@mlightcad/data-model 1.3.5 → 1.3.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1836,7 +1836,7 @@ const au = [
1836
1836
  "windows-1258"
1837
1837
  // Vietnamese
1838
1838
  ], ou = (i) => au[i], Ti = "Continuous", gi = "ByLayer", lu = "ByBlock";
1839
- var Mn = /* @__PURE__ */ ((i) => (i[i.EndPoint = 1] = "EndPoint", i[i.MidPoint = 2] = "MidPoint", i[i.Center = 3] = "Center", i[i.Node = 4] = "Node", i[i.Quadrant = 5] = "Quadrant", i[i.Insertion = 7] = "Insertion", i[i.Perpendicular = 8] = "Perpendicular", i[i.Tangent = 9] = "Tangent", i[i.Nearest = 10] = "Nearest", i[i.Centroid = 11] = "Centroid", i))(Mn || {}), Ko = /* @__PURE__ */ ((i) => (i[i.Undefined = 0] = "Undefined", i[i.Inches = 1] = "Inches", i[i.Feet = 2] = "Feet", i[i.Miles = 3] = "Miles", i[i.Millimeters = 4] = "Millimeters", i[i.Centimeters = 5] = "Centimeters", i[i.Meters = 6] = "Meters", i[i.Kilometers = 7] = "Kilometers", i[i.Microinches = 8] = "Microinches", i[i.Mils = 9] = "Mils", i[i.Yards = 10] = "Yards", i[i.Angstroms = 11] = "Angstroms", i[i.Nanometers = 12] = "Nanometers", i[i.Microns = 13] = "Microns", i[i.Decimeters = 14] = "Decimeters", i[i.Dekameters = 15] = "Dekameters", i[i.Hectometers = 16] = "Hectometers", i[i.Gigameters = 17] = "Gigameters", i[i.Astronomical = 18] = "Astronomical", i[i.LightYears = 19] = "LightYears", i[i.Parsecs = 20] = "Parsecs", i[i.USSurveyFeet = 21] = "USSurveyFeet", i[i.USSurveyInch = 22] = "USSurveyInch", i[i.USSurveyYard = 23] = "USSurveyYard", i[i.USSurveyMile = 24] = "USSurveyMile", i[
1839
+ var Tn = /* @__PURE__ */ ((i) => (i[i.EndPoint = 1] = "EndPoint", i[i.MidPoint = 2] = "MidPoint", i[i.Center = 3] = "Center", i[i.Node = 4] = "Node", i[i.Quadrant = 5] = "Quadrant", i[i.Insertion = 7] = "Insertion", i[i.Perpendicular = 8] = "Perpendicular", i[i.Tangent = 9] = "Tangent", i[i.Nearest = 10] = "Nearest", i[i.Centroid = 11] = "Centroid", i))(Tn || {}), Ko = /* @__PURE__ */ ((i) => (i[i.Undefined = 0] = "Undefined", i[i.Inches = 1] = "Inches", i[i.Feet = 2] = "Feet", i[i.Miles = 3] = "Miles", i[i.Millimeters = 4] = "Millimeters", i[i.Centimeters = 5] = "Centimeters", i[i.Meters = 6] = "Meters", i[i.Kilometers = 7] = "Kilometers", i[i.Microinches = 8] = "Microinches", i[i.Mils = 9] = "Mils", i[i.Yards = 10] = "Yards", i[i.Angstroms = 11] = "Angstroms", i[i.Nanometers = 12] = "Nanometers", i[i.Microns = 13] = "Microns", i[i.Decimeters = 14] = "Decimeters", i[i.Dekameters = 15] = "Dekameters", i[i.Hectometers = 16] = "Hectometers", i[i.Gigameters = 17] = "Gigameters", i[i.Astronomical = 18] = "Astronomical", i[i.LightYears = 19] = "LightYears", i[i.Parsecs = 20] = "Parsecs", i[i.USSurveyFeet = 21] = "USSurveyFeet", i[i.USSurveyInch = 22] = "USSurveyInch", i[i.USSurveyYard = 23] = "USSurveyYard", i[i.USSurveyMile = 24] = "USSurveyMile", i[
1840
1840
  i.Max = 24
1841
1841
  /* USSurveyMile */
1842
1842
  ] = "Max", i))(Ko || {});
@@ -2198,7 +2198,7 @@ var le, is, Qt, ne, as, Je, ve, mr, tr, Xr, os, ls, Kr, $r, hs, us, cs, Le, pr,
2198
2198
  (Qt = {})[Qt.Rotated = 0] = "Rotated", Qt[Qt.Aligned = 1] = "Aligned", Qt[Qt.Angular = 2] = "Angular", Qt[Qt.Diameter = 3] = "Diameter", Qt[Qt.Radius = 4] = "Radius", Qt[Qt.Angular3Point = 5] = "Angular3Point", Qt[Qt.Ordinate = 6] = "Ordinate", Qt[Qt.ReferenceIsExclusive = 32] = "ReferenceIsExclusive", Qt[Qt.IsOrdinateXTypeFlag = 64] = "IsOrdinateXTypeFlag", Qt[Qt.IsCustomTextPositionFlag = 128] = "IsCustomTextPositionFlag";
2199
2199
  (ne = {})[ne.TopLeft = 1] = "TopLeft", ne[ne.TopCenter = 2] = "TopCenter", ne[ne.TopRight = 3] = "TopRight", ne[ne.MiddleLeft = 4] = "MiddleLeft", ne[ne.MiddleCenter = 5] = "MiddleCenter", ne[ne.MiddleRight = 6] = "MiddleRight", ne[ne.BottomLeft = 7] = "BottomLeft", ne[ne.BottomCenter = 8] = "BottomCenter", ne[ne.BottomRight = 9] = "BottomRight";
2200
2200
  (as = {})[as.AtLeast = 1] = "AtLeast", as[as.Exact = 2] = "Exact";
2201
- var xo = ((Je = {})[Je.Center = 0] = "Center", Je[Je.Above = 1] = "Above", Je[Je.Outside = 2] = "Outside", Je[Je.JIS = 3] = "JIS", Je[Je.Below = 4] = "Below", Je), In = ((ve = {})[ve.Feet = 0] = "Feet", ve[ve.None = 1] = "None", ve[ve.Inch = 2] = "Inch", ve[ve.FeetAndInch = 3] = "FeetAndInch", ve[ve.Leading = 4] = "Leading", ve[ve.Trailing = 8] = "Trailing", ve[ve.LeadingAndTrailing = 12] = "LeadingAndTrailing", ve), uu = ((mr = {})[mr.None = 0] = "None", mr[mr.Leading = 1] = "Leading", mr[mr.Trailing = 2] = "Trailing", mr[mr.LeadingAndTrailing = 3] = "LeadingAndTrailing", mr), cu = ((tr = {})[tr.Center = 0] = "Center", tr[tr.Left = 1] = "Left", tr[tr.Right = 2] = "Right", tr[tr.OverFirst = 3] = "OverFirst", tr[tr.OverSecond = 4] = "OverSecond", tr), du = ((Xr = {})[Xr.Bottom = 0] = "Bottom", Xr[Xr.Center = 1] = "Center", Xr[Xr.Top = 2] = "Top", Xr);
2201
+ var xo = ((Je = {})[Je.Center = 0] = "Center", Je[Je.Above = 1] = "Above", Je[Je.Outside = 2] = "Outside", Je[Je.JIS = 3] = "JIS", Je[Je.Below = 4] = "Below", Je), Pn = ((ve = {})[ve.Feet = 0] = "Feet", ve[ve.None = 1] = "None", ve[ve.Inch = 2] = "Inch", ve[ve.FeetAndInch = 3] = "FeetAndInch", ve[ve.Leading = 4] = "Leading", ve[ve.Trailing = 8] = "Trailing", ve[ve.LeadingAndTrailing = 12] = "LeadingAndTrailing", ve), uu = ((mr = {})[mr.None = 0] = "None", mr[mr.Leading = 1] = "Leading", mr[mr.Trailing = 2] = "Trailing", mr[mr.LeadingAndTrailing = 3] = "LeadingAndTrailing", mr), cu = ((tr = {})[tr.Center = 0] = "Center", tr[tr.Left = 1] = "Left", tr[tr.Right = 2] = "Right", tr[tr.OverFirst = 3] = "OverFirst", tr[tr.OverSecond = 4] = "OverSecond", tr), du = ((Xr = {})[Xr.Bottom = 0] = "Bottom", Xr[Xr.Center = 1] = "Center", Xr[Xr.Top = 2] = "Top", Xr);
2202
2202
  (os = {})[os.PatternFill = 0] = "PatternFill", os[os.SolidFill = 1] = "SolidFill";
2203
2203
  (ls = {})[ls.NonAssociative = 0] = "NonAssociative", ls[ls.Associative = 1] = "Associative";
2204
2204
  (Kr = {})[Kr.Normal = 0] = "Normal", Kr[Kr.Outer = 1] = "Outer", Kr[Kr.Ignore = 2] = "Ignore";
@@ -3505,7 +3505,7 @@ function Oc(i, t) {
3505
3505
  }
3506
3506
  let Ln = [{ code: 100, name: "subclassMarker", parser: y }, { code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser(i, t) {
3507
3507
  for (; !St(i, 0, "EOF") && !St(i, 102, "}"); ) i = t.next();
3508
- } }, { code: 5, name: "handle", parser: y }], zc = xt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]), Rc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: xo.Above, defaultValueImperial: xo.Center }, { name: "DIMZIN", code: 78, defaultValue: In.Trailing, defaultValueImperial: In.Feet }, { name: "DIMAZIN", code: 79, defaultValue: uu.None }, { name: "DIMALT", code: 170, defaultValue: 0 }, { name: "DIMALTD", code: 171, defaultValue: 3, defaultValueImperial: 2 }, { name: "DIMTOFL", code: 172, defaultValue: 1, defaultValueImperial: 0 }, { name: "DIMSAH", code: 173, defaultValue: 0 }, { name: "DIMTIX", code: 174, defaultValue: 0 }, { name: "DIMSOXD", code: 175, defaultValue: 0 }, { name: "DIMCLRD", code: 176, defaultValue: 0 }, { name: "DIMCLRE", code: 177, defaultValue: 0 }, { name: "DIMCLRT", code: 178, defaultValue: 0 }, { name: "DIMADEC", code: 179 }, { name: "DIMUNIT", code: 270 }, { name: "DIMDEC", code: 271, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMTDEC", code: 272, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMALTU", code: 273, defaultValue: 2 }, { name: "DIMALTTD", code: 274, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMAUNIT", code: 275, defaultValue: 0 }, { name: "DIMFRAC", code: 276, defaultValue: 0 }, { name: "DIMLUNIT", code: 277, defaultValue: 2 }, { name: "DIMDSEP", code: 278, defaultValue: ",", defaultValueImperial: "." }, { name: "DIMJUST", code: 280, defaultValue: cu.Center }, { name: "DIMSD1", code: 281, defaultValue: 0 }, { name: "DIMSD2", code: 282, defaultValue: 0 }, { name: "DIMTOLJ", code: 283, defaultValue: du.Center }, { name: "DIMTZIN", code: 284, defaultValue: In.Trailing, defaultValueImperial: In.Feet }, { name: "DIMALTZ", code: 285, defaultValue: In.Trailing }, { name: "DIMALTTZ", code: 286, defaultValue: In.Trailing }, { name: "DIMFIT", code: 287 }, { name: "DIMUPT", code: 288, defaultValue: 0 }, { name: "DIMATFIT", code: 289, defaultValue: 3 }, { name: "DIMTXSTY", code: 340 }, { name: "DIMLDRBLK", code: 341 }, { name: "DIMBLK", code: 342 }, { name: "DIMBLK1", code: 343 }, { name: "DIMBLK2", code: 344 }, { name: "DIMLWD", code: 371, defaultValue: -2 }, { name: "DIMLWD", code: 372, defaultValue: -2 }], Bc = xt([...Rc.map((i) => ({ ...i, parser: y })), { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 105, name: "handle", parser: y }, ...Ln.filter((i) => i.code !== 5)]), Fc = xt([{ code: 347, name: "materialObjectId", parser: y }, { code: 390, name: "plotStyleNameObjectId", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 290, name: "isPlotting", parser: Ft }, { code: 6, name: "lineType", parser: y }, { code: 62, name: "colorIndex", parser: y }, { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]);
