@mlightcad/data-model 1.3.9 → 1.3.10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/data-model.js
CHANGED
|
@@ -803,8 +803,8 @@ var Go = { exports: {} };
|
|
|
803
803
|
"warn",
|
|
804
804
|
"error"
|
|
805
805
|
], h = {}, c = null;
|
|
806
|
-
function g(z,
|
|
807
|
-
var F = z[
|
|
806
|
+
function g(z, D) {
|
|
807
|
+
var F = z[D];
|
|
808
808
|
if (typeof F.bind == "function")
|
|
809
809
|
return F.bind(z);
|
|
810
810
|
try {
|
|
@@ -822,9 +822,9 @@ var Go = { exports: {} };
|
|
|
822
822
|
return z === "debug" && (z = "log"), typeof console === e ? !1 : z === "trace" && s ? x : console[z] !== void 0 ? g(console, z) : console.log !== void 0 ? g(console, "log") : t;
|
|
823
823
|
}
|
|
824
824
|
function S() {
|
|
825
|
-
for (var z = this.getLevel(),
|
|
826
|
-
var F = o[
|
|
827
|
-
this[F] =
|
|
825
|
+
for (var z = this.getLevel(), D = 0; D < o.length; D++) {
|
|
826
|
+
var F = o[D];
|
|
827
|
+
this[F] = D < z ? t : this.methodFactory(F, z, this.name);
|
|
828
828
|
}
|
|
829
829
|
if (this.log = this.debug, typeof console === e && z < this.levels.SILENT)
|
|
830
830
|
return "No console available for logging";
|
|
@@ -834,10 +834,10 @@ var Go = { exports: {} };
|
|
|
834
834
|
typeof console !== e && (S.call(this), this[z].apply(this, arguments));
|
|
835
835
|
};
|
|
836
836
|
}
|
|
837
|
-
function E(z,
|
|
837
|
+
function E(z, D, F) {
|
|
838
838
|
return f(z) || b.apply(this, arguments);
|
|
839
839
|
}
|
|
840
|
-
function M(z,
|
|
840
|
+
function M(z, D) {
|
|
841
841
|
var F = this, dt, vt, ot, W = "loglevel";
|
|
842
842
|
typeof z == "string" ? W += ":" + z : typeof z == "symbol" && (W = void 0);
|
|
843
843
|
function ut(bt) {
|
|
@@ -897,7 +897,7 @@ var Go = { exports: {} };
|
|
|
897
897
|
WARN: 3,
|
|
898
898
|
ERROR: 4,
|
|
899
899
|
SILENT: 5
|
|
900
|
-
}, F.methodFactory =
|
|
900
|
+
}, F.methodFactory = D || E, F.getLevel = function() {
|
|
901
901
|
return ot ?? vt ?? dt;
|
|
902
902
|
}, F.setLevel = function(bt, Ot) {
|
|
903
903
|
return ot = Yt(bt), Ot !== !1 && ut(ot), S.call(F);
|
|
@@ -922,11 +922,11 @@ var Go = { exports: {} };
|
|
|
922
922
|
c = new M(), c.getLogger = function(z) {
|
|
923
923
|
if (typeof z != "symbol" && typeof z != "string" || z === "")
|
|
924
924
|
throw new TypeError("You must supply a name when creating a logger.");
|
|
925
|
-
var
|
|
926
|
-
return
|
|
925
|
+
var D = h[z];
|
|
926
|
+
return D || (D = h[z] = new M(
|
|
927
927
|
z,
|
|
928
928
|
c.methodFactory
|
|
929
|
-
)),
|
|
929
|
+
)), D;
|
|
930
930
|
};
|
|
931
931
|
var O = typeof window !== e ? window.log : void 0;
|
|
932
932
|
return c.noConflict = function() {
|
|
@@ -2241,8 +2241,8 @@ function xt(i, t) {
|
|
|
2241
2241
|
}, [{}]);
|
|
2242
2242
|
}(i, s.debug), c = !1, g = h.length - 1;
|
|
2243
2243
|
for (; !St(e, 0, "EOF"); ) {
|
|
2244
|
-
let x = function(
|
|
2245
|
-
return
|
|
2244
|
+
let x = function(D, F, dt) {
|
|
2245
|
+
return D.find((vt, ot) => {
|
|
2246
2246
|
var W;
|
|
2247
2247
|
return ot >= dt && ((W = vt[F]) == null ? void 0 : W.length);
|
|
2248
2248
|
});
|
|
@@ -2258,7 +2258,7 @@ function xt(i, t) {
|
|
|
2258
2258
|
break;
|
|
2259
2259
|
}
|
|
2260
2260
|
if (b) {
|
|
2261
|
-
let [
|
|
2261
|
+
let [D, F] = function(dt, vt) {
|
|
2262
2262
|
let ot = vt.split(".");
|
|
2263
2263
|
if (!ot.length) throw Error("[parserGenerator::getObjectByPath] Invalid empty path");
|
|
2264
2264
|
let W = dt;
|
|
@@ -2268,7 +2268,7 @@ function xt(i, t) {
|
|
|
2268
2268
|
}
|
|
2269
2269
|
return [W, Ai(ot[ot.length - 1])];
|
|
2270
2270
|
}(o, b);
|
|
2271
|
-
M && !O ? (Object.prototype.hasOwnProperty.call(
|
|
2271
|
+
M && !O ? (Object.prototype.hasOwnProperty.call(D, F) || (D[F] = []), D[F].push(z)) : D[F] = z;
|
|
2272
2272
|
}
|
|
2273
2273
|
S.pushContext && (g -= 1), c = !0, e = s.next();
|
|
2274
2274
|
}
|
|
@@ -3753,17 +3753,17 @@ class Xc {
|
|
|
3753
3753
|
o = E;
|
|
3754
3754
|
const z = (h + s.decode(M, { stream: !0 })).split(/\r?\n/);
|
|
3755
3755
|
h = z.pop() ?? "";
|
|
3756
|
-
for (let
|
|
3757
|
-
const F = z[
|
|
3758
|
-
if (F === "SECTION" && ((f = z[
|
|
3756
|
+
for (let D = 0; D < z.length; D++) {
|
|
3757
|
+
const F = z[D].trim();
|
|
3758
|
+
if (F === "SECTION" && ((f = z[D + 2]) == null ? void 0 : f.trim()) === "HEADER")
|
|
3759
3759
|
x = !0;
|
|
3760
3760
|
else if (F === "ENDSEC" && x)
|
|
3761
3761
|
return { version: c, encoding: g };
|
|
3762
3762
|
if (x && F === "$ACADVER") {
|
|
3763
|
-
const dt = (S = z[
|
|
3763
|
+
const dt = (S = z[D + 2]) == null ? void 0 : S.trim();
|
|
3764
3764
|
dt && (c = new Ci(dt));
|
|
3765
3765
|
} else if (x && F === "$DWGCODEPAGE") {
|
|
3766
|
-
const dt = (b = z[
|
|
3766
|
+
const dt = (b = z[D + 2]) == null ? void 0 : b.trim();
|
|
3767
3767
|
if (dt) {
|
|
3768
3768
|
const vt = Xo[dt];
|
|
3769
3769
|
g = ou(vt);
|
|
@@ -4731,8 +4731,8 @@ const Oi = class mh {
|
|
|
4731
4731
|
* @returns Return this matrix
|
|
4732
4732
|
*/
|
|
4733
4733
|
multiplyMatrices(t, e) {
|
|
4734
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], E = s[2], M = s[5], O = s[8], z = o[0],
|
|
4735
|
-
return h[0] = c * z + g * dt + x * W, h[3] = c *
|
|
4734
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], E = s[2], M = s[5], O = s[8], z = o[0], D = o[3], F = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
|
|
4735
|
+
return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * z + S * dt + b * W, h[4] = f * D + S * vt + b * ut, h[7] = f * F + S * ot + b * st, h[2] = E * z + M * dt + O * W, h[5] = E * D + M * vt + O * ut, h[8] = E * F + M * ot + O * st, this;
|
|
4736
4736
|
}
|
|
4737
4737
|
/**
|
|
4738
4738
|
* Multiply every component of the matrix by the scalar value s.
