@mlightcad/data-model 1.3.9 → 1.3.10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -803,8 +803,8 @@ var Go = { exports: {} };
803
803
  "warn",
804
804
  "error"
805
805
  ], h = {}, c = null;
806
- function g(z, U) {
807
- var F = z[U];
806
+ function g(z, D) {
807
+ var F = z[D];
808
808
  if (typeof F.bind == "function")
809
809
  return F.bind(z);
810
810
  try {
@@ -822,9 +822,9 @@ var Go = { exports: {} };
822
822
  return z === "debug" && (z = "log"), typeof console === e ? !1 : z === "trace" && s ? x : console[z] !== void 0 ? g(console, z) : console.log !== void 0 ? g(console, "log") : t;
823
823
  }
824
824
  function S() {
825
- for (var z = this.getLevel(), U = 0; U < o.length; U++) {
826
- var F = o[U];
827
- this[F] = U < z ? t : this.methodFactory(F, z, this.name);
825
+ for (var z = this.getLevel(), D = 0; D < o.length; D++) {
826
+ var F = o[D];
827
+ this[F] = D < z ? t : this.methodFactory(F, z, this.name);
828
828
  }
829
829
  if (this.log = this.debug, typeof console === e && z < this.levels.SILENT)
830
830
  return "No console available for logging";
@@ -834,10 +834,10 @@ var Go = { exports: {} };
834
834
  typeof console !== e && (S.call(this), this[z].apply(this, arguments));
835
835
  };
836
836
  }
837
- function E(z, U, F) {
837
+ function E(z, D, F) {
838
838
  return f(z) || b.apply(this, arguments);
839
839
  }
840
- function M(z, U) {
840
+ function M(z, D) {
841
841
  var F = this, dt, vt, ot, W = "loglevel";
842
842
  typeof z == "string" ? W += ":" + z : typeof z == "symbol" && (W = void 0);
843
843
  function ut(bt) {
@@ -897,7 +897,7 @@ var Go = { exports: {} };
897
897
  WARN: 3,
898
898
  ERROR: 4,
899
899
  SILENT: 5
900
- }, F.methodFactory = U || E, F.getLevel = function() {
900
+ }, F.methodFactory = D || E, F.getLevel = function() {
901
901
  return ot ?? vt ?? dt;
902
902
  }, F.setLevel = function(bt, Ot) {
903
903
  return ot = Yt(bt), Ot !== !1 && ut(ot), S.call(F);
@@ -922,11 +922,11 @@ var Go = { exports: {} };
922
922
  c = new M(), c.getLogger = function(z) {
923
923
  if (typeof z != "symbol" && typeof z != "string" || z === "")
924
924
  throw new TypeError("You must supply a name when creating a logger.");
925
- var U = h[z];
926
- return U || (U = h[z] = new M(
925
+ var D = h[z];
926
+ return D || (D = h[z] = new M(
927
927
  z,
928
928
  c.methodFactory
929
- )), U;
929
+ )), D;
930
930
  };
931
931
  var O = typeof window !== e ? window.log : void 0;
932
932
  return c.noConflict = function() {
@@ -2241,8 +2241,8 @@ function xt(i, t) {
2241
2241
  }, [{}]);
2242
2242
  }(i, s.debug), c = !1, g = h.length - 1;
2243
2243
  for (; !St(e, 0, "EOF"); ) {
2244
- let x = function(U, F, dt) {
2245
- return U.find((vt, ot) => {
2244
+ let x = function(D, F, dt) {
2245
+ return D.find((vt, ot) => {
2246
2246
  var W;
2247
2247
  return ot >= dt && ((W = vt[F]) == null ? void 0 : W.length);
2248
2248
  });
@@ -2258,7 +2258,7 @@ function xt(i, t) {
2258
2258
  break;
2259
2259
  }
2260
2260
  if (b) {
2261
- let [U, F] = function(dt, vt) {
2261
+ let [D, F] = function(dt, vt) {
2262
2262
  let ot = vt.split(".");
2263
2263
  if (!ot.length) throw Error("[parserGenerator::getObjectByPath] Invalid empty path");
2264
2264
  let W = dt;
@@ -2268,7 +2268,7 @@ function xt(i, t) {
2268
2268
  }
2269
2269
  return [W, Ai(ot[ot.length - 1])];
2270
2270
  }(o, b);
2271
- M && !O ? (Object.prototype.hasOwnProperty.call(U, F) || (U[F] = []), U[F].push(z)) : U[F] = z;
2271
+ M && !O ? (Object.prototype.hasOwnProperty.call(D, F) || (D[F] = []), D[F].push(z)) : D[F] = z;
2272
2272
  }
2273
2273
  S.pushContext && (g -= 1), c = !0, e = s.next();
2274
2274
  }
@@ -3753,17 +3753,17 @@ class Xc {
3753
3753
  o = E;
3754
3754
  const z = (h + s.decode(M, { stream: !0 })).split(/\r?\n/);
3755
3755
  h = z.pop() ?? "";
3756
- for (let U = 0; U < z.length; U++) {
3757
- const F = z[U].trim();
3758
- if (F === "SECTION" && ((f = z[U + 2]) == null ? void 0 : f.trim()) === "HEADER")
3756
+ for (let D = 0; D < z.length; D++) {
3757
+ const F = z[D].trim();
3758
+ if (F === "SECTION" && ((f = z[D + 2]) == null ? void 0 : f.trim()) === "HEADER")
3759
3759
  x = !0;
3760
3760
  else if (F === "ENDSEC" && x)
3761
3761
  return { version: c, encoding: g };
3762
3762
  if (x && F === "$ACADVER") {
3763
- const dt = (S = z[U + 2]) == null ? void 0 : S.trim();
3763
+ const dt = (S = z[D + 2]) == null ? void 0 : S.trim();
3764
3764
  dt && (c = new Ci(dt));
3765
3765
  } else if (x && F === "$DWGCODEPAGE") {
3766
- const dt = (b = z[U + 2]) == null ? void 0 : b.trim();
3766
+ const dt = (b = z[D + 2]) == null ? void 0 : b.trim();
3767
3767
  if (dt) {
3768
3768
  const vt = Xo[dt];
3769
3769
  g = ou(vt);
@@ -4731,8 +4731,8 @@ const Oi = class mh {
4731
4731
  * @returns Return this matrix
4732
4732
  */
4733
4733
  multiplyMatrices(t, e) {
4734
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], E = s[2], M = s[5], O = s[8], z = o[0], U = o[3], F = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4735
- return h[0] = c * z + g * dt + x * W, h[3] = c * U + g * vt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * z + S * dt + b * W, h[4] = f * U + S * vt + b * ut, h[7] = f * F + S * ot + b * st, h[2] = E * z + M * dt + O * W, h[5] = E * U + M * vt + O * ut, h[8] = E * F + M * ot + O * st, this;
4734
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], E = s[2], M = s[5], O = s[8], z = o[0], D = o[3], F = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4735
+ return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * z + S * dt + b * W, h[4] = f * D + S * vt + b * ut, h[7] = f * F + S * ot + b * st, h[2] = E * z + M * dt + O * W, h[5] = E * D + M * vt + O * ut, h[8] = E * F + M * ot + O * st, this;
4736
4736
  }
4737
4737
  /**
4738
4738
  * Multiply every component of the matrix by the scalar value s.
