@mlightcad/data-model 1.3.13 → 1.3.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -837,7 +837,7 @@ var Go = { exports: {} };
837
837
  function E(z, D, B) {
838
838
  return f(z) || b.apply(this, arguments);
839
839
  }
840
- function M(z, D) {
840
+ function T(z, D) {
841
841
  var B = this, dt, vt, ot, W = "loglevel";
842
842
  typeof z == "string" ? W += ":" + z : typeof z == "symbol" && (W = void 0);
843
843
  function ut(bt) {
@@ -919,11 +919,11 @@ var Go = { exports: {} };
919
919
  var Wt = st();
920
920
  Wt != null && (ot = qt(Wt)), w.call(B);
921
921
  }
922
- c = new M(), c.getLogger = function(z) {
922
+ c = new T(), c.getLogger = function(z) {
923
923
  if (typeof z != "symbol" && typeof z != "string" || z === "")
924
924
  throw new TypeError("You must supply a name when creating a logger.");
925
925
  var D = h[z];
926
- return D || (D = h[z] = new M(
926
+ return D || (D = h[z] = new T(
927
927
  z,
928
928
  c.methodFactory
929
929
  )), D;
@@ -1739,11 +1739,11 @@ class on {
1739
1739
  const b = (x = t.basePoint) == null ? void 0 : x.clone();
1740
1740
  t.basePoint = void 0;
1741
1741
  const E = e.newIterator();
1742
- let M = !0;
1742
+ let T = !0;
1743
1743
  for (const L of E)
1744
- if (L.color.isByBlock && s ? (yo.copy(L.color), L.color.color = s, this.addEntity(L, g, t), L.color.copy(yo)) : this.addEntity(L, g, t), M) {
1744
+ if (L.color.isByBlock && s ? (yo.copy(L.color), L.color.color = s, this.addEntity(L, g, t), L.color.copy(yo)) : this.addEntity(L, g, t), T) {
1745
1745
  const z = g[0];
1746
- t.basePoint = z.basePoint, M = !1;
1746
+ t.basePoint = z.basePoint, T = !1;
1747
1747
  }
1748
1748
  w = t.group(g), w && o && this.set(f, w), t.basePoint = b;
1749
1749
  }
@@ -2240,9 +2240,9 @@ function xt(i, t) {
2240
2240
  return x.reduce((w, b) => {
2241
2241
  b.pushContext && w.push({});
2242
2242
  let E = w[w.length - 1];
2243
- for (let M of typeof b.code == "number" ? [b.code] : b.code) {
2244
- let L = E[M] ?? (E[M] = []);
2245
- b.isMultiple && L.length && f && console.warn(`Snippet ${L[L.length - 1].name} for code(${M}) is shadowed by ${b.name}`), L.push(b);
2243
+ for (let T of typeof b.code == "number" ? [b.code] : b.code) {
2244
+ let L = E[T] ?? (E[T] = []);
2245
+ b.isMultiple && L.length && f && console.warn(`Snippet ${L[L.length - 1].name} for code(${T}) is shadowed by ${b.name}`), L.push(b);
2246
2246
  }
2247
2247
  return w;
2248
2248
  }, [{}]);
@@ -2259,7 +2259,7 @@ function xt(i, t) {
2259
2259
  break;
2260
2260
  }
2261
2261
  w.isMultiple || x[e.code].pop();
2262
- let { name: b, parser: E, isMultiple: M, isReducible: L } = w, z = E == null ? void 0 : E(e, s, o);
2262
+ let { name: b, parser: E, isMultiple: T, isReducible: L } = w, z = E == null ? void 0 : E(e, s, o);
2263
2263
  if (z === ca) {
2264
2264
  s.rewind();
2265
2265
  break;
@@ -2275,7 +2275,7 @@ function xt(i, t) {
2275
2275
  }
2276
2276
  return [W, Ii(ot[ot.length - 1])];
2277
2277
  }(o, b);
2278
- M && !L ? (Object.prototype.hasOwnProperty.call(D, B) || (D[B] = []), D[B].push(z)) : D[B] = z;
2278
+ T && !L ? (Object.prototype.hasOwnProperty.call(D, B) || (D[B] = []), D[B].push(z)) : D[B] = z;
2279
2279
  }
2280
2280
  w.pushContext && (g -= 1), c = !0, e = s.next();
2281
2281
  }
@@ -2584,14 +2584,14 @@ function gl(i, t, e) {
2584
2584
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2585
2585
  }
2586
2586
  ml(pl, "ForEntityName", "BODY");
2587
- let Mu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Tu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2587
+ let Tu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Mu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2588
2588
  class fl {
2589
2589
  parseEntity(t, e) {
2590
2590
  let s = {};
2591
2591
  return this.parser(e, t, s), s;
2592
2592
  }
2593
2593
  constructor() {
2594
- gl(this, "parser", xt(Tu, Mu));
2594
+ gl(this, "parser", xt(Mu, Tu));
2595
2595
  }
2596
2596
  }
2597
2597
  gl(fl, "ForEntityName", "CIRCLE");
@@ -2781,7 +2781,7 @@ function kl(i, t, e) {
2781
2781
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2782
2782
  }
2783
2783
  Pl(El, "ForEntityName", "INSERT");
2784
- let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotation", parser: j }, { code: 212, name: "offsetFromBlock", parser: j }, { code: 211, name: "horizontalDirection", parser: j }, { code: 210, name: "normal", parser: j }, { code: 340, name: "associatedAnnotation", parser: y }, { code: 77, name: "byBlockColor", parser: y }, { code: 10, name: "vertices", parser: j, isMultiple: !0 }, { code: 76, name: "numberOfVertices", parser: y }, { code: 41, name: "textWidth", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 75, name: "isHooklineExists", parser: Bt }, { code: 74, name: "isHooklineSameDirection", parser: Bt }, { code: 73, name: "leaderCreationFlag", parser: y }, { code: 72, name: "isSpline", parser: Bt }, { code: 71, name: "isArrowheadEnabled", parser: Bt }, { code: 3, name: "styleName", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut], Ml = class {
2784
+ let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotation", parser: j }, { code: 212, name: "offsetFromBlock", parser: j }, { code: 211, name: "horizontalDirection", parser: j }, { code: 210, name: "normal", parser: j }, { code: 340, name: "associatedAnnotation", parser: y }, { code: 77, name: "byBlockColor", parser: y }, { code: 10, name: "vertices", parser: j, isMultiple: !0 }, { code: 76, name: "numberOfVertices", parser: y }, { code: 41, name: "textWidth", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 75, name: "isHooklineExists", parser: Bt }, { code: 74, name: "isHooklineSameDirection", parser: Bt }, { code: 73, name: "leaderCreationFlag", parser: y }, { code: 72, name: "isSpline", parser: Bt }, { code: 71, name: "isArrowheadEnabled", parser: Bt }, { code: 3, name: "styleName", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut], Tl = class {
2785
2785
  parseEntity(t, e) {
2786
2786
  let s = {};
2787
2787
  return this.parser(e, t, s), s;
@@ -2790,9 +2790,9 @@ let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotat
2790
2790
  kl(this, "parser", xt(Ku, Xu));
2791
2791
  }
2792
2792
  };
2793
- kl(Ml, "ForEntityName", "LEADER");
2793
+ kl(Tl, "ForEntityName", "LEADER");
2794
2794
  (br = {})[br.TextAnnotation = 0] = "TextAnnotation", br[br.ToleranceAnnotation = 1] = "ToleranceAnnotation", br[br.BlockReferenceAnnotation = 2] = "BlockReferenceAnnotation", br[br.NoAnnotation = 3] = "NoAnnotation";
2795
- function Tl(i, t, e) {
2795
+ function Ml(i, t, e) {
2796
2796
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2797
2797
  }
2798
2798
  let $u = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Zu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 11, name: "endPoint", parser: j }, { code: 10, name: "startPoint", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
@@ -2802,10 +2802,10 @@ class Nl {
2802
2802
  return this.parser(e, t, s), s;
2803
2803
  }
2804
2804
  constructor() {
2805
- Tl(this, "parser", xt(Zu, $u));
2805
+ Ml(this, "parser", xt(Zu, $u));
2806
2806
  }
2807
2807
  }
2808
- Tl(Nl, "ForEntityName", "LINE");
2808
+ Ml(Nl, "ForEntityName", "LINE");
2809
2809
  (xs = {})[xs.IS_CLOSED = 1] = "IS_CLOSED", xs[xs.PLINE_GEN = 128] = "PLINE_GEN";
2810
2810
  let Qu = { flag: 0, elevation: 0, thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 }, vertices: [] }, Ju = { bulge: 0 }, tc = [{ code: 42, name: "bulge", parser: y }, { code: 41, name: "endWidth", parser: y }, { code: 40, name: "startWidth", parser: y }, { code: 91, name: "id", parser: y }, { code: 20, name: "y", parser: y }, { code: 10, name: "x", parser: y }], ec = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 10, name: "vertices", isMultiple: !0, parser(i, t) {
2811
2811
  let e = {};
@@ -3393,7 +3393,7 @@ class sh {
3393
3393
  }
3394
3394
  }
3395
3395
  nh(sh, "ForEntityName", "MULTILEADER");
3396
- let Ic = Object.fromEntries([rl, ll, dl, pl, fl, Ws, vl, xl, Il, El, Ml, Nl, Hs, Ll, ul, sh, zl, Bl, Ul, Gl, Wl, Yl, Xl, $l, Ys, al, Ql, Al, ma, qs, th, rh].map((i) => [i.ForEntityName, new i()]));
3396
+ let Ic = Object.fromEntries([rl, ll, dl, pl, fl, Ws, vl, xl, Il, El, Tl, Nl, Hs, Ll, ul, sh, zl, Bl, Ul, Gl, Wl, Yl, Xl, $l, Ys, al, Ql, Al, ma, qs, th, rh].map((i) => [i.ForEntityName, new i()]));
3397
3397
  function ih(i, t) {
3398
3398
  let e = [];
3399
3399
  for (; !At(i, 0, "EOF"); ) {
@@ -3478,10 +3478,10 @@ function kc(i, t) {
3478
3478
  return s;
3479
3479
  }
3480
3480
  (Fe = {})[Fe.NOT_APPLICABLE = 0] = "NOT_APPLICABLE", Fe[Fe.KEEP_EXISTING = 1] = "KEEP_EXISTING", Fe[Fe.USE_CLONE = 2] = "USE_CLONE", Fe[Fe.XREF_VALUE_NAME = 3] = "XREF_VALUE_NAME", Fe[Fe.VALUE_NAME = 4] = "VALUE_NAME", Fe[Fe.UNMANGLE_NAME = 5] = "UNMANGLE_NAME";
3481
- let pa = [{ code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 5, name: "handle", parser: y }], Mc = [{ code: 3, name: "entries", parser: (i, t) => {
3481
+ let pa = [{ code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 5, name: "handle", parser: y }], Tc = [{ code: 3, name: "entries", parser: (i, t) => {
3482
3482
  let e = { name: i.value };
3483
3483
  return (i = t.next()).code === 350 ? e.objectSoftId = i.value : i.code === 360 ? e.objectHardId = i.value : t.rewind(), e;
3484
- }, isMultiple: !0 }, { code: 281, name: "recordCloneFlag", parser: y }, { code: 280, name: "isHardOwned", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...pa], Tc = [{ code: 330, name: "imageDefReactorIdSoft", isMultiple: !0, parser: y }, { code: 90, name: "version", parser: y }, { code: 1, name: "fileName", parser: y }, { code: 10, name: "size", parser: j }, { code: 11, name: "sizeOfOnePixel", parser: j }, { code: 280, name: "isLoaded", parser: y }, { code: 281, name: "resolutionUnits", parser: y }, { code: 100, name: "subclassMarker", parser: y }];
3484
+ }, isMultiple: !0 }, { code: 281, name: "recordCloneFlag", parser: y }, { code: 280, name: "isHardOwned", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...pa], Mc = [{ code: 330, name: "imageDefReactorIdSoft", isMultiple: !0, parser: y }, { code: 90, name: "version", parser: y }, { code: 1, name: "fileName", parser: y }, { code: 10, name: "size", parser: j }, { code: 11, name: "sizeOfOnePixel", parser: j }, { code: 280, name: "isLoaded", parser: y }, { code: 281, name: "resolutionUnits", parser: y }, { code: 100, name: "subclassMarker", parser: y }];
3485
3485
  (rn = {})[rn.NOUNIT = 0] = "NOUNIT", rn[rn.CENTIMETERS = 2] = "CENTIMETERS", rn[rn.INCH = 5] = "INCH";
3486
3486
  (bs = {})[bs.PSLTSCALE = 1] = "PSLTSCALE", bs[bs.LIMCHECK = 2] = "LIMCHECK";
3487
3487
  (nn = {})[nn.INCHES = 0] = "INCHES", nn[nn.MILLIMETERS = 1] = "MILLIMETERS", nn[nn.PIXELS = 2] = "PIXELS";
@@ -3498,7 +3498,7 @@ function wo(i, t) {
3498
3498
  }
3499
3499
  return t.rewind(), e;
3500
3500
  }
3501
- let Lc = { LAYOUT: Nc, PLOTSETTINGS: ah, DICTIONARY: Mc, SPATIAL_FILTER: Cc, IMAGEDEF: Tc };
3501
+ let Lc = { LAYOUT: Nc, PLOTSETTINGS: ah, DICTIONARY: Tc, SPATIAL_FILTER: Cc, IMAGEDEF: Mc };
3502
3502
  function Oc(i, t) {
3503
3503
  let e = [];
3504
3504
  for (; i.code !== 0 || !["EOF", "ENDSEC"].includes(i.value); ) {
@@ -3756,9 +3756,9 @@ class Xc {
3756
3756
  const s = new TextDecoder("utf-8");
3757
3757
  let o = 0, h = "", c = null, g = null, x = !1;
3758
3758
  for (; o < t.byteLength; ) {
3759
- const E = Math.min(o + 65536, t.byteLength), M = t.slice(o, E);
3759
+ const E = Math.min(o + 65536, t.byteLength), T = t.slice(o, E);
3760
3760
  o = E;
3761
- const z = (h + s.decode(M, { stream: !0 })).split(/\r?\n/);
3761
+ const z = (h + s.decode(T, { stream: !0 })).split(/\r?\n/);
3762
3762
  h = z.pop() ?? "";
3763
3763
  for (let D = 0; D < z.length; D++) {
3764
3764
  const B = z[D].trim();
@@ -4738,8 +4738,8 @@ const zi = class mh {
4738
4738
  * @returns Return this matrix
4739
4739
  */
4740
4740
  multiplyMatrices(t, e) {
4741
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], w = s[4], b = s[7], E = s[2], M = s[5], L = s[8], z = o[0], D = o[3], B = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4742
- return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * B + g * ot + x * st, h[1] = f * z + w * dt + b * W, h[4] = f * D + w * vt + b * ut, h[7] = f * B + w * ot + b * st, h[2] = E * z + M * dt + L * W, h[5] = E * D + M * vt + L * ut, h[8] = E * B + M * ot + L * st, this;
4741
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], w = s[4], b = s[7], E = s[2], T = s[5], L = s[8], z = o[0], D = o[3], B = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4742
+ return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * B + g * ot + x * st, h[1] = f * z + w * dt + b * W, h[4] = f * D + w * vt + b * ut, h[7] = f * B + w * ot + b * st, h[2] = E * z + T * dt + L * W, h[5] = E * D + T * vt + L * ut, h[8] = E * B + T * ot + L * st, this;
4743
4743
  }
4744
4744
  /**
4745
4745
  * Multiply every component of the matrix by the scalar value s.
@@ -4764,10 +4764,10 @@ const zi = class mh {
4764
4764
  * @returns Return this matrix
4765
4765
  */
4766
4766
  invert() {
4767
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = w * c - g * f, E = g * x - w * h, M = f * h - c * x, L = e * b + s * E + o * M;
4767
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = w * c - g * f, E = g * x - w * h, T = f * h - c * x, L = e * b + s * E + o * T;
4768
4768
  if (L === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
4769
4769
  const z = 1 / L;
4770
- return t[0] = b * z, t[1] = (o * f - w * s) * z, t[2] = (g * s - o * c) * z, t[3] = E * z, t[4] = (w * e - o * x) * z, t[5] = (o * h - g * e) * z, t[6] = M * z, t[7] = (s * x - f * e) * z, t[8] = (c * e - s * h) * z, this;
4770
+ return t[0] = b * z, t[1] = (o * f - w * s) * z, t[2] = (g * s - o * c) * z, t[3] = E * z, t[4] = (w * e - o * x) * z, t[5] = (o * h - g * e) * z, t[6] = T * z, t[7] = (s * x - f * e) * z, t[8] = (c * e - s * h) * z, this;
4771
4771
  }
4772
4772
  /**
4773
4773
  * Transpose this matrix in place.
@@ -4917,7 +4917,7 @@ const zi = class mh {
4917
4917
  };
4918
4918
  zi.IDENTITY = Object.freeze(new zi());
4919
4919
  let ga = zi;
4920
- const Pi = /* @__PURE__ */ new ga(), Mn = 1e-6, se = 2 * Math.PI, S0 = {
4920
+ const Pi = /* @__PURE__ */ new ga(), Tn = 1e-6, se = 2 * Math.PI, S0 = {
4921
4921
  x: 0,
4922
4922
  y: 0
4923
4923
  }, ph = {
@@ -4930,7 +4930,7 @@ class gh {
4930
4930
  * Create tolerance class with default tolerance values
4931
4931
  */
4932
4932
  constructor() {
4933
- this.equalPointTol = Mn, this.equalVectorTol = Mn;
4933
+ this.equalPointTol = Tn, this.equalVectorTol = Tn;
4934
4934
  }
4935
4935
  /**
4936
4936
  * Return true if two points are equal with the specified tolerance.
@@ -4953,7 +4953,7 @@ class gh {
4953
4953
  /**
4954
4954
  * Return true if the value is equal to zero with the specified tolerance.
4955
4955
  */
4956
- static equalToZero(t, e = Mn) {
4956
+ static equalToZero(t, e = Tn) {
4957
4957
  return t < e && t > -e;
4958
4958
  }
4959
4959
  /**
@@ -4964,7 +4964,7 @@ class gh {
4964
4964
  * @param tol Input the tolerance value
4965
4965
  * @returns Return true if two values are equal with the sepcified tolerance
4966
4966
  */
4967
- static equal(t, e, s = Mn) {
4967
+ static equal(t, e, s = Tn) {
4968
4968
  return Math.abs(t - e) < s;
4969
4969
  }
4970
4970
  /**
@@ -4977,7 +4977,7 @@ class gh {
4977
4977
  * @returns Return true if the first argument are greater than the second argument with the
4978
4978
  * sepcified tolerance.