3508
+ } }, { code: 5, name: "handle", parser: y }], zc = xt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]), Rc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: xo.Above, defaultValueImperial: xo.Center }, { name: "DIMZIN", code: 78, defaultValue: Pn.Trailing, defaultValueImperial: Pn.Feet }, { name: "DIMAZIN", code: 79, defaultValue: uu.None }, { name: "DIMALT", code: 170, defaultValue: 0 }, { name: "DIMALTD", code: 171, defaultValue: 3, defaultValueImperial: 2 }, { name: "DIMTOFL", code: 172, defaultValue: 1, defaultValueImperial: 0 }, { name: "DIMSAH", code: 173, defaultValue: 0 }, { name: "DIMTIX", code: 174, defaultValue: 0 }, { name: "DIMSOXD", code: 175, defaultValue: 0 }, { name: "DIMCLRD", code: 176, defaultValue: 0 }, { name: "DIMCLRE", code: 177, defaultValue: 0 }, { name: "DIMCLRT", code: 178, defaultValue: 0 }, { name: "DIMADEC", code: 179 }, { name: "DIMUNIT", code: 270 }, { name: "DIMDEC", code: 271, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMTDEC", code: 272, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMALTU", code: 273, defaultValue: 2 }, { name: "DIMALTTD", code: 274, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMAUNIT", code: 275, defaultValue: 0 }, { name: "DIMFRAC", code: 276, defaultValue: 0 }, { name: "DIMLUNIT", code: 277, defaultValue: 2 }, { name: "DIMDSEP", code: 278, defaultValue: ",", defaultValueImperial: "." }, { name: "DIMJUST", code: 280, defaultValue: cu.Center }, { name: "DIMSD1", code: 281, defaultValue: 0 }, { name: "DIMSD2", code: 282, defaultValue: 0 }, { name: "DIMTOLJ", code: 283, defaultValue: du.Center }, { name: "DIMTZIN", code: 284, defaultValue: Pn.Trailing, defaultValueImperial: Pn.Feet }, { name: "DIMALTZ", code: 285, defaultValue: Pn.Trailing }, { name: "DIMALTTZ", code: 286, defaultValue: Pn.Trailing }, { name: "DIMFIT", code: 287 }, { name: "DIMUPT", code: 288, defaultValue: 0 }, { name: "DIMATFIT", code: 289, defaultValue: 3 }, { name: "DIMTXSTY", code: 340 }, { name: "DIMLDRBLK", code: 341 }, { name: "DIMBLK", code: 342 }, { name: "DIMBLK1", code: 343 }, { name: "DIMBLK2", code: 344 }, { name: "DIMLWD", code: 371, defaultValue: -2 }, { name: "DIMLWD", code: 372, defaultValue: -2 }], Bc = xt([...Rc.map((i) => ({ ...i, parser: y })), { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 105, name: "handle", parser: y }, ...Ln.filter((i) => i.code !== 5)]), Fc = xt([{ code: 347, name: "materialObjectId", parser: y }, { code: 390, name: "plotStyleNameObjectId", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 290, name: "isPlotting", parser: Ft }, { code: 6, name: "lineType", parser: y }, { code: 62, name: "colorIndex", parser: y }, { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]);
3509
3509
  (Ar = {})[Ar.NONE = 0] = "NONE", Ar[Ar.AbsoluteRotation = 1] = "AbsoluteRotation", Ar[Ar.TextEmbedded = 2] = "TextEmbedded", Ar[Ar.ShapeEmbedded = 4] = "ShapeEmbedded";
3510
3510
  let Dc = xt([{ code: 9, name: "text", parser: y }, { code: 45, name: "offsetY", parser: y }, { code: 44, name: "offsetX", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 46, name: "scale", parser: y }, { code: 340, name: "styleObjectId", parser: y }, { code: 75, name: "shapeNumber", parser: y }, { code: 74, name: "elementTypeFlag", parser: y }, { code: 49, name: "elementLength", parser: y }], { elementTypeFlag: 0, elementLength: 0 }), Uc = xt([{ code: 49, name: "pattern", parser(i, t) {
3511
3511
  let e = {};
@@ -4910,7 +4910,7 @@ const Oi = class mh {
4910
4910
  };
4911
4911
  Oi.IDENTITY = Object.freeze(new Oi());
4912
4912
  let pa = Oi;
4913
- const Ii = /* @__PURE__ */ new pa(), Pn = 1e-6, se = 2 * Math.PI, A0 = {
4913
+ const Ii = /* @__PURE__ */ new pa(), En = 1e-6, se = 2 * Math.PI, A0 = {
4914
4914
  x: 0,
4915
4915
  y: 0
4916
4916
  }, ph = {
@@ -4923,7 +4923,7 @@ class gh {
4923
4923
  * Create tolerance class with default tolerance values
4924
4924
  */
4925
4925
  constructor() {
4926
- this.equalPointTol = Pn, this.equalVectorTol = Pn;
4926
+ this.equalPointTol = En, this.equalVectorTol = En;
4927
4927
  }
4928
4928
  /**
4929
4929
  * Return true if two points are equal with the specified tolerance.
@@ -4946,7 +4946,7 @@ class gh {
4946
4946
  /**
4947
4947
  * Return true if the value is equal to zero with the specified tolerance.
4948
4948
  */
4949
- static equalToZero(t, e = Pn) {
4949
+ static equalToZero(t, e = En) {
4950
4950
  return t < e && t > -e;
4951
4951
  }
4952
4952
  /**
@@ -4957,7 +4957,7 @@ class gh {
4957
4957
  * @param tol Input the tolerance value
4958
4958
  * @returns Return true if two values are equal with the sepcified tolerance
4959
4959
  */
4960
- static equal(t, e, s = Pn) {
4960
+ static equal(t, e, s = En) {
4961
4961
  return Math.abs(t - e) < s;
4962
4962
  }
4963
4963
  /**
@@ -4970,7 +4970,7 @@ class gh {
4970
4970
  * @returns Return true if the first argument are greater than the second argument with the
4971
4971
  * sepcified tolerance.
4972
4972
  */
4973
- static great(t, e, s = Pn) {
4973
+ static great(t, e, s = En) {
4974
4974
  return t - e > s;
4975
4975
  }
4976
4976
  /**
@@ -4983,7 +4983,7 @@ class gh {
4983
4983
  * @returns Return *true* if the first argument less than the second argument with the specified
4984
4984
  * tolerance value
4985
4985
  */
4986
- static less(t, e, s = Pn) {
4986
+ static less(t, e, s = En) {
4987
4987
  return t - e < s;
4988
4988
  }
4989
4989
  }
@@ -6348,7 +6348,7 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6348
6348
  * @returns Return this matrix
6349
6349
  */
6350
6350
  extractRotation(t) {
6351
- const e = this.elements, s = t.elements, o = 1 / En.setFromMatrixColumn(t, 0).length(), h = 1 / En.setFromMatrixColumn(t, 1).length(), c = 1 / En.setFromMatrixColumn(t, 2).length();
6351
+ const e = this.elements, s = t.elements, o = 1 / kn.setFromMatrixColumn(t, 0).length(), h = 1 / kn.setFromMatrixColumn(t, 1).length(), c = 1 / kn.setFromMatrixColumn(t, 2).length();
6352
6352
  return e[0] = s[0] * o, e[1] = s[1] * o, e[2] = s[2] * o, e[3] = 0, e[4] = s[4] * h, e[5] = s[5] * h, e[6] = s[6] * h, e[7] = 0, e[8] = s[8] * c, e[9] = s[9] * c, e[10] = s[10] * c, e[11] = 0, e[12] = 0, e[13] = 0, e[14] = 0, e[15] = 1, this;
6353
6353
  }
6354
6354
  // makeRotationFromEuler(euler) {
@@ -6680,8 +6680,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6680
6680
  */
6681
6681
  decompose(t, e, s) {
6682
6682
  const o = this.elements;
6683
- let h = En.set(o[0], o[1], o[2]).length();
6684
- const c = En.set(o[4], o[5], o[6]).length(), g = En.set(o[8], o[9], o[10]).length();
6683
+ let h = kn.set(o[0], o[1], o[2]).length();
6684
+ const c = kn.set(o[4], o[5], o[6]).length(), g = kn.set(o[8], o[9], o[10]).length();
6685
6685
  this.determinant() < 0 && (h = -h), t.x = o[12], t.y = o[13], t.z = o[14], rr.copy(this);
6686
6686
  const x = 1 / h, f = 1 / c, S = 1 / g;
6687
6687
  return rr.elements[0] *= x, rr.elements[1] *= x, rr.elements[2] *= x, rr.elements[4] *= f, rr.elements[5] *= f, rr.elements[6] *= f, rr.elements[8] *= S, rr.elements[9] *= S, rr.elements[10] *= S, e.setFromRotationMatrix(rr), s.x = h, s.y = c, s.z = g, this;
@@ -6811,8 +6811,8 @@ const Pi = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new ln(), Ri = class yh
6811
6811
  }
6812
6812
  };
6813
6813
  Ri.IDENTITY = Object.freeze(new Ri());
6814
- let Cn = Ri;
6815
- const En = /* @__PURE__ */ new Z(), rr = /* @__PURE__ */ new Cn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Fr = /* @__PURE__ */ new Z(), Rs = /* @__PURE__ */ new Z(), De = /* @__PURE__ */ new Z();
6814
+ let hn = Ri;
6815
+ const kn = /* @__PURE__ */ new Z(), rr = /* @__PURE__ */ new hn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Fr = /* @__PURE__ */ new Z(), Rs = /* @__PURE__ */ new Z(), De = /* @__PURE__ */ new Z();
6816
6816
  class Ct {
6817
6817
  /**
6818
6818
  * Create a 3d box bounded by min and max.
