@mlightcad/data-model 1.3.13 → 1.3.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/data-model.js
CHANGED
|
@@ -837,7 +837,7 @@ var Go = { exports: {} };
|
|
|
837
837
|
function E(z, D, B) {
|
|
838
838
|
return f(z) || b.apply(this, arguments);
|
|
839
839
|
}
|
|
840
|
-
function
|
|
840
|
+
function T(z, D) {
|
|
841
841
|
var B = this, dt, vt, ot, W = "loglevel";
|
|
842
842
|
typeof z == "string" ? W += ":" + z : typeof z == "symbol" && (W = void 0);
|
|
843
843
|
function ut(bt) {
|
|
@@ -919,11 +919,11 @@ var Go = { exports: {} };
|
|
|
919
919
|
var Wt = st();
|
|
920
920
|
Wt != null && (ot = qt(Wt)), w.call(B);
|
|
921
921
|
}
|
|
922
|
-
c = new
|
|
922
|
+
c = new T(), c.getLogger = function(z) {
|
|
923
923
|
if (typeof z != "symbol" && typeof z != "string" || z === "")
|
|
924
924
|
throw new TypeError("You must supply a name when creating a logger.");
|
|
925
925
|
var D = h[z];
|
|
926
|
-
return D || (D = h[z] = new
|
|
926
|
+
return D || (D = h[z] = new T(
|
|
927
927
|
z,
|
|
928
928
|
c.methodFactory
|
|
929
929
|
)), D;
|
|
@@ -1739,11 +1739,11 @@ class on {
|
|
|
1739
1739
|
const b = (x = t.basePoint) == null ? void 0 : x.clone();
|
|
1740
1740
|
t.basePoint = void 0;
|
|
1741
1741
|
const E = e.newIterator();
|
|
1742
|
-
let
|
|
1742
|
+
let T = !0;
|
|
1743
1743
|
for (const L of E)
|
|
1744
|
-
if (L.color.isByBlock && s ? (yo.copy(L.color), L.color.color = s, this.addEntity(L, g, t), L.color.copy(yo)) : this.addEntity(L, g, t),
|
|
1744
|
+
if (L.color.isByBlock && s ? (yo.copy(L.color), L.color.color = s, this.addEntity(L, g, t), L.color.copy(yo)) : this.addEntity(L, g, t), T) {
|
|
1745
1745
|
const z = g[0];
|
|
1746
|
-
t.basePoint = z.basePoint,
|
|
1746
|
+
t.basePoint = z.basePoint, T = !1;
|
|
1747
1747
|
}
|
|
1748
1748
|
w = t.group(g), w && o && this.set(f, w), t.basePoint = b;
|
|
1749
1749
|
}
|
|
@@ -2240,9 +2240,9 @@ function xt(i, t) {
|
|
|
2240
2240
|
return x.reduce((w, b) => {
|
|
2241
2241
|
b.pushContext && w.push({});
|
|
2242
2242
|
let E = w[w.length - 1];
|
|
2243
|
-
for (let
|
|
2244
|
-
let L = E[
|
|
2245
|
-
b.isMultiple && L.length && f && console.warn(`Snippet ${L[L.length - 1].name} for code(${
|
|
2243
|
+
for (let T of typeof b.code == "number" ? [b.code] : b.code) {
|
|
2244
|
+
let L = E[T] ?? (E[T] = []);
|
|
2245
|
+
b.isMultiple && L.length && f && console.warn(`Snippet ${L[L.length - 1].name} for code(${T}) is shadowed by ${b.name}`), L.push(b);
|
|
2246
2246
|
}
|
|
2247
2247
|
return w;
|
|
2248
2248
|
}, [{}]);
|
|
@@ -2259,7 +2259,7 @@ function xt(i, t) {
|
|
|
2259
2259
|
break;
|
|
2260
2260
|
}
|
|
2261
2261
|
w.isMultiple || x[e.code].pop();
|
|
2262
|
-
let { name: b, parser: E, isMultiple:
|
|
2262
|
+
let { name: b, parser: E, isMultiple: T, isReducible: L } = w, z = E == null ? void 0 : E(e, s, o);
|
|
2263
2263
|
if (z === ca) {
|
|
2264
2264
|
s.rewind();
|
|
2265
2265
|
break;
|
|
@@ -2275,7 +2275,7 @@ function xt(i, t) {
|
|
|
2275
2275
|
}
|
|
2276
2276
|
return [W, Ii(ot[ot.length - 1])];
|
|
2277
2277
|
}(o, b);
|
|
2278
|
-
|
|
2278
|
+
T && !L ? (Object.prototype.hasOwnProperty.call(D, B) || (D[B] = []), D[B].push(z)) : D[B] = z;
|
|
2279
2279
|
}
|
|
2280
2280
|
w.pushContext && (g -= 1), c = !0, e = s.next();
|
|
2281
2281
|
}
|
|
@@ -2584,14 +2584,14 @@ function gl(i, t, e) {
|
|
|
2584
2584
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2585
2585
|
}
|
|
2586
2586
|
ml(pl, "ForEntityName", "BODY");
|
|
2587
|
-
let
|
|
2587
|
+
let Tu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Mu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
2588
2588
|
class fl {
|
|
2589
2589
|
parseEntity(t, e) {
|
|
2590
2590
|
let s = {};
|
|
2591
2591
|
return this.parser(e, t, s), s;
|
|
2592
2592
|
}
|
|
2593
2593
|
constructor() {
|
|
2594
|
-
gl(this, "parser", xt(
|
|
2594
|
+
gl(this, "parser", xt(Mu, Tu));
|
|
2595
2595
|
}
|
|
2596
2596
|
}
|
|
2597
2597
|
gl(fl, "ForEntityName", "CIRCLE");
|
|
@@ -2781,7 +2781,7 @@ function kl(i, t, e) {
|
|
|
2781
2781
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2782
2782
|
}
|
|
2783
2783
|
Pl(El, "ForEntityName", "INSERT");
|
|
2784
|
-
let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotation", parser: j }, { code: 212, name: "offsetFromBlock", parser: j }, { code: 211, name: "horizontalDirection", parser: j }, { code: 210, name: "normal", parser: j }, { code: 340, name: "associatedAnnotation", parser: y }, { code: 77, name: "byBlockColor", parser: y }, { code: 10, name: "vertices", parser: j, isMultiple: !0 }, { code: 76, name: "numberOfVertices", parser: y }, { code: 41, name: "textWidth", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 75, name: "isHooklineExists", parser: Bt }, { code: 74, name: "isHooklineSameDirection", parser: Bt }, { code: 73, name: "leaderCreationFlag", parser: y }, { code: 72, name: "isSpline", parser: Bt }, { code: 71, name: "isArrowheadEnabled", parser: Bt }, { code: 3, name: "styleName", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut],
|
|
2784
|
+
let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotation", parser: j }, { code: 212, name: "offsetFromBlock", parser: j }, { code: 211, name: "horizontalDirection", parser: j }, { code: 210, name: "normal", parser: j }, { code: 340, name: "associatedAnnotation", parser: y }, { code: 77, name: "byBlockColor", parser: y }, { code: 10, name: "vertices", parser: j, isMultiple: !0 }, { code: 76, name: "numberOfVertices", parser: y }, { code: 41, name: "textWidth", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 75, name: "isHooklineExists", parser: Bt }, { code: 74, name: "isHooklineSameDirection", parser: Bt }, { code: 73, name: "leaderCreationFlag", parser: y }, { code: 72, name: "isSpline", parser: Bt }, { code: 71, name: "isArrowheadEnabled", parser: Bt }, { code: 3, name: "styleName", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut], Tl = class {
|
|
2785
2785
|
parseEntity(t, e) {
|
|
2786
2786
|
let s = {};
|
|
2787
2787
|
return this.parser(e, t, s), s;
|
|
@@ -2790,9 +2790,9 @@ let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotat
|
|
|
2790
2790
|
kl(this, "parser", xt(Ku, Xu));
|
|
2791
2791
|
}
|
|
2792
2792
|
};
|
|
2793
|
-
kl(
|
|
2793
|
+
kl(Tl, "ForEntityName", "LEADER");
|
|
2794
2794
|
(br = {})[br.TextAnnotation = 0] = "TextAnnotation", br[br.ToleranceAnnotation = 1] = "ToleranceAnnotation", br[br.BlockReferenceAnnotation = 2] = "BlockReferenceAnnotation", br[br.NoAnnotation = 3] = "NoAnnotation";
|
|
2795
|
-
function
|
|
2795
|
+
function Ml(i, t, e) {
|
|
2796
2796
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2797
2797
|
}
|
|
2798
2798
|
let $u = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Zu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 11, name: "endPoint", parser: j }, { code: 10, name: "startPoint", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
@@ -2802,10 +2802,10 @@ class Nl {
|
|
|
2802
2802
|
return this.parser(e, t, s), s;
|
|
2803
2803
|
}
|
|
2804
2804
|
constructor() {
|
|
2805
|
-
|
|
2805
|
+
Ml(this, "parser", xt(Zu, $u));
|
|
2806
2806
|
}
|
|
2807
2807
|
}
|
|
2808
|
-
|
|
2808
|
+
Ml(Nl, "ForEntityName", "LINE");
|
|
2809
2809
|
(xs = {})[xs.IS_CLOSED = 1] = "IS_CLOSED", xs[xs.PLINE_GEN = 128] = "PLINE_GEN";
|
|
2810
2810
|
let Qu = { flag: 0, elevation: 0, thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 }, vertices: [] }, Ju = { bulge: 0 }, tc = [{ code: 42, name: "bulge", parser: y }, { code: 41, name: "endWidth", parser: y }, { code: 40, name: "startWidth", parser: y }, { code: 91, name: "id", parser: y }, { code: 20, name: "y", parser: y }, { code: 10, name: "x", parser: y }], ec = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 10, name: "vertices", isMultiple: !0, parser(i, t) {
|
|
2811
2811
|
let e = {};
|
|
@@ -3393,7 +3393,7 @@ class sh {
|
|
|
3393
3393
|
}
|
|
3394
3394
|
}
|
|
3395
3395
|
nh(sh, "ForEntityName", "MULTILEADER");
|
|
3396
|
-
let Ic = Object.fromEntries([rl, ll, dl, pl, fl, Ws, vl, xl, Il, El,
|
|
3396
|
+
let Ic = Object.fromEntries([rl, ll, dl, pl, fl, Ws, vl, xl, Il, El, Tl, Nl, Hs, Ll, ul, sh, zl, Bl, Ul, Gl, Wl, Yl, Xl, $l, Ys, al, Ql, Al, ma, qs, th, rh].map((i) => [i.ForEntityName, new i()]));
|
|
3397
3397
|
function ih(i, t) {
|
|
3398
3398
|
let e = [];
|
|
3399
3399
|
for (; !At(i, 0, "EOF"); ) {
|
|
@@ -3478,10 +3478,10 @@ function kc(i, t) {
|
|
|
3478
3478
|
return s;
|
|
3479
3479
|
}
|
|
3480
3480
|
(Fe = {})[Fe.NOT_APPLICABLE = 0] = "NOT_APPLICABLE", Fe[Fe.KEEP_EXISTING = 1] = "KEEP_EXISTING", Fe[Fe.USE_CLONE = 2] = "USE_CLONE", Fe[Fe.XREF_VALUE_NAME = 3] = "XREF_VALUE_NAME", Fe[Fe.VALUE_NAME = 4] = "VALUE_NAME", Fe[Fe.UNMANGLE_NAME = 5] = "UNMANGLE_NAME";
|
|
3481
|
-
let pa = [{ code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 5, name: "handle", parser: y }],
|
|
3481
|
+
let pa = [{ code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 5, name: "handle", parser: y }], Tc = [{ code: 3, name: "entries", parser: (i, t) => {
|
|
3482
3482
|
let e = { name: i.value };
|
|
3483
3483
|
return (i = t.next()).code === 350 ? e.objectSoftId = i.value : i.code === 360 ? e.objectHardId = i.value : t.rewind(), e;
|
|
3484
|
-
}, isMultiple: !0 }, { code: 281, name: "recordCloneFlag", parser: y }, { code: 280, name: "isHardOwned", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...pa],
|
|
3484
|
+
}, isMultiple: !0 }, { code: 281, name: "recordCloneFlag", parser: y }, { code: 280, name: "isHardOwned", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...pa], Mc = [{ code: 330, name: "imageDefReactorIdSoft", isMultiple: !0, parser: y }, { code: 90, name: "version", parser: y }, { code: 1, name: "fileName", parser: y }, { code: 10, name: "size", parser: j }, { code: 11, name: "sizeOfOnePixel", parser: j }, { code: 280, name: "isLoaded", parser: y }, { code: 281, name: "resolutionUnits", parser: y }, { code: 100, name: "subclassMarker", parser: y }];
|
|
3485
3485
|
(rn = {})[rn.NOUNIT = 0] = "NOUNIT", rn[rn.CENTIMETERS = 2] = "CENTIMETERS", rn[rn.INCH = 5] = "INCH";
|
|
3486
3486
|
(bs = {})[bs.PSLTSCALE = 1] = "PSLTSCALE", bs[bs.LIMCHECK = 2] = "LIMCHECK";
|
|
3487
3487
|
(nn = {})[nn.INCHES = 0] = "INCHES", nn[nn.MILLIMETERS = 1] = "MILLIMETERS", nn[nn.PIXELS = 2] = "PIXELS";
|
|
@@ -3498,7 +3498,7 @@ function wo(i, t) {
|
|
|
3498
3498
|
}
|
|
3499
3499
|
return t.rewind(), e;
|
|
3500
3500
|
}
|
|
3501
|
-
let Lc = { LAYOUT: Nc, PLOTSETTINGS: ah, DICTIONARY:
|
|
3501
|
+
let Lc = { LAYOUT: Nc, PLOTSETTINGS: ah, DICTIONARY: Tc, SPATIAL_FILTER: Cc, IMAGEDEF: Mc };
|
|
3502
3502
|
function Oc(i, t) {
|
|
3503
3503
|
let e = [];
|
|
3504
3504
|
for (; i.code !== 0 || !["EOF", "ENDSEC"].includes(i.value); ) {
|
|
@@ -3756,9 +3756,9 @@ class Xc {
|
|
|
3756
3756
|
const s = new TextDecoder("utf-8");
|
|
3757
3757
|
let o = 0, h = "", c = null, g = null, x = !1;
|
|
3758
3758
|
for (; o < t.byteLength; ) {
|
|
3759
|
-
const E = Math.min(o + 65536, t.byteLength),
|
|
3759
|
+
const E = Math.min(o + 65536, t.byteLength), T = t.slice(o, E);
|
|
3760
3760
|
o = E;
|
|
3761
|
-
const z = (h + s.decode(
|
|
3761
|
+
const z = (h + s.decode(T, { stream: !0 })).split(/\r?\n/);
|
|
3762
3762
|
h = z.pop() ?? "";
|
|
3763
3763
|
for (let D = 0; D < z.length; D++) {
|
|
3764
3764
|
const B = z[D].trim();
|
|
@@ -4738,8 +4738,8 @@ const zi = class mh {
|
|
|
4738
4738
|
* @returns Return this matrix
|
|
4739
4739
|
*/
|
|
4740
4740
|
multiplyMatrices(t, e) {
|
|
4741
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], w = s[4], b = s[7], E = s[2],
|
|
4742
|
-
return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * B + g * ot + x * st, h[1] = f * z + w * dt + b * W, h[4] = f * D + w * vt + b * ut, h[7] = f * B + w * ot + b * st, h[2] = E * z +
|
|
4741
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], w = s[4], b = s[7], E = s[2], T = s[5], L = s[8], z = o[0], D = o[3], B = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
|
|
4742
|
+
return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * B + g * ot + x * st, h[1] = f * z + w * dt + b * W, h[4] = f * D + w * vt + b * ut, h[7] = f * B + w * ot + b * st, h[2] = E * z + T * dt + L * W, h[5] = E * D + T * vt + L * ut, h[8] = E * B + T * ot + L * st, this;
|
|
4743
4743
|
}
|
|
4744
4744
|
/**
|
|
4745
4745
|
* Multiply every component of the matrix by the scalar value s.
|
|
@@ -4764,10 +4764,10 @@ const zi = class mh {
|
|
|
4764
4764
|
* @returns Return this matrix
|
|
4765
4765
|
*/
|
|
4766
4766
|
invert() {
|
|
4767
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = w * c - g * f, E = g * x - w * h,
|
|
4767
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = w * c - g * f, E = g * x - w * h, T = f * h - c * x, L = e * b + s * E + o * T;
|
|
4768
4768
|
if (L === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
4769
4769
|
const z = 1 / L;
|
|
4770
|
-
return t[0] = b * z, t[1] = (o * f - w * s) * z, t[2] = (g * s - o * c) * z, t[3] = E * z, t[4] = (w * e - o * x) * z, t[5] = (o * h - g * e) * z, t[6] =
|
|
4770
|
+
return t[0] = b * z, t[1] = (o * f - w * s) * z, t[2] = (g * s - o * c) * z, t[3] = E * z, t[4] = (w * e - o * x) * z, t[5] = (o * h - g * e) * z, t[6] = T * z, t[7] = (s * x - f * e) * z, t[8] = (c * e - s * h) * z, this;
|
|
4771
4771
|
}
|
|
4772
4772
|
/**
|
|
4773
4773
|
* Transpose this matrix in place.
|
|
@@ -4917,7 +4917,7 @@ const zi = class mh {
|
|
|
4917
4917
|
};
|
|
4918
4918
|
zi.IDENTITY = Object.freeze(new zi());
|
|
4919
4919
|
let ga = zi;
|
|
4920
|
-
const Pi = /* @__PURE__ */ new ga(),
|
|
4920
|
+
const Pi = /* @__PURE__ */ new ga(), Tn = 1e-6, se = 2 * Math.PI, S0 = {
|
|
4921
4921
|
x: 0,
|
|
4922
4922
|
y: 0
|
|
4923
4923
|
}, ph = {
|
|
@@ -4930,7 +4930,7 @@ class gh {
|
|
|
4930
4930
|
* Create tolerance class with default tolerance values
|
|
4931
4931
|
*/
|
|
4932
4932
|
constructor() {
|
|
4933
|
-
this.equalPointTol =
|
|
4933
|
+
this.equalPointTol = Tn, this.equalVectorTol = Tn;
|
|
4934
4934
|
}
|
|
4935
4935
|
/**
|
|
4936
4936
|
* Return true if two points are equal with the specified tolerance.
|
|
@@ -4953,7 +4953,7 @@ class gh {
|
|
|
4953
4953
|
/**
|
|
4954
4954
|
* Return true if the value is equal to zero with the specified tolerance.
|
|
4955
4955
|
*/
|
|
4956
|
-
static equalToZero(t, e =
|
|
4956
|
+
static equalToZero(t, e = Tn) {
|
|
4957
4957
|
return t < e && t > -e;
|
|
4958
4958
|
}
|
|
4959
4959
|
/**
|
|
@@ -4964,7 +4964,7 @@ class gh {
|
|
|
4964
4964
|
* @param tol Input the tolerance value
|
|
4965
4965
|
* @returns Return true if two values are equal with the sepcified tolerance
|
|
4966
4966
|
*/
|
|
4967
|
-
static equal(t, e, s =
|
|
4967
|
+
static equal(t, e, s = Tn) {
|
|
4968
4968
|
return Math.abs(t - e) < s;
|
|
4969
4969
|
}
|
|
4970
4970
|
/**
|
|
@@ -4977,7 +4977,7 @@ class gh {
|
|
|
4977
4977
|
* @returns Return true if the first argument are greater than the second argument with the
|
|
4978
4978
|
* sepcified tolerance.
