@mozaik-ai/core 0.7.0 → 0.7.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (2) hide show
  1. package/README.md +91 -96
  2. package/package.json +1 -1
package/README.md CHANGED
@@ -9,7 +9,7 @@ Mozaik is a TypeScript library for orchestrating AI agents, supporting both manu
9
9
  ## 📦 Installation
10
10
 
11
11
  ```bash
12
- yarn add @jigjoy-ai/mosaic
12
+ yarn add @mozaik-ai/core
13
13
  ```
14
14
 
15
15
  ## API Key Configuration
@@ -30,22 +30,22 @@ The system supports OpenAI models (gpt-5, gpt-5-mini, gpt-5-nano, gpt-5.1) and A
30
30
 
31
31
  ---
32
32
 
33
- ## Features
33
+ ## Features
34
34
 
35
35
  ### AI Agents
36
36
 
37
37
  This feature lets developers create AI agents through a single unified request definition, making it easy to compose tasks and leverage multiple models. You can mix providers, choose the best model for each task, and build agents that work across different capabilities.
38
38
 
39
39
  ```typescript
40
- import 'dotenv/config'
41
- import { Agent, Command } from '@jigjoy-ai/mosaic'
40
+ import "dotenv/config"
41
+ import { Agent, Command } from "@mozaik-ai/core"
42
42
 
43
43
  const command: Command = {
44
- model: 'claude-sonnet-4.5'
44
+ model: "claude-sonnet-4.5",
45
45
  }
46
46
 
47
47
  const agent = new Agent(command)
48
- const codingResponse = await agent.act('Write a React component for a todo list')
48
+ const codingResponse = await agent.act("Write a React component for a todo list")
49
49
  ```
50
50
 
51
51
  ### Structured Output
@@ -53,25 +53,27 @@ const codingResponse = await agent.act('Write a React component for a todo list'
53
53
  Structured output lets you enforce exact response formats—using schemas like Zod—so AI returns predictable, validated data every time.
54
54
 
55
55
  ```typescript
56
- import { z } from 'zod'
57
- import { Agent, Command } from '@jigjoy-ai/mosaic'
56
+ import { z } from "zod"
57
+ import { Agent, Command } from "@mozaik-ai/core"
58
58
 
59
59
  const mealPlanSchema = z.object({
60
- calories: z.number(),
61
- meals: z.array(
62
- z.object({
63
- name: z.string(),
64
- description: z.string(),
65
- ingredients: z.array(z.string()).min(3)
66
- })
67
- ).length(3),
68
- shoppingList: z.array(z.string())
60
+ calories: z.number(),
61
+ meals: z
62
+ .array(
63
+ z.object({
64
+ name: z.string(),
65
+ description: z.string(),
66
+ ingredients: z.array(z.string()).min(3),
67
+ }),
68
+ )
69
+ .length(3),
70
+ shoppingList: z.array(z.string()),
69
71
  })
70
72
 
71
73
  const command: Command = {
72
- model: 'gpt-5-mini',
73
- task: 'Create a 1-day vegetarian meal plan with breakfast, lunch, and dinner.',
74
- structuredOutput: mealPlanSchema
74
+ model: "gpt-5-mini",
75
+ task: "Create a 1-day vegetarian meal plan with breakfast, lunch, and dinner.",
76
+ structuredOutput: mealPlanSchema,
75
77
  }
76
78
 
77
79
  const agent = new Agent(command)
@@ -83,19 +85,19 @@ const response = await agent.act()
83
85
  Multi-turn conversation allows developers to provide chat history so the AI agent can maintain context and generate more relevant, continuous responses.
84
86
 
85
87
  ```typescript
86
- import { Agent, Command } from '@jigjoy-ai/mosaic'
88
+ import { Agent, Command } from "@mozaik-ai/core"
87
89
 
88
90
  const command: Command = {
89
- messages: [
90
- { role: 'system', content: 'You are a coding assistant' },
91
- { role: 'user', content: 'How do I sort an array in TypeScript?' },
92
- { role: 'assistant', content: 'You can use the .sort() method...' }
93
- ],
94
- model: 'claude-haiku-4.5'
91
+ messages: [
92
+ { role: "system", content: "You are a coding assistant" },
93
+ { role: "user", content: "How do I sort an array in TypeScript?" },
94
+ { role: "assistant", content: "You can use the .sort() method..." },
95
+ ],
96
+ model: "claude-haiku-4.5",
95
97
  }
96
98
 