@@ -7494,7 +7494,7 @@ class q extends Z {
7494
7494
  }), o;
7495
7495
  }
7496
7496
  }
7497
- const To = /* @__PURE__ */ new Cn(), No = /* @__PURE__ */ new ln(), xh = class Bi {
7497
+ const To = /* @__PURE__ */ new hn(), No = /* @__PURE__ */ new ln(), xh = class Bi {
7498
7498
  /**
7499
7499
  * Create one instance of this class
7500
7500
  * @param x (optional) the angle of the x axis in radians. Default is 0.
@@ -8211,7 +8211,7 @@ class Id extends bh {
8211
8211
  * Translation vector may be also defined by a pair of numbers.
8212
8212
  */
8213
8213
  translate(t) {
8214
- return this.transform(new Cn().makeTranslation(t.x, t.y, t.z));
8214
+ return this.transform(new hn().makeTranslation(t.x, t.y, t.z));
8215
8215
  }
8216
8216
  /**
8217
8217
  * The bounding box of this shape. Because it is a time-consuming operation to calculate the bounding
@@ -8224,7 +8224,7 @@ class Id extends bh {
8224
8224
  }
8225
8225
  class Ms extends Id {
8226
8226
  }
8227
- class hn extends Ms {
8227
+ class un extends Ms {
8228
8228
  /**
8229
8229
  * This constructor initializes the line object to use start as the start point, and end
8230
8230
  * as the endpoint. Both points must be in WCS coordinates.
@@ -8430,11 +8430,11 @@ class hn extends Ms {
8430
8430
  * @inheritdoc
8431
8431
  */
8432
8432
  clone() {
8433
- return new hn(this._start.clone(), this._end.clone());
8433
+ return new un(this._start.clone(), this._end.clone());
8434
8434
  }
8435
8435
  }
8436
8436
  const rn = /* @__PURE__ */ new Z(), Co = /* @__PURE__ */ new Z(), Bs = /* @__PURE__ */ new Z();
8437
- class Tn extends Ms {
8437
+ class Nn extends Ms {
8438
8438
  /**
8439
8439
  * Compute center point of the arc given three points
8440
8440
  * @param startPoint Input start point of the arc
@@ -8446,7 +8446,7 @@ class Tn extends Ms {
8446
8446
  const o = new Z().addVectors(t, e).multiplyScalar(0.5), h = new Z().addVectors(t, s).multiplyScalar(0.5), c = new Z().subVectors(e, t), g = new Z().subVectors(s, t), x = new Z().crossVectors(c, g).normalize();
8447
8447
  if (x.lengthSq() === 0)
8448
8448
  return console.error("Points are collinear and cannot form a valid arc."), null;
8449
- const f = new Z().crossVectors(c, x).normalize(), S = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = S.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new hn(o, o.clone().add(b)), O = new hn(h, h.clone().add(E)), z = new Z();
8449
+ const f = new Z().crossVectors(c, x).normalize(), S = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = S.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new un(o, o.clone().add(b)), O = new un(h, h.clone().add(E)), z = new Z();
8450
8450
  return M.closestPointToPoint(O.startPoint, !0, z) ? z : (console.error("Cannot find a valid center for the arc."), null);
8451
8451
  }
8452
8452
  /**
@@ -8456,14 +8456,14 @@ class Tn extends Ms {
8456
8456
  * @param pointOnArc Input one point between the start point and the end point
8457
8457
  */
8458
8458
  static createByThreePoints(t, e, s) {
8459
- const o = Tn.computeCenterPoint(
8459
+ const o = Nn.computeCenterPoint(
8460
8460
  t,
8461
8461
  e,
8462
8462
  s
8463
8463
  );
8464
8464
  if (o) {
8465
8465
  const h = o.distanceTo(t), c = new Z().subVectors(t, o), g = new Z().subVectors(e, o), x = Math.atan2(c.y, c.x), f = Math.atan2(g.y, g.x);
8466
- return new Tn(
8466
+ return new Nn(
8467
8467
  o,
8468
8468
  h,
8469
8469
  x,
@@ -8631,7 +8631,7 @@ class Tn extends Ms {
8631
8631
  * @inheritdoc
8632
8632
  */
8633
8633
  clone() {
8634
- return new Tn(
8634
+ return new Nn(
8635
8635
  this.center.clone(),
8636
8636
  this.radius,
8637
8637
  this.startAngle,
@@ -9965,8 +9965,8 @@ var Sh = { exports: {} };
9965
9965
  if (cr == null) throw new Q("Class not found " + Qe);
9966
9966
  return cr;
9967
9967
  case 66:
9968
- var Sn = this.unserialize(), Hr = this.resolver.resolveEnum(Sn);
9969
- if (Hr == null) throw new Q("Enum not found " + Sn);
9968
+ var An = this.unserialize(), Hr = this.resolver.resolveEnum(An);
9969
+ if (Hr == null) throw new Q("Enum not found " + An);
9970
9970
  return Hr;
9971
9971
  }
9972
9972
  throw this.pos--, new Q("Invalid char " + this.buf.charAt(this.pos) + " at position " + this.pos);
@@ -10496,10 +10496,10 @@ var Sh = { exports: {} };
10496
10496
  },
10497
10497
  __class__: Et
10498
10498
  };
10499
- var dn = f.promhx.Deferred = function() {
10499
+ var mn = f.promhx.Deferred = function() {
10500
10500
  Et.call(this);
10501
10501
  };
10502
- b["promhx.Deferred"] = dn, dn.__name__ = ["promhx", "Deferred"], dn.__super__ = Et, dn.prototype = M(Et.prototype, {
10502
+ b["promhx.Deferred"] = mn, mn.__name__ = ["promhx", "Deferred"], mn.__super__ = Et, mn.prototype = M(Et.prototype, {
10503
10503
  resolve: function(r) {
10504
10504
  this.handleResolve(r);
10505
10505
  },
@@ -10515,7 +10515,7 @@ var Sh = { exports: {} };
10515
10515
  publicStream: function() {
10516
10516
  return new kr(this);
10517
10517
  },
10518
- __class__: dn
10518
+ __class__: mn
10519
10519
  });
10520
10520
  var pe = f.promhx.Promise = function(r) {
10521
10521
  Et.call(this, r), this._rejected = !1;
@@ -10536,7 +10536,7 @@ var Sh = { exports: {} };
10536
10536
  handleResolve: function(r) {
10537
10537
  if (this._resolved) {
10538
10538
  var n = "Promise has already been resolved";
10539
- throw new Q(mn.AlreadyResolved(n));
10539
+ throw new Q(pn.AlreadyResolved(n));
10540
10540
  }
10541
10541
  this._resolve(r);
10542
10542
  },
@@ -10553,7 +10553,7 @@ var Sh = { exports: {} };
10553
10553
  });
10554
10554
  else {
10555
10555
  var a = "Downstream Promise is not fullfilled";
10556
- n.handleError(mn.DownstreamNotFullfilled(a));
10556
+ n.handleError(pn.DownstreamNotFullfilled(a));
10557
10557
  }
10558
10558
  }), At.continueOnNextLoop();
10559
10559
  },
@@ -10734,13 +10734,13 @@ var Sh = { exports: {} };
10734
10734
  }, At.continueOnNextLoop = function() {
10735
10735
  At.nextLoop != null ? At.nextLoop(At.f) : setImmediate(At.f);
10736
10736
  };
10737
- var mn = b["promhx.error.PromiseError"] = { __ename__: ["promhx", "error", "PromiseError"], __constructs__: ["AlreadyResolved", "DownstreamNotFullfilled"] };
10738
- mn.AlreadyResolved = function(r) {
10737
+ var pn = b["promhx.error.PromiseError"] = { __ename__: ["promhx", "error", "PromiseError"], __constructs__: ["AlreadyResolved", "DownstreamNotFullfilled"] };
10738
+ pn.AlreadyResolved = function(r) {
10739
10739
  var n = ["AlreadyResolved", 0, r];
10740
- return n.__enum__ = mn, n.toString = E, n;
10741
- }, mn.DownstreamNotFullfilled = function(r) {
10740
+ return n.__enum__ = pn, n.toString = E, n;
10741
+ }, pn.DownstreamNotFullfilled = function(r) {
10742
10742
  var n = ["DownstreamNotFullfilled", 1, r];
10743
- return n.__enum__ = mn, n.toString = E, n;
10743
+ return n.__enum__ = pn, n.toString = E, n;
10744
10744
  };
10745
10745
  var Ts = function() {
10746
10746
  };
@@ -10901,11 +10901,11 @@ var Sh = { exports: {} };
10901
10901
  b["verb.core.Plane"] = Bn, Bn.__name__ = ["verb", "core", "Plane"], Bn.__super__ = $t, Bn.prototype = M($t.prototype, {
10902
10902
  __class__: Bn
10903
10903
  });
10904
- var pn = f.core.Ray = function(r, n) {
10904
+ var gn = f.core.Ray = function(r, n) {
10905
10905
  this.origin = r, this.dir = n;
10906
10906
  };
10907
- b["verb.core.Ray"] = pn, pn.__name__ = ["verb", "core", "Ray"], pn.__super__ = $t, pn.prototype = M($t.prototype, {
10908
- __class__: pn
10907
+ b["verb.core.Ray"] = gn, gn.__name__ = ["verb", "core", "Ray"], gn.__super__ = $t, gn.prototype = M($t.prototype, {
10908
+ __class__: gn
10909
10909
  });
10910
10910