|
|
4979
4979
|
*/
|
|
4980
|
-
static great(t, e, s =
|
|
4980
|
+
static great(t, e, s = Tn) {
|
|
4981
4981
|
return t - e > s;
|
|
4982
4982
|
}
|
|
4983
4983
|
/**
|
|
@@ -4990,7 +4990,7 @@ class gh {
|
|
|
4990
4990
|
* @returns Return *true* if the first argument less than the second argument with the specified
|
|
4991
4991
|
* tolerance value
|
|
4992
4992
|
*/
|
|
4993
|
-
static less(t, e, s =
|
|
4993
|
+
static less(t, e, s = Tn) {
|
|
4994
4994
|
return t - e < s;
|
|
4995
4995
|
}
|
|
4996
4996
|
}
|
|
@@ -5001,8 +5001,8 @@ function _h(i, t, e = !1) {
|
|
|
5001
5001
|
const c = t.length;
|
|
5002
5002
|
for (let g = 0, x = c - 1; g < c; x = g++) {
|
|
5003
5003
|
const f = t[g].x, w = t[g].y, b = t[x].x, E = t[x].y;
|
|
5004
|
-
let
|
|
5005
|
-
e && (
|
|
5004
|
+
let T = w > o != E > o;
|
|
5005
|
+
e && (T = w >= o != E >= o), T && s < (b - f) * (o - w) / (E - w) + f && (h = !h);
|
|
5006
5006
|
}
|
|
5007
5007
|
return h;
|
|
5008
5008
|
}
|
|
@@ -5117,8 +5117,8 @@ function yd(i, t, e, s) {
|
|
|
5117
5117
|
t,
|
|
5118
5118
|
e,
|
|
5119
5119
|
s
|
|
5120
|
-
), E = b[0] - w[0],
|
|
5121
|
-
return g += Math.sqrt(E * E +
|
|
5120
|
+
), E = b[0] - w[0], T = b[1] - w[1], L = b[2] - w[2];
|
|
5121
|
+
return g += Math.sqrt(E * E + T * T + L * L), g;
|
|
5122
5122
|
}
|
|
5123
5123
|
function I0(i) {
|
|
5124
5124
|
return i.map((t) => [...t]);
|
|
@@ -5146,24 +5146,24 @@ class un {
|
|
|
5146
5146
|
*/
|
|
5147
5147
|
static slerpFlat(t, e, s, o, h, c, g) {
|
|
5148
5148
|
let x = s[o + 0], f = s[o + 1], w = s[o + 2], b = s[o + 3];
|
|
5149
|
-
const E = h[c + 0],
|
|
5149
|
+
const E = h[c + 0], T = h[c + 1], L = h[c + 2], z = h[c + 3];
|
|
5150
5150
|
if (g === 0) {
|
|
5151
5151
|
t[e + 0] = x, t[e + 1] = f, t[e + 2] = w, t[e + 3] = b;
|
|
5152
5152
|
return;
|
|
5153
5153
|
}
|
|
5154
5154
|
if (g === 1) {
|
|
5155
|
-
t[e + 0] = E, t[e + 1] =
|
|
5155
|
+
t[e + 0] = E, t[e + 1] = T, t[e + 2] = L, t[e + 3] = z;
|
|
5156
5156
|
return;
|
|
5157
5157
|
}
|
|
5158
|
-
if (b !== z || x !== E || f !==
|
|
5158
|
+
if (b !== z || x !== E || f !== T || w !== L) {
|
|
5159
5159
|
let D = 1 - g;
|
|
5160
|
-
const B = x * E + f *
|
|
5160
|
+
const B = x * E + f * T + w * L + b * z, dt = B >= 0 ? 1 : -1, vt = 1 - B * B;
|
|
5161
5161
|
if (vt > Number.EPSILON) {
|
|
5162
5162
|
const W = Math.sqrt(vt), ut = Math.atan2(W, B * dt);
|
|
5163
5163
|
D = Math.sin(D * ut) / W, g = Math.sin(g * ut) / W;
|
|
5164
5164
|
}
|
|
5165
5165
|
const ot = g * dt;
|
|
5166
|
-
if (x = x * D + E * ot, f = f * D +
|
|
5166
|
+
if (x = x * D + E * ot, f = f * D + T * ot, w = w * D + L * ot, b = b * D + z * ot, D === 1 - g) {
|
|
5167
5167
|
const W = 1 / Math.sqrt(x * x + f * f + w * w + b * b);
|
|
5168
5168
|
x *= W, f *= W, w *= W, b *= W;
|
|
5169
5169
|
}
|
|
@@ -5181,8 +5181,8 @@ class un {
|
|
|
5181
5181
|
* @returns Return an array
|
|
5182
5182
|
*/
|
|
5183
5183
|
static multiplyQuaternionsFlat(t, e, s, o, h, c) {
|
|
5184
|
-
const g = s[o], x = s[o + 1], f = s[o + 2], w = s[o + 3], b = h[c], E = h[c + 1],
|
|
5185
|
-
return t[e] = g * L + w * b + x *
|
|
5184
|
+
const g = s[o], x = s[o + 1], f = s[o + 2], w = s[o + 3], b = h[c], E = h[c + 1], T = h[c + 2], L = h[c + 3];
|
|
5185
|
+
return t[e] = g * L + w * b + x * T - f * E, t[e + 1] = x * L + w * E + f * b - g * T, t[e + 2] = f * L + w * T + g * E - x * b, t[e + 3] = w * L - g * b - x * E - f * T, t;
|
|
5186
5186
|
}
|
|
5187
5187
|
/**
|
|
5188
5188
|
* X cooridinate
|
|
@@ -5253,25 +5253,25 @@ class un {
|
|
|
5253
5253
|
* @returns Return this quaternion
|
|
5254
5254
|
*/
|
|
5255
5255
|
setFromEuler(t, e = !0) {
|
|
5256
|
-
const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), w = g(o / 2), b = g(h / 2), E = x(s / 2),
|
|
5256
|
+
const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), w = g(o / 2), b = g(h / 2), E = x(s / 2), T = x(o / 2), L = x(h / 2);
|
|
5257
5257
|
switch (c) {
|
|
5258
5258
|
case "XYZ":
|
|
5259
|
-
this._x = E * w * b + f *
|
|
5259
|
+
this._x = E * w * b + f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b - E * T * L;
|
|
5260
5260
|
break;
|
|
5261
5261
|
case "YXZ":
|
|
5262
|
-
this._x = E * w * b + f *
|
|
5262
|
+
this._x = E * w * b + f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b + E * T * L;
|
|
5263
5263
|
break;
|
|
5264
5264
|
case "ZXY":
|
|
5265
|
-
this._x = E * w * b - f *
|
|
5265
|
+
this._x = E * w * b - f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b - E * T * L;
|
|
5266
5266
|
break;
|
|
5267
5267
|
case "ZYX":
|
|
5268
|
-
this._x = E * w * b - f *
|
|
5268
|
+
this._x = E * w * b - f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b + E * T * L;
|
|
5269
5269
|
break;
|
|
5270
5270
|
case "YZX":
|
|
5271
|
-
this._x = E * w * b + f *
|
|
5271
|
+
this._x = E * w * b + f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b - E * T * L;
|
|
5272
5272
|
break;
|
|
5273
5273
|
case "XZY":
|
|
5274
|
-
this._x = E * w * b - f *
|
|
5274
|
+
this._x = E * w * b - f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b + E * T * L;
|
|
5275
5275
|
break;
|
|
5276
5276
|
default:
|
|
5277
5277
|
console.warn(
|
|
@@ -5299,17 +5299,17 @@ class un {
|
|
|
5299
5299
|
setFromRotationMatrix(t) {
|
|
5300
5300
|
const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], w = e[6], b = e[10], E = s + g + b;
|
|
5301
5301
|
if (E > 0) {
|
|
5302
|
-
const
|
|
5303
|
-
this._w = 0.25 /
|
|
5302
|
+
const T = 0.5 / Math.sqrt(E + 1);
|
|
5303
|
+
this._w = 0.25 / T, this._x = (w - x) * T, this._y = (h - f) * T, this._z = (c - o) * T;
|
|
5304
5304
|
} else if (s > g && s > b) {
|
|
5305
|
-
const
|
|
5306
|
-
this._w = (w - x) /
|
|
5305
|
+
const T = 2 * Math.sqrt(1 + s - g - b);
|
|
5306
|
+
this._w = (w - x) / T, this._x = 0.25 * T, this._y = (o + c) / T, this._z = (h + f) / T;
|
|
5307
5307
|
} else if (g > b) {
|
|
5308
|
-
const
|
|
5309
|
-
this._w = (h - f) /
|
|
5308
|
+
const T = 2 * Math.sqrt(1 + g - s - b);
|
|
5309
|
+
this._w = (h - f) / T, this._x = (o + c) / T, this._y = 0.25 * T, this._z = (x + w) / T;
|
|
5310
5310
|
} else {
|
|
5311
|
-
const
|
|
5312
|
-
this._w = (c - o) /
|
|
5311
|
+
const T = 2 * Math.sqrt(1 + b - s - g);
|
|
5312
|
+
this._w = (c - o) / T, this._x = (h + f) / T, this._y = (x + w) / T, this._z = 0.25 * T;
|
|
5313
5313
|
}
|
|
5314
5314
|
return this._onChangeCallback(), this;
|
|
5315
5315
|
}
|
|
@@ -5445,8 +5445,8 @@ class un {
|
|
|
5445
5445
|
return this._w = c, this._x = s, this._y = o, this._z = h, this;
|
|
5446
5446
|
const x = 1 - g * g;
|
|
5447
5447
|
if (x <= Number.EPSILON) {
|
|
5448
|
-
const
|
|
5449
|
-
return this._w =
|
|
5448
|
+
const T = 1 - e;
|
|
5449
|
+
return this._w = T * c + e * this._w, this._x = T * s + e * this._x, this._y = T * o + e * this._y, this._z = T * h + e * this._z, this.normalize(), this;
|
|
5450
5450
|
}
|
|
5451
5451
|
const f = Math.sqrt(x), w = Math.atan2(f, g), b = Math.sin((1 - e) * w) / f, E = Math.sin(e * w) / f;
|
|
5452
5452
|
return this._w = c * b + this._w * E, this._x = s * b + this._x * E, this._y = o * b + this._y * E, this._z = h * b + this._z * E, this._onChangeCallback(), this;
|
|
@@ -6180,8 +6180,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6180
6180
|
* @param n43 Input element in the forth row and the third column
|
|
6181
6181
|
* @param n44 Input element in the forth row and the forth column
|
|
6182
6182
|
*/
|
|
6183
|
-
constructor(t, e, s, o, h, c, g, x, f, w, b, E,
|
|
6184
|
-
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && w != null && b != null && E != null &&
|
|
6183
|
+
constructor(t, e, s, o, h, c, g, x, f, w, b, E, T, L, z, D) {
|
|
6184
|
+
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && w != null && b != null && E != null && T != null && L != null && z != null && D != null && this.set(
|
|
6185
6185
|
t,
|
|
6186
6186
|
e,
|
|
6187
6187
|
s,
|
|
@@ -6194,7 +6194,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6194
6194
|
w,
|
|
6195
6195
|
b,
|
|
6196
6196
|
E,
|
|
6197
|
-
|
|
6197
|
+
T,
|
|
6198
6198
|
L,
|
|
6199
6199
|
z,
|
|
6200
6200
|
D
|
|
@@ -6221,9 +6221,9 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6221
6221
|
* @param n44 Input element in the forth row and the forth column
|
|
6222
6222
|
* @returns Return this matrix
|
|
6223
6223
|
*/
|
|
6224
|
-
set(t, e, s, o, h, c, g, x, f, w, b, E,
|
|
6224
|
+
set(t, e, s, o, h, c, g, x, f, w, b, E, T, L, z, D) {
|
|
6225
6225
|
const B = this.elements;
|
|
6226
|
-
return B[0] = t, B[4] = e, B[8] = s, B[12] = o, B[1] = h, B[5] = c, B[9] = g, B[13] = x, B[2] = f, B[6] = w, B[10] = b, B[14] = E, B[3] =
|
|
6226
|
+
return B[0] = t, B[4] = e, B[8] = s, B[12] = o, B[1] = h, B[5] = c, B[9] = g, B[13] = x, B[2] = f, B[6] = w, B[10] = b, B[14] = E, B[3] = T, B[7] = L, B[11] = z, B[15] = D, this;
|
|
6227
6227
|
}
|
|
6228
6228
|
/**
|
|
6229
6229
|
* Reset this matrix to the identity matrix.
|
|
@@ -6355,7 +6355,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6355
6355
|
* @returns Return this matrix
|
|
6356
6356
|
*/
|
|
6357
6357
|
extractRotation(t) {
|
|
6358
|
-
const e = this.elements, s = t.elements, o = 1 /
|
|
6358
|
+
const e = this.elements, s = t.elements, o = 1 / Mn.setFromMatrixColumn(t, 0).length(), h = 1 / Mn.setFromMatrixColumn(t, 1).length(), c = 1 / Mn.setFromMatrixColumn(t, 2).length();
|
|
6359
6359
|
return e[0] = s[0] * o, e[1] = s[1] * o, e[2] = s[2] * o, e[3] = 0, e[4] = s[4] * h, e[5] = s[5] * h, e[6] = s[6] * h, e[7] = 0, e[8] = s[8] * c, e[9] = s[9] * c, e[10] = s[10] * c, e[11] = 0, e[12] = 0, e[13] = 0, e[14] = 0, e[15] = 1, this;
|
|
6360
6360
|
}
|
|
6361
6361
|
// makeRotationFromEuler(euler) {
|
|
@@ -6507,8 +6507,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6507
6507
|
* @returns Return this matrix
|
|
6508
6508
|
*/
|
|
6509
6509
|
multiplyMatrices(t, e) {
|
|
6510
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], w = s[1], b = s[5], E = s[9],
|
|
6511
|
-
return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x *
|
|
6510
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], w = s[1], b = s[5], E = s[9], T = s[13], L = s[2], z = s[6], D = s[10], B = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], qt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], Te = o[6], Jt = o[10], ie = o[14], Q = o[3], Tt = o[7], ae = o[11], hr = o[15];
|
|
6511
|
+
return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Te + f * Tt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * qt + g * de + x * ie + f * hr, h[1] = w * ut + b * Wt + E * me + T * Q, h[5] = w * st + b * bt + E * Te + T * Tt, h[9] = w * Vt + b * Ot + E * Jt + T * ae, h[13] = w * qt + b * de + E * ie + T * hr, h[2] = L * ut + z * Wt + D * me + B * Q, h[6] = L * st + z * bt + D * Te + B * Tt, h[10] = L * Vt + z * Ot + D * Jt + B * ae, h[14] = L * qt + z * de + D * ie + B * hr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * Te + W * Tt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * qt + vt * de + ot * ie + W * hr, this;
|
|
6512
6512
|
}
|
|
6513
6513
|
/**
|
|
6514
6514
|
* Multiply every component of the matrix by a scalar value s.
|
|
@@ -6524,8 +6524,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6524
6524
|
* @returns Return the determinant of this matrix.
|
|
6525
6525
|
*/
|
|
6526
6526
|
determinant() {
|
|
6527
|
-
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], w = t[2], b = t[6], E = t[10],
|
|
6528
|
-
return L * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g *
|
|
6527
|
+
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], w = t[2], b = t[6], E = t[10], T = t[14], L = t[3], z = t[7], D = t[11], B = t[15];
|
|
6528
|
+
return L * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * T - s * x * T) + z * (+e * x * T - e * f * E + h * c * E - o * c * T + o * f * w - h * x * w) + D * (+e * f * b - e * g * T - h * c * b + s * c * T + h * g * w - s * f * w) + B * (-o * g * w - e * x * b + e * g * E + o * c * b - s * c * E + s * x * w);
|
|
6529
6529
|
}
|
|
6530
6530
|
/**
|
|
6531
6531
|
* Transposes this matrix.
|
|
@@ -6553,11 +6553,11 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6553
6553
|
* @returns Return this matrix
|
|
6554
6554
|
*/
|
|
6555
6555
|
invert() {
|
|
6556
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = t[9], E = t[10],
|
|
6556
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = t[9], E = t[10], T = t[11], L = t[12], z = t[13], D = t[14], B = t[15], dt = b * D * f - z * E * f + z * x * T - g * D * T - b * x * B + g * E * B, vt = L * E * f - w * D * f - L * x * T + c * D * T + w * x * B - c * E * B, ot = w * z * f - L * b * f + L * g * T - c * z * T - w * g * B + c * b * B, W = L * b * x - w * z * x - L * g * E + c * z * E + w * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
|
|
6557
6557
|
if (ut === 0)
|
|
6558
6558
|
return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
6559
6559
|
const st = 1 / ut;
|
|
6560
|
-
return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o *
|
|
6560
|
+
return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * T + s * D * T + b * o * B - s * E * B) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * B + s * x * B) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * T - s * x * T) * st, t[4] = vt * st, t[5] = (w * D * h - L * E * h + L * o * T - e * D * T - w * o * B + e * E * B) * st, t[6] = (L * x * h - c * D * h - L * o * f + e * D * f + c * o * B - e * x * B) * st, t[7] = (c * E * h - w * x * h + w * o * f - e * E * f - c * o * T + e * x * T) * st, t[8] = ot * st, t[9] = (L * b * h - w * z * h - L * s * T + e * z * T + w * s * B - e * b * B) * st, t[10] = (c * z * h - L * g * h + L * s * f - e * z * f - c * s * B + e * g * B) * st, t[11] = (w * g * h - c * b * h - w * s * f + e * b * f + c * s * T - e * g * T) * st, t[12] = W * st, t[13] = (w * z * o - L * b * o + L * s * E - e * z * E - w * s * D + e * b * D) * st, t[14] = (L * g * o - c * z * o - L * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - w * g * o + w * s * x - e * b * x - c * s * E + e * g * E) * st, this;
|
|
6561
6561
|
}
|
|
6562
6562
|
/**
|
|
6563
6563
|
* Multiply the columns of this matrix by vector v.
|
|
@@ -6671,8 +6671,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6671
6671
|
* @returns Return this matrix
|
|
6672
6672
|
*/
|
|
6673
6673
|
compose(t, e, s) {
|
|
6674
|
-
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, w = c + c, b = g + g, E = h * f,
|
|
6675
|
-
return o[0] = (1 - (z + B)) * W, o[1] = (
|
|
6674
|
+
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, w = c + c, b = g + g, E = h * f, T = h * w, L = h * b, z = c * w, D = c * b, B = g * b, dt = x * f, vt = x * w, ot = x * b, W = s.x, ut = s.y, st = s.z;
|
|
6675
|
+
return o[0] = (1 - (z + B)) * W, o[1] = (T + ot) * W, o[2] = (L - vt) * W, o[3] = 0, o[4] = (T - ot) * ut, o[5] = (1 - (E + B)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (L + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
|
|
6676
6676
|
}
|
|
6677
6677
|
/**
|
|
6678
6678
|
* Decompose this matrix into its position, quaternion and scale components.
|
|
@@ -6687,8 +6687,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6687
6687
|
*/
|
|
6688
6688
|
decompose(t, e, s) {
|
|
6689
6689
|
const o = this.elements;
|
|
6690
|
-
let h =
|
|
6691
|
-
const c =
|
|
6690
|
+
let h = Mn.set(o[0], o[1], o[2]).length();
|
|
6691
|
+
const c = Mn.set(o[4], o[5], o[6]).length(), g = Mn.set(o[8], o[9], o[10]).length();
|
|
6692
6692
|
this.determinant() < 0 && (h = -h), t.x = o[12], t.y = o[13], t.z = o[14], nr.copy(this);
|
|
6693
6693
|
const x = 1 / h, f = 1 / c, w = 1 / g;
|
|
6694
6694
|
return nr.elements[0] *= x, nr.elements[1] *= x, nr.elements[2] *= x, nr.elements[4] *= f, nr.elements[5] *= f, nr.elements[6] *= f, nr.elements[8] *= w, nr.elements[9] *= w, nr.elements[10] *= w, e.setFromRotationMatrix(nr), s.x = h, s.y = c, s.z = g, this;
|
|
@@ -6819,7 +6819,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
|
|
|
6819
6819
|
};
|
|
6820
6820
|
Fi.IDENTITY = Object.freeze(new Fi());
|
|
6821
6821
|
let cn = Fi;
|
|
6822
|
-
const
|
|
6822
|
+
const Mn = /* @__PURE__ */ new Z(), nr = /* @__PURE__ */ new cn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Dr = /* @__PURE__ */ new Z(), Fs = /* @__PURE__ */ new Z(), Ue = /* @__PURE__ */ new Z();
|
|
6823
6823
|
class Ct {
|
|
6824
6824
|
/**
|
|
6825
6825
|
* Create a 3d box bounded by min and max.
|
|
@@ -7295,7 +7295,7 @@ class be {
|
|
|
7295
7295
|
return t.min.equals(this.min) && t.max.equals(this.max);
|
|
7296
7296
|
}
|
|
7297
7297
|
}
|
|
7298
|
-
const
|
|
7298
|
+
const To = /* @__PURE__ */ new Z(), wd = /* @__PURE__ */ new Z(), Ad = /* @__PURE__ */ new ga();
|
|
7299
7299
|
class ai {
|
|
7300
7300
|
/**
|
|
7301
7301
|
* Create one plane
|
|
@@ -7344,7 +7344,7 @@ class ai {
|
|
|
7344
7344
|
* @returns Return this plane
|
|
7345
7345
|
*/
|
|
7346
7346
|
setFromCoplanarPoints(t, e, s) {
|
|
7347
|
-
const o =
|
|
7347
|
+
const o = To.subVectors(s, e).cross(wd.subVectors(t, e)).normalize();
|
|
7348
7348
|
return this.setFromNormalAndCoplanarPoint(o, t), this;
|
|
7349
7349
|
}
|
|
7350
7350
|
/**
|
|
@@ -7446,7 +7446,7 @@ class ai {
|
|
|
7446
7446
|
* @returns Return this plane
|
|
7447
7447
|
*/
|
|
7448
7448
|
applyMatrix4(t, e) {
|
|
7449
|
-
const s = e || Ad.getNormalMatrix(t), o = this.coplanarPoint(
|
|
7449
|
+
const s = e || Ad.getNormalMatrix(t), o = this.coplanarPoint(To).applyMatrix4(t), h = this.normal.applyMatrix3(s).normalize();
|
|
7450
7450
|
return this.constant = -o.dot(h), this;
|
|
7451
7451
|
}
|
|
7452
7452
|
/**
|
|
@@ -7501,7 +7501,7 @@ class Y extends Z {
|
|
|
7501
7501
|
}), o;
|
|
7502
7502
|
}
|
|
7503
7503
|
}
|
|
7504
|
-
const
|
|
7504
|
+
const Mo = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class Bi {
|
|
7505
7505
|
/**
|
|
7506
7506
|
* Create one instance of this class
|
|
7507
7507
|
* @param x (optional) the angle of the x axis in radians. Default is 0.
|
|
@@ -7593,25 +7593,25 @@ const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class B
|
|
|
7593
7593
|
* @returns Return this euler
|
|
7594
7594
|
*/
|
|
7595
7595
|
setFromRotationMatrix(t, e = this._order, s = !0) {
|
|
7596
|
-
const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], w = o[9], b = o[2], E = o[6],
|
|
7596
|
+
const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], w = o[9], b = o[2], E = o[6], T = o[10];
|
|
7597
7597
|
switch (e) {
|
|
7598
7598
|
case "XYZ":
|
|
7599
|
-
this._y = Math.asin(Vr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-w,
|
|
7599
|
+
this._y = Math.asin(Vr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-w, T), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
|
|
7600
7600
|
break;
|
|
7601
7601
|
case "YXZ":
|
|
7602
|
-
this._x = Math.asin(-Vr(w, -1, 1)), Math.abs(w) < 0.9999999 ? (this._y = Math.atan2(g,
|
|
7602
|
+
this._x = Math.asin(-Vr(w, -1, 1)), Math.abs(w) < 0.9999999 ? (this._y = Math.atan2(g, T), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
|
|
7603
7603
|
break;
|
|
7604
7604
|
case "ZXY":
|
|
7605
|
-
this._x = Math.asin(Vr(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b,
|
|
7605
|
+
this._x = Math.asin(Vr(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, T), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
|
|
7606
7606
|
break;
|
|
7607
7607
|
case "ZYX":
|
|
7608
|
-
this._y = Math.asin(-Vr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E,
|
|
7608
|
+
this._y = Math.asin(-Vr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, T), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
|
|
7609
7609
|
break;
|
|
7610
7610
|
case "YZX":
|
|
7611
|
-
this._z = Math.asin(Vr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-w, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g,
|
|
7611
|
+
this._z = Math.asin(Vr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-w, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, T));
|
|
7612
7612
|
break;
|
|
7613
7613
|
case "XZY":
|
|
7614
|
-
this._z = Math.asin(-Vr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-w,
|
|
7614
|
+
this._z = Math.asin(-Vr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-w, T), this._y = 0);
|
|
7615
7615
|
break;
|
|
7616
7616
|
default:
|
|
7617
7617
|
console.warn(
|
|
@@ -7630,7 +7630,7 @@ const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class B
|
|
|
7630
7630
|
* @returns Return this euler
|
|
7631
7631
|
*/
|
|
7632
7632
|
setFromQuaternion(t, e, s = !0) {
|
|
7633
|
-
return
|
|
7633
|
+
return Mo.makeRotationFromQuaternion(t), this.setFromRotationMatrix(Mo, e, s);
|
|
7634
7634
|
}
|
|
7635
7635
|
/**
|
|
7636
7636
|
* Set the x, y and z, and optionally update the order.
|
|
@@ -7790,12 +7790,12 @@ class fa extends wh {
|
|
|
7790
7790
|
const f = o[x], w = e[f], b = s[f];
|
|
7791
7791
|
let E = x + 1;
|
|
7792
7792
|
for (; E < c; E++) {
|
|
7793
|
-
const
|
|
7794
|
-
if (s[
|
|
7793
|
+
const T = o[E], L = e[T];
|
|
7794
|
+
if (s[T].containsBox(b) && gd.isPointInPolygon(
|
|
7795
7795
|
w[kt.randInt(0, w.length - 1)],
|
|
7796
7796
|
L
|
|
7797
7797
|
)) {
|
|
7798
|
-
(t = h.get(
|
|
7798
|
+
(t = h.get(T)) == null || t.children.push(h.get(f));
|
|
7799
7799
|
break;
|
|
7800
7800
|
}
|
|
7801
7801
|
}
|
|
@@ -7834,7 +7834,7 @@ class fa extends wh {
|
|
|
7834
7834
|
}), s;
|
|
7835
7835
|
}
|
|
7836
7836
|
}
|
|
7837
|
-
class
|
|
7837
|
+
class Ts extends wh {
|
|
7838
7838
|
constructor() {
|
|
7839
7839
|
super(), this.arcLengthDivisions = 100;
|
|
7840
7840
|
}
|
|
@@ -7968,7 +7968,7 @@ class Ms extends wh {
|
|
|
7968
7968
|
return this.getTangent(e);
|
|
7969
7969
|
}
|
|
7970
7970
|
}
|
|
7971
|
-
class Ps extends
|
|
7971
|
+
class Ps extends Ts {
|
|
7972
7972
|
constructor(t, e, s, o, h) {
|
|
7973
7973
|
super();
|
|
7974
7974
|
const c = +(t !== void 0) + +(e !== void 0) + +(s !== void 0) + +(o !== void 0) + +(h !== void 0);
|
|
@@ -7998,10 +7998,10 @@ class Ps extends Ms {
|
|
|
7998
7998
|
const o = (st, Vt) => ({
|
|
7999
7999
|
x: (st.x + Vt.x) / 2,
|
|
8000
8000
|
y: (st.y + Vt.y) / 2
|
|
8001
|
-
}), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), w = h(e, s), b = c(f), E = c(w),
|
|
8001
|
+
}), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), w = h(e, s), b = c(f), E = c(w), T = (st, Vt, qt, Wt) => {
|
|
8002
8002
|
const bt = (Wt - Vt) / (st - qt), Ot = st * bt + Vt;
|
|
8003
8003
|
return { x: bt, y: Ot };
|
|
8004
|
-
}, L = g.y - b * g.x, z = x.y - E * x.x, D =
|
|
8004
|
+
}, L = g.y - b * g.x, z = x.y - E * x.x, D = T(b, L, E, z), B = Math.sqrt(
|
|
8005
8005
|
Math.pow(t.x - D.x, 2) + Math.pow(t.y - D.y, 2)
|
|
8006
8006
|
), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t, D), ot = dt(e, D), W = dt(s, D), ut = W > vt && W < ot || vt > W && vt < ot || ot > W && ot < vt;
|
|
8007
8007
|
this.center = D, this.radius = B, this._clockwise = !ut, this._startAngle = vt, this._endAngle = W;
|
|
@@ -8023,17 +8023,17 @@ class Ps extends Ms {
|
|
|
8023
8023
|
const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)), w = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
|
|
8024
8024
|
let E;
|
|
8025
8025
|
if (o < Math.PI) {
|
|
8026
|
-
const
|
|
8026
|
+
const T = new Zt(
|
|
8027
8027
|
b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
|
|
8028
8028
|
b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
|
|
8029
8029
|
);
|
|
8030
|
-
E = f.add(
|
|
8030
|
+
E = f.add(T.multiplyScalar(-w));
|
|
8031
8031
|
} else {
|
|
8032
|
-
const
|
|
8032
|
+
const T = new Zt(
|
|
8033
8033
|
b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
|
|
8034
8034
|
b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
|
|
8035
8035
|
);
|
|
8036
|
-
E = f.add(
|
|
8036
|
+
E = f.add(T.multiplyScalar(w));
|
|
8037
8037
|
}
|
|
8038
8038
|
s < 0 ? (this._startAngle = Math.atan2(h.y - E.y, h.x - E.x), this._endAngle = Math.atan2(c.y - E.y, c.x - E.x)) : (this._startAngle = Math.atan2(c.y - E.y, c.x - E.x), this._endAngle = Math.atan2(h.y - E.y, h.x - E.x)), this._clockwise = s < 0, this.center = E, this.radius = c.sub(E).length();
|
|
8039
8039
|
}
|
|
@@ -8229,9 +8229,9 @@ class Id extends bh {
|
|
|
8229
8229
|
return (this._box == null || this._boundingBoxNeedsUpdate) && (this._box = this.calculateBoundingBox(), this._boundingBoxNeedsUpdate = !1), this._box;
|
|
8230
8230
|
}
|
|
8231
8231
|
}
|
|
8232
|
-
class
|
|
8232
|
+
class Ms extends Id {
|
|
8233
8233
|
}
|
|
8234
|
-
class dn extends
|
|
8234
|
+
class dn extends Ms {
|
|
8235
8235
|
/**
|
|
8236
8236
|
* This constructor initializes the line object to use start as the start point, and end
|
|
8237
8237
|
* as the endpoint. Both points must be in WCS coordinates.