@@ -5101,7 +5101,7 @@ function yd(i, t, e, s) {
5101
5101
  s
5102
5102
  );
5103
5103
  for (let z = 1; z <= x; z++) {
5104
- const U = h + z * f, F = Xs(U, i, t, e, s), dt = F[0] - S[0], vt = F[1] - S[1], ot = F[2] - S[2];
5104
+ const D = h + z * f, F = Xs(D, i, t, e, s), dt = F[0] - S[0], vt = F[1] - S[1], ot = F[2] - S[2];
5105
5105
  g += Math.sqrt(dt * dt + vt * vt + ot * ot), S = F;
5106
5106
  }
5107
5107
  const b = Xs(
@@ -5149,14 +5149,14 @@ class ln {
5149
5149
  return;
5150
5150
  }
5151
5151
  if (b !== z || x !== E || f !== M || S !== O) {
5152
- let U = 1 - g;
5152
+ let D = 1 - g;
5153
5153
  const F = x * E + f * M + S * O + b * z, dt = F >= 0 ? 1 : -1, vt = 1 - F * F;
5154
5154
  if (vt > Number.EPSILON) {
5155
5155
  const W = Math.sqrt(vt), ut = Math.atan2(W, F * dt);
5156
- U = Math.sin(U * ut) / W, g = Math.sin(g * ut) / W;
5156
+ D = Math.sin(D * ut) / W, g = Math.sin(g * ut) / W;
5157
5157
  }
5158
5158
  const ot = g * dt;
5159
- if (x = x * U + E * ot, f = f * U + M * ot, S = S * U + O * ot, b = b * U + z * ot, U === 1 - g) {
5159
+ if (x = x * D + E * ot, f = f * D + M * ot, S = S * D + O * ot, b = b * D + z * ot, D === 1 - g) {
5160
5160
  const W = 1 / Math.sqrt(x * x + f * f + S * S + b * b);
5161
5161
  x *= W, f *= W, S *= W, b *= W;
5162
5162
  }
@@ -6173,8 +6173,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6173
6173
  * @param n43 Input element in the forth row and the third column
6174
6174
  * @param n44 Input element in the forth row and the forth column
6175
6175
  */
6176
- constructor(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z, U) {
6177
- this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && E != null && M != null && O != null && z != null && U != null && this.set(
6176
+ constructor(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z, D) {
6177
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && E != null && M != null && O != null && z != null && D != null && this.set(
6178
6178
  t,
6179
6179
  e,
6180
6180
  s,
@@ -6190,7 +6190,7 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6190
6190
  M,
6191
6191
  O,
6192
6192
  z,
6193
- U
6193
+ D
6194
6194
  );
6195
6195
  }
6196
6196
  /**
@@ -6214,9 +6214,9 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6214
6214
  * @param n44 Input element in the forth row and the forth column
6215
6215
  * @returns Return this matrix
6216
6216
  */
6217
- set(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z, U) {
6217
+ set(t, e, s, o, h, c, g, x, f, S, b, E, M, O, z, D) {
6218
6218
  const F = this.elements;
6219
- return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = S, F[10] = b, F[14] = E, F[3] = M, F[7] = O, F[11] = z, F[15] = U, this;
6219
+ return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = S, F[10] = b, F[14] = E, F[3] = M, F[7] = O, F[11] = z, F[15] = D, this;
6220
6220
  }
6221
6221
  /**
6222
6222
  * Reset this matrix to the identity matrix.
@@ -6500,8 +6500,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6500
6500
  * @returns Return this matrix
6501
6501
  */
6502
6502
  multiplyMatrices(t, e) {
6503
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], E = s[9], M = s[13], O = s[2], z = s[6], U = s[10], F = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], Yt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], ke = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], lr = o[15];
6504
- return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * ke + f * Mt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = S * ut + b * Wt + E * me + M * Q, h[5] = S * st + b * bt + E * ke + M * Mt, h[9] = S * Vt + b * Ot + E * Jt + M * ae, h[13] = S * Yt + b * de + E * ie + M * lr, h[2] = O * ut + z * Wt + U * me + F * Q, h[6] = O * st + z * bt + U * ke + F * Mt, h[10] = O * Vt + z * Ot + U * Jt + F * ae, h[14] = O * Yt + z * de + U * ie + F * lr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * ke + W * Mt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * Yt + vt * de + ot * ie + W * lr, this;
6503
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], E = s[9], M = s[13], O = s[2], z = s[6], D = s[10], F = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], Yt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], ke = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], lr = o[15];
6504
+ return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * ke + f * Mt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = S * ut + b * Wt + E * me + M * Q, h[5] = S * st + b * bt + E * ke + M * Mt, h[9] = S * Vt + b * Ot + E * Jt + M * ae, h[13] = S * Yt + b * de + E * ie + M * lr, h[2] = O * ut + z * Wt + D * me + F * Q, h[6] = O * st + z * bt + D * ke + F * Mt, h[10] = O * Vt + z * Ot + D * Jt + F * ae, h[14] = O * Yt + z * de + D * ie + F * lr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * ke + W * Mt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * Yt + vt * de + ot * ie + W * lr, this;
6505
6505
  }
6506
6506
  /**
6507
6507
  * Multiply every component of the matrix by a scalar value s.
@@ -6517,8 +6517,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6517
6517
  * @returns Return the determinant of this matrix.
6518
6518
  */
6519
6519
  determinant() {
6520
- const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], E = t[10], M = t[14], O = t[3], z = t[7], U = t[11], F = t[15];
6521
- return O * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + z * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * S - h * x * S) + U * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * S - s * f * S) + F * (-o * g * S - e * x * b + e * g * E + o * c * b - s * c * E + s * x * S);
6520
+ const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], E = t[10], M = t[14], O = t[3], z = t[7], D = t[11], F = t[15];
6521
+ return O * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + z * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * S - h * x * S) + D * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * S - s * f * S) + F * (-o * g * S - e * x * b + e * g * E + o * c * b - s * c * E + s * x * S);
6522
6522
  }
6523
6523
  /**
6524
6524
  * Transposes this matrix.
@@ -6546,11 +6546,11 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6546
6546
  * @returns Return this matrix
6547
6547
  */
6548
6548
  invert() {
6549
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], E = t[10], M = t[11], O = t[12], z = t[13], U = t[14], F = t[15], dt = b * U * f - z * E * f + z * x * M - g * U * M - b * x * F + g * E * F, vt = O * E * f - S * U * f - O * x * M + c * U * M + S * x * F - c * E * F, ot = S * z * f - O * b * f + O * g * M - c * z * M - S * g * F + c * b * F, W = O * b * x - S * z * x - O * g * E + c * z * E + S * g * U - c * b * U, ut = e * dt + s * vt + o * ot + h * W;
6549
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], E = t[10], M = t[11], O = t[12], z = t[13], D = t[14], F = t[15], dt = b * D * f - z * E * f + z * x * M - g * D * M - b * x * F + g * E * F, vt = O * E * f - S * D * f - O * x * M + c * D * M + S * x * F - c * E * F, ot = S * z * f - O * b * f + O * g * M - c * z * M - S * g * F + c * b * F, W = O * b * x - S * z * x - O * g * E + c * z * E + S * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
6550
6550
  if (ut === 0)
6551
6551
  return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
6552
6552
  const st = 1 / ut;
6553
- return t[0] = dt * st, t[1] = (z * E * h - b * U * h - z * o * M + s * U * M + b * o * F - s * E * F) * st, t[2] = (g * U * h - z * x * h + z * o * f - s * U * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = vt * st, t[5] = (S * U * h - O * E * h + O * o * M - e * U * M - S * o * F + e * E * F) * st, t[6] = (O * x * h - c * U * h - O * o * f + e * U * f + c * o * F - e * x * F) * st, t[7] = (c * E * h - S * x * h + S * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (O * b * h - S * z * h - O * s * M + e * z * M + S * s * F - e * b * F) * st, t[10] = (c * z * h - O * g * h + O * s * f - e * z * f - c * s * F + e * g * F) * st, t[11] = (S * g * h - c * b * h - S * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (S * z * o - O * b * o + O * s * E - e * z * E - S * s * U + e * b * U) * st, t[14] = (O * g * o - c * z * o - O * s * x + e * z * x + c * s * U - e * g * U) * st, t[15] = (c * b * o - S * g * o + S * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6553
+ return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * M + s * D * M + b * o * F - s * E * F) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = vt * st, t[5] = (S * D * h - O * E * h + O * o * M - e * D * M - S * o * F + e * E * F) * st, t[6] = (O * x * h - c * D * h - O * o * f + e * D * f + c * o * F - e * x * F) * st, t[7] = (c * E * h - S * x * h + S * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (O * b * h - S * z * h - O * s * M + e * z * M + S * s * F - e * b * F) * st, t[10] = (c * z * h - O * g * h + O * s * f - e * z * f - c * s * F + e * g * F) * st, t[11] = (S * g * h - c * b * h - S * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (S * z * o - O * b * o + O * s * E - e * z * E - S * s * D + e * b * D) * st, t[14] = (O * g * o - c * z * o - O * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - S * g * o + S * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6554
6554
  }
6555
6555
  /**
6556
6556
  * Multiply the columns of this matrix by vector v.
