@mlightcad/geometry-engine 2.0.0 → 2.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,358 @@
1
+ var __extends = (this && this.__extends) || (function () {
2
+ var extendStatics = function (d, b) {
3
+ extendStatics = Object.setPrototypeOf ||
4
+ ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
5
+ function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };
6
+ return extendStatics(d, b);
7
+ };
8
+ return function (d, b) {
9
+ if (typeof b !== "function" && b !== null)
10
+ throw new TypeError("Class extends value " + String(b) + " is not a constructor or null");
11
+ extendStatics(d, b);
12
+ function __() { this.constructor = d; }
13
+ d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
14
+ };
15
+ })();
16
+ import { AcGeBox3d, AcGePoint3d, AcGeVector3d } from '../math';
17
+ import { AcGeCurve3d } from './AcGeCurve3d';
18
+ /**
19
+ * Internal class for computing cubic polynomial coefficients
20
+ * Based on an optimized c++ solution in
21
+ * - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
22
+ * - http://ideone.com/NoEbVM
23
+ */
24
+ var CubicPoly = /** @class */ (function () {
25
+ function CubicPoly() {
26
+ this.c0 = 0;
27
+ this.c1 = 0;
28
+ this.c2 = 0;
29
+ this.c3 = 0;
30
+ }
31
+ /**
32
+ * Compute coefficients for a cubic polynomial
33
+ * p(s) = c0 + c1*s + c2*s^2 + c3*s^3
34
+ * such that
35
+ * p(0) = x0, p(1) = x1
36
+ * and
37
+ * p'(0) = t0, p'(1) = t1.
38
+ */
39
+ CubicPoly.prototype.init = function (x0, x1, t0, t1) {
40
+ this.c0 = x0;
41
+ this.c1 = t0;
42
+ this.c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
43
+ this.c3 = 2 * x0 - 2 * x1 + t0 + t1;
44
+ };
45
+ /**
46
+ * Initialize for Catmull-Rom interpolation
47
+ */
48
+ CubicPoly.prototype.initCatmullRom = function (x0, x1, x2, x3, tension) {
49
+ this.init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
50
+ };
51
+ /**
52
+ * Initialize for non-uniform Catmull-Rom interpolation
53
+ */
54
+ CubicPoly.prototype.initNonuniformCatmullRom = function (x0, x1, x2, x3, dt0, dt1, dt2) {
55
+ // compute tangents when parameterized in [t1,t2]
56
+ var t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
57
+ var t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2;
58
+ // rescale tangents for parametrization in [0,1]
59
+ t1 *= dt1;
60
+ t2 *= dt1;
61
+ this.init(x1, x2, t1, t2);
62
+ };
63
+ /**
64
+ * Calculate the polynomial value at parameter t
65
+ */
66
+ CubicPoly.prototype.calc = function (t) {
67
+ var t2 = t * t;
68
+ var t3 = t2 * t;
69
+ return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3;
70
+ };
71
+ return CubicPoly;
72
+ }());
73
+ /**
74
+ * A curve representing a Catmull-Rom spline.
75
+ *
76
+ * ```js
77
+ * //Create a closed wavey loop
78
+ * const curve = new AcGeCatmullRomCurve3d( [
79
+ * new AcGePoint3d( -10, 0, 10 ),
80
+ * new AcGePoint3d( -5, 5, 5 ),
81
+ * new AcGePoint3d( 0, 0, 0 ),
82
+ * new AcGePoint3d( 5, -5, 5 ),
83
+ * new AcGePoint3d( 10, 0, 10 )
84
+ * ], true ); // true for closed curve
85
+ *
86
+ * const points = curve.getPoints( 50 );
87
+ *
88
+ * // Convert to NURBS curve
89
+ * const nurbsCurve = curve.toNurbsCurve();
90
+ * ```
91
+ */
92
+ var AcGeCatmullRomCurve3d = /** @class */ (function (_super) {
93
+ __extends(AcGeCatmullRomCurve3d, _super);
94
+ /**
95
+ * Constructs a new Catmull-Rom curve.
96
+ *
97
+ * @param points - An array of 3D points defining the curve.
98
+ * @param closed - Whether the curve is closed or not.
99
+ * @param curveType - The curve type.
100
+ * @param tension - Tension of the curve.
101
+ */
102
+ function AcGeCatmullRomCurve3d(points, closed, curveType, tension) {
103
+ if (points === void 0) { points = []; }
104
+ if (closed === void 0) { closed = false; }
105
+ if (curveType === void 0) { curveType = 'centripetal'; }
106
+ if (tension === void 0) { tension = 0.5; }
107
+ var _this = _super.call(this) || this;
108
+ /**
109
+ * This flag can be used for type testing.
110
+ */
111
+ _this.isCatmullRomCurve3d = true;
112
+ /**
113
+ * The curve type identifier
114
+ */
115
+ _this.type = 'CatmullRomCurve3d';
116
+ // Internal computation objects
117
+ _this._tmp = new AcGeVector3d();
118
+ _this._px = new CubicPoly();
119
+ _this._py = new CubicPoly();
120
+ _this._pz = new CubicPoly();
121
+ _this._points = points.map(function (p) { return new AcGePoint3d(p); });
122
+ _this._closed = closed;
123
+ _this._curveType = curveType;
124
+ _this._tension = tension;
125
+ return _this;
126
+ }
127
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "points", {
128
+ /**
129
+ * An array of 3D points defining the curve.
130
+ */
131
+ get: function () {
132
+ return this._points;
133
+ },
134
+ enumerable: false,
135
+ configurable: true
136
+ });
137
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "closed", {
138
+ /**
139
+ * Whether the curve is closed or not.
140
+ */
141
+ get: function () {
142
+ return this._closed;
143
+ },
144
+ enumerable: false,
145
+ configurable: true
146
+ });
147
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "curveType", {
148
+ /**
149
+ * The curve type.
150
+ */
151
+ get: function () {
152
+ return this._curveType;
153
+ },
154
+ enumerable: false,
155
+ configurable: true
156
+ });
157
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "tension", {
158
+ /**
159
+ * Tension of the curve.