|
|
@@ -5101,7 +5101,7 @@ function yd(i, t, e, s) {
|
|
|
5101
5101
|
s
|
|
5102
5102
|
);
|
|
5103
5103
|
for (let z = 1; z <= x; z++) {
|
|
5104
|
-
const
|
|
5104
|
+
const D = h + z * f, F = Xs(D, i, t, e, s), dt = F[0] - S[0], vt = F[1] - S[1], ot = F[2] - S[2];
|
|
5105
5105
|
g += Math.sqrt(dt * dt + vt * vt + ot * ot), S = F;
|
|
5106
5106
|
}
|
|
5107
5107
|
const b = Xs(
|
|
@@ -5149,14 +5149,14 @@ class ln {
|
|
|
5149
5149
|
return;
|
|
5150
5150
|
}
|
|
5151
5151
|
if (b !== z || x !== E || f !== M || S !== O) {
|
|
5152
|
-
let
|
|
5152
|
+
let D = 1 - g;
|
|
5153
5153
|
const F = x * E + f * M + S * O + b * z, dt = F >= 0 ? 1 : -1, vt = 1 - F * F;
|
|
5154
5154
|
if (vt > Number.EPSILON) {
|
|
5155
5155
|
const W = Math.sqrt(vt), ut = Math.atan2(W, F * dt);
|
|
5156
|
-
|
|
5156
|
+
D = Math.sin(D * ut) / W, g = Math.sin(g * ut) / W;
|
|
5157
5157
|
}
|
|
5158
5158
|
const ot = g * dt;
|
|
5159
|
-
if (x = x *
|
|
5159
|
+
if (x = x * D + E * ot, f = f * D + M * ot, S = S * D + O * ot, b = b * D + z * ot, D === 1 - g) {
|
|
5160
5160
|
const W = 1 / Math.sqrt(x * x + f * f + S * S + b * b);
|
|
5161
5161
|
x *= W, f *= W, S *= W, b *= W;
|
|
5162
5162
|
}
|
|
@@ -6173,8 +6173,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6173
6173
|
* @param n43 Input element in the forth row and the third column
|
|
6174
6174
|
* @param n44 Input element in the forth row and the forth column
|
|
6175
6175
|
*/
|
|
6176
|
-
constructor(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z,
|
|
6177
|
-
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && E != null && M != null && O != null && z != null &&
|
|
6176
|
+
constructor(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z, D) {
|
|
6177
|
+
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && E != null && M != null && O != null && z != null && D != null && this.set(
|
|
6178
6178
|
t,
|
|
6179
6179
|
e,
|
|
6180
6180
|
s,
|
|
@@ -6190,7 +6190,7 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6190
6190
|
M,
|
|
6191
6191
|
O,
|
|
6192
6192
|
z,
|
|
6193
|
-
|
|
6193
|
+
D
|
|
6194
6194
|
);
|
|
6195
6195
|
}
|
|
6196
6196
|
/**
|
|
@@ -6214,9 +6214,9 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6214
6214
|
* @param n44 Input element in the forth row and the forth column
|
|
6215
6215
|
* @returns Return this matrix
|
|
6216
6216
|
*/
|
|
6217
|
-
set(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z,
|
|
6217
|
+
set(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z, D) {
|
|
6218
6218
|
const F = this.elements;
|
|
6219
|
-
return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = S, F[10] = b, F[14] = E, F[3] = M, F[7] = O, F[11] = z, F[15] =
|
|
6219
|
+
return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = S, F[10] = b, F[14] = E, F[3] = M, F[7] = O, F[11] = z, F[15] = D, this;
|
|
6220
6220
|
}
|
|
6221
6221
|
/**
|
|
6222
6222
|
* Reset this matrix to the identity matrix.
|
|
@@ -6500,8 +6500,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6500
6500
|
* @returns Return this matrix
|
|
6501
6501
|
*/
|
|
6502
6502
|
multiplyMatrices(t, e) {
|
|
6503
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], E = s[9], M = s[13], O = s[2], z = s[6],
|
|
6504
|
-
return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * ke + f * Mt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = S * ut + b * Wt + E * me + M * Q, h[5] = S * st + b * bt + E * ke + M * Mt, h[9] = S * Vt + b * Ot + E * Jt + M * ae, h[13] = S * Yt + b * de + E * ie + M * lr, h[2] = O * ut + z * Wt +
|
|
6503
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], E = s[9], M = s[13], O = s[2], z = s[6], D = s[10], F = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], Yt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], ke = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], lr = o[15];
|
|
6504
|
+
return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * ke + f * Mt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = S * ut + b * Wt + E * me + M * Q, h[5] = S * st + b * bt + E * ke + M * Mt, h[9] = S * Vt + b * Ot + E * Jt + M * ae, h[13] = S * Yt + b * de + E * ie + M * lr, h[2] = O * ut + z * Wt + D * me + F * Q, h[6] = O * st + z * bt + D * ke + F * Mt, h[10] = O * Vt + z * Ot + D * Jt + F * ae, h[14] = O * Yt + z * de + D * ie + F * lr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * ke + W * Mt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * Yt + vt * de + ot * ie + W * lr, this;
|
|
6505
6505
|
}
|
|
6506
6506
|
/**
|
|
6507
6507
|
* Multiply every component of the matrix by a scalar value s.
|
|
@@ -6517,8 +6517,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6517
6517
|
* @returns Return the determinant of this matrix.
|
|
6518
6518
|
*/
|
|
6519
6519
|
determinant() {
|
|
6520
|
-
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], E = t[10], M = t[14], O = t[3], z = t[7],
|
|
6521
|
-
return O * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + z * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * S - h * x * S) +
|
|
6520
|
+
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], E = t[10], M = t[14], O = t[3], z = t[7], D = t[11], F = t[15];
|
|
6521
|
+
return O * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + z * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * S - h * x * S) + D * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * S - s * f * S) + F * (-o * g * S - e * x * b + e * g * E + o * c * b - s * c * E + s * x * S);
|
|
6522
6522
|
}
|
|
6523
6523
|
/**
|
|
6524
6524
|
* Transposes this matrix.
|
|
@@ -6546,11 +6546,11 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6546
6546
|
* @returns Return this matrix
|
|
6547
6547
|
*/
|
|
6548
6548
|
invert() {
|
|
6549
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], E = t[10], M = t[11], O = t[12], z = t[13],
|
|
6549
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], E = t[10], M = t[11], O = t[12], z = t[13], D = t[14], F = t[15], dt = b * D * f - z * E * f + z * x * M - g * D * M - b * x * F + g * E * F, vt = O * E * f - S * D * f - O * x * M + c * D * M + S * x * F - c * E * F, ot = S * z * f - O * b * f + O * g * M - c * z * M - S * g * F + c * b * F, W = O * b * x - S * z * x - O * g * E + c * z * E + S * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
|
|
6550
6550
|
if (ut === 0)
|
|
6551
6551
|
return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
6552
6552
|
const st = 1 / ut;
|
|
6553
|
-
return t[0] = dt * st, t[1] = (z * E * h - b *
|
|
6553
|
+
return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * M + s * D * M + b * o * F - s * E * F) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = vt * st, t[5] = (S * D * h - O * E * h + O * o * M - e * D * M - S * o * F + e * E * F) * st, t[6] = (O * x * h - c * D * h - O * o * f + e * D * f + c * o * F - e * x * F) * st, t[7] = (c * E * h - S * x * h + S * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (O * b * h - S * z * h - O * s * M + e * z * M + S * s * F - e * b * F) * st, t[10] = (c * z * h - O * g * h + O * s * f - e * z * f - c * s * F + e * g * F) * st, t[11] = (S * g * h - c * b * h - S * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (S * z * o - O * b * o + O * s * E - e * z * E - S * s * D + e * b * D) * st, t[14] = (O * g * o - c * z * o - O * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - S * g * o + S * s * x - e * b * x - c * s * E + e * g * E) * st, this;
|
|
6554
6554
|
}
|
|
6555
6555
|
/**
|
|
6556
6556
|
* Multiply the columns of this matrix by vector v.
|
|
@@ -6664,8 +6664,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
|
|
|
6664
6664
|
* @returns Return this matrix
|
|
6665
6665
|
*/
|
|
6666
6666
|
compose(t, e, s) {
|
|
6667
|
-
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, E = h * f, M = h * S, O = h * b, z = c * S,
|
|
6668
|
-
return o[0] = (1 - (z + F)) * W, o[1] = (M + ot) * W, o[2] = (O - vt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + F)) * ut, o[6] = (
|
|
6667
|
+
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, E = h * f, M = h * S, O = h * b, z = c * S, D = c * b, F = g * b, dt = x * f, vt = x * S, ot = x * b, W = s.x, ut = s.y, st = s.z;
|
|
6668
|
+
return o[0] = (1 - (z + F)) * W, o[1] = (M + ot) * W, o[2] = (O - vt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + F)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (O + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
|
|
6669
6669
|
}
|
|
6670
6670
|
/**
|
|
6671
6671
|
* Decompose this matrix into its position, quaternion and scale components.