4979
4979
  */
4980
- static great(t, e, s = Mn) {
4980
+ static great(t, e, s = Tn) {
4981
4981
  return t - e > s;
4982
4982
  }
4983
4983
  /**
@@ -4990,7 +4990,7 @@ class gh {
4990
4990
  * @returns Return *true* if the first argument less than the second argument with the specified
4991
4991
  * tolerance value
4992
4992
  */
4993
- static less(t, e, s = Mn) {
4993
+ static less(t, e, s = Tn) {
4994
4994
  return t - e < s;
4995
4995
  }
4996
4996
  }
@@ -5001,8 +5001,8 @@ function _h(i, t, e = !1) {
5001
5001
  const c = t.length;
5002
5002
  for (let g = 0, x = c - 1; g < c; x = g++) {
5003
5003
  const f = t[g].x, w = t[g].y, b = t[x].x, E = t[x].y;
5004
- let M = w > o != E > o;
5005
- e && (M = w >= o != E >= o), M && s < (b - f) * (o - w) / (E - w) + f && (h = !h);
5004
+ let T = w > o != E > o;
5005
+ e && (T = w >= o != E >= o), T && s < (b - f) * (o - w) / (E - w) + f && (h = !h);
5006
5006
  }
5007
5007
  return h;
5008
5008
  }
@@ -5117,8 +5117,8 @@ function yd(i, t, e, s) {
5117
5117
  t,
5118
5118
  e,
5119
5119
  s
5120
- ), E = b[0] - w[0], M = b[1] - w[1], L = b[2] - w[2];
5121
- return g += Math.sqrt(E * E + M * M + L * L), g;
5120
+ ), E = b[0] - w[0], T = b[1] - w[1], L = b[2] - w[2];
5121
+ return g += Math.sqrt(E * E + T * T + L * L), g;
5122
5122
  }
5123
5123
  function I0(i) {
5124
5124
  return i.map((t) => [...t]);
@@ -5146,24 +5146,24 @@ class un {
5146
5146
  */
5147
5147
  static slerpFlat(t, e, s, o, h, c, g) {
5148
5148
  let x = s[o + 0], f = s[o + 1], w = s[o + 2], b = s[o + 3];
5149
- const E = h[c + 0], M = h[c + 1], L = h[c + 2], z = h[c + 3];
5149
+ const E = h[c + 0], T = h[c + 1], L = h[c + 2], z = h[c + 3];
5150
5150
  if (g === 0) {
5151
5151
  t[e + 0] = x, t[e + 1] = f, t[e + 2] = w, t[e + 3] = b;
5152
5152
  return;
5153
5153
  }
5154
5154
  if (g === 1) {
5155
- t[e + 0] = E, t[e + 1] = M, t[e + 2] = L, t[e + 3] = z;
5155
+ t[e + 0] = E, t[e + 1] = T, t[e + 2] = L, t[e + 3] = z;
5156
5156
  return;
5157
5157
  }
5158
- if (b !== z || x !== E || f !== M || w !== L) {
5158
+ if (b !== z || x !== E || f !== T || w !== L) {
5159
5159
  let D = 1 - g;
5160
- const B = x * E + f * M + w * L + b * z, dt = B >= 0 ? 1 : -1, vt = 1 - B * B;
5160
+ const B = x * E + f * T + w * L + b * z, dt = B >= 0 ? 1 : -1, vt = 1 - B * B;
5161
5161
  if (vt > Number.EPSILON) {
5162
5162
  const W = Math.sqrt(vt), ut = Math.atan2(W, B * dt);
5163
5163
  D = Math.sin(D * ut) / W, g = Math.sin(g * ut) / W;
5164
5164
  }
5165
5165
  const ot = g * dt;
5166
- if (x = x * D + E * ot, f = f * D + M * ot, w = w * D + L * ot, b = b * D + z * ot, D === 1 - g) {
5166
+ if (x = x * D + E * ot, f = f * D + T * ot, w = w * D + L * ot, b = b * D + z * ot, D === 1 - g) {
5167
5167
  const W = 1 / Math.sqrt(x * x + f * f + w * w + b * b);
5168
5168
  x *= W, f *= W, w *= W, b *= W;
5169
5169
  }
@@ -5181,8 +5181,8 @@ class un {
5181
5181
  * @returns Return an array
5182
5182
  */
5183
5183
  static multiplyQuaternionsFlat(t, e, s, o, h, c) {
5184
- const g = s[o], x = s[o + 1], f = s[o + 2], w = s[o + 3], b = h[c], E = h[c + 1], M = h[c + 2], L = h[c + 3];
5185
- return t[e] = g * L + w * b + x * M - f * E, t[e + 1] = x * L + w * E + f * b - g * M, t[e + 2] = f * L + w * M + g * E - x * b, t[e + 3] = w * L - g * b - x * E - f * M, t;
5184
+ const g = s[o], x = s[o + 1], f = s[o + 2], w = s[o + 3], b = h[c], E = h[c + 1], T = h[c + 2], L = h[c + 3];
5185
+ return t[e] = g * L + w * b + x * T - f * E, t[e + 1] = x * L + w * E + f * b - g * T, t[e + 2] = f * L + w * T + g * E - x * b, t[e + 3] = w * L - g * b - x * E - f * T, t;
5186
5186
  }
5187
5187
  /**
5188
5188
  * X cooridinate
@@ -5253,25 +5253,25 @@ class un {
5253
5253
  * @returns Return this quaternion
5254
5254
  */
5255
5255
  setFromEuler(t, e = !0) {
5256
- const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), w = g(o / 2), b = g(h / 2), E = x(s / 2), M = x(o / 2), L = x(h / 2);
5256
+ const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), w = g(o / 2), b = g(h / 2), E = x(s / 2), T = x(o / 2), L = x(h / 2);
5257
5257
  switch (c) {
5258
5258
  case "XYZ":
5259
- this._x = E * w * b + f * M * L, this._y = f * M * b - E * w * L, this._z = f * w * L + E * M * b, this._w = f * w * b - E * M * L;
5259
+ this._x = E * w * b + f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b - E * T * L;
5260
5260
  break;
5261
5261
  case "YXZ":
5262
- this._x = E * w * b + f * M * L, this._y = f * M * b - E * w * L, this._z = f * w * L - E * M * b, this._w = f * w * b + E * M * L;
5262
+ this._x = E * w * b + f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b + E * T * L;
5263
5263
  break;
5264
5264
  case "ZXY":
5265
- this._x = E * w * b - f * M * L, this._y = f * M * b + E * w * L, this._z = f * w * L + E * M * b, this._w = f * w * b - E * M * L;
5265
+ this._x = E * w * b - f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b - E * T * L;
5266
5266
  break;
5267
5267
  case "ZYX":
5268
- this._x = E * w * b - f * M * L, this._y = f * M * b + E * w * L, this._z = f * w * L - E * M * b, this._w = f * w * b + E * M * L;
5268
+ this._x = E * w * b - f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b + E * T * L;
5269
5269
  break;
5270
5270
  case "YZX":
5271
- this._x = E * w * b + f * M * L, this._y = f * M * b + E * w * L, this._z = f * w * L - E * M * b, this._w = f * w * b - E * M * L;
5271
+ this._x = E * w * b + f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b - E * T * L;
5272
5272
  break;
5273
5273
  case "XZY":
5274
- this._x = E * w * b - f * M * L, this._y = f * M * b - E * w * L, this._z = f * w * L + E * M * b, this._w = f * w * b + E * M * L;
5274
+ this._x = E * w * b - f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b + E * T * L;
5275
5275
  break;
5276
5276
  default:
5277
5277
  console.warn(
@@ -5299,17 +5299,17 @@ class un {
5299
5299
  setFromRotationMatrix(t) {
5300
5300
  const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], w = e[6], b = e[10], E = s + g + b;
5301
5301
  if (E > 0) {
5302
- const M = 0.5 / Math.sqrt(E + 1);
5303
- this._w = 0.25 / M, this._x = (w - x) * M, this._y = (h - f) * M, this._z = (c - o) * M;
5302
+ const T = 0.5 / Math.sqrt(E + 1);
5303
+ this._w = 0.25 / T, this._x = (w - x) * T, this._y = (h - f) * T, this._z = (c - o) * T;
5304
5304
  } else if (s > g && s > b) {
5305
- const M = 2 * Math.sqrt(1 + s - g - b);
5306
- this._w = (w - x) / M, this._x = 0.25 * M, this._y = (o + c) / M, this._z = (h + f) / M;
5305
+ const T = 2 * Math.sqrt(1 + s - g - b);
5306
+ this._w = (w - x) / T, this._x = 0.25 * T, this._y = (o + c) / T, this._z = (h + f) / T;
5307
5307
  } else if (g > b) {
5308
- const M = 2 * Math.sqrt(1 + g - s - b);
5309
- this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x + w) / M;
5308
+ const T = 2 * Math.sqrt(1 + g - s - b);
5309
+ this._w = (h - f) / T, this._x = (o + c) / T, this._y = 0.25 * T, this._z = (x + w) / T;
5310
5310
  } else {
5311
- const M = 2 * Math.sqrt(1 + b - s - g);
5312
- this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x + w) / M, this._z = 0.25 * M;
5311
+ const T = 2 * Math.sqrt(1 + b - s - g);
5312
+ this._w = (c - o) / T, this._x = (h + f) / T, this._y = (x + w) / T, this._z = 0.25 * T;
5313
5313
  }
5314
5314
  return this._onChangeCallback(), this;
5315
5315
  }
@@ -5445,8 +5445,8 @@ class un {
5445
5445
  return this._w = c, this._x = s, this._y = o, this._z = h, this;
5446
5446
  const x = 1 - g * g;
5447
5447
  if (x <= Number.EPSILON) {
5448
- const M = 1 - e;
5449
- return this._w = M * c + e * this._w, this._x = M * s + e * this._x, this._y = M * o + e * this._y, this._z = M * h + e * this._z, this.normalize(), this;
5448
+ const T = 1 - e;
5449
+ return this._w = T * c + e * this._w, this._x = T * s + e * this._x, this._y = T * o + e * this._y, this._z = T * h + e * this._z, this.normalize(), this;
5450
5450
  }
5451
5451
  const f = Math.sqrt(x), w = Math.atan2(f, g), b = Math.sin((1 - e) * w) / f, E = Math.sin(e * w) / f;
5452
5452
  return this._w = c * b + this._w * E, this._x = s * b + this._x * E, this._y = o * b + this._y * E, this._z = h * b + this._z * E, this._onChangeCallback(), this;
@@ -6180,8 +6180,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6180
6180
  * @param n43 Input element in the forth row and the third column
6181
6181
  * @param n44 Input element in the forth row and the forth column
6182
6182
  */
6183
- constructor(t, e, s, o, h, c, g, x, f, w, b, E, M, L, z, D) {
6184
- this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && w != null && b != null && E != null && M != null && L != null && z != null && D != null && this.set(
6183
+ constructor(t, e, s, o, h, c, g, x, f, w, b, E, T, L, z, D) {
6184
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && w != null && b != null && E != null && T != null && L != null && z != null && D != null && this.set(
6185
6185
  t,
6186
6186
  e,
6187
6187
  s,
@@ -6194,7 +6194,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6194
6194
  w,
6195
6195
  b,
6196
6196
  E,
6197
- M,
6197
+ T,
6198
6198
  L,
6199
6199
  z,
6200
6200
  D
@@ -6221,9 +6221,9 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6221
6221
  * @param n44 Input element in the forth row and the forth column
6222
6222
  * @returns Return this matrix
6223
6223
  */
6224
- set(t, e, s, o, h, c, g, x, f, w, b, E, M, L, z, D) {
6224
+ set(t, e, s, o, h, c, g, x, f, w, b, E, T, L, z, D) {
6225
6225
  const B = this.elements;
6226
- return B[0] = t, B[4] = e, B[8] = s, B[12] = o, B[1] = h, B[5] = c, B[9] = g, B[13] = x, B[2] = f, B[6] = w, B[10] = b, B[14] = E, B[3] = M, B[7] = L, B[11] = z, B[15] = D, this;
6226
+ return B[0] = t, B[4] = e, B[8] = s, B[12] = o, B[1] = h, B[5] = c, B[9] = g, B[13] = x, B[2] = f, B[6] = w, B[10] = b, B[14] = E, B[3] = T, B[7] = L, B[11] = z, B[15] = D, this;
6227
6227
  }
6228
6228
  /**
6229
6229
  * Reset this matrix to the identity matrix.
@@ -6355,7 +6355,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6355
6355
  * @returns Return this matrix
6356
6356
  */
6357
6357
  extractRotation(t) {
6358
- const e = this.elements, s = t.elements, o = 1 / Tn.setFromMatrixColumn(t, 0).length(), h = 1 / Tn.setFromMatrixColumn(t, 1).length(), c = 1 / Tn.setFromMatrixColumn(t, 2).length();
6358
+ const e = this.elements, s = t.elements, o = 1 / Mn.setFromMatrixColumn(t, 0).length(), h = 1 / Mn.setFromMatrixColumn(t, 1).length(), c = 1 / Mn.setFromMatrixColumn(t, 2).length();
6359
6359
  return e[0] = s[0] * o, e[1] = s[1] * o, e[2] = s[2] * o, e[3] = 0, e[4] = s[4] * h, e[5] = s[5] * h, e[6] = s[6] * h, e[7] = 0, e[8] = s[8] * c, e[9] = s[9] * c, e[10] = s[10] * c, e[11] = 0, e[12] = 0, e[13] = 0, e[14] = 0, e[15] = 1, this;
6360
6360
  }
6361
6361
  // makeRotationFromEuler(euler) {
@@ -6507,8 +6507,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6507
6507
  * @returns Return this matrix
6508
6508
  */
6509
6509
  multiplyMatrices(t, e) {
6510
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], w = s[1], b = s[5], E = s[9], M = s[13], L = s[2], z = s[6], D = s[10], B = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], qt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], Me = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], hr = o[15];
6511
- return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Me + f * Mt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * qt + g * de + x * ie + f * hr, h[1] = w * ut + b * Wt + E * me + M * Q, h[5] = w * st + b * bt + E * Me + M * Mt, h[9] = w * Vt + b * Ot + E * Jt + M * ae, h[13] = w * qt + b * de + E * ie + M * hr, h[2] = L * ut + z * Wt + D * me + B * Q, h[6] = L * st + z * bt + D * Me + B * Mt, h[10] = L * Vt + z * Ot + D * Jt + B * ae, h[14] = L * qt + z * de + D * ie + B * hr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * Me + W * Mt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * qt + vt * de + ot * ie + W * hr, this;
6510
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], w = s[1], b = s[5], E = s[9], T = s[13], L = s[2], z = s[6], D = s[10], B = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], qt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], Te = o[6], Jt = o[10], ie = o[14], Q = o[3], Tt = o[7], ae = o[11], hr = o[15];
6511
+ return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Te + f * Tt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * qt + g * de + x * ie + f * hr, h[1] = w * ut + b * Wt + E * me + T * Q, h[5] = w * st + b * bt + E * Te + T * Tt, h[9] = w * Vt + b * Ot + E * Jt + T * ae, h[13] = w * qt + b * de + E * ie + T * hr, h[2] = L * ut + z * Wt + D * me + B * Q, h[6] = L * st + z * bt + D * Te + B * Tt, h[10] = L * Vt + z * Ot + D * Jt + B * ae, h[14] = L * qt + z * de + D * ie + B * hr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * Te + W * Tt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * qt + vt * de + ot * ie + W * hr, this;
6512
6512
  }
6513
6513
  /**
6514
6514
  * Multiply every component of the matrix by a scalar value s.
@@ -6524,8 +6524,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6524
6524
  * @returns Return the determinant of this matrix.
6525
6525
  */
6526
6526
  determinant() {
6527
- const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], w = t[2], b = t[6], E = t[10], M = t[14], L = t[3], z = t[7], D = t[11], B = t[15];
6528
- return L * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + z * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * w - h * x * w) + D * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * w - s * f * w) + B * (-o * g * w - e * x * b + e * g * E + o * c * b - s * c * E + s * x * w);
6527
+ const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], w = t[2], b = t[6], E = t[10], T = t[14], L = t[3], z = t[7], D = t[11], B = t[15];
6528
+ return L * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * T - s * x * T) + z * (+e * x * T - e * f * E + h * c * E - o * c * T + o * f * w - h * x * w) + D * (+e * f * b - e * g * T - h * c * b + s * c * T + h * g * w - s * f * w) + B * (-o * g * w - e * x * b + e * g * E + o * c * b - s * c * E + s * x * w);
6529
6529
  }
6530
6530
  /**
6531
6531
  * Transposes this matrix.
@@ -6553,11 +6553,11 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6553
6553
  * @returns Return this matrix
6554
6554
  */
6555
6555
  invert() {
6556
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = t[9], E = t[10], M = t[11], L = t[12], z = t[13], D = t[14], B = t[15], dt = b * D * f - z * E * f + z * x * M - g * D * M - b * x * B + g * E * B, vt = L * E * f - w * D * f - L * x * M + c * D * M + w * x * B - c * E * B, ot = w * z * f - L * b * f + L * g * M - c * z * M - w * g * B + c * b * B, W = L * b * x - w * z * x - L * g * E + c * z * E + w * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
6556
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = t[9], E = t[10], T = t[11], L = t[12], z = t[13], D = t[14], B = t[15], dt = b * D * f - z * E * f + z * x * T - g * D * T - b * x * B + g * E * B, vt = L * E * f - w * D * f - L * x * T + c * D * T + w * x * B - c * E * B, ot = w * z * f - L * b * f + L * g * T - c * z * T - w * g * B + c * b * B, W = L * b * x - w * z * x - L * g * E + c * z * E + w * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
6557
6557
  if (ut === 0)
6558
6558
  return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
6559
6559
  const st = 1 / ut;
6560
- return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * M + s * D * M + b * o * B - s * E * B) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * B + s * x * B) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = vt * st, t[5] = (w * D * h - L * E * h + L * o * M - e * D * M - w * o * B + e * E * B) * st, t[6] = (L * x * h - c * D * h - L * o * f + e * D * f + c * o * B - e * x * B) * st, t[7] = (c * E * h - w * x * h + w * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (L * b * h - w * z * h - L * s * M + e * z * M + w * s * B - e * b * B) * st, t[10] = (c * z * h - L * g * h + L * s * f - e * z * f - c * s * B + e * g * B) * st, t[11] = (w * g * h - c * b * h - w * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (w * z * o - L * b * o + L * s * E - e * z * E - w * s * D + e * b * D) * st, t[14] = (L * g * o - c * z * o - L * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - w * g * o + w * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6560
+ return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * T + s * D * T + b * o * B - s * E * B) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * B + s * x * B) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * T - s * x * T) * st, t[4] = vt * st, t[5] = (w * D * h - L * E * h + L * o * T - e * D * T - w * o * B + e * E * B) * st, t[6] = (L * x * h - c * D * h - L * o * f + e * D * f + c * o * B - e * x * B) * st, t[7] = (c * E * h - w * x * h + w * o * f - e * E * f - c * o * T + e * x * T) * st, t[8] = ot * st, t[9] = (L * b * h - w * z * h - L * s * T + e * z * T + w * s * B - e * b * B) * st, t[10] = (c * z * h - L * g * h + L * s * f - e * z * f - c * s * B + e * g * B) * st, t[11] = (w * g * h - c * b * h - w * s * f + e * b * f + c * s * T - e * g * T) * st, t[12] = W * st, t[13] = (w * z * o - L * b * o + L * s * E - e * z * E - w * s * D + e * b * D) * st, t[14] = (L * g * o - c * z * o - L * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - w * g * o + w * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6561
6561
  }
6562
6562
  /**
6563
6563
  * Multiply the columns of this matrix by vector v.