|
|
@@ -8441,7 +8441,7 @@ class dn extends Ts {
|
|
|
8441
8441
|
}
|
|
8442
8442
|
}
|
|
8443
8443
|
const sn = /* @__PURE__ */ new Z(), Co = /* @__PURE__ */ new Z(), Bs = /* @__PURE__ */ new Z();
|
|
8444
|
-
class Ln extends
|
|
8444
|
+
class Ln extends Ms {
|
|
8445
8445
|
/**
|
|
8446
8446
|
* Compute center point of the arc given three points
|
|
8447
8447
|
* @param startPoint Input start point of the arc
|
|
@@ -8453,8 +8453,8 @@ class Ln extends Ts {
|
|
|
8453
8453
|
const o = new Z().addVectors(t, e).multiplyScalar(0.5), h = new Z().addVectors(t, s).multiplyScalar(0.5), c = new Z().subVectors(e, t), g = new Z().subVectors(s, t), x = new Z().crossVectors(c, g).normalize();
|
|
8454
8454
|
if (x.lengthSq() === 0)
|
|
8455
8455
|
return console.error("Points are collinear and cannot form a valid arc."), null;
|
|
8456
|
-
const f = new Z().crossVectors(c, x).normalize(), w = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = w.clone().multiplyScalar(Number.MAX_SAFE_INTEGER),
|
|
8457
|
-
return
|
|
8456
|
+
const f = new Z().crossVectors(c, x).normalize(), w = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = w.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), T = new dn(o, o.clone().add(b)), L = new dn(h, h.clone().add(E)), z = new Z();
|
|
8457
|
+
return T.closestPointToPoint(L.startPoint, !0, z) ? z : (console.error("Cannot find a valid center for the arc."), null);
|
|
8458
8458
|
}
|
|
8459
8459
|
/**
|
|
8460
8460
|
* Create arc by three points
|
|
@@ -8625,7 +8625,7 @@ class Ln extends Ts {
|
|
|
8625
8625
|
* @inheritdoc
|
|
8626
8626
|
*/
|
|
8627
8627
|
transform(t) {
|
|
8628
|
-
const e =
|
|
8628
|
+
const e = Ti.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Ti.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
|
|
8629
8629
|
return this.center.applyMatrix4(t), e.applyMatrix4(t), s.applyMatrix4(t), this.normal.applyMatrix4(t).normalize(), this.refVec.applyMatrix4(t).normalize(), this.startAngle = this.getAngle(e), this.endAngle = this.getAngle(s), this._boundingBoxNeedsUpdate = !0, this;
|
|
8630
8630
|
}
|
|
8631
8631
|
/**
|
|
@@ -8654,7 +8654,7 @@ class Ln extends Ts {
|
|
|
8654
8654
|
*/
|
|
8655
8655
|
getAngle(t) {
|
|
8656
8656
|
return t.sub(this.center), Math.atan2(
|
|
8657
|
-
t.dot(
|
|
8657
|
+
t.dot(Ti.crossVectors(this.refVec, this.normal)),
|
|
8658
8658
|
t.dot(this.refVec)
|
|
8659
8659
|
);
|
|
8660
8660
|
}
|
|
@@ -8682,8 +8682,8 @@ class Ln extends Ts {
|
|
|
8682
8682
|
return new ai(this.normal, t);
|
|
8683
8683
|
}
|
|
8684
8684
|
}
|
|
8685
|
-
const
|
|
8686
|
-
class _a extends
|
|
8685
|
+
const Ti = /* @__PURE__ */ new Z();
|
|
8686
|
+
class _a extends Ts {
|
|
8687
8687
|
/**
|
|
8688
8688
|
* Construct an instance of the ellipse arc.
|
|
8689
8689
|
* @param center Center point of the ellipse.
|
|
@@ -8842,7 +8842,7 @@ class _a extends Ms {
|
|
|
8842
8842
|
);
|
|
8843
8843
|
}
|
|
8844
8844
|
}
|
|
8845
|
-
class va extends
|
|
8845
|
+
class va extends Ms {
|
|
8846
8846
|
/**
|
|
8847
8847
|
* Construct an instance of the ellipse arc.
|
|
8848
8848
|
* @param center Center point of the ellipse.
|
|
@@ -9087,7 +9087,7 @@ class va extends Ts {
|
|
|
9087
9087
|
return new ai(this.normal, t);
|
|
9088
9088
|
}
|
|
9089
9089
|
}
|
|
9090
|
-
class Rn extends
|
|
9090
|
+
class Rn extends Ts {
|
|
9091
9091
|
constructor(t = null, e = !1) {
|
|
9092
9092
|
super(), this._vertices = t || new Array(), this._closed = e;
|
|
9093
9093
|
}
|
|
@@ -9224,7 +9224,7 @@ class Rn extends Ms {
|
|
|
9224
9224
|
return e;
|
|
9225
9225
|
}
|
|
9226
9226
|
}
|
|
9227
|
-
class ya extends
|
|
9227
|
+
class ya extends Ts {
|
|
9228
9228
|
/**
|
|
9229
9229
|
* This constructor initializes the line object to use start as the start point, and end
|
|
9230
9230
|
* as the endpoint. Both points must be in WCS coordinates.
|
|
@@ -9303,7 +9303,7 @@ class ya extends Ms {
|
|
|
9303
9303
|
return new ya(this._start.clone(), this._end.clone());
|
|
9304
9304
|
}
|
|
9305
9305
|
}
|
|
9306
|
-
class Pd extends
|
|
9306
|
+
class Pd extends Ts {
|
|
9307
9307
|
/**
|
|
9308
9308
|
* Create one loop by connected curves
|
|
9309
9309
|
* @param curves Input one array of connected curves
|
|
@@ -9418,9 +9418,9 @@ var Ah = { exports: {} };
|
|
|
9418
9418
|
return function(x, f, w) {
|
|
9419
9419
|
f.geom = f.geom || {}, f.exe = f.exe || {}, f.eval = f.eval || {}, f.core = f.core || {}, f.promhx = f.promhx || {};
|
|
9420
9420
|
var b = {}, E = function() {
|
|
9421
|
-
return
|
|
9421
|
+
return Tt.__string_rec(this, "");
|
|
9422
9422
|
};
|
|
9423
|
-
function
|
|
9423
|
+
function T(r, n) {
|
|
9424
9424
|
function a() {
|
|
9425
9425
|
}
|
|
9426
9426
|
a.prototype = r;
|
|
@@ -9516,7 +9516,7 @@ var Ah = { exports: {} };
|
|
|
9516
9516
|
var dt = function() {
|
|
9517
9517
|
};
|
|
9518
9518
|
b.Std = dt, dt.__name__ = ["Std"], dt.string = function(r) {
|
|
9519
|
-
return
|
|
9519
|
+
return Tt.__string_rec(r, "");
|
|
9520
9520
|
}, dt.parseFloat = function(r) {
|
|
9521
9521
|
return parseFloat(r);
|
|
9522
9522
|
};
|
|
@@ -9585,7 +9585,7 @@ var Ah = { exports: {} };
|
|
|
9585
9585
|
if (r == null) return W.TNull;
|
|
9586
9586
|
var a = r.__enum__;
|
|
9587
9587
|
if (a != null) return W.TEnum(a);
|
|
9588
|
-
var l =
|
|
9588
|
+
var l = Tt.getClass(r);
|
|
9589
9589
|
return l != null ? W.TClass(l) : W.TObject;
|
|
9590
9590
|
case "function":
|
|
9591
9591
|
return r.__name__ || r.__ename__ ? W.TObject : W.TFunction;
|
|
@@ -9687,9 +9687,9 @@ var Ah = { exports: {} };
|
|
|
9687
9687
|
break;
|
|
9688
9688
|
case me:
|
|
9689
9689
|
this.buf.b += "b";
|
|
9690
|
-
for (var
|
|
9690
|
+
for (var M = r, O = M.keys(); O.hasNext(); ) {
|
|
9691
9691
|
var C = O.next();
|
|
9692
|
-
this.serializeString(C), this.serialize(hi[C] != null ?
|
|
9692
|
+
this.serializeString(C), this.serialize(hi[C] != null ? M.getReserved(C) : M.h[C]);
|
|
9693
9693
|
}
|
|
9694
9694
|
this.buf.b += "h";
|
|
9695
9695
|
break;
|
|
@@ -9709,7 +9709,7 @@ var Ah = { exports: {} };
|
|
|
9709
9709
|
}
|
|
9710
9710
|
this.buf.b += "h";
|
|
9711
9711
|
break;
|
|
9712
|
-
case
|
|
9712
|
+
case Te:
|
|
9713
9713
|
for (var G = r, K = 0, tt = G.length - 2, et = new vt(), it = qt.BASE64; K < tt; ) {
|
|
9714
9714
|
var ht = G.get(K++), at = G.get(K++), ct = G.get(K++);
|
|
9715
9715
|
et.add(it.charAt(ht >> 2)), et.add(it.charAt((ht << 4 | at >> 4) & 63)), et.add(it.charAt((at << 2 | ct >> 6) & 63)), et.add(it.charAt(ct & 63));
|
|
@@ -9729,10 +9729,10 @@ var Ah = { exports: {} };
|
|
|
9729
9729
|
}
|
|
9730
9730
|
break;
|
|
9731
9731
|
case 4:
|
|
9732
|
-
if (
|
|
9732
|
+
if (Tt.__instanceof(r, so)) {
|
|
9733
9733
|
var It = ut.getClassName(r);
|
|
9734
9734
|
this.buf.b += "A", this.serializeString(It);
|
|
9735
|
-
} else if (
|
|
9735
|
+
} else if (Tt.__instanceof(r, io))
|
|
9736
9736
|
this.buf.b += "B", this.serializeString(ut.getEnumName(r));
|
|
9737
9737
|
else {
|
|
9738
9738
|
if (this.useCache && this.serializeRef(r)) return;
|
|
@@ -9891,8 +9891,8 @@ var Ah = { exports: {} };
|
|
|
9891
9891
|
case 119:
|
|
9892
9892
|
var P = this.unserialize(), k = this.resolver.resolveEnum(P);
|
|
9893
9893
|
if (k == null) throw new Q("Enum not found " + P);
|
|
9894
|
-
var
|
|
9895
|
-
return this.cache.push(
|
|
9894
|
+
var M = this.unserializeEnum(k, this.unserialize());
|
|
9895
|
+
return this.cache.push(M), M;
|
|
9896
9896
|
case 106:
|
|
9897
9897
|
var O = this.unserialize(), C = this.resolver.resolveEnum(O);
|
|
9898
9898
|
if (C == null) throw new Q("Enum not found " + O);
|
|
@@ -9945,7 +9945,7 @@ var Ah = { exports: {} };
|
|
|
9945
9945
|
X == null && (X = Wt.initCodes(), Wt.CODES = X);
|
|
9946
9946
|
var gt = this.pos, It = nt & 3, jt;
|
|
9947
9947
|
jt = (nt >> 2) * 3 + (It >= 2 ? It - 1 : 0);
|
|
9948
|
-
for (var Xt = gt + (nt - It), Dt =
|
|
9948
|
+
for (var Xt = gt + (nt - It), Dt = Te.alloc(jt), Kt = 0; gt < Xt; ) {
|
|
9949
9949
|
var Ae = X[ot.fastCodeAt(mt, gt++)], He = X[ot.fastCodeAt(mt, gt++)];
|
|
9950
9950
|
Dt.set(Kt++, Ae << 2 | He >> 4);
|
|
9951
9951
|
var _e = X[ot.fastCodeAt(mt, gt++)];
|
|
@@ -10050,19 +10050,19 @@ var Ah = { exports: {} };
|
|
|
10050
10050
|
},
|
|
10051
10051
|
__class__: me
|
|
10052
10052
|
};
|
|
10053
|
-
var
|
|
10053
|
+
var Te = function(r) {
|
|
10054
10054
|
this.length = r.byteLength, this.b = new ui(r), this.b.bufferValue = r, r.hxBytes = this, r.bytes = this.b;
|
|
10055
10055
|
};
|
|
10056
|
-
b["haxe.io.Bytes"] =
|
|
10057
|
-
return new
|
|
10058
|
-
},
|
|
10056
|
+
b["haxe.io.Bytes"] = Te, Te.__name__ = ["haxe", "io", "Bytes"], Te.alloc = function(r) {
|
|
10057
|
+
return new Te(new Ls(r));
|
|
10058
|
+
}, Te.prototype = {
|
|
10059
10059
|
get: function(r) {
|
|
10060
10060
|
return this.b[r];
|
|
10061
10061
|
},
|
|
10062
10062
|
set: function(r, n) {
|
|
10063
10063
|
this.b[r] = n & 255;
|
|
10064
10064
|
},
|
|
10065
|
-
__class__:
|
|
10065
|
+
__class__: Te
|
|
10066
10066
|
};
|
|
10067
10067
|
var Jt = b["haxe.io.Error"] = { __ename__: ["haxe", "io", "Error"], __constructs__: ["Blocked", "Overflow", "OutsideBounds", "Custom"] };
|
|
10068
10068
|
Jt.Blocked = ["Blocked", 0], Jt.Blocked.toString = E, Jt.Blocked.__enum__ = Jt, Jt.Overflow = ["Overflow", 1], Jt.Overflow.toString = E, Jt.Overflow.__enum__ = Jt, Jt.OutsideBounds = ["OutsideBounds", 2], Jt.OutsideBounds.toString = E, Jt.OutsideBounds.__enum__ = Jt, Jt.Custom = function(r) {
|
|
@@ -10102,18 +10102,18 @@ var Ah = { exports: {} };
|
|
|
10102
10102
|
var Q = function(r) {
|
|
10103
10103
|
Error.call(this), this.val = r, this.message = String(r), Error.captureStackTrace && Error.captureStackTrace(this, Q);
|
|
10104
10104
|
};
|
|
10105
|
-
b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype =
|
|
10105
|
+
b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype = T(Error.prototype, {
|
|
10106
10106
|
__class__: Q
|
|
10107
10107
|
});
|
|
10108
|
-
var
|
|
10108
|
+
var Tt = function() {
|
|
10109
10109
|
};
|
|
10110
|
-
b["js.Boot"] =
|
|
10110
|
+
b["js.Boot"] = Tt, Tt.__name__ = ["js", "Boot"], Tt.getClass = function(r) {
|
|
10111
10111
|
if (r instanceof Array && r.__enum__ == null) return Array;
|
|
10112
10112
|
var n = r.__class__;
|
|
10113
10113
|
if (n != null) return n;
|
|
10114
|
-
var a =
|
|
10115
|
-
return a != null ?