@@ -6664,8 +6664,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6664
6664
  * @returns Return this matrix
6665
6665
  */
6666
6666
  compose(t, e, s) {
6667
- const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, E = h * f, M = h * S, O = h * b, z = c * S, U = c * b, F = g * b, dt = x * f, vt = x * S, ot = x * b, W = s.x, ut = s.y, st = s.z;
6668
- return o[0] = (1 - (z + F)) * W, o[1] = (M + ot) * W, o[2] = (O - vt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + F)) * ut, o[6] = (U + dt) * ut, o[7] = 0, o[8] = (O + vt) * st, o[9] = (U - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6667
+ const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, E = h * f, M = h * S, O = h * b, z = c * S, D = c * b, F = g * b, dt = x * f, vt = x * S, ot = x * b, W = s.x, ut = s.y, st = s.z;
6668
+ return o[0] = (1 - (z + F)) * W, o[1] = (M + ot) * W, o[2] = (O - vt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + F)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (O + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6669
6669
  }
6670
6670
  /**
6671
6671
  * Decompose this matrix into its position, quaternion and scale components.
@@ -7994,10 +7994,10 @@ class As extends ks {
7994
7994
  }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), S = h(e, s), b = c(f), E = c(S), M = (st, Vt, Yt, Wt) => {
7995
7995
  const bt = (Wt - Vt) / (st - Yt), Ot = st * bt + Vt;
7996
7996
  return { x: bt, y: Ot };
7997
- }, O = g.y - b * g.x, z = x.y - E * x.x, U = M(b, O, E, z), F = Math.sqrt(
7998
- Math.pow(t.x - U.x, 2) + Math.pow(t.y - U.y, 2)
7999
- ), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t, U), ot = dt(e, U), W = dt(s, U), ut = W > vt && W < ot || vt > W && vt < ot || ot > W && ot < vt;
8000
- this.center = U, this.radius = F, this._clockwise = !ut, this._startAngle = vt, this._endAngle = W;
7997
+ }, O = g.y - b * g.x, z = x.y - E * x.x, D = M(b, O, E, z), F = Math.sqrt(
7998
+ Math.pow(t.x - D.x, 2) + Math.pow(t.y - D.y, 2)
7999
+ ), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t, D), ot = dt(e, D), W = dt(s, D), ut = W > vt && W < ot || vt > W && vt < ot || ot > W && ot < vt;
8000
+ this.center = D, this.radius = F, this._clockwise = !ut, this._startAngle = vt, this._endAngle = W;
8001
8001
  }
8002
8002
  /**
8003
8003
  * Create circular arc by two points and one bugle factor
@@ -9465,10 +9465,10 @@ var Sh = { exports: {} };
9465
9465
  }
9466
9466
  return a;
9467
9467
  };
9468
- var U = function() {
9468
+ var D = function() {
9469
9469
  this.length = 0;
9470
9470
  };
9471
- b.List = U, U.__name__ = ["List"], U.prototype = {
9471
+ b.List = D, D.__name__ = ["List"], D.prototype = {
9472
9472
  add: function(r) {
9473
9473
  var n = [r];
9474
9474
  this.h == null ? this.h = n : this.q[1] = n, this.q = n, this.length++;
@@ -9481,7 +9481,7 @@ var Sh = { exports: {} };
9481
9481
  isEmpty: function() {
9482
9482
  return this.h == null;
9483
9483
  },
9484
- __class__: U
9484
+ __class__: D
9485
9485
  }, Math.__name__ = ["Math"];
9486
9486
  var F = function() {
9487
9487
  };
@@ -9666,7 +9666,7 @@ var Sh = { exports: {} };
9666
9666
  }
9667
9667
  d > 0 && (d == 1 ? this.buf.b += "n" : (this.buf.b += "u", d == null ? this.buf.b += "null" : this.buf.b += "" + d)), this.buf.b += "h";
9668
9668
  break;
9669
- case U:
9669
+ case D:
9670
9670
  this.buf.b += "l";
9671
9671
  for (var w = r, I = w.h, A = null; I != null; ) {
9672
9672
  var P;
@@ -9689,8 +9689,8 @@ var Sh = { exports: {} };
9689
9689
  case bt:
9690
9690
  this.buf.b += "q";
9691
9691
  for (var B = r, R = B.keys(); R.hasNext(); ) {
9692
- var D = R.next();
9693
- this.buf.b += ":", D == null ? this.buf.b += "null" : this.buf.b += "" + D, this.serialize(B.h[D]);
9692
+ var U = R.next();
9693
+ this.buf.b += ":", U == null ? this.buf.b += "null" : this.buf.b += "" + U, this.serialize(B.h[U]);
9694
9694
  }
9695
9695
  this.buf.b += "h";
9696
9696
  break;
@@ -9892,10 +9892,10 @@ var Sh = { exports: {} };
9892
9892
  this.pos++;
9893
9893
  var B = this.readDigits(), R = ut.getEnumConstructs(C)[B];
9894
9894
  if (R == null) throw new Q("Unknown enum index " + L + "@" + B);
9895
- var D = this.unserializeEnum(C, R);
9896
- return this.cache.push(D), D;
9895
+ var U = this.unserializeEnum(C, R);
9896
+ return this.cache.push(U), U;
9897
9897
  case 108:
9898
- var V = new U();
9898
+ var V = new D();
9899
9899
  for (this.cache.push(V), this.buf; this.buf.charCodeAt(this.pos) != 104; ) V.add(this.unserialize());
9900
9900
  return this.pos++, V;
9901
9901
  case 98:
@@ -10727,7 +10727,7 @@ var Sh = { exports: {} };
10727
10727
  for (var n = null; r-- > 0 && (n = At.queue.pop()) != null; ) n();
10728
10728
  return At.queue.isEmpty();
10729
10729
  }, At.clear = function() {
10730
- At.queue = new U();
10730
+ At.queue = new D();
10731
10731
  }, At.f = function() {
10732
10732
  var r = At.queue.pop();
10733
10733
  r != null && r(), At.queue.isEmpty() || At.continueOnNextLoop();
@@ -11026,17 +11026,17 @@ var Sh = { exports: {} };
11026
11026
  for (var P, k = A.dimension, T = l.distanceFunction(r, A.kdPoint.point), L, C = [], B = 0, R = l.dim; B < R; )
11027
11027
  B++, C.push(0);
11028
11028
  L = C;
11029
- for (var D, V, Y = function(K, tt) {
11029
+ for (var U, V, Y = function(K, tt) {
11030
11030
  u.push(new ee(K, tt)), u.size() > n && u.pop();
11031
11031
  }, J = 0, H = l.dim; J < H; ) {
11032
11032
  var G = J++;
11033
11033
  G == A.dimension ? L[G] = r[G] : L[G] = A.kdPoint.point[G];
11034
11034
  }
11035
- if (D = l.distanceFunction(L, A.kdPoint.point), A.right == null && A.left == null) {
11035
+ if (U = l.distanceFunction(L, A.kdPoint.point), A.right == null && A.left == null) {
11036
11036
  (u.size() < n || T < u.peek().item1) && Y(A, T);
11037
11037
  return;
11038
11038
  }
11039
- A.right == null ? P = A.left : A.left == null ? P = A.right : r[k] < A.kdPoint.point[k] ? P = A.left : P = A.right, p(P), (u.size() < n || T < u.peek().item1) && Y(A, T), (u.size() < n || Math.abs(D) < u.peek().item1) && (P == A.left ? V = A.right : V = A.left, V != null && p(V));
11039
+ A.right == null ? P = A.left : A.left == null ? P = A.right : r[k] < A.kdPoint.point[k] ? P = A.left : P = A.right, p(P), (u.size() < n || T < u.peek().item1) && Y(A, T), (u.size() < n || Math.abs(U) < u.peek().item1) && (P == A.left ? V = A.right : V = A.left, V != null && p(V));