|
|
@@ -7994,10 +7994,10 @@ class As extends ks {
|
|
|
7994
7994
|
}), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), S = h(e, s), b = c(f), E = c(S), M = (st, Vt, Yt, Wt) => {
|
|
7995
7995
|
const bt = (Wt - Vt) / (st - Yt), Ot = st * bt + Vt;
|
|
7996
7996
|
return { x: bt, y: Ot };
|
|
7997
|
-
}, O = g.y - b * g.x, z = x.y - E * x.x,
|
|
7998
|
-
Math.pow(t.x -
|
|
7999
|
-
), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t,
|
|
8000
|
-
this.center =
|
|
7997
|
+
}, O = g.y - b * g.x, z = x.y - E * x.x, D = M(b, O, E, z), F = Math.sqrt(
|
|
7998
|
+
Math.pow(t.x - D.x, 2) + Math.pow(t.y - D.y, 2)
|
|
7999
|
+
), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t, D), ot = dt(e, D), W = dt(s, D), ut = W > vt && W < ot || vt > W && vt < ot || ot > W && ot < vt;
|
|
8000
|
+
this.center = D, this.radius = F, this._clockwise = !ut, this._startAngle = vt, this._endAngle = W;
|
|
8001
8001
|
}
|
|
8002
8002
|
/**
|
|
8003
8003
|
* Create circular arc by two points and one bugle factor
|
|
@@ -9465,10 +9465,10 @@ var Sh = { exports: {} };
|
|
|
9465
9465
|
}
|
|
9466
9466
|
return a;
|
|
9467
9467
|
};
|
|
9468
|
-
var
|
|
9468
|
+
var D = function() {
|
|
9469
9469
|
this.length = 0;
|
|
9470
9470
|
};
|
|
9471
|
-
b.List =
|
|
9471
|
+
b.List = D, D.__name__ = ["List"], D.prototype = {
|
|
9472
9472
|
add: function(r) {
|
|
9473
9473
|
var n = [r];
|
|
9474
9474
|
this.h == null ? this.h = n : this.q[1] = n, this.q = n, this.length++;
|
|
@@ -9481,7 +9481,7 @@ var Sh = { exports: {} };
|
|
|
9481
9481
|
isEmpty: function() {
|
|
9482
9482
|
return this.h == null;
|
|
9483
9483
|
},
|
|
9484
|
-
__class__:
|
|
9484
|
+
__class__: D
|
|
9485
9485
|
}, Math.__name__ = ["Math"];
|
|
9486
9486
|
var F = function() {
|
|
9487
9487
|
};
|
|
@@ -9666,7 +9666,7 @@ var Sh = { exports: {} };
|
|
|
9666
9666
|
}
|
|
9667
9667
|
d > 0 && (d == 1 ? this.buf.b += "n" : (this.buf.b += "u", d == null ? this.buf.b += "null" : this.buf.b += "" + d)), this.buf.b += "h";
|
|
9668
9668
|
break;
|
|
9669
|
-
case
|
|
9669
|
+
case D:
|
|
9670
9670
|
this.buf.b += "l";
|
|
9671
9671
|
for (var w = r, I = w.h, A = null; I != null; ) {
|
|
9672
9672
|
var P;
|
|
@@ -9689,8 +9689,8 @@ var Sh = { exports: {} };
|
|
|
9689
9689
|
case bt:
|
|
9690
9690
|
this.buf.b += "q";
|
|
9691
9691
|
for (var B = r, R = B.keys(); R.hasNext(); ) {
|
|
9692
|
-
var
|
|
9693
|
-
this.buf.b += ":",
|
|
9692
|
+
var U = R.next();
|
|
9693
|
+
this.buf.b += ":", U == null ? this.buf.b += "null" : this.buf.b += "" + U, this.serialize(B.h[U]);
|
|
9694
9694
|
}
|
|
9695
9695
|
this.buf.b += "h";
|
|
9696
9696
|
break;
|
|
@@ -9892,10 +9892,10 @@ var Sh = { exports: {} };
|
|
|
9892
9892
|
this.pos++;
|
|
9893
9893
|
var B = this.readDigits(), R = ut.getEnumConstructs(C)[B];
|
|
9894
9894
|
if (R == null) throw new Q("Unknown enum index " + L + "@" + B);
|
|
9895
|
-
var
|
|
9896
|
-
return this.cache.push(
|
|
9895
|
+
var U = this.unserializeEnum(C, R);
|
|
9896
|
+
return this.cache.push(U), U;
|
|
9897
9897
|
case 108:
|
|
9898
|
-
var V = new
|
|
9898
|
+
var V = new D();
|
|
9899
9899
|
for (this.cache.push(V), this.buf; this.buf.charCodeAt(this.pos) != 104; ) V.add(this.unserialize());
|
|
9900
9900
|
return this.pos++, V;
|
|
9901
9901
|
case 98:
|
|
@@ -10727,7 +10727,7 @@ var Sh = { exports: {} };
|
|
|
10727
10727
|
for (var n = null; r-- > 0 && (n = At.queue.pop()) != null; ) n();
|
|
10728
10728
|
return At.queue.isEmpty();
|
|
10729
10729
|
}, At.clear = function() {
|
|
10730
|
-
At.queue = new
|
|
10730
|
+
At.queue = new D();
|
|
10731
10731
|
}, At.f = function() {
|
|
10732
10732
|
var r = At.queue.pop();
|
|
10733
10733
|
r != null && r(), At.queue.isEmpty() || At.continueOnNextLoop();
|
|
@@ -11026,17 +11026,17 @@ var Sh = { exports: {} };
|
|
|
11026
11026
|
for (var P, k = A.dimension, T = l.distanceFunction(r, A.kdPoint.point), L, C = [], B = 0, R = l.dim; B < R; )
|
|
11027
11027
|
B++, C.push(0);
|
|
11028
11028
|
L = C;
|
|
11029
|
-
for (var
|
|
11029
|
+
for (var U, V, Y = function(K, tt) {
|
|
11030
11030
|
u.push(new ee(K, tt)), u.size() > n && u.pop();
|
|
11031
11031
|
}, J = 0, H = l.dim; J < H; ) {
|
|
11032
11032
|
var G = J++;
|
|
11033
11033
|
G == A.dimension ? L[G] = r[G] : L[G] = A.kdPoint.point[G];
|
|
11034
11034
|
}
|
|
11035
|
-
if (
|
|
11035
|
+
if (U = l.distanceFunction(L, A.kdPoint.point), A.right == null && A.left == null) {
|
|
11036
11036
|
(u.size() < n || T < u.peek().item1) && Y(A, T);
|
|
11037
11037
|
return;
|
|
11038
11038
|
}
|
|
11039
|
-
A.right == null ? P = A.left : A.left == null ? P = A.right : r[k] < A.kdPoint.point[k] ? P = A.left : P = A.right, p(P), (u.size() < n || T < u.peek().item1) && Y(A, T), (u.size() < n || Math.abs(
|
|
11039
|
+
A.right == null ? P = A.left : A.left == null ? P = A.right : r[k] < A.kdPoint.point[k] ? P = A.left : P = A.right, p(P), (u.size() < n || T < u.peek().item1) && Y(A, T), (u.size() < n || Math.abs(U) < u.peek().item1) && (P == A.left ? V = A.right : V = A.left, V != null && p(V));
|
|
11040
11040
|
}, d = p;
|
|
11041
11041
|
for (var _ = 0; _ < n; )
|
|
11042
11042
|
_++, u.push(new ee(null, a));
|
|
@@ -11424,7 +11424,7 @@ var Sh = { exports: {} };
|
|
|
11424
11424
|
var d = n.length, p = r(n), _ = p, v;
|
|
11425
11425
|
if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
|
|
11426
11426
|
a = Math.max(a, rt.EPSILON);
|
|
11427
|
-
var w, I, A, P = Lt.identity(d), k = 0, T = [], L, C, B, R,
|
|
11427
|
+
var w, I, A, P = Lt.identity(d), k = 0, T = [], L, C, B, R, U, V, Y = "";
|
|
11428
11428
|
for (I = l(n); k < u; ) {
|
|
11429
11429
|
if (!m.all(m.finite(I))) {
|
|
11430
11430
|
Y = "Gradient has Infinity or NaN";
|
|
@@ -11438,14 +11438,14 @@ var Sh = { exports: {} };
|
|
|
11438
11438
|
Y = "Newton step smaller than tol";
|
|
11439
11439
|
break;
|
|
11440
11440
|
}
|
|
11441
|
-
for (
|
|
11442
|
-
if (T = m.mul(
|
|
11443
|
-
|
|
11441
|
+
for (U = 1, v = m.dot(I, w), L = n; k < u && !(U * V < a); ) {