|
|
10116
|
-
},
|
|
10114
|
+
var a = Tt.__nativeClassName(r);
|
|
10115
|
+
return a != null ? Tt.__resolveNativeClass(a) : null;
|
|
10116
|
+
}, Tt.__string_rec = function(r, n) {
|
|
10117
10117
|
if (r == null) return "null";
|
|
10118
10118
|
if (n.length >= 5) return "<...>";
|
|
10119
10119
|
var a = typeof r;
|
|
@@ -10126,7 +10126,7 @@ var Ah = { exports: {} };
|
|
|
10126
10126
|
n += " ";
|
|
10127
10127
|
for (var u = 2, d = r.length; u < d; ) {
|
|
10128
10128
|
var p = u++;
|
|
10129
|
-
p != 2 ? l += "," +
|
|
10129
|
+
p != 2 ? l += "," + Tt.__string_rec(r[p], n) : l += Tt.__string_rec(r[p], n);
|
|
10130
10130
|
}
|
|
10131
10131
|
return l + ")";
|
|
10132
10132
|
}
|
|
@@ -10134,7 +10134,7 @@ var Ah = { exports: {} };
|
|
|
10134
10134
|
n += " ";
|
|
10135
10135
|
for (var A = 0; A < _; ) {
|
|
10136
10136
|
var I = A++;
|
|
10137
|
-
v += (I > 0 ? "," : "") +
|
|
10137
|
+
v += (I > 0 ? "," : "") + Tt.__string_rec(r[I], n);
|
|
10138
10138
|
}
|
|
10139
10139
|
return v += "]", v;
|
|
10140
10140
|
}
|
|
@@ -10148,15 +10148,15 @@ var Ah = { exports: {} };
|
|
|
10148
10148
|
var P = r.toString();
|
|
10149
10149
|
if (P != "[object Object]") return P;
|
|
10150
10150
|
}
|
|
10151
|
-
var k = null,
|
|
10151
|
+
var k = null, M = `{
|
|
10152
10152
|
`;
|
|
10153
10153
|
n += " ";
|
|
10154
10154
|
var O = r.hasOwnProperty != null;
|
|
10155
10155
|
for (var k in r)
|
|
10156
|
-
O && !r.hasOwnProperty(k) || k == "prototype" || k == "__class__" || k == "__super__" || k == "__interfaces__" || k == "__properties__" || (
|
|
10157
|
-
`),
|
|
10158
|
-
return n = n.substring(1),
|
|
10159
|
-
` + n + "}",
|
|
10156
|
+
O && !r.hasOwnProperty(k) || k == "prototype" || k == "__class__" || k == "__super__" || k == "__interfaces__" || k == "__properties__" || (M.length != 2 && (M += `,
|
|
10157
|
+
`), M += n + k + " : " + Tt.__string_rec(r[k], n));
|
|
10158
|
+
return n = n.substring(1), M += `
|
|
10159
|
+
` + n + "}", M;
|
|
10160
10160
|
case "function":
|
|
10161
10161
|
return "<function>";
|
|
10162
10162
|
case "string":
|
|
@@ -10164,17 +10164,17 @@ var Ah = { exports: {} };
|
|
|
10164
10164
|
default:
|
|
10165
10165
|
return String(r);
|
|
10166
10166
|
}
|
|
10167
|
-
},
|
|
10167
|
+
}, Tt.__interfLoop = function(r, n) {
|
|
10168
10168
|
if (r == null) return !1;
|
|
10169
10169
|
if (r == n) return !0;
|
|
10170
10170
|
var a = r.__interfaces__;
|
|
10171
10171
|
if (a != null)
|
|
10172
10172
|
for (var l = 0, u = a.length; l < u; ) {
|
|
10173
10173
|
var d = l++, p = a[d];
|
|
10174
|
-
if (p == n ||
|
|
10174
|
+
if (p == n || Tt.__interfLoop(p, n)) return !0;
|
|
10175
10175
|
}
|
|
10176
|
-
return
|
|
10177
|
-
},
|
|
10176
|
+
return Tt.__interfLoop(r.__super__, n);
|
|
10177
|
+
}, Tt.__instanceof = function(r, n) {
|
|
10178
10178
|
if (n == null) return !1;
|
|
10179
10179
|
switch (n) {
|
|
10180
10180
|
case Lh:
|
|
@@ -10192,18 +10192,18 @@ var Ah = { exports: {} };
|
|
|
10192
10192
|
default:
|
|
10193
10193
|
if (r != null) {
|
|
10194
10194
|
if (typeof n == "function") {
|
|
10195
|
-
if (r instanceof n ||
|
|
10196
|
-
} else if (typeof n == "object" &&
|
|
10195
|
+
if (r instanceof n || Tt.__interfLoop(Tt.getClass(r), n)) return !0;
|
|
10196
|
+
} else if (typeof n == "object" && Tt.__isNativeObj(n) && r instanceof n)
|
|
10197
10197
|
return !0;
|
|
10198
10198
|
} else return !1;
|
|
10199
10199
|
return n == so && r.__name__ != null || n == io && r.__ename__ != null ? !0 : r.__enum__ == n;
|
|
10200
10200
|
}
|
|
10201
|
-
},
|
|
10202
|
-
var n =
|
|
10201
|
+
}, Tt.__nativeClassName = function(r) {
|
|
10202
|
+
var n = Tt.__toStr.call(r).slice(8, -1);
|
|
10203
10203
|
return n == "Object" || n == "Function" || n == "Math" || n == "JSON" ? null : n;
|
|
10204
|
-
},
|
|
10205
|
-
return
|
|
10206
|
-
},
|
|
10204
|
+
}, Tt.__isNativeObj = function(r) {
|
|
10205
|
+
return Tt.__nativeClassName(r) != null;
|
|
10206
|
+
}, Tt.__resolveNativeClass = function(r) {
|
|
10207
10207
|
return w[r];
|
|
10208
10208
|
};
|
|
10209
10209
|
var ae = function(r) {
|
|
@@ -10301,7 +10301,7 @@ var Ah = { exports: {} };
|
|
|
10301
10301
|
l[d] = 0;
|
|
10302
10302
|
}
|
|
10303
10303
|
l.byteLength = l.length, l.byteOffset = 0, l.buffer = new ae(l);
|
|
10304
|
-
} else if (
|
|
10304
|
+
} else if (Tt.__instanceof(r, ae)) {
|
|
10305
10305
|
var p = r;
|
|
10306
10306
|
n == null && (n = 0), a == null && (a = p.byteLength - n), n == 0 ? l = p.a : l = p.a.slice(n, n + a), l.byteLength = l.length, l.byteOffset = n, l.buffer = p;
|
|
10307
10307
|
} else if (r instanceof Array && r.__enum__ == null)
|
|
@@ -10310,7 +10310,7 @@ var Ah = { exports: {} };
|
|
|
10310
10310
|
return l.subarray = sr._subarray, l.set = sr._set, l;
|
|
10311
10311
|
}, sr._set = function(r, n) {
|
|
10312
10312
|
var a = this;
|
|
10313
|
-
if (
|
|
10313
|
+
if (Tt.__instanceof(r.buffer, ae)) {
|
|
10314
10314
|
var l = r;
|
|
10315
10315
|
if (r.byteLength + n > a.byteLength) throw new Q("set() outside of range");
|
|
10316
10316
|
for (var u = 0, d = r.byteLength; u < d; ) {
|
|
@@ -10506,7 +10506,7 @@ var Ah = { exports: {} };
|
|
|
10506
10506
|
var gn = f.promhx.Deferred = function() {
|
|
10507
10507
|
Et.call(this);
|
|
10508
10508
|
};
|
|
10509
|
-
b["promhx.Deferred"] = gn, gn.__name__ = ["promhx", "Deferred"], gn.__super__ = Et, gn.prototype =
|
|
10509
|
+
b["promhx.Deferred"] = gn, gn.__name__ = ["promhx", "Deferred"], gn.__super__ = Et, gn.prototype = T(Et.prototype, {
|
|
10510
10510
|
resolve: function(r) {
|
|
10511
10511
|
this.handleResolve(r);
|
|
10512
10512
|
},
|
|
@@ -10520,7 +10520,7 @@ var Ah = { exports: {} };
|
|
|
10520
10520
|
return new Ht(this);
|
|
10521
10521
|
},
|
|
10522
10522
|
publicStream: function() {
|
|
10523
|
-
return new
|
|
10523
|
+
return new Tr(this);
|
|
10524
10524
|
},
|
|
10525
10525
|
__class__: gn
|
|
10526
10526
|
});
|
|
@@ -10533,7 +10533,7 @@ var Ah = { exports: {} };
|
|
|
10533
10533
|
}, pe.promise = function(r) {
|
|
10534
10534
|
var n = new pe();
|
|
10535
10535
|
return n.handleResolve(r), n;
|
|
10536
|
-
}, pe.__super__ = Et, pe.prototype =
|
|
10536
|
+
}, pe.__super__ = Et, pe.prototype = T(Et.prototype, {
|
|
10537
10537
|
isRejected: function() {
|
|
10538
10538
|
return this._rejected;
|
|
10539
10539
|
},
|
|
@@ -10607,7 +10607,7 @@ var Ah = { exports: {} };
|
|
|
10607
10607
|
}, Ht.stream = function(r) {
|
|
10608
10608
|
var n = new Ht(null);
|
|
10609
10609
|
return n.handleResolve(r), n;
|
|
10610
|
-
}, Ht.__super__ = Et, Ht.prototype =
|
|
10610
|
+
}, Ht.__super__ = Et, Ht.prototype = T(Et.prototype, {
|
|
10611
10611
|
then: function(r) {
|
|
10612
10612
|
var n = new Ht(null);
|
|
10613
10613
|
return Et.link(this, n, r), this._end_promise._update.push({
|
|
@@ -10702,13 +10702,13 @@ var Ah = { exports: {} };
|
|
|
10702
10702
|
},
|
|
10703
10703
|
__class__: Ht
|
|
10704
10704
|
});
|
|
10705
|
-
var
|
|
10705
|
+
var Tr = f.promhx.PublicStream = function(r) {
|
|
10706
10706
|
Ht.call(this, r);
|
|
10707
10707
|
};
|
|
10708
|
-
b["promhx.PublicStream"] =
|
|
10709
|
-
var n = new
|
|
10708
|
+
b["promhx.PublicStream"] = Tr, Tr.__name__ = ["promhx", "PublicStream"], Tr.publicstream = function(r) {
|
|
10709
|
+
var n = new Tr(null);
|
|
10710
10710
|
return n.handleResolve(r), n;
|
|
10711
|
-
},
|
|
10711
|
+
}, Tr.__super__ = Ht, Tr.prototype = T(Ht.prototype, {
|
|
10712
10712
|
resolve: function(r) {
|
|
10713
10713
|
this.handleResolve(r);
|
|
10714
10714
|
},
|
|
@@ -10718,7 +10718,7 @@ var Ah = { exports: {} };
|
|
|
10718
10718
|
update: function(r) {
|
|
10719
10719
|
this.handleResolve(r);
|
|
10720
10720
|
},
|
|
10721
|
-
__class__:
|
|
10721
|
+
__class__: Tr
|
|
10722
10722
|
});
|
|
10723
10723
|
var St = function() {
|
|
10724
10724
|
};
|
|
@@ -10825,18 +10825,18 @@ var Ah = { exports: {} };
|
|
|
10825
10825
|
}, Ft.memoize = function(r, n, a) {
|
|
10826
10826
|
Ft.memo.h.hasOwnProperty(r) || Ft.memo.set(r, new bt()), Ft.memo.h[r].h[n] = a;
|
|
10827
10827
|
};
|
|
10828
|
-
var
|
|
10828
|
+
var Me = f.core.BoundingBox = function(r) {
|
|
10829
10829
|
this.max = null, this.min = null, this.dim = 3, this.initialized = !1, r != null && this.addRange(r);
|
|
10830
10830
|
};
|
|
10831
|
-
b["verb.core.BoundingBox"] =
|
|
10831
|
+
b["verb.core.BoundingBox"] = Me, Me.__name__ = ["verb", "core", "BoundingBox"], Me.intervalsOverlap = function(r, n, a, l, u) {
|
|
10832
10832
|
u == null && (u = -1);
|
|
10833
10833
|
var d;
|
|
10834
10834
|
u < -0.5 ? d = rt.TOLERANCE : d = u;
|
|
10835
10835
|
var p = Math.min(r, n) - d, _ = Math.max(r, n) + d, v = Math.min(a, l) - d, A = Math.max(a, l) + d;
|
|
10836
10836
|
return p >= v && p <= A || _ >= v && _ <= A || v >= p && v <= _ || A >= p && A <= _;
|
|
10837
|
-
},
|
|
10837
|
+
}, Me.prototype = {
|
|
10838
10838
|
fromPoint: function(r) {
|
|
10839
|
-
return new
|
|
10839
|
+
return new Me([r]);
|
|
10840
10840
|
},
|
|
10841
10841
|
add: function(r) {
|
|
10842
10842
|
if (!this.initialized)
|
|
@@ -10855,13 +10855,13 @@ var Ah = { exports: {} };
|
|
|
10855
10855
|
return this;
|
|
10856
10856
|
},
|
|
10857
10857
|
contains: function(r, n) {
|
|
10858
|
-
return n == null && (n = -1), this.initialized ? this.intersects(new
|
|
10858
|
+
return n == null && (n = -1), this.initialized ? this.intersects(new Me([r]), n) : !1;
|
|
10859
10859
|
},
|
|
10860
10860
|
intersects: function(r, n) {
|
|
10861
10861
|
if (n == null && (n = -1), !this.initialized || !r.initialized) return !1;
|
|
10862
10862
|
for (var a = this.min, l = this.max, u = r.min, d = r.max, p = 0, _ = this.dim; p < _; ) {
|
|
10863
10863
|
var v = p++;
|
|
10864
|
-
if (!
|
|
10864
|
+
if (!Me.intervalsOverlap(a[v], l[v], u[v], d[v], n)) return !1;
|
|
10865
10865
|
}
|
|
10866
10866
|
return !0;
|
|
10867
10867
|
},
|
|
@@ -10886,9 +10886,9 @@ var Ah = { exports: {} };
|
|
|
10886
10886
|
var I = v++;
|
|
10887
10887
|
p.push(Math.min(l[I], d[I])), _.push(Math.max(a[I], u[I]));
|
|
10888
10888
|
}
|
|
10889
|
-
return new
|
|
10889
|
+
return new Me([_, p]);
|
|
10890
10890
|
},
|
|
10891
|
-
__class__:
|
|
10891
|
+
__class__: Me
|
|
10892
10892
|
};
|
|
10893
10893
|
var rt = f.core.Constants = function() {
|
|
10894
10894
|
};
|
|
@@ -10905,25 +10905,25 @@ var Ah = { exports: {} };
|
|
|
10905
10905
|
var Dn = f.core.Plane = function(r, n) {
|
|
10906
10906
|
this.origin = r, this.normal = n;
|
|
10907
10907
|
};
|
|
10908
|
-
b["verb.core.Plane"] = Dn, Dn.__name__ = ["verb", "core", "Plane"], Dn.__super__ = $t, Dn.prototype =
|
|
10908
|
+
b["verb.core.Plane"] = Dn, Dn.__name__ = ["verb", "core", "Plane"], Dn.__super__ = $t, Dn.prototype = T($t.prototype, {
|
|
10909
10909
|
__class__: Dn
|
|
10910
10910
|
});
|
|
10911
10911
|
var _n = f.core.Ray = function(r, n) {
|
|
10912
10912
|
this.origin = r, this.dir = n;
|
|
10913
10913
|
};
|
|
10914
|
-
b["verb.core.Ray"] = _n, _n.__name__ = ["verb", "core", "Ray"], _n.__super__ = $t, _n.prototype =
|
|
10914
|
+
b["verb.core.Ray"] = _n, _n.__name__ = ["verb", "core", "Ray"], _n.__super__ = $t, _n.prototype = T($t.prototype, {
|
|
10915
10915
|
__class__: _n
|
|
10916
10916
|
});
|
|
10917
10917
|
var Gt = f.core.NurbsCurveData = function(r, n, a) {
|
|
10918
10918
|
this.degree = r, this.controlPoints = a, this.knots = n;
|
|
10919
10919
|
};
|
|
10920
|
-
b["verb.core.NurbsCurveData"] = Gt, Gt.__name__ = ["verb", "core", "NurbsCurveData"], Gt.__super__ = $t, Gt.prototype =
|
|
10920
|
+
b["verb.core.NurbsCurveData"] = Gt, Gt.__name__ = ["verb", "core", "NurbsCurveData"], Gt.__super__ = $t, Gt.prototype = T($t.prototype, {
|
|
10921
10921
|
__class__: Gt
|
|
10922
10922
|
});
|
|
10923
10923
|
var te = f.core.NurbsSurfaceData = function(r, n, a, l, u) {
|
|
10924
10924
|
this.degreeU = r, this.degreeV = n, this.knotsU = a, this.knotsV = l, this.controlPoints = u;
|
|
10925
10925
|
};
|
|
10926
|
-
b["verb.core.NurbsSurfaceData"] = te, te.__name__ = ["verb", "core", "NurbsSurfaceData"], te.__super__ = $t, te.prototype =
|
|
10926
|
+
b["verb.core.NurbsSurfaceData"] = te, te.__name__ = ["verb", "core", "NurbsSurfaceData"], te.__super__ = $t, te.prototype = T($t.prototype, {
|
|
10927
10927
|
__class__: te
|
|
10928
10928
|
});
|
|
10929
10929
|
var qe = f.core.MeshData = function(r, n, a, l) {
|
|
@@ -10931,19 +10931,19 @@ var Ah = { exports: {} };
|
|
|
10931
10931
|
};
|
|
10932
10932
|
b["verb.core.MeshData"] = qe, qe.__name__ = ["verb", "core", "MeshData"], qe.empty = function() {
|
|
10933
10933
|
return new qe([], [], [], []);
|
|
10934
|
-
}, qe.__super__ = $t, qe.prototype =
|
|
10934
|
+
}, qe.__super__ = $t, qe.prototype = T($t.prototype, {
|
|
10935
10935
|
__class__: qe
|
|
10936
10936
|
});
|
|
10937
10937
|
var Un = f.core.PolylineData = function(r, n) {
|
|
10938
10938
|
this.points = r, this.params = n;
|
|
10939
10939
|
};
|
|
10940
|
-
b["verb.core.PolylineData"] = Un, Un.__name__ = ["verb", "core", "PolylineData"], Un.__super__ = $t, Un.prototype =
|
|
10940
|
+
b["verb.core.PolylineData"] = Un, Un.__name__ = ["verb", "core", "PolylineData"], Un.__super__ = $t, Un.prototype = T($t.prototype, {
|
|
10941
10941
|
__class__: Un
|
|
10942
10942
|
});
|
|
10943
10943
|
var Vn = f.core.VolumeData = function(r, n, a, l, u, d, p) {
|
|
10944
10944
|
this.degreeU = r, this.degreeV = n, this.degreeW = a, this.knotsU = l, this.knotsV = u, this.knotsW = d, this.controlPoints = p;
|
|
10945
10945
|
};
|
|
10946
|
-
b["verb.core.VolumeData"] = Vn, Vn.__name__ = ["verb", "core", "VolumeData"], Vn.__super__ = $t, Vn.prototype =
|
|
10946
|
+
b["verb.core.VolumeData"] = Vn, Vn.__name__ = ["verb", "core", "VolumeData"], Vn.__super__ = $t, Vn.prototype = T($t.prototype, {
|
|
10947
10947
|
__class__: Vn
|
|
10948
10948
|
});
|
|
10949
10949
|
var ee = f.core.Pair = function(r, n) {
|
|
@@ -10970,11 +10970,11 @@ var Ah = { exports: {} };
|
|
|
10970
10970
|
b["verb.core.CurveSurfaceIntersection"] = Gn, Gn.__name__ = ["verb", "core", "CurveSurfaceIntersection"], Gn.prototype = {
|
|
10971
10971
|
__class__: Gn
|
|
10972
10972
|
};
|
|
10973
|
-
var
|
|
10973
|
+
var Mr = f.core.MeshIntersectionPoint = function(r, n, a, l, u) {
|
|
10974
10974
|
this.visited = !1, this.adj = null, this.opp = null, this.uv0 = r, this.uv1 = n, this.point = a, this.faceIndex0, this.faceIndex1;
|
|
10975
10975
|
};
|
|
10976
|
-
b["verb.core.MeshIntersectionPoint"] =
|
|
10977
|
-
__class__:
|
|
10976
|
+
b["verb.core.MeshIntersectionPoint"] = Mr, Mr.__name__ = ["verb", "core", "MeshIntersectionPoint"], Mr.prototype = {
|
|
10977
|
+
__class__: Mr
|
|
10978
10978
|
};
|
|
10979
10979
|
var jn = f.core.PolylineMeshIntersection = function(r, n, a, l, u) {
|
|
10980
10980
|
this.point = r, this.u = n, this.uv = a, this.polylineIndex = l, this.faceIndex = u;
|
|
@@ -11030,7 +11030,7 @@ var Ah = { exports: {} };
|
|
|
11030
11030
|
return -S.item1;
|
|
11031
11031
|
}), d, p = null;
|
|
11032
11032
|
p = function(S) {
|
|
11033
|
-
for (var P, k = S.dimension,
|
|
11033
|
+
for (var P, k = S.dimension, M = l.distanceFunction(r, S.kdPoint.point), O, C = [], F = 0, R = l.dim; F < R; )
|
|
11034
11034
|
F++, C.push(0);
|
|
11035
11035
|
O = C;
|
|
11036
11036
|
for (var U, V, q = function(K, tt) {
|
|
@@ -11040,10 +11040,10 @@ var Ah = { exports: {} };
|
|
|
11040
11040
|
G == S.dimension ? O[G] = r[G] : O[G] = S.kdPoint.point[G];
|
|
11041
11041
|
}
|
|
11042
11042
|
if (U = l.distanceFunction(O, S.kdPoint.point), S.right == null && S.left == null) {
|
|
11043
|
-
(u.size() < n ||
|
|
11043
|
+
(u.size() < n || M < u.peek().item1) && q(S, M);
|
|
11044
11044
|
return;
|
|
11045
11045
|
}
|
|
11046
|
-
S.right == null ? P = S.left : S.left == null ? P = S.right : r[k] < S.kdPoint.point[k] ? P = S.left : P = S.right, p(P), (u.size() < n ||
|
|
11046
|
+
S.right == null ? P = S.left : S.left == null ? P = S.right : r[k] < S.kdPoint.point[k] ? P = S.left : P = S.right, p(P), (u.size() < n || M < u.peek().item1) && q(S, M), (u.size() < n || Math.abs(U) < u.peek().item1) && (P == S.left ? V = S.right : V = S.left, V != null && p(V));
|
|
11047
11047
|
}, d = p;
|
|
11048
11048
|
for (var _ = 0; _ < n; )
|
|
11049
11049
|
_++, u.push(new ee(null, a));
|
|
@@ -11136,7 +11136,7 @@ var Ah = { exports: {} };
|
|
|
11136
11136
|
return new ee(new ir(l[0], this._knotTol), new ir(l[1], this._knotTol));
|
|
11137
11137
|
},
|
|
11138
11138
|
boundingBox: function() {
|
|
11139
|
-
return this._boundingBox == null && (this._boundingBox = new
|
|
11139
|
+
return this._boundingBox == null && (this._boundingBox = new Me(N.dehomogenize1d(this._curve.controlPoints))), this._boundingBox;
|
|
11140
11140
|
},
|
|
11141
11141
|
yield: function() {
|
|
11142
11142
|
return this._curve;
|
|
@@ -11187,7 +11187,7 @@ var Ah = { exports: {} };
|
|
|
11187
11187
|
return new ee(new or(this._polyline, l), new or(this._polyline, u));
|
|
11188
11188
|
},
|
|
11189
11189
|
boundingBox: function() {
|
|
11190
|
-
return this._boundingBox == null && (this._boundingBox = new
|
|
11190
|
+
return this._boundingBox == null && (this._boundingBox = new Me(this._polyline.points)), this._boundingBox;
|
|
11191
11191
|
},
|
|
11192
11192
|
yield: function() {
|
|
11193
11193
|
return this._interval.min;
|
|
@@ -11212,7 +11212,7 @@ var Ah = { exports: {} };
|
|
|
11212
11212
|
},
|
|
11213
11213
|
boundingBox: function() {
|
|
11214
11214
|
if (this._boundingBox == null) {
|
|
11215
|
-
this._boundingBox = new
|
|
11215
|
+
this._boundingBox = new Me();
|
|
11216
11216
|
for (var r = 0, n = this._surface.controlPoints; r < n.length; ) {
|
|
11217
11217
|
var a = n[r];
|
|
11218
11218
|
++r, this._boundingBox.addRange(N.dehomogenize1d(a));
|
|
@@ -11317,13 +11317,13 @@ var Ah = { exports: {} };
|
|
|
11317
11317
|
I.push(r[k].slice());
|
|
11318
11318
|
}
|
|
11319
11319
|
r = I;
|
|
11320
|
-
var
|
|
11321
|
-
for (l = 0; l <
|
|
11322
|
-
for (_ = l, p = r[l], A = Math.abs(p[l]), a = l + 1; a <
|
|
11320
|
+
var M = r.length, O = M - 1, C = [];
|
|
11321
|
+
for (l = 0; l < M; ) {
|
|
11322
|
+
for (_ = l, p = r[l], A = Math.abs(p[l]), a = l + 1; a < M; )
|
|
11323
11323
|
u = Math.abs(r[a][l]), A < u && (A = u, _ = a), ++a;
|
|
11324
|
-
for (C[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n <
|
|
11324
|
+
for (C[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n < M; )
|
|
11325
11325
|
r[n][l] /= d, ++n;
|
|
11326
|
-
for (n = l + 1; n <
|
|
11326
|
+
for (n = l + 1; n < M; ) {
|
|
11327
11327
|
for (v = r[n], a = l + 1; a < O; )
|
|
11328
11328
|
v[a] -= v[l] * p[a], ++a, v[a] -= v[l] * p[a], ++a;
|
|
11329
11329
|
a == O && (v[a] -= v[l] * p[a]), ++n;
|
|
@@ -11344,7 +11344,7 @@ var Ah = { exports: {} };
|
|
|
11344
11344
|
var a = r[n[0]], l = r[n[1]], u = r[n[2]], d = m.sub(l, a), p = m.sub(u, a), _ = m.cross(d, p);
|
|
11345
11345
|
return m.mul(1 / m.norm(_), _);
|
|
11346
11346
|
}, re.makeMeshAabb = function(r, n) {
|
|
11347
|
-
for (var a = new
|
|
11347
|
+
for (var a = new Me(), l = 0; l < n.length; ) {
|
|
11348
11348
|
var u = n[l];
|
|
11349
11349
|
++l, a.add(r.points[r.faces[u][0]]), a.add(r.points[r.faces[u][1]]), a.add(r.points[r.faces[u][2]]);
|
|
11350
11350
|
}
|
|
@@ -11357,8 +11357,8 @@ var Ah = { exports: {} };
|
|
|
11357
11357
|
u.push(new ee(_, p));
|
|
11358
11358
|
}
|
|
11359
11359
|
u.sort(function(P, k) {
|
|
11360
|
-
var
|
|
11361
|
-
return
|
|
11360
|
+
var M = P.item0, O = k.item0;
|
|
11361
|
+
return M == O ? 0 : M > O ? 1 : -1;
|
|
11362
11362
|
});
|
|
11363
11363
|
for (var v = [], A = 0, I = u.length; A < I; ) {
|
|
11364
11364
|
var S = A++;
|
|
@@ -11383,8 +11383,8 @@ var Ah = { exports: {} };
|
|
|
11383
11383
|
}
|
|
11384
11384
|
return a;
|
|
11385
11385
|
}, re.triangleUVFromPoint = function(r, n, a) {
|
|
11386
|
-
var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], A = r.uvs[l[2]], I = m.sub(u, a), S = m.sub(d, a), P = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))),
|
|
11387
|
-
return m.add(m.mul(
|
|
11386
|
+
var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], A = r.uvs[l[2]], I = m.sub(u, a), S = m.sub(d, a), P = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), M = m.norm(m.cross(S, P)) / k, O = m.norm(m.cross(P, I)) / k, C = m.norm(m.cross(I, S)) / k;
|
|
11387
|
+
return m.add(m.mul(M, _), m.add(m.mul(O, v), m.mul(C, A)));
|
|
11388
11388
|
};
|
|
11389
11389
|
var Cr = function(r, n) {
|
|
11390
11390
|
if (this._empty = !1, this._face = -1, n == null) {
|
|
@@ -11431,7 +11431,7 @@ var Ah = { exports: {} };
|
|
|
11431
11431
|
var d = n.length, p = r(n), _ = p, v;
|
|
11432
11432
|
if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
|
|
11433
11433
|
a = Math.max(a, rt.EPSILON);
|
|
11434
|
-
var A, I, S, P = Lt.identity(d), k = 0,
|
|
11434
|
+
var A, I, S, P = Lt.identity(d), k = 0, M = [], O, C, F, R, U, V, q = "";