160
+ */
161
+ get: function () {
162
+ return this._tension;
163
+ },
164
+ enumerable: false,
165
+ configurable: true
166
+ });
167
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "startPoint", {
168
+ /**
169
+ * Start point of this curve.
170
+ */
171
+ get: function () {
172
+ return this._points.length > 0 ? this._points[0] : new AcGePoint3d();
173
+ },
174
+ enumerable: false,
175
+ configurable: true
176
+ });
177
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "endPoint", {
178
+ /**
179
+ * End point of this curve.
180
+ */
181
+ get: function () {
182
+ return this._points.length > 0
183
+ ? this._points[this._points.length - 1]
184
+ : new AcGePoint3d();
185
+ },
186
+ enumerable: false,
187
+ configurable: true
188
+ });
189
+ Object.defineProperty(AcGeCatmullRomCurve3d.prototype, "length", {
190
+ /**
191
+ * Length of this curve (approximated).
192
+ */
193
+ get: function () {
194
+ if (this._points.length < 2)
195
+ return 0;
196
+ var totalLength = 0;
197
+ for (var i = 1; i < this._points.length; i++) {
198
+ totalLength += this._points[i - 1].distanceTo(this._points[i]);
199
+ }
200
+ if (this._closed && this._points.length > 2) {
201
+ totalLength += this._points[this._points.length - 1].distanceTo(this._points[0]);
202
+ }
203
+ return totalLength;
204
+ },
205
+ enumerable: false,
206
+ configurable: true
207
+ });
208
+ /**
209
+ * Returns a point on the curve.
210
+ *
211
+ * @param t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`.
212
+ * @param optionalTarget - The optional target vector the result is written to.
213
+ * @return The position on the curve.
214
+ */
215
+ AcGeCatmullRomCurve3d.prototype.getPoint = function (t, optionalTarget) {
216
+ if (optionalTarget === void 0) { optionalTarget = new AcGePoint3d(); }
217
+ var point = optionalTarget;
218
+ var points = this._points;
219
+ var l = points.length;
220
+ if (l === 0) {
221
+ return point.set(0, 0, 0);
222
+ }
223
+ if (l === 1) {
224
+ return point.copy(points[0]);
225
+ }
226
+ var p = (l - (this._closed ? 0 : 1)) * t;
227
+ var intPoint = Math.floor(p);
228
+ var weight = p - intPoint;
229
+ if (this._closed) {
230
+ intPoint +=
231
+ intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
232
+ }
233
+ else if (weight === 0 && intPoint === l - 1) {
234
+ intPoint = l - 2;
235
+ weight = 1;
236
+ }
237
+ var p0, p3; // 4 points (p1 & p2 defined below)
238
+ if (this._closed || intPoint > 0) {
239
+ p0 = points[(intPoint - 1) % l];
240
+ }
241
+ else {
242
+ // extrapolate first point
243
+ this._tmp.subVectors(points[0], points[1]).add(points[0]);
244
+ p0 = new AcGePoint3d(this._tmp.x, this._tmp.y, this._tmp.z);
245
+ }
246
+ var p1 = points[intPoint % l];
247
+ var p2 = points[(intPoint + 1) % l];
248
+ if (this._closed || intPoint + 2 < l) {
249
+ p3 = points[(intPoint + 2) % l];
250
+ }
251
+ else {
252
+ // extrapolate last point
253
+ this._tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
254
+ p3 = new AcGePoint3d(this._tmp.x, this._tmp.y, this._tmp.z);
255
+ }
256
+ if (this._curveType === 'centripetal' || this._curveType === 'chordal') {
257
+ // init Centripetal / Chordal Catmull-Rom
258
+ var pow = this._curveType === 'chordal' ? 0.5 : 0.25;
259
+ var dt0 = Math.pow(p0.distanceToSquared(p1), pow);
260
+ var dt1 = Math.pow(p1.distanceToSquared(p2), pow);
261
+ var dt2 = Math.pow(p2.distanceToSquared(p3), pow);
262
+ // safety check for repeated points
263
+ if (dt1 < 1e-4)
264
+ dt1 = 1.0;
265
+ if (dt0 < 1e-4)
266
+ dt0 = dt1;
267
+ if (dt2 < 1e-4)
268
+ dt2 = dt1;
269
+ this._px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
270
+ this._py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
271
+ this._pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
272
+ }
273
+ else if (this._curveType === 'catmullrom') {
274
+ this._px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this._tension);
275
+ this._py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this._tension);
276
+ this._pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this._tension);
277
+ }
278
+ point.set(this._px.calc(weight), this._py.calc(weight), this._pz.calc(weight));
279
+ return point;
280
+ };
281
+ /**
282
+ * Get an array of points along the curve
283
+ * @param divisions - Number of divisions to create
284
+ * @returns Array of points along the curve
285
+ */
286
+ AcGeCatmullRomCurve3d.prototype.getPoints = function (divisions) {
287
+ var points = [];
288
+ for (var d = 0; d <= divisions; d++) {
289
+ points.push(this.getPoint(d / divisions));
290
+ }
291
+ return points;
292
+ };
293
+ /**
294
+ * Set the points defining the curve
295
+ * @param points - Array of points
296
+ */
297
+ AcGeCatmullRomCurve3d.prototype.setPoints = function (points) {
298
+ this._points = points.map(function (p) { return new AcGePoint3d(p); });
299
+ this._boundingBoxNeedsUpdate = true;
300
+ };
301
+ /**
302
+ * Set whether the curve is closed
303
+ * @param closed - Whether the curve should be closed
304
+ */
305
+ AcGeCatmullRomCurve3d.prototype.setClosed = function (closed) {
306
+ if (this._closed === closed) {
307
+ return;
308
+ }
309
+ this._closed = closed;
310
+ this._boundingBoxNeedsUpdate = true;
311
+ };
312
+ /**
313
+ * Set the curve type
314
+ * @param curveType - The curve type
315
+ */
316
+ AcGeCatmullRomCurve3d.prototype.setCurveType = function (curveType) {
317
+ this._curveType = curveType;
318
+ };
319
+ /**
320
+ * Set the tension of the curve
321
+ * @param tension - The tension value
322
+ */
323
+ AcGeCatmullRomCurve3d.prototype.setTension = function (tension) {
324
+ this._tension = tension;
325
+ };
326
+ /**
327
+ * Transforms the curve by applying the input matrix.