@@ -6671,8 +6671,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6671
6671
  * @returns Return this matrix
6672
6672
  */
6673
6673
  compose(t, e, s) {
6674
- const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, w = c + c, b = g + g, E = h * f, M = h * w, L = h * b, z = c * w, D = c * b, B = g * b, dt = x * f, vt = x * w, ot = x * b, W = s.x, ut = s.y, st = s.z;
6675
- return o[0] = (1 - (z + B)) * W, o[1] = (M + ot) * W, o[2] = (L - vt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + B)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (L + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6674
+ const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, w = c + c, b = g + g, E = h * f, T = h * w, L = h * b, z = c * w, D = c * b, B = g * b, dt = x * f, vt = x * w, ot = x * b, W = s.x, ut = s.y, st = s.z;
6675
+ return o[0] = (1 - (z + B)) * W, o[1] = (T + ot) * W, o[2] = (L - vt) * W, o[3] = 0, o[4] = (T - ot) * ut, o[5] = (1 - (E + B)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (L + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6676
6676
  }
6677
6677
  /**
6678
6678
  * Decompose this matrix into its position, quaternion and scale components.
@@ -6687,8 +6687,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6687
6687
  */
6688
6688
  decompose(t, e, s) {
6689
6689
  const o = this.elements;
6690
- let h = Tn.set(o[0], o[1], o[2]).length();
6691
- const c = Tn.set(o[4], o[5], o[6]).length(), g = Tn.set(o[8], o[9], o[10]).length();
6690
+ let h = Mn.set(o[0], o[1], o[2]).length();
6691
+ const c = Mn.set(o[4], o[5], o[6]).length(), g = Mn.set(o[8], o[9], o[10]).length();
6692
6692
  this.determinant() < 0 && (h = -h), t.x = o[12], t.y = o[13], t.z = o[14], nr.copy(this);
6693
6693
  const x = 1 / h, f = 1 / c, w = 1 / g;
6694
6694
  return nr.elements[0] *= x, nr.elements[1] *= x, nr.elements[2] *= x, nr.elements[4] *= f, nr.elements[5] *= f, nr.elements[6] *= f, nr.elements[8] *= w, nr.elements[9] *= w, nr.elements[10] *= w, e.setFromRotationMatrix(nr), s.x = h, s.y = c, s.z = g, this;
@@ -6819,7 +6819,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6819
6819
  };
6820
6820
  Fi.IDENTITY = Object.freeze(new Fi());
6821
6821
  let cn = Fi;
6822
- const Tn = /* @__PURE__ */ new Z(), nr = /* @__PURE__ */ new cn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Dr = /* @__PURE__ */ new Z(), Fs = /* @__PURE__ */ new Z(), Ue = /* @__PURE__ */ new Z();
6822
+ const Mn = /* @__PURE__ */ new Z(), nr = /* @__PURE__ */ new cn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Dr = /* @__PURE__ */ new Z(), Fs = /* @__PURE__ */ new Z(), Ue = /* @__PURE__ */ new Z();
6823
6823
  class Ct {
6824
6824
  /**
6825
6825
  * Create a 3d box bounded by min and max.
@@ -7295,7 +7295,7 @@ class be {
7295
7295
  return t.min.equals(this.min) && t.max.equals(this.max);
7296
7296
  }
7297
7297
  }
7298
- const Mo = /* @__PURE__ */ new Z(), wd = /* @__PURE__ */ new Z(), Ad = /* @__PURE__ */ new ga();
7298
+ const To = /* @__PURE__ */ new Z(), wd = /* @__PURE__ */ new Z(), Ad = /* @__PURE__ */ new ga();
7299
7299
  class ai {
7300
7300
  /**
7301
7301
  * Create one plane
@@ -7344,7 +7344,7 @@ class ai {
7344
7344
  * @returns Return this plane
7345
7345
  */
7346
7346
  setFromCoplanarPoints(t, e, s) {
7347
- const o = Mo.subVectors(s, e).cross(wd.subVectors(t, e)).normalize();
7347
+ const o = To.subVectors(s, e).cross(wd.subVectors(t, e)).normalize();
7348
7348
  return this.setFromNormalAndCoplanarPoint(o, t), this;
7349
7349
  }
7350
7350
  /**
@@ -7446,7 +7446,7 @@ class ai {
7446
7446
  * @returns Return this plane
7447
7447
  */
7448
7448
  applyMatrix4(t, e) {
7449
- const s = e || Ad.getNormalMatrix(t), o = this.coplanarPoint(Mo).applyMatrix4(t), h = this.normal.applyMatrix3(s).normalize();
7449
+ const s = e || Ad.getNormalMatrix(t), o = this.coplanarPoint(To).applyMatrix4(t), h = this.normal.applyMatrix3(s).normalize();
7450
7450
  return this.constant = -o.dot(h), this;
7451
7451
  }
7452
7452
  /**
@@ -7501,7 +7501,7 @@ class Y extends Z {
7501
7501
  }), o;
7502
7502
  }
7503
7503
  }
7504
- const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class Bi {
7504
+ const Mo = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class Bi {
7505
7505
  /**
7506
7506
  * Create one instance of this class
7507
7507
  * @param x (optional) the angle of the x axis in radians. Default is 0.
@@ -7593,25 +7593,25 @@ const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class B
7593
7593
  * @returns Return this euler
7594
7594
  */
7595
7595
  setFromRotationMatrix(t, e = this._order, s = !0) {
7596
- const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], w = o[9], b = o[2], E = o[6], M = o[10];
7596
+ const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], w = o[9], b = o[2], E = o[6], T = o[10];
7597
7597
  switch (e) {
7598
7598
  case "XYZ":
7599
- this._y = Math.asin(Vr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-w, M), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
7599
+ this._y = Math.asin(Vr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-w, T), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
7600
7600
  break;
7601
7601
  case "YXZ":
7602
- this._x = Math.asin(-Vr(w, -1, 1)), Math.abs(w) < 0.9999999 ? (this._y = Math.atan2(g, M), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
7602
+ this._x = Math.asin(-Vr(w, -1, 1)), Math.abs(w) < 0.9999999 ? (this._y = Math.atan2(g, T), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
7603
7603
  break;
7604
7604
  case "ZXY":
7605
- this._x = Math.asin(Vr(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, M), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
7605
+ this._x = Math.asin(Vr(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, T), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
7606
7606
  break;
7607
7607
  case "ZYX":
7608
- this._y = Math.asin(-Vr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, M), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
7608
+ this._y = Math.asin(-Vr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, T), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
7609
7609
  break;
7610
7610
  case "YZX":
7611
- this._z = Math.asin(Vr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-w, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, M));
7611
+ this._z = Math.asin(Vr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-w, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, T));
7612
7612
  break;
7613
7613
  case "XZY":
7614
- this._z = Math.asin(-Vr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-w, M), this._y = 0);
7614
+ this._z = Math.asin(-Vr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-w, T), this._y = 0);
7615
7615
  break;
7616
7616
  default:
7617
7617
  console.warn(
@@ -7630,7 +7630,7 @@ const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class B
7630
7630
  * @returns Return this euler
7631
7631
  */
7632
7632
  setFromQuaternion(t, e, s = !0) {
7633
- return To.makeRotationFromQuaternion(t), this.setFromRotationMatrix(To, e, s);
7633
+ return Mo.makeRotationFromQuaternion(t), this.setFromRotationMatrix(Mo, e, s);
7634
7634
  }
7635
7635
  /**
7636
7636
  * Set the x, y and z, and optionally update the order.
@@ -7790,12 +7790,12 @@ class fa extends wh {
7790
7790
  const f = o[x], w = e[f], b = s[f];
7791
7791
  let E = x + 1;
7792
7792
  for (; E < c; E++) {
7793
- const M = o[E], L = e[M];
7794
- if (s[M].containsBox(b) && gd.isPointInPolygon(
7793
+ const T = o[E], L = e[T];
7794
+ if (s[T].containsBox(b) && gd.isPointInPolygon(
7795
7795
  w[kt.randInt(0, w.length - 1)],
7796
7796
  L
7797
7797
  )) {
7798
- (t = h.get(M)) == null || t.children.push(h.get(f));
7798
+ (t = h.get(T)) == null || t.children.push(h.get(f));
7799
7799
  break;
7800
7800
  }
7801
7801
  }
@@ -7834,7 +7834,7 @@ class fa extends wh {
7834
7834
  }), s;
7835
7835
  }
7836
7836
  }
7837
- class Ms extends wh {
7837
+ class Ts extends wh {
7838
7838
  constructor() {
7839
7839
  super(), this.arcLengthDivisions = 100;
7840
7840
  }
@@ -7968,7 +7968,7 @@ class Ms extends wh {
7968
7968
  return this.getTangent(e);
7969
7969
  }
7970
7970
  }
7971
- class Ps extends Ms {
7971
+ class Ps extends Ts {
7972
7972
  constructor(t, e, s, o, h) {
7973
7973
  super();
7974
7974
  const c = +(t !== void 0) + +(e !== void 0) + +(s !== void 0) + +(o !== void 0) + +(h !== void 0);
@@ -7998,10 +7998,10 @@ class Ps extends Ms {
7998
7998
  const o = (st, Vt) => ({
7999
7999
  x: (st.x + Vt.x) / 2,
8000
8000
  y: (st.y + Vt.y) / 2
8001
- }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), w = h(e, s), b = c(f), E = c(w), M = (st, Vt, qt, Wt) => {
8001
+ }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), w = h(e, s), b = c(f), E = c(w), T = (st, Vt, qt, Wt) => {
8002
8002
  const bt = (Wt - Vt) / (st - qt), Ot = st * bt + Vt;
8003
8003
  return { x: bt, y: Ot };
8004
- }, L = g.y - b * g.x, z = x.y - E * x.x, D = M(b, L, E, z), B = Math.sqrt(
8004
+ }, L = g.y - b * g.x, z = x.y - E * x.x, D = T(b, L, E, z), B = Math.sqrt(
8005
8005
  Math.pow(t.x - D.x, 2) + Math.pow(t.y - D.y, 2)
8006
8006
  ), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t, D), ot = dt(e, D), W = dt(s, D), ut = W > vt && W < ot || vt > W && vt < ot || ot > W && ot < vt;
8007
8007
  this.center = D, this.radius = B, this._clockwise = !ut, this._startAngle = vt, this._endAngle = W;
@@ -8023,17 +8023,17 @@ class Ps extends Ms {
8023
8023
  const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)), w = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
8024
8024
  let E;
8025
8025
  if (o < Math.PI) {
8026
- const M = new Zt(
8026
+ const T = new Zt(
8027
8027
  b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
8028
8028
  b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
8029
8029
  );
8030
- E = f.add(M.multiplyScalar(-w));
8030
+ E = f.add(T.multiplyScalar(-w));
8031
8031
  } else {
8032
- const M = new Zt(
8032
+ const T = new Zt(
8033
8033
  b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
8034
8034
  b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
8035
8035
  );
8036
- E = f.add(M.multiplyScalar(w));
8036
+ E = f.add(T.multiplyScalar(w));
8037
8037
  }
8038
8038
  s < 0 ? (this._startAngle = Math.atan2(h.y - E.y, h.x - E.x), this._endAngle = Math.atan2(c.y - E.y, c.x - E.x)) : (this._startAngle = Math.atan2(c.y - E.y, c.x - E.x), this._endAngle = Math.atan2(h.y - E.y, h.x - E.x)), this._clockwise = s < 0, this.center = E, this.radius = c.sub(E).length();
8039
8039
  }
@@ -8229,9 +8229,9 @@ class Id extends bh {
8229
8229
  return (this._box == null || this._boundingBoxNeedsUpdate) && (this._box = this.calculateBoundingBox(), this._boundingBoxNeedsUpdate = !1), this._box;
8230
8230
  }
8231
8231
  }
8232
- class Ts extends Id {
8232
+ class Ms extends Id {
8233
8233
  }
8234
- class dn extends Ts {
8234
+ class dn extends Ms {
8235
8235
  /**
8236
8236
  * This constructor initializes the line object to use start as the start point, and end
8237
8237
  * as the endpoint. Both points must be in WCS coordinates.
@@ -8441,7 +8441,7 @@ class dn extends Ts {
8441
8441
  }
8442
8442
  }
8443
8443
  const sn = /* @__PURE__ */ new Z(), Co = /* @__PURE__ */ new Z(), Bs = /* @__PURE__ */ new Z();
8444
- class Ln extends Ts {
8444
+ class Ln extends Ms {
8445
8445
  /**
8446
8446
  * Compute center point of the arc given three points
8447
8447
  * @param startPoint Input start point of the arc
@@ -8453,8 +8453,8 @@ class Ln extends Ts {
8453
8453
  const o = new Z().addVectors(t, e).multiplyScalar(0.5), h = new Z().addVectors(t, s).multiplyScalar(0.5), c = new Z().subVectors(e, t), g = new Z().subVectors(s, t), x = new Z().crossVectors(c, g).normalize();
8454
8454
  if (x.lengthSq() === 0)
8455
8455
  return console.error("Points are collinear and cannot form a valid arc."), null;
8456
- const f = new Z().crossVectors(c, x).normalize(), w = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = w.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new dn(o, o.clone().add(b)), L = new dn(h, h.clone().add(E)), z = new Z();
8457
- return M.closestPointToPoint(L.startPoint, !0, z) ? z : (console.error("Cannot find a valid center for the arc."), null);
8456
+ const f = new Z().crossVectors(c, x).normalize(), w = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = w.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), T = new dn(o, o.clone().add(b)), L = new dn(h, h.clone().add(E)), z = new Z();
8457
+ return T.closestPointToPoint(L.startPoint, !0, z) ? z : (console.error("Cannot find a valid center for the arc."), null);
8458
8458
  }
8459
8459
  /**
8460
8460
  * Create arc by three points
@@ -8625,7 +8625,7 @@ class Ln extends Ts {
8625
8625
  * @inheritdoc
8626
8626
  */
8627
8627
  transform(t) {
8628
- const e = Mi.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Mi.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
8628
+ const e = Ti.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Ti.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
8629
8629
  return this.center.applyMatrix4(t), e.applyMatrix4(t), s.applyMatrix4(t), this.normal.applyMatrix4(t).normalize(), this.refVec.applyMatrix4(t).normalize(), this.startAngle = this.getAngle(e), this.endAngle = this.getAngle(s), this._boundingBoxNeedsUpdate = !0, this;
8630
8630
  }
8631
8631
  /**
@@ -8654,7 +8654,7 @@ class Ln extends Ts {
8654
8654
  */
8655
8655
  getAngle(t) {
8656
8656
  return t.sub(this.center), Math.atan2(
8657
- t.dot(Mi.crossVectors(this.refVec, this.normal)),
8657
+ t.dot(Ti.crossVectors(this.refVec, this.normal)),
8658
8658
  t.dot(this.refVec)
8659
8659
  );
8660
8660
  }
@@ -8682,8 +8682,8 @@ class Ln extends Ts {
8682
8682
  return new ai(this.normal, t);
8683
8683
  }
8684
8684
  }
8685
- const Mi = /* @__PURE__ */ new Z();
8686
- class _a extends Ms {
8685
+ const Ti = /* @__PURE__ */ new Z();
8686
+ class _a extends Ts {
8687
8687
  /**
8688
8688
  * Construct an instance of the ellipse arc.
8689
8689
  * @param center Center point of the ellipse.
@@ -8842,7 +8842,7 @@ class _a extends Ms {
8842
8842
  );
8843
8843
  }
8844
8844
  }
8845
- class va extends Ts {
8845
+ class va extends Ms {
8846
8846
  /**
8847
8847
  * Construct an instance of the ellipse arc.
8848
8848
  * @param center Center point of the ellipse.
@@ -9087,7 +9087,7 @@ class va extends Ts {
9087
9087
  return new ai(this.normal, t);
9088
9088
  }
9089
9089
  }
9090
- class Rn extends Ms {
9090
+ class Rn extends Ts {
9091
9091
  constructor(t = null, e = !1) {
9092
9092
  super(), this._vertices = t || new Array(), this._closed = e;
9093
9093
  }
@@ -9224,7 +9224,7 @@ class Rn extends Ms {
9224
9224
  return e;
9225
9225
  }
9226
9226
  }
9227
- class ya extends Ms {
9227
+ class ya extends Ts {
9228
9228
  /**
9229
9229
  * This constructor initializes the line object to use start as the start point, and end
9230
9230
  * as the endpoint. Both points must be in WCS coordinates.