|
|
11442
|
+
if (T = m.mul(U, w), L = m.add(n, T), _ = r(L), _ - p >= 0.1 * U * v || isNaN(_)) {
|
|
11443
|
+
U *= 0.5, ++k;
|
|
11444
11444
|
continue;
|
|
11445
11445
|
}
|
|
11446
11446
|
break;
|
|
11447
11447
|
}
|
|
11448
|
-
if (
|
|
11448
|
+
if (U * V < a) {
|
|
11449
11449
|
Y = "Line search step size smaller than tol";
|
|
11450
11450
|
break;
|
|
11451
11451
|
}
|
|
@@ -11460,13 +11460,13 @@ var Sh = { exports: {} };
|
|
|
11460
11460
|
var a = n.length, l = r(n);
|
|
11461
11461
|
if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
|
|
11462
11462
|
for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, I, A, P, k = 0, T, L, C, B = 0; B < a; )
|
|
11463
|
-
for (var R = B++,
|
|
11463
|
+
for (var R = B++, U = Math.max(1e-6 * l, 1e-8); ; ) {
|
|
11464
11464
|
if (++k, k > 20) throw new Q("Numerical gradient fails");
|
|
11465
|
-
if (u[R] = n[R] +
|
|
11466
|
-
|
|
11465
|
+
if (u[R] = n[R] + U, d = r(u), u[R] = n[R] - U, p = r(u), u[R] = n[R], isNaN(d) || isNaN(p)) {
|
|
11466
|
+
U /= 16;
|
|
11467
11467
|
continue;
|
|
11468
11468
|
}
|
|
11469
|
-
if (_[R] = (d - p) / (2 *
|
|
11469
|
+
if (_[R] = (d - p) / (2 * U), I = n[R] - U, A = n[R], P = n[R] + U, T = (d - l) / U, L = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(A), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(T - _[R]), Math.abs(L - _[R]), Math.abs(T - L)]) / C, U / C), v > w) U /= 16;
|
|
11470
11470
|
else break;
|
|
11471
11471
|
}
|
|
11472
11472
|
return _;
|
|
@@ -11736,8 +11736,8 @@ var Sh = { exports: {} };
|
|
|
11736
11736
|
return N.rationalSurfacePoint(r, a[0], a[1]);
|
|
11737
11737
|
}, yt.rationalSurfaceClosestParam = function(r, n) {
|
|
11738
11738
|
for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = $.last(r.knotsU), I = r.knotsV[0], A = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), T, L = zt.rationalSurfaceAdaptive(r, new Cr()), C = 1 / 0, B = 0, R = L.points.length; B < R; ) {
|
|
11739
|
-
var
|
|
11740
|
-
Y < C && (C = Y, T = L.uvs[
|
|
11739
|
+
var U = B++, V = L.points[U], Y = m.normSquared(m.sub(n, V));
|
|
11740
|
+
Y < C && (C = Y, T = L.uvs[U]);
|
|
11741
11741
|
}
|
|
11742
11742
|
for (var J = function(jt) {
|
|
11743
11743
|
return N.rationalSurfaceDerivatives(r, jt[0], jt[1], 2);
|
|
@@ -11762,16 +11762,16 @@ var Sh = { exports: {} };
|
|
|
11762
11762
|
var _ = d++, v = u[_][0], w = u[_ + 1][0], I = u[_].slice(1), A = u[_ + 1].slice(1), P = Te.segmentClosestPoint(n, I, A, v, w), k = m.norm(m.sub(n, P.pt));
|
|
11763
11763
|
k < a && (a = k, l = P.u);
|
|
11764
11764
|
}
|
|
11765
|
-
for (var T = 5, L = 0, C, B = 1e-4, R = 5e-4,
|
|
11765
|
+
for (var T = 5, L = 0, C, B = 1e-4, R = 5e-4, U, V = r.knots[0], Y = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
|
|
11766
11766
|
return N.rationalCurveDerivatives(r, X, 2);
|
|
11767
11767
|
}, K = function(X, gt, It) {
|
|
11768
11768
|
var jt = m.dot(gt[1], It), Xt = m.dot(gt[2], It), Dt = m.dot(gt[1], gt[1]), Kt = Xt + Dt;
|
|
11769
11769
|
return X - jt / Kt;
|
|
11770
11770
|
}; L < T; ) {
|
|
11771
|
-
C = G(H),
|
|
11772
|
-
var tt = m.norm(
|
|
11771
|
+
C = G(H), U = m.sub(C[0], n);
|
|
11772
|
+
var tt = m.norm(U), et = m.dot(C[1], U), it = m.norm(C[1]) * tt, ht = et / it, at = tt < B, ct = Math.abs(ht) < R;
|
|
11773
11773
|
if (at && ct) return H;
|
|
11774
|
-
var nt = K(H, C,
|
|
11774
|
+
var nt = K(H, C, U);
|
|
11775
11775
|
nt < V ? J ? nt = Y - (nt - V) : nt = V : nt > Y && (J ? nt = V + (nt - Y) : nt = Y);
|
|
11776
11776
|
var mt = m.norm(m.mul(nt - H, C[1]));
|
|
11777
11777
|
if (mt < B) return H;
|
|
@@ -11928,8 +11928,8 @@ var Sh = { exports: {} };
|
|
|
11928
11928
|
var R = C++;
|
|
11929
11929
|
m.subMulMutate(L, Bt.get(T, R) * p[0][R], _[A][T - R]);
|
|
11930
11930
|
}
|
|
11931
|
-
for (var
|
|
11932
|
-
var Y =
|
|
11931
|
+
for (var U = 1, V = A + 1; U < V; ) {
|
|
11932
|
+
var Y = U++;
|
|
11933
11933
|
m.subMulMutate(L, Bt.get(A, Y) * p[Y][0], _[A - Y][T]);
|
|
11934
11934
|
for (var J = m.zeros1d(v), H = 1, G = T + 1; H < G; ) {
|
|
11935
11935
|
var K = H++;
|
|
@@ -11965,13 +11965,13 @@ var Sh = { exports: {} };
|
|
|
11965
11965
|
d < p ? P = d : P = p;
|
|
11966
11966
|
var k;
|
|
11967
11967
|
d < _ ? k = d : k = _;
|
|
11968
|
-
for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, I), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I),
|
|
11968
|
+
for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, I), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), U = m.zeros2d(_ + 1, A), V = 0, Y = 0, J = P + 1; Y < J; ) {
|
|
11969
11969
|
for (var H = Y++, G = 0, K = _ + 1; G < K; ) {
|
|
11970
11970
|
var tt = G++;
|
|
11971
|
-
|
|
11971
|
+
U[tt] = m.zeros1d(A);
|
|
11972
11972
|
for (var et = 0, it = p + 1; et < it; ) {
|
|
11973
11973
|
var ht = et++;
|
|
11974
|
-
m.addMulMutate(
|
|
11974
|
+
m.addMulMutate(U[tt], B[H][ht], v[L - p + ht][C - _ + tt]);
|
|
11975
11975
|
}
|
|
11976
11976
|
}
|
|
11977
11977
|
var at = d - H;
|
|
@@ -11981,7 +11981,7 @@ var Sh = { exports: {} };
|
|
|
11981
11981
|
T[H][mt] = m.zeros1d(A);
|
|
11982
11982
|
for (var X = 0, gt = _ + 1; X < gt; ) {
|
|
11983
11983
|
var It = X++;
|
|
11984
|
-
m.addMulMutate(T[H][mt], R[mt][It],
|
|
11984
|
+
m.addMulMutate(T[H][mt], R[mt][It], U[It]);
|
|
11985
11985
|
}
|
|
11986
11986
|
}
|
|
11987
11987
|
}
|
|
@@ -11992,8 +11992,8 @@ var Sh = { exports: {} };
|
|
|
11992
11992
|
}, N.surfacePointGivenNM = function(r, n, a, l, u) {
|
|
11993
11993
|
var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, w = a.knotsV;
|
|
11994
11994
|
if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, w.length)) throw new Q("Invalid relations between control points, knot vector, and n");
|
|
11995
|
-
for (var I = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(P, u, p, w), L = A - d, C = P, B = m.zeros1d(I), R = m.zeros1d(I),
|
|
11996
|
-
var Y =
|
|
11995
|
+
for (var I = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(P, u, p, w), L = A - d, C = P, B = m.zeros1d(I), R = m.zeros1d(I), U = 0, V = p + 1; U < V; ) {