328
+ * @param matrix Input transformation matrix
329
+ * @return Return this curve
330
+ */
331
+ AcGeCatmullRomCurve3d.prototype.transform = function (matrix) {
332
+ this._points = this._points.map(function (point) {
333
+ var transformedPoint = new AcGePoint3d();
334
+ transformedPoint.copy(point);
335
+ transformedPoint.applyMatrix3d(matrix);
336
+ return transformedPoint;
337
+ });
338
+ this._boundingBoxNeedsUpdate = true;
339
+ return this;
340
+ };
341
+ /**
342
+ * Calculate the bounding box of this curve.
343
+ * @return The bounding box
344
+ */
345
+ AcGeCatmullRomCurve3d.prototype.calculateBoundingBox = function () {
346
+ if (this._points.length === 0) {
347
+ return new AcGeBox3d();
348
+ }
349
+ var box = new AcGeBox3d();
350
+ this._points.forEach(function (point) {
351
+ box.expandByPoint(point);
352
+ });
353
+ return box;
354
+ };
355
+ return AcGeCatmullRomCurve3d;
356
+ }(AcGeCurve3d));
357
+ export { AcGeCatmullRomCurve3d };
358
+ //# sourceMappingURL=AcGeCatmullRomCurve3d.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"AcGeCatmullRomCurve3d.js","sourceRoot":"","sources":["../../src/geometry/AcGeCatmullRomCurve3d.ts"],"names":[],"mappings":";;;;;;;;;;;;;;;AAAA,OAAO,EACL,SAAS,EAET,WAAW,EAEX,YAAY,EACb,MAAM,SAAS,CAAA;AAChB,OAAO,EAAE,WAAW,EAAE,MAAM,eAAe,CAAA;AAgB3C;;;;;GAKG;AACH;IAAA;QACU,OAAE,GAAG,CAAC,CAAA;QACN,OAAE,GAAG,CAAC,CAAA;QACN,OAAE,GAAG,CAAC,CAAA;QACN,OAAE,GAAG,CAAC,CAAA;IA6DhB,CAAC;IA3DC;;;;;;;OAOG;IACK,wBAAI,GAAZ,UAAa,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,EAAU;QACzD,IAAI,CAAC,EAAE,GAAG,EAAE,CAAA;QACZ,IAAI,CAAC,EAAE,GAAG,EAAE,CAAA;QACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QACxC,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAA;IACrC,CAAC;IAED;;OAEG;IACH,kCAAc,GAAd,UACE,EAAU,EACV,EAAU,EACV,EAAU,EACV,EAAU,EACV,OAAe;QAEf,IAAI,CAAC,IAAI,CAAC,EAAE,EAAE,EAAE,EAAE,OAAO,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,OAAO,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAA;IAC7D,CAAC;IAED;;OAEG;IACH,4CAAwB,GAAxB,UACE,EAAU,EACV,EAAU,EACV,EAAU,EACV,EAAU,EACV,GAAW,EACX,GAAW,EACX,GAAW;QAEX,iDAAiD;QACjD,IAAI,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,CAAA;QACpE,IAAI,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,CAAA;QAEpE,gDAAgD;QAChD,EAAE,IAAI,GAAG,CAAA;QACT,EAAE,IAAI,GAAG,CAAA;QAET,IAAI,CAAC,IAAI,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAA;IAC3B,CAAC;IAED;;OAEG;IACH,wBAAI,GAAJ,UAAK,CAAS;QACZ,IAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAA;QAChB,IAAM,EAAE,GAAG,EAAE,GAAG,CAAC,CAAA;QACjB,OAAO,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,EAAE,CAAA;IAC5D,CAAC;IACH,gBAAC;AAAD,CAAC,AAjED,IAiEC;AAED;;;;;;;;;;;;;;;;;;GAkBG;AACH;IAA2C,yCAAW;IAqCpD;;;;;;;OAOG;IACH,+BACE,MAA8B,EAC9B,MAAc,EACd,SAA8C,EAC9C,OAAa;QAHb,uBAAA,EAAA,WAA8B;QAC9B,uBAAA,EAAA,cAAc;QACd,0BAAA,EAAA,yBAA8C;QAC9C,wBAAA,EAAA,aAAa;QAEb,YAAA,MAAK,WAAE,SAAA;QAlDT;;WAEG;QACM,yBAAmB,GAAG,IAAI,CAAA;QAEnC;;WAEG;QACM,UAAI,GAAG,mBAAmB,CAAA;QAsBnC,+BAA+B;QACd,UAAI,GAAG,IAAI,YAAY,EAAE,CAAA;QACzB,SAAG,GAAG,IAAI,SAAS,EAAE,CAAA;QACrB,SAAG,GAAG,IAAI,SAAS,EAAE,CAAA;QACrB,SAAG,GAAG,IAAI,SAAS,EAAE,CAAA;QAiBpC,KAAI,CAAC,OAAO,GAAG,MAAM,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,IAAI,WAAW,CAAC,CAAC,CAAC,EAAlB,CAAkB,CAAC,CAAA;QAClD,KAAI,CAAC,OAAO,GAAG,MAAM,CAAA;QACrB,KAAI,CAAC,UAAU,GAAG,SAAS,CAAA;QAC3B,KAAI,CAAC,QAAQ,GAAG,OAAO,CAAA;;IACzB,CAAC;IAKD,sBAAI,yCAAM;QAHV;;WAEG;aACH;YACE,OAAO,IAAI,CAAC,OAAO,CAAA;QACrB,CAAC;;;OAAA;IAKD,sBAAI,yCAAM;QAHV;;WAEG;aACH;YACE,OAAO,IAAI,CAAC,OAAO,CAAA;QACrB,CAAC;;;OAAA;IAKD,sBAAI,4CAAS;QAHb;;WAEG;aACH;YACE,OAAO,IAAI,CAAC,UAAU,CAAA;QACxB,CAAC;;;OAAA;IAKD,sBAAI,0CAAO;QAHX;;WAEG;aACH;YACE,OAAO,IAAI,CAAC,QAAQ,CAAA;QACtB,CAAC;;;OAAA;IAKD,sBAAI,6CAAU;QAHd;;WAEG;aACH;YACE,OAAO,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,WAAW,EAAE,CAAA;QACtE,CAAC;;;OAAA;IAKD,sBAAI,2CAAQ;QAHZ;;WAEG;aACH;YACE,OAAO,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,CAAC;gBAC5B,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,CAAC,CAAC;gBACvC,CAAC,CAAC,IAAI,WAAW,EAAE,CAAA;QACvB,CAAC;;;OAAA;IAKD,sBAAI,yCAAM;QAHV;;WAEG;aACH;YACE,IAAI,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,CAAC;gBAAE,OAAO,CAAC,CAAA;YAErC,IAAI,WAAW,GAAG,CAAC,CAAA;YACnB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBAC7C,WAAW,IAAI,IAAI,CAAC,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,CAAA;YAChE,CAAC;YAED,IAAI,IAAI,CAAC,OAAO,IAAI,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;gBAC5C,WAAW,IAAI,IAAI,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,UAAU,CAC7D,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,CAChB,CAAA;YACH,CAAC;YAED,OAAO,WAAW,CAAA;QACpB,CAAC;;;OAAA;IAED;;;;;;OAMG;IACH,wCAAQ,GAAR,UAAS,CAAS,EAAE,cAAkC;QAAlC,+BAAA,EAAA,qBAAqB,WAAW,EAAE;QACpD,IAAM,KAAK,GAAG,cAAc,CAAA;QAE5B,IAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAA;QAC3B,IAAM,CAAC,GAAG,MAAM,CAAC,MAAM,CAAA;QAEvB,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YACZ,OAAO,KAAK,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAA;QAC3B,CAAC;QAED,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YACZ,OAAO,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;QAC9B,CAAC;QAED,IAAM,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAA;QAC1C,IAAI,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAA;QAC5B,IAAI,MAAM,GAAG,CAAC,GAAG,QAAQ,CAAA;QAEzB,IAAI,IAAI,CAAC,OAAO,EAAE,CAAC;YACjB,QAAQ;gBACN,QAAQ,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAA;QACnE,CAAC;aAAM,IAAI,MAAM,KAAK,CAAC,IAAI,QAAQ,KAAK,CAAC,GAAG,CAAC,EAAE,CAAC;YAC9C,QAAQ,GAAG,CAAC,GAAG,CAAC,CAAA;YAChB,MAAM,GAAG,CAAC,CAAA;QACZ,CAAC;QAED,IAAI,EAAe,EAAE,EAAe,CAAA,CAAC,mCAAmC;QAExE,IAAI,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,CAAC,EAAE,CAAC;YACjC,EAAE,GAAG,MAAM,CAAC,CAAC,QAAQ,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAA;QACjC,CAAC;aAAM,CAAC;YACN,0BAA0B;YAC1B,IAAI,CAAC,IAAI,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;YACzD,EAAE,GAAG,IAAI,WAAW,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAA;QAC7D,CAAC;QAED,IAAM,EAAE,GAAG,MAAM,CAAC,QAAQ,GAAG,CAAC,CAAC,CAAA;QAC/B,IAAM,EAAE,GAAG,MAAM,CAAC,CAAC,QAAQ,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAA;QAErC,IAAI,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC;YACrC,EAAE,GAAG,MAAM,CAAC,CAAC,QAAQ,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAA;QACjC,CAAC;aAAM,CAAC;YACN,yBAAyB;YACzB,IAAI,CAAC,IAAI,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;YACrE,EAAE,GAAG,IAAI,WAAW,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAA;QAC7D,CAAC;QAED,IAAI,IAAI,CAAC,UAAU,KAAK,aAAa,IAAI,IAAI,CAAC,UAAU,KAAK,SAAS,EAAE,CAAC;YACvE,yCAAyC;YACzC,IAAM,GAAG,GAAG,IAAI,CAAC,UAAU,KAAK,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,CAAA;YACtD,IAAI,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,iBAAiB,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAA;YACjD,IAAI,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,iBAAiB,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAA;YACjD,IAAI,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,iBAAiB,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAA;YAEjD,mCAAmC;YACnC,IAAI,GAAG,GAAG,IAAI;gBAAE,GAAG,GAAG,GAAG,CAAA;YACzB,IAAI,GAAG,GAAG,IAAI;gBAAE,GAAG,GAAG,GAAG,CAAA;YACzB,IAAI,GAAG,GAAG,IAAI;gBAAE,GAAG,GAAG,GAAG,CAAA;YAEzB,IAAI,CAAC,GAAG,CAAC,wBAAwB,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAA;YACxE,IAAI,CAAC,GAAG,CAAC,wBAAwB,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAA;YACxE,IAAI,CAAC,GAAG,CAAC,wBAAwB,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAA;QAC1E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,KAAK,YAAY,EAAE,CAAC;YAC5C,IAAI,CAAC,GAAG,CAAC,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAA;YAC9D,IAAI,CAAC,GAAG,CAAC,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAA;YAC9D,IAAI,CAAC,GAAG,CAAC,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAA;QAChE,CAAC;QAED,KAAK,CAAC,GAAG,CACP,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,EACrB,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,EACrB,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CACtB,CAAA;QAED,OAAO,KAAK,CAAA;IACd,CAAC;IAED;;;;OAIG;IACH,yCAAS,GAAT,UAAU,SAAiB;QACzB,IAAM,MAAM,GAAkB,EAAE,