11040
11040
  }, d = p;
11041
11041
  for (var _ = 0; _ < n; )
11042
11042
  _++, u.push(new ee(null, a));
@@ -11424,7 +11424,7 @@ var Sh = { exports: {} };
11424
11424
  var d = n.length, p = r(n), _ = p, v;
11425
11425
  if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
11426
11426
  a = Math.max(a, rt.EPSILON);
11427
- var w, I, A, P = Lt.identity(d), k = 0, T = [], L, C, B, R, D, V, Y = "";
11427
+ var w, I, A, P = Lt.identity(d), k = 0, T = [], L, C, B, R, U, V, Y = "";
11428
11428
  for (I = l(n); k < u; ) {
11429
11429
  if (!m.all(m.finite(I))) {
11430
11430
  Y = "Gradient has Infinity or NaN";
@@ -11438,14 +11438,14 @@ var Sh = { exports: {} };
11438
11438
  Y = "Newton step smaller than tol";
11439
11439
  break;
11440
11440
  }
11441
- for (D = 1, v = m.dot(I, w), L = n; k < u && !(D * V < a); ) {
11442
- if (T = m.mul(D, w), L = m.add(n, T), _ = r(L), _ - p >= 0.1 * D * v || isNaN(_)) {
11443
- D *= 0.5, ++k;
11441
+ for (U = 1, v = m.dot(I, w), L = n; k < u && !(U * V < a); ) {
11442
+ if (T = m.mul(U, w), L = m.add(n, T), _ = r(L), _ - p >= 0.1 * U * v || isNaN(_)) {
11443
+ U *= 0.5, ++k;
11444
11444
  continue;
11445
11445
  }
11446
11446
  break;
11447
11447
  }
11448
- if (D * V < a) {
11448
+ if (U * V < a) {
11449
11449
  Y = "Line search step size smaller than tol";
11450
11450
  break;
11451
11451
  }
@@ -11460,13 +11460,13 @@ var Sh = { exports: {} };
11460
11460
  var a = n.length, l = r(n);
11461
11461
  if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
11462
11462
  for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, I, A, P, k = 0, T, L, C, B = 0; B < a; )
11463
- for (var R = B++, D = Math.max(1e-6 * l, 1e-8); ; ) {
11463
+ for (var R = B++, U = Math.max(1e-6 * l, 1e-8); ; ) {
11464
11464
  if (++k, k > 20) throw new Q("Numerical gradient fails");
11465
- if (u[R] = n[R] + D, d = r(u), u[R] = n[R] - D, p = r(u), u[R] = n[R], isNaN(d) || isNaN(p)) {
11466
- D /= 16;
11465
+ if (u[R] = n[R] + U, d = r(u), u[R] = n[R] - U, p = r(u), u[R] = n[R], isNaN(d) || isNaN(p)) {
11466
+ U /= 16;
11467
11467
  continue;
11468
11468
  }
11469
- if (_[R] = (d - p) / (2 * D), I = n[R] - D, A = n[R], P = n[R] + D, T = (d - l) / D, L = (l - p) / D, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(A), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(T - _[R]), Math.abs(L - _[R]), Math.abs(T - L)]) / C, D / C), v > w) D /= 16;
11469
+ if (_[R] = (d - p) / (2 * U), I = n[R] - U, A = n[R], P = n[R] + U, T = (d - l) / U, L = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(A), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(T - _[R]), Math.abs(L - _[R]), Math.abs(T - L)]) / C, U / C), v > w) U /= 16;
11470
11470
  else break;
11471
11471
  }
11472
11472
  return _;
@@ -11736,8 +11736,8 @@ var Sh = { exports: {} };
11736
11736
  return N.rationalSurfacePoint(r, a[0], a[1]);
11737
11737
  }, yt.rationalSurfaceClosestParam = function(r, n) {
11738
11738
  for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = $.last(r.knotsU), I = r.knotsV[0], A = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), T, L = zt.rationalSurfaceAdaptive(r, new Cr()), C = 1 / 0, B = 0, R = L.points.length; B < R; ) {
11739
- var D = B++, V = L.points[D], Y = m.normSquared(m.sub(n, V));
11740
- Y < C && (C = Y, T = L.uvs[D]);
11739
+ var U = B++, V = L.points[U], Y = m.normSquared(m.sub(n, V));
11740
+ Y < C && (C = Y, T = L.uvs[U]);
11741
11741
  }
11742
11742
  for (var J = function(jt) {
11743
11743
  return N.rationalSurfaceDerivatives(r, jt[0], jt[1], 2);
@@ -11762,16 +11762,16 @@ var Sh = { exports: {} };
11762
11762
  var _ = d++, v = u[_][0], w = u[_ + 1][0], I = u[_].slice(1), A = u[_ + 1].slice(1), P = Te.segmentClosestPoint(n, I, A, v, w), k = m.norm(m.sub(n, P.pt));
11763
11763
  k < a && (a = k, l = P.u);
11764
11764
  }
11765
- for (var T = 5, L = 0, C, B = 1e-4, R = 5e-4, D, V = r.knots[0], Y = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
11765
+ for (var T = 5, L = 0, C, B = 1e-4, R = 5e-4, U, V = r.knots[0], Y = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
11766
11766
  return N.rationalCurveDerivatives(r, X, 2);
11767
11767
  }, K = function(X, gt, It) {
11768
11768
  var jt = m.dot(gt[1], It), Xt = m.dot(gt[2], It), Dt = m.dot(gt[1], gt[1]), Kt = Xt + Dt;
11769
11769
  return X - jt / Kt;
11770
11770
  }; L < T; ) {
11771
- C = G(H), D = m.sub(C[0], n);
11772
- var tt = m.norm(D), et = m.dot(C[1], D), it = m.norm(C[1]) * tt, ht = et / it, at = tt < B, ct = Math.abs(ht) < R;
11771
+ C = G(H), U = m.sub(C[0], n);
11772
+ var tt = m.norm(U), et = m.dot(C[1], U), it = m.norm(C[1]) * tt, ht = et / it, at = tt < B, ct = Math.abs(ht) < R;
11773
11773
  if (at && ct) return H;
11774
- var nt = K(H, C, D);
11774
+ var nt = K(H, C, U);
11775
11775
  nt < V ? J ? nt = Y - (nt - V) : nt = V : nt > Y && (J ? nt = V + (nt - Y) : nt = Y);
11776
11776
  var mt = m.norm(m.mul(nt - H, C[1]));
11777
11777
  if (mt < B) return H;
@@ -11928,8 +11928,8 @@ var Sh = { exports: {} };
11928
11928
  var R = C++;
11929
11929
  m.subMulMutate(L, Bt.get(T, R) * p[0][R], _[A][T - R]);
11930
11930
  }
11931
- for (var D = 1, V = A + 1; D < V; ) {
11932
- var Y = D++;
11931
+ for (var U = 1, V = A + 1; U < V; ) {
11932
+ var Y = U++;
11933
11933
  m.subMulMutate(L, Bt.get(A, Y) * p[Y][0], _[A - Y][T]);
11934
11934
  for (var J = m.zeros1d(v), H = 1, G = T + 1; H < G; ) {
11935
11935
  var K = H++;
@@ -11965,13 +11965,13 @@ var Sh = { exports: {} };
11965
11965
  d < p ? P = d : P = p;
11966
11966
  var k;
11967
11967
  d < _ ? k = d : k = _;
11968
- for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, I), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), D = m.zeros2d(_ + 1, A), V = 0, Y = 0, J = P + 1; Y < J; ) {
11968
+ for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, I), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), U = m.zeros2d(_ + 1, A), V = 0, Y = 0, J = P + 1; Y < J; ) {
11969
11969
  for (var H = Y++, G = 0, K = _ + 1; G < K; ) {
11970
11970
  var tt = G++;
11971
- D[tt] = m.zeros1d(A);
11971
+ U[tt] = m.zeros1d(A);
11972
11972
  for (var et = 0, it = p + 1; et < it; ) {
11973
11973
  var ht = et++;
11974
- m.addMulMutate(D[tt], B[H][ht], v[L - p + ht][C - _ + tt]);