  var Gt = f.core.NurbsCurveData = function(r, n, a) {
10911
10911
  this.degree = r, this.controlPoints = a, this.knots = n;
@@ -10987,11 +10987,11 @@ var Sh = { exports: {} };
10987
10987
  b["verb.core.TriSegmentIntersection"] = jn, jn.__name__ = ["verb", "core", "TriSegmentIntersection"], jn.prototype = {
10988
10988
  __class__: jn
10989
10989
  };
10990
- var gn = f.core.CurveTriPoint = function(r, n, a) {
10990
+ var fn = f.core.CurveTriPoint = function(r, n, a) {
10991
10991
  this.u = r, this.point = n, this.uv = a;
10992
10992
  };
10993
- b["verb.core.CurveTriPoint"] = gn, gn.__name__ = ["verb", "core", "CurveTriPoint"], gn.prototype = {
10994
- __class__: gn
10993
+ b["verb.core.CurveTriPoint"] = fn, fn.__name__ = ["verb", "core", "CurveTriPoint"], fn.prototype = {
10994
+ __class__: fn
10995
10995
  };
10996
10996
  var Ve = function(r, n, a, l, u) {
10997
10997
  u == null && (u = !1), l == null && (l = -1), this.uv = a, this.point = r, this.normal = n, this.id = l, this.degen = u;
@@ -11013,10 +11013,10 @@ var Sh = { exports: {} };
11013
11013
  b["verb.core.KdTree"] = Wn, Wn.__name__ = ["verb", "core", "KdTree"], Wn.prototype = {
11014
11014
  buildTree: function(r, n, a) {
11015
11015
  var l = n % this.dim, u, d;
11016
- return r.length == 0 ? null : r.length == 1 ? new _n(r[0], l, a) : (r.sort(function(p, _) {
11016
+ return r.length == 0 ? null : r.length == 1 ? new vn(r[0], l, a) : (r.sort(function(p, _) {
11017
11017
  var v = p.point[l] - _.point[l];
11018
11018
  return v == 0 ? 0 : v > 0 ? 1 : -1;
11019
- }), u = Math.floor(r.length / 2), d = new _n(r[u], l, a), d.left = this.buildTree(r.slice(0, u), n + 1, d), d.right = this.buildTree(r.slice(u + 1), n + 1, d), d);
11019
+ }), u = Math.floor(r.length / 2), d = new vn(r[u], l, a), d.left = this.buildTree(r.slice(0, u), n + 1, d), d.right = this.buildTree(r.slice(u + 1), n + 1, d), d);
11020
11020
  },
11021
11021
  nearest: function(r, n, a) {
11022
11022
  var l = this, u = new Hn(function(A) {
@@ -11103,17 +11103,17 @@ var Sh = { exports: {} };
11103
11103
  },
11104
11104
  __class__: Hn
11105
11105
  };
11106
- var fn = f.core.KdPoint = function(r, n) {
11106
+ var _n = f.core.KdPoint = function(r, n) {
11107
11107
  this.point = r, this.obj = n;
11108
11108
  };
11109
- b["verb.core.KdPoint"] = fn, fn.__name__ = ["verb", "core", "KdPoint"], fn.prototype = {
11110
- __class__: fn
11109
+ b["verb.core.KdPoint"] = _n, _n.__name__ = ["verb", "core", "KdPoint"], _n.prototype = {
11110
+ __class__: _n
11111
11111
  };
11112
- var _n = f.core.KdNode = function(r, n, a) {
11112
+ var vn = f.core.KdNode = function(r, n, a) {
11113
11113
  this.kdPoint = r, this.left = null, this.right = null, this.parent = a, this.dimension = n;
11114
11114
  };
11115
- b["verb.core.KdNode"] = _n, _n.__name__ = ["verb", "core", "KdNode"], _n.prototype = {
11116
- __class__: _n
11115
+ b["verb.core.KdNode"] = vn, vn.__name__ = ["verb", "core", "KdNode"], vn.prototype = {
11116
+ __class__: vn
11117
11117
  };
11118
11118
  var hr = function() {
11119
11119
  };
@@ -11487,10 +11487,10 @@ var Sh = { exports: {} };
11487
11487
  b["verb.core.MinimizationResult"] = Yn, Yn.__name__ = ["verb", "core", "MinimizationResult"], Yn.prototype = {
11488
11488
  __class__: Yn
11489
11489
  };
11490
- var vn = function() {
11490
+ var yn = function() {
11491
11491
  };
11492
- b["verb.core.ISerializable"] = vn, vn.__name__ = ["verb", "core", "ISerializable"], vn.prototype = {
11493
- __class__: vn
11492
+ b["verb.core.ISerializable"] = yn, yn.__name__ = ["verb", "core", "ISerializable"], yn.prototype = {
11493
+ __class__: yn
11494
11494
  };
11495
11495
  var ai = f.core.Deserializer = function() {
11496
11496
  };
@@ -11717,9 +11717,9 @@ var Sh = { exports: {} };
11717
11717
  var yt = f.eval.Analyze = function() {
11718
11718
  };
11719
11719
  b["verb.eval.Analyze"] = yt, yt.__name__ = ["verb", "eval", "Analyze"], yt.knotMultiplicities = function(r) {
11720
- for (var n = [new yn(r[0], 0)], a = n[0], l = 0; l < r.length; ) {
11720
+ for (var n = [new xn(r[0], 0)], a = n[0], l = 0; l < r.length; ) {
11721
11721
  var u = r[l];
11722
- ++l, Math.abs(u - a.knot) > rt.EPSILON && (a = new yn(u, 0), n.push(a)), a.inc();
11722
+ ++l, Math.abs(u - a.knot) > rt.EPSILON && (a = new xn(u, 0), n.push(a)), a.inc();
11723
11723
  }
11724
11724
  return n;
11725
11725
  }, yt.isRationalSurfaceClosed = function(r, n) {
@@ -11742,7 +11742,7 @@ var Sh = { exports: {} };
11742
11742
  for (var J = function(jt) {
11743
11743
  return N.rationalSurfaceDerivatives(r, jt[0], jt[1], 2);
11744
11744
  }, H = function(jt, Xt, Dt) {
11745
- var Kt = Xt[1][0], Se = Xt[0][1], je = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Ae = Xt[1][1], Ce = m.dot(Kt, Dt), Ke = m.dot(Se, Dt), or = [-Ce, -Ke], $e = m.dot(Kt, Kt) + m.dot(je, Dt), Ze = m.dot(Kt, Se) + m.dot(ge, Dt), Qe = m.dot(Kt, Se) + m.dot(Ae, Dt), cr = m.dot(Se, Se) + m.dot(_e, Dt), Sn = [[$e, Ze], [Qe, cr]], Hr = Lt.solve(Sn, or);
11745
+ var Kt = Xt[1][0], Se = Xt[0][1], je = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Ae = Xt[1][1], Ce = m.dot(Kt, Dt), Ke = m.dot(Se, Dt), or = [-Ce, -Ke], $e = m.dot(Kt, Kt) + m.dot(je, Dt), Ze = m.dot(Kt, Se) + m.dot(ge, Dt), Qe = m.dot(Kt, Se) + m.dot(Ae, Dt), cr = m.dot(Se, Se) + m.dot(_e, Dt), An = [[$e, Ze], [Qe, cr]], Hr = Lt.solve(An, or);
11746
11746
  return m.add(Hr, jt);
11747
11747
  }; l < a; ) {
11748
11748
  u = J(T), _ = m.sub(u[0][0], n);
@@ -11815,14 +11815,14 @@ var Sh = { exports: {} };
11815
11815
  }
11816
11816
  return u * d;
11817
11817
  };
11818
- var yn = f.eval.KnotMultiplicity = function(r, n) {
11818
+ var xn = f.eval.KnotMultiplicity = function(r, n) {
11819
11819
  this.knot = r, this.mult = n;
11820
11820
  };
11821
- b["verb.eval.KnotMultiplicity"] = yn, yn.__name__ = ["verb", "eval", "KnotMultiplicity"], yn.prototype = {
11821
+ b["verb.eval.KnotMultiplicity"] = xn, xn.__name__ = ["verb", "eval", "KnotMultiplicity"], xn.prototype = {
11822
11822
  inc: function() {
11823
11823
  this.mult++;
11824
11824
  },
11825
- __class__: yn
11825
+ __class__: xn
11826
11826
  };
11827
11827
  var Ge = f.eval.Check = function() {
11828
11828
  };
@@ -11895,20 +11895,20 @@ var Sh = { exports: {} };
11895
11895
  }, oe.rationalCurveByArcLength = function(r, n) {
11896
11896
  var a = ft.decomposeCurveIntoBeziers(r), l = a.map(function(P) {
11897
11897
  return yt.rationalBezierCurveArcLength(P);
11898
- }), u = m.sum(l), d = [new xn(r.knots[0], 0)];
11898
+ }), u = m.sum(l), d = [new bn(r.knots[0], 0)];
11899
11899
  if (n > u) return d;
11900
11900
  for (var p = n, _ = 0, v = p, w = 0, I = 0, A; _ < a.length; ) {
11901
11901
  for (w += l[_]; v < w + rt.EPSILON; )
11902
- A = yt.rationalBezierCurveParamAtArcLength(a[_], v - I, rt.TOLERANCE, l[_]), d.push(new xn(A, v)), v += p;
11902
+ A = yt.rationalBezierCurveParamAtArcLength(a[_], v - I, rt.TOLERANCE, l[_]), d.push(new bn(A, v)), v += p;
11903
11903
  I += l[_], _++;
11904
11904
  }
11905
11905
  return d;
11906
11906
  };
11907
- var xn = f.eval.CurveLengthSample = function(r, n) {
11907
+ var bn = f.eval.CurveLengthSample = function(r, n) {
11908
11908
  this.u = r, this.len = n;
11909
11909
  };
11910
- b["verb.eval.CurveLengthSample"] = xn, xn.__name__ = ["verb", "eval", "CurveLengthSample"], xn.prototype = {
11911
- __class__: xn
11910
+ b["verb.eval.CurveLengthSample"] = bn, bn.__name__ = ["verb", "eval", "CurveLengthSample"], bn.prototype = {
11911
+ __class__: bn
11912
11912
  };
11913
11913
  var N = f.eval.Eval = function() {
11914
11914
  };
@@ -12361,7 +12361,7 @@ var Sh = { exports: {} };
12361
12361