CAAA;QAEhC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;YACpC,MAAM,CAAC,IAAI,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAC,GAAG,SAAS,CAAC,CAAC,CAAA;QAC3C,CAAC;QAED,OAAO,MAAM,CAAA;IACf,CAAC;IAED;;;OAGG;IACH,yCAAS,GAAT,UAAU,MAAyB;QACjC,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,IAAI,WAAW,CAAC,CAAC,CAAC,EAAlB,CAAkB,CAAC,CAAA;QAClD,IAAI,CAAC,uBAAuB,GAAG,IAAI,CAAA;IACrC,CAAC;IAED;;;OAGG;IACH,yCAAS,GAAT,UAAU,MAAe;QACvB,IAAI,IAAI,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;YAC5B,OAAM;QACR,CAAC;QAED,IAAI,CAAC,OAAO,GAAG,MAAM,CAAA;QACrB,IAAI,CAAC,uBAAuB,GAAG,IAAI,CAAA;IACrC,CAAC;IAED;;;OAGG;IACH,4CAAY,GAAZ,UAAa,SAA8B;QACzC,IAAI,CAAC,UAAU,GAAG,SAAS,CAAA;IAC7B,CAAC;IAED;;;OAGG;IACH,0CAAU,GAAV,UAAW,OAAe;QACxB,IAAI,CAAC,QAAQ,GAAG,OAAO,CAAA;IACzB,CAAC;IAED;;;;OAIG;IACH,yCAAS,GAAT,UAAU,MAAoB;QAC5B,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,UAAA,KAAK;YACnC,IAAM,gBAAgB,GAAG,IAAI,WAAW,EAAE,CAAA;YAC1C,gBAAgB,CAAC,IAAI,CAAC,KAAK,CAAC,CAAA;YAC5B,gBAAgB,CAAC,aAAa,CAAC,MAAM,CAAC,CAAA;YACtC,OAAO,gBAAgB,CAAA;QACzB,CAAC,CAAC,CAAA;QACF,IAAI,CAAC,uBAAuB,GAAG,IAAI,CAAA;QACnC,OAAO,IAAI,CAAA;IACb,CAAC;IAED;;;OAGG;IACO,oDAAoB,GAA9B;QACE,IAAI,IAAI,CAAC,OAAO,CAAC,MAAM,KAAK,CAAC,EAAE,CAAC;YAC9B,OAAO,IAAI,SAAS,EAAE,CAAA;QACxB,CAAC;QAED,IAAM,GAAG,GAAG,IAAI,SAAS,EAAE,CAAA;QAC3B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,UAAA,KAAK;YACxB,GAAG,CAAC,aAAa,CAAC,KAAK,CAAC,CAAA;QAC1B,CAAC,CAAC,CAAA;QACF,OAAO,GAAG,CAAA;IACZ,CAAC;IACH,4BAAC;AAAD,CAAC,AAlSD,CAA2C,WAAW,GAkSrD"}
@@ -0,0 +1,69 @@
1
+ import { AcGePoint3dLike } from '../math';
2
+ /**
3
+ * Type for NURBS knot parameterization
4
+ */
5
+ export type AcGeKnotParameterizationType = 'Uniform' | 'Chord' | 'SqrtChord';
6
+ /**
7
+ * A NURBS curve implementation that can be used by other curve classes
8
+ */
9
+ export declare class AcGeNurbsCurve {
10
+ private _degree;
11
+ private _knots;
12
+ private _controlPoints;
13
+ private _weights;
14
+ constructor(degree: number, knots: number[], controlPoints: AcGePoint3dLike[], weights?: number[]);
15
+ /**
16
+ * Get the degree of the NURBS curve
17
+ */
18
+ degree(): number;
19
+ /**
20
+ * Get the knot vector
21
+ */
22
+ knots(): number[];
23
+ /**
24
+ * Get the control points
25
+ */
26
+ controlPoints(): AcGePoint3dLike[];
27
+ /**
28
+ * Get the weights
29
+ */
30
+ weights(): number[];
31
+ /**
32
+ * Calculate a point on the curve at parameter u
33
+ */
34
+ point(u: number): number[];
35
+ /**
36
+ * Calculate curve length using numerical integration
37
+ */
38
+ length(): number;
39
+ /**
40
+ * Create a NURBS curve from control points and knots
41
+ */
42
+ static byKnotsControlPointsWeights(degree: number, knots: number[], controlPoints: AcGePoint3dLike[], weights?: number[]): AcGeNurbsCurve;
43
+ /**
44
+ * Create a NURBS curve from fit points using interpolation
45
+ */
46
+ static byPoints(points: number[][], degree: number, parameterization?: AcGeKnotParameterizationType): AcGeNurbsCurve;
47
+ /**
48
+ * Get the valid parameter range for this curve
49
+ */
50
+ getParameterRange(): {
51
+ start: number;
52
+ end: number;
53
+ };
54
+ /**
55
+ * Get points along the curve
56
+ * @param divisions - Number of divisions to create
57
+ * @returns Array of points along the curve
58
+ */
59
+ getPoints(divisions: number): number[][];
60
+ /**
61
+ * Check if the curve is closed by comparing start and end points
62
+ */
63
+ isClosed(tolerance?: number): boolean;
64
+ /**
65
+ * Create a closed NURBS curve using Catmull-Rom interpolation for smooth closure
66
+ */
67
+ static createClosedCurve(points: AcGePoint3dLike[], degree: number, parameterization?: AcGeKnotParameterizationType): AcGeNurbsCurve;
68
+ }
69