97
99
  const agent = new Agent(command)
98
- const response = await agent.act('Can you show me an example?')
100
+ const response = await agent.act("Can you show me an example?")
99
101
  ```
100
102
 
101
103
  ### Tool Calling
@@ -103,38 +105,38 @@ const response = await agent.act('Can you show me an example?')
103
105
  Tool calling allows the agent to invoke real functions in your environment—letting it perform actual actions (like writing files, calling APIs, or modifying state) instead of merely generating text.
104
106
 
105
107
  ```typescript
106
- import { promises as fs } from 'fs'
107
- import { Agent, Command, Tool } from '@jigjoy-ai/mosaic'
108
+ import { promises as fs } from "fs"
109
+ import { Agent, Command, Tool } from "@mozaik-ai/core"
108
110
 
109
111
  const tools: Tool[] = [
110
- {
111
- name: 'write_file',
112
- description: 'Write text to a file.',
113
- schema: {
114
- type: 'object',
115
- properties: {
116
- filename: { type: 'string' },
117
- content: { type: 'string' }
118
- },
119
- required: ['filename', 'content']
120
- },
121
- async invoke({ filename, content }) {
122
- await fs.writeFile(filename, content, 'utf8')
123
- return { ok: true }
124
- }
125
- }
112
+ {
113
+ name: "write_file",
114
+ description: "Write text to a file.",
115
+ schema: {
116
+ type: "object",
117
+ properties: {
118
+ filename: { type: "string" },
119
+ content: { type: "string" },
120
+ },
121
+ required: ["filename", "content"],
122
+ },
123
+ async invoke({ filename, content }) {
124
+ await fs.writeFile(filename, content, "utf8")
125
+ return { ok: true }
126
+ },
127
+ },
126
128
  ]
127
129
 
128
130
  const command: Command = {
129
- model: 'gpt-5.1',
130
- tools,
131
- messages: [
132
- {
133
- role: 'system',
134
- content: 'Save notes to disk using the tool, then confirm where the file was written.'
135
- }
136
- ],
137
- task: 'Create a two-bullet trip prep checklist for Belgrade and save it as trip-checklist.txt.'
131
+ model: "gpt-5.1",
132
+ tools,
133
+ messages: [
134
+ {
135
+ role: "system",
136
+ content: "Save notes to disk using the tool, then confirm where the file was written.",
137
+ },
138
+ ],
139
+ task: "Create a two-bullet trip prep checklist for Belgrade and save it as trip-checklist.txt.",
138
140
  }
139
141
 
140
142
  const agent = new Agent(command)
@@ -146,23 +148,25 @@ await agent.act()
146
148
  Vision support allows AI agents to interpret images alongside text, enabling richer understanding and multimodal interactions.
147
149
 
148
150
  ```typescript
149
- import { Agent, Command } from '@jigjoy-ai/mosaic'
151
+ import { Agent, Command } from "@mozaik-ai/core"
150
152
 
151
153
  const command: Command = {
152
- messages: [{
153
- role: 'user',
154
- content: [
155
- {
156
- type: 'image_url',
157
- url: '...'
158
- },
159
- {
160
- type: 'text',
161
- text: 'What is in this image?'
162
- }
163
- ]
164
- }],
165
- model: 'claude-opus-4.5'
154
+ messages: [
155
+ {
156
+ role: "user",
157
+ content: [
158
+ {
159
+ type: "image_url",
160
+ url: "...",
161
+ },
162
+ {
163
+ type: "text",
164
+ text: "What is in this image?",
165
+ },
166
+ ],
167
+ },
168
+ ],
169
+ model: "claude-opus-4.5",
166
170
  }
167
171
 
168
172
  const agent = new Agent(command)
@@ -174,27 +178,24 @@ const response = await agent.act()
174
178
  This example demonstrates how to use standard JavaScript/TypeScript concurrency (Promise.all) to run multiple AI agents in parallel and compare or combine their responses.
175
179
 
176
180
  ```typescript
177
- import 'dotenv/config'
178
- import { Agent, Command } from '@jigjoy-ai/mosaic'
181
+ import "dotenv/config"
182
+ import { Agent, Command } from "@mozaik-ai/core"
179
183
 