  }, lt.kdTreeFromSegments = function(r) {
12362
12362
  for (var n = [], a = 0; a < r.length; ) {
12363
12363
  var l = r[a];
12364
- ++a, n.push(new fn(l.min.point, l.min)), n.push(new fn(l.max.point, l.max));
12364
+ ++a, n.push(new _n(l.min.point, l.min)), n.push(new _n(l.max.point, l.max));
12365
12365
  }
12366
12366
  return new Wn(n, m.distSquared);
12367
12367
  }, lt.lookupAdjacentSegment = function(r, n, a) {
@@ -12460,7 +12460,7 @@ var Sh = { exports: {} };
12460
12460
  var k = P++, T = u[k], L = v[k], C = lt.rays(T, L, r.origin, r.dir);
12461
12461
  if (C != null) {
12462
12462
  var B = C.u0, R = C.u1;
12463
- B < -rt.EPSILON || B > w[k] + rt.EPSILON || ((I == null || R < I.u) && (I = new gn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], B / w[k]))), (A == null || R > A.u) && (A = new gn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], B / w[k]))));
12463
+ B < -rt.EPSILON || B > w[k] + rt.EPSILON || ((I == null || R < I.u) && (I = new fn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], B / w[k]))), (A == null || R > A.u) && (A = new fn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], B / w[k]))));
12464
12464
  }
12465
12465
  }
12466
12466
  return A == null || I == null ? null : new we(I, A);
@@ -12480,7 +12480,7 @@ var Sh = { exports: {} };
12480
12480
  var w, I, A, P;
12481
12481
  d == 0 ? (w = n[1], I = n[2], A = l[1], P = l[2]) : d == 1 ? (w = n[0], I = n[2], A = l[0], P = l[2]) : (w = n[0], I = n[1], A = l[0], P = l[1]);
12482
12482
  var k = -m.dot(r, n), T = -m.dot(a, l), L = w * P - I * A, C = (I * T - k * P) / L, B = (k * A - w * T) / L, R;
12483
- return d == 0 ? R = [0, C, B] : d == 1 ? R = [C, 0, B] : R = [C, B, 0], new pn(R, m.normalized(u));
12483
+ return d == 0 ? R = [0, C, B] : d == 1 ? R = [C, 0, B] : R = [C, B, 0], new gn(R, m.normalized(u));
12484
12484
  }, lt.threePlanes = function(r, n, a, l, u, d) {
12485
12485
  var p = m.cross(a, u), _ = m.dot(r, p);
12486
12486
  if (Math.abs(_) < rt.EPSILON) return null;
@@ -12835,18 +12835,18 @@ var Sh = { exports: {} };
12835
12835
  if (nt > 0 ? or = Math.floor(k - (nt + 1) / 2) : or = k, nt > 0) {
12836
12836
  for (var $e = Ae - It, Ze = [], Qe = l; Qe > ge; )
12837
12837
  Ze[Qe - ge - 1] = $e / (u[mt + Qe] - It), Qe--;
12838
- for (var cr = 1, Sn = nt + 1; cr < Sn; ) {
12838
+ for (var cr = 1, An = nt + 1; cr < An; ) {
12839
12839
  for (var Hr = cr++, zh = nt - Hr, ui = ge + Hr, qr = l; qr >= ui; )
12840
12840
  w[qr] = m.add(m.mul(Ze[qr - ui], w[qr]), m.mul(1 - Ze[qr - ui], w[qr - 1])), qr--;
12841
12841
  A[zh] = w[l];
12842
12842
  }
12843
12843
  }
12844
12844
  for (var ao = Ke, Rh = k + 1; ao < Rh; ) {
12845
- var An = ao++;
12846
- I[An] = m.zeros1d(_);
12847
- for (var Bh = ft.imin(l, An), oo = ft.imax(0, An - p), Fh = Bh + 1; oo < Fh; ) {
12845
+ var In = ao++;
12846
+ I[In] = m.zeros1d(_);
12847
+ for (var Bh = ft.imin(l, In), oo = ft.imax(0, In - p), Fh = Bh + 1; oo < Fh; ) {
12848
12848
  var lo = oo++;
12849
- I[An] = m.add(I[An], m.mul(v[An][lo], w[lo]));
12849
+ I[In] = m.add(I[In], m.mul(v[In][lo], w[lo]));
12850
12850
  }
12851
12851
  }
12852
12852
  if (Ce > 1)
@@ -13254,7 +13254,7 @@ var Sh = { exports: {} };
13254
13254
  wt._init || (wt._workerPool = new Lr(wt.THREADS), wt._init = !0);
13255
13255
  }, wt.dispatchMethod = function(r, n, a) {
13256
13256
  wt.init();
13257
- var l = new dn(), u = function(d) {
13257
+ var l = new mn(), u = function(d) {
13258
13258
  l.resolve(d);
13259
13259
  };
13260
13260
  return wt._workerPool.addWork(ut.getClassName(r), n, a, u), new pe(l);
@@ -13301,15 +13301,15 @@ var Sh = { exports: {} };
13301
13301
  b["verb.exe._WorkerPool.Work"] = Wr, Wr.__name__ = ["verb", "exe", "_WorkerPool", "Work"], Wr.prototype = {
13302
13302
  __class__: Wr
13303
13303
  };
13304
- var bn = function() {
13304
+ var wn = function() {
13305
13305
  };
13306
- b["verb.geom.ICurve"] = bn, bn.__name__ = ["verb", "geom", "ICurve"], bn.__interfaces__ = [vn], bn.prototype = {
13307
- __class__: bn
13306
+ b["verb.geom.ICurve"] = wn, wn.__name__ = ["verb", "geom", "ICurve"], wn.__interfaces__ = [yn], wn.prototype = {
13307
+ __class__: wn
13308
13308
  };
13309
13309
  var Tt = f.geom.NurbsCurve = function(r) {
13310
13310
  this._data = Ge.isValidNurbsCurveData(r);
13311
13311
  };
13312
- b["verb.geom.NurbsCurve"] = Tt, Tt.__name__ = ["verb", "geom", "NurbsCurve"], Tt.__interfaces__ = [bn], Tt.byKnotsControlPointsWeights = function(r, n, a, l) {
13312
+ b["verb.geom.NurbsCurve"] = Tt, Tt.__name__ = ["verb", "geom", "NurbsCurve"], Tt.__interfaces__ = [wn], Tt.byKnotsControlPointsWeights = function(r, n, a, l) {
13313
13313
  return new Tt(new Gt(r, n.slice(), N.homogenize1d(a, l)));
13314
13314
  }, Tt.byPoints = function(r, n) {
13315
13315
  return n == null && (n = 3), new Tt(pt.rationalInterpCurve(r, n));
@@ -13467,15 +13467,15 @@ var Sh = { exports: {} };
13467
13467
  b["verb.geom.Circle"] = Kn, Kn.__name__ = ["verb", "geom", "Circle"], Kn.__super__ = Or, Kn.prototype = M(Or.prototype, {
13468
13468
  __class__: Kn
13469
13469
  });
13470
- var wn = function() {
13470
+ var Sn = function() {
13471
13471
  };
13472
- b["verb.geom.ISurface"] = wn, wn.__name__ = ["verb", "geom", "ISurface"], wn.__interfaces__ = [vn], wn.prototype = {
13473
- __class__: wn
13472
+ b["verb.geom.ISurface"] = Sn, Sn.__name__ = ["verb", "geom", "ISurface"], Sn.__interfaces__ = [yn], Sn.prototype = {
13473
+ __class__: Sn
13474
13474
  };
13475
13475
  var Pt = f.geom.NurbsSurface = function(r) {
13476
13476
  this._data = Ge.isValidNurbsSurfaceData(r);
13477
13477
  };
13478
- b["verb.geom.NurbsSurface"] = Pt, Pt.__name__ = ["verb", "geom", "NurbsSurface"], Pt.__interfaces__ = [wn], Pt.byKnotsControlPointsWeights = function(r, n, a, l, u, d) {
13478
+ b["verb.geom.NurbsSurface"] = Pt, Pt.__name__ = ["verb", "geom", "NurbsSurface"], Pt.__interfaces__ = [Sn], Pt.byKnotsControlPointsWeights = function(r, n, a, l, u, d) {
13479
13479
  return new Pt(new te(r, n, a, l, N.homogenize2d(u, d)));
13480
13480
  }, Pt.byCorners = function(r, n, a, l) {
13481
13481
  return new Pt(pt.fourPointSurface(r, n, a, l));
@@ -13886,7 +13886,7 @@ var Sh = { exports: {} };
13886
13886
  });
13887
13887
  })(Sh);
13888
13888
  var kd = Sh.exports;
13889
- const kn = /* @__PURE__ */ Ed(kd);
13889
+ const Mn = /* @__PURE__ */ Ed(kd);
13890
13890
  class Mi {
13891
13891
  constructor() {
13892
13892
  this.c0 = 0, this.c1 = 0, this.c2 = 0, this.c3 = 0;
@@ -14076,7 +14076,7 @@ class Md extends Ms {
14076
14076
  }), t;
14077
14077
  }
14078
14078
  }
14079
- class Nn {
14079
+ class Cn {
14080
14080
  constructor(t, e, s, o) {
14081
14081
  this._degree = t, this._knots = [...e], this._controlPoints = s.map((h) => ({ x: h.x, y: h.y, z: h.z })), this._weights = o ? [...o] : new Array(s.length).fill(1);
14082
14082
  }
@@ -14133,7 +14133,7 @@ class Nn {
14133
14133
  * Create a NURBS curve from control points and knots
14134
14134
  */
14135
14135
  static byKnotsControlPointsWeights(t, e, s, o) {
14136
- return new Nn(t, e, s, o);
14136
+ return new Cn(t, e, s, o);
14137
14137
  }
14138
14138
  /**
14139
14139
  * Create a NURBS curve from fit points using interpolation
@@ -14153,7 +14153,7 @@ class Nn {
14153
14153
  break;
14154
14154
  }
14155
14155
  const h = t.map((g) => ({ x: g[0], y: g[1], z: g[2] })), c = new Array(h.length).fill(1);
14156
- return new Nn(e, o, h, c);
14156
+ return new Cn(e, o, h, c);
14157
14157
  }
14158
14158
  /**
14159
14159
  * Get the valid parameter range for this curve
@@ -14200,10 +14200,10 @@ class Nn {
14200
14200
  */
14201
14201
  static createClosedCurve(t, e, s = "Chord") {
14202
14202