+ //# sourceMappingURL=AcGeNurbsCurve.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"AcGeNurbsCurve.d.ts","sourceRoot":"","sources":["../../src/geometry/AcGeNurbsCurve.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,eAAe,EAAE,MAAM,SAAS,CAAA;AAUzC;;GAEG;AACH,MAAM,MAAM,4BAA4B,GAAG,SAAS,GAAG,OAAO,GAAG,WAAW,CAAA;AAE5E;;GAEG;AACH,qBAAa,cAAc;IACzB,OAAO,CAAC,OAAO,CAAQ;IACvB,OAAO,CAAC,MAAM,CAAU;IACxB,OAAO,CAAC,cAAc,CAAmB;IACzC,OAAO,CAAC,QAAQ,CAAU;gBAGxB,MAAM,EAAE,MAAM,EACd,KAAK,EAAE,MAAM,EAAE,EACf,aAAa,EAAE,eAAe,EAAE,EAChC,OAAO,CAAC,EAAE,MAAM,EAAE;IAUpB;;OAEG;IACH,MAAM,IAAI,MAAM;IAIhB;;OAEG;IACH,KAAK,IAAI,MAAM,EAAE;IAIjB;;OAEG;IACH,aAAa,IAAI,eAAe,EAAE;IAIlC;;OAEG;IACH,OAAO,IAAI,MAAM,EAAE;IAInB;;OAEG;IACH,KAAK,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE;IAY1B;;OAEG;IACH,MAAM,IAAI,MAAM;IAWhB;;OAEG;IACH,MAAM,CAAC,2BAA2B,CAChC,MAAM,EAAE,MAAM,EACd,KAAK,EAAE,MAAM,EAAE,EACf,aAAa,EAAE,eAAe,EAAE,EAChC,OAAO,CAAC,EAAE,MAAM,EAAE,GACjB,cAAc;IAIjB;;OAEG;IACH,MAAM,CAAC,QAAQ,CACb,MAAM,EAAE,MAAM,EAAE,EAAE,EAClB,MAAM,EAAE,MAAM,EACd,gBAAgB,GAAE,4BAAwC,GACzD,cAAc;IAuBjB;;OAEG;IACH,iBAAiB,IAAI;QAAE,KAAK,EAAE,MAAM,CAAC;QAAC,GAAG,EAAE,MAAM,CAAA;KAAE;IAMnD;;;;OAIG;IACH,SAAS,CAAC,SAAS,EAAE,MAAM,GAAG,MAAM,EAAE,EAAE;IAYxC;;OAEG;IACH,QAAQ,CAAC,SAAS,GAAE,MAAa,GAAG,OAAO;IAY3C;;OAEG;IACH,MAAM,CAAC,iBAAiB,CACtB,MAAM,EAAE,eAAe,EAAE,EACzB,MAAM,EAAE,MAAM,EACd,gBAAgB,GAAE,4BAAsC,GACvD,cAAc;CAuBlB"}
@@ -0,0 +1,166 @@
1
+ var __read = (this && this.__read) || function (o, n) {
2
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
3
+ if (!m) return o;
4
+ var i = m.call(o), r, ar = [], e;
5
+ try {
6
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
7
+ }
8
+ catch (error) { e = { error: error }; }
9
+ finally {
10
+ try {
11
+ if (r && !r.done && (m = i["return"])) m.call(i);
12
+ }
13
+ finally { if (e) throw e.error; }
14
+ }
15
+ return ar;
16
+ };
17
+ var __spreadArray = (this && this.__spreadArray) || function (to, from, pack) {
18
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
19
+ if (ar || !(i in from)) {
20
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
21
+ ar[i] = from[i];
22
+ }
23
+ }
24
+ return to.concat(ar || Array.prototype.slice.call(from));
25
+ };
26
+ import { calculateCurveLength, evaluateNurbsPoint, generateChordKnots, generateSqrtChordKnots, generateUniformKnots } from '../util';
27
+ import { AcGeCatmullRomCurve3d } from './AcGeCatmullRomCurve3d';
28
+ /**
29
+ * A NURBS curve implementation that can be used by other curve classes
30
+ */
31
+ var AcGeNurbsCurve = /** @class */ (function () {
32
+ function AcGeNurbsCurve(degree, knots, controlPoints, weights) {
33
+ this._degree = degree;
34
+ this._knots = __spreadArray([], __read(knots), false);
35
+ this._controlPoints = controlPoints.map(function (p) { return ({ x: p.x, y: p.y, z: p.z }); });
36
+ this._weights = weights
37
+ ? __spreadArray([], __read(weights), false) : new Array(controlPoints.length).fill(1.0);
38
+ }
39
+ /**
40
+ * Get the degree of the NURBS curve
41
+ */
42
+ AcGeNurbsCurve.prototype.degree = function () {
43
+ return this._degree;
44
+ };
45
+ /**
46
+ * Get the knot vector
47
+ */
48
+ AcGeNurbsCurve.prototype.knots = function () {
49
+ return __spreadArray([], __read(this._knots), false);
50
+ };
51
+ /**
52
+ * Get the control points
53
+ */
54
+ AcGeNurbsCurve.prototype.controlPoints = function () {
55
+ return this._controlPoints.map(function (p) { return ({ x: p.x, y: p.y, z: p.z }); });
56
+ };
57
+ /**
58
+ * Get the weights
59
+ */
60
+ AcGeNurbsCurve.prototype.weights = function () {
61
+ return __spreadArray([], __read(this._weights), false);
62
+ };
63
+ /**
64
+ * Calculate a point on the curve at parameter u
65
+ */
66
+ AcGeNurbsCurve.prototype.point = function (u) {
67
+ // Convert AcGePoint3dLike[] to number[][] for utility functions
68
+ var controlPointsArray = this._controlPoints.map(function (p) { return [p.x, p.y, p.z]; });
69
+ return evaluateNurbsPoint(u, this._degree, this._knots, controlPointsArray, this._weights);
70
+ };
71
+ /**
72
+ * Calculate curve length using numerical integration
73
+ */
74
+ AcGeNurbsCurve.prototype.length = function () {
75
+ // Convert AcGePoint3dLike[] to number[][] for utility functions
76
+ var controlPointsArray = this._controlPoints.map(function (p) { return [p.x, p.y, p.z]; });
77
+ return calculateCurveLength(this._degree, this._knots, controlPointsArray, this._weights);
78
+ };
79
+ /**
80