11974
+ m.addMulMutate(U[tt], B[H][ht], v[L - p + ht][C - _ + tt]);
11975
11975
  }
11976
11976
  }
11977
11977
  var at = d - H;
@@ -11981,7 +11981,7 @@ var Sh = { exports: {} };
11981
11981
  T[H][mt] = m.zeros1d(A);
11982
11982
  for (var X = 0, gt = _ + 1; X < gt; ) {
11983
11983
  var It = X++;
11984
- m.addMulMutate(T[H][mt], R[mt][It], D[It]);
11984
+ m.addMulMutate(T[H][mt], R[mt][It], U[It]);
11985
11985
  }
11986
11986
  }
11987
11987
  }
@@ -11992,8 +11992,8 @@ var Sh = { exports: {} };
11992
11992
  }, N.surfacePointGivenNM = function(r, n, a, l, u) {
11993
11993
  var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, w = a.knotsV;
11994
11994
  if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, w.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11995
- for (var I = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(P, u, p, w), L = A - d, C = P, B = m.zeros1d(I), R = m.zeros1d(I), D = 0, V = p + 1; D < V; ) {
11996
- var Y = D++;
11995
+ for (var I = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(P, u, p, w), L = A - d, C = P, B = m.zeros1d(I), R = m.zeros1d(I), U = 0, V = p + 1; U < V; ) {
11996
+ var Y = U++;
11997
11997
  R = m.zeros1d(I), C = P - p + Y;
11998
11998
  for (var J = 0, H = d + 1; J < H; ) {
11999
11999
  var G = J++;
@@ -12015,8 +12015,8 @@ var Sh = { exports: {} };
12015
12015
  var I = w++, A = [];
12016
12016
  d.push(A);
12017
12017
  for (var P = 0; P < _; ) {
12018
- for (var k = P++, T = u[I][k], L = N.rational2d(T), C = N.weight2d(T), B = [], R = L[0][0].length, D = 0; D < v; ) {
12019
- var V = D++;
12018
+ for (var k = P++, T = u[I][k], L = N.rational2d(T), C = N.weight2d(T), B = [], R = L[0][0].length, U = 0; U < v; ) {
12019
+ var V = U++;
12020
12020
  B.push([]);
12021
12021
  for (var Y = 0, J = v - V; Y < J; ) {
12022
12022
  for (var H = Y++, G = L[V][H], K = 1, tt = H + 1; K < tt; ) {
@@ -12042,8 +12042,8 @@ var Sh = { exports: {} };
12042
12042
  }, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
12043
12043
  var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, w = p[0][0].length;
12044
12044
  ($.last(_) - _[0]) / n, ($.last(v) - v[0]) / a;
12045
- for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, R = a + 1, D = 0; D < B; ) {
12046
- var V = D++, Y = [];
12045
+ for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, R = a + 1, U = 0; U < B; ) {
12046
+ var V = U++, Y = [];
12047
12047
  C.push(Y);
12048
12048
  for (var J = 0; J < R; ) {
12049
12049
  var H = J++;
@@ -12057,11 +12057,11 @@ var Sh = { exports: {} };
12057
12057
  var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
12058
12058
  ($.last(p) - p[0]) / n, ($.last(_) - _[0]) / a;
12059
12059
  for (var w = N.regularlySpacedBasisFunctions(l, p, n), I = w.item0, A = w.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0, T = P.item1, L = [], C = n + 1, B = a + 1, R = 0; R < C; ) {
12060
- var D = R++, V = [];
12060
+ var U = R++, V = [];
12061
12061
  L.push(V);
12062
12062
  for (var Y = 0; Y < B; ) {
12063
12063
  var J = Y++;
12064
- V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[D], k[J], A[D], T[J], v));
12064
+ V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], A[U], T[J], v));
12065
12065
  }
12066
12066
  }
12067
12067
  return L;
@@ -12094,7 +12094,7 @@ var Sh = { exports: {} };
12094
12094
  var A;
12095
12095
  v < n ? A = v : A = n;
12096
12096
  for (var P = m.zeros3d(I + 1, A + 1, w), k = m.zeros2d(n + 1, w), T = 0, L = 0, C = I + 1; L < C; ) {
12097
- for (var B = L++, R = 0, D = n + 1; R < D; ) {
12097
+ for (var B = L++, R = 0, U = n + 1; R < U; ) {
12098
12098
  var V = R++;
12099
12099
  k[V] = m.zeros1d(w);
12100
12100
  for (var Y = 0, J = r + 1; Y < J; ) {
@@ -12147,7 +12147,7 @@ var Sh = { exports: {} };
12147
12147
  return N.volumePointGivenNML(r, u, d, p, n, a, l);
12148
12148
  }, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
12149
12149
  if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
12150
- for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, I = r.degreeW, A = r.knotsU, P = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, P), B = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A), D = N.basisFunctionsGivenKnotSpanIndex(C, d, w, P), V = N.basisFunctionsGivenKnotSpanIndex(B, p, I, k), Y = L - v, J = m.zeros1d(T), H = m.zeros1d(T), G = m.zeros1d(T), K = 0, tt = I + 1; K < tt; ) {
12150
+ for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, I = r.degreeW, A = r.knotsU, P = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, P), B = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A), U = N.basisFunctionsGivenKnotSpanIndex(C, d, w, P), V = N.basisFunctionsGivenKnotSpanIndex(B, p, I, k), Y = L - v, J = m.zeros1d(T), H = m.zeros1d(T), G = m.zeros1d(T), K = 0, tt = I + 1; K < tt; ) {
12151
12151
  var et = K++;
12152
12152
  G = m.zeros1d(T);
12153
12153
  for (var it = B - I + et, ht = 0, at = w + 1; ht < at; ) {
@@ -12157,7 +12157,7 @@ var Sh = { exports: {} };
12157
12157
  var gt = mt++;
12158
12158
  m.addMulMutate(H, R[gt], _[Y + gt][nt][it]);
12159
12159
  }
12160
- m.addMulMutate(G, D[ct], H);
12160
+ m.addMulMutate(G, U[ct], H);
12161
12161
  }
12162
12162
  m.addMulMutate(J, V[et], G);
12163
12163
  }
@@ -12177,7 +12177,7 @@ var Sh = { exports: {} };
12177
12177
  }
12178
12178
  d[P][P] = v;
12179
12179
  }
12180
- for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, R = 1, D = 0, V = 0, Y = 0, J = 0, H = 0, G = 0, K = a + 1; G < K; ) {
12180
+ for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, R = 1, U = 0, V = 0, Y = 0, J = 0, H = 0, G = 0, K = a + 1; G < K; ) {
12181
12181
  var tt = G++;
12182
12182
  L[0][tt] = d[tt][a];
12183
12183
  }
@@ -12186,12 +12186,12 @@ var Sh = { exports: {} };
12186
12186
  B = 0, R = 1, C[0][0] = 1;
12187
12187
  for (var at = 1, ct = l + 1; at < ct; ) {
12188
12188
  var nt = at++;
12189
- D = 0, V = ht - nt, Y = a - nt, ht >= nt && (C[R][0] = C[B][0] / d[Y + 1][V], D = C[R][0] * d[V][Y]), V >= -1 ? J = 1 : J = -V, ht - 1 <= Y ? H = nt - 1 : H = a - ht;
12189
+ U = 0, V = ht - nt, Y = a - nt, ht >= nt && (C[R][0] = C[B][0] / d[Y + 1][V], U = C[R][0] * d[V][Y]), V >= -1 ? J = 1 : J = -V, ht - 1 <= Y ? H = nt - 1 : H = a - ht;
12190
12190
  for (var mt = J, X = H + 1; mt < X; ) {