@@ -9303,7 +9303,7 @@ class ya extends Ms {
9303
9303
  return new ya(this._start.clone(), this._end.clone());
9304
9304
  }
9305
9305
  }
9306
- class Pd extends Ms {
9306
+ class Pd extends Ts {
9307
9307
  /**
9308
9308
  * Create one loop by connected curves
9309
9309
  * @param curves Input one array of connected curves
@@ -9418,9 +9418,9 @@ var Ah = { exports: {} };
9418
9418
  return function(x, f, w) {
9419
9419
  f.geom = f.geom || {}, f.exe = f.exe || {}, f.eval = f.eval || {}, f.core = f.core || {}, f.promhx = f.promhx || {};
9420
9420
  var b = {}, E = function() {
9421
- return Mt.__string_rec(this, "");
9421
+ return Tt.__string_rec(this, "");
9422
9422
  };
9423
- function M(r, n) {
9423
+ function T(r, n) {
9424
9424
  function a() {
9425
9425
  }
9426
9426
  a.prototype = r;
@@ -9516,7 +9516,7 @@ var Ah = { exports: {} };
9516
9516
  var dt = function() {
9517
9517
  };
9518
9518
  b.Std = dt, dt.__name__ = ["Std"], dt.string = function(r) {
9519
- return Mt.__string_rec(r, "");
9519
+ return Tt.__string_rec(r, "");
9520
9520
  }, dt.parseFloat = function(r) {
9521
9521
  return parseFloat(r);
9522
9522
  };
@@ -9585,7 +9585,7 @@ var Ah = { exports: {} };
9585
9585
  if (r == null) return W.TNull;
9586
9586
  var a = r.__enum__;
9587
9587
  if (a != null) return W.TEnum(a);
9588
- var l = Mt.getClass(r);
9588
+ var l = Tt.getClass(r);
9589
9589
  return l != null ? W.TClass(l) : W.TObject;
9590
9590
  case "function":
9591
9591
  return r.__name__ || r.__ename__ ? W.TObject : W.TFunction;
@@ -9687,9 +9687,9 @@ var Ah = { exports: {} };
9687
9687
  break;
9688
9688
  case me:
9689
9689
  this.buf.b += "b";
9690
- for (var T = r, O = T.keys(); O.hasNext(); ) {
9690
+ for (var M = r, O = M.keys(); O.hasNext(); ) {
9691
9691
  var C = O.next();
9692
- this.serializeString(C), this.serialize(hi[C] != null ? T.getReserved(C) : T.h[C]);
9692
+ this.serializeString(C), this.serialize(hi[C] != null ? M.getReserved(C) : M.h[C]);
9693
9693
  }
9694
9694
  this.buf.b += "h";
9695
9695
  break;
@@ -9709,7 +9709,7 @@ var Ah = { exports: {} };
9709
9709
  }
9710
9710
  this.buf.b += "h";
9711
9711
  break;
9712
- case Me:
9712
+ case Te:
9713
9713
  for (var G = r, K = 0, tt = G.length - 2, et = new vt(), it = qt.BASE64; K < tt; ) {
9714
9714
  var ht = G.get(K++), at = G.get(K++), ct = G.get(K++);
9715
9715
  et.add(it.charAt(ht >> 2)), et.add(it.charAt((ht << 4 | at >> 4) & 63)), et.add(it.charAt((at << 2 | ct >> 6) & 63)), et.add(it.charAt(ct & 63));
@@ -9729,10 +9729,10 @@ var Ah = { exports: {} };
9729
9729
  }
9730
9730
  break;
9731
9731
  case 4:
9732
- if (Mt.__instanceof(r, so)) {
9732
+ if (Tt.__instanceof(r, so)) {
9733
9733
  var It = ut.getClassName(r);
9734
9734
  this.buf.b += "A", this.serializeString(It);
9735
- } else if (Mt.__instanceof(r, io))
9735
+ } else if (Tt.__instanceof(r, io))
9736
9736
  this.buf.b += "B", this.serializeString(ut.getEnumName(r));
9737
9737
  else {
9738
9738
  if (this.useCache && this.serializeRef(r)) return;
@@ -9891,8 +9891,8 @@ var Ah = { exports: {} };
9891
9891
  case 119:
9892
9892
  var P = this.unserialize(), k = this.resolver.resolveEnum(P);
9893
9893
  if (k == null) throw new Q("Enum not found " + P);
9894
- var T = this.unserializeEnum(k, this.unserialize());
9895
- return this.cache.push(T), T;
9894
+ var M = this.unserializeEnum(k, this.unserialize());
9895
+ return this.cache.push(M), M;
9896
9896
  case 106:
9897
9897
  var O = this.unserialize(), C = this.resolver.resolveEnum(O);
9898
9898
  if (C == null) throw new Q("Enum not found " + O);
@@ -9945,7 +9945,7 @@ var Ah = { exports: {} };
9945
9945
  X == null && (X = Wt.initCodes(), Wt.CODES = X);
9946
9946
  var gt = this.pos, It = nt & 3, jt;
9947
9947
  jt = (nt >> 2) * 3 + (It >= 2 ? It - 1 : 0);
9948
- for (var Xt = gt + (nt - It), Dt = Me.alloc(jt), Kt = 0; gt < Xt; ) {
9948
+ for (var Xt = gt + (nt - It), Dt = Te.alloc(jt), Kt = 0; gt < Xt; ) {
9949
9949
  var Ae = X[ot.fastCodeAt(mt, gt++)], He = X[ot.fastCodeAt(mt, gt++)];
9950
9950
  Dt.set(Kt++, Ae << 2 | He >> 4);
9951
9951
  var _e = X[ot.fastCodeAt(mt, gt++)];
@@ -10050,19 +10050,19 @@ var Ah = { exports: {} };
10050
10050
  },
10051
10051
  __class__: me
10052
10052
  };
10053
- var Me = function(r) {
10053
+ var Te = function(r) {
10054
10054
  this.length = r.byteLength, this.b = new ui(r), this.b.bufferValue = r, r.hxBytes = this, r.bytes = this.b;
10055
10055
  };
10056
- b["haxe.io.Bytes"] = Me, Me.__name__ = ["haxe", "io", "Bytes"], Me.alloc = function(r) {
10057
- return new Me(new Ls(r));
10058
- }, Me.prototype = {
10056
+ b["haxe.io.Bytes"] = Te, Te.__name__ = ["haxe", "io", "Bytes"], Te.alloc = function(r) {
10057
+ return new Te(new Ls(r));
10058
+ }, Te.prototype = {
10059
10059
  get: function(r) {
10060
10060
  return this.b[r];
10061
10061
  },
10062
10062
  set: function(r, n) {
10063
10063
  this.b[r] = n & 255;
10064
10064
  },
10065
- __class__: Me
10065
+ __class__: Te
10066
10066
  };
10067
10067
  var Jt = b["haxe.io.Error"] = { __ename__: ["haxe", "io", "Error"], __constructs__: ["Blocked", "Overflow", "OutsideBounds", "Custom"] };
10068
10068
  Jt.Blocked = ["Blocked", 0], Jt.Blocked.toString = E, Jt.Blocked.__enum__ = Jt, Jt.Overflow = ["Overflow", 1], Jt.Overflow.toString = E, Jt.Overflow.__enum__ = Jt, Jt.OutsideBounds = ["OutsideBounds", 2], Jt.OutsideBounds.toString = E, Jt.OutsideBounds.__enum__ = Jt, Jt.Custom = function(r) {
@@ -10102,18 +10102,18 @@ var Ah = { exports: {} };
10102
10102
  var Q = function(r) {
10103
10103
  Error.call(this), this.val = r, this.message = String(r), Error.captureStackTrace && Error.captureStackTrace(this, Q);
10104
10104
  };
10105
- b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype = M(Error.prototype, {
10105
+ b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype = T(Error.prototype, {
10106
10106
  __class__: Q
10107
10107
  });
10108
- var Mt = function() {
10108
+ var Tt = function() {
10109
10109
  };
10110
- b["js.Boot"] = Mt, Mt.__name__ = ["js", "Boot"], Mt.getClass = function(r) {
10110
+ b["js.Boot"] = Tt, Tt.__name__ = ["js", "Boot"], Tt.getClass = function(r) {
10111
10111
  if (r instanceof Array && r.__enum__ == null) return Array;
10112
10112
  var n = r.__class__;
10113
10113
  if (n != null) return n;
10114
- var a = Mt.__nativeClassName(r);
10115
- return a != null ? Mt.__resolveNativeClass(a) : null;
10116
- }, Mt.__string_rec = function(r, n) {
10114
+ var a = Tt.__nativeClassName(r);
10115
+ return a != null ? Tt.__resolveNativeClass(a) : null;
10116
+ }, Tt.__string_rec = function(r, n) {
10117
10117
  if (r == null) return "null";
10118
10118
  if (n.length >= 5) return "<...>";
10119
10119
  var a = typeof r;
@@ -10126,7 +10126,7 @@ var Ah = { exports: {} };
10126
10126
  n += " ";
10127
10127
  for (var u = 2, d = r.length; u < d; ) {
10128
10128
  var p = u++;
10129
- p != 2 ? l += "," + Mt.__string_rec(r[p], n) : l += Mt.__string_rec(r[p], n);
10129
+ p != 2 ? l += "," + Tt.__string_rec(r[p], n) : l += Tt.__string_rec(r[p], n);
10130
10130
  }
10131
10131
  return l + ")";
10132
10132
  }
@@ -10134,7 +10134,7 @@ var Ah = { exports: {} };
10134
10134
  n += " ";
10135
10135
  for (var A = 0; A < _; ) {
10136
10136
  var I = A++;
10137
- v += (I > 0 ? "," : "") + Mt.__string_rec(r[I], n);
10137
+ v += (I > 0 ? "," : "") + Tt.__string_rec(r[I], n);
10138
10138
  }
10139
10139
  return v += "]", v;
10140
10140
  }
@@ -10148,15 +10148,15 @@ var Ah = { exports: {} };
10148
10148
  var P = r.toString();
10149
10149
  if (P != "[object Object]") return P;
10150
10150
  }
10151
- var k = null, T = `{
10151
+ var k = null, M = `{
10152
10152
  `;
10153
10153
  n += " ";
10154
10154
  var O = r.hasOwnProperty != null;
10155
10155
  for (var k in r)
10156
- O && !r.hasOwnProperty(k) || k == "prototype" || k == "__class__" || k == "__super__" || k == "__interfaces__" || k == "__properties__" || (T.length != 2 && (T += `,
10157
- `), T += n + k + " : " + Mt.__string_rec(r[k], n));
10158
- return n = n.substring(1), T += `
10159
- ` + n + "}", T;
10156
+ O && !r.hasOwnProperty(k) || k == "prototype" || k == "__class__" || k == "__super__" || k == "__interfaces__" || k == "__properties__" || (M.length != 2 && (M += `,
10157
+ `), M += n + k + " : " + Tt.__string_rec(r[k], n));
10158
+ return n = n.substring(1), M += `
10159
+ ` + n + "}", M;
10160
10160
  case "function":
10161
10161
  return "<function>";
10162
10162
  case "string":
@@ -10164,17 +10164,17 @@ var Ah = { exports: {} };
10164
10164
  default:
10165
10165
  return String(r);
10166
10166
  }
10167
- }, Mt.__interfLoop = function(r, n) {
10167
+ }, Tt.__interfLoop = function(r, n) {
10168
10168
  if (r == null) return !1;
10169
10169
  if (r == n) return !0;
10170
10170
  var a = r.__interfaces__;
10171
10171
  if (a != null)
10172
10172
  for (var l = 0, u = a.length; l < u; ) {
10173
10173
  var d = l++, p = a[d];
10174
- if (p == n || Mt.__interfLoop(p, n)) return !0;
10174
+ if (p == n || Tt.__interfLoop(p, n)) return !0;
10175
10175
  }
10176
- return Mt.__interfLoop(r.__super__, n);
10177
- }, Mt.__instanceof = function(r, n) {
10176
+ return Tt.__interfLoop(r.__super__, n);
10177
+ }, Tt.__instanceof = function(r, n) {
10178
10178
  if (n == null) return !1;
10179
10179
  switch (n) {
10180
10180
  case Lh:
@@ -10192,18 +10192,18 @@ var Ah = { exports: {} };
10192
10192
  default:
10193
10193
  if (r != null) {
10194
10194
  if (typeof n == "function") {
10195
- if (r instanceof n || Mt.__interfLoop(Mt.getClass(r), n)) return !0;
10196
- } else if (typeof n == "object" && Mt.__isNativeObj(n) && r instanceof n)
10195
+ if (r instanceof n || Tt.__interfLoop(Tt.getClass(r), n)) return !0;
10196
+ } else if (typeof n == "object" && Tt.__isNativeObj(n) && r instanceof n)
10197
10197
  return !0;
10198
10198
  } else return !1;
10199
10199
  return n == so && r.__name__ != null || n == io && r.__ename__ != null ? !0 : r.__enum__ == n;
10200
10200
  }
10201
- }, Mt.__nativeClassName = function(r) {
10202
- var n = Mt.__toStr.call(r).slice(8, -1);
10201
+ }, Tt.__nativeClassName = function(r) {
10202
+ var n = Tt.__toStr.call(r).slice(8, -1);
10203
10203
  return n == "Object" || n == "Function" || n == "Math" || n == "JSON" ? null : n;
10204
- }, Mt.__isNativeObj = function(r) {
10205
- return Mt.__nativeClassName(r) != null;
10206
- }, Mt.__resolveNativeClass = function(r) {
10204
+ }, Tt.__isNativeObj = function(r) {
10205
+ return Tt.__nativeClassName(r) != null;
10206
+ }, Tt.__resolveNativeClass = function(r) {
10207
10207
  return w[r];
10208
10208
  };
10209
10209
  var ae = function(r) {
@@ -10301,7 +10301,7 @@ var Ah = { exports: {} };
10301
10301
  l[d] = 0;
10302
10302
  }
10303
10303
  l.byteLength = l.length, l.byteOffset = 0, l.buffer = new ae(l);
10304
- } else if (Mt.__instanceof(r, ae)) {
10304
+ } else if (Tt.__instanceof(r, ae)) {
10305
10305
  var p = r;
10306
10306
  n == null && (n = 0), a == null && (a = p.byteLength - n), n == 0 ? l = p.a : l = p.a.slice(n, n + a), l.byteLength = l.length, l.byteOffset = n, l.buffer = p;
10307
10307
  } else if (r instanceof Array && r.__enum__ == null)
@@ -10310,7 +10310,7 @@ var Ah = { exports: {} };
10310
10310
  return l.subarray = sr._subarray, l.set = sr._set, l;
10311
10311
  }, sr._set = function(r, n) {
10312
10312
  var a = this;
10313
- if (Mt.__instanceof(r.buffer, ae)) {
10313
+ if (Tt.__instanceof(r.buffer, ae)) {
10314
10314
  var l = r;
10315
10315
  if (r.byteLength + n > a.byteLength) throw new Q("set() outside of range");
10316
10316
  for (var u = 0, d = r.byteLength; u < d; ) {
@@ -10506,7 +10506,7 @@ var Ah = { exports: {} };
10506
10506
  var gn = f.promhx.Deferred = function() {
10507
10507
  Et.call(this);
10508
10508
  };
10509
- b["promhx.Deferred"] = gn, gn.__name__ = ["promhx", "Deferred"], gn.__super__ = Et, gn.prototype = M(Et.prototype, {
10509
+ b["promhx.Deferred"] = gn, gn.__name__ = ["promhx", "Deferred"], gn.__super__ = Et, gn.prototype = T(Et.prototype, {
10510
10510
  resolve: function(r) {
10511
10511
  this.handleResolve(r);
10512
10512
  },
@@ -10520,7 +10520,7 @@ var Ah = { exports: {} };
10520
10520
  return new Ht(this);
10521
10521
  },
10522
10522
  publicStream: function() {
10523
- return new Mr(this);
10523
+ return new Tr(this);
10524
10524
  },
10525
10525
  __class__: gn
10526
10526
  });
@@ -10533,7 +10533,7 @@ var Ah = { exports: {} };
10533
10533
  }, pe.promise = function(r) {
10534
10534
  var n = new pe();
10535
10535
  return n.handleResolve(r), n;
10536
- }, pe.__super__ = Et, pe.prototype = M(Et.prototype, {
10536
+ }, pe.__super__ = Et, pe.prototype = T(Et.prototype, {
10537
10537
  isRejected: function() {
10538
10538
  return this._rejected;
10539
10539
  },
@@ -10607,7 +10607,7 @@ var Ah = { exports: {} };
10607
10607
  }, Ht.stream = function(r) {
10608
10608
  var n = new Ht(null);
10609
10609
  return n.handleResolve(r), n;
10610
- }, Ht.__super__ = Et, Ht.prototype = M(Et.prototype, {
10610
+ }, Ht.__super__ = Et, Ht.prototype = T(Et.prototype, {
10611
10611
  then: function(r) {
10612
10612
  var n = new Ht(null);
10613
10613
  return Et.link(this, n, r), this._end_promise._update.push({
@@ -10702,13 +10702,13 @@ var Ah = { exports: {} };
10702
10702
  },
10703
10703
  __class__: Ht
10704
10704
  });
10705
- var Mr = f.promhx.PublicStream = function(r) {
10705
+ var Tr = f.promhx.PublicStream = function(r) {
10706
10706
  Ht.call(this, r);
10707
10707
  };
10708
- b["promhx.PublicStream"] = Mr, Mr.__name__ = ["promhx", "PublicStream"], Mr.publicstream = function(r) {
10709
- var n = new Mr(null);
10708
+ b["promhx.PublicStream"] = Tr, Tr.__name__ = ["promhx", "PublicStream"], Tr.publicstream = function(r) {
10709
+ var n = new Tr(null);
10710
10710
  return n.handleResolve(r), n;
10711
- }, Mr.__super__ = Ht, Mr.prototype = M(Ht.prototype, {
10711
+ }, Tr.__super__ = Ht, Tr.prototype = T(Ht.prototype, {
10712
10712
  resolve: function(r) {
10713
10713
  this.handleResolve(r);
10714
10714
  },
@@ -10718,7 +10718,7 @@ var Ah = { exports: {} };
10718
10718
  update: function(r) {
10719
10719
  this.handleResolve(r);
10720
10720
  },
10721
- __class__: Mr
10721
+ __class__: Tr
10722
10722
  });
10723
10723
  var St = function() {
10724
10724
  };
@@ -10825,18 +10825,18 @@ var Ah = { exports: {} };
10825
10825
  }, Ft.memoize = function(r, n, a) {
10826
10826
  Ft.memo.h.hasOwnProperty(r) || Ft.memo.set(r, new bt()), Ft.memo.h[r].h[n] = a;
10827
10827
  };
10828
- var Te = f.core.BoundingBox = function(r) {
10828
+ var Me = f.core.BoundingBox = function(r) {
10829
10829
  this.max = null, this.min = null, this.dim = 3, this.initialized = !1, r != null && this.addRange(r);
10830
10830
  };
10831
- b["verb.core.BoundingBox"] = Te, Te.__name__ = ["verb", "core", "BoundingBox"], Te.intervalsOverlap = function(r, n, a, l, u) {
10831
+ b["verb.core.BoundingBox"] = Me, Me.__name__ = ["verb", "core", "BoundingBox"], Me.intervalsOverlap = function(r, n, a, l, u) {
10832
10832
  u == null && (u = -1);
10833
10833
  var d;
10834
10834
  u < -0.5 ? d = rt.TOLERANCE : d = u;
10835
10835
  var p = Math.min(r, n) - d, _ = Math.max(r, n) + d, v = Math.min(a, l) - d, A = Math.max(a, l) + d;
10836