+ * Create a NURBS curve from control points and knots
81
+ */
82
+ AcGeNurbsCurve.byKnotsControlPointsWeights = function (degree, knots, controlPoints, weights) {
83
+ return new AcGeNurbsCurve(degree, knots, controlPoints, weights);
84
+ };
85
+ /**
86
+ * Create a NURBS curve from fit points using interpolation
87
+ */
88
+ AcGeNurbsCurve.byPoints = function (points, degree, parameterization) {
89
+ if (parameterization === void 0) { parameterization = 'Uniform'; }
90
+ // Generate knots based on parameterization type
91
+ var knots;
92
+ switch (parameterization) {
93
+ case 'Chord':
94
+ knots = generateChordKnots(degree, points);
95
+ break;
96
+ case 'SqrtChord':
97
+ knots = generateSqrtChordKnots(degree, points);
98
+ break;
99
+ case 'Uniform':
100
+ default:
101
+ knots = generateUniformKnots(degree, points.length);
102
+ break;
103
+ }
104
+ // Convert number[][] to AcGePoint3dLike[] for control points
105
+ var controlPoints = points.map(function (p) { return ({ x: p[0], y: p[1], z: p[2] }); });
106
+ var weights = new Array(controlPoints.length).fill(1.0);
107
+ return new AcGeNurbsCurve(degree, knots, controlPoints, weights);
108
+ };
109
+ /**
110
+ * Get the valid parameter range for this curve
111
+ */
112
+ AcGeNurbsCurve.prototype.getParameterRange = function () {
113
+ var startParam = this._knots[this._degree];
114
+ var endParam = this._knots[this._knots.length - this._degree - 1];
115
+ return { start: startParam, end: endParam };
116
+ };
117
+ /**
118
+ * Get points along the curve
119
+ * @param divisions - Number of divisions to create
120
+ * @returns Array of points along the curve
121
+ */
122
+ AcGeNurbsCurve.prototype.getPoints = function (divisions) {
123
+ var points = [];
124
+ var _a = this.getParameterRange(), start = _a.start, end = _a.end;
125
+ for (var i = 0; i <= divisions; i++) {
126
+ var t = start + (end - start) * (i / divisions);
127
+ points.push(this.point(t));
128
+ }
129
+ return points;
130
+ };
131
+ /**
132
+ * Check if the curve is closed by comparing start and end points
133
+ */
134
+ AcGeNurbsCurve.prototype.isClosed = function (tolerance) {
135
+ if (tolerance === void 0) { tolerance = 1e-6; }
136
+ var _a = this.getParameterRange(), start = _a.start, end = _a.end;
137
+ var startPoint = this.point(start);
138
+ var endPoint = this.point(end);
139
+ var dx = startPoint[0] - endPoint[0];
140
+ var dy = startPoint[1] - endPoint[1];
141
+ var dz = startPoint[2] - endPoint[2];
142
+ return Math.sqrt(dx * dx + dy * dy + dz * dz) < tolerance;
143
+ };
144
+ /**
145
+ * Create a closed NURBS curve using Catmull-Rom interpolation for smooth closure
146
+ */
147
+ AcGeNurbsCurve.createClosedCurve = function (points, degree, parameterization) {
148
+ if (parameterization === void 0) { parameterization = 'Chord'; }
149
+ if (points.length < 4) {
150
+ throw new Error('At least 4 points are required for a closed NURBS curve');
151
+ }
152
+ // Create a closed Catmull-Rom curve
153
+ var catmullRomCurve = new AcGeCatmullRomCurve3d(points, true, 'centripetal');
154
+ // Get points along the curve for NURBS interpolation
155
+ // Use more divisions for smoother curve
156
+ var divisions = Math.max(50, points.length * 2);
157
+ var curvePoints = catmullRomCurve.getPoints(divisions);
158
+ // Convert AcGePoint3d[] back to number[][]
159
+ var nurbsPoints = curvePoints.map(function (point) { return [point.x, point.y, point.z]; });
160
+ // Create NURBS curve from the interpolated points
161
+ return AcGeNurbsCurve.byPoints(nurbsPoints, degree, parameterization);
162
+ };
163
+ return AcGeNurbsCurve;
164
+ }());
165
+ export { AcGeNurbsCurve };
166