12191
12191
  var gt = mt++;
12192
- C[R][gt] = (C[B][gt] - C[B][gt - 1]) / d[Y + 1][V + gt], D += C[R][gt] * d[V + gt][Y];
12192
+ C[R][gt] = (C[B][gt] - C[B][gt - 1]) / d[Y + 1][V + gt], U += C[R][gt] * d[V + gt][Y];
12193
12193
  }
12194
- ht <= Y && (C[R][nt] = -C[B][nt - 1] / d[Y + 1][ht], D += C[R][nt] * d[ht][Y]), L[nt][ht] = D;
12194
+ ht <= Y && (C[R][nt] = -C[B][nt - 1] / d[Y + 1][ht], U += C[R][nt] * d[ht][Y]), L[nt][ht] = U;
12195
12195
  var It = B;
12196
12196
  B = R, R = It;
12197
12197
  }
@@ -12293,14 +12293,14 @@ var Sh = { exports: {} };
12293
12293
  }), 3);
12294
12294
  });
12295
12295
  }, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
12296
- var d, p, _, v, w, I, A, P, k, T, L, C, B, R = 5, D = 0;
12296
+ var d, p, _, v, w, I, A, P, k, T, L, C, B, R = 5, U = 0;
12297
12297
  do {
12298
12298
  if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), I = m.dot(_, p), A = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = A[0][0], T = A[1][0], L = A[0][1], k = m.normalized(m.cross(T, L)), C = m.dot(k, P), B = m.distSquared(p, P), B < u * u) break;
12299
12299
  var V = m.normalized(m.cross(_, k)), Y = m.dot(V, p), J = lt.threePlanes(_, I, k, C, V, Y);
12300
12300
  if (J == null) throw new Q("panic!");
12301
12301
  var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(w, _), et = m.cross(T, k), it = m.cross(L, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, w), ct = m.dot(it, G) / m.dot(it, T), nt = m.dot(et, G) / m.dot(et, L);
12302
- a = m.add([ht, at], a), l = m.add([ct, nt], l), D++;
12303
- } while (D < R);
12302
+ a = m.add([ht, at], a), l = m.add([ct, nt], l), U++;
12303
+ } while (U < R);
12304
12304
  return new Gn(a, l, p, B);
12305
12305
  }, lt.meshes = function(r, n, a, l) {
12306
12306
  a == null && (a = new ir(r)), l == null && (l = new ir(n));
@@ -12511,7 +12511,7 @@ var Sh = { exports: {} };
12511
12511
  if (Math.abs(k) < rt.EPSILON) return null;
12512
12512
  var T = P / k;
12513
12513
  if (T < 0 || T > 1) return null;
12514
- var L = m.add(r, m.mul(T, I)), C = m.dot(_, v), B = m.dot(_, _), R = m.dot(v, v), D = m.sub(L, u), V = m.dot(D, _), Y = m.dot(D, v), J = C * C - B * R;
12514
+ var L = m.add(r, m.mul(T, I)), C = m.dot(_, v), B = m.dot(_, _), R = m.dot(v, v), U = m.sub(L, u), V = m.dot(U, _), Y = m.dot(U, v), J = C * C - B * R;
12515
12515
  if (Math.abs(J) < rt.EPSILON) return null;
12516
12516
  var H = (C * Y - R * V) / J, G = (C * V - B * Y) / J;
12517
12517
  return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new jn(L, H, G, T);
@@ -12589,8 +12589,8 @@ var Sh = { exports: {} };
12589
12589
  }
12590
12590
  p.push(I);
12591
12591
  }
12592
- var R = m.rep(u + 1, 0), D = m.rep(u + 1, 1);
12593
- return new te(u, u, R.concat(D), R.concat(D), p);
12592
+ var R = m.rep(u + 1, 0), U = m.rep(u + 1, 1);
12593
+ return new te(u, u, R.concat(U), R.concat(U), p);
12594
12594
  }, pt.ellipseArc = function(r, n, a, l, u) {
12595
12595
  var d = m.norm(n), p = m.norm(a);
12596
12596
  n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
@@ -12598,7 +12598,7 @@ var Sh = { exports: {} };
12598
12598
  _ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
12599
12599
  var w = _ / v, I = Math.cos(w / 2), A = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), L = 0, C = l, B = m.zeros1d(v * 2);
12600
12600
  k[0] = A, B[0] = 1;
12601
- for (var R = 1, D = v + 1; R < D; ) {
12601
+ for (var R = 1, U = v + 1; R < U; ) {
12602
12602
  var V = R++;
12603
12603
  C += w;
12604
12604
  var Y = m.add(r, m.add(m.mul(d * Math.cos(C), n), m.mul(p * Math.sin(C), a)));
@@ -12649,7 +12649,7 @@ var Sh = { exports: {} };
12649
12649
  var A = I++;
12650
12650
  _[A] = 0, _[w + A] = 1;
12651
12651
  }
12652
- for (var P = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), R = 1, D = p + 1; R < D; ) {
12652
+ for (var P = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
12653
12653
  var V = R++;
12654
12654
  k += v, L[V] = Math.cos(k), T[V] = Math.sin(k);
12655
12655
  }
@@ -12691,8 +12691,8 @@ var Sh = { exports: {} };
12691
12691
  C ? B = 0 : B = 1;
12692
12692
  var R;
12693
12693
  C ? R = d.length - n + 1 : R = d.length - n;
12694
- for (var D = B; D < R; ) {
12695
- for (var V = D++, Y = 0, J = 0; J < n; ) {
12694
+ for (var U = B; U < R; ) {
12695
+ for (var V = U++, Y = 0, J = 0; J < n; ) {
12696
12696
  var H = J++;
12697
12697
  Y += d[V + H];
12698
12698
  }
@@ -12790,10 +12790,10 @@ var Sh = { exports: {} };
12790
12790
  };
12791
12791
  }(R));
12792
12792
  }
12793
- for (var D = z.fold(r, function(G, K) {
12793
+ for (var U = z.fold(r, function(G, K) {
12794
12794
  return m.sortedSetUnion(G.knots, K);
12795
12795
  }, []), V = 0, Y = r.length; V < Y; ) {
12796
- var J = V++, H = m.sortedSetSub(D, r[J].knots);
12796
+ var J = V++, H = m.sortedSetSub(U, r[J].knots);
12797
12797
  H.length == 0 && (r[J] = r[J]), r[J] = ft.curveKnotRefine(r[J], H);
12798
12798
  }
12799
12799
  return r;
@@ -12806,9 +12806,9 @@ var Sh = { exports: {} };
12806
12806
  var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], I = [], A = [], P = a + l + 1, k = n, T = Math.floor(k / 2), L = [], C = [];
12807
12807
  v[0][0] = 1, v[k][l] = 1;
12808
12808
  for (var B = 1, R = T + 1; B < R; )
12809
- for (var D = B++, V = 1 / Bt.get(k, D), Y = ft.imin(l, D), J = ft.imax(0, D - p), H = Y + 1; J < H; ) {
12809
+ for (var U = B++, V = 1 / Bt.get(k, U), Y = ft.imin(l, U), J = ft.imax(0, U - p), H = Y + 1; J < H; ) {
12810
12810
  var G = J++;
12811
- v[D][G] = V * Bt.get(l, G) * Bt.get(p, D - G);
12811
+ v[U][G] = V * Bt.get(l, G) * Bt.get(p, U - G);
12812
12812
  }
12813
12813
  for (var K = T + 1; K < k; )
12814
12814
  for (var tt = K++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
@@ -12936,7 +12936,7 @@ var Sh = { exports: {} };
12936
12936
  var B = L++;
12937
12937
  I[B + _ + 1] = l[B];
12938
12938
  }
12939
- for (var R = 0, D = v + 1; R < D; ) {
12939
+ for (var R = 0, U = v + 1; R < U; ) {
12940
12940
  var V = R++;
12941
12941
  A[V] = u[V];
12942
12942
  }
@@ -12964,7 +12964,7 @@ var Sh = { exports: {} };
12964
12964
  var B = L++;
12965
12965
  I[v + B] = n;
12966
12966
  }
12967
- for (var R = v + 1, D = d.length; R < D; ) {
12967
+ for (var R = v + 1, U = d.length; R < U; ) {
12968
12968