|
|
11996
|
+
var Y = U++;
|
|
11997
11997
|
R = m.zeros1d(I), C = P - p + Y;
|
|
11998
11998
|
for (var J = 0, H = d + 1; J < H; ) {
|
|
11999
11999
|
var G = J++;
|
|
@@ -12015,8 +12015,8 @@ var Sh = { exports: {} };
|
|
|
12015
12015
|
var I = w++, A = [];
|
|
12016
12016
|
d.push(A);
|
|
12017
12017
|
for (var P = 0; P < _; ) {
|
|
12018
|
-
for (var k = P++, T = u[I][k], L = N.rational2d(T), C = N.weight2d(T), B = [], R = L[0][0].length,
|
|
12019
|
-
var V =
|
|
12018
|
+
for (var k = P++, T = u[I][k], L = N.rational2d(T), C = N.weight2d(T), B = [], R = L[0][0].length, U = 0; U < v; ) {
|
|
12019
|
+
var V = U++;
|
|
12020
12020
|
B.push([]);
|
|
12021
12021
|
for (var Y = 0, J = v - V; Y < J; ) {
|
|
12022
12022
|
for (var H = Y++, G = L[V][H], K = 1, tt = H + 1; K < tt; ) {
|
|
@@ -12042,8 +12042,8 @@ var Sh = { exports: {} };
|
|
|
12042
12042
|
}, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
|
|
12043
12043
|
var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, w = p[0][0].length;
|
|
12044
12044
|
($.last(_) - _[0]) / n, ($.last(v) - v[0]) / a;
|
|
12045
|
-
for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, R = a + 1,
|
|
12046
|
-
var V =
|
|
12045
|
+
for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, R = a + 1, U = 0; U < B; ) {
|
|
12046
|
+
var V = U++, Y = [];
|
|
12047
12047
|
C.push(Y);
|
|
12048
12048
|
for (var J = 0; J < R; ) {
|
|
12049
12049
|
var H = J++;
|
|
@@ -12057,11 +12057,11 @@ var Sh = { exports: {} };
|
|
|
12057
12057
|
var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
|
|
12058
12058
|
($.last(p) - p[0]) / n, ($.last(_) - _[0]) / a;
|
|
12059
12059
|
for (var w = N.regularlySpacedBasisFunctions(l, p, n), I = w.item0, A = w.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0, T = P.item1, L = [], C = n + 1, B = a + 1, R = 0; R < C; ) {
|
|
12060
|
-
var
|
|
12060
|
+
var U = R++, V = [];
|
|
12061
12061
|
L.push(V);
|
|
12062
12062
|
for (var Y = 0; Y < B; ) {
|
|
12063
12063
|
var J = Y++;
|
|
12064
|
-
V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[
|
|
12064
|
+
V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], A[U], T[J], v));
|
|
12065
12065
|
}
|
|
12066
12066
|
}
|
|
12067
12067
|
return L;
|
|
@@ -12094,7 +12094,7 @@ var Sh = { exports: {} };
|
|
|
12094
12094
|
var A;
|
|
12095
12095
|
v < n ? A = v : A = n;
|
|
12096
12096
|
for (var P = m.zeros3d(I + 1, A + 1, w), k = m.zeros2d(n + 1, w), T = 0, L = 0, C = I + 1; L < C; ) {
|
|
12097
|
-
for (var B = L++, R = 0,
|
|
12097
|
+
for (var B = L++, R = 0, U = n + 1; R < U; ) {
|
|
12098
12098
|
var V = R++;
|
|
12099
12099
|
k[V] = m.zeros1d(w);
|
|
12100
12100
|
for (var Y = 0, J = r + 1; Y < J; ) {
|
|
@@ -12147,7 +12147,7 @@ var Sh = { exports: {} };
|
|
|
12147
12147
|
return N.volumePointGivenNML(r, u, d, p, n, a, l);
|
|
12148
12148
|
}, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
|
|
12149
12149
|
if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
|
|
12150
|
-
for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, I = r.degreeW, A = r.knotsU, P = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, P), B = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A),
|
|
12150
|
+
for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, I = r.degreeW, A = r.knotsU, P = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, P), B = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A), U = N.basisFunctionsGivenKnotSpanIndex(C, d, w, P), V = N.basisFunctionsGivenKnotSpanIndex(B, p, I, k), Y = L - v, J = m.zeros1d(T), H = m.zeros1d(T), G = m.zeros1d(T), K = 0, tt = I + 1; K < tt; ) {
|
|
12151
12151
|
var et = K++;
|
|
12152
12152
|
G = m.zeros1d(T);
|
|
12153
12153
|
for (var it = B - I + et, ht = 0, at = w + 1; ht < at; ) {
|
|
@@ -12157,7 +12157,7 @@ var Sh = { exports: {} };
|
|
|
12157
12157
|
var gt = mt++;
|
|
12158
12158
|
m.addMulMutate(H, R[gt], _[Y + gt][nt][it]);
|
|
12159
12159
|
}
|
|
12160
|
-
m.addMulMutate(G,
|
|
12160
|
+
m.addMulMutate(G, U[ct], H);
|
|
12161
12161
|
}
|
|
12162
12162
|
m.addMulMutate(J, V[et], G);
|
|
12163
12163
|
}
|
|
@@ -12177,7 +12177,7 @@ var Sh = { exports: {} };
|
|
|
12177
12177
|
}
|
|
12178
12178
|
d[P][P] = v;
|
|
12179
12179
|
}
|
|
12180
|
-
for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, R = 1,
|
|
12180
|
+
for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, R = 1, U = 0, V = 0, Y = 0, J = 0, H = 0, G = 0, K = a + 1; G < K; ) {
|
|
12181
12181
|
var tt = G++;
|
|
12182
12182
|
L[0][tt] = d[tt][a];
|
|
12183
12183
|
}
|
|
@@ -12186,12 +12186,12 @@ var Sh = { exports: {} };
|
|
|
12186
12186
|
B = 0, R = 1, C[0][0] = 1;
|
|
12187
12187
|
for (var at = 1, ct = l + 1; at < ct; ) {
|
|
12188
12188
|
var nt = at++;
|
|
12189
|
-
|
|
12189
|
+
U = 0, V = ht - nt, Y = a - nt, ht >= nt && (C[R][0] = C[B][0] / d[Y + 1][V], U = C[R][0] * d[V][Y]), V >= -1 ? J = 1 : J = -V, ht - 1 <= Y ? H = nt - 1 : H = a - ht;
|
|
12190
12190
|
for (var mt = J, X = H + 1; mt < X; ) {
|
|
12191
12191
|
var gt = mt++;
|
|
12192
|
-
C[R][gt] = (C[B][gt] - C[B][gt - 1]) / d[Y + 1][V + gt],
|
|
12192
|
+
C[R][gt] = (C[B][gt] - C[B][gt - 1]) / d[Y + 1][V + gt], U += C[R][gt] * d[V + gt][Y];
|
|
12193
12193
|
}
|
|
12194
|
-
ht <= Y && (C[R][nt] = -C[B][nt - 1] / d[Y + 1][ht],
|
|
12194
|
+
ht <= Y && (C[R][nt] = -C[B][nt - 1] / d[Y + 1][ht], U += C[R][nt] * d[ht][Y]), L[nt][ht] = U;
|
|
12195
12195
|
var It = B;
|
|
12196
12196
|
B = R, R = It;
|
|
12197
12197
|
}
|
|
@@ -12293,14 +12293,14 @@ var Sh = { exports: {} };
|
|
|
12293
12293
|
}), 3);
|
|
12294
12294
|
});
|
|
12295
12295
|
}, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
|
|
12296
|
-
var d, p, _, v, w, I, A, P, k, T, L, C, B, R = 5,
|
|
12296
|
+
var d, p, _, v, w, I, A, P, k, T, L, C, B, R = 5, U = 0;
|
|
12297
12297
|
do {
|
|
12298
12298
|