  const o = this.createFitPointsForClosedCurve(t).map((h) => [h.x, h.y, h.z]);
14203
- return Nn.byPoints(o, e, s);
14203
+ return Cn.byPoints(o, e, s);
14204
14204
  }
14205
14205
  }
14206
- class un extends Ms {
14206
+ class cn extends Ms {
14207
14207
  constructor(t, e, s, o, h) {
14208
14208
  super();
14209
14209
  const c = arguments.length;
@@ -14215,7 +14215,7 @@ class un extends Ms {
14215
14215
  if (c >= 3 && (Array.isArray(s) ? (g = s, c >= 4 && (x = o || 3), c >= 5 && (f = h)) : s !== void 0 && (x = s || 3, c >= 4 && (f = o))), s === void 0 && c >= 4 && (x = o || 3, c >= 5 && (f = h)), this._degree = x, this._closed = f, this._controlPoints.length < this._degree + 1)
14216
14216
  throw He.ILLEGAL_PARAMETERS;
14217
14217
  const S = this.toVerbPoints(this._controlPoints);
14218
- this._nurbsCurve = kn.geom.NurbsCurve.byKnotsControlPointsWeights(
14218
+ this._nurbsCurve = Mn.geom.NurbsCurve.byKnotsControlPointsWeights(
14219
14219
  this._degree,
14220
14220
  e,
14221
14221
  S,
@@ -14225,7 +14225,7 @@ class un extends Ms {
14225
14225
  if (this._fitPoints = t, this._knotParameterization = e, c >= 3 && (this._degree = s || 3), c >= 4 && (this._closed = o), this._fitPoints.length < this._degree + 1)
14226
14226
  throw He.ILLEGAL_PARAMETERS;
14227
14227
  const g = this.toNurbsPoints(this._fitPoints);
14228
- this._nurbsCurve = kn.geom.NurbsCurve.byPoints(g, this._degree), this._controlPoints = this.toGePoints(this._nurbsCurve.controlPoints());
14228
+ this._nurbsCurve = Mn.geom.NurbsCurve.byPoints(g, this._degree), this._controlPoints = this.toGePoints(this._nurbsCurve.controlPoints());
14229
14229
  }
14230
14230
  }
14231
14231
  /**
@@ -14234,24 +14234,24 @@ class un extends Ms {
14234
14234
  buildCurve() {
14235
14235
  if (this._fitPoints && this._knotParameterization) {
14236
14236
  if (this._closed) {
14237
- const t = Nn.createFitPointsForClosedCurve(
14237
+ const t = Cn.createFitPointsForClosedCurve(
14238
14238
  this._fitPoints
14239
14239
  ), e = this.toNurbsPoints(t);
14240
- this._nurbsCurve = kn.geom.NurbsCurve.byPoints(e, this._degree);
14240
+ this._nurbsCurve = Mn.geom.NurbsCurve.byPoints(e, this._degree);
14241
14241
  } else {
14242
14242
  const t = this.toNurbsPoints(this._fitPoints);
14243
- this._nurbsCurve = kn.geom.NurbsCurve.byPoints(t, this._degree);
14243
+ this._nurbsCurve = Mn.geom.NurbsCurve.byPoints(t, this._degree);
14244
14244
  }
14245
14245
  this._controlPoints = this.toGePoints(this._nurbsCurve.controlPoints());
14246
14246
  } else if (this._controlPoints)
14247
14247
  if (this._closed) {
14248
- const t = Nn.createFitPointsForClosedCurve(
14248
+ const t = Cn.createFitPointsForClosedCurve(
14249
14249
  this._controlPoints
14250
14250
  ), e = this.toNurbsPoints(t);
14251
- this._nurbsCurve = kn.geom.NurbsCurve.byPoints(e, this._degree), this._controlPoints = this.toGePoints(this._nurbsCurve.controlPoints());
14251
+ this._nurbsCurve = Mn.geom.NurbsCurve.byPoints(e, this._degree), this._controlPoints = this.toGePoints(this._nurbsCurve.controlPoints());
14252
14252
  } else {
14253
14253
  const t = this._nurbsCurve.knots(), e = this._nurbsCurve.weights(), s = this.toVerbPoints(this._controlPoints);
14254
- this._nurbsCurve = kn.geom.NurbsCurve.byKnotsControlPointsWeights(
14254
+ this._nurbsCurve = Mn.geom.NurbsCurve.byKnotsControlPointsWeights(
14255
14255
  this._degree,
14256
14256
  t,
14257
14257
  s,
@@ -14404,7 +14404,7 @@ class un extends Ms {
14404
14404
  throw new Error(
14405
14405
  `At least ${s + 1} points are required for a degree ${s} closed spline`
14406
14406
  );
14407
- return new un(t, e, s, !0);
14407
+ return new cn(t, e, s, !0);
14408
14408
  }
14409
14409
  }
14410
14410
  var nn = 256, Ah = [], Lo = 256, Fs;
@@ -14416,7 +14416,7 @@ function Td(i) {
14416
14416
  Fs += Ah[Math.random() * 256 | 0];
14417
14417
  return Fs.substring(nn, nn++ + e);
14418
14418
  }
14419
- class cn {
14419
+ class dn {
14420
14420
  /**
14421
14421
  * Creates a new AcDbObject instance.
14422
14422
  *
@@ -14610,7 +14610,7 @@ class cn {
14610
14610
  close() {
14611
14611
  }
14612
14612
  }
14613
- const Sa = class Sa extends cn {
14613
+ const Sa = class Sa extends dn {
14614
14614
  constructor() {
14615
14615
  super(...arguments), this._layer = "0", this._color = new on(), this._lineType = gi, this._lineWeight = 1, this._linetypeScale = -1, this._visibility = !0, this._transparency = 0;
14616
14616
  }
@@ -15145,9 +15145,9 @@ const Pa = class Pa extends Pe {
15145
15145
  super(), this._position = new q(), this._bulge = 0, this._startWidth = 0, this._endWidth = 0, this._vertexType = 0;
15146
15146
  }
15147
15147
  /**
15148
- * Gets the position value of the vertex. The position point value must be in OCS coordinates
15149
- * (the OCS of the polyline containing the vertex), not WCS. The Z coordinate is kept in the
15150
- * owning AcDb2dPolyline only for historical purposes.
15148
+ * Gets the position value of the vertex. The position point value must be in OCS coordinates
15149
+ * (the OCS of the polyline containing the vertex), not WCS. The Z coordinate is kept in the
15150
+ * owning AcDb2dPolyline only for historical purposes.
15151
15151
  *
15152
15152
  * @returns The position value of the vertex
15153
15153
  */
@@ -15155,9 +15155,9 @@ const Pa = class Pa extends Pe {
15155
15155
  return this._position;
15156
15156
  }
15157
15157
  /**
15158
- * Sets the position value of the vertex. The position point value must be in OCS coordinates
15159
- * (the OCS of the polyline containing the vertex), not WCS. The Z coordinate is kept in the
15160
- * owning AcDb2dPolyline only for historical purposes.
15158
+ * Sets the position value of the vertex. The position point value must be in OCS coordinates
15159
+ * (the OCS of the polyline containing the vertex), not WCS. The Z coordinate is kept in the
15160
+ * owning AcDb2dPolyline only for historical purposes.
15161
15161
  *
15162
15162
  * @param value - The position value of the vertex
15163
15163
  */
@@ -15181,7 +15181,7 @@ const Pa = class Pa extends Pe {
15181
15181
  this._bulge = t;
15182
15182
  }
15183
15183
  /**
15184
- * Gets the start width for the vertex. The start width is used as the width at this vertex
15184
+ * Gets the start width for the vertex. The start width is used as the width at this vertex
15185
15185
  * for the polyline segment from this vertex to the next vertex.
15186
15186
  *
15187
15187
  * @returns The start width for the vertex
@@ -15190,7 +15190,7 @@ const Pa = class Pa extends Pe {
15190
15190
  return this._startWidth;
15191
15191
  }
15192
15192
  /**
15193
- * Sets the start width for the vertex. The start width is used as the width at this vertex
15193
+ * Sets the start width for the vertex. The start width is used as the width at this vertex
15194
15194
  * for the polyline segment from this vertex to the next vertex.
15195
15195
  *
15196
15196
  * @param value - The start width for the vertex
@@ -15374,7 +15374,7 @@ const ka = class ka extends Pe {
15374
15374
  super(), this._position = new q(), this._vertexType = 0;
15375
15375
  }
15376
15376
  /**
15377
- * Gets the WCS point value of this vertex.
15377
+ * Gets the WCS point value of this vertex.
15378
15378
  *
15379
15379
  * @returns The WCS point value of this vertex.
15380
15380
  */
@@ -15382,7 +15382,7 @@ const ka = class ka extends Pe {
15382
15382
  return this._position;
15383
15383
  }
15384
15384
  /**
15385
- * Sets WCS point value of this vertex.
15385
+ * Sets WCS point value of this vertex.
15386
15386
  *
15387
15387
  * @param value - The WCS point value of this vertex.