180
184
  const openaiCommand: Command = {
181
- model: 'gpt-5'
185
+ model: "gpt-5",
182
186
  }
183
187
 
184
188
  const anthropicCommand: Command = {
185
- model: 'claude-sonnet-4.5'
189
+ model: "claude-sonnet-4.5",
186
190
  }
187
191
 
188
192
  const openaiAgent = new Agent(openaiCommand)
189
193
  const anthropicAgent = new Agent(anthropicCommand)
190
194
 
191
- const task = 'What are the key differences between TypeScript and JavaScript?'
195
+ const task = "What are the key differences between TypeScript and JavaScript?"
192
196
 
193
197
  // Execute both agents in parallel using Promise.all()
194
- const [openaiResponse, anthropicResponse] = await Promise.all([
195
- openaiAgent.act(task),
196
- anthropicAgent.act(task)
197
- ])
198
+ const [openaiResponse, anthropicResponse] = await Promise.all([openaiAgent.act(task), anthropicAgent.act(task)])
198
199
  ```
199
200
 
200
201
  ### Workflow
@@ -203,12 +204,12 @@ A workflow defines how tasks are executed together, either sequentially (one aft
203
204
 
204
205
  ```typescript
205
206
  const workflow = new Workflow("sequential", [
206
- new Task("Analyze requirements", "gpt-5"),
207
- new Workflow("parallel", [
208
- new Task("Generate API schema", "gpt-5-mini"),
209
- new Task("Draft documentation", "gpt-5-nano")
210
- ]),
211
- new Task("Review and finalize", "gpt-5")
207
+ new Task("Analyze requirements", "gpt-5"),
208
+ new Workflow("parallel", [
209
+ new Task("Generate API schema", "gpt-5-mini"),
210
+ new Task("Draft documentation", "gpt-5-nano"),
211
+ ]),
212
+ new Task("Review and finalize", "gpt-5"),
212
213
  ])
213
214
 
214
215
  await workflow.execute()
@@ -222,13 +223,10 @@ For example, given the goal `"Implement login functionality"`, the planner can g
222
223
 
223
224
  ```typescript
224
225
  Workflow(sequential, [
225
- Task("Design login form UI", "gpt-5"),
226
- Task("Implement authentication logic", "claude-sonnet-4.5"),
227
- Workflow(parallel, [
228
- Task("Add input validation", "gpt-5-mini"),
229
- Task("Style the login form", "gpt-5-nano")
230
- ]),
231
- Task("Write unit tests", "gpt-5")
226
+ Task("Design login form UI", "gpt-5"),
227
+ Task("Implement authentication logic", "claude-sonnet-4.5"),
228
+ Workflow(parallel, [Task("Add input validation", "gpt-5-mini"), Task("Style the login form", "gpt-5-nano")]),
229
+ Task("Write unit tests", "gpt-5"),
232
230
  ])
233
231
  ```
234
232
 
@@ -257,10 +255,7 @@ import { ClusterHook } from "@core/workflow/hooks/cluster"
257
255
  import { DEFAULT_CLUSTER_HOOK } from "@core/workflow/hooks"
258
256
  import { MetricsHook } from "./metrics-hook"
259
257
 
260
- const extendedHook = new ClusterHook([
261
- DEFAULT_CLUSTER_HOOK,
262
- new MetricsHook()
263
- ])
258
+ const extendedHook = new ClusterHook([DEFAULT_CLUSTER_HOOK, new MetricsHook()])
264
259
 
265
260
  await workflow.execute(extendedHook)
266
261
  ```
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@mozaik-ai/core",
3
- "version": "0.7.0",
3
+ "version": "0.7.1",
4
4
  "description": "A TypeScript library for building multi-agent AI workflows",
5
5
  "main": "dist/index.js",
6
6
  "module": "dist/index.mjs",