  var V = R++;
12969
12969
  I[V + a] = d[V];
12970
12970
  }
@@ -13027,9 +13027,9 @@ var Sh = { exports: {} };
13027
13027
  n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
13028
13028
  for (var l = r.knotsU, u = r.knotsV, d = $.last(l) - l[0], p = $.last(u) - u[0], _ = d / n, v = p / a, w = [], I = [], A = [], P = 0, k = n + 1; P < k; )
13029
13029
  for (var T = P++, L = 0, C = a + 1; L < C; ) {
13030
- var B = L++, R = T * _, D = B * v;
13031
- I.push([R, D]);
13032
- var V = N.rationalSurfaceDerivatives(r, R, D, 1), Y = V[0][0];
13030
+ var B = L++, R = T * _, U = B * v;
13031
+ I.push([R, U]);
13032
+ var V = N.rationalSurfaceDerivatives(r, R, U, 1), Y = V[0][0];
13033
13033
  w.push(Y);
13034
13034
  var J = m.normalized(m.cross(V[1][0], V[0][1]));
13035
13035
  A.push(J);
@@ -13047,7 +13047,7 @@ var Sh = { exports: {} };
13047
13047
  var d;
13048
13048
  n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
13049
13049
  for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), w = r.knotsV[0], I = (p - _) / u, A = (v - w) / d, P = [], k = [], T = 0, L = d + 1; T < L; ) {
13050
- for (var C = T++, B = [], R = 0, D = u + 1; R < D; ) {
13050
+ for (var C = T++, B = [], R = 0, U = u + 1; R < U; ) {
13051
13051
  var V = R++, Y = _ + I * V, J = w + A * C, H = N.rationalSurfaceDerivatives(r, Y, J, 1), G = m.normalized(m.cross(H[0][1], H[1][0]));
13052
13052
  B.push(new Ve(H[0][0], G, [Y, J], -1, m.isZero(G)));
13053
13053
  }
@@ -13804,20 +13804,20 @@ var Sh = { exports: {} };
13804
13804
  return l[a] = v.apply(n, R), a++;
13805
13805
  }
13806
13806
  function v(R) {
13807
- var D = [].slice.call(arguments, 1);
13807
+ var U = [].slice.call(arguments, 1);
13808
13808
  return function() {
13809
- typeof R == "function" ? R.apply(n, D) : new Function("" + R)();
13809
+ typeof R == "function" ? R.apply(n, U) : new Function("" + R)();
13810
13810
  };
13811
13811
  }
13812
13812
  function w(R) {
13813
13813
  if (u)
13814
13814
  setTimeout(v(w, R), 0);
13815
13815
  else {
13816
- var D = l[R];
13817
- if (D) {
13816
+ var U = l[R];
13817
+ if (U) {
13818
13818
  u = !0;
13819
13819
  try {
13820
- D();
13820
+ U();
13821
13821
  } finally {
13822
13822
  I(R), u = !1;
13823
13823
  }
@@ -13835,38 +13835,38 @@ var Sh = { exports: {} };
13835
13835
  }
13836
13836
  function P() {
13837
13837
  if (r.postMessage && !r.importScripts) {
13838
- var R = !0, D = r.onmessage;
13838
+ var R = !0, U = r.onmessage;
13839
13839
  return r.onmessage = function() {
13840
13840
  R = !1;
13841
- }, r.postMessage("", "*"), r.onmessage = D, R;
13841
+ }, r.postMessage("", "*"), r.onmessage = U, R;
13842
13842
  }
13843
13843
  }
13844
13844
  function k() {
13845
- var R = "setImmediate$" + Math.random() + "$", D = function(V) {
13845
+ var R = "setImmediate$" + Math.random() + "$", U = function(V) {
13846
13846
  V.source === r && typeof V.data == "string" && V.data.indexOf(R) === 0 && w(+V.data.slice(R.length));
13847
13847
  };
13848
- r.addEventListener ? r.addEventListener("message", D, !1) : r.attachEvent("onmessage", D), p = function() {
13848
+ r.addEventListener ? r.addEventListener("message", U, !1) : r.attachEvent("onmessage", U), p = function() {
13849
13849
  var V = _(arguments);
13850
13850
  return r.postMessage(R + V, "*"), V;
13851
13851
  };
13852
13852
  }
13853
13853
  function T() {
13854
13854
  var R = new MessageChannel();
13855
- R.port1.onmessage = function(D) {
13856
- var V = D.data;
13855
+ R.port1.onmessage = function(U) {
13856
+ var V = U.data;
13857
13857
  w(V);
13858
13858
  }, p = function() {
13859
- var D = _(arguments);
13860
- return R.port2.postMessage(D), D;
13859
+ var U = _(arguments);
13860
+ return R.port2.postMessage(U), U;
13861
13861
  };
13862
13862
  }
13863
13863
  function L() {
13864
13864
  var R = d.documentElement;
13865
13865
  p = function() {
13866
- var D = _(arguments), V = d.createElement("script");
13866
+ var U = _(arguments), V = d.createElement("script");
13867
13867
  return V.onreadystatechange = function() {
13868
- w(D), V.onreadystatechange = null, R.removeChild(V), V = null;
13869
- }, R.appendChild(V), D;
13868
+ w(U), V.onreadystatechange = null, R.removeChild(V), V = null;
13869
+ }, R.appendChild(V), U;
13870
13870
  };
13871
13871
  }
13872
13872
  function C() {
@@ -13880,7 +13880,7 @@ var Sh = { exports: {} };
13880
13880
  })(new Function("return this")()), Yt.USE_CACHE = !1, Yt.USE_ENUM_INDEX = !1, Yt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Ot.count = 0, ie.i64tmp = function(r) {
13881
13881
  var n, a = new Vt(0, 0);
13882
13882
  return n = a, n;
13883
- }(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, At.queue = new U(), Bt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, Ts.main();
13883
+ }(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, At.queue = new D(), Bt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, Ts.main();
13884
13884
  }(typeof console < "u" ? console : { log: function() {
13885
13885
  } }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
13886
13886
  });
@@ -14004,8 +14004,8 @@ class Md extends Ms {
14004
14004
  const b = o[g % h], E = o[(g + 1) % h];
14005
14005
  if (this._closed || g + 2 < h ? S = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), S = new q(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
14006
14006
  const M = this._curveType === "chordal" ? 0.5 : 0.25;
14007
- let O = Math.pow(f.distanceToSquared(b), M), z = Math.pow(b.distanceToSquared(E), M), U = Math.pow(E.distanceToSquared(S), M);
14008
- z < 1e-4 && (z = 1), O < 1e-4 && (O = z), U < 1e-4 && (U = z), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, S.x, O, z, U), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, S.y, O, z, U), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, S.z, O, z, U);
14007
+ let O = Math.pow(f.distanceToSquared(b), M), z = Math.pow(b.distanceToSquared(E), M), D = Math.pow(E.distanceToSquared(S), M);
14008
+ z < 1e-4 && (z = 1), O < 1e-4 && (O = z), D < 1e-4 && (D = z), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, S.x, O, z, D), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, S.y, O, z, D), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, S.z, O, z, D);
14009
14009