15388
15388
  */
@@ -15473,7 +15473,7 @@ const Ma = class Ma extends Ee {
15473
15473
  * ```
15474
15474
  */
15475
15475
  constructor(t, e, s, o) {
15476
- super(), this._geo = new Tn(
15476
+ super(), this._geo = new Nn(
15477
15477
  t,
15478
15478
  e,
15479
15479
  s,
@@ -15878,7 +15878,7 @@ const Ta = class Ta extends Pe {
15878
15878
  }
15879
15879
  const s = new ln().setFromEuler(
15880
15880
  new Ad(this.rotation, 0, 0)
15881
- ), o = new Cn();
15881
+ ), o = new hn();
15882
15882
  return o.compose(this.position, s, this.scaleFactors), t.applyMatrix4(o), t;
15883
15883
  }
15884
15884
  /**
@@ -15903,7 +15903,7 @@ const Ta = class Ta extends Pe {
15903
15903
  }
15904
15904
  computeTransformMatrix() {
15905
15905
  const t = new ln();
15906
- return t.setFromAxisAngle(Z.Z_AXIS, this.rotation), new Cn().compose(
15906
+ return t.setFromAxisAngle(Z.Z_AXIS, this.rotation), new hn().compose(
15907
15907
  this._position,
15908
15908
  t,
15909
15909
  this._scaleFactors
@@ -15941,7 +15941,7 @@ const Na = class Na extends Ee {
15941
15941
  * ```
15942
15942
  */
15943
15943
  constructor(t, e, s = Z.Z_AXIS) {
15944
- super(), this._geo = new Tn(
15944
+ super(), this._geo = new Nn(
15945
15945
  t,
15946
15946
  e,
15947
15947
  0,
@@ -16810,7 +16810,7 @@ const za = class za extends Ee {
16810
16810
  return this.createSplineIfNeeded(), this._splineGeo;
16811
16811
  }
16812
16812
  createSplineIfNeeded() {
16813
- this.isSplined && this.numVertices >= 2 && (this._splineGeo == null || this._updated) && (this._splineGeo = new un(this._vertices, "Uniform"), this._updated = !1);
16813
+ this.isSplined && this.numVertices >= 2 && (this._splineGeo == null || this._updated) && (this._splineGeo = new cn(this._vertices, "Uniform"), this._updated = !1);
16814
16814
  }
16815
16815
  };
16816
16816
  za.typeName = "Leader";
@@ -16834,7 +16834,7 @@ const Ra = class Ra extends Ee {
16834
16834
  * ```
16835
16835
  */
16836
16836
  constructor(t, e) {
16837
- super(), this._geo = new hn(t, e);
16837
+ super(), this._geo = new un(t, e);
16838
16838
  }
16839
16839
  /**
16840
16840
  * Gets the starting point of this line.
@@ -16971,25 +16971,25 @@ const Ra = class Ra extends Ee {
16971
16971
  subGetOsnapPoints(t, e, s, o, h) {
16972
16972
  const c = this.startPoint, g = this.endPoint;
16973
16973
  switch (t) {
16974
- case Mn.EndPoint:
16974
+ case Tn.EndPoint:
16975
16975
  h.push(c), h.push(g);
16976
16976
  break;
16977
- case Mn.MidPoint:
16977
+ case Tn.MidPoint:
16978
16978
  h.push(this.midPoint);
16979
16979
  break;
16980
- case Mn.Nearest:
16980
+ case Tn.Nearest:
16981
16981
  {
16982
16982
  const x = this._geo.project(s);
16983
16983
  h.push(x);
16984
16984
  }
16985
16985
  break;
16986
- case Mn.Perpendicular:
16986
+ case Tn.Perpendicular:
16987
16987
  {
16988
16988
  const x = this._geo.perpPoint(s);
16989
16989
  h.push(x);
16990
16990
  }
16991
16991
  break;
16992
- case Mn.Tangent:
16992
+ case Tn.Tangent:
16993
16993
  h.push(c);
16994
16994
  break;
16995
16995
  }
@@ -17439,12 +17439,12 @@ const Fa = class Fa extends Ee {
17439
17439
  const c = +(t !== void 0) + +(e !== void 0) + +(s !== void 0) + +(o !== void 0) + +(h !== void 0);
17440
17440
  if (c < 2 || c > 5)
17441
17441
  throw He.ILLEGAL_PARAMETERS;
17442
- !Array.isArray(e) ? this._geo = new un(
17442
+ !Array.isArray(e) ? this._geo = new cn(
17443
17443
  t,
17444
17444
  e,
17445
17445
  s,
17446
17446
  o
17447
- ) : this._geo = new un(
17447
+ ) : this._geo = new cn(
17448
17448
  t,
17449
17449
  e,
17450
17450
  s,
@@ -17845,7 +17845,7 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends Js {
17845
17845
  };
17846
17846
  Da.typeName = "Table";
17847
17847
  let Xi = Da;
17848
- const Ro = /* @__PURE__ */ new Cn();
17848
+ const Ro = /* @__PURE__ */ new hn();
17849
17849
  var Bd = /* @__PURE__ */ ((i) => (i[i.LEFT = 0] = "LEFT", i[i.CENTER = 1] = "CENTER", i[i.RIGHT = 2] = "RIGHT", i[i.ALIGNED = 3] = "ALIGNED", i[i.MIDDLE = 4] = "MIDDLE", i[i.FIT = 5] = "FIT", i))(Bd || {}), Fd = /* @__PURE__ */ ((i) => (i[i.BASELINE = 0] = "BASELINE", i[i.BOTTOM = 1] = "BOTTOM", i[i.MIDDLE = 2] = "MIDDLE", i[i.TOP = 3] = "TOP", i))(Fd || {});
17850
17850
  const Ua = class Ua extends Pe {
17851
17851
  /**
@@ -19575,7 +19575,7 @@ const Ka = class Ka extends Pe {
19575
19575
  * ```
19576
19576
  */
19577
19577
  constructor() {
19578
- super(), this._dimBlockId = null, this._dimensionStyleName = null, this._dimensionText = null, this._textLineSpacingFactor = 1, this._textLineSpacingStyle = 1, this._textPosition = new q(), this._textRotation = 0;
19578
+ super(), this._dimBlockId = null, this._dimBlockPosition = new q(), this._dimensionStyleName = null, this._dimensionText = null, this._textLineSpacingFactor = 1, this._textLineSpacingStyle = 1, this._textPosition = new q(), this._textRotation = 0, this._normal = new Z(0, 0, 1);
19579
19579
  }
19580
19580
  /**
19581
19581
  * Gets the block table record ID containing the entities that this dimension displays.
@@ -19604,6 +19604,54 @@ const Ka = class Ka extends Pe {
19604
19604
  set dimBlockId(t) {
19605
19605
  this._dimBlockId = t;
19606
19606
  }
19607
+ /**
19608
+ * Gets the relative position point of the block referenced by the dimension (in WCS coordinates).
19609
+ * The block position is the insertion point of the block referenced by the dimension, relative to
19610
+ * the primary definition point (DXF group code 10) of the dimension itself.
19611
+ *
19612
+ * The block position (in WCS) is added to the dimension primary definition point (also in WCS) to
19613
+ * get the actual insertion point for the anonymous block that is referenced by the dimension. So,
19614
+ * for example, changing a dimension's block position from (0,0,0) to (0,0,1) (in WCS) will cause
19615
+ * the dimension to display as though it has been moved 1 unit along the WCS Z axis.
19616
+ *
19617
+ * For a dimension newly created via any dimension command, the block position will be (0,0,0).
19618
+ * For copies of existing dimensions, or if a dimension is moved, the block position will be the
19619
+ * offset vector (in WCS) from where the original dimension was located. For example, moving a
19620
+ * dimension 1 unit down the WCS Y axis will cause AutoCAD to update the block position value from
19621
+ * (0,0,0) to (0,-1,0) (in WCS coordinates).
19622
+ *
19623
+ * The position point is used for DXF group code 12.
19624
+ *
19625
+ * @returns The relative position point of the block referenced by the dimension.
19626
+ *
19627
+ */
19628
+ get dimBlockPosition() {
19629
+ return this._dimBlockPosition;
19630
+ }
19631
+ /**
19632
+ * Sets the relative position point of the block referenced by the dimension (in WCS coordinates).
19633
+ * The block position is the insertion point of the block referenced by the dimension, relative to
19634
+ * the primary definition point (DXF group code 10) of the dimension itself.
19635
+ *
19636
+ * The block position (in WCS) is added to the dimension primary definition point (also in WCS) to
19637
+ * get the actual insertion point for the anonymous block that is referenced by the dimension. So,
19638
+ * for example, changing a dimension's block position from (0,0,0) to (0,0,1) (in WCS) will cause
19639
+ * the dimension to display as though it has been moved 1 unit along the WCS Z axis.
19640
+ *
19641
+ * For a dimension newly created via any dimension command, the block position will be (0,0,0).
19642
+ * For copies of existing dimensions, or if a dimension is moved, the block position will be the
19643
+ * offset vector (in WCS) from where the original dimension was located. For example, moving a
19644
+ * dimension 1 unit down the WCS Y axis will cause AutoCAD to update the block position value from
19645
+ * (0,0,0) to (0,-1,0) (in WCS coordinates).
19646
+ *
19647
+ * The position point is used for DXF group code 12.
19648
+ *
19649
+ * @param value - The relative position point of the block referenced by the dimension.
19650
+
19651
+ */
19652
+ set dimBlockPosition(t) {
19653
+ this._dimBlockPosition.copy(t);
19654
+ }
19607
19655
  /**
19608
19656
  * Gets the dimension style name used by this dimension.
19609
19657
  *
@@ -19727,6 +19775,22 @@ const Ka = class Ka extends Pe {
19727
19775
  set textRotation(t) {
19728
19776
  this._textRotation = t;
19729
19777
  }
19778
+ /**
19779
+ * Gets the normal vector of the plane containing the dimension.
19780
+ *
19781
+ * @returns The normal vector
19782
+ */
19783
+ get normal() {
19784
+ return this._normal;
19785
+ }
19786
+ /**
19787
+ * Sets the normal vector of the plane containing the dimension.
