted","defaults":{"name":"When chat message received"},"codex":{"categories":["Core Nodes"],"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-langchain.chattrigger/"}]}},"
|
|
66
|
-
{"displayName":"In-Memory Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreInMemory","description":"Work with your data in In-Memory Vector Store","icon":"fa:database","group":["transform"],"version":1,"defaults":{"name":"In-Memory Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get
|
|
65
|
+
{"displayName":"Chat Trigger","name":"@n8n/n8n-nodes-langchain.chatTrigger","icon":"fa:comments","iconColor":"black","group":["trigger"],"version":[1,1.1],"description":"Runs the workflow when an n8n generated webchat is submitted","defaults":{"name":"When chat message received"},"codex":{"categories":["Core Nodes"],"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-langchain.chattrigger/"}]}},"maxNodes":1,"inputs":"={{ (() => {\n\t\t\tif (!['hostedChat', 'webhook'].includes($parameter.mode)) {\n\t\t\t\treturn [];\n\t\t\t}\n\t\t\tif ($parameter.options?.loadPreviousSession !== 'memory') {\n\t\t\t\treturn [];\n\t\t\t}\n\n\t\t\treturn [\n\t\t\t\t{\n\t\t\t\t\tdisplayName: 'Memory',\n\t\t\t\t\tmaxConnections: 1,\n\t\t\t\t\ttype: 'ai_memory',\n\t\t\t\t\trequired: true,\n\t\t\t\t}\n\t\t\t];\n\t\t })() }}","outputs":["main"],"credentials":[{"name":"httpBasicAuth","required":true,"displayOptions":{"show":{"authentication":["basicAuth"]}}}],"webhooks":[{"name":"setup","httpMethod":"GET","responseMode":"onReceived","path":"chat","ndvHideUrl":true},{"name":"default","httpMethod":"POST","responseMode":"={{$parameter.options?.[\"responseMode\"] || \"lastNode\" }}","path":"chat","ndvHideMethod":true,"ndvHideUrl":"={{ !$parameter.public }}"}],"eventTriggerDescription":"Waiting for you to submit the chat","activationMessage":"You can now make calls to your production chat URL.","triggerPanel":false,"properties":[{"displayName":"Make Chat Publicly Available","name":"public","type":"boolean","default":false,"description":"Whether the chat should be publicly available or only accessible through the manual chat interface"},{"displayName":"Mode","name":"mode","type":"options","options":[{"name":"Hosted Chat","value":"hostedChat","description":"Chat on a page served by n8n"},{"name":"Embedded Chat","value":"webhook","description":"Chat through a widget embedded in another page, or by calling a webhook"}],"default":"hostedChat","displayOptions":{"show":{"public":[true]}}},{"displayName":"Chat will be live at the URL above once you activate this workflow. Live executions will show up in the ‘executions’ tab","name":"hostedChatNotice","type":"notice","displayOptions":{"show":{"mode":["hostedChat"],"public":[true]}},"default":""},{"displayName":"Follow the instructions <a href=\"https://www.npmjs.com/package/@n8n/chat\" target=\"_blank\">here</a> to embed chat in a webpage (or just call the webhook URL at the top of this section). Chat will be live once you activate this workflow","name":"embeddedChatNotice","type":"notice","displayOptions":{"show":{"mode":["webhook"],"public":[true]}},"default":""},{"displayName":"Authentication","name":"authentication","type":"options","displayOptions":{"show":{"public":[true]}},"options":[{"name":"Basic Auth","value":"basicAuth","description":"Simple username and password (the same one for all users)"},{"name":"n8n User Auth","value":"n8nUserAuth","description":"Require user to be logged in with their n8n account"},{"name":"None","value":"none"}],"default":"none","description":"The way to authenticate"},{"displayName":"Initial Message(s)","name":"initialMessages","type":"string","displayOptions":{"show":{"mode":["hostedChat"],"public":[true]}},"typeOptions":{"rows":3},"default":"Hi there! 👋\nMy name is Nathan. How can I assist you today?","description":"Default messages shown at the start of the chat, one per line"},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"public":[false],"@version":[{"_cnd":{"gte":1.1}}]}},"placeholder":"Add Field","default":{},"options":[{"displayName":"Allow File Uploads","name":"allowFileUploads","type":"boolean","default":false,"description":"Whether to allow file uploads in the chat"},{"displayName":"Allowed File Mime Types","name":"allowedFilesMimeTypes","type":"string","default":"*","placeholder":"e.g. image/*, text/*, application/pdf","description":"Allowed file types for upload. Comma-separated list of <a href=\"https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types\" target=\"_blank\">MIME types</a>."