|
|
11435
11435
|
for (I = l(n); k < u; ) {
|
|
11436
11436
|
if (!m.all(m.finite(I))) {
|
|
11437
11437
|
q = "Gradient has Infinity or NaN";
|
|
@@ -11446,7 +11446,7 @@ var Ah = { exports: {} };
|
|
|
11446
11446
|
break;
|
|
11447
11447
|
}
|
|
11448
11448
|
for (U = 1, v = m.dot(I, A), O = n; k < u && !(U * V < a); ) {
|
|
11449
|
-
if (
|
|
11449
|
+
if (M = m.mul(U, A), O = m.add(n, M), _ = r(O), _ - p >= 0.1 * U * v || isNaN(_)) {
|
|
11450
11450
|
U *= 0.5, ++k;
|
|
11451
11451
|
continue;
|
|
11452
11452
|
}
|
|
@@ -11460,20 +11460,20 @@ var Ah = { exports: {} };
|
|
|
11460
11460
|
q = "maxit reached during line search";
|
|
11461
11461
|
break;
|
|
11462
11462
|
}
|
|
11463
|
-
S = l(O), C = m.sub(S, I), R = m.dot(C,
|
|
11463
|
+
S = l(O), C = m.sub(S, I), R = m.dot(C, M), F = Lt.dot(P, C), P = Lt.sub(Lt.add(P, Lt.mul((R + m.dot(C, F)) / (R * R), Xe.tensor(M, M))), Lt.div(Lt.add(Xe.tensor(F, M), Xe.tensor(M, F)), R)), n = O, p = _, I = S, ++k;
|
|
11464
11464
|
}
|
|
11465
11465
|
return new Kn(n, p, I, P, k, q);
|
|
11466
11466
|
}, Xe.numericalGradient = function(r, n) {
|
|
11467
11467
|
var a = n.length, l = r(n);
|
|
11468
11468
|
if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
|
|
11469
|
-
for (var u = n.slice(0), d, p, _ = [], v, A = 1e-3, I, S, P, k = 0,
|
|
11469
|
+
for (var u = n.slice(0), d, p, _ = [], v, A = 1e-3, I, S, P, k = 0, M, O, C, F = 0; F < a; )
|
|
11470
11470
|
for (var R = F++, U = Math.max(1e-6 * l, 1e-8); ; ) {
|
|
11471
11471
|
if (++k, k > 20) throw new Q("Numerical gradient fails");
|
|
11472
11472
|
if (u[R] = n[R] + U, d = r(u), u[R] = n[R] - U, p = r(u), u[R] = n[R], isNaN(d) || isNaN(p)) {
|
|
11473
11473
|
U /= 16;
|
|
11474
11474
|
continue;
|
|
11475
11475
|
}
|
|
11476
|
-
if (_[R] = (d - p) / (2 * U), I = n[R] - U, S = n[R], P = n[R] + U,
|
|
11476
|
+
if (_[R] = (d - p) / (2 * U), I = n[R] - U, S = n[R], P = n[R] + U, M = (d - l) / U, O = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(S), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(M - _[R]), Math.abs(O - _[R]), Math.abs(M - O)]) / C, U / C), v > A) U /= 16;
|
|
11477
11477
|
else break;
|
|
11478
11478
|
}
|
|
11479
11479
|
return _;
|
|
@@ -11742,9 +11742,9 @@ var Ah = { exports: {} };
|
|
|
11742
11742
|
var a = yt.rationalSurfaceClosestParam(r, n);
|
|
11743
11743
|
return N.rationalSurfacePoint(r, a[0], a[1]);
|
|
11744
11744
|
}, yt.rationalSurfaceClosestParam = function(r, n) {
|
|
11745
|
-
for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], A = $.last(r.knotsU), I = r.knotsV[0], S = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1),
|
|
11745
|
+
for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], A = $.last(r.knotsU), I = r.knotsV[0], S = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), M, O = zt.rationalSurfaceAdaptive(r, new Lr()), C = 1 / 0, F = 0, R = O.points.length; F < R; ) {
|
|
11746
11746
|
var U = F++, V = O.points[U], q = m.normSquared(m.sub(n, V));
|
|
11747
|
-
q < C && (C = q,
|
|
11747
|
+
q < C && (C = q, M = O.uvs[U]);
|
|
11748
11748
|
}
|
|
11749
11749
|
for (var J = function(jt) {
|
|
11750
11750
|
return N.rationalSurfaceDerivatives(r, jt[0], jt[1], 2);
|
|
@@ -11752,16 +11752,16 @@ var Ah = { exports: {} };
|
|
|
11752
11752
|
var Kt = Xt[1][0], Ae = Xt[0][1], He = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Se = Xt[1][1], Le = m.dot(Kt, Dt), $e = m.dot(Ae, Dt), lr = [-Le, -$e], Ze = m.dot(Kt, Kt) + m.dot(He, Dt), Qe = m.dot(Kt, Ae) + m.dot(ge, Dt), Je = m.dot(Kt, Ae) + m.dot(Se, Dt), dr = m.dot(Ae, Ae) + m.dot(_e, Dt), Pn = [[Ze, Qe], [Je, dr]], qr = Lt.solve(Pn, lr);
|
|
11753
11753
|
return m.add(qr, jt);
|
|
11754
11754
|
}; l < a; ) {
|
|
11755
|
-
u = J(
|
|
11755
|
+
u = J(M), _ = m.sub(u[0][0], n);
|
|
11756
11756
|
var G = m.norm(_), K = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * G, et = m.dot(u[0][1], _), it = m.norm(u[0][1]) * G, ht = K / tt, at = et / it, ct = G < d, nt = ht < p, mt = at < p;
|
|
11757
|
-
if (ct && nt && mt) return
|
|
11758
|
-
var X = H(
|
|
11757
|
+
if (ct && nt && mt) return M;
|
|
11758
|
+
var X = H(M, u, _);
|
|
11759
11759
|
X[0] < v ? P ? X = [A - (X[0] - v), X[1]] : X = [v + rt.EPSILON, X[1]] : X[0] > A && (P ? X = [v + (X[0] - A), X[1]] : X = [A - rt.EPSILON, X[1]]), X[1] < I ? k ? X = [X[0], S - (X[1] - I)] : X = [X[0], I + rt.EPSILON] : X[1] > S && (k ? X = [X[0], I + (X[0] - S)] : X = [X[0], S - rt.EPSILON]);
|
|
11760
|
-
var gt = m.norm(m.mul(X[0] -
|
|
11761
|
-
if (gt + It < d) return
|
|
11762
|
-
|
|
11760
|
+
var gt = m.norm(m.mul(X[0] - M[0], u[1][0])), It = m.norm(m.mul(X[1] - M[1], u[0][1]));
|
|
11761
|
+
if (gt + It < d) return M;
|
|
11762
|
+
M = X, l++;
|
|
11763
11763
|
}
|
|
11764
|
-
return
|
|
11764
|
+
return M;
|
|
11765
11765
|
}, yt.rationalCurveClosestPoint = function(r, n) {
|
|
11766
11766
|
return N.rationalCurvePoint(r, yt.rationalCurveClosestParam(r, n));
|
|
11767
11767
|
}, yt.rationalCurveClosestParam = function(r, n) {
|
|
@@ -11769,12 +11769,12 @@ var Ah = { exports: {} };
|
|
|
11769
11769
|
var _ = d++, v = u[_][0], A = u[_ + 1][0], I = u[_].slice(1), S = u[_ + 1].slice(1), P = Ne.segmentClosestPoint(n, I, S, v, A), k = m.norm(m.sub(n, P.pt));
|
|
11770
11770
|
k < a && (a = k, l = P.u);
|
|
11771
11771
|
}
|
|
11772
|
-
for (var
|
|
11772
|
+
for (var M = 5, O = 0, C, F = 1e-4, R = 5e-4, U, V = r.knots[0], q = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
|
|
11773
11773
|
return N.rationalCurveDerivatives(r, X, 2);
|
|
11774
11774
|
}, K = function(X, gt, It) {
|
|
11775
11775
|
var jt = m.dot(gt[1], It), Xt = m.dot(gt[2], It), Dt = m.dot(gt[1], gt[1]), Kt = Xt + Dt;
|
|
11776
11776
|
return X - jt / Kt;
|
|
11777
|
-
}; O <
|
|
11777
|
+
}; O < M; ) {
|
|
11778
11778
|
C = G(H), U = m.sub(C[0], n);
|
|
11779
11779
|
var tt = m.norm(U), et = m.dot(C[1], U), it = m.norm(C[1]) * tt, ht = et / it, at = tt < F, ct = Math.abs(ht) < R;
|
|
11780
11780
|
if (at && ct) return H;
|
|
@@ -11882,9 +11882,9 @@ var Ah = { exports: {} };
|
|
|
11882
11882
|
for (var p, _ = [], v = 0, A = u + 1; v < A; )
|
|
11883
11883
|
v++, _.push(n);
|
|
11884
11884
|
p = _;
|
|
11885
|
-
for (var I = [], S = [], P = N.knotSpan(u, n, l), k = null,
|
|
11886
|
-
var O = d[
|
|
11887
|
-
++
|
|
11885
|
+
for (var I = [], S = [], P = N.knotSpan(u, n, l), k = null, M = 0; M < d.length; ) {
|
|
11886
|
+
var O = d[M];
|
|
11887
|
+
++M, k = ft.curveKnotRefine(new Gt(u, l, O), p), I.push(k.controlPoints.slice(0, P + 1)), S.push(k.controlPoints.slice(P + 1));
|
|
11888
11888
|
}
|
|
11889
11889
|
var C = k.knots.slice(0, P + u + 2), F = k.knots.slice(P + 1);
|
|
11890
11890
|
return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, I), new te(r.degreeU, u, r.knotsU.slice(), F, S)] : (I = Lt.transpose(I), S = Lt.transpose(S), [new te(u, r.degreeV, C, r.knotsV.slice(), I), new te(u, r.degreeV, F, r.knotsV.slice(), S)]);
|
|
@@ -11931,16 +11931,16 @@ var Ah = { exports: {} };
|
|
|
11931
11931
|
var S = A++;
|
|
11932
11932
|
_.push([]);
|
|
11933
11933
|
for (var P = 0, k = l - S + 1; P < k; ) {
|
|
11934
|
-
for (var
|
|
11934
|
+
for (var M = P++, O = d[S][M], C = 1, F = M + 1; C < F; ) {
|
|
11935
11935
|
var R = C++;
|
|
11936
|
-
m.subMulMutate(O, Ft.get(
|
|
11936
|
+
m.subMulMutate(O, Ft.get(M, R) * p[0][R], _[S][M - R]);
|
|
11937
11937
|
}
|
|
11938
11938
|
for (var U = 1, V = S + 1; U < V; ) {
|
|
11939
11939
|
var q = U++;
|
|
11940
|
-
m.subMulMutate(O, Ft.get(S, q) * p[q][0], _[S - q][
|
|
11941
|
-
for (var J = m.zeros1d(v), H = 1, G =
|
|
11940
|
+
m.subMulMutate(O, Ft.get(S, q) * p[q][0], _[S - q][M]);
|
|
11941
|
+
for (var J = m.zeros1d(v), H = 1, G = M + 1; H < G; ) {
|
|
11942
11942
|
var K = H++;
|
|
11943
|
-
m.addMulMutate(J, Ft.get(
|
|
11943
|
+
m.addMulMutate(J, Ft.get(M, K) * p[q][K], _[S - q][M - K]);
|
|
11944
11944
|
}
|
|
11945
11945
|
m.subMulMutate(O, Ft.get(S, q), J);
|
|
11946
11946
|
}
|
|
@@ -11972,7 +11972,7 @@ var Ah = { exports: {} };
|
|
|
11972
11972
|
d < p ? P = d : P = p;
|
|
11973
11973
|
var k;
|
|
11974
11974
|
d < _ ? k = d : k = _;
|
|
11975
|
-
for (var
|
|
11975
|
+
for (var M = m.zeros3d(d + 1, d + 1, S), O = N.knotSpanGivenN(r, p, l, A), C = N.knotSpanGivenN(n, _, u, I), F = N.derivativeBasisFunctionsGivenNI(O, l, p, r, A), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), U = m.zeros2d(_ + 1, S), V = 0, q = 0, J = P + 1; q < J; ) {
|
|
11976
11976
|
for (var H = q++, G = 0, K = _ + 1; G < K; ) {
|
|
11977
11977
|
var tt = G++;
|
|
11978
11978
|
U[tt] = m.zeros1d(S);
|
|
@@ -11985,36 +11985,36 @@ var Ah = { exports: {} };
|
|
|
11985
11985
|
at < k ? V = at : V = k;
|
|
11986
11986
|
for (var ct = 0, nt = V + 1; ct < nt; ) {
|
|
11987
11987
|
var mt = ct++;
|
|
11988
|
-
|
|
11988
|
+
M[H][mt] = m.zeros1d(S);
|
|
11989
11989
|
for (var X = 0, gt = _ + 1; X < gt; ) {
|
|
11990
11990
|
var It = X++;
|
|
11991
|
-
m.addMulMutate(
|
|
11991
|
+
m.addMulMutate(M[H][mt], R[mt][It], U[It]);
|
|
11992
11992
|
}
|
|
11993
11993
|
}
|
|
11994
11994
|
}
|
|
11995
|
-
return
|
|
11995
|
+
return M;
|
|
11996
11996
|
}, N.surfacePoint = function(r, n, a) {
|
|
11997
11997
|
var l = r.knotsU.length - r.degreeU - 2, u = r.knotsV.length - r.degreeV - 2;
|
|
11998
11998
|
return N.surfacePointGivenNM(l, u, r, n, a);
|
|
11999
11999
|
}, N.surfacePointGivenNM = function(r, n, a, l, u) {
|
|
12000
12000
|
var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, A = a.knotsV;
|
|
12001
12001
|
if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, A.length)) throw new Q("Invalid relations between control points, knot vector, and n");
|
|
12002
|
-
for (var I = _[0][0].length, S = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, A), k = N.basisFunctionsGivenKnotSpanIndex(S, l, d, v),
|
|
12002
|
+
for (var I = _[0][0].length, S = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, A), k = N.basisFunctionsGivenKnotSpanIndex(S, l, d, v), M = N.basisFunctionsGivenKnotSpanIndex(P, u, p, A), O = S - d, C = P, F = m.zeros1d(I), R = m.zeros1d(I), U = 0, V = p + 1; U < V; ) {
|
|
12003
12003
|
var q = U++;
|
|
12004
12004
|
R = m.zeros1d(I), C = P - p + q;
|
|
12005
12005
|
for (var J = 0, H = d + 1; J < H; ) {
|
|
12006
12006
|
var G = J++;
|
|
12007
12007
|
m.addMulMutate(R, k[G], _[O + G][C]);
|
|
12008
12008
|
}
|
|
12009
|
-
m.addMulMutate(F,
|
|
12009
|
+
m.addMulMutate(F, M[q], R);
|
|
12010
12010
|
}
|
|
12011
12011
|
return F;
|
|
12012
12012
|
}, N.curveRegularSamplePoints = function(r, n) {
|
|
12013
|
-
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0,
|
|
12013
|
+
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, M = n + 1; k < M; )
|
|
12014
12014
|
k++, P.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, I]), m.addAllMutate([_, v]);
|
|
12015
12015
|
return P;
|
|
12016
12016
|
}, N.curveRegularSamplePoints2 = function(r, n) {
|
|
12017
|
-
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0,
|
|
12017
|
+
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, M = n + 1; k < M; )
|
|
12018
12018
|
k++, P.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, I]), m.addAllMutate([_, v]);
|
|
12019
12019
|
return P;
|
|
12020
12020
|
}, N.rationalSurfaceRegularSampleDerivatives = function(r, n, a, l) {
|
|
@@ -12022,7 +12022,7 @@ var Ah = { exports: {} };
|
|
|
12022
12022
|
var I = A++, S = [];
|
|
12023
12023
|
d.push(S);
|
|
12024
12024
|
for (var P = 0; P < _; ) {
|
|
12025
|
-
for (var k = P++,
|
|
12025
|
+
for (var k = P++, M = u[I][k], O = N.rational2d(M), C = N.weight2d(M), F = [], R = O[0][0].length, U = 0; U < v; ) {
|
|
12026
12026
|
var V = U++;
|
|
12027
12027
|
F.push([]);
|
|
12028
12028
|
for (var q = 0, J = v - V; q < J; ) {
|
|
@@ -12049,12 +12049,12 @@ var Ah = { exports: {} };
|
|
|
12049
12049
|
}, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
|
|
12050
12050
|
var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, A = p[0][0].length;
|
|
12051
12051
|
($.last(_) - _[0]) / n, ($.last(v) - v[0]) / a;
|
|
12052
|
-
for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), S = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a),
|
|
12052
|
+
for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), S = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), M = k.item0, O = k.item1, C = [], F = n + 1, R = a + 1, U = 0; U < F; ) {
|
|
12053
12053
|
var V = U++, q = [];
|
|
12054
12054
|
C.push(q);
|
|
12055
12055
|
for (var J = 0; J < R; ) {
|
|
12056
12056
|
var H = J++;
|
|
12057
|
-
q.push(N.surfaceDerivativesGivenBasesKnotSpans(u, d, p, S[V],
|
|
12057
|
+
q.push(N.surfaceDerivativesGivenBasesKnotSpans(u, d, p, S[V], M[H], P[V], O[H], A, l));
|
|
12058
12058
|
}
|
|
12059
12059
|
}
|
|
12060
12060
|
return C;
|
|
@@ -12063,12 +12063,12 @@ var Ah = { exports: {} };
|
|
|
12063
12063
|
}, N.surfaceRegularSamplePoints = function(r, n, a) {
|
|
12064
12064
|
var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
|
|
12065
12065
|
($.last(p) - p[0]) / n, ($.last(_) - _[0]) / a;
|
|
12066
|
-
for (var A = N.regularlySpacedBasisFunctions(l, p, n), I = A.item0, S = A.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0,
|
|
12066
|
+
for (var A = N.regularlySpacedBasisFunctions(l, p, n), I = A.item0, S = A.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0, M = P.item1, O = [], C = n + 1, F = a + 1, R = 0; R < C; ) {
|
|
12067
12067
|
var U = R++, V = [];
|
|
12068
12068
|
O.push(V);
|
|
12069
12069
|
for (var q = 0; q < F; ) {
|
|
12070
12070
|
var J = q++;
|
|
12071
|
-
V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], S[U],
|
|
12071
|
+
V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], S[U], M[J], v));
|
|
12072
12072
|
}
|
|
12073
12073
|
}
|
|
12074
12074
|
return O;
|
|
@@ -12086,13 +12086,13 @@ var Ah = { exports: {} };
|
|
|
12086
12086
|
return new ee(p, d);
|
|
12087
12087
|
}, N.surfacePointGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _) {
|
|
12088
12088
|
for (var v = m.zeros1d(_), A, I = l - r, S = u - n, P = 0, k = n + 1; P < k; ) {
|
|
12089
|
-
var
|
|
12089
|
+
var M = P++;
|
|
12090
12090
|
A = m.zeros1d(_);
|
|
12091
12091
|
for (var O = 0, C = r + 1; O < C; ) {
|
|
12092
12092
|
var F = O++;
|
|
12093
12093
|
m.addMulMutate(A, d[F], a[I + F][S]);
|
|
12094
12094
|
}
|
|
12095
|
-
S++, m.addMulMutate(v, p[
|
|
12095
|
+
S++, m.addMulMutate(v, p[M], A);
|
|
12096
12096
|
}
|
|
12097
12097
|
return v;
|
|
12098
12098
|
}, N.surfaceDerivativesGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _, v) {
|
|
@@ -12100,7 +12100,7 @@ var Ah = { exports: {} };
|
|
|
12100
12100
|
v < r ? I = v : I = r;
|
|
12101
12101
|
var S;
|
|
12102
12102
|
v < n ? S = v : S = n;
|
|
12103
|
-
for (var P = m.zeros3d(I + 1, S + 1, A), k = m.zeros2d(n + 1, A),
|
|
12103
|
+
for (var P = m.zeros3d(I + 1, S + 1, A), k = m.zeros2d(n + 1, A), M = 0, O = 0, C = I + 1; O < C; ) {
|
|
12104
12104
|
for (var F = O++, R = 0, U = n + 1; R < U; ) {
|
|
12105
12105
|
var V = R++;
|
|
12106
12106
|
k[V] = m.zeros1d(A);
|
|
@@ -12110,8 +12110,8 @@ var Ah = { exports: {} };
|
|
|
12110
12110
|
}
|
|
12111
12111
|
}
|
|
12112
12112
|
var G = v - F;
|
|
12113
|
-
G < S ?
|
|
12114
|
-
for (var K = 0, tt =
|
|
12113
|
+
G < S ? M = G : M = S;
|
|
12114
|
+
for (var K = 0, tt = M + 1; K < tt; ) {
|
|
12115
12115
|
var et = K++;
|
|
12116
12116
|
P[F][et] = m.zeros1d(A);
|
|
12117
12117
|
for (var it = 0, ht = n + 1; it < ht; ) {
|
|
@@ -12130,9 +12130,9 @@ var Ah = { exports: {} };
|
|
|
12130
12130
|
var _ = d[0].length, v;
|
|
12131
12131
|
l < u ? v = l : v = u;
|
|
12132
12132
|
for (var A = m.zeros2d(l + 1, _), I = N.knotSpanGivenN(r, u, a, p), S = N.derivativeBasisFunctionsGivenNI(I, a, u, v, p), P = 0, k = v + 1; P < k; )
|
|
12133
|
-
for (var
|
|
12133
|
+
for (var M = P++, O = 0, C = u + 1; O < C; ) {
|
|
12134
12134
|
var F = O++;
|
|
12135
|
-
m.addMulMutate(A[
|
|
12135
|
+
m.addMulMutate(A[M], S[M][F], d[I - u + F]);
|
|
12136
12136
|
}
|
|
12137
12137
|
return A;
|
|
12138
12138
|
}, N.curvePoint = function(r, n) {
|
|
@@ -12154,12 +12154,12 @@ var Ah = { exports: {} };
|
|
|
12154
12154
|
return N.volumePointGivenNML(r, u, d, p, n, a, l);
|
|
12155
12155
|
}, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
|
|
12156
12156
|
if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
|
|
12157
|
-
for (var _ = r.controlPoints, v = r.degreeU, A = r.degreeV, I = r.degreeW, S = r.knotsU, P = r.knotsV, k = r.knotsW,
|
|
12157
|
+
for (var _ = r.controlPoints, v = r.degreeU, A = r.degreeV, I = r.degreeW, S = r.knotsU, P = r.knotsV, k = r.knotsW, M = _[0][0][0].length, O = N.knotSpanGivenN(n, v, u, S), C = N.knotSpanGivenN(a, A, d, P), F = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(O, u, v, S), U = N.basisFunctionsGivenKnotSpanIndex(C, d, A, P), V = N.basisFunctionsGivenKnotSpanIndex(F, p, I, k), q = O - v, J = m.zeros1d(M), H = m.zeros1d(M), G = m.zeros1d(M), K = 0, tt = I + 1; K < tt; ) {
|
|
12158
12158
|
var et = K++;
|
|
12159
|
-
G = m.zeros1d(
|
|
12159
|
+
G = m.zeros1d(M);
|
|
12160
12160
|
for (var it = F - I + et, ht = 0, at = A + 1; ht < at; ) {
|
|
12161
12161
|
var ct = ht++;
|
|
12162
|
-
H = m.zeros1d(
|
|
12162
|
+
H = m.zeros1d(M);
|
|
12163
12163
|
for (var nt = C - A + ct, mt = 0, X = v + 1; mt < X; ) {
|
|
12164
12164
|
var gt = mt++;
|
|
12165
12165
|
m.addMulMutate(H, R[gt], _[q + gt][nt][it]);
|
|
@@ -12179,8 +12179,8 @@ var Ah = { exports: {} };
|
|
|
12179
12179
|
var P = I++;
|
|
12180
12180
|
p[P] = n - u[r + 1 - P], _[P] = u[r + P] - n, v = 0;
|
|
12181
12181
|
for (var k = 0; k < P; ) {
|
|
12182
|
-
var
|
|
12183
|
-
d[P][
|
|
12182
|
+
var M = k++;
|
|
12183
|
+
d[P][M] = _[M + 1] + p[P - M], A = d[M][P - 1] / d[P][M], d[M][P] = v + _[M + 1] * A, v = p[P - M] * A;
|
|
12184
12184
|
}
|
|
12185
12185
|
d[P][P] = v;
|
|
12186
12186
|
}
|
|
@@ -12300,12 +12300,12 @@ var Ah = { exports: {} };
|
|
|
12300
12300
|
}), 3);
|
|
12301
12301
|
});
|
|
12302
12302
|
}, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
|
|
12303
|
-
var d, p, _, v, A, I, S, P, k,
|
|
12303
|
+
var d, p, _, v, A, I, S, P, k, M, O, C, F, R = 5, U = 0;
|
|
12304
12304
|
do {
|
|
12305
|
-
if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], A = d[0][1], _ = m.normalized(m.cross(v, A)), I = m.dot(_, p), S = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = S[0][0],
|
|
12305
|
+
if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], A = d[0][1], _ = m.normalized(m.cross(v, A)), I = m.dot(_, p), S = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = S[0][0], M = S[1][0], O = S[0][1], k = m.normalized(m.cross(M, O)), C = m.dot(k, P), F = m.distSquared(p, P), F < u * u) break;
|
|
12306
12306
|
var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, I, k, C, V, q);
|
|
12307
12307
|
if (J == null) throw new Q("panic!");
|
|
12308
|
-
var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(A, _), et = m.cross(
|
|
12308
|
+
var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(A, _), et = m.cross(M, k), it = m.cross(O, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, A), ct = m.dot(it, G) / m.dot(it, M), nt = m.dot(et, G) / m.dot(et, O);
|
|
12309
12309
|
a = m.add([ht, at], a), l = m.add([ct, nt], l), U++;
|
|
12310
12310
|
} while (U < R);
|
|
12311
12311
|
return new Wn(a, l, p, F);
|
|
@@ -12318,7 +12318,7 @@ var Ah = { exports: {} };
|
|
|
12318
12318
|
}).filter(function(p) {
|
|
12319
12319
|
return m.distSquared(p.min.point, p.max.point) > rt.EPSILON;
|
|
12320
12320
|
}), function(p, _) {
|
|
12321
|
-
var v = m.sub(p.min.uv0, _.min.uv0), A = m.dot(v, v), I = m.sub(p.max.uv0, _.max.uv0), S = m.dot(I, I), P = m.sub(p.min.uv0, _.max.uv0), k = m.dot(P, P),
|
|
12321
|
+
var v = m.sub(p.min.uv0, _.min.uv0), A = m.dot(v, v), I = m.sub(p.max.uv0, _.max.uv0), S = m.dot(I, I), P = m.sub(p.min.uv0, _.max.uv0), k = m.dot(P, P), M = m.sub(p.max.uv0, _.min.uv0), O = m.dot(M, M);
|
|
12322
12322
|
return A < rt.EPSILON && S < rt.EPSILON || k < rt.EPSILON && O < rt.EPSILON;
|
|
12323
12323
|
});
|
|
12324
12324
|
return lt.makeMeshIntersectionPolylines(d);
|
|
@@ -12326,7 +12326,7 @@ var Ah = { exports: {} };
|
|
|
12326
12326
|
for (var u = new Cr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], A = d.max[1], I = m.span(n, a, l), S = [], P = 0; P < I.length; ) {
|
|
12327
12327
|
var k = I[P];
|
|
12328
12328
|
++P;
|
|
12329
|
-
var
|
|
12329
|
+
var M = [[p, _, k], [v, _, k], [v, A, k], [p, A, k]], O = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], F = new qe(C, M, null, O);
|
|
12330
12330
|
S.push(lt.meshes(r, F, u));
|
|
12331
12331
|
}
|
|
12332
12332
|
return S;
|
|
@@ -12352,9 +12352,9 @@ var Ah = { exports: {} };
|
|
|
12352
12352
|
});
|
|
12353
12353
|
I.length == 0 && (I = u);
|
|
12354
12354
|
for (var S = [], P = 0, k = !1; I.length != 0; ) {
|
|
12355
|
-
var
|
|
12356
|
-
if (!