10836
  return p >= v && p <= A || _ >= v && _ <= A || v >= p && v <= _ || A >= p && A <= _;
10837
- }, Te.prototype = {
10837
+ }, Me.prototype = {
10838
10838
  fromPoint: function(r) {
10839
- return new Te([r]);
10839
+ return new Me([r]);
10840
10840
  },
10841
10841
  add: function(r) {
10842
10842
  if (!this.initialized)
@@ -10855,13 +10855,13 @@ var Ah = { exports: {} };
10855
10855
  return this;
10856
10856
  },
10857
10857
  contains: function(r, n) {
10858
- return n == null && (n = -1), this.initialized ? this.intersects(new Te([r]), n) : !1;
10858
+ return n == null && (n = -1), this.initialized ? this.intersects(new Me([r]), n) : !1;
10859
10859
  },
10860
10860
  intersects: function(r, n) {
10861
10861
  if (n == null && (n = -1), !this.initialized || !r.initialized) return !1;
10862
10862
  for (var a = this.min, l = this.max, u = r.min, d = r.max, p = 0, _ = this.dim; p < _; ) {
10863
10863
  var v = p++;
10864
- if (!Te.intervalsOverlap(a[v], l[v], u[v], d[v], n)) return !1;
10864
+ if (!Me.intervalsOverlap(a[v], l[v], u[v], d[v], n)) return !1;
10865
10865
  }
10866
10866
  return !0;
10867
10867
  },
@@ -10886,9 +10886,9 @@ var Ah = { exports: {} };
10886
10886
  var I = v++;
10887
10887
  p.push(Math.min(l[I], d[I])), _.push(Math.max(a[I], u[I]));
10888
10888
  }
10889
- return new Te([_, p]);
10889
+ return new Me([_, p]);
10890
10890
  },
10891
- __class__: Te
10891
+ __class__: Me
10892
10892
  };
10893
10893
  var rt = f.core.Constants = function() {
10894
10894
  };
@@ -10905,25 +10905,25 @@ var Ah = { exports: {} };
10905
10905
  var Dn = f.core.Plane = function(r, n) {
10906
10906
  this.origin = r, this.normal = n;
10907
10907
  };
10908
- b["verb.core.Plane"] = Dn, Dn.__name__ = ["verb", "core", "Plane"], Dn.__super__ = $t, Dn.prototype = M($t.prototype, {
10908
+ b["verb.core.Plane"] = Dn, Dn.__name__ = ["verb", "core", "Plane"], Dn.__super__ = $t, Dn.prototype = T($t.prototype, {
10909
10909
  __class__: Dn
10910
10910
  });
10911
10911
  var _n = f.core.Ray = function(r, n) {
10912
10912
  this.origin = r, this.dir = n;
10913
10913
  };
10914
- b["verb.core.Ray"] = _n, _n.__name__ = ["verb", "core", "Ray"], _n.__super__ = $t, _n.prototype = M($t.prototype, {
10914
+ b["verb.core.Ray"] = _n, _n.__name__ = ["verb", "core", "Ray"], _n.__super__ = $t, _n.prototype = T($t.prototype, {
10915
10915
  __class__: _n
10916
10916
  });
10917
10917
  var Gt = f.core.NurbsCurveData = function(r, n, a) {
10918
10918
  this.degree = r, this.controlPoints = a, this.knots = n;
10919
10919
  };
10920
- b["verb.core.NurbsCurveData"] = Gt, Gt.__name__ = ["verb", "core", "NurbsCurveData"], Gt.__super__ = $t, Gt.prototype = M($t.prototype, {
10920
+ b["verb.core.NurbsCurveData"] = Gt, Gt.__name__ = ["verb", "core", "NurbsCurveData"], Gt.__super__ = $t, Gt.prototype = T($t.prototype, {
10921
10921
  __class__: Gt
10922
10922
  });
10923
10923
  var te = f.core.NurbsSurfaceData = function(r, n, a, l, u) {
10924
10924
  this.degreeU = r, this.degreeV = n, this.knotsU = a, this.knotsV = l, this.controlPoints = u;
10925
10925
  };
10926
- b["verb.core.NurbsSurfaceData"] = te, te.__name__ = ["verb", "core", "NurbsSurfaceData"], te.__super__ = $t, te.prototype = M($t.prototype, {
10926
+ b["verb.core.NurbsSurfaceData"] = te, te.__name__ = ["verb", "core", "NurbsSurfaceData"], te.__super__ = $t, te.prototype = T($t.prototype, {
10927
10927
  __class__: te
10928
10928
  });
10929
10929
  var qe = f.core.MeshData = function(r, n, a, l) {
@@ -10931,19 +10931,19 @@ var Ah = { exports: {} };
10931
10931
  };
10932
10932
  b["verb.core.MeshData"] = qe, qe.__name__ = ["verb", "core", "MeshData"], qe.empty = function() {
10933
10933
  return new qe([], [], [], []);
10934
- }, qe.__super__ = $t, qe.prototype = M($t.prototype, {
10934
+ }, qe.__super__ = $t, qe.prototype = T($t.prototype, {
10935
10935
  __class__: qe
10936
10936
  });
10937
10937
  var Un = f.core.PolylineData = function(r, n) {
10938
10938
  this.points = r, this.params = n;
10939
10939
  };
10940
- b["verb.core.PolylineData"] = Un, Un.__name__ = ["verb", "core", "PolylineData"], Un.__super__ = $t, Un.prototype = M($t.prototype, {
10940
+ b["verb.core.PolylineData"] = Un, Un.__name__ = ["verb", "core", "PolylineData"], Un.__super__ = $t, Un.prototype = T($t.prototype, {
10941
10941
  __class__: Un
10942
10942
  });
10943
10943
  var Vn = f.core.VolumeData = function(r, n, a, l, u, d, p) {
10944
10944
  this.degreeU = r, this.degreeV = n, this.degreeW = a, this.knotsU = l, this.knotsV = u, this.knotsW = d, this.controlPoints = p;
10945
10945
  };
10946
- b["verb.core.VolumeData"] = Vn, Vn.__name__ = ["verb", "core", "VolumeData"], Vn.__super__ = $t, Vn.prototype = M($t.prototype, {
10946
+ b["verb.core.VolumeData"] = Vn, Vn.__name__ = ["verb", "core", "VolumeData"], Vn.__super__ = $t, Vn.prototype = T($t.prototype, {
10947
10947
  __class__: Vn
10948
10948
  });
10949
10949
  var ee = f.core.Pair = function(r, n) {
@@ -10970,11 +10970,11 @@ var Ah = { exports: {} };
10970
10970
  b["verb.core.CurveSurfaceIntersection"] = Gn, Gn.__name__ = ["verb", "core", "CurveSurfaceIntersection"], Gn.prototype = {
10971
10971
  __class__: Gn
10972
10972
  };
10973
- var Tr = f.core.MeshIntersectionPoint = function(r, n, a, l, u) {
10973
+ var Mr = f.core.MeshIntersectionPoint = function(r, n, a, l, u) {
10974
10974
  this.visited = !1, this.adj = null, this.opp = null, this.uv0 = r, this.uv1 = n, this.point = a, this.faceIndex0, this.faceIndex1;
10975
10975
  };
10976
- b["verb.core.MeshIntersectionPoint"] = Tr, Tr.__name__ = ["verb", "core", "MeshIntersectionPoint"], Tr.prototype = {
10977
- __class__: Tr
10976
+ b["verb.core.MeshIntersectionPoint"] = Mr, Mr.__name__ = ["verb", "core", "MeshIntersectionPoint"], Mr.prototype = {
10977
+ __class__: Mr
10978
10978
  };
10979
10979
  var jn = f.core.PolylineMeshIntersection = function(r, n, a, l, u) {
10980
10980
  this.point = r, this.u = n, this.uv = a, this.polylineIndex = l, this.faceIndex = u;
@@ -11030,7 +11030,7 @@ var Ah = { exports: {} };
11030
11030
  return -S.item1;
11031
11031
  }), d, p = null;
11032
11032
  p = function(S) {
11033
- for (var P, k = S.dimension, T = l.distanceFunction(r, S.kdPoint.point), O, C = [], F = 0, R = l.dim; F < R; )
11033
+ for (var P, k = S.dimension, M = l.distanceFunction(r, S.kdPoint.point), O, C = [], F = 0, R = l.dim; F < R; )
11034
11034
  F++, C.push(0);
11035
11035
  O = C;
11036
11036
  for (var U, V, q = function(K, tt) {
@@ -11040,10 +11040,10 @@ var Ah = { exports: {} };
11040
11040
  G == S.dimension ? O[G] = r[G] : O[G] = S.kdPoint.point[G];
11041
11041
  }
11042
11042
  if (U = l.distanceFunction(O, S.kdPoint.point), S.right == null && S.left == null) {
11043
- (u.size() < n || T < u.peek().item1) && q(S, T);
11043
+ (u.size() < n || M < u.peek().item1) && q(S, M);
11044
11044
  return;
11045
11045
  }
11046
- S.right == null ? P = S.left : S.left == null ? P = S.right : r[k] < S.kdPoint.point[k] ? P = S.left : P = S.right, p(P), (u.size() < n || T < u.peek().item1) && q(S, T), (u.size() < n || Math.abs(U) < u.peek().item1) && (P == S.left ? V = S.right : V = S.left, V != null && p(V));
11046
+ S.right == null ? P = S.left : S.left == null ? P = S.right : r[k] < S.kdPoint.point[k] ? P = S.left : P = S.right, p(P), (u.size() < n || M < u.peek().item1) && q(S, M), (u.size() < n || Math.abs(U) < u.peek().item1) && (P == S.left ? V = S.right : V = S.left, V != null && p(V));
11047
11047
  }, d = p;
11048
11048
  for (var _ = 0; _ < n; )
11049
11049
  _++, u.push(new ee(null, a));
@@ -11136,7 +11136,7 @@ var Ah = { exports: {} };
11136
11136
  return new ee(new ir(l[0], this._knotTol), new ir(l[1], this._knotTol));
11137
11137
  },
11138
11138
  boundingBox: function() {
11139
- return this._boundingBox == null && (this._boundingBox = new Te(N.dehomogenize1d(this._curve.controlPoints))), this._boundingBox;
11139
+ return this._boundingBox == null && (this._boundingBox = new Me(N.dehomogenize1d(this._curve.controlPoints))), this._boundingBox;
11140
11140
  },
11141
11141
  yield: function() {
11142
11142
  return this._curve;
@@ -11187,7 +11187,7 @@ var Ah = { exports: {} };
11187
11187
  return new ee(new or(this._polyline, l), new or(this._polyline, u));
11188
11188
  },
11189
11189
  boundingBox: function() {
11190
- return this._boundingBox == null && (this._boundingBox = new Te(this._polyline.points)), this._boundingBox;
11190
+ return this._boundingBox == null && (this._boundingBox = new Me(this._polyline.points)), this._boundingBox;
11191
11191
  },
11192
11192
  yield: function() {
11193
11193
  return this._interval.min;
@@ -11212,7 +11212,7 @@ var Ah = { exports: {} };
11212
11212
  },
11213
11213
  boundingBox: function() {
11214
11214
  if (this._boundingBox == null) {
11215
- this._boundingBox = new Te();
11215
+ this._boundingBox = new Me();
11216
11216
  for (var r = 0, n = this._surface.controlPoints; r < n.length; ) {
11217
11217
  var a = n[r];
11218
11218
  ++r, this._boundingBox.addRange(N.dehomogenize1d(a));
@@ -11317,13 +11317,13 @@ var Ah = { exports: {} };
11317
11317
  I.push(r[k].slice());
11318
11318
  }
11319
11319
  r = I;
11320
- var T = r.length, O = T - 1, C = [];
11321
- for (l = 0; l < T; ) {
11322
- for (_ = l, p = r[l], A = Math.abs(p[l]), a = l + 1; a < T; )
11320
+ var M = r.length, O = M - 1, C = [];
11321
+ for (l = 0; l < M; ) {
11322
+ for (_ = l, p = r[l], A = Math.abs(p[l]), a = l + 1; a < M; )
11323
11323
  u = Math.abs(r[a][l]), A < u && (A = u, _ = a), ++a;
11324
- for (C[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n < T; )
11324
+ for (C[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n < M; )
11325
11325
  r[n][l] /= d, ++n;
11326
- for (n = l + 1; n < T; ) {
11326
+ for (n = l + 1; n < M; ) {
11327
11327
  for (v = r[n], a = l + 1; a < O; )
11328
11328
  v[a] -= v[l] * p[a], ++a, v[a] -= v[l] * p[a], ++a;
11329
11329
  a == O && (v[a] -= v[l] * p[a]), ++n;
@@ -11344,7 +11344,7 @@ var Ah = { exports: {} };
11344
11344
  var a = r[n[0]], l = r[n[1]], u = r[n[2]], d = m.sub(l, a), p = m.sub(u, a), _ = m.cross(d, p);
11345
11345
  return m.mul(1 / m.norm(_), _);
11346
11346
  }, re.makeMeshAabb = function(r, n) {
11347
- for (var a = new Te(), l = 0; l < n.length; ) {
11347
+ for (var a = new Me(), l = 0; l < n.length; ) {
11348
11348
  var u = n[l];
11349
11349
  ++l, a.add(r.points[r.faces[u][0]]), a.add(r.points[r.faces[u][1]]), a.add(r.points[r.faces[u][2]]);
11350
11350
  }
@@ -11357,8 +11357,8 @@ var Ah = { exports: {} };
11357
11357
  u.push(new ee(_, p));
11358
11358
  }
11359
11359
  u.sort(function(P, k) {
11360
- var T = P.item0, O = k.item0;
11361
- return T == O ? 0 : T > O ? 1 : -1;
11360
+ var M = P.item0, O = k.item0;
11361
+ return M == O ? 0 : M > O ? 1 : -1;
11362
11362
  });
11363
11363
  for (var v = [], A = 0, I = u.length; A < I; ) {
11364
11364
  var S = A++;
@@ -11383,8 +11383,8 @@ var Ah = { exports: {} };
11383
11383
  }
11384
11384
  return a;
11385
11385
  }, re.triangleUVFromPoint = function(r, n, a) {
11386
- var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], A = r.uvs[l[2]], I = m.sub(u, a), S = m.sub(d, a), P = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), T = m.norm(m.cross(S, P)) / k, O = m.norm(m.cross(P, I)) / k, C = m.norm(m.cross(I, S)) / k;
11387
- return m.add(m.mul(T, _), m.add(m.mul(O, v), m.mul(C, A)));
11386
+ var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], A = r.uvs[l[2]], I = m.sub(u, a), S = m.sub(d, a), P = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), M = m.norm(m.cross(S, P)) / k, O = m.norm(m.cross(P, I)) / k, C = m.norm(m.cross(I, S)) / k;
11387
+ return m.add(m.mul(M, _), m.add(m.mul(O, v), m.mul(C, A)));
11388
11388
  };
11389
11389
  var Cr = function(r, n) {
11390
11390
  if (this._empty = !1, this._face = -1, n == null) {
@@ -11431,7 +11431,7 @@ var Ah = { exports: {} };
11431
11431
  var d = n.length, p = r(n), _ = p, v;
11432
11432
  if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
11433
11433
  a = Math.max(a, rt.EPSILON);
11434
- var A, I, S, P = Lt.identity(d), k = 0, T = [], O, C, F, R, U, V, q = "";
11434
+ var A, I, S, P = Lt.identity(d), k = 0, M = [], O, C, F, R, U, V, q = "";
11435
11435
  for (I = l(n); k < u; ) {
11436
11436
  if (!m.all(m.finite(I))) {
11437
11437
  q = "Gradient has Infinity or NaN";
@@ -11446,7 +11446,7 @@ var Ah = { exports: {} };
11446
11446
  break;
11447
11447
  }
11448
11448
  for (U = 1, v = m.dot(I, A), O = n; k < u && !(U * V < a); ) {
11449
- if (T = m.mul(U, A), O = m.add(n, T), _ = r(O), _ - p >= 0.1 * U * v || isNaN(_)) {
11449
+ if (M = m.mul(U, A), O = m.add(n, M), _ = r(O), _ - p >= 0.1 * U * v || isNaN(_)) {
11450
11450
  U *= 0.5, ++k;
11451
11451
  continue;
11452
11452
  }
@@ -11460,20 +11460,20 @@ var Ah = { exports: {} };
11460
11460
  q = "maxit reached during line search";
11461
11461
  break;
11462
11462
  }
11463
- S = l(O), C = m.sub(S, I), R = m.dot(C, T), F = Lt.dot(P, C), P = Lt.sub(Lt.add(P, Lt.mul((R + m.dot(C, F)) / (R * R), Xe.tensor(T, T))), Lt.div(Lt.add(Xe.tensor(F, T), Xe.tensor(T, F)), R)), n = O, p = _, I = S, ++k;
11463
+ S = l(O), C = m.sub(S, I), R = m.dot(C, M), F = Lt.dot(P, C), P = Lt.sub(Lt.add(P, Lt.mul((R + m.dot(C, F)) / (R * R), Xe.tensor(M, M))), Lt.div(Lt.add(Xe.tensor(F, M), Xe.tensor(M, F)), R)), n = O, p = _, I = S, ++k;
11464
11464
  }
11465
11465
  return new Kn(n, p, I, P, k, q);
11466
11466
  }, Xe.numericalGradient = function(r, n) {
11467
11467
  var a = n.length, l = r(n);
11468
11468
  if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
11469
- for (var u = n.slice(0), d, p, _ = [], v, A = 1e-3, I, S, P, k = 0, T, O, C, F = 0; F < a; )
11469
+ for (var u = n.slice(0), d, p, _ = [], v, A = 1e-3, I, S, P, k = 0, M, O, C, F = 0; F < a; )
11470
11470
  for (var R = F++, U = Math.max(1e-6 * l, 1e-8); ; ) {
11471
11471
  if (++k, k > 20) throw new Q("Numerical gradient fails");
11472
11472
  if (u[R] = n[R] + U, d = r(u), u[R] = n[R] - U, p = r(u), u[R] = n[R], isNaN(d) || isNaN(p)) {
11473
11473
  U /= 16;
11474
11474
  continue;
11475
11475
  }
11476
- if (_[R] = (d - p) / (2 * U), I = n[R] - U, S = n[R], P = n[R] + U, T = (d - l) / U, O = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(S), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(T - _[R]), Math.abs(O - _[R]), Math.abs(T - O)]) / C, U / C), v > A) U /= 16;
11476
+ if (_[R] = (d - p) / (2 * U), I = n[R] - U, S = n[R], P = n[R] + U, M = (d - l) / U, O = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(S), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(M - _[R]), Math.abs(O - _[R]), Math.abs(M - O)]) / C, U / C), v > A) U /= 16;
11477
11477
  else break;
11478
11478
  }
11479
11479
  return _;
@@ -11742,9 +11742,9 @@ var Ah = { exports: {} };
11742
11742
  var a = yt.rationalSurfaceClosestParam(r, n);
11743
11743
  return N.rationalSurfacePoint(r, a[0], a[1]);
11744
11744
  }, yt.rationalSurfaceClosestParam = function(r, n) {
11745
- for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], A = $.last(r.knotsU), I = r.knotsV[0], S = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), T, O = zt.rationalSurfaceAdaptive(r, new Lr()), C = 1 / 0, F = 0, R = O.points.length; F < R; ) {
11745
+ for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], A = $.last(r.knotsU), I = r.knotsV[0], S = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), M, O = zt.rationalSurfaceAdaptive(r, new Lr()), C = 1 / 0, F = 0, R = O.points.length; F < R; ) {
11746
11746
  var U = F++, V = O.points[U], q = m.normSquared(m.sub(n, V));
11747
- q < C && (C = q, T = O.uvs[U]);
11747
+ q < C && (C = q, M = O.uvs[U]);
11748
11748
  }
11749
11749
  for (var J = function(jt) {
11750
11750
  return N.rationalSurfaceDerivatives(r, jt[0], jt[1], 2);
@@ -11752,16 +11752,16 @@ var Ah = { exports: {} };
11752
11752
  var Kt = Xt[1][0], Ae = Xt[0][1], He = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Se = Xt[1][1], Le = m.dot(Kt, Dt), $e = m.dot(Ae, Dt), lr = [-Le, -$e], Ze = m.dot(Kt, Kt) + m.dot(He, Dt), Qe = m.dot(Kt, Ae) + m.dot(ge, Dt), Je = m.dot(Kt, Ae) + m.dot(Se, Dt), dr = m.dot(Ae, Ae) + m.dot(_e, Dt), Pn = [[Ze, Qe], [Je, dr]], qr = Lt.solve(Pn, lr);
11753
11753
  return m.add(qr, jt);
11754
11754
  }; l < a; ) {
11755
- u = J(T), _ = m.sub(u[0][0], n);
11755
+ u = J(M), _ = m.sub(u[0][0], n);
11756
11756
  var G = m.norm(_), K = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * G, et = m.dot(u[0][1], _), it = m.norm(u[0][1]) * G, ht = K / tt, at = et / it, ct = G < d, nt = ht < p, mt = at < p;
11757
- if (ct && nt && mt) return T;
11758
- var X = H(T, u, _);
11757
+ if (ct && nt && mt) return M;
11758
+ var X = H(M, u, _);
11759
11759
  X[0] < v ? P ? X = [A - (X[0] - v), X[1]] : X = [v + rt.EPSILON, X[1]] : X[0] > A && (P ? X = [v + (X[0] - A), X[1]] : X = [A - rt.EPSILON, X[1]]), X[1] < I ? k ? X = [X[0], S - (X[1] - I)] : X = [X[0], I + rt.EPSILON] : X[1] > S && (k ? X = [X[0], I + (X[0] - S)] : X = [X[0], S - rt.EPSILON]);
11760
- var gt = m.norm(m.mul(X[0] - T[0], u[1][0])), It = m.norm(m.mul(X[1] - T[1], u[0][1]));
11761
- if (gt + It < d) return T;
11762
- T = X, l++;
11760
+ var gt = m.norm(m.mul(X[0] - M[0], u[1][0])), It = m.norm(m.mul(X[1] - M[1], u[0][1]));
11761
+ if (gt + It < d) return M;
11762
+ M = X, l++;
11763
11763
  }
11764
- return T;
11764
+ return M;
11765
11765
  }, yt.rationalCurveClosestPoint = function(r, n) {
11766
11766
  return N.rationalCurvePoint(r, yt.rationalCurveClosestParam(r, n));
11767
11767
  }, yt.rationalCurveClosestParam = function(r, n) {
@@ -11769,12 +11769,12 @@ var Ah = { exports: {} };
11769
11769
  var _ = d++, v = u[_][0], A = u[_ + 1][0], I = u[_].slice(1), S = u[_ + 1].slice(1), P = Ne.segmentClosestPoint(n, I, S, v, A), k = m.norm(m.sub(n, P.pt));
11770
11770
  k < a && (a = k, l = P.u);
11771
11771
  }
11772
- for (var T = 5, O = 0, C, F = 1e-4, R = 5e-4, U, V = r.knots[0], q = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
11772
+ for (var M = 5, O = 0, C, F = 1e-4, R = 5e-4, U, V = r.knots[0], q = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
11773
11773
  return N.rationalCurveDerivatives(r, X, 2);
11774
11774
  }, K = function(X, gt, It) {
11775
11775
  var jt = m.dot(gt[1], It), Xt = m.dot(gt[2], It), Dt = m.dot(gt[1], gt[1]), Kt = Xt + Dt;
11776
11776
  return X - jt / Kt;
11777
- }; O < T; ) {
11777
+ }; O < M; ) {
11778
11778
  C = G(H), U = m.sub(C[0], n);
11779
11779
  var tt = m.norm(U), et = m.dot(C[1], U), it = m.norm(C[1]) * tt, ht = et / it, at = tt < F, ct = Math.abs(ht) < R;
11780
11780
  if (at && ct) return H;
@@ -11882,9 +11882,9 @@ var Ah = { exports: {} };
11882
11882
  for (var p, _ = [], v = 0, A = u + 1; v < A; )
11883
11883
  v++, _.push(n);
11884
11884
  p = _;
11885
- for (var I = [], S = [], P = N.knotSpan(u, n, l), k = null, T = 0; T < d.length; ) {
11886
- var O = d[T];
11887
- ++T, k = ft.curveKnotRefine(new Gt(u, l, O), p), I.push(k.controlPoints.slice(0, P + 1)), S.push(k.controlPoints.slice(P + 1));
11885
+ for (var I = [], S = [], P = N.knotSpan(u, n, l), k = null, M = 0; M < d.length; ) {
11886
+ var O = d[M];
11887
+ ++M, k = ft.curveKnotRefine(new Gt(u, l, O), p), I.push(k.controlPoints.slice(0, P + 1)), S.push(k.controlPoints.slice(P + 1));
11888
11888
  }
11889
11889
  var C = k.knots.slice(0, P + u + 2), F = k.knots.slice(P + 1);
11890
11890
  return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, I), new te(r.degreeU, u, r.knotsU.slice(), F, S)] : (I = Lt.transpose(I), S = Lt.transpose(S), [new te(u, r.degreeV, C, r.knotsV.slice(), I), new te(u, r.degreeV, F, r.knotsV.slice(), S)]);
@@ -11931,16 +11931,16 @@ var Ah = { exports: {} };
11931
11931
  var S = A++;
11932
11932
  _.push([]);
11933
11933
  for (var P = 0, k = l - S + 1; P < k; ) {
11934
- for (var T = P++, O = d[S][T], C = 1, F = T + 1; C < F; ) {
11934
+ for (var M = P++, O = d[S][M], C = 1, F = M + 1; C < F; ) {
11935
11935
  var R = C++;
11936
- m.subMulMutate(O, Ft.get(T, R) * p[0][R], _[S][T - R]);
11936
+ m.subMulMutate(O, Ft.get(M, R) * p[0][R], _[S][M - R]);
11937
11937
  }
11938
11938
  for (var U = 1, V = S + 1; U < V; ) {
11939
11939
  var q = U++;
11940
- m.subMulMutate(O, Ft.get(S, q) * p[q][0], _[S - q][T]);
11941
- for (var J = m.zeros1d(v), H = 1, G = T + 1; H < G; ) {
11940
+ m.subMulMutate(O, Ft.get(S, q) * p[q][0], _[S - q][M]);
11941
+ for (var J = m.zeros1d(v), H = 1, G = M + 1; H < G; ) {
11942
11942
  var K = H++;
11943
- m.addMulMutate(J, Ft.get(T, K) * p[q][K], _[S - q][T - K]);
11943
+ m.addMulMutate(J, Ft.get(M, K) * p[q][K], _[S - q][M - K]);
11944
11944
  }
11945
11945
  m.subMulMutate(O, Ft.get(S, q), J);
11946
11946
  }
@@ -11972,7 +11972,7 @@ var Ah = { exports: {} };
11972
11972
  d < p ? P = d : P = p;
11973
11973
  var k;
11974
11974
  d < _ ? k = d : k = _;
11975
- for (var T = m.zeros3d(d + 1, d + 1, S), O = N.knotSpanGivenN(r, p, l, A), C = N.knotSpanGivenN(n, _, u, I), F = N.derivativeBasisFunctionsGivenNI(O, l, p, r, A), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), U = m.zeros2d(_ + 1, S), V = 0, q = 0, J = P + 1; q < J; ) {
11975
+ for (var M = m.zeros3d(d + 1, d + 1, S), O = N.knotSpanGivenN(r, p, l, A), C = N.knotSpanGivenN(n, _, u, I), F = N.derivativeBasisFunctionsGivenNI(O, l, p, r, A), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), U = m.zeros2d(_ + 1, S), V = 0, q = 0, J = P + 1; q < J; ) {
11976
11976
  for (var H = q++, G = 0, K = _ + 1; G < K; ) {
11977
11977
  var tt = G++;
11978
11978
  U[tt] = m.zeros1d(S);
@@ -11985,36 +11985,36 @@ var Ah = { exports: {} };
11985
11985
  at < k ? V = at : V = k;
11986
11986
  for (var ct = 0, nt = V + 1; ct < nt; ) {
11987
11987
  var mt = ct++;
11988
- T[H][mt] = m.zeros1d(S);
11988
+ M[H][mt] = m.zeros1d(S);
11989
11989
  for (var X = 0, gt = _ + 1; X < gt; ) {
11990
11990
  var It = X++;
11991
- m.addMulMutate(T[H][mt], R[mt][It], U[It]);
11991
+ m.addMulMutate(M[H][mt], R[mt][It], U[It]);
11992
11992
  }
11993
11993
  }
11994
11994
  }
11995
- return T;
11995
+ return M;
11996
11996
  }, N.surfacePoint = function(r, n, a) {
11997
11997
  var l = r.knotsU.length - r.degreeU - 2, u = r.knotsV.length - r.degreeV - 2;
11998
11998
  return N.surfacePointGivenNM(l, u, r, n, a);
11999
11999
  }, N.surfacePointGivenNM = function(r, n, a, l, u) {
12000
12000
  var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, A = a.knotsV;
12001
12001
  if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, A.length)) throw new Q("Invalid relations between control points, knot vector, and n");
12002
- for (var I = _[0][0].length, S = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, A), k = N.basisFunctionsGivenKnotSpanIndex(S, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(P, u, p, A), O = S - d, C = P, F = m.zeros1d(I), R = m.zeros1d(I), U = 0, V = p + 1; U < V; ) {
12002
+ for (var I = _[0][0].length, S = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, A), k = N.basisFunctionsGivenKnotSpanIndex(S, l, d, v), M = N.basisFunctionsGivenKnotSpanIndex(P, u, p, A), O = S - d, C = P, F = m.zeros1d(I), R = m.zeros1d(I), U = 0, V = p + 1; U < V; ) {
12003
12003
  var q = U++;
12004
12004
  R = m.zeros1d(I), C = P - p + q;
12005
12005
  for (var J = 0, H = d + 1; J < H; ) {
12006
12006
  var G = J++;
12007
12007
  m.addMulMutate(R, k[G], _[O + G][C]);
12008
12008
  }
12009
- m.addMulMutate(F, T[q], R);
12009
+ m.addMulMutate(F, M[q], R);
12010
12010
  }
12011
12011
  return F;
12012
12012
  }, N.curveRegularSamplePoints = function(r, n) {
12013
- for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, T = n + 1; k < T; )
12013
+ for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, M = n + 1; k < M; )
12014
12014
  k++, P.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, I]), m.addAllMutate([_, v]);
12015
12015
  return P;
12016
12016
  }, N.curveRegularSamplePoints2 = function(r, n) {
12017
- for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, T = n + 1; k < T; )
12017
+ for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, M = n + 1; k < M; )
12018
12018
  k++, P.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, I]), m.addAllMutate([_, v]);
12019
12019
  return P;
12020
12020
  }, N.rationalSurfaceRegularSampleDerivatives = function(r, n, a, l) {
@@ -12022,7 +12022,7 @@ var Ah = { exports: {} };
12022
12022
  var I = A++, S = [];
12023
12023
  d.push(S);
12024
12024
  for (var P = 0; P < _; ) {
12025
- for (var k = P++, T = u[I][k], O = N.rational2d(T), C = N.weight2d(T), F = [], R = O[0][0].length, U = 0; U < v; ) {
12025
+ for (var k = P++, M = u[I][k], O = N.rational2d(M), C = N.weight2d(M), F = [], R = O[0][0].length, U = 0; U < v; ) {
12026
12026
  var V = U++;
12027
12027
  F.push([]);
12028
12028
  for (var q = 0, J = v - V; q < J; ) {
@@ -12049,12 +12049,12 @@ var Ah = { exports: {} };
12049
12049
  }, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
12050
12050
  var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, A = p[0][0].length;
12051
12051
  ($.last(_) - _[0]) / n, ($.last(v) - v[0]) / a;
12052
- for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), S = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, O = k.item1, C = [], F = n + 1, R = a + 1, U = 0; U < F; ) {
12052
+ for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), S = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), M = k.item0, O = k.item1, C = [], F = n + 1, R = a + 1, U = 0; U < F; ) {
12053
12053
  var V = U++, q = [];
12054
12054
  C.push(q);
12055
12055
  for (var J = 0; J < R; ) {
12056
12056
  var H = J++;
12057
- q.push(N.surfaceDerivativesGivenBasesKnotSpans(u, d, p, S[V], T[H], P[V], O[H], A, l));
12057
+ q.push(N.surfaceDerivativesGivenBasesKnotSpans(u, d, p, S[V], M[H], P[V], O[H], A, l));
12058
12058
  }
12059
12059
  }
12060
12060
  return C;
@@ -12063,12 +12063,12 @@ var Ah = { exports: {} };
12063
12063
  }, N.surfaceRegularSamplePoints = function(r, n, a) {
12064
12064
  var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
12065
12065
  ($.last(p) - p[0]) / n, ($.last(_) - _[0]) / a;
12066
- for (var A = N.regularlySpacedBasisFunctions(l, p, n), I = A.item0, S = A.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0, T = P.item1, O = [], C = n + 1, F = a + 1, R = 0; R < C; ) {
12066
+ for (var A = N.regularlySpacedBasisFunctions(l, p, n), I = A.item0, S = A.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0, M = P.item1, O = [], C = n + 1, F = a + 1, R = 0; R < C; ) {
12067
12067
  var U = R++, V = [];
12068
12068
  O.push(V);
12069
12069
  for (var q = 0; q < F; ) {
12070
12070
  var J = q++;
12071
- V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], S[U], T[J], v));
12071
+ V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], S[U], M[J], v));
12072
12072
  }
12073
12073
  }
12074
12074
  return O;
@@ -12086,13 +12086,13 @@ var Ah = { exports: {} };
12086
12086
  return new ee(p, d);
12087
12087
  }, N.surfacePointGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _) {
12088
12088
  for (var v = m.zeros1d(_), A, I = l - r, S = u - n, P = 0, k = n + 1; P < k; ) {
12089
- var T = P++;
12089
+ var M = P++;
12090
12090
  A = m.zeros1d(_);
12091
12091
  for (var O = 0, C = r + 1; O < C; ) {
12092
12092
  var F = O++;
12093
12093
  m.addMulMutate(A, d[F], a[I + F][S]);
12094
12094
  }
12095
- S++, m.addMulMutate(v, p[T], A);
12095
+ S++, m.addMulMutate(v, p[M], A);
12096
12096
  }
12097
12097
  return v;
12098
12098
  }, N.surfaceDerivativesGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _, v) {
@@ -12100,7 +12100,7 @@ var Ah = { exports: {} };
12100
12100
  v < r ? I = v : I = r;
12101
12101
  var S;
12102
12102
  v < n ? S = v : S = n;
12103
- for (var P = m.zeros3d(I + 1, S + 1, A), k = m.zeros2d(n + 1, A), T = 0, O = 0, C = I + 1; O < C; ) {
12103
+ for (var P = m.zeros3d(I + 1, S + 1, A), k = m.zeros2d(n + 1, A), M = 0, O = 0, C = I + 1; O < C; ) {
12104
12104
  for (var F = O++, R = 0, U = n + 1; R < U; ) {
12105
12105
  var V = R++;
12106
12106
  k[V] = m.zeros1d(A);
@@ -12110,8 +12110,8 @@ var Ah = { exports: {} };
12110
12110
  }
12111
12111
  }
12112
12112
  var G = v - F;
12113
- G < S ? T = G : T = S;
12114
- for (var K = 0, tt = T + 1; K < tt; ) {
12113
+ G < S ? M = G : M = S;
12114
+ for (var K = 0, tt = M + 1; K < tt; ) {
12115
12115
  var et = K++;
12116
12116
  P[F][et] = m.zeros1d(A);
12117
12117
  for (var it = 0, ht = n + 1; it < ht; ) {
@@ -12130,9 +12130,9 @@ var Ah = { exports: {} };
12130
12130
  var _ = d[0].length, v;
12131
12131
  l < u ? v = l : v = u;
12132
12132
  for (var A = m.zeros2d(l + 1, _), I = N.knotSpanGivenN(r, u, a, p), S = N.derivativeBasisFunctionsGivenNI(I, a, u, v, p), P = 0, k = v + 1; P < k; )
12133
- for (var T = P++, O = 0, C = u + 1; O < C; ) {
12133
+ for (var M = P++, O = 0, C = u + 1; O < C; ) {
12134
12134
  var F = O++;
12135
- m.addMulMutate(A[T], S[T][F], d[I - u + F]);
12135
+ m.addMulMutate(A[M], S[M][F], d[I - u + F]);
12136
12136
  }
12137
12137
  return A;
12138
12138
  }, N.curvePoint = function(r, n) {
@@ -12154,12 +12154,12 @@ var Ah = { exports: {} };
12154
12154
  return N.volumePointGivenNML(r, u, d, p, n, a, l);
12155
12155
  }, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
12156
12156
  if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
12157
- for (var _ = r.controlPoints, v = r.degreeU, A = r.degreeV, I = r.degreeW, S = r.knotsU, P = r.knotsV, k = r.knotsW, T = _[0][0][0].length, O = N.knotSpanGivenN(n, v, u, S), C = N.knotSpanGivenN(a, A, d, P), F = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(O, u, v, S), U = N.basisFunctionsGivenKnotSpanIndex(C, d, A, P), V = N.basisFunctionsGivenKnotSpanIndex(F, p, I, k), q = O - v, J = m.zeros1d(T), H = m.zeros1d(T), G = m.zeros1d(T), K = 0, tt = I + 1; K < tt; ) {
12157
+ for (var _ = r.controlPoints, v = r.degreeU, A = r.degreeV, I = r.degreeW, S = r.knotsU, P = r.knotsV, k = r.knotsW, M = _[0][0][0].length, O = N.knotSpanGivenN(n, v, u, S), C = N.knotSpanGivenN(a, A, d, P), F = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(O, u, v, S), U = N.basisFunctionsGivenKnotSpanIndex(C, d, A, P), V = N.basisFunctionsGivenKnotSpanIndex(F, p, I, k), q = O - v, J = m.zeros1d(M), H = m.zeros1d(M), G = m.zeros1d(M), K = 0, tt = I + 1; K < tt; ) {
12158
12158
  var et = K++;
12159
- G = m.zeros1d(T);
12159
+ G = m.zeros1d(M);
12160
12160
  for (var it = F - I + et, ht = 0, at = A + 1; ht < at; ) {
12161
12161
  var ct = ht++;
12162
- H = m.zeros1d(T);
12162
+ H = m.zeros1d(M);
12163
12163
  for (var nt = C - A + ct, mt = 0, X = v + 1; mt < X; ) {
12164
12164
  var gt = mt++;
12165
12165
  m.addMulMutate(H, R[gt], _[q + gt][nt][it]);
@@ -12179,8 +12179,8 @@ var Ah = { exports: {} };
12179
12179
  var P = I++;
12180
12180
  p[P] = n - u[r + 1 - P], _[P] = u[r + P] - n, v = 0;
12181
12181
  for (var k = 0; k < P; ) {
12182
- var T = k++;
12183
- d[P][T] = _[T + 1] + p[P - T], A = d[T][P - 1] / d[P][T], d[T][P] = v + _[T + 1] * A, v = p[P - T] * A;
12182
+ var M = k++;
12183
+ d[P][M] = _[M + 1] + p[P - M], A = d[M][P - 1] / d[P][M], d[M][P] = v + _[M + 1] * A, v = p[P - M] * A;
12184
12184
  }
12185
12185
  d[P][P] = v;
12186
12186
  }
@@ -12300,12 +12300,12 @@ var Ah = { exports: {} };
12300
12300
  }), 3);
12301
12301
  });
12302
12302
  }, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
12303
- var d, p, _, v, A, I, S, P, k, T, O, C, F, R = 5, U = 0;
12303
+ var d, p, _, v, A, I, S, P, k, M, O, C, F, R = 5, U = 0;
12304
12304
  do {
12305
- if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], A = d[0][1], _ = m.normalized(m.cross(v, A)), I = m.dot(_, p), S = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = S[0][0], T = S[1][0], O = S[0][1], k = m.normalized(m.cross(T, O)), C = m.dot(k, P), F = m.distSquared(p, P), F < u * u) break;
12305
+ if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], A = d[0][1], _ = m.normalized(m.cross(v, A)), I = m.dot(_, p), S = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = S[0][0], M = S[1][0], O = S[0][1], k = m.normalized(m.cross(M, O)), C = m.dot(k, P), F = m.distSquared(p, P), F < u * u) break;
12306
12306
  var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, I, k, C, V, q);
12307
12307
  if (J == null) throw new Q("panic!");
12308
- var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(A, _), et = m.cross(T, k), it = m.cross(O, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, A), ct = m.dot(it, G) / m.dot(it, T), nt = m.dot(et, G) / m.dot(et, O);
12308
+ var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(A, _), et = m.cross(M, k), it = m.cross(O, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, A), ct = m.dot(it, G) / m.dot(it, M), nt = m.dot(et, G) / m.dot(et, O);
12309
12309
  a = m.add([ht, at], a), l = m.add([ct, nt], l), U++;
12310
12310
  } while (U < R);
12311
12311
  return new Wn(a, l, p, F);
@@ -12318,7 +12318,7 @@ var Ah = { exports: {} };
12318
12318
  }).filter(function(p) {
12319
12319
  return m.distSquared(p.min.point, p.max.point) > rt.EPSILON;
12320
12320
  }), function(p, _) {
12321
- var v = m.sub(p.min.uv0, _.min.uv0), A = m.dot(v, v), I = m.sub(p.max.uv0, _.max.uv0), S = m.dot(I, I), P = m.sub(p.min.uv0, _.max.uv0), k = m.dot(P, P), T = m.sub(p.max.uv0, _.min.uv0), O = m.dot(T, T);
12321
+ var v = m.sub(p.min.uv0, _.min.uv0), A = m.dot(v, v), I = m.sub(p.max.uv0, _.max.uv0), S = m.dot(I, I), P = m.sub(p.min.uv0, _.max.uv0), k = m.dot(P, P), M = m.sub(p.max.uv0, _.min.uv0), O = m.dot(M, M);
12322
12322
  return A < rt.EPSILON && S < rt.EPSILON || k < rt.EPSILON && O < rt.EPSILON;
12323
12323
  });
12324
12324
  return lt.makeMeshIntersectionPolylines(d);
@@ -12326,7 +12326,7 @@ var Ah = { exports: {} };
12326
12326
  for (var u = new Cr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], A = d.max[1], I = m.span(n, a, l), S = [], P = 0; P < I.length; ) {
12327
12327
  var k = I[P];
12328
12328
  ++P;
12329
- var T = [[p, _, k], [v, _, k], [v, A, k], [p, A, k]], O = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], F = new qe(C, T, null, O);
12329
+ var M = [[p, _, k], [v, _, k], [v, A, k], [p, A, k]], O = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], F = new qe(C, M, null, O);
12330
12330
  S.push(lt.meshes(r, F, u));
12331
12331
  }
12332
12332
  return S;
@@ -12352,9 +12352,9 @@ var Ah = { exports: {} };
12352
12352
  });
12353
12353
  I.length == 0 && (I = u);
12354
12354
  for (var S = [], P = 0, k = !1; I.length != 0; ) {
12355
- var T = I.pop();
12356
- if (!T.visited) {
12357
- for (var O = [], C = T; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, O.push(C), P += 2, C = C.opp.adj, C == T)); )
12355
+ var M = I.pop();
12356
+ if (!M.visited) {
12357
+ for (var O = [], C = M; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, O.push(C), P += 2, C = C.opp.adj, C == M)); )
12358
12358
  ;
12359
12359
  O.length > 0 && (O.push(O[O.length - 1].opp), S.push(O));
12360
12360
  }
@@ -12382,7 +12382,7 @@ var Ah = { exports: {} };
12382
12382
  a == null && (a = 1e-3), l != null ? l = l : l = new ir(r), u != null ? u = u : u = new Nr(n);
12383
12383
  var d = lt.boundingBoxTrees(l, u, a);
12384
12384
  return $.unique(d.map(function(p) {
12385
- var _ = p.item0, v = p.item1, A = $.first(_.knots), I = $.last(_.knots), S = (A + I) / 2, P = $.first(v.knotsU), k = $.last(v.knotsU), T = $.first(v.knotsV), O = $.last(v.knotsV), C = [(P + k) / 2, (T + O) / 2];
12385
+ var _ = p.item0, v = p.item1, A = $.first(_.knots), I = $.last(_.knots), S = (A + I) / 2, P = $.first(v.knotsU), k = $.last(v.knotsU), M = $.first(v.knotsV), O = $.last(v.knotsV), C = [(P + k) / 2, (M + O) / 2];
12386
12386
  return lt.curveAndSurfaceWithEstimate(_, v, [S].concat(C), a);
12387
12387
  }).filter(function(p) {
12388
12388
  return m.distSquared(p.curvePoint, p.surfacePoint) < a * a;
@@ -12395,8 +12395,8 @@ var Ah = { exports: {} };
12395
12395
  var A = N.rationalCurvePoint(r, v[0]), I = N.rationalSurfacePoint(n, v[1], v[2]), S = m.sub(A, I);
12396
12396
  return m.dot(S, S);
12397
12397
  }, d = function(v) {
12398
- var A = N.rationalCurveDerivatives(r, v[0], 1), I = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), S = m.sub(I[0][0], A[0]), P = m.mul(-1, A[1]), k = I[1][0], T = I[0][1];
12399
- return [2 * m.dot(P, S), 2 * m.dot(k, S), 2 * m.dot(T, S)];
12398
+ var A = N.rationalCurveDerivatives(r, v[0], 1), I = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), S = m.sub(I[0][0], A[0]), P = m.mul(-1, A[1]), k = I[1][0], M = I[0][1];
12399
+ return [2 * m.dot(P, S), 2 * m.dot(k, S), 2 * m.dot(M, S)];
12400
12400
  }, p = Xe.uncmin(u, a, l * l, d), _ = p.solution;
12401
12401
  return new Gn(_[0], [_[1], _[2]], N.rationalCurvePoint(r, _[0]), N.rationalSurfacePoint(n, _[1], _[2]));
12402
12402
  }, lt.polylineAndMesh = function(r, n, a) {
@@ -12446,10 +12446,10 @@ var Ah = { exports: {} };
12446
12446
  });
12447
12447
  }, lt.curvesWithEstimate = function(r, n, a, l, u) {
12448
12448
  var d = function(P) {
12449
- var k = N.rationalCurvePoint(r, P[0]), T = N.rationalCurvePoint(n, P[1]), O = m.sub(k, T);
12449
+ var k = N.rationalCurvePoint(r, P[0]), M = N.rationalCurvePoint(n, P[1]), O = m.sub(k, M);
12450
12450
  return m.dot(O, O);
12451
12451
  }, p = function(P) {
12452
- var k = N.rationalCurveDerivatives(r, P[0], 1), T = N.rationalCurveDerivatives(n, P[1], 1), O = m.sub(k[0], T[0]), C = k[1], F = m.mul(-1, T[1]);
12452
+ var k = N.rationalCurveDerivatives(r, P[0], 1), M = N.rationalCurveDerivatives(n, P[1], 1), O = m.sub(k[0], M[0]), C = k[1], F = m.mul(-1, M[1]);
12453
12453
  return [2 * m.dot(C, O), 2 * m.dot(F, O)];
12454
12454
  }, _ = Xe.uncmin(d, [a, l], u * u, p), v = _.solution[0], A = _.solution[1], I = N.rationalCurvePoint(r, v), S = N.rationalCurvePoint(n, A);
12455
12455
  return new Hr(I, S, v, A);
@@ -12461,10 +12461,10 @@ var Ah = { exports: {} };
12461
12461
  var P = lt.clipRayInCoplanarTriangle(I, a, l);
12462
12462
  if (P == null) return null;
12463
12463
  var k = lt.mergeTriangleClipIntervals(S, P, r, n, a, l);
12464
- return k == null ? null : new we(new Tr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Tr(k.max.uv0, k.max.uv1, k.max.point, n, l));
12464
+ return k == null ? null : new we(new Mr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Mr(k.max.uv0, k.max.uv1, k.max.point, n, l));
12465
12465
  }, lt.clipRayInCoplanarTriangle = function(r, n, a) {
12466
12466
  for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), A = _.map(m.norm), I = null, S = null, P = 0; P < 3; ) {
12467
- var k = P++, T = u[k], O = v[k], C = lt.rays(T, O, r.origin, r.dir);
12467
+ var k = P++, M = u[k], O = v[k], C = lt.rays(M, O, r.origin, r.dir);
12468
12468
  if (C != null) {
12469
12469
  var F = C.u0, R = C.u1;
12470
12470
  F < -rt.EPSILON || F > A[k] + rt.EPSILON || ((I == null || R < I.u) && (I = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))), (S == null || R > S.u) && (S = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))));
@@ -12477,7 +12477,7 @@ var Ah = { exports: {} };
12477
12477
  r.min.u > n.min.u ? p = new ee(r.min, 0) : p = new ee(n.min, 1);
12478
12478
  var _;
12479
12479
  r.max.u < n.max.u ? _ = new ee(r.max, 0) : _ = new ee(n.max, 1);
12480
- var v = new we(new Tr(null, null, p.item0.point, l, d), new Tr(null, null, _.item0.point, l, d));
12480
+ var v = new we(new Mr(null, null, p.item0.point, l, d), new Mr(null, null, _.item0.point, l, d));
12481
12481
  return p.item1 == 0 ? (v.min.uv0 = p.item0.uv, v.min.uv1 = re.triangleUVFromPoint(u, d, p.item0.point)) : (v.min.uv0 = re.triangleUVFromPoint(a, l, p.item0.point), v.min.uv1 = p.item0.uv), _.item1 == 0 ? (v.max.uv0 = _.item0.uv, v.max.uv1 = re.triangleUVFromPoint(u, d, _.item0.point)) : (v.max.uv0 = re.triangleUVFromPoint(a, l, _.item0.point), v.max.uv1 = _.item0.uv), v;
12482
12482
  }, lt.planes = function(r, n, a, l) {
12483
12483
  var u = m.cross(n, l);
@@ -12486,7 +12486,7 @@ var Ah = { exports: {} };
12486
12486
  _ > p && (d = 1, p = _), v > p && (d = 2, p = v);
12487
12487
  var A, I, S, P;
12488
12488
  d == 0 ? (A = n[1], I = n[2], S = l[1], P = l[2]) : d == 1 ? (A = n[0], I = n[2], S = l[0], P = l[2]) : (A = n[0], I = n[1], S = l[0], P = l[1]);
12489
- var k = -m.dot(r, n), T = -m.dot(a, l), O = A * P - I * S, C = (I * T - k * P) / O, F = (k * S - A * T) / O, R;
12489
+ var k = -m.dot(r, n), M = -m.dot(a, l), O = A * P - I * S, C = (I * M - k * P) / O, F = (k * S - A * M) / O, R;
12490
12490
  return d == 0 ? R = [0, C, F] : d == 1 ? R = [C, 0, F] : R = [C, F, 0], new _n(R, m.normalized(u));
12491
12491
  }, lt.threePlanes = function(r, n, a, l, u, d) {
12492
12492
  var p = m.cross(a, u), _ = m.dot(r, p);
@@ -12504,24 +12504,24 @@ var Ah = { exports: {} };
12504
12504
  }, lt.segments = function(r, n, a, l, u) {
12505
12505
  var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), A = Math.sqrt(m.dot(v, v)), I = m.mul(1 / A, v), S = lt.rays(r, _, a, I);
12506
12506
  if (S != null) {
12507
- var P = Math.min(Math.max(0, S.u0 / p), 1), k = Math.min(Math.max(0, S.u1 / A), 1), T = m.onRay(r, d, P), O = m.onRay(a, v, k), C = m.distSquared(T, O);
12508
- if (C < u * u) return new Hr(T, O, P, k);
12507
+ var P = Math.min(Math.max(0, S.u0 / p), 1), k = Math.min(Math.max(0, S.u1 / A), 1), M = m.onRay(r, d, P), O = m.onRay(a, v, k), C = m.distSquared(M, O);
12508
+ if (C < u * u) return new Hr(M, O, P, k);
12509
12509
  }
12510
12510
  return null;
12511
12511
  }, lt.rays = function(r, n, a, l) {
12512
12512
  var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), A = m.dot(n, n), I = m.dot(l, l), S = A * I - u * u;
12513
12513
  if (Math.abs(S) < rt.EPSILON) return null;
12514
- var P = u * (d - p) - A * (_ - v), k = P / S, T = (d - p + k * u) / A, O = m.onRay(r, n, T), C = m.onRay(a, l, k);
12515
- return new Hr(O, C, T, k);
12514
+ var P = u * (d - p) - A * (_ - v), k = P / S, M = (d - p + k * u) / A, O = m.onRay(r, n, M), C = m.onRay(a, l, k);
12515
+ return new Hr(O, C, M, k);
12516
12516
  }, lt.segmentWithTriangle = function(r, n, a, l) {
12517
12517
  var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), A = m.cross(_, v), I = m.sub(n, r), S = m.sub(r, u), P = -m.dot(A, S), k = m.dot(A, I);
12518
12518
  if (Math.abs(k) < rt.EPSILON) return null;
12519
- var T = P / k;
12520
- if (T < 0 || T > 1) return null;
12521
- var O = m.add(r, m.mul(T, I)), C = m.dot(_, v), F = m.dot(_, _), R = m.dot(v, v), U = m.sub(O, u), V = m.dot(U, _), q = m.dot(U, v), J = C * C - F * R;
12519
+ var M = P / k;
12520
+ if (M < 0 || M > 1) return null;
12521
+ var O = m.add(r, m.mul(M, I)), C = m.dot(_, v), F = m.dot(_, _), R = m.dot(v, v), U = m.sub(O, u), V = m.dot(U, _), q = m.dot(U, v), J = C * C - F * R;
12522
12522
  if (Math.abs(J) < rt.EPSILON) return null;
12523
12523
  var H = (C * q - R * V) / J, G = (C * V - F * q) / J;
12524
- return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new Hn(O, H, G, T);
12524
+ return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new Hn(O, H, G, M);
12525
12525
  }, lt.segmentAndPlane = function(r, n, a, l) {
12526
12526
  var u = m.dot(l, m.sub(n, r));
12527
12527
  if (Math.abs(u) < rt.EPSILON) return null;
@@ -12558,11 +12558,11 @@ var Ah = { exports: {} };
12558
12558
  I > 0 ? S = ft.surfaceKnotRefine(r, m.rep(I, n), a) : S = r;
12559
12559
  var P = N.knotSpan(u, n, l);
12560
12560
  return Math.abs(n - $.first(l)) < rt.EPSILON ? P = 0 : Math.abs(n - $.last(l)) < rt.EPSILON && (P = (a ? S.controlPoints[0].length : S.controlPoints.length) - 1), a ? new Gt(S.degreeU, S.knotsU, function(k) {
12561
- for (var T, O = [], C = 0, F = S.controlPoints; C < F.length; ) {
12561
+ for (var M, O = [], C = 0, F = S.controlPoints; C < F.length; ) {
12562
12562
  var R = F[C];
12563
12563
  ++C, O.push(R[P]);
12564
12564
  }
12565
- return T = O, T;
12565
+ return M = O, M;
12566
12566
  }()) : new Gt(S.degreeV, S.knotsV, S.controlPoints[P]);
12567
12567
  }, pt.loftedSurface = function(r, n) {
12568
12568
  r = ft.unifyCurveKnotVectors(r);
@@ -12591,7 +12591,7 @@ var Ah = { exports: {} };
12591
12591
  u == null && (u = 3);
12592
12592
  for (var d = u, p = [], _ = 0, v = u + 1; _ < v; ) {
12593
12593
  for (var A = _++, I = [], S = 0, P = u + 1; S < P; ) {
12594
- var k = S++, T = 1 - A / d, O = m.lerp(T, r, n), C = m.lerp(T, l, a), F = m.lerp(1 - k / d, O, C);
12594
+ var k = S++, M = 1 - A / d, O = m.lerp(M, r, n), C = m.lerp(M, l, a), F = m.lerp(1 - k / d, O, C);
12595
12595
  F.push(1), I.push(F);
12596
12596
  }
12597
12597
  p.push(I);
@@ -12603,7 +12603,7 @@ var Ah = { exports: {} };
12603
12603
  n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
12604
12604
  var _ = u - l, v = 0;
12605
12605
  _ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
12606
- var A = _ / v, I = Math.cos(A / 2), S = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), O = 0, C = l, F = m.zeros1d(v * 2);
12606
+ var A = _ / v, I = Math.cos(A / 2), S = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], M = m.zeros1d(2 * v + 3), O = 0, C = l, F = m.zeros1d(v * 2);
12607
12607
  k[0] = S, F[0] = 1;
12608
12608
  for (var R = 1, U = v + 1; R < U; ) {
12609
12609
  var V = R++;
@@ -12615,20 +12615,20 @@ var Ah = { exports: {} };
12615
12615
  }
12616
12616
  for (var K = 2 * v + 1, tt = 0; tt < 3; ) {
12617
12617
  var et = tt++;
12618
- T[et] = 0, T[et + K] = 1;
12618
+ M[et] = 0, M[et + K] = 1;
12619
12619
  }
12620
12620
  switch (v) {
12621
12621
  case 2:
12622
- T[3] = T[4] = 0.5;
12622
+ M[3] = M[4] = 0.5;
12623
12623
  break;
12624
12624
  case 3:
12625
- T[3] = T[4] = 0.3333333333333333, T[5] = T[6] = 0.6666666666666666;
12625
+ M[3] = M[4] = 0.3333333333333333, M[5] = M[6] = 0.6666666666666666;
12626
12626
  break;
12627
12627
  case 4:
12628
- T[3] = T[4] = 0.25, T[5] = T[6] = 0.5, T[7] = T[8] = 0.75;
12628
+ M[3] = M[4] = 0.25, M[5] = M[6] = 0.5, M[7] = M[8] = 0.75;
12629
12629
  break;
12630
12630
  }
12631
- return new Gt(2, T, N.homogenize1d(k, F));
12631
+ return new Gt(2, M, N.homogenize1d(k, F));
12632
12632
  }, pt.arc = function(r, n, a, l, u, d) {
12633
12633
  return pt.ellipseArc(r, m.mul(l, m.normalized(n)), m.mul(l, m.normalized(a)), u, d);
12634
12634
  }, pt.polyline = function(r) {
@@ -12656,9 +12656,9 @@ var Ah = { exports: {} };
12656
12656
  var S = I++;
12657
12657
  _[S] = 0, _[A + S] = 1;
12658
12658
  }
12659
- for (var P = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), O = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), F = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
12659
+ for (var P = Math.cos(v / 2), k = 0, M = m.zeros1d(p + 1), O = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), F = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
12660
12660
  var V = R++;
12661
- k += v, O[V] = Math.cos(k), T[V] = Math.sin(k);
12661
+ k += v, O[V] = Math.cos(k), M[V] = Math.sin(k);
12662
12662
  }
12663
12663
  for (var q = 0, J = u.length; q < J; ) {
12664
12664
  var H = q++, G = Ne.rayClosestPoint(u[H], n, a), K = m.sub(u[H], G), tt = m.norm(K), et = m.cross(a, K);
@@ -12667,8 +12667,8 @@ var Ah = { exports: {} };
12667
12667
  F[0][H] = d[H];
12668
12668
  for (var ht = et, at = 0, ct = 1, nt = p + 1; ct < nt; ) {
12669
12669
  var mt = ct++, X;
12670
- tt == 0 ? X = G : X = m.add(G, m.add(m.mul(tt * O[mt], K), m.mul(tt * T[mt], et))), C[at + 2][H] = X, F[at + 2][H] = d[H];
12671
- var gt = m.sub(m.mul(O[mt], et), m.mul(T[mt], K));
12670
+ tt == 0 ? X = G : X = m.add(G, m.add(m.mul(tt * O[mt], K), m.mul(tt * M[mt], et))), C[at + 2][H] = X, F[at + 2][H] = d[H];
12671
+ var gt = m.sub(m.mul(O[mt], et), m.mul(M[mt], K));
12672
12672
  if (tt == 0) C[at + 1][H] = G;
12673
12673
  else {
12674
12674
  var It = lt.rays(it, m.mul(1 / m.norm(ht), ht), X, m.mul(1 / m.norm(gt), gt)), jt = m.add(it, m.mul(It.u0, ht));
@@ -12691,8 +12691,8 @@ var Ah = { exports: {} };
12691
12691
  d.push(I + A);
12692
12692
  }
12693
12693
  for (var S = d[d.length - 1], P = 0, k = d.length; P < k; ) {
12694
- var T = P++;
12695
- d[T] = d[T] / S;
12694
+ var M = P++;
12695
+ d[M] = d[M] / S;
12696
12696
  }
12697
12697
  var O = m.rep(n + 1, 0), C = l != null && u != null, F;
12698
12698
  C ? F = 0 : F = 1;
@@ -12787,10 +12787,10 @@ var Ah = { exports: {} };
12787
12787
  }
12788
12788
  for (var k = d.map(function(G) {
12789
12789
  return G.max - G.min;
12790
- }), T = z.fold(k, function(G, K) {
12790
+ }), M = z.fold(k, function(G, K) {
12791
12791
  return Math.max(G, K);
12792
12792
  }, 0), O = 0, C = r.length; O < C; ) {
12793
- var F = O++, R = [T / k[F]];
12793
+ var F = O++, R = [M / k[F]];
12794
12794
  r[F].knots = r[F].knots.map(/* @__PURE__ */ function(G) {
12795
12795
  return function(K) {
12796
12796
  return K * G[0];
@@ -12810,14 +12810,14 @@ var Ah = { exports: {} };
12810
12810
  return r > n ? r : n;
12811
12811
  }, ft.curveElevateDegree = function(r, n) {
12812
12812
  if (n <= r.degree) return r;
12813
- var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), A = [], I = [], S = [], P = a + l + 1, k = n, T = Math.floor(k / 2), O = [], C = [];
12813
+ var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), A = [], I = [], S = [], P = a + l + 1, k = n, M = Math.floor(k / 2), O = [], C = [];
12814
12814
  v[0][0] = 1, v[k][l] = 1;
12815
- for (var F = 1, R = T + 1; F < R; )
12815
+ for (var F = 1, R = M + 1; F < R; )
12816
12816
  for (var U = F++, V = 1 / Ft.get(k, U), q = ft.imin(l, U), J = ft.imax(0, U - p), H = q + 1; J < H; ) {
12817
12817
  var G = J++;
12818
12818
  v[U][G] = V * Ft.get(l, G) * Ft.get(p, U - G);
12819
12819
  }
12820
- for (var K = T + 1; K < k; )
12820
+ for (var K = M + 1; K < k; )
12821
12821
  for (var tt = K++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
12822
12822
  var at = it++;
12823
12823
  v[tt][at] = v[k - tt][l - at];
@@ -12929,15 +12929,15 @@ var Ah = { exports: {} };
12929
12929
  }
12930
12930
  l.length / d - 1;
12931
12931
  for (var I = d * 2, S = [], P = 0; P < a.length; ) {
12932
- var k = l.slice(P, P + I), T = a.slice(P, P + d);
12933
- S.push(new Gt(n, k, T)), P += d;
12932
+ var k = l.slice(P, P + I), M = a.slice(P, P + d);
12933
+ S.push(new Gt(n, k, M)), P += d;
12934
12934
  }
12935
12935
  return S;
12936
12936
  }, ft.curveKnotRefine = function(r, n) {
12937
12937
  if (n.length == 0) return pt.clonedCurve(r);
12938
12938
  for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), A = N.knotSpan(a, n[_], u), I = [], S = [], P = 0, k = v - a + 1; P < k; ) {
12939
- var T = P++;
12940
- I[T] = l[T];
12939
+ var M = P++;
12940
+ I[M] = l[M];
12941
12941
  }
12942
12942
  for (var O = A - 1, C = d + 1; O < C; ) {
12943
12943
  var F = O++;
@@ -12964,8 +12964,8 @@ var Ah = { exports: {} };
12964
12964
  return new Gt(a, S, I);
12965
12965
  }, ft.curveKnotInsert = function(r, n, a) {
12966
12966
  for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), A = [], I = [], S = [], P = 1, k = v + 1; P < k; ) {
12967
- var T = P++;
12968
- I[T] = d[T];
12967
+ var M = P++;
12968
+ I[M] = d[M];
12969
12969
  }
12970
12970
  for (var O = 1, C = a + 1; O < C; ) {
12971
12971
  var F = O++;
@@ -13027,14 +13027,14 @@ var Ah = { exports: {} };
13027
13027
  }, zt.rationalCurveAdaptiveSampleRange = function(r, n, a, l, u) {
13028
13028
  var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, A = N.rationalCurvePoint(r, v), I = m.sub(d, p), S = m.sub(d, A);
13029
13029
  if (m.dot(I, I) < l && m.dot(S, S) > l || !Ne.threePointsAreFlat(d, A, p, l)) {
13030
- var P = n + (a - n) * 0.5, k = zt.rationalCurveAdaptiveSampleRange(r, n, P, l, u), T = zt.rationalCurveAdaptiveSampleRange(r, P, a, l, u);
13031
- return k.slice(0, -1).concat(T);
13030
+ var P = n + (a - n) * 0.5, k = zt.rationalCurveAdaptiveSampleRange(r, n, P, l, u), M = zt.rationalCurveAdaptiveSampleRange(r, P, a, l, u);
13031
+ return k.slice(0, -1).concat(M);
13032
13032
  } else return u ? [[n].concat(d), [a].concat(p)] : [d, p];
13033
13033
  }, zt.rationalSurfaceNaive = function(r, n, a) {
13034
13034
  n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
13035
13035
  for (var l = r.knotsU, u = r.knotsV, d = $.last(l) - l[0], p = $.last(u) - u[0], _ = d / n, v = p / a, A = [], I = [], S = [], P = 0, k = n + 1; P < k; )
13036
- for (var T = P++, O = 0, C = a + 1; O < C; ) {
13037
- var F = O++, R = T * _, U = F * v;
13036
+ for (var M = P++, O = 0, C = a + 1; O < C; ) {
13037
+ var F = O++, R = M * _, U = F * v;
13038
13038
  I.push([R, U]);
13039
13039
  var V = N.rationalSurfaceDerivatives(r, R, U, 1), q = V[0][0];
13040
13040
  A.push(q);
@@ -13053,8 +13053,8 @@ var Ah = { exports: {} };
13053
13053
  n.minDivsU > a ? u = n.minDivsU = n.minDivsU : u = n.minDivsU = a;
13054
13054
  var d;
13055
13055
  n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
13056
- for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), A = r.knotsV[0], I = (p - _) / u, S = (v - A) / d, P = [], k = [], T = 0, O = d + 1; T < O; ) {
13057
- for (var C = T++, F = [], R = 0, U = u + 1; R < U; ) {
13056
+ for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), A = r.knotsV[0], I = (p - _) / u, S = (v - A) / d, P = [], k = [], M = 0, O = d + 1; M < O; ) {
13057
+ for (var C = M++, F = [], R = 0, U = u + 1; R < U; ) {
13058
13058
  var V = R++, q = _ + I * V, J = A + S * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), G = m.normalized(m.cross(H[0][1], H[1][0]));
13059
13059
  F.push(new je(H[0][0], G, [q, J], -1, m.isZero(G)));
13060
13060
  }
@@ -13247,8 +13247,8 @@ var Ah = { exports: {} };
13247
13247
  var k = l.length;
13248
13248
  return r.faces.push([l[u], l[(u + 2) % k], l[(u + 1) % k]]), r.faces.push([l[(u + 4) % k], l[(u + 3) % k], l[u]]), r.faces.push([l[u], l[(u + 3) % k], l[(u + 2) % k]]), r;
13249
13249
  }
13250
- var T = this.center();
13251
- r.uvs.push(T.uv), r.points.push(T.point), r.normals.push(T.normal);
13250
+ var M = this.center();
13251
+ r.uvs.push(M.uv), r.points.push(M.point), r.normals.push(M.normal);
13252
13252
  for (var O = r.points.length - 1, C = 0, F = a.length - 1; C < a.length; )
13253
13253
  r.faces.push([O, l[C], l[F]]), F = C++;
13254
13254
  return r;
@@ -13313,14 +13313,14 @@ var Ah = { exports: {} };
13313
13313
  b["verb.geom.ICurve"] = Sn, Sn.__name__ = ["verb", "geom", "ICurve"], Sn.__interfaces__ = [bn], Sn.prototype = {
13314
13314
  __class__: Sn
13315
13315
  };
13316
- var Tt = f.geom.NurbsCurve = function(r) {
13316
+ var Mt = f.geom.NurbsCurve = function(r) {
13317
13317
  this._data = We.isValidNurbsCurveData(r);
13318
13318
  };
13319
- b["verb.geom.NurbsCurve"] = Tt, Tt.__name__ = ["verb", "geom", "NurbsCurve"], Tt.__interfaces__ = [Sn], Tt.byKnotsControlPointsWeights = function(r, n, a, l) {
13320
- return new Tt(new Gt(r, n.slice(), N.homogenize1d(a, l)));
13321
- }, Tt.byPoints = function(r, n) {
13322
- return n == null && (n = 3), new Tt(pt.rationalInterpCurve(r, n));
13323
- }, Tt.__super__ = $t, Tt.prototype = M($t.prototype, {
13319
+ b["verb.geom.NurbsCurve"] = Mt, Mt.__name__ = ["verb", "geom", "NurbsCurve"], Mt.__interfaces__ = [Sn], Mt.byKnotsControlPointsWeights = function(r, n, a, l) {
13320
+ return new Mt(new Gt(r, n.slice(), N.homogenize1d(a, l)));
13321
+ }, Mt.byPoints = function(r, n) {
13322
+ return n == null && (n = 3), new Mt(pt.rationalInterpCurve(r, n));
13323
+ }, Mt.__super__ = $t, Mt.prototype = T($t.prototype, {
13324
13324
  degree: function() {
13325
13325
  return this._data.degree;
13326
13326
  },
@@ -13337,17 +13337,17 @@ var Ah = { exports: {} };
13337
13337
  return new Gt(this.degree(), this.knots(), N.homogenize1d(this.controlPoints(), this.weights()));
13338
13338
  },
13339
13339
  clone: function() {
13340
- return new Tt(this._data);
13340
+ return new Mt(this._data);
13341
13341
  },
13342
13342
  domain: function() {
13343
13343
  return new we($.first(this._data.knots), $.last(this._data.knots));
13344
13344
  },
13345
13345
  transform: function(r) {
13346
- return new Tt(ft.rationalCurveTransform(this._data, r));
13346
+ return new Mt(ft.rationalCurveTransform(this._data, r));
13347
13347
  },
13348
13348
  transformAsync: function(r) {
13349
13349
  return wt.dispatchMethod(ft, "rationalCurveTransform", [this._data, r]).then(function(n) {
13350
- return new Tt(n);
13350
+ return new Mt(n);
13351
13351
  });
13352
13352
  },
13353
13353
  point: function(r) {
@@ -13412,22 +13412,22 @@ var Ah = { exports: {} };
13412
13412
  },
13413
13413
  split: function(r) {
13414
13414
  return oe.curveSplit(this._data, r).map(function(n) {
13415
- return new Tt(n);
13415
+ return new Mt(n);
13416
13416
  });
13417
13417
  },
13418
13418
  splitAsync: function(r) {
13419
13419
  return wt.dispatchMethod(oe, "curveSplit", [this._data, r]).then(function(n) {
13420
13420
  return n.map(function(a) {
13421
- return new Tt(a);
13421
+ return new Mt(a);
13422
13422
  });
13423
13423
  });
13424
13424
  },
13425
13425
  reverse: function() {
13426
- return new Tt(ft.curveReverse(this._data));
13426
+ return new Mt(ft.curveReverse(this._data));
13427
13427
  },
13428
13428
  reverseAsync: function() {
13429
13429
  return wt.dispatchMethod(ft, "curveReverse", [this._data]).then(function(r) {
13430
- return new Tt(r);
13430
+ return new Mt(r);
13431
13431
  });
13432
13432
  },
13433
13433
  tessellate: function(r) {
@@ -13436,12 +13436,12 @@ var Ah = { exports: {} };
13436
13436
  tessellateAsync: function(r) {
13437
13437
  return wt.dispatchMethod(zt, "rationalCurveAdaptiveSample", [this._data, r, !1]);
13438
13438
  },
13439
- __class__: Tt
13439
+ __class__: Mt
13440
13440
  });
13441
13441
  var zr = f.geom.Arc = function(r, n, a, l, u, d) {
13442
- Tt.call(this, pt.arc(r, n, a, l, u, d)), this._center = r, this._xaxis = n, this._yaxis = a, this._radius = l, this._minAngle = u, this._maxAngle = d;
13442
+ Mt.call(this, pt.arc(r, n, a, l, u, d)), this._center = r, this._xaxis = n, this._yaxis = a, this._radius = l, this._minAngle = u, this._maxAngle = d;
13443
13443
  };
13444
- b["verb.geom.Arc"] = zr, zr.__name__ = ["verb", "geom", "Arc"], zr.__super__ = Tt, zr.prototype = M(Tt.prototype, {
13444
+ b["verb.geom.Arc"] = zr, zr.__name__ = ["verb", "geom", "Arc"], zr.__super__ = Mt, zr.prototype = T(Mt.prototype, {
13445
13445
  center: function() {
13446
13446
  return this._center;
13447
13447
  },
@@ -13463,15 +13463,15 @@ var Ah = { exports: {} };
13463
13463
  __class__: zr
13464
13464
  });
13465
13465
  var $n = f.geom.BezierCurve = function(r, n) {
13466
- Tt.call(this, pt.rationalBezierCurve(r, n));
13466
+ Mt.call(this, pt.rationalBezierCurve(r, n));
13467
13467
  };
13468
- b["verb.geom.BezierCurve"] = $n, $n.__name__ = ["verb", "geom", "BezierCurve"], $n.__super__ = Tt, $n.prototype = M(Tt.prototype, {
13468
+ b["verb.geom.BezierCurve"] = $n, $n.__name__ = ["verb", "geom", "BezierCurve"], $n.__super__ = Mt, $n.prototype = T(Mt.prototype, {
13469
13469
  __class__: $n
13470
13470
  });
13471
13471
  var Zn = f.geom.Circle = function(r, n, a, l) {
13472
13472
  zr.call(this, r, n, a, l, 0, Math.PI * 2);
13473
13473
  };
13474
- b["verb.geom.Circle"] = Zn, Zn.__name__ = ["verb", "geom", "Circle"], Zn.__super__ = zr, Zn.prototype = M(zr.prototype, {
13474
+ b["verb.geom.Circle"] = Zn, Zn.__name__ = ["verb", "geom", "Circle"], Zn.__super__ = zr, Zn.prototype = T(zr.prototype, {
13475
13475
  __class__: Zn
13476
13476
  });
13477
13477
  var In = function() {
@@ -13494,7 +13494,7 @@ var Ah = { exports: {} };
13494
13494
  }
13495
13495
  return l = u, l;
13496
13496
  }(), n));
13497
- }, Pt.__super__ = $t, Pt.prototype = M($t.prototype, {
13497
+ }, Pt.__super__ = $t, Pt.prototype = T($t.prototype, {
13498
13498
  degreeU: function() {
13499
13499
  return this._data.degreeU;
13500
13500
  },
@@ -13576,22 +13576,22 @@ var Ah = { exports: {} };
13576
13576
  });
13577
13577
  },
13578
13578
  isocurve: function(r, n) {
13579
- return n == null && (n = !1), new Tt(pt.surfaceIsocurve(this._data, r, n));
13579
+ return n == null && (n = !1), new Mt(pt.surfaceIsocurve(this._data, r, n));
13580
13580
  },
13581
13581
  isocurveAsync: function(r, n) {
13582
13582
  return n == null && (n = !1), wt.dispatchMethod(pt, "surfaceIsocurve", [this._data, r, n]).then(function(a) {
13583
- return new Tt(a);
13583
+ return new Mt(a);
13584
13584
  });
13585
13585
  },
13586
13586
  boundaries: function(r) {
13587
13587
  return pt.surfaceBoundaryCurves(this._data).map(function(n) {
13588
- return new Tt(n);
13588
+ return new Mt(n);
13589
13589
  });
13590
13590
  },
13591
13591
  boundariesAsync: function(r) {
13592
13592
  return wt.dispatchMethod(pt, "surfaceBoundaryCurves", [this._data]).then(function(n) {
13593
13593
  return n.map(function(a) {
13594
- return new Tt(a);
13594
+ return new Mt(a);
13595
13595
  });
13596
13596
  });
13597
13597
  },
@@ -13614,7 +13614,7 @@ var Ah = { exports: {} };
13614
13614
  var Qn = f.geom.ConicalSurface = function(r, n, a, l