}]},{"displayName":"Options","name":"options","type":"collection","displayOptions":{"show":{"mode":["hostedChat","webhook"],"public":[true]}},"placeholder":"Add Field","default":{},"options":[{"displayName":"Allowed Origins (CORS)","name":"allowedOrigins","type":"string","default":"*","description":"Comma-separated list of URLs allowed for cross-origin non-preflight requests. Use * (default) to allow all origins.","displayOptions":{"show":{"/mode":["hostedChat","webhook"]}}},{"displayName":"Allow File Uploads","name":"allowFileUploads","type":"boolean","default":false,"description":"Whether to allow file uploads in the chat","displayOptions":{"show":{"/mode":["hostedChat"]}}},{"displayName":"Allowed File Mime Types","name":"allowedFilesMimeTypes","type":"string","default":"*","placeholder":"e.g. image/*, text/*, application/pdf","description":"Allowed file types for upload. Comma-separated list of <a href=\"https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types\" target=\"_blank\">MIME types</a>.","displayOptions":{"show":{"/mode":["hostedChat"]}}},{"displayName":"Input Placeholder","name":"inputPlaceholder","type":"string","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":"Type your question..","placeholder":"e.g. Type your message here","description":"Shown as placeholder text in the chat input field"},{"displayName":"Load Previous Session","name":"loadPreviousSession","type":"options","options":[{"name":"Off","value":"notSupported","description":"Loading messages of previous session is turned off"},{"name":"From Memory","value":"memory","description":"Load session messages from memory"},{"name":"Manually","value":"manually","description":"Manually return messages of session"}],"default":"notSupported","description":"If loading messages of a previous session should be enabled"},{"displayName":"Response Mode","name":"responseMode","type":"options","options":[{"name":"When Last Node Finishes","value":"lastNode","description":"Returns data of the last-executed node"},{"name":"Using 'Respond to Webhook' Node","value":"responseNode","description":"Response defined in that node"}],"default":"lastNode","description":"When and how to respond to the webhook"},{"displayName":"Require Button Click to Start Chat","name":"showWelcomeScreen","type":"boolean","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":false,"description":"Whether to show the welcome screen at the start of the chat"},{"displayName":"Start Conversation Button Text","name":"getStarted","type":"string","displayOptions":{"show":{"showWelcomeScreen":[true],"/mode":["hostedChat"]}},"default":"New Conversation","placeholder":"e.g. New Conversation","description":"Shown as part of the welcome screen, in the middle of the chat window"},{"displayName":"Subtitle","name":"subtitle","type":"string","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":"Start a chat. We're here to help you 24/7.","placeholder":"e.g. We're here for you","description":"Shown at the top of the chat, under the title"},{"displayName":"Title","name":"title","type":"string","displayOptions":{"show":{"/mode":["hostedChat"]}},"default":"Hi there! 👋","placeholder":"e.g. Welcome","description":"Shown at the top of the chat"}]}]},
|
|
66
|
+
{"displayName":"In-Memory Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreInMemory","description":"Work with your data in In-Memory Vector Store","icon":"fa:database","group":["transform"],"version":1,"defaults":{"name":"In-Memory Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents for AI processing"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions."},{"displayName":"The embbded data are stored in the server memory, so they will be lost when the server is restarted. Additionally, if the amount of data is too large, it may cause the server to crash due to insufficient memory.","name":"notice","type":"notice","default":"","displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Clear Store","name":"clearStore","type":"boolean","default":false,"description":"Whether to clear the store before inserting new data","displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}}]},
|
|
67
67
|
{"displayName":"In Memory Vector Store Insert","name":"@n8n/n8n-nodes-langchain.vectorStoreInMemoryInsert","icon":"fa:database","group":["transform"],"version":1,"hidden":true,"description":"Insert data into an in-memory vector store","defaults":{"name":"In Memory Vector Store Insert"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"The embbded data are stored in the server memory, so they will be lost when the server is restarted. Additionally, if the amount of data is too large, it may cause the server to crash due to insufficient memory.","name":"notice","type":"notice","default":""},{"displayName":"Clear Store","name":"clearStore","type":"boolean","default":false,"description":"Whether to clear the store before inserting new data"},{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions."}]},
|
|
68
68
|