|
|
12357
|
-
for (var O = [], C =
|
|
12355
|
+
var M = I.pop();
|
|
12356
|
+
if (!M.visited) {
|
|
12357
|
+
for (var O = [], C = M; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, O.push(C), P += 2, C = C.opp.adj, C == M)); )
|
|
12358
12358
|
;
|
|
12359
12359
|
O.length > 0 && (O.push(O[O.length - 1].opp), S.push(O));
|
|
12360
12360
|
}
|
|
@@ -12382,7 +12382,7 @@ var Ah = { exports: {} };
|
|
|
12382
12382
|
a == null && (a = 1e-3), l != null ? l = l : l = new ir(r), u != null ? u = u : u = new Nr(n);
|
|
12383
12383
|
var d = lt.boundingBoxTrees(l, u, a);
|
|
12384
12384
|
return $.unique(d.map(function(p) {
|
|
12385
|
-
var _ = p.item0, v = p.item1, A = $.first(_.knots), I = $.last(_.knots), S = (A + I) / 2, P = $.first(v.knotsU), k = $.last(v.knotsU),
|
|
12385
|
+
var _ = p.item0, v = p.item1, A = $.first(_.knots), I = $.last(_.knots), S = (A + I) / 2, P = $.first(v.knotsU), k = $.last(v.knotsU), M = $.first(v.knotsV), O = $.last(v.knotsV), C = [(P + k) / 2, (M + O) / 2];
|
|
12386
12386
|
return lt.curveAndSurfaceWithEstimate(_, v, [S].concat(C), a);
|
|
12387
12387
|
}).filter(function(p) {
|
|
12388
12388
|
return m.distSquared(p.curvePoint, p.surfacePoint) < a * a;
|
|
@@ -12395,8 +12395,8 @@ var Ah = { exports: {} };
|
|
|
12395
12395
|
var A = N.rationalCurvePoint(r, v[0]), I = N.rationalSurfacePoint(n, v[1], v[2]), S = m.sub(A, I);
|
|
12396
12396
|
return m.dot(S, S);
|
|
12397
12397
|
}, d = function(v) {
|
|
12398
|
-
var A = N.rationalCurveDerivatives(r, v[0], 1), I = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), S = m.sub(I[0][0], A[0]), P = m.mul(-1, A[1]), k = I[1][0],
|
|
12399
|
-
return [2 * m.dot(P, S), 2 * m.dot(k, S), 2 * m.dot(
|
|
12398
|
+
var A = N.rationalCurveDerivatives(r, v[0], 1), I = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), S = m.sub(I[0][0], A[0]), P = m.mul(-1, A[1]), k = I[1][0], M = I[0][1];
|
|
12399
|
+
return [2 * m.dot(P, S), 2 * m.dot(k, S), 2 * m.dot(M, S)];
|
|
12400
12400
|
}, p = Xe.uncmin(u, a, l * l, d), _ = p.solution;
|
|
12401
12401
|
return new Gn(_[0], [_[1], _[2]], N.rationalCurvePoint(r, _[0]), N.rationalSurfacePoint(n, _[1], _[2]));
|
|
12402
12402
|
}, lt.polylineAndMesh = function(r, n, a) {
|
|
@@ -12446,10 +12446,10 @@ var Ah = { exports: {} };
|
|
|
12446
12446
|
});
|
|
12447
12447
|
}, lt.curvesWithEstimate = function(r, n, a, l, u) {
|
|
12448
12448
|
var d = function(P) {
|
|
12449
|
-
var k = N.rationalCurvePoint(r, P[0]),
|
|
12449
|
+
var k = N.rationalCurvePoint(r, P[0]), M = N.rationalCurvePoint(n, P[1]), O = m.sub(k, M);
|
|
12450
12450
|
return m.dot(O, O);
|
|
12451
12451
|
}, p = function(P) {
|
|
12452
|
-
var k = N.rationalCurveDerivatives(r, P[0], 1),
|
|
12452
|
+
var k = N.rationalCurveDerivatives(r, P[0], 1), M = N.rationalCurveDerivatives(n, P[1], 1), O = m.sub(k[0], M[0]), C = k[1], F = m.mul(-1, M[1]);
|
|
12453
12453
|
return [2 * m.dot(C, O), 2 * m.dot(F, O)];
|
|
12454
12454
|
}, _ = Xe.uncmin(d, [a, l], u * u, p), v = _.solution[0], A = _.solution[1], I = N.rationalCurvePoint(r, v), S = N.rationalCurvePoint(n, A);
|
|
12455
12455
|
return new Hr(I, S, v, A);
|
|
@@ -12461,10 +12461,10 @@ var Ah = { exports: {} };
|
|
|
12461
12461
|
var P = lt.clipRayInCoplanarTriangle(I, a, l);
|
|
12462
12462
|
if (P == null) return null;
|
|
12463
12463
|
var k = lt.mergeTriangleClipIntervals(S, P, r, n, a, l);
|
|
12464
|
-
return k == null ? null : new we(new
|
|
12464
|
+
return k == null ? null : new we(new Mr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Mr(k.max.uv0, k.max.uv1, k.max.point, n, l));
|
|
12465
12465
|
}, lt.clipRayInCoplanarTriangle = function(r, n, a) {
|
|
12466
12466
|
for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), A = _.map(m.norm), I = null, S = null, P = 0; P < 3; ) {
|
|
12467
|
-
var k = P++,
|
|
12467
|
+
var k = P++, M = u[k], O = v[k], C = lt.rays(M, O, r.origin, r.dir);
|
|
12468
12468
|
if (C != null) {
|
|
12469
12469
|
var F = C.u0, R = C.u1;
|
|
12470
12470
|
F < -rt.EPSILON || F > A[k] + rt.EPSILON || ((I == null || R < I.u) && (I = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))), (S == null || R > S.u) && (S = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))));
|
|
@@ -12477,7 +12477,7 @@ var Ah = { exports: {} };
|
|
|
12477
12477
|
r.min.u > n.min.u ? p = new ee(r.min, 0) : p = new ee(n.min, 1);
|
|
12478
12478
|
var _;
|
|
12479
12479
|
r.max.u < n.max.u ? _ = new ee(r.max, 0) : _ = new ee(n.max, 1);
|
|
12480
|
-
var v = new we(new
|
|
12480
|
+
var v = new we(new Mr(null, null, p.item0.point, l, d), new Mr(null, null, _.item0.point, l, d));
|
|
12481
12481
|
return p.item1 == 0 ? (v.min.uv0 = p.item0.uv, v.min.uv1 = re.triangleUVFromPoint(u, d, p.item0.point)) : (v.min.uv0 = re.triangleUVFromPoint(a, l, p.item0.point), v.min.uv1 = p.item0.uv), _.item1 == 0 ? (v.max.uv0 = _.item0.uv, v.max.uv1 = re.triangleUVFromPoint(u, d, _.item0.point)) : (v.max.uv0 = re.triangleUVFromPoint(a, l, _.item0.point), v.max.uv1 = _.item0.uv), v;
|
|
12482
12482
|
}, lt.planes = function(r, n, a, l) {
|
|
12483
12483
|
var u = m.cross(n, l);
|
|
@@ -12486,7 +12486,7 @@ var Ah = { exports: {} };
|
|
|
12486
12486
|
_ > p && (d = 1, p = _), v > p && (d = 2, p = v);
|
|
12487
12487
|
var A, I, S, P;
|
|
12488
12488
|
d == 0 ? (A = n[1], I = n[2], S = l[1], P = l[2]) : d == 1 ? (A = n[0], I = n[2], S = l[0], P = l[2]) : (A = n[0], I = n[1], S = l[0], P = l[1]);
|
|
12489
|
-
var k = -m.dot(r, n),
|
|
12489
|
+
var k = -m.dot(r, n), M = -m.dot(a, l), O = A * P - I * S, C = (I * M - k * P) / O, F = (k * S - A * M) / O, R;
|
|
12490
12490
|
return d == 0 ? R = [0, C, F] : d == 1 ? R = [C, 0, F] : R = [C, F, 0], new _n(R, m.normalized(u));
|
|
12491
12491
|
}, lt.threePlanes = function(r, n, a, l, u, d) {
|
|
12492
12492
|
var p = m.cross(a, u), _ = m.dot(r, p);
|
|
@@ -12504,24 +12504,24 @@ var Ah = { exports: {} };
|
|
|
12504
12504
|
}, lt.segments = function(r, n, a, l, u) {
|
|
12505
12505
|
var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), A = Math.sqrt(m.dot(v, v)), I = m.mul(1 / A, v), S = lt.rays(r, _, a, I);
|
|
12506
12506
|
if (S != null) {
|
|
12507
|
-
var P = Math.min(Math.max(0, S.u0 / p), 1), k = Math.min(Math.max(0, S.u1 / A), 1),
|
|
12508
|
-
if (C < u * u) return new Hr(
|
|
12507
|
+
var P = Math.min(Math.max(0, S.u0 / p), 1), k = Math.min(Math.max(0, S.u1 / A), 1), M = m.onRay(r, d, P), O = m.onRay(a, v, k), C = m.distSquared(M, O);
|
|
12508
|
+
if (C < u * u) return new Hr(M, O, P, k);
|
|
12509
12509
|
}
|
|
12510
12510
|
return null;
|
|
12511
12511
|
}, lt.rays = function(r, n, a, l) {
|
|
12512
12512
|
var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), A = m.dot(n, n), I = m.dot(l, l), S = A * I - u * u;
|
|
12513
12513
|
if (Math.abs(S) < rt.EPSILON) return null;
|
|
12514
|
-
var P = u * (d - p) - A * (_ - v), k = P / S,
|
|
12515
|
-
return new Hr(O, C,
|
|
12514
|
+
var P = u * (d - p) - A * (_ - v), k = P / S, M = (d - p + k * u) / A, O = m.onRay(r, n, M), C = m.onRay(a, l, k);
|
|
12515
|
+
return new Hr(O, C, M, k);
|
|
12516
12516
|
}, lt.segmentWithTriangle = function(r, n, a, l) {
|
|
12517
12517
|
var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), A = m.cross(_, v), I = m.sub(n, r), S = m.sub(r, u), P = -m.dot(A, S), k = m.dot(A, I);
|
|
12518
12518
|
if (Math.abs(k) < rt.EPSILON) return null;
|
|
12519
|
-
var
|
|
12520
|
-
if (
|
|
12521
|
-
var O = m.add(r, m.mul(
|
|
12519
|
+
var M = P / k;
|
|
12520
|
+
if (M < 0 || M > 1) return null;
|
|
12521
|
+
var O = m.add(r, m.mul(M, I)), C = m.dot(_, v), F = m.dot(_, _), R = m.dot(v, v), U = m.sub(O, u), V = m.dot(U, _), q = m.dot(U, v), J = C * C - F * R;
|
|
12522
12522
|
if (Math.abs(J) < rt.EPSILON) return null;
|
|
12523
12523
|
var H = (C * q - R * V) / J, G = (C * V - F * q) / J;
|
|
12524
|
-
return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new Hn(O, H, G,
|
|
12524
|
+
return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new Hn(O, H, G, M);
|
|
12525
12525
|
}, lt.segmentAndPlane = function(r, n, a, l) {
|
|
12526
12526
|
var u = m.dot(l, m.sub(n, r));
|
|
12527
12527
|
if (Math.abs(u) < rt.EPSILON) return null;
|
|
@@ -12558,11 +12558,11 @@ var Ah = { exports: {} };
|
|
|
12558
12558
|
I > 0 ? S = ft.surfaceKnotRefine(r, m.rep(I, n), a) : S = r;
|
|
12559
12559
|
var P = N.knotSpan(u, n, l);
|
|
12560
12560
|
return Math.abs(n - $.first(l)) < rt.EPSILON ? P = 0 : Math.abs(n - $.last(l)) < rt.EPSILON && (P = (a ? S.controlPoints[0].length : S.controlPoints.length) - 1), a ? new Gt(S.degreeU, S.knotsU, function(k) {
|
|
12561
|
-
for (var
|
|
12561
|
+
for (var M, O = [], C = 0, F = S.controlPoints; C < F.length; ) {
|
|
12562
12562
|
var R = F[C];
|
|
12563
12563
|
++C, O.push(R[P]);
|
|
12564
12564
|
}
|
|
12565
|
-
return
|
|
12565
|
+
return M = O, M;
|
|
12566
12566
|
}()) : new Gt(S.degreeV, S.knotsV, S.controlPoints[P]);
|
|
12567
12567
|
}, pt.loftedSurface = function(r, n) {
|
|
12568
12568
|
r = ft.unifyCurveKnotVectors(r);
|
|
@@ -12591,7 +12591,7 @@ var Ah = { exports: {} };
|
|
|
12591
12591
|
u == null && (u = 3);
|
|
12592
12592
|
for (var d = u, p = [], _ = 0, v = u + 1; _ < v; ) {
|
|
12593
12593
|
for (var A = _++, I = [], S = 0, P = u + 1; S < P; ) {
|
|
12594
|
-
var k = S++,
|
|
12594
|
+
var k = S++, M = 1 - A / d, O = m.lerp(M, r, n), C = m.lerp(M, l, a), F = m.lerp(1 - k / d, O, C);
|
|
12595
12595
|
F.push(1), I.push(F);
|
|
12596
12596
|
}
|
|
12597
12597
|
p.push(I);
|
|
@@ -12603,7 +12603,7 @@ var Ah = { exports: {} };
|
|
|
12603
12603
|
n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
|
|
12604
12604
|
var _ = u - l, v = 0;
|
|
12605
12605
|
_ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
|
|
12606
|
-
var A = _ / v, I = Math.cos(A / 2), S = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [],
|
|
12606
|
+
var A = _ / v, I = Math.cos(A / 2), S = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], M = m.zeros1d(2 * v + 3), O = 0, C = l, F = m.zeros1d(v * 2);
|
|
12607
12607
|
k[0] = S, F[0] = 1;
|
|
12608
12608
|
for (var R = 1, U = v + 1; R < U; ) {
|
|
12609
12609
|
var V = R++;
|
|
@@ -12615,20 +12615,20 @@ var Ah = { exports: {} };
|
|
|
12615
12615
|
}
|
|
12616
12616
|
for (var K = 2 * v + 1, tt = 0; tt < 3; ) {
|
|
12617
12617
|
var et = tt++;
|
|
12618
|
-
|
|
12618
|
+
M[et] = 0, M[et + K] = 1;
|
|
12619
12619
|
}
|
|
12620
12620
|
switch (v) {
|
|
12621
12621
|
case 2:
|
|
12622
|
-
|
|
12622
|
+
M[3] = M[4] = 0.5;
|
|
12623
12623
|
break;
|
|
12624
12624
|
case 3:
|
|
12625
|
-
|
|
12625
|
+
M[3] = M[4] = 0.3333333333333333, M[5] = M[6] = 0.6666666666666666;
|
|
12626
12626
|
break;
|
|
12627
12627
|
case 4:
|
|
12628
|
-
|
|
12628
|
+
M[3] = M[4] = 0.25, M[5] = M[6] = 0.5, M[7] = M[8] = 0.75;
|
|
12629
12629
|
break;
|
|
12630
12630
|
}
|
|
12631
|
-
return new Gt(2,
|
|
12631
|
+
return new Gt(2, M, N.homogenize1d(k, F));
|
|
12632
12632
|
}, pt.arc = function(r, n, a, l, u, d) {
|
|
12633
12633
|
return pt.ellipseArc(r, m.mul(l, m.normalized(n)), m.mul(l, m.normalized(a)), u, d);
|
|
12634
12634
|
}, pt.polyline = function(r) {
|
|
@@ -12656,9 +12656,9 @@ var Ah = { exports: {} };
|
|
|
12656
12656
|
var S = I++;
|
|
12657
12657
|
_[S] = 0, _[A + S] = 1;
|
|
12658
12658
|
}
|
|
12659
|
-
for (var P = Math.cos(v / 2), k = 0,
|
|
12659
|
+
for (var P = Math.cos(v / 2), k = 0, M = m.zeros1d(p + 1), O = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), F = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
|
|
12660
12660
|
var V = R++;
|
|
12661
|
-
k += v, O[V] = Math.cos(k),
|
|
12661
|
+
k += v, O[V] = Math.cos(k), M[V] = Math.sin(k);
|
|
12662
12662
|
}
|
|
12663
12663
|
for (var q = 0, J = u.length; q < J; ) {
|
|
12664
12664
|
var H = q++, G = Ne.rayClosestPoint(u[H], n, a), K = m.sub(u[H], G), tt = m.norm(K), et = m.cross(a, K);
|
|
@@ -12667,8 +12667,8 @@ var Ah = { exports: {} };
|
|
|
12667
12667
|
F[0][H] = d[H];
|
|
12668
12668
|
for (var ht = et, at = 0, ct = 1, nt = p + 1; ct < nt; ) {
|
|
12669
12669
|
var mt = ct++, X;
|
|
12670
|
-
tt == 0 ? X = G : X = m.add(G, m.add(m.mul(tt * O[mt], K), m.mul(tt *
|
|
12671
|
-
var gt = m.sub(m.mul(O[mt], et), m.mul(
|
|
12670
|
+
tt == 0 ? X = G : X = m.add(G, m.add(m.mul(tt * O[mt], K), m.mul(tt * M[mt], et))), C[at + 2][H] = X, F[at + 2][H] = d[H];
|
|
12671
|
+
var gt = m.sub(m.mul(O[mt], et), m.mul(M[mt], K));
|
|
12672
12672
|
if (tt == 0) C[at + 1][H] = G;
|
|
12673
12673
|
else {
|
|
12674
12674
|
var It = lt.rays(it, m.mul(1 / m.norm(ht), ht), X, m.mul(1 / m.norm(gt), gt)), jt = m.add(it, m.mul(It.u0, ht));
|
|
@@ -12691,8 +12691,8 @@ var Ah = { exports: {} };
|
|
|
12691
12691
|
d.push(I + A);
|
|
12692
12692
|
}
|
|
12693
12693
|
for (var S = d[d.length - 1], P = 0, k = d.length; P < k; ) {
|
|
12694
|
-
var
|
|
12695
|
-
d[
|
|
12694
|
+
var M = P++;
|
|
12695
|
+
d[M] = d[M] / S;
|
|
12696
12696
|
}
|
|
12697
12697
|
var O = m.rep(n + 1, 0), C = l != null && u != null, F;
|
|
12698
12698
|
C ? F = 0 : F = 1;
|
|
@@ -12787,10 +12787,10 @@ var Ah = { exports: {} };
|
|
|
12787
12787
|
}
|
|
12788
12788
|
for (var k = d.map(function(G) {
|
|
12789
12789
|
return G.max - G.min;
|
|
12790
|
-
}),
|
|
12790
|
+
}), M = z.fold(k, function(G, K) {
|
|
12791
12791
|
return Math.max(G, K);
|
|
12792
12792
|
}, 0), O = 0, C = r.length; O < C; ) {
|
|
12793
|
-
var F = O++, R = [
|
|
12793
|
+
var F = O++, R = [M / k[F]];
|
|
12794
12794
|
r[F].knots = r[F].knots.map(/* @__PURE__ */ function(G) {
|
|
12795
12795
|
return function(K) {
|
|
12796
12796
|
return K * G[0];
|
|
@@ -12810,14 +12810,14 @@ var Ah = { exports: {} };
|
|
|
12810
12810
|
return r > n ? r : n;
|
|
12811
12811
|
}, ft.curveElevateDegree = function(r, n) {
|
|
12812
12812
|
if (n <= r.degree) return r;
|
|
12813
|
-
var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), A = [], I = [], S = [], P = a + l + 1, k = n,
|
|
12813
|
+
var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), A = [], I = [], S = [], P = a + l + 1, k = n, M = Math.floor(k / 2), O = [], C = [];
|
|
12814
12814
|
v[0][0] = 1, v[k][l] = 1;
|
|
12815
|
-
for (var F = 1, R =
|
|
12815
|
+
for (var F = 1, R = M + 1; F < R; )
|
|
12816
12816
|
for (var U = F++, V = 1 / Ft.get(k, U), q = ft.imin(l, U), J = ft.imax(0, U - p), H = q + 1; J < H; ) {
|
|
12817
12817
|
var G = J++;
|
|
12818
12818
|
v[U][G] = V * Ft.get(l, G) * Ft.get(p, U - G);
|
|
12819
12819
|
}
|
|
12820
|
-
for (var K =
|
|
12820
|
+
for (var K = M + 1; K < k; )
|
|
12821
12821
|
for (var tt = K++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
|
|
12822
12822
|
var at = it++;
|
|
12823
12823
|
v[tt][at] = v[k - tt][l - at];
|
|
@@ -12929,15 +12929,15 @@ var Ah = { exports: {} };
|
|
|
12929
12929
|
}
|
|
12930
12930
|
l.length / d - 1;
|
|
12931
12931
|
for (var I = d * 2, S = [], P = 0; P < a.length; ) {
|
|
12932
|
-
var k = l.slice(P, P + I),
|
|
12933
|
-
S.push(new Gt(n, k,
|
|
12932
|
+
var k = l.slice(P, P + I), M = a.slice(P, P + d);
|
|
12933
|
+
S.push(new Gt(n, k, M)), P += d;
|
|
12934
12934
|
}
|
|
12935
12935
|
return S;
|
|
12936
12936
|
}, ft.curveKnotRefine = function(r, n) {
|
|
12937
12937
|
if (n.length == 0) return pt.clonedCurve(r);
|
|
12938
12938
|
for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), A = N.knotSpan(a, n[_], u), I = [], S = [], P = 0, k = v - a + 1; P < k; ) {
|
|
12939
|
-
var
|
|
12940
|
-
I[
|
|
12939
|
+
var M = P++;
|
|
12940
|
+
I[M] = l[M];
|
|
12941
12941
|
}
|
|
12942
12942
|
for (var O = A - 1, C = d + 1; O < C; ) {
|
|
12943
12943
|
var F = O++;
|
|
@@ -12964,8 +12964,8 @@ var Ah = { exports: {} };
|
|
|
12964
12964
|
return new Gt(a, S, I);
|
|
12965
12965
|
}, ft.curveKnotInsert = function(r, n, a) {
|
|
12966
12966
|
for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), A = [], I = [], S = [], P = 1, k = v + 1; P < k; ) {
|
|
12967
|
-
var
|
|
12968
|
-
I[
|
|
12967
|
+
var M = P++;
|
|
12968
|
+
I[M] = d[M];
|
|
12969
12969
|
}
|
|
12970
12970
|
for (var O = 1, C = a + 1; O < C; ) {
|
|
12971
12971
|
var F = O++;
|
|
@@ -13027,14 +13027,14 @@ var Ah = { exports: {} };
|
|
|
13027
13027
|
}, zt.rationalCurveAdaptiveSampleRange = function(r, n, a, l, u) {
|
|
13028
13028
|
var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, A = N.rationalCurvePoint(r, v), I = m.sub(d, p), S = m.sub(d, A);