if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), I = m.dot(_, p), A = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = A[0][0], T = A[1][0], L = A[0][1], k = m.normalized(m.cross(T, L)), C = m.dot(k, P), B = m.distSquared(p, P), B < u * u) break;
|
|
12299
12299
|
var V = m.normalized(m.cross(_, k)), Y = m.dot(V, p), J = lt.threePlanes(_, I, k, C, V, Y);
|
|
12300
12300
|
if (J == null) throw new Q("panic!");
|
|
12301
12301
|
var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(w, _), et = m.cross(T, k), it = m.cross(L, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, w), ct = m.dot(it, G) / m.dot(it, T), nt = m.dot(et, G) / m.dot(et, L);
|
|
12302
|
-
a = m.add([ht, at], a), l = m.add([ct, nt], l),
|
|
12303
|
-
} while (
|
|
12302
|
+
a = m.add([ht, at], a), l = m.add([ct, nt], l), U++;
|
|
12303
|
+
} while (U < R);
|
|
12304
12304
|
return new Gn(a, l, p, B);
|
|
12305
12305
|
}, lt.meshes = function(r, n, a, l) {
|
|
12306
12306
|
a == null && (a = new ir(r)), l == null && (l = new ir(n));
|
|
@@ -12511,7 +12511,7 @@ var Sh = { exports: {} };
|
|
|
12511
12511
|
if (Math.abs(k) < rt.EPSILON) return null;
|
|
12512
12512
|
var T = P / k;
|
|
12513
12513
|
if (T < 0 || T > 1) return null;
|
|
12514
|
-
var L = m.add(r, m.mul(T, I)), C = m.dot(_, v), B = m.dot(_, _), R = m.dot(v, v),
|
|
12514
|
+
var L = m.add(r, m.mul(T, I)), C = m.dot(_, v), B = m.dot(_, _), R = m.dot(v, v), U = m.sub(L, u), V = m.dot(U, _), Y = m.dot(U, v), J = C * C - B * R;
|
|
12515
12515
|
if (Math.abs(J) < rt.EPSILON) return null;
|
|
12516
12516
|
var H = (C * Y - R * V) / J, G = (C * V - B * Y) / J;
|
|
12517
12517
|
return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new jn(L, H, G, T);
|
|
@@ -12589,8 +12589,8 @@ var Sh = { exports: {} };
|
|
|
12589
12589
|
}
|
|
12590
12590
|
p.push(I);
|
|
12591
12591
|
}
|
|
12592
|
-
var R = m.rep(u + 1, 0),
|
|
12593
|
-
return new te(u, u, R.concat(
|
|
12592
|
+
var R = m.rep(u + 1, 0), U = m.rep(u + 1, 1);
|
|
12593
|
+
return new te(u, u, R.concat(U), R.concat(U), p);
|
|
12594
12594
|
}, pt.ellipseArc = function(r, n, a, l, u) {
|
|
12595
12595
|
var d = m.norm(n), p = m.norm(a);
|
|
12596
12596
|
n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
|
|
@@ -12598,7 +12598,7 @@ var Sh = { exports: {} };
|
|
|
12598
12598
|
_ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
|
|
12599
12599
|
var w = _ / v, I = Math.cos(w / 2), A = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), L = 0, C = l, B = m.zeros1d(v * 2);
|
|
12600
12600
|
k[0] = A, B[0] = 1;
|
|
12601
|
-
for (var R = 1,
|
|
12601
|
+
for (var R = 1, U = v + 1; R < U; ) {
|
|
12602
12602
|
var V = R++;
|
|
12603
12603
|
C += w;
|
|
12604
12604
|
var Y = m.add(r, m.add(m.mul(d * Math.cos(C), n), m.mul(p * Math.sin(C), a)));
|
|
@@ -12649,7 +12649,7 @@ var Sh = { exports: {} };
|
|
|
12649
12649
|
var A = I++;
|
|
12650
12650
|
_[A] = 0, _[w + A] = 1;
|
|
12651
12651
|
}
|
|
12652
|
-
for (var P = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), R = 1,
|
|
12652
|
+
for (var P = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
|
|
12653
12653
|
var V = R++;
|
|
12654
12654
|
k += v, L[V] = Math.cos(k), T[V] = Math.sin(k);
|
|
12655
12655
|
}
|
|
@@ -12691,8 +12691,8 @@ var Sh = { exports: {} };
|
|
|
12691
12691
|
C ? B = 0 : B = 1;
|
|
12692
12692
|
var R;
|
|
12693
12693
|
C ? R = d.length - n + 1 : R = d.length - n;
|
|
12694
|
-
for (var
|
|
12695
|
-
for (var V =
|
|
12694
|
+
for (var U = B; U < R; ) {
|
|
12695
|
+
for (var V = U++, Y = 0, J = 0; J < n; ) {
|
|
12696
12696
|
var H = J++;
|
|
12697
12697
|
Y += d[V + H];
|
|
12698
12698
|
}
|
|
@@ -12790,10 +12790,10 @@ var Sh = { exports: {} };
|
|
|
12790
12790
|
};
|
|
12791
12791
|
}(R));
|
|
12792
12792
|
}
|
|
12793
|
-
for (var
|
|
12793
|
+
for (var U = z.fold(r, function(G, K) {
|
|
12794
12794
|
return m.sortedSetUnion(G.knots, K);
|
|
12795
12795
|
}, []), V = 0, Y = r.length; V < Y; ) {
|
|
12796
|
-
var J = V++, H = m.sortedSetSub(
|
|
12796
|
+
var J = V++, H = m.sortedSetSub(U, r[J].knots);
|
|
12797
12797
|
H.length == 0 && (r[J] = r[J]), r[J] = ft.curveKnotRefine(r[J], H);
|
|
12798
12798
|
}
|
|
12799
12799
|
return r;
|
|
@@ -12806,9 +12806,9 @@ var Sh = { exports: {} };
|
|
|
12806
12806
|
var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], I = [], A = [], P = a + l + 1, k = n, T = Math.floor(k / 2), L = [], C = [];
|
|
12807
12807
|
v[0][0] = 1, v[k][l] = 1;
|
|
12808
12808
|
for (var B = 1, R = T + 1; B < R; )
|
|
12809
|
-
for (var
|
|
12809
|
+
for (var U = B++, V = 1 / Bt.get(k, U), Y = ft.imin(l, U), J = ft.imax(0, U - p), H = Y + 1; J < H; ) {
|
|
12810
12810
|
var G = J++;
|
|
12811
|
-
v[
|
|
12811
|
+
v[U][G] = V * Bt.get(l, G) * Bt.get(p, U - G);
|
|
12812
12812
|
}
|
|
12813
12813
|
for (var K = T + 1; K < k; )
|
|
12814
12814
|
for (var tt = K++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
|
|
@@ -12936,7 +12936,7 @@ var Sh = { exports: {} };
|
|
|
12936
12936
|
var B = L++;
|
|
12937
12937
|
I[B + _ + 1] = l[B];
|
|
12938
12938
|
}
|
|
12939
|
-
for (var R = 0,
|
|
12939
|
+
for (var R = 0, U = v + 1; R < U; ) {
|
|
12940
12940
|
var V = R++;
|
|
12941
12941
|
A[V] = u[V];
|
|
12942
12942
|
}
|
|
@@ -12964,7 +12964,7 @@ var Sh = { exports: {} };
|
|
|
12964
12964
|
var B = L++;
|
|
12965
12965
|
I[v + B] = n;
|
|
12966
12966
|
}
|
|
12967
|
-
for (var R = v + 1,
|
|
12967
|
+
for (var R = v + 1, U = d.length; R < U; ) {
|
|
12968
12968
|
var V = R++;
|
|
12969
12969
|
I[V + a] = d[V];
|
|
12970
12970
|
}
|
|
@@ -13027,9 +13027,9 @@ var Sh = { exports: {} };
|
|
|
13027
13027
|
n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
|
|
13028
13028
|
for (var l = r.knotsU, u = r.knotsV, d = $.last(l) - l[0], p = $.last(u) - u[0], _ = d / n, v = p / a, w = [], I = [], A = [], P = 0, k = n + 1; P < k; )
|
|
13029
13029
|
for (var T = P++, L = 0, C = a + 1; L < C; ) {
|
|
13030
|
-
var B = L++, R = T * _,
|
|
13031
|
-
I.push([R,
|
|
13032
|
-
var V = N.rationalSurfaceDerivatives(r, R,
|
|
13030
|
+
var B = L++, R = T * _, U = B * v;
|
|
13031
|
+
I.push([R, U]);
|
|