{"displayName":"In Memory Vector Store Load","name":"@n8n/n8n-nodes-langchain.vectorStoreInMemoryLoad","icon":"fa:database","group":["transform"],"version":1,"hidden":true,"description":"Load embedded data from an in-memory vector store","defaults":{"name":"In Memory Vector Store Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/"}]}},"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Memory Key","name":"memoryKey","type":"string","default":"vector_store_key","description":"The key to use to store the vector memory in the workflow data. The key will be prefixed with the workflow ID to avoid collisions."}]},
|
|
69
|
-
{"displayName":"Postgres PGVector Store","name":"@n8n/n8n-nodes-langchain.vectorStorePGVector","description":"Work with your data in Postgresql with the PGVector extension","group":["transform"],"version":1,"defaults":{"name":"Postgres PGVector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"postgres","required":true,"testedBy":"postgresConnectionTest"}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get many ranked documents from vector store for query"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Insert documents into vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents from vector store to be used with AI nodes"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Table Name","name":"tableName","type":"string","default":"n8n_vectors","description":"The table name to store the vectors in. If table does not exist, it will be created."},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePGVector/postgres.svg"},
|
|
70
|
-
{"displayName":"Pinecone Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStorePinecone","description":"Work with your data in Pinecone Vector Store","group":["transform"],"version":1,"defaults":{"name":"Pinecone Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get
|
|
69
|
+
{"displayName":"Postgres PGVector Store","name":"@n8n/n8n-nodes-langchain.vectorStorePGVector","description":"Work with your data in Postgresql with the PGVector extension","group":["transform"],"version":1,"defaults":{"name":"Postgres PGVector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"postgres","required":true,"testedBy":"postgresConnectionTest"}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents for AI processing"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Table Name","name":"tableName","type":"string","default":"n8n_vectors","description":"The table name to store the vectors in. If table does not exist, it will be created."},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Distance Strategy","name":"distanceStrategy","type":"options","default":"cosine","description":"The method to calculate the distance between two vectors","options":[{"name":"Cosine","value":"cosine"},{"name":"Inner Product","value":"innerProduct"},{"name":"Euclidean","value":"euclidean"}]},{"displayName":"Collection","name":"collection","type":"fixedCollection","description":"Collection of vectors","default":{"values":{"useCollection":false,"collectionName":"n8n","collectionTable":"n8n_vector_collections"}},"typeOptions":{},"placeholder":"Add Collection Settings","options":[{"name":"values","displayName":"Collection Settings","values":[{"displayName":"Use Collection","name":"useCollection","type":"boolean","default":false},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"n8n","required":true,"displayOptions":{"show":{"useCollection":[true]}}},{"displayName":"Collection Table Name","name":"collectionTableName","type":"string","default":"n8n_vector_collections","required":true,"displayOptions":{"show":{"useCollection":[true]}}}]}]},{"displayName":"Column Names","name":"columnNames","type":"fixedCollection","description":"The names of the columns in the PGVector table","default":{"values":{"idColumnName":"id","vectorColumnName":"embedding","contentColumnName":"text","metadataColumnName":"metadata"}},"typeOptions":{},"placeholder":"Set Column Names","options":[{"name":"values","displayName":"Column Name Settings","values":[{"displayName":"ID Column Name","name":"idColumnName","type":"string","default":"id","required":true},{"displayName":"Vector Column Name","name":"vectorColumnName","type":"string","default":"embedding","required":true},{"displayName":"Content Column Name","name":"contentColumnName","type":"string","default":"text","required":true},{"displayName":"Metadata Column Name","name":"metadataColumnName","type":"string","default":"metadata","required":true}]}]},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePGVector/postgres.svg"},
|
|
70
|
+