|
|
13029
13029
|
if (m.dot(I, I) < l && m.dot(S, S) > l || !Ne.threePointsAreFlat(d, A, p, l)) {
|
|
13030
|
-
var P = n + (a - n) * 0.5, k = zt.rationalCurveAdaptiveSampleRange(r, n, P, l, u),
|
|
13031
|
-
return k.slice(0, -1).concat(
|
|
13030
|
+
var P = n + (a - n) * 0.5, k = zt.rationalCurveAdaptiveSampleRange(r, n, P, l, u), M = zt.rationalCurveAdaptiveSampleRange(r, P, a, l, u);
|
|
13031
|
+
return k.slice(0, -1).concat(M);
|
|
13032
13032
|
} else return u ? [[n].concat(d), [a].concat(p)] : [d, p];
|
|
13033
13033
|
}, zt.rationalSurfaceNaive = function(r, n, a) {
|
|
13034
13034
|
n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
|
|
13035
13035
|
for (var l = r.knotsU, u = r.knotsV, d = $.last(l) - l[0], p = $.last(u) - u[0], _ = d / n, v = p / a, A = [], I = [], S = [], P = 0, k = n + 1; P < k; )
|
|
13036
|
-
for (var
|
|
13037
|
-
var F = O++, R =
|
|
13036
|
+
for (var M = P++, O = 0, C = a + 1; O < C; ) {
|
|
13037
|
+
var F = O++, R = M * _, U = F * v;
|
|
13038
13038
|
I.push([R, U]);
|
|
13039
13039
|
var V = N.rationalSurfaceDerivatives(r, R, U, 1), q = V[0][0];
|
|
13040
13040
|
A.push(q);
|
|
@@ -13053,8 +13053,8 @@ var Ah = { exports: {} };
|
|
|
13053
13053
|
n.minDivsU > a ? u = n.minDivsU = n.minDivsU : u = n.minDivsU = a;
|
|
13054
13054
|
var d;
|
|
13055
13055
|
n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
|
|
13056
|
-
for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), A = r.knotsV[0], I = (p - _) / u, S = (v - A) / d, P = [], k = [],
|
|
13057
|
-
for (var C =
|
|
13056
|
+
for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), A = r.knotsV[0], I = (p - _) / u, S = (v - A) / d, P = [], k = [], M = 0, O = d + 1; M < O; ) {
|
|
13057
|
+
for (var C = M++, F = [], R = 0, U = u + 1; R < U; ) {
|
|
13058
13058
|
var V = R++, q = _ + I * V, J = A + S * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), G = m.normalized(m.cross(H[0][1], H[1][0]));
|
|
13059
13059
|
F.push(new je(H[0][0], G, [q, J], -1, m.isZero(G)));
|
|
13060
13060
|
}
|
|
@@ -13247,8 +13247,8 @@ var Ah = { exports: {} };
|
|
|
13247
13247
|
var k = l.length;
|
|
13248
13248
|
return r.faces.push([l[u], l[(u + 2) % k], l[(u + 1) % k]]), r.faces.push([l[(u + 4) % k], l[(u + 3) % k], l[u]]), r.faces.push([l[u], l[(u + 3) % k], l[(u + 2) % k]]), r;
|
|
13249
13249
|
}
|
|
13250
|
-
var
|
|
13251
|
-
r.uvs.push(
|
|
13250
|
+
var M = this.center();
|
|
13251
|
+
r.uvs.push(M.uv), r.points.push(M.point), r.normals.push(M.normal);
|
|
13252
13252
|
for (var O = r.points.length - 1, C = 0, F = a.length - 1; C < a.length; )
|
|
13253
13253
|
r.faces.push([O, l[C], l[F]]), F = C++;
|
|
13254
13254
|
return r;
|
|
@@ -13313,14 +13313,14 @@ var Ah = { exports: {} };
|
|
|
13313
13313
|
b["verb.geom.ICurve"] = Sn, Sn.__name__ = ["verb", "geom", "ICurve"], Sn.__interfaces__ = [bn], Sn.prototype = {
|
|
13314
13314
|
__class__: Sn
|
|
13315
13315
|
};
|
|
13316
|
-
var
|
|
13316
|
+
var Mt = f.geom.NurbsCurve = function(r) {
|
|
13317
13317
|
this._data = We.isValidNurbsCurveData(r);
|
|
13318
13318
|
};
|
|
13319
|
-
b["verb.geom.NurbsCurve"] =
|
|
13320
|
-
return new
|
|
13321
|
-
},
|
|
13322
|
-
return n == null && (n = 3), new
|
|
13323
|
-
},
|
|
13319
|
+
b["verb.geom.NurbsCurve"] = Mt, Mt.__name__ = ["verb", "geom", "NurbsCurve"], Mt.__interfaces__ = [Sn], Mt.byKnotsControlPointsWeights = function(r, n, a, l) {
|
|
13320
|
+
return new Mt(new Gt(r, n.slice(), N.homogenize1d(a, l)));
|
|
13321
|
+
}, Mt.byPoints = function(r, n) {
|
|
13322
|
+
return n == null && (n = 3), new Mt(pt.rationalInterpCurve(r, n));
|
|
13323
|
+
}, Mt.__super__ = $t, Mt.prototype = T($t.prototype, {
|
|
13324
13324
|
degree: function() {
|
|
13325
13325
|
return this._data.degree;
|
|
13326
13326
|
},
|
|
@@ -13337,17 +13337,17 @@ var Ah = { exports: {} };
|
|
|
13337
13337
|
return new Gt(this.degree(), this.knots(), N.homogenize1d(this.controlPoints(), this.weights()));
|
|
13338
13338
|
},
|
|
13339
13339
|
clone: function() {
|
|
13340
|
-
return new
|
|
13340
|
+
return new Mt(this._data);
|
|
13341
13341
|
},
|
|
13342
13342
|
domain: function() {
|
|
13343
13343
|
return new we($.first(this._data.knots), $.last(this._data.knots));
|
|
13344
13344
|
},
|
|
13345
13345
|
transform: function(r) {
|
|
13346
|
-
return new
|
|
13346
|
+
return new Mt(ft.rationalCurveTransform(this._data, r));
|
|
13347
13347
|
},
|
|
13348
13348
|
transformAsync: function(r) {
|
|
13349
13349
|
return wt.dispatchMethod(ft, "rationalCurveTransform", [this._data, r]).then(function(n) {
|
|
13350
|
-
return new
|
|
13350
|
+
return new Mt(n);
|
|
13351
13351
|
});
|
|
13352
13352
|
},
|
|
13353
13353
|
point: function(r) {
|
|
@@ -13412,22 +13412,22 @@ var Ah = { exports: {} };
|
|
|
13412
13412
|
},
|
|
13413
13413
|
split: function(r) {
|
|
13414
13414
|
return oe.curveSplit(this._data, r).map(function(n) {
|
|
13415
|
-
return new
|
|
13415
|
+
return new Mt(n);
|
|
13416
13416
|
});
|
|
13417
13417
|
},
|
|
13418
13418
|
splitAsync: function(r) {
|
|
13419
13419
|
return wt.dispatchMethod(oe, "curveSplit", [this._data, r]).then(function(n) {
|
|
13420
13420
|
return n.map(function(a) {
|
|
13421
|
-
return new
|
|
13421
|
+
return new Mt(a);
|
|
13422
13422
|
});
|
|
13423
13423
|
});
|
|
13424
13424
|
},
|
|
13425
13425
|
reverse: function() {
|
|
13426
|
-
return new
|
|
13426
|
+
return new Mt(ft.curveReverse(this._data));
|
|
13427
13427
|
},
|
|
13428
13428
|
reverseAsync: function() {
|
|
13429
13429
|
return wt.dispatchMethod(ft, "curveReverse", [this._data]).then(function(r) {
|
|
13430
|
-
return new
|
|
13430
|
+
return new Mt(r);
|
|
13431
13431
|
});
|
|
13432
13432
|
},
|
|
13433
13433
|
tessellate: function(r) {
|
|
@@ -13436,12 +13436,12 @@ var Ah = { exports: {} };
|
|
|
13436
13436
|
tessellateAsync: function(r) {
|
|
13437
13437
|
return wt.dispatchMethod(zt, "rationalCurveAdaptiveSample", [this._data, r, !1]);
|
|
13438
13438
|
},
|
|
13439
|
-
__class__:
|
|
13439
|
+
__class__: Mt
|
|
13440
13440
|
});
|
|
13441
13441
|
var zr = f.geom.Arc = function(r, n, a, l, u, d) {
|
|
13442
|
-
|
|
13442
|
+
Mt.call(this, pt.arc(r, n, a, l, u, d)), this._center = r, this._xaxis = n, this._yaxis = a, this._radius = l, this._minAngle = u, this._maxAngle = d;
|
|
13443
13443
|
};
|
|
13444
|
-
b["verb.geom.Arc"] = zr, zr.__name__ = ["verb", "geom", "Arc"], zr.__super__ =
|
|
13444
|
+
b["verb.geom.Arc"] = zr, zr.__name__ = ["verb", "geom", "Arc"], zr.__super__ = Mt, zr.prototype = T(Mt.prototype, {
|
|
13445
13445
|
center: function() {
|
|
13446
13446
|
return this._center;
|
|
13447
13447
|
},
|
|
@@ -13463,15 +13463,15 @@ var Ah = { exports: {} };
|
|
|
13463
13463
|
__class__: zr
|
|
13464
13464
|
});
|
|
13465
13465
|
var $n = f.geom.BezierCurve = function(r, n) {
|
|
13466
|
-
|
|
13466
|
+
Mt.call(this, pt.rationalBezierCurve(r, n));
|
|
13467
13467
|
};
|
|
13468
|
-
b["verb.geom.BezierCurve"] = $n, $n.__name__ = ["verb", "geom", "BezierCurve"], $n.__super__ =
|
|
13468
|
+
b["verb.geom.BezierCurve"] = $n, $n.__name__ = ["verb", "geom", "BezierCurve"], $n.__super__ = Mt, $n.prototype = T(Mt.prototype, {
|
|
13469
13469
|
__class__: $n
|
|
13470
13470
|
});
|
|
13471
13471
|
var Zn = f.geom.Circle = function(r, n, a, l) {
|
|
13472
13472
|
zr.call(this, r, n, a, l, 0, Math.PI * 2);
|
|
13473
13473
|
};
|
|
13474
|
-
b["verb.geom.Circle"] = Zn, Zn.__name__ = ["verb", "geom", "Circle"], Zn.__super__ = zr, Zn.prototype =
|
|
13474
|
+
b["verb.geom.Circle"] = Zn, Zn.__name__ = ["verb", "geom", "Circle"], Zn.__super__ = zr, Zn.prototype = T(zr.prototype, {
|
|
13475
13475
|
__class__: Zn
|
|
13476
13476
|
});
|
|
13477
13477
|
var In = function() {
|
|
@@ -13494,7 +13494,7 @@ var Ah = { exports: {} };
|
|
|
13494
13494
|
}
|
|
13495
13495
|
return l = u, l;
|
|
13496
13496
|
}(), n));
|
|
13497
|
-
}, Pt.__super__ = $t, Pt.prototype =
|
|
13497
|
+
}, Pt.__super__ = $t, Pt.prototype = T($t.prototype, {
|
|
13498
13498
|
degreeU: function() {
|
|
13499
13499
|
return this._data.degreeU;
|
|
13500
13500
|
},
|
|
@@ -13576,22 +13576,22 @@ var Ah = { exports: {} };
|
|
|
13576
13576
|
});
|
|
13577
13577
|
},
|
|
13578
13578
|
isocurve: function(r, n) {
|
|
13579
|
-
return n == null && (n = !1), new
|
|
13579
|
+
return n == null && (n = !1), new Mt(pt.surfaceIsocurve(this._data, r, n));
|
|
13580
13580
|
},
|
|
13581
13581
|
isocurveAsync: function(r, n) {
|
|
13582
13582
|
return n == null && (n = !1), wt.dispatchMethod(pt, "surfaceIsocurve", [this._data, r, n]).then(function(a) {
|
|
13583
|
-
return new
|
|
13583
|
+
return new Mt(a);
|
|
13584
13584
|
});
|
|
13585
13585
|
},
|
|
13586
13586
|
boundaries: function(r) {
|
|
13587
13587
|
return pt.surfaceBoundaryCurves(this._data).map(function(n) {
|
|
13588
|
-
return new
|
|
13588
|
+
return new Mt(n);
|
|
13589
13589
|
});
|
|
13590
13590
|
},
|
|
13591
13591
|
boundariesAsync: function(r) {
|
|
13592
13592
|
return wt.dispatchMethod(pt, "surfaceBoundaryCurves", [this._data]).then(function(n) {
|
|
13593
13593
|
return n.map(function(a) {
|
|
13594
|
-
return new
|
|
13594
|
+
return new Mt(a);
|
|
13595
13595
|
});
|
|
13596
13596
|
});
|
|
13597
13597
|
},
|
|
@@ -13614,7 +13614,7 @@ var Ah = { exports: {} };
|
|
|
13614
13614
|
var Qn = f.geom.ConicalSurface = function(r, n, a, l, u) {
|
|
13615
13615
|
Pt.call(this, pt.conicalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
|
|
13616
13616
|
};
|
|
13617
|
-
b["verb.geom.ConicalSurface"] = Qn, Qn.__name__ = ["verb", "geom", "ConicalSurface"], Qn.__super__ = Pt, Qn.prototype =
|
|
13617
|
+
b["verb.geom.ConicalSurface"] = Qn, Qn.__name__ = ["verb", "geom", "ConicalSurface"], Qn.__super__ = Pt, Qn.prototype = T(Pt.prototype, {
|
|
13618
13618
|
axis: function() {
|
|
13619
13619
|
return this._axis;
|
|
13620
13620
|
},
|
|
@@ -13635,7 +13635,7 @@ var Ah = { exports: {} };
|
|
|
13635
13635
|
var Jn = f.geom.CylindricalSurface = function(r, n, a, l, u) {
|
|
13636
13636
|
Pt.call(this, pt.cylindricalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
|
|
13637
13637
|
};
|
|
13638
|
-
b["verb.geom.CylindricalSurface"] = Jn, Jn.__name__ = ["verb", "geom", "CylindricalSurface"], Jn.__super__ = Pt, Jn.prototype =
|
|
13638
|
+
b["verb.geom.CylindricalSurface"] = Jn, Jn.__name__ = ["verb", "geom", "CylindricalSurface"], Jn.__super__ = Pt, Jn.prototype = T(Pt.prototype, {
|
|
13639
13639
|
axis: function() {
|
|
13640
13640
|
return this._axis;
|
|
13641
13641
|
},
|
|
@@ -13654,9 +13654,9 @@ var Ah = { exports: {} };
|
|
|
13654
13654
|
__class__: Jn
|
|
13655
13655
|
});
|
|
13656
13656
|
var Rr = f.geom.EllipseArc = function(r, n, a, l, u) {
|
|
13657
|
-
|
|
13657
|
+
Mt.call(this, pt.ellipseArc(r, n, a, l, u)), this._center = r, this._xaxis = n, this._yaxis = a, this._minAngle = l, this._maxAngle = u;
|
|
13658
13658
|
};
|
|
13659
|
-
b["verb.geom.EllipseArc"] = Rr, Rr.__name__ = ["verb", "geom", "EllipseArc"], Rr.__super__ =
|
|
13659
|
+
b["verb.geom.EllipseArc"] = Rr, Rr.__name__ = ["verb", "geom", "EllipseArc"], Rr.__super__ = Mt, Rr.prototype = T(Mt.prototype, {
|
|
13660
13660
|
center: function() {
|
|
13661
13661
|
return this._center;
|
|
13662
13662
|
},
|
|
@@ -13677,13 +13677,13 @@ var Ah = { exports: {} };
|
|
|
13677
13677
|
var ts = f.geom.Ellipse = function(r, n, a) {
|
|
13678
13678
|
Rr.call(this, r, n, a, 0, Math.PI * 2);
|
|
13679
13679
|
};
|
|
13680
|
-
b["verb.geom.Ellipse"] = ts, ts.__name__ = ["verb", "geom", "Ellipse"], ts.__super__ = Rr, ts.prototype =
|
|
13680
|
+
b["verb.geom.Ellipse"] = ts, ts.__name__ = ["verb", "geom", "Ellipse"], ts.__super__ = Rr, ts.prototype = T(Rr.prototype, {
|
|
13681
13681
|
__class__: ts
|
|
13682
13682
|
});
|
|
13683
13683
|
var es = f.geom.ExtrudedSurface = function(r, n) {
|
|
13684
13684
|
Pt.call(this, pt.extrudedSurface(m.normalized(n), m.norm(n), r.asNurbs())), this._profile = r, this._direction = n;
|
|
13685
13685
|
};
|
|
13686
|
-
b["verb.geom.ExtrudedSurface"] = es, es.__name__ = ["verb", "geom", "ExtrudedSurface"], es.__super__ = Pt, es.prototype =
|
|
13686
|
+
b["verb.geom.ExtrudedSurface"] = es, es.__name__ = ["verb", "geom", "ExtrudedSurface"], es.__super__ = Pt, es.prototype = T(Pt.prototype, {
|
|
13687
13687
|
profile: function() {
|
|
13688
13688
|
return this._profile;
|
|
13689
13689
|
},
|
|
@@ -13704,19 +13704,19 @@ var Ah = { exports: {} };
|
|
|
13704
13704
|
return a == null && (a = 1e-3), wt.dispatchMethod(lt, "curveAndSurface", [r.asNurbs(), n.asNurbs(), a]);
|
|
13705
13705
|
}, Fr.surfaces = function(r, n, a) {
|
|
13706
13706
|
return a == null && (a = 1e-3), lt.surfaces(r.asNurbs(), n.asNurbs(), a).map(function(l) {
|
|
13707
|
-
return new
|
|
13707
|
+
return new Mt(l);
|
|
13708
13708
|
});
|
|
13709
13709
|
}, Fr.surfacesAsync = function(r, n, a) {
|
|
13710
13710
|
return a == null && (a = 1e-3), wt.dispatchMethod(lt, "surfaces", [r.asNurbs(), n.asNurbs(), a]).then(function(l) {
|
|
13711
13711
|
return l.map(function(u) {
|
|
13712
|
-
return new
|
|
13712
|
+
return new Mt(u);
|
|
13713
13713
|
});
|
|
13714
13714
|
});
|
|
13715
13715
|
};
|
|
13716
13716
|
var rs = f.geom.Line = function(r, n) {
|
|
13717
|
-
|
|
13717
|
+
Mt.call(this, pt.polyline([r, n])), this._start = r, this._end = n;
|
|
13718
13718
|
};
|
|
13719
|
-
b["verb.geom.Line"] = rs, rs.__name__ = ["verb", "geom", "Line"], rs.__super__ =
|
|
13719
|
+
b["verb.geom.Line"] = rs, rs.__name__ = ["verb", "geom", "Line"], rs.__super__ = Mt, rs.prototype = T(Mt.prototype, {
|
|
13720
13720
|
start: function() {
|
|
13721
13721
|
return this._start;
|
|
13722
13722
|
},
|
|
@@ -13728,7 +13728,7 @@ var Ah = { exports: {} };
|
|
|
13728
13728
|
var ns = f.geom.RevolvedSurface = function(r, n, a, l) {
|
|
13729
13729
|
Pt.call(this, pt.revolvedSurface(r.asNurbs(), n, a, l)), this._profile = r, this._center = n, this._axis = a, this._angle = l;
|
|
13730
13730
|
};
|
|
13731
|
-
b["verb.geom.RevolvedSurface"] = ns, ns.__name__ = ["verb", "geom", "RevolvedSurface"], ns.__super__ = Pt, ns.prototype =
|
|
13731
|
+
b["verb.geom.RevolvedSurface"] = ns, ns.__name__ = ["verb", "geom", "RevolvedSurface"], ns.__super__ = Pt, ns.prototype = T(Pt.prototype, {
|
|
13732
13732
|
profile: function() {
|
|
13733
13733
|
return this._profile;
|
|
13734
13734
|
},
|
|
@@ -13746,7 +13746,7 @@ var Ah = { exports: {} };
|
|
|
13746
13746
|
var ss = f.geom.SphericalSurface = function(r, n) {
|
|
13747
13747
|
Pt.call(this, pt.sphericalSurface(r, [0, 0, 1], [1, 0, 0], n)), this._center = r, this._radius = n;
|
|
13748
13748
|
};
|
|
13749
|
-
b["verb.geom.SphericalSurface"] = ss, ss.__name__ = ["verb", "geom", "SphericalSurface"], ss.__super__ = Pt, ss.prototype =
|
|
13749
|
+
b["verb.geom.SphericalSurface"] = ss, ss.__name__ = ["verb", "geom", "SphericalSurface"], ss.__super__ = Pt, ss.prototype = T(Pt.prototype, {
|
|
13750
13750
|
center: function() {
|
|
13751
13751
|
return this._center;
|
|
13752
13752
|
},
|
|
@@ -13758,7 +13758,7 @@ var Ah = { exports: {} };
|
|
|
13758
13758
|
var is = f.geom.SweptSurface = function(r, n) {
|
|
13759
13759
|
Pt.call(this, pt.rationalTranslationalSurface(r.asNurbs(), n.asNurbs())), this._profile = r, this._rail = n;
|
|
13760
13760
|
};
|
|
13761
|
-
b["verb.geom.SweptSurface"] = is, is.__name__ = ["verb", "geom", "SweptSurface"], is.__super__ = Pt, is.prototype =
|
|
13761
|
+
b["verb.geom.SweptSurface"] = is, is.__name__ = ["verb", "geom", "SweptSurface"], is.__super__ = Pt, is.prototype = T(Pt.prototype, {
|
|
13762
13762
|
profile: function() {
|
|
13763
13763
|
return this._profile;
|
|
13764
13764
|
},
|
|
@@ -13857,7 +13857,7 @@ var Ah = { exports: {} };
|
|
|
13857
13857
|
return r.postMessage(R + V, "*"), V;
|
|
13858
13858
|
};
|
|
13859
13859
|
}
|
|
13860
|
-
function
|
|
13860
|
+
function M() {
|
|
13861
13861
|
var R = new MessageChannel();
|
|
13862
13862
|
R.port1.onmessage = function(U) {
|
|
13863
13863
|
var V = U.data;
|
|
@@ -13883,18 +13883,18 @@ var Ah = { exports: {} };
|
|
|
13883
13883
|
};
|
|
13884
13884
|
}
|
|
13885
13885
|
var F = Object.getPrototypeOf && Object.getPrototypeOf(r);
|
|
13886
|
-
F = F && F.setTimeout ? F : r, {}.toString.call(r.process) === "[object process]" ? S() : P() ? k() : r.MessageChannel ?