19788
+ *
19789
+ * @param value - The new normal vector
19790
+ */
19791
+ set normal(t) {
19792
+ this._normal.copy(t).normalize();
19793
+ }
19730
19794
  /**
19731
19795
  * @inheritdoc
19732
19796
  */
@@ -19736,13 +19800,15 @@ const Ka = class Ka extends Pe {
19736
19800
  this.dimBlockId
19737
19801
  );
19738
19802
  if (s) {
19739
- const o = sn.instance.draw(
19803
+ const o = new hn().makeTranslation(this.dimBlockPosition), h = sn.instance.draw(
19740
19804
  t,
19741
19805
  s,
19742
19806
  this.rgbColor,
19743
- !1
19807
+ !1,
19808
+ o,
19809
+ this.normal
19744
19810
  );
19745
- return this.attachEntityInfo(o), o;
19811
+ return this.attachEntityInfo(h), h;
19746
19812
  }
19747
19813
  }
19748
19814
  const e = t.group([]);
@@ -20186,12 +20252,12 @@ const Za = class Za extends Gr {
20186
20252
  ), h = this.findIntersectionPoint(
20187
20253
  s,
20188
20254
  this._dimLinePoint
20189
- ), c = new hn(o, h);
20255
+ ), c = new un(o, h);
20190
20256
  return t.push(c), e.endPoint = o, this.adjustExtensionLine(e), t.push(e), s.endPoint = h, this.adjustExtensionLine(s), t.push(s), t;
20191
20257
  }
20192
20258
  createExtensionLine(t) {
20193
20259
  const e = this.rotation + Math.PI / 2, s = this.findPointOnLine2(t, e, 100);
20194
- return new hn(t, { ...s, z: t.z });
20260
+ return new un(t, { ...s, z: t.z });
20195
20261
  }
20196
20262
  /**
20197
20263
  * Compute the intersection point between a line 'line1' and a line 'line2' that passes through
@@ -20921,7 +20987,15 @@ class Do {
20921
20987
  return t.flag & 4 && (t.smoothType == zs.CUBIC ? c = Ks.CubicSplinePoly : t.smoothType == zs.QUADRATIC && (c = Ks.QuadSplinePoly)), new Di(c, o, e);
20922
20988
  } else {
20923
20989
  let c = ws.SimplePoly;
20924
- return t.flag & 2 ? c = ws.FitCurvePoly : t.flag & 4 && (t.smoothType == zs.CUBIC ? c = ws.CubicSplinePoly : t.smoothType == zs.QUADRATIC && (c = ws.QuadSplinePoly)), new Fi(c, o, 0, e, t.startWidth, t.endWidth, h);
20990
+ return t.flag & 2 ? c = ws.FitCurvePoly : t.flag & 4 && (t.smoothType == zs.CUBIC ? c = ws.CubicSplinePoly : t.smoothType == zs.QUADRATIC && (c = ws.QuadSplinePoly)), new Fi(
20991
+ c,
20992
+ o,
20993
+ 0,
20994
+ e,
20995
+ t.startWidth,
20996
+ t.endWidth,
20997
+ h
20998
+ );
20925
20999
  }
20926
21000
  }
20927
21001
  convertLWPolyline(t) {
@@ -21005,7 +21079,7 @@ class Do {
21005
21079
  let E = !0;
21006
21080
  const M = S.controlPoints.map((O) => (O.weight == null && (E = !1), O.weight || 1));
21007
21081
  x.add(
21008
- new un(
21082
+ new cn(
21009
21083
  b,
21010
21084
  S.knots,
21011
21085
  E ? M : void 0
@@ -21017,7 +21091,7 @@ class Do {
21017
21091
  y: E.y,
21018
21092
  z: 0
21019
21093
  }));
21020
- x.add(new un(b, "Uniform"));
21094
+ x.add(new cn(b, "Uniform"));
21021
21095
  }
21022
21096
  }
21023
21097
  }), e.add(x);
@@ -21059,7 +21133,7 @@ class Do {
21059
21133
  e.subDefinitionPoint2,
21060
21134
  e.definitionPoint
21061
21135
  );
21062
- return s.rotation = kt.degToRad(e.rotationAngle || 0), this.processDimensionCommonAttrs(t, s), s;
21136
+ return e.insertionPoint && (s.dimBlockPosition = { ...e.insertionPoint, z: 0 }), s.rotation = kt.degToRad(e.rotationAngle || 0), this.processDimensionCommonAttrs(t, s), s;
21063
21137
  } else if (t.subclassMarker == "AcDb3PointAngularDimension") {
21064
21138
  const e = t, s = new na(
21065
21139
  e.centerPoint,
@@ -21136,7 +21210,7 @@ class Do {
21136
21210
  ), e;
21137
21211
  }
21138
21212
  processDimensionCommonAttrs(t, e) {
21139
- e.dimBlockId = t.name, e.textPosition.copy(t.textPoint), e.textRotation = t.textRotation || 0, t.textLineSpacingFactor && (e.textLineSpacingFactor = t.textLineSpacingFactor), t.textLineSpacingStyle && (e.textLineSpacingStyle = t.textLineSpacingStyle), e.dimensionStyleName = t.styleName, e.dimensionText = t.text || "", e.measurement = t.measurement;
21213
+ e.dimBlockId = t.name, e.textPosition.copy(t.textPoint), e.textRotation = t.textRotation || 0, t.textLineSpacingFactor && (e.textLineSpacingFactor = t.textLineSpacingFactor), t.textLineSpacingStyle && (e.textLineSpacingStyle = t.textLineSpacingStyle), e.dimensionStyleName = t.styleName, e.dimensionText = t.text || "", e.measurement = t.measurement, e.normal.copy(t.extrusionDirection ?? { x: 0, y: 0, z: 1 });
21140
21214
  }
21141
21215
  /**
21142
21216
  * Processes common attributes from a DXF entity to an AcDbEntity.
@@ -21189,7 +21263,7 @@ class Do {
21189
21263
  return h;
21190
21264
  }
21191
21265
  }
21192
- class ba extends cn {
21266
+ class ba extends dn {
21193
21267
  /**
21194
21268
  * Creates a new AcDbLayout instance.
21195
21269
  *
@@ -21375,7 +21449,7 @@ class ba extends cn {
21375
21449
  this._extents.copy(t);
21376
21450
  }
21377
21451
  }
21378
- class Mh extends cn {
21452
+ class Mh extends dn {
21379
21453
  /**
21380
21454
  * Creates a new AcDbDictionary instance.
21381
21455
  *
@@ -21603,7 +21677,7 @@ class Gd extends Mh {
21603
21677
  }), t;
21604
21678
  }
21605
21679
  }
21606
- class jd extends cn {
21680
+ class jd extends dn {
21607
21681
  /**
21608
21682
  * Creates a new AcDbRasterImageDef instance.
21609
21683
  *
@@ -21932,7 +22006,9 @@ class Xd extends Zo {
21932
22006
  unknownEntityCount: 0
21933
22007
  }
21934
22008
  };
21935
- throw new Error(`Failed to parse drawing due to error: '${s.error}'`);
22009
+ throw new Error(
22010
+ `Failed to parse drawing due to error: '${s.error}'`
22011
+ );
21936
22012
  } else
21937
22013
  return {
21938
22014
  model: new Xc().parse(t),
@@ -22675,7 +22751,7 @@ class Er {
22675
22751
  }));
22676
22752
  }
22677
22753
  }
22678
- class zn extends cn {
22754
+ class zn extends dn {
22679
22755
  /**
22680
22756
  * Creates a new AcDbSymbolTableRecord instance.
22681
22757
  *
@@ -22898,7 +22974,7 @@ const Vr = class Vr extends zn {
22898
22974
  };
22899
22975
  Vr.MODEL_SPACE_NAME = "*MODEL_SPACE", Vr.PAPER_SPACE_NAME_PREFIX = "*PAPER_SPACE";
22900
22976
  let We = Vr;
22901
- class Rn extends cn {
22977
+ class Rn extends dn {
22902
22978
  /**
22903
22979
  * Creates a new AcDbSymbolTable instance.
22904
22980
  *
@@ -24792,7 +24868,7 @@ ri.DEFAULT_DIM_VALUES = {
24792
24868
  dimlwe: -2
24793
24869
  };
24794
24870
  let Ps = ri;
24795
- class E0 extends cn {
24871
+ class E0 extends dn {
24796
24872
  /**
24797
24873
  * Creates a new AcDbDatabase instance.
24798
24874
  */
@@ -25865,10 +25941,10 @@ export {
25865
25941
  Jd as AcDbLinetypeTable,
25866
25942
  Zs as AcDbLinetypeTableRecord,
25867
25943
  Yi as AcDbMText,
25868
- cn as AcDbObject,
25944
+ dn as AcDbObject,
25869
25945
  ha as AcDbObjectIterator,
25870
25946
  aa as AcDbOrdinateDimension,
25871
- Mn as AcDbOsnapMode,
25947
+ Tn as AcDbOsnapMode,
25872
25948
  Qi as AcDbPoint,
25873
25949
  ws as AcDbPoly2dType,
25874
25950
  Ks as AcDbPoly3dType,
@@ -25904,26 +25980,26 @@ export {
25904
25980
  Ct as AcGeBox3d,
25905
25981
  Md as AcGeCatmullRomCurve3d,
25906
25982
  As as AcGeCircArc2d,
25907
- Tn as AcGeCircArc3d,
25983
+ Nn as AcGeCircArc3d,
25908
25984
  ks as AcGeCurve2d,
25909
25985
  fa as AcGeEllipseArc2d,
25910
25986
  _a as AcGeEllipseArc3d,
25911
25987
  Ad as AcGeEuler,
25912
25988
  gd as AcGeGeometryUtil,
25913
25989
  va as AcGeLine2d,
25914
- hn as AcGeLine3d,
25990
+ un as AcGeLine3d,
25915
25991
  Pd as AcGeLoop2d,
25916
25992
  kt as AcGeMathUtil,
25917
25993
  pa as AcGeMatrix2d,
25918
- Cn as AcGeMatrix3d,
25919
- Nn as AcGeNurbsCurve,
25994
+ hn as AcGeMatrix3d,
25995
+ Cn as AcGeNurbsCurve,
25920
25996
  ii as AcGePlane,
25921
25997
  Nt as AcGePoint2d,
25922
25998
  q as AcGePoint3d,
25923
25999
  On as AcGePolyline2d,
25924
26000
  ln as AcGeQuaternion,
25925
26001
  wh as AcGeShape2d,
25926
- un as AcGeSpline3d,
26002
+ cn as AcGeSpline3d,
25927
26003
  gh as AcGeTol,
25928
26004
  Zt as AcGeVector2d,
25929
26005
  Z as AcGeVector3d,
@@ -25942,7 +26018,7 @@ export {
25942
26018
  fh as DEFAULT_TOL,
25943
26019
  oh as DEG2RAD,
25944
26020
  iu as DefaultLoadingManager,
25945
- Pn as FLOAT_TOL,
26021
+ En as FLOAT_TOL,
25946
26022
  A0 as ORIGIN_POINT_2D,
25947
26023
  ph as ORIGIN_POINT_3D,
25948
26024
  lh as RAD2DEG,