{"displayName":"Pinecone Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStorePinecone","description":"Work with your data in Pinecone Vector Store","group":["transform"],"version":1,"defaults":{"name":"Pinecone Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents for AI processing"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear the namespace before inserting new data"},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","description":"Partition the records in an index into namespaces. Queries and other operations are then limited to one namespace, so different requests can search different subsets of your index.","default":""},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePinecone/pinecone.svg"},
|
|
71
71
|
{"displayName":"Pinecone: Insert","hidden":true,"name":"@n8n/n8n-nodes-langchain.vectorStorePineconeInsert","group":["transform"],"version":1,"description":"Insert data into Pinecone Vector Store index","defaults":{"name":"Pinecone: Insert","color":"#1321A7"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","default":""},{"displayName":"Specify the document to load in the document loader sub-node","name":"notice","type":"notice","default":""},{"displayName":"Clear Namespace","name":"clearNamespace","type":"boolean","default":false,"description":"Whether to clear the namespace before inserting new data"}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePineconeInsert/pinecone.svg"},
|
|
72
72
|
{"displayName":"Pinecone: Load","hidden":true,"name":"@n8n/n8n-nodes-langchain.vectorStorePineconeLoad","group":["transform"],"version":1,"description":"Load data from Pinecone Vector Store index","defaults":{"name":"Pinecone: Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/"}]}},"credentials":[{"name":"pineconeApi","required":true}],"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Pinecone Index","name":"pineconeIndex","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"pineconeIndexSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Pinecone Namespace","name":"pineconeNamespace","type":"string","default":""},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStorePineconeLoad/pinecone.svg"},
|
|
73
|
-
{"displayName":"Qdrant Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreQdrant","description":"Work with your data in a Qdrant collection","group":["transform"],"version":1,"defaults":{"name":"Qdrant Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant/"}]}},"credentials":[{"name":"qdrantApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get
|
|
74
|
-
{"displayName":"Supabase Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreSupabase","description":"Work with your data in Supabase Vector Store","group":["transform"],"version":1,"defaults":{"name":"Supabase Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get
|
|
73
|
+
{"displayName":"Qdrant Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreQdrant","description":"Work with your data in a Qdrant collection","group":["transform"],"version":1,"defaults":{"name":"Qdrant Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant/"}]}},"credentials":[{"name":"qdrantApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents for AI processing"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Qdrant Collection","name":"qdrantCollection","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"qdrantCollectionsSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Collection Config","name":"collectionConfig","type":"json","default":"","description":"JSON options for creating a collection. <a href=\"https://qdrant.tech/documentation/concepts/collections\">Learn more</a>."}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Search Filter","name":"searchFilterJson","type":"json","typeOptions":{"rows":5},"default":"{\n \"should\": [\n {\n \"key\": \"metadata.batch\",\n \"match\": {\n \"value\": 12345\n }\n }\n ]\n}","validateType":"object","description":"Filter pageContent or metadata using this <a href=\"https://qdrant.tech/documentation/concepts/filtering/\" target=\"_blank\">filtering syntax</a>"}],"displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Search Filter","name":"searchFilterJson","type":"json","typeOptions":{"rows":5},"default":"{\n \"should\": [\n {\n \"key\": \"metadata.batch\",\n \"match\": {\n \"value\": 12345\n }\n }\n ]\n}","validateType":"object","description":"Filter pageContent or metadata using this <a href=\"https://qdrant.tech/documentation/concepts/filtering/\" target=\"_blank\">filtering syntax</a>"}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreQdrant/qdrant.svg"},
|
|
74
|
+
{"displayName":"Supabase Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreSupabase","description":"Work with your data in Supabase Vector Store","group":["transform"],"version":1,"defaults":{"name":"Supabase Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents for AI processing"},{"name":"Update Documents","value":"update","description":"Update documents in vector store by ID","action":"Update vector store documents"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","description":"Name of the query to use for matching documents"}],"displayOptions":{"show":{"mode":["update"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabase/supabase.svg"},