13032
|
+
var V = N.rationalSurfaceDerivatives(r, R, U, 1), Y = V[0][0];
|
|
13033
13033
|
w.push(Y);
|
|
13034
13034
|
var J = m.normalized(m.cross(V[1][0], V[0][1]));
|
|
13035
13035
|
A.push(J);
|
|
@@ -13047,7 +13047,7 @@ var Sh = { exports: {} };
|
|
|
13047
13047
|
var d;
|
|
13048
13048
|
n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
|
|
13049
13049
|
for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), w = r.knotsV[0], I = (p - _) / u, A = (v - w) / d, P = [], k = [], T = 0, L = d + 1; T < L; ) {
|
|
13050
|
-
for (var C = T++, B = [], R = 0,
|
|
13050
|
+
for (var C = T++, B = [], R = 0, U = u + 1; R < U; ) {
|
|
13051
13051
|
var V = R++, Y = _ + I * V, J = w + A * C, H = N.rationalSurfaceDerivatives(r, Y, J, 1), G = m.normalized(m.cross(H[0][1], H[1][0]));
|
|
13052
13052
|
B.push(new Ve(H[0][0], G, [Y, J], -1, m.isZero(G)));
|
|
13053
13053
|
}
|
|
@@ -13804,20 +13804,20 @@ var Sh = { exports: {} };
|
|
|
13804
13804
|
return l[a] = v.apply(n, R), a++;
|
|
13805
13805
|
}
|
|
13806
13806
|
function v(R) {
|
|
13807
|
-
var
|
|
13807
|
+
var U = [].slice.call(arguments, 1);
|
|
13808
13808
|
return function() {
|
|
13809
|
-
typeof R == "function" ? R.apply(n,
|
|
13809
|
+
typeof R == "function" ? R.apply(n, U) : new Function("" + R)();
|
|
13810
13810
|
};
|
|
13811
13811
|
}
|
|
13812
13812
|
function w(R) {
|
|
13813
13813
|
if (u)
|
|
13814
13814
|
setTimeout(v(w, R), 0);
|
|
13815
13815
|
else {
|
|
13816
|
-
var
|
|
13817
|
-
if (
|
|
13816
|
+
var U = l[R];
|
|
13817
|
+
if (U) {
|
|
13818
13818
|
u = !0;
|
|
13819
13819
|
try {
|
|
13820
|
-
|
|
13820
|
+
U();
|
|
13821
13821
|
} finally {
|
|
13822
13822
|
I(R), u = !1;
|
|
13823
13823
|
}
|
|
@@ -13835,38 +13835,38 @@ var Sh = { exports: {} };
|
|
|
13835
13835
|
}
|
|
13836
13836
|
function P() {
|
|
13837
13837
|
if (r.postMessage && !r.importScripts) {
|
|
13838
|
-
var R = !0,
|
|
13838
|
+
var R = !0, U = r.onmessage;
|
|
13839
13839
|
return r.onmessage = function() {
|
|
13840
13840
|
R = !1;
|
|
13841
|
-
}, r.postMessage("", "*"), r.onmessage =
|
|
13841
|
+
}, r.postMessage("", "*"), r.onmessage = U, R;
|
|
13842
13842
|
}
|
|
13843
13843
|
}
|
|
13844
13844
|
function k() {
|
|
13845
|
-
var R = "setImmediate$" + Math.random() + "$",
|
|
13845
|
+
var R = "setImmediate$" + Math.random() + "$", U = function(V) {
|
|
13846
13846
|
V.source === r && typeof V.data == "string" && V.data.indexOf(R) === 0 && w(+V.data.slice(R.length));
|
|
13847
13847
|
};
|
|
13848
|
-
r.addEventListener ? r.addEventListener("message",
|
|
13848
|
+
r.addEventListener ? r.addEventListener("message", U, !1) : r.attachEvent("onmessage", U), p = function() {
|
|
13849
13849
|
var V = _(arguments);
|
|
13850
13850
|
return r.postMessage(R + V, "*"), V;
|
|
13851
13851
|
};
|
|
13852
13852
|
}
|
|
13853
13853
|
function T() {
|
|
13854
13854
|
var R = new MessageChannel();
|
|
13855
|
-
R.port1.onmessage = function(
|
|
13856
|
-
var V =
|
|
13855
|
+
R.port1.onmessage = function(U) {
|
|
13856
|
+
var V = U.data;
|
|
13857
13857
|
w(V);
|
|
13858
13858
|
}, p = function() {
|
|
13859
|
-
var
|
|
13860
|
-
return R.port2.postMessage(
|
|
13859
|
+
var U = _(arguments);
|
|
13860
|
+
return R.port2.postMessage(U), U;
|
|
13861
13861
|
};
|
|
13862
13862
|
}
|
|
13863
13863
|
function L() {
|
|
13864
13864
|
var R = d.documentElement;
|
|
13865
13865
|
p = function() {
|
|
13866
|
-
var
|
|
13866
|
+
var U = _(arguments), V = d.createElement("script");
|
|
13867
13867
|
return V.onreadystatechange = function() {
|
|
13868
|
-
w(
|
|
13869
|
-
}, R.appendChild(V),
|
|
13868
|
+
w(U), V.onreadystatechange = null, R.removeChild(V), V = null;
|
|
13869
|
+
}, R.appendChild(V), U;
|
|
13870
13870
|
};
|
|
13871
13871
|
}
|
|
13872
13872
|
function C() {
|
|
@@ -13880,7 +13880,7 @@ var Sh = { exports: {} };
|
|
|
13880
13880
|
})(new Function("return this")()), Yt.USE_CACHE = !1, Yt.USE_ENUM_INDEX = !1, Yt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Ot.count = 0, ie.i64tmp = function(r) {
|
|
13881
13881
|
var n, a = new Vt(0, 0);
|
|
13882
13882
|
return n = a, n;
|
|
13883
|
-
}(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, At.queue = new U(), Bt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, Ts.main();
|
|
13883
|
+
}(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, At.queue = new D(), Bt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, Ts.main();
|
|
13884
13884
|
}(typeof console < "u" ? console : { log: function() {
|
|
13885
13885
|
} }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
|
|
13886
13886
|
});
|
|
@@ -14004,8 +14004,8 @@ class Md extends Ms {
|
|
|
14004
14004
|
const b = o[g % h], E = o[(g + 1) % h];
|
|
14005
14005
|
if (this._closed || g + 2 < h ? S = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), S = new q(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
|
|
14006
14006
|
const M = this._curveType === "chordal" ? 0.5 : 0.25;
|
|
14007
|
-
let O = Math.pow(f.distanceToSquared(b), M), z = Math.pow(b.distanceToSquared(E), M),
|
|
14008
|
-
z < 1e-4 && (z = 1), O < 1e-4 && (O = z),
|
|
14007
|
+
let O = Math.pow(f.distanceToSquared(b), M), z = Math.pow(b.distanceToSquared(E), M), D = Math.pow(E.distanceToSquared(S), M);
|
|
14008
|
+
z < 1e-4 && (z = 1), O < 1e-4 && (O = z), D < 1e-4 && (D = z), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, S.x, O, z, D), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, S.y, O, z, D), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, S.z, O, z, D);
|
|
14009
14009
|
} else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, S.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, S.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, S.z, this._tension));
|
|
14010
14010
|
return s.set(
|
|
14011
14011
|
this._px.calc(x),
|
|
@@ -17917,18 +17917,18 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends Js {
|
|
|
17917
17917
|
e += M > 0 ? this.rowHeight(M - 1) : 0;
|
|
17918
17918
|