  } else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, S.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, S.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, S.z, this._tension));
14010
14010
  return s.set(
14011
14011
  this._px.calc(x),
@@ -17917,18 +17917,18 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends Js {
17917
17917
  e += M > 0 ? this.rowHeight(M - 1) : 0;
17918
17918
  const O = this.cell(M * this.numColumns + E);
17919
17919
  if (f = M * this.numColumns + E, O && !x[f]) {
17920
- const z = O.borderWidth ?? 1, U = O.borderHeight ?? 1;
17920
+ const z = O.borderWidth ?? 1, D = O.borderHeight ?? 1;
17921
17921
  this.fillVisited(
17922
17922
  x,
17923
17923
  f,
17924
17924
  this.numColumns,
17925
17925
  z,
17926
- U
17926
+ D
17927
17927
  ), o[c++] = E + M * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1) + z;
17928
- const F = h[o[c - 1] * 3] - s, dt = E + (M + U) * (this.numColumns + 1) + z;
17928
+ const F = h[o[c - 1] * 3] - s, dt = E + (M + D) * (this.numColumns + 1) + z;
17929
17929
  E + z == this.numColumns && (o[c++] = E + M * (this.numColumns + 1) + z, o[c++] = dt);
17930
17930
  const vt = -h[dt * 3 + 1] - e;
17931
- if (M + U == this.numRows && (o[c++] = E + (M + U) * (this.numColumns + 1) + U, o[c++] = E + (M + U) * (this.numColumns + 1)), o[c++] = E + (M + U) * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1), O.text) {
17931
+ if (M + D == this.numRows && (o[c++] = E + (M + D) * (this.numColumns + 1) + D, o[c++] = E + (M + D) * (this.numColumns + 1)), o[c++] = E + (M + D) * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1), O.text) {
17932
17932
  const ot = O.attachmentPoint || this.attachmentPoint || Is.MiddleCenter, W = this.getTableTextOffset(
17933
17933
  ot,
17934
17934
  F,
@@ -21250,7 +21250,7 @@ class Do {
21250
21250
  Math.pow(S.end.x, 2) + Math.pow(S.end.y, 2)
21251
21251
  ), M = E * S.lengthOfMinorAxis;
21252
21252
  let O = kt.degToRad(S.startAngle || 0), z = kt.degToRad(S.endAngle || 0);
21253
- const U = Math.atan2(S.end.y, S.end.x);
21253
+ const D = Math.atan2(S.end.y, S.end.x);
21254
21254
  S.isCCW || (O = Math.PI * 2 - O, z = Math.PI * 2 - z), x.add(
21255
21255
  new fa(
21256
21256
  { ...S.center, z: 0 },
@@ -21259,7 +21259,7 @@ class Do {
21259
21259
  O,
21260
21260
  z,
21261
21261
  !S.isCCW,
21262
- U
21262
+ D
21263
21263
  )
21264
21264
  );
21265
21265
  } else if (f.type == 4) {
@@ -22017,15 +22017,15 @@ class Hd {
22017
22017
  const { id: E, success: M, data: O, error: z } = b.data;
22018
22018
  if (E !== t) return;
22019
22019
  this.cleanupTask(t);
22020
- const U = Date.now() - o;
22020
+ const D = Date.now() - o;
22021
22021
  h(M ? {
22022
22022
  success: !0,
22023
22023
  data: O,
22024
- duration: U
22024
+ duration: D
22025
22025
  } : {
22026
22026
  success: !1,
22027
22027
  error: z,
22028
- duration: U
22028
+ duration: D
22029
22029
  });
22030
22030
  }, S = (b) => {
22031
22031
  this.cleanupTask(t), c(new Error(`Worker error: ${b.message}`));
@@ -22323,8 +22323,8 @@ class Xd extends Zo {
22323
22323
  await f.processChunk(async (b, E) => {
22324
22324
  let M = [], O = b < E ? g[b].type : "";
22325
22325
  for (let z = b; z < E; z++) {
22326
- const U = g[z], F = c.convert(U);
22327
- F && (this.config.convertByEntityType && U.type !== O && (S.appendEntity(M), M = [], O = U.type), M.push(F));
22326
+ const D = g[z], F = c.convert(D);
22327
+ F && (this.config.convertByEntityType && D.type !== O && (S.appendEntity(M), M = [], O = D.type), M.push(F));
22328
22328
  }
22329
22329
  if (S.appendEntity(M), h) {
22330
22330
  let z = o.value + E / x * (100 - o.value);
@@ -25422,7 +25422,7 @@ class E0 extends dn {
25422
25422
  * @param options Input options to read drawing data
25423
25423
  */
25424
25424
  async openUri(t, e) {
25425
- var E;
25425
+ var M;
25426
25426
  this.events.openProgress.dispatch({
25427
25427
  database: this,
25428
25428
  percentage: 0,
@@ -25441,19 +25441,19 @@ class E0 extends dn {
25441
25441
  );
25442
25442
  const o = s.headers.get("content-length"), h = o ? parseInt(o, 10) : null;
25443
25443
  let c = 0;
25444
- const g = (E = s.body) == null ? void 0 : E.getReader();
25444
+ const g = (M = s.body) == null ? void 0 : M.getReader();
25445
25445
  if (!g)
25446
25446
  throw new Error("Failed to get response reader");
25447
25447
  const x = [];
25448
25448
  for (; ; ) {
25449
- const { done: M, value: O } = await g.read();
25450
- if (M)
25449
+ const { done: O, value: z } = await g.read();
25450
+ if (O)
25451
25451
  break;
25452
- if (x.push(O), c += O.length, h !== null) {
25453
- const z = Math.round(c / h * 100);
25452
+ if (x.push(z), c += z.length, h !== null) {
25453
+ const D = Math.round(c / h * 100);
25454
25454
  this.events.openProgress.dispatch({
25455
25455
  database: this,
25456
- percentage: z,
25456
+ percentage: D,
25457
25457
  stage: "FETCH_FILE",
25458
25458
  subStageStatus: "IN-PROGRESS"
25459
25459
  });
@@ -25461,9 +25461,9 @@ class E0 extends dn {
25461
25461
  }
25462
25462
  const f = new Uint8Array(c);
25463
25463
  let S = 0;
25464
- for (const M of x)
25465
- f.set(M, S), S += M.length;
25466
- t.toLowerCase().split(".").pop() === "dwg" ? await this.read(f.buffer, e, $s.DWG) : await this.read(f.buffer, e, $s.DXF), this.events.openProgress.dispatch({
25464
+ for (const O of x)
25465
+ f.set(O, S), S += O.length;
25466
+ this.getFileNameFromUri(t).toLowerCase().split(".").pop() === "dwg" ? await this.read(f.buffer, e, $s.DWG) : await this.read(f.buffer, e, $s.DXF), this.events.openProgress.dispatch({
25467
25467
  database: this,
25468
25468
  percentage: 100,
25469
25469
  stage: "FETCH_FILE",
@@ -25592,6 +25592,21 @@ class E0 extends dn {
25592
25592
  name: t
25593
25593
  });
25594
25594
  }
25595
+ /**
25596
+ * Extracts the file name from a URI.
25597
+ *
25598
+ * @param uri - The URI to extract the file name from
25599
+ * @returns The extracted file name, or empty string if extraction fails
25600
+ * @private
25601
+ */
25602
+ getFileNameFromUri(t) {
25603
+ try {
25604
+ const s = new URL(t).pathname.split("/");
25605
+ return s[s.length - 1] || "";
25606
+ } catch (e) {
25607
+ return console.error("Invalid URI:", e), "";
25608
+ }
25609
+ }
25595
25610
  }
25596
25611
  const o0 = {
25597
25612
  center: new Nt(),