+ //# sourceMappingURL=AcGeNurbsCurve.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"AcGeNurbsCurve.js","sourceRoot":"","sources":["../../src/geometry/AcGeNurbsCurve.ts"],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;AACA,OAAO,EACL,oBAAoB,EACpB,kBAAkB,EAClB,kBAAkB,EAClB,sBAAsB,EACtB,oBAAoB,EACrB,MAAM,SAAS,CAAA;AAChB,OAAO,EAAE,qBAAqB,EAAE,MAAM,yBAAyB,CAAA;AAO/D;;GAEG;AACH;IAME,wBACE,MAAc,EACd,KAAe,EACf,aAAgC,EAChC,OAAkB;QAElB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAA;QACrB,IAAI,CAAC,MAAM,4BAAO,KAAK,SAAC,CAAA;QACxB,IAAI,CAAC,cAAc,GAAG,aAAa,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAA5B,CAA4B,CAAC,CAAA;QAC1E,IAAI,CAAC,QAAQ,GAAG,OAAO;YACrB,CAAC,0BAAK,OAAO,UACb,CAAC,CAAC,IAAI,KAAK,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;IAC/C,CAAC;IAED;;OAEG;IACH,+BAAM,GAAN;QACE,OAAO,IAAI,CAAC,OAAO,CAAA;IACrB,CAAC;IAED;;OAEG;IACH,8BAAK,GAAL;QACE,gCAAW,IAAI,CAAC,MAAM,UAAC;IACzB,CAAC;IAED;;OAEG;IACH,sCAAa,GAAb;QACE,OAAO,IAAI,CAAC,cAAc,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAA5B,CAA4B,CAAC,CAAA;IACnE,CAAC;IAED;;OAEG;IACH,gCAAO,GAAP;QACE,gCAAW,IAAI,CAAC,QAAQ,UAAC;IAC3B,CAAC;IAED;;OAEG;IACH,8BAAK,GAAL,UAAM,CAAS;QACb,gEAAgE;QAChE,IAAM,kBAAkB,GAAG,IAAI,CAAC,cAAc,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAf,CAAe,CAAC,CAAA;QACxE,OAAO,kBAAkB,CACvB,CAAC,EACD,IAAI,CAAC,OAAO,EACZ,IAAI,CAAC,MAAM,EACX,kBAAkB,EAClB,IAAI,CAAC,QAAQ,CACd,CAAA;IACH,CAAC;IAED;;OAEG;IACH,+BAAM,GAAN;QACE,gEAAgE;QAChE,IAAM,kBAAkB,GAAG,IAAI,CAAC,cAAc,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAf,CAAe,CAAC,CAAA;QACxE,OAAO,oBAAoB,CACzB,IAAI,CAAC,OAAO,EACZ,IAAI,CAAC,MAAM,EACX,kBAAkB,EAClB,IAAI,CAAC,QAAQ,CACd,CAAA;IACH,CAAC;IAED;;OAEG;IACI,0CAA2B,GAAlC,UACE,MAAc,EACd,KAAe,EACf,aAAgC,EAChC,OAAkB;QAElB,OAAO,IAAI,cAAc,CAAC,MAAM,EAAE,KAAK,EAAE,aAAa,EAAE,OAAO,CAAC,CAAA;IAClE,CAAC;IAED;;OAEG;IACI,uBAAQ,GAAf,UACE,MAAkB,EAClB,MAAc,EACd,gBAA0D;QAA1D,iCAAA,EAAA,4BAA0D;QAE1D,gDAAgD;QAChD,IAAI,KAAe,CAAA;QACnB,QAAQ,gBAAgB,EAAE,CAAC;YACzB,KAAK,OAAO;gBACV,KAAK,GAAG,kBAAkB,CAAC,MAAM,EAAE,MAAM,CAAC,CAAA;gBAC1C,MAAK;YACP,KAAK,WAAW;gBACd,KAAK,GAAG,sBAAsB,CAAC,MAAM,EAAE,MAAM,CAAC,CAAA;gBAC9C,MAAK;YACP,KAAK,SAAS,CAAC;YACf;gBACE,KAAK,GAAG,oBAAoB,CAAC,MAAM,EAAE,MAAM,CAAC,MAAM,CAAC,CAAA;gBACnD,MAAK;QACT,CAAC;QAED,6DAA6D;QAC7D,IAAM,aAAa,GAAG,MAAM,CAAC,GAAG,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAA/B,CAA+B,CAAC,CAAA;QACtE,IAAM,OAAO,GAAG,IAAI,KAAK,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;QAEzD,OAAO,IAAI,cAAc,CAAC,MAAM,EAAE,KAAK,EAAE,aAAa,EAAE,OAAO,CAAC,CAAA;IAClE,CAAC;IAED;;OAEG;IACH,0CAAiB,GAAjB;QACE,IAAM,UAAU,GAAG,IAAI,CAAC,MAAM,CAAC,IAAI,CAAC,OAAO,CAAC,CAAA;QAC5C,IAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,MAAM,GAAG,IAAI,CAAC,OAAO,GAAG,CAAC,CAAC,CAAA;QACnE,OAAO,EAAE,KAAK,EAAE,UAAU,EAAE,GAAG,EAAE,QAAQ,EAAE,CAAA;IAC7C,CAAC;IAED;;;;OAIG;IACH,kCAAS,GAAT,UAAU,SAAiB;QACzB,IAAM,MAAM,GAAe,EAAE,CAAA;QACvB,IAAA,KAAiB,IAAI,CAAC,iBAAiB,EAAE,EAAvC,KAAK,WAAA,EAAE,GAAG,SAA6B,CAAA;QAE/C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;YACpC,IAAM,CAAC,GAAG,KAAK,GAAG,CAAC,GAAG,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,CAAC,CAAA;YACjD,MAAM,CAAC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAA;QAC5B,CAAC;QAED,OAAO,MAAM,CAAA;IACf,CAAC;IAED;;OAEG;IACH,iCAAQ,GAAR,UAAS,SAAwB;QAAxB,0BAAA,EAAA,gBAAwB;QACzB,IAAA,KAAiB,IAAI,CAAC,iBAAiB,EAAE,EAAvC,KAAK,WAAA,EAAE,GAAG,SAA6B,CAAA;QAC/C,IAAM,UAAU,GAAG,IAAI,CAAC,KAAK,CAAC,KAAK,CAAC,CAAA;QACpC,IAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,CAAC,CAAA;QAEhC,IAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAA;QACtC,IAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAA;QACtC,IAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAA;QAEtC,OAAO,IAAI,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC,GAAG,SAAS,CAAA;IAC3D,CAAC;IAED;;OAEG;IACI,gCAAiB,GAAxB,UACE,MAAyB,EACzB,MAAc,EACd,gBAAwD;QAAxD,iCAAA,EAAA,0BAAwD;QAExD,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;YACtB,MAAM,IAAI,KAAK,CAAC,yDAAyD,CAAC,CAAA;QAC5E,CAAC;QAED,oCAAoC;QACpC,IAAM,eAAe,GAAG,IAAI,qBAAqB,CAC/C,MAAM,EACN,IAAI,EACJ,aAAa,CACd,CAAA;QAED,qDAAqD;QACrD,wCAAwC;QACxC,IAAM,SAAS,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC,CAAA;QACjD,IAAM,WAAW,GAAG,eAAe,CAAC,SAAS,CAAC,SAAS,CAAC,CAAA;QAExD,2CAA2C;QAC3C,IAAM,WAAW,GAAG,WAAW,CAAC,GAAG,CAAC,UAAA,KAAK,IAAI,OAAA,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,CAAC,EAA3B,CAA2B,CAAC,CAAA;QAEzE,kDAAkD;QAClD,OAAO,cAAc,CAAC,QAAQ,CAAC,WAAW,EAAE,MAAM,EAAE,gBAAgB,CAAC,CAAA;IACvE,CAAC;IACH,qBAAC;AAAD,CAAC,AA9LD,IA8LC"}