|
|
13886
|
+
F = F && F.setTimeout ? F : r, {}.toString.call(r.process) === "[object process]" ? S() : P() ? k() : r.MessageChannel ? M() : d && "onreadystatechange" in d.createElement("script") ? O() : C(), F.setImmediate = p, F.clearImmediate = I;
|
|
13887
13887
|
})(new Function("return this")()), qt.USE_CACHE = !1, qt.USE_ENUM_INDEX = !1, qt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Ot.count = 0, ie.i64tmp = function(r) {
|
|
13888
13888
|
var n, a = new Vt(0, 0);
|
|
13889
13889
|
return n = a, n;
|
|
13890
|
-
}(), Mt.__toStr = {}.toString, sr.BYTES_PER_ELEMENT = 1, St.queue = new D(), Ft.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Or.basePath = "", Yr.uuid = 0, Ns.main();
|
|
13890
|
+
}(), Tt.__toStr = {}.toString, sr.BYTES_PER_ELEMENT = 1, St.queue = new D(), Ft.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Or.basePath = "", Yr.uuid = 0, Ns.main();
|
|
13891
13891
|
}(typeof console < "u" ? console : { log: function() {
|
|
13892
13892
|
} }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
|
|
13893
13893
|
});
|
|
13894
13894
|
})(Ah);
|
|
13895
13895
|
var kd = Ah.exports;
|
|
13896
13896
|
const Nn = /* @__PURE__ */ Ed(kd);
|
|
13897
|
-
class
|
|
13897
|
+
class Mi {
|
|
13898
13898
|
constructor() {
|
|
13899
13899
|
this.c0 = 0, this.c1 = 0, this.c2 = 0, this.c3 = 0;
|
|
13900
13900
|
}
|
|
@@ -13930,7 +13930,7 @@ class Ti {
|
|
|
13930
13930
|
return this.c0 + this.c1 * t + this.c2 * e + this.c3 * s;
|
|
13931
13931
|
}
|
|
13932
13932
|
}
|
|
13933
|
-
class
|
|
13933
|
+
class Td extends Ms {
|
|
13934
13934
|
/**
|
|
13935
13935
|
* Constructs a new Catmull-Rom curve.
|
|
13936
13936
|
*
|
|
@@ -13940,7 +13940,7 @@ class Md extends Ts {
|
|
|
13940
13940
|
* @param tension - Tension of the curve.
|
|
13941
13941
|
*/
|
|
13942
13942
|
constructor(t = [], e = !1, s = "centripetal", o = 0.5) {
|
|
13943
|
-
super(), this.isCatmullRomCurve3d = !0, this.type = "CatmullRomCurve3d", this._tmp = new Z(), this._px = new
|
|
13943
|
+
super(), this.isCatmullRomCurve3d = !0, this.type = "CatmullRomCurve3d", this._tmp = new Z(), this._px = new Mi(), this._py = new Mi(), this._pz = new Mi(), this._points = t.map((h) => new Y(h)), this._closed = e, this._curveType = s, this._tension = o;
|
|
13944
13944
|
}
|
|
13945
13945
|
/**
|
|
13946
13946
|
* An array of 3D points defining the curve.
|
|
@@ -14010,8 +14010,8 @@ class Md extends Ts {
|
|
|
14010
14010
|
this._closed || g > 0 ? f = o[(g - 1) % h] : (this._tmp.subVectors(o[0], o[1]).add(o[0]), f = new Y(this._tmp.x, this._tmp.y, this._tmp.z));
|
|
14011
14011
|
const b = o[g % h], E = o[(g + 1) % h];
|
|
14012
14012
|
if (this._closed || g + 2 < h ? w = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), w = new Y(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
|
|
14013
|
-
const
|
|
14014
|
-
let L = Math.pow(f.distanceToSquared(b),
|
|
14013
|
+
const T = this._curveType === "chordal" ? 0.5 : 0.25;
|
|
14014
|
+
let L = Math.pow(f.distanceToSquared(b), T), z = Math.pow(b.distanceToSquared(E), T), D = Math.pow(E.distanceToSquared(w), T);
|
|
14015
14015
|
z < 1e-4 && (z = 1), L < 1e-4 && (L = z), D < 1e-4 && (D = z), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, w.x, L, z, D), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, w.y, L, z, D), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, w.z, L, z, D);
|
|
14016
14016
|
} else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, w.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, w.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, w.z, this._tension));
|
|
14017
14017
|
return s.set(
|
|
@@ -14195,7 +14195,7 @@ class On {
|
|
|
14195
14195
|
static createFitPointsForClosedCurve(t) {
|
|
14196
14196
|
if (t.length < 4)
|
|
14197
14197
|
throw new Error("At least 4 points are required for a closed NURBS curve");
|
|
14198
|
-
const e = new
|
|
14198
|
+
const e = new Td(
|
|
14199
14199
|
t,
|
|
14200
14200
|
!0,
|
|
14201
14201
|
"centripetal"
|
|
@@ -14210,7 +14210,7 @@ class On {
|
|
|
14210
14210
|
return On.byPoints(o, e, s);
|
|
14211
14211
|
}
|
|
14212
14212
|
}
|
|
14213
|
-
class mn extends
|
|
14213
|
+
class mn extends Ms {
|
|
14214
14214
|
constructor(t, e, s, o, h) {
|
|
14215
14215
|
super();
|
|
14216
14216
|
const c = arguments.length;
|
|
@@ -14416,7 +14416,7 @@ class mn extends Ts {
|
|
|
14416
14416
|
}
|
|
14417
14417
|
var an = 256, Sh = [], Lo = 256, Ds;
|
|
14418
14418
|
for (; an--; ) Sh[an] = (an + 256).toString(16).substring(1);
|
|
14419
|
-
function
|
|
14419
|
+
function Md(i) {
|
|
14420
14420
|
var t = 0, e = 11;
|
|
14421
14421
|
if (!Ds || an + e > Lo * 2)
|
|
14422
14422
|
for (Ds = "", an = 0; t < Lo; t++)
|
|
@@ -14436,7 +14436,7 @@ class pn {
|
|
|
14436
14436
|
* ```
|
|
14437
14437
|
*/
|
|
14438
14438
|
constructor(t, e) {
|
|
14439
|
-
t = t || {}, ks(t, { objectId:
|
|
14439
|
+
t = t || {}, ks(t, { objectId: Md() }), this._attrs = new eu(t, e);
|
|
14440
14440
|
}
|
|
14441
14441
|
/**
|
|
14442
14442
|
* Gets the attributes object for this AcDbObject.
|
|
@@ -15509,7 +15509,7 @@ const ka = class ka extends Ee {
|
|
|
15509
15509
|
};
|
|
15510
15510
|
ka.typeName = "3dVertex";
|
|
15511
15511
|
let zo = ka;
|
|
15512
|
-
const
|
|
15512
|
+
const Ta = class Ta extends ke {
|
|
15513
15513
|
/**
|
|
15514
15514
|
* Creates a new arc entity.
|
|
15515
15515
|
*
|
|
@@ -15921,9 +15921,9 @@ const Ma = class Ma extends ke {
|
|
|
15921
15921
|
return t.circularArc(this._geo, this.lineStyle);
|
|
15922
15922
|
}
|
|
15923
15923
|
};
|
|
15924
|
-
|
|
15925
|
-
let Vi =
|
|
15926
|
-
const
|
|
15924
|
+
Ta.typeName = "Arc";
|
|
15925
|
+
let Vi = Ta;
|
|
15926
|
+
const Ma = class Ma extends Ee {
|
|
15927
15927
|
/**
|
|
15928
15928
|
* Creates a new block reference entity.
|
|
15929
15929
|
*
|
|
@@ -16269,8 +16269,8 @@ const Ta = class Ta extends Ee {
|
|
|
16269
16269
|
);
|
|
16270
16270
|
}
|
|
16271
16271
|
};
|
|
16272
|
-
|
|
16273
|
-
let ti =
|
|
16272
|
+
Ma.typeName = "BlockReference";
|
|
16273
|
+
let ti = Ma;
|
|
16274
16274
|
const Na = class Na extends ke {
|
|
16275
16275
|
/**
|
|
16276
16276
|
* Creates a new circle entity.
|
|
@@ -18647,8 +18647,8 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
|
|
|
18647
18647
|
let c = 0;
|
|
18648
18648
|
for (let E = 0; E <= this.numRows; E++) {
|
|
18649
18649
|
e -= E > 0 ? this.rowHeight(E - 1) : 0, s = 0;
|
|
18650
|
-
for (let
|
|
18651
|
-
s +=
|
|
18650
|
+
for (let T = 0; T <= this.numColumns; T++)
|
|
18651
|
+
s += T > 0 ? this.columnWidth(T - 1) : 0, h[c++] = s, h[c++] = e, h[c++] = 0;
|
|
18652
18652
|
}
|
|
18653
18653
|
const g = [], x = new Array(this.numRows * this.numColumns).fill(
|
|
18654
18654
|
!1
|
|
@@ -18657,10 +18657,10 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
|
|
|
18657
18657
|
let f = 0;
|
|
18658
18658
|
for (let E = 0; E < this.numColumns; E++) {
|
|
18659
18659
|
s += E > 0 ? this.columnWidth(E - 1) : 0, e = 0;
|
|
18660
|
-
for (let
|
|
18661
|
-
e +=
|
|
18662
|
-
const L = this.cell(
|
|
18663
|
-
if (f =
|
|
18660
|
+
for (let T = 0; T < this.numRows; T++) {
|
|
18661
|
+
e += T > 0 ? this.rowHeight(T - 1) : 0;
|
|
18662
|
+
const L = this.cell(T * this.numColumns + E);
|
|
18663
|
+
if (f = T * this.numColumns + E, L && !x[f]) {
|
|
18664
18664
|
const z = L.borderWidth ?? 1, D = L.borderHeight ?? 1;
|
|
18665
18665
|
this.fillVisited(
|
|
18666
18666
|
x,
|
|
@@ -18668,11 +18668,11 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
|
|
|
18668
18668
|
this.numColumns,
|
|
18669
18669
|
z,
|
|
18670
18670
|
D
|
|
18671
|
-
), o[c++] = E +
|
|
18672
|
-
const B = h[o[c - 1] * 3] - s, dt = E + (
|
|
18673
|
-
E + z == this.numColumns && (o[c++] = E +
|
|
18671
|
+
), o[c++] = E + T * (this.numColumns + 1), o[c++] = E + T * (this.numColumns + 1) + z;
|
|
18672
|
+
const B = h[o[c - 1] * 3] - s, dt = E + (T + D) * (this.numColumns + 1) + z;
|
|
18673
|
+
E + z == this.numColumns && (o[c++] = E + T * (this.numColumns + 1) + z, o[c++] = dt);
|
|
18674
18674
|
const vt = -h[dt * 3 + 1] - e;
|
|
18675
|
-
if (
|
|
18675
|
+
if (T + D == this.numRows && (o[c++] = E + (T + D) * (this.numColumns + 1) + D, o[c++] = E + (T + D) * (this.numColumns + 1)), o[c++] = E + (T + D) * (this.numColumns + 1), o[c++] = E + T * (this.numColumns + 1), L.text) {
|
|
18676
18676
|
const ot = L.attachmentPoint || this.attachmentPoint || Pe.MiddleCenter, W = this.getTableTextOffset(
|
|
18677
18677
|
ot,
|
|
18678
18678
|
B,
|
|
@@ -22353,14 +22353,14 @@ class Do {
|
|
|
22353
22353
|
new Zt().subVectors(w.end, w.center);
|
|
22354
22354
|
const E = Math.sqrt(
|
|
22355
22355
|
Math.pow(w.end.x, 2) + Math.pow(w.end.y, 2)
|
|
22356
|
-
),
|
|
22356
|
+
), T = E * w.lengthOfMinorAxis;
|
|
22357
22357
|
let L = kt.degToRad(w.startAngle || 0), z = kt.degToRad(w.endAngle || 0);
|
|
22358
22358
|
const D = Math.atan2(w.end.y, w.end.x);
|
|
22359
22359
|
w.isCCW || (L = Math.PI * 2 - L, z = Math.PI * 2 - z), x.add(
|
|
22360
22360
|
new _a(
|
|
22361
22361
|
{ ...w.center, z: 0 },
|
|
22362
22362
|
E,
|
|
22363
|
-
|
|
22363
|
+
T,
|
|
22364
22364
|
L,
|
|
22365
22365
|
z,
|
|
22366
22366
|
!w.isCCW,
|
|
@@ -22378,12 +22378,12 @@ class Do {
|
|
|
22378
22378
|
})
|
|
22379
22379
|
);
|
|
22380
22380
|
let E = !0;
|
|
22381
|
-
const
|
|
22381
|
+
const T = w.controlPoints.map((L) => (L.weight == null && (E = !1), L.weight || 1));
|
|
22382
22382
|
x.add(
|
|
22383
22383
|
new mn(
|
|
22384
22384
|
b,
|
|
22385
22385
|
w.knots,
|
|
22386
|
-
E ?
|
|
22386
|
+
E ? T : void 0
|
|
22387
22387
|
)
|
|
22388
22388
|
);
|
|
22389
22389
|
} else if (w.numberOfFitData > 0) {
|
|
@@ -22973,7 +22973,7 @@ class ba extends pn {
|
|
|
22973
22973
|
this._extents.copy(t);
|
|
22974
22974
|
}
|
|
22975
22975
|
}
|
|
22976
|
-
class
|
|
22976
|
+
class Th extends pn {
|
|
22977
22977
|
/**
|
|
22978
22978
|
* Creates a new AcDbDictionary instance.
|
|
22979
22979
|
*
|
|
@@ -23164,7 +23164,7 @@ class Mh extends pn {
|
|
|
23164
23164
|
return new ua(this._recordsByName);
|
|
23165
23165
|
}
|
|
23166
23166
|
}
|
|
23167
|
-
class Gd extends
|
|
23167
|
+
class Gd extends Th {
|
|
23168
23168
|
/**
|
|
23169
23169
|
* Searches the dictionary for a layout associated with the specified block table record ID.
|
|
23170
23170
|
*
|
|
@@ -23257,10 +23257,11 @@ class Wd {
|
|
|
23257
23257
|
convertLayout(t, e) {
|
|
23258
23258
|
var o, h;
|
|
23259
23259
|
const s = new ba();
|
|
23260
|
-
if (s.layoutName = t.layoutName, s.tabOrder = t.tabOrder, t.
|
|
23260
|
+
if (s.layoutName = t.layoutName, s.tabOrder = t.tabOrder, t.layoutName === "Model") {
|
|
23261
23261
|
const c = Ge.MODEL_SPACE_NAME;
|
|
23262
|
-
(
|
|
23263
|
-
}
|
|
23262
|
+
(o = e.tables.BLOCK_RECORD) == null || o.entries.some((g) => g.name.toUpperCase() === c ? (s.blockTableRecordId = g.handle, !0) : !1);
|
|
23263
|
+
} else
|
|
23264
|
+
(h = e.tables.BLOCK_RECORD) == null || h.entries.some((c) => c.layoutObjects === t.handle ? (s.blockTableRecordId = c.handle, !0) : !1), s.blockTableRecordId || (s.blockTableRecordId = t.paperSpaceTableId);
|
|
23264
23265
|
return s.limits.min.copy(t.minLimit), s.limits.max.copy(t.maxLimit), s.extents.min.copy(t.minExtent), s.extents.max.copy(t.maxExtent), this.processCommonAttrs(t, s), s;
|
|
23265
23266
|
}
|
|
23266
23267
|
/**
|
|
@@ -23346,11 +23347,11 @@ class Hd {
|
|
|
23346
23347
|
timeout: x
|
|
23347
23348
|
});
|
|
23348
23349
|
const f = (b) => {
|
|
23349
|
-
const { id: E, success:
|
|
23350
|
+
const { id: E, success: T, data: L, error: z } = b.data;
|
|
23350
23351
|
if (E !== t) return;
|
|
23351
23352
|
this.cleanupTask(t);
|
|
23352
23353
|
const D = Date.now() - o;
|
|
23353
|
-
h(
|
|
23354
|
+
h(T ? {
|
|
23354
23355
|
success: !0,
|
|
23355
23356
|
data: L,
|
|
23356
23357
|
duration: D
|
|
@@ -23653,12 +23654,12 @@ class Xd extends Zo {
|
|
|
23653
23654
|
this.config.convertByEntityType && (g = this.groupAndFlattenByType(g));
|
|
23654
23655
|
const w = e.tables.blockTable.modelSpace;
|
|
23655
23656
|
await f.processChunk(async (b, E) => {
|
|
23656
|
-
let
|
|
23657
|
+
let T = [], L = b < E ? g[b].type : "";
|
|
23657
23658
|
for (let z = b; z < E; z++) {
|
|
23658
23659
|
const D = g[z], B = c.convert(D);
|
|
23659
|
-
B && (this.config.convertByEntityType && D.type !== L && (w.appendEntity(
|
|
23660
|
+
B && (this.config.convertByEntityType && D.type !== L && (w.appendEntity(T), T = [], L = D.type), T.push(B));
|
|
23660
23661
|
}
|
|
23661
|
-
if (w.appendEntity(
|
|
23662
|
+
if (w.appendEntity(T), h) {
|
|
23662
23663
|
let z = o.value + E / x * (100 - o.value);
|
|
23663
23664
|
z > 100 && (z = 100), await h(z, "ENTITY", "IN-PROGRESS");
|
|
23664
23665
|
}
|
|
@@ -23879,7 +23880,7 @@ class Xd extends Zo {
|
|
|
23879
23880
|
var o;
|
|
23880
23881
|
const s = (o = t.tables.STYLE) == null ? void 0 : o.entries;
|
|
23881
23882
|
s && s.length > 0 && s.forEach((h) => {
|
|
23882
|
-
const c = new
|
|
23883
|
+
const c = new Mh(h);
|
|
23883
23884
|
this.processCommonTableEntryAttrs(h, c), e.tables.textStyleTable.add(c);
|
|
23884
23885
|
});
|
|
23885
23886
|
}
|
|
@@ -24061,10 +24062,10 @@ class Kd extends Zo {
|
|
|
24061
24062
|
this.config.convertByEntityType && (c = this.groupAndFlattenByType(c));
|
|
24062
24063
|
const f = e.tables.blockTable.modelSpace;
|
|
24063
24064
|
await x.processChunk(async (w, b) => {
|
|
24064
|
-
let E = [],
|
|
24065
|
+
let E = [], T = w < b ? c[w].type : "";
|
|
24065
24066
|
for (let L = w; L < b; L++) {
|
|
24066
24067
|
const z = c[L];
|
|
24067
|
-
this.config.convertByEntityType && z.type !==
|
|
24068
|
+
this.config.convertByEntityType && z.type !== T && (this.triggerEvents(f, E), E = [], T = z.type), E.push(z);
|
|
24068
24069
|
}
|
|
24069
24070
|
if (this.triggerEvents(f, E), h) {
|
|
24070
24071
|
let L = o.value + b / g * (100 - o.value);
|
|
@@ -25055,7 +25056,7 @@ class Qs extends Fn {
|
|
|
25055
25056
|
return this._linetype.pattern[t].elementLength;
|
|
25056
25057
|
}
|
|
25057
25058
|
}
|
|
25058
|
-
class
|
|
25059
|
+
class Mh extends Fn {
|
|
25059
25060
|
/**
|
|
25060
25061
|
* Creates a new AcDbTextStyleTableRecord instance.
|
|
25061
25062
|
*
|
|
@@ -26206,7 +26207,7 @@ class E0 extends pn {
|
|
|
26206
26207
|
viewportTable: new e0(this)
|
|
26207
26208
|
}, this._dictionaries = {
|
|
26208
26209
|
layouts: new Gd(this),
|
|
26209
|
-
imageDefs: new
|
|
26210
|
+
imageDefs: new Th(this)
|
|
26210
26211
|
};
|
|
26211
26212
|
}
|
|
26212
26213
|
/**
|
|
@@ -26531,7 +26532,7 @@ class E0 extends pn {
|
|
|
26531
26532
|
* @param options Input options to read drawing data
|
|
26532
26533
|
*/
|
|
26533
26534
|
async openUri(t, e) {
|
|
26534
|
-
var
|
|
26535
|
+
var T;
|
|
26535
26536
|
this.events.openProgress.dispatch({
|
|
26536
26537
|
database: this,
|
|
26537
26538
|
percentage: 0,
|
|
@@ -26550,7 +26551,7 @@ class E0 extends pn {
|
|
|
26550
26551
|
);
|
|
26551
26552
|
const o = s.headers.get("content-length"), h = o ? parseInt(o, 10) : null;
|
|
26552
26553
|
let c = 0;
|
|
26553
|
-
const g = (
|
|
26554
|
+
const g = (T = s.body) == null ? void 0 : T.getReader();
|
|
26554
26555
|
if (!g)
|
|
26555
26556
|
throw new Error("Failed to get response reader");
|
|
26556
26557
|
const x = [];
|
|
@@ -26646,7 +26647,7 @@ class E0 extends pn {
|
|
|
26646
26647
|
totalPatternLength: 0
|
|
26647
26648
|
})
|
|
26648
26649
|
)), t.textStyle && this._tables.textStyleTable.add(
|
|
26649
|
-
new
|
|
26650
|
+
new Mh({
|
|
26650
26651
|
name: "Standard",
|
|
26651
26652
|
standardFlag: 0,
|
|
26652
26653
|
fixedTextHeight: 0,
|
|
@@ -27229,7 +27230,7 @@ export {
|
|
|
27229
27230
|
Zo as AcDbDatabaseConverter,
|
|
27230
27231
|
kr as AcDbDatabaseConverterManager,
|
|
27231
27232
|
aa as AcDbDiametricDimension,
|
|
27232
|
-
|
|
27233
|
+
Th as AcDbDictionary,
|
|
27233
27234
|
hu as AcDbDimArrowType,
|
|
27234
27235
|
Zd as AcDbDimStyleTable,
|
|
27235
27236
|
Es as AcDbDimStyleTableRecord,
|
|
@@ -27284,7 +27285,7 @@ export {
|
|
|
27284
27285
|
$i as AcDbText,
|
|
27285
27286
|
Fd as AcDbTextHorizontalMode,
|
|
27286
27287
|
t0 as AcDbTextStyleTable,
|
|
27287
|
-
|
|
27288
|
+
Mh as AcDbTextStyleTableRecord,
|
|
27288
27289
|
Bd as AcDbTextVerticalMode,
|
|
27289
27290
|
Zi as AcDbTrace,
|
|
27290
27291
|
Ko as AcDbUnitsValue,
|
|
@@ -27298,10 +27299,10 @@ export {
|
|
|
27298
27299
|
fa as AcGeArea2d,
|
|
27299
27300
|
be as AcGeBox2d,
|
|
27300
27301
|
Ct as AcGeBox3d,
|
|
27301
|
-
|
|
27302
|
+
Td as AcGeCatmullRomCurve3d,
|
|
27302
27303
|
Ps as AcGeCircArc2d,
|
|
27303
27304
|
Ln as AcGeCircArc3d,
|
|
27304
|
-
|
|
27305
|
+
Ts as AcGeCurve2d,
|
|
27305
27306
|
_a as AcGeEllipseArc2d,
|
|
27306
27307
|
va as AcGeEllipseArc3d,
|
|
27307
27308
|
Sd as AcGeEuler,
|
|
@@ -27338,7 +27339,7 @@ export {
|
|
|
27338
27339
|
fh as DEFAULT_TOL,
|
|
27339
27340
|
oh as DEG2RAD,
|
|
27340
27341
|
iu as DefaultLoadingManager,
|
|
27341
|
-
|
|
27342
|
+
Tn as FLOAT_TOL,
|
|
27342
27343
|
S0 as ORIGIN_POINT_2D,
|
|
27343
27344
|
ph as ORIGIN_POINT_3D,
|
|
27344
27345
|
lh as RAD2DEG,
|