|
|
75
75
|
{"displayName":"Supabase: Insert","hidden":true,"name":"@n8n/n8n-nodes-langchain.vectorStoreSupabaseInsert","group":["transform"],"version":1,"description":"Insert data into Supabase Vector Store index [https://supabase.com/docs/guides/ai/langchain]","defaults":{"name":"Supabase: Insert"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"Please refer to the <a href=\"https://supabase.com/docs/guides/ai/langchain\" target=\"_blank\">Supabase documentation</a> for more information on how to setup your database as a Vector Store.","name":"setupNotice","type":"notice","default":""},{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","required":true,"description":"Name of the query to use for matching documents"},{"displayName":"Specify the document to load in the document loader sub-node","name":"notice","type":"notice","default":""}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabaseInsert/supabase.svg"},
|
|
76
76
|
{"displayName":"Supabase: Load","name":"@n8n/n8n-nodes-langchain.vectorStoreSupabaseLoad","hidden":true,"group":["transform"],"version":1,"description":"Load data from Supabase Vector Store index","defaults":{"name":"Supabase: Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoresupabase/"}]}},"credentials":[{"name":"supabaseApi","required":true}],"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Table Name","name":"tableName","type":"resourceLocator","default":{"mode":"list","value":""},"required":true,"modes":[{"displayName":"From List","name":"list","type":"list","typeOptions":{"searchListMethod":"supabaseTableNameSearch"}},{"displayName":"ID","name":"id","type":"string"}]},{"displayName":"Query Name","name":"queryName","type":"string","default":"match_documents","required":true,"description":"Name of the query to use for matching documents"},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreSupabaseLoad/supabase.svg"},
|
|
77
|
-
{"displayName":"Zep Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreZep","description":"Work with your data in Zep Vector Store","group":["transform"],"version":1,"defaults":{"name":"Zep Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get
|
|
77
|
+
{"displayName":"Zep Vector Store","name":"@n8n/n8n-nodes-langchain.vectorStoreZep","description":"Work with your data in Zep Vector Store","group":["transform"],"version":1,"defaults":{"name":"Zep Vector Store"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores","Root Nodes"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode;\n\t\t\t\tconst inputs = [{ displayName: \"Embedding\", type: \"ai_embedding\", required: true, maxConnections: 1}]\n\n\t\t\t\tif (['insert', 'load', 'update'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"\", type: \"main\"})\n\t\t\t\t}\n\n\t\t\t\tif (['insert'].includes(mode)) {\n\t\t\t\t\tinputs.push({ displayName: \"Document\", type: \"ai_document\", required: true, maxConnections: 1})\n\t\t\t\t}\n\t\t\t\treturn inputs\n\t\t\t})($parameter)\n\t\t}}","outputs":"={{\n\t\t\t((parameters) => {\n\t\t\t\tconst mode = parameters?.mode ?? 'retrieve';\n\t\t\t\tif (mode === 'retrieve') {\n\t\t\t\t\treturn [{ displayName: \"Vector Store\", type: \"ai_vectorStore\"}]\n\t\t\t\t}\n\t\t\t\treturn [{ displayName: \"\", type: \"main\"}]\n\t\t\t})($parameter)\n\t\t}}","properties":[{"displayName":"Operation Mode","name":"mode","type":"options","noDataExpression":true,"default":"retrieve","options":[{"name":"Get Many","value":"load","description":"Get many ranked documents from vector store for query","action":"Get ranked documents from vector store"},{"name":"Insert Documents","value":"insert","description":"Insert documents into vector store","action":"Add documents to vector store"},{"name":"Retrieve Documents (For Agent/Chain)","value":"retrieve","description":"Retrieve documents from vector store to be used with AI nodes","action":"Retrieve documents for AI processing"}]},{"displayName":"This node must be connected to a vector store retriever. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='ai_retriever'>Insert one</a>","name":"notice","type":"notice","default":"","typeOptions":{"containerClass":"ndv-connection-hint-notice"},"displayOptions":{"show":{"mode":["retrieve"]}}},{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Is Auto Embedded","name":"isAutoEmbedded","type":"boolean","default":true,"description":"Whether to automatically embed documents when they are added"}],"displayOptions":{"show":{"mode":["insert"]}}},{"displayName":"Prompt","name":"prompt","type":"string","default":"","required":true,"description":"Search prompt to retrieve matching documents from the vector store using similarity-based ranking","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Limit","name":"topK","type":"number","default":4,"description":"Number of top results to fetch from vector store","displayOptions":{"show":{"mode":["load"]}}},{"displayName":"ID","name":"id","type":"string","default":"","required":true,"description":"ID of an embedding entry","displayOptions":{"show":{"mode":["update"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["load"]}}},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}],"displayOptions":{"show":{"mode":["retrieve"]}}}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZep/zep.png"},
|
|
78
78
|
{"displayName":"Zep Vector Store: Insert","name":"@n8n/n8n-nodes-langchain.vectorStoreZepInsert","hidden":true,"group":["transform"],"version":1,"description":"Insert data into Zep Vector Store index","defaults":{"name":"Zep: Insert"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":["main",{"displayName":"Document","maxConnections":1,"type":"ai_document","required":true},{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["main"],"properties":[{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Specify the document to load in the document loader sub-node","name":"notice","type":"notice","default":""},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Is Auto Embedded","name":"isAutoEmbedded","type":"boolean","default":true,"description":"Whether to automatically embed documents when they are added"}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZepInsert/zep.png"},
|
|
79
79
|
{"displayName":"Zep Vector Store: Load","name":"@n8n/n8n-nodes-langchain.vectorStoreZepLoad","hidden":true,"group":["transform"],"version":1,"description":"Load data from Zep Vector Store index","defaults":{"name":"Zep: Load"},"codex":{"categories":["AI"],"subcategories":{"AI":["Vector Stores"]},"resources":{"primaryDocumentation":[{"url":"https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorezep/"}]}},"credentials":[{"name":"zepApi","required":true}],"inputs":[{"displayName":"Embedding","maxConnections":1,"type":"ai_embedding","required":true}],"outputs":["ai_vectorStore"],"outputNames":["Vector Store"],"properties":[{"displayName":"Collection Name","name":"collectionName","type":"string","default":"","required":true},{"displayName":"Options","name":"options","type":"collection","placeholder":"Add Option","default":{},"options":[{"displayName":"Embedding Dimensions","name":"embeddingDimensions","type":"number","default":1536,"description":"Whether to allow using characters from the Unicode surrogate blocks"},{"displayName":"Metadata Filter","name":"metadata","type":"fixedCollection","description":"Metadata to filter the document by","typeOptions":{"multipleValues":true},"default":{},"placeholder":"Add filter field","options":[{"name":"metadataValues","displayName":"Fields to Set","values":[{"displayName":"Name","name":"name","type":"string","default":"","required":true},{"displayName":"Value","name":"value","type":"string","default":""}]}]}]}],"iconUrl":"icons/@n8n/n8n-nodes-langchain/dist/nodes/vector_store/VectorStoreZepLoad/zep.png"}
|
|
80
80
|
]
|
package/package.json
CHANGED
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@n8n/n8n-nodes-langchain",
|
|
3
|
-
"version": "1.
|
|
3
|
+
"version": "1.62.1",
|
|
4
4
|
"description": "",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"files": [
|
|
7
7
|
"dist",
|
|
8
|
-
"
|
|
9
|
-
"
|
|
8
|
+
"LICENSE.md",
|
|
9
|
+
"LICENSE_EE.md"
|
|
10
10
|
],
|
|
11
11
|
"n8n": {
|
|
12
12
|
"n8nNodesApiVersion": 1,
|
|
@@ -113,7 +113,7 @@
|
|
|
113
113
|
"@types/html-to-text": "^9.0.1",
|
|
114
114
|
"@types/json-schema": "^7.0.15",
|
|
115
115
|
"@types/temp": "^0.9.1",
|
|
116
|
-
"n8n-core": "1.
|
|
116
|
+
"n8n-core": "1.62.1"
|
|
117
117
|
},
|
|
118
118
|
"dependencies": {
|
|
119
119
|
"@getzep/zep-cloud": "1.0.11",
|
|
@@ -138,7 +138,7 @@
|
|
|
138
138
|
"@langchain/redis": "0.1.0",
|
|
139
139
|
"@langchain/textsplitters": "0.1.0",
|
|
140
140
|
"@mozilla/readability": "^0.5.0",
|
|
141
|
-
"@n8n/typeorm": "0.3.20-
|
|
141
|
+
"@n8n/typeorm": "0.3.20-12",
|
|
142
142
|
"@n8n/vm2": "3.9.25",
|
|
143
143
|
"@pinecone-database/pinecone": "3.0.3",
|
|
144
144
|
"@qdrant/js-client-rest": "1.11.0",
|
|
@@ -167,8 +167,8 @@
|
|
|
167
167
|
"tmp-promise": "3.0.3",
|
|
168
168
|
"zod": "3.23.8",
|
|
169
169
|
"zod-to-json-schema": "3.23.3",
|
|
170
|
-
"n8n-workflow": "1.
|
|
171
|
-
"n8n-nodes-base": "1.
|
|
170
|
+
"n8n-workflow": "1.61.1",
|
|
171
|
+
"n8n-nodes-base": "1.62.1"
|
|
172
172
|
},
|
|
173
173
|
"license": "SEE LICENSE IN LICENSE.md",
|
|
174
174
|
"homepage": "https://n8n.io",
|