const O = this.cell(M * this.numColumns + E);
|
|
17919
17919
|
if (f = M * this.numColumns + E, O && !x[f]) {
|
|
17920
|
-
const z = O.borderWidth ?? 1,
|
|
17920
|
+
const z = O.borderWidth ?? 1, D = O.borderHeight ?? 1;
|
|
17921
17921
|
this.fillVisited(
|
|
17922
17922
|
x,
|
|
17923
17923
|
f,
|
|
17924
17924
|
this.numColumns,
|
|
17925
17925
|
z,
|
|
17926
|
-
|
|
17926
|
+
D
|
|
17927
17927
|
), o[c++] = E + M * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1) + z;
|
|
17928
|
-
const F = h[o[c - 1] * 3] - s, dt = E + (M +
|
|
17928
|
+
const F = h[o[c - 1] * 3] - s, dt = E + (M + D) * (this.numColumns + 1) + z;
|
|
17929
17929
|
E + z == this.numColumns && (o[c++] = E + M * (this.numColumns + 1) + z, o[c++] = dt);
|
|
17930
17930
|
const vt = -h[dt * 3 + 1] - e;
|
|
17931
|
-
if (M +
|
|
17931
|
+
if (M + D == this.numRows && (o[c++] = E + (M + D) * (this.numColumns + 1) + D, o[c++] = E + (M + D) * (this.numColumns + 1)), o[c++] = E + (M + D) * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1), O.text) {
|
|
17932
17932
|
const ot = O.attachmentPoint || this.attachmentPoint || Is.MiddleCenter, W = this.getTableTextOffset(
|
|
17933
17933
|
ot,
|
|
17934
17934
|
F,
|
|
@@ -21250,7 +21250,7 @@ class Do {
|
|
|
21250
21250
|
Math.pow(S.end.x, 2) + Math.pow(S.end.y, 2)
|
|
21251
21251
|
), M = E * S.lengthOfMinorAxis;
|
|
21252
21252
|
let O = kt.degToRad(S.startAngle || 0), z = kt.degToRad(S.endAngle || 0);
|
|
21253
|
-
const
|
|
21253
|
+
const D = Math.atan2(S.end.y, S.end.x);
|
|
21254
21254
|
S.isCCW || (O = Math.PI * 2 - O, z = Math.PI * 2 - z), x.add(
|
|
21255
21255
|
new fa(
|
|
21256
21256
|
{ ...S.center, z: 0 },
|
|
@@ -21259,7 +21259,7 @@ class Do {
|
|
|
21259
21259
|
O,
|
|
21260
21260
|
z,
|
|
21261
21261
|
!S.isCCW,
|
|
21262
|
-
|
|
21262
|
+
D
|
|
21263
21263
|
)
|
|
21264
21264
|
);
|
|
21265
21265
|
} else if (f.type == 4) {
|
|
@@ -22017,15 +22017,15 @@ class Hd {
|
|
|
22017
22017
|
const { id: E, success: M, data: O, error: z } = b.data;
|
|
22018
22018
|
if (E !== t) return;
|
|
22019
22019
|
this.cleanupTask(t);
|
|
22020
|
-
const
|
|
22020
|
+
const D = Date.now() - o;
|
|
22021
22021
|
h(M ? {
|
|
22022
22022
|
success: !0,
|
|
22023
22023
|
data: O,
|
|
22024
|
-
duration:
|
|
22024
|
+
duration: D
|
|
22025
22025
|
} : {
|
|
22026
22026
|
success: !1,
|
|
22027
22027
|
error: z,
|
|
22028
|
-
duration:
|
|
22028
|
+
duration: D
|
|
22029
22029
|
});
|
|
22030
22030
|
}, S = (b) => {
|
|
22031
22031
|
this.cleanupTask(t), c(new Error(`Worker error: ${b.message}`));
|
|
@@ -22323,8 +22323,8 @@ class Xd extends Zo {
|
|
|
22323
22323
|
await f.processChunk(async (b, E) => {
|
|
22324
22324
|
let M = [], O = b < E ? g[b].type : "";
|
|
22325
22325
|
for (let z = b; z < E; z++) {
|
|
22326
|
-
const
|
|
22327
|
-
F && (this.config.convertByEntityType &&
|
|
22326
|
+
const D = g[z], F = c.convert(D);
|
|
22327
|
+
F && (this.config.convertByEntityType && D.type !== O && (S.appendEntity(M), M = [], O = D.type), M.push(F));
|
|
22328
22328
|
}
|
|
22329
22329
|
if (S.appendEntity(M), h) {
|
|
22330
22330
|
let z = o.value + E / x * (100 - o.value);
|
|
@@ -25422,7 +25422,7 @@ class E0 extends dn {
|
|
|
25422
25422
|
* @param options Input options to read drawing data
|
|
25423
25423
|
*/
|
|
25424
25424
|
async openUri(t, e) {
|
|
25425
|
-
var
|
|
25425
|
+
var M;
|
|
25426
25426
|
this.events.openProgress.dispatch({
|
|
25427
25427
|
database: this,
|
|
25428
25428
|
percentage: 0,
|
|
@@ -25441,19 +25441,19 @@ class E0 extends dn {
|
|
|
25441
25441
|
);
|
|
25442
25442
|
const o = s.headers.get("content-length"), h = o ? parseInt(o, 10) : null;
|
|
25443
25443
|
let c = 0;
|
|
25444
|
-
const g = (
|
|
25444
|
+
const g = (M = s.body) == null ? void 0 : M.getReader();
|
|
25445
25445
|
if (!g)
|
|
25446
25446
|
throw new Error("Failed to get response reader");
|
|
25447
25447
|
const x = [];
|
|
25448
25448
|
for (; ; ) {
|
|
25449
|
-
const { done:
|
|
25450
|
-
if (
|
|
25449
|
+
const { done: O, value: z } = await g.read();
|
|
25450
|
+
if (O)
|
|
25451
25451
|
break;
|
|
25452
|
-
if (x.push(
|
|
25453
|
-
const
|
|
25452
|
+
if (x.push(z), c += z.length, h !== null) {
|
|
25453
|
+
const D = Math.round(c / h * 100);
|
|
25454
25454
|
this.events.openProgress.dispatch({
|
|
25455
25455
|
database: this,
|
|
25456
|
-
percentage:
|
|
25456
|
+
percentage: D,
|
|
25457
25457
|
stage: "FETCH_FILE",
|
|
25458
25458
|
subStageStatus: "IN-PROGRESS"
|
|
25459
25459
|
});
|
|
@@ -25461,9 +25461,9 @@ class E0 extends dn {
|
|
|
25461
25461
|
}
|
|
25462
25462
|
const f = new Uint8Array(c);
|
|
25463
25463
|
let S = 0;
|
|
25464
|
-
for (const
|
|
25465
|
-
f.set(
|
|
25466
|
-
t.toLowerCase().split(".").pop() === "dwg" ? await this.read(f.buffer, e, $s.DWG) : await this.read(f.buffer, e, $s.DXF), this.events.openProgress.dispatch({
|
|
25464
|
+
for (const O of x)
|
|
25465
|
+
f.set(O, S), S += O.length;
|
|
25466
|
+
this.getFileNameFromUri(t).toLowerCase().split(".").pop() === "dwg" ? await this.read(f.buffer, e, $s.DWG) : await this.read(f.buffer, e, $s.DXF), this.events.openProgress.dispatch({
|
|
25467
25467
|
database: this,
|
|
25468
25468
|
percentage: 100,
|
|
25469
25469
|
stage: "FETCH_FILE",
|
|
@@ -25592,6 +25592,21 @@ class E0 extends dn {
|
|
|
25592
25592
|
name: t
|
|
25593
25593
|
});
|
|
25594
25594
|
}
|
|
25595
|
+
/**
|
|
25596
|
+
* Extracts the file name from a URI.
|
|
25597
|
+
*
|
|
25598
|
+
* @param uri - The URI to extract the file name from
|
|
25599
|
+
* @returns The extracted file name, or empty string if extraction fails
|
|
25600
|
+
* @private
|
|
25601
|
+
*/
|
|
25602
|
+
getFileNameFromUri(t) {
|
|
25603
|
+
try {
|
|
25604
|
+
const s = new URL(t).pathname.split("/");
|
|
25605
|
+
return s[s.length - 1] || "";
|
|
25606
|
+
} catch (e) {
|
|
25607
|
+
return console.error("Invalid URI:", e), "";
|
|
25608
|
+
}
|
|
25609
|
+
}
|
|
25595
25610
|
}
|
|
25596
25611
|
const o0 = {
|
|
25597
25612
|
center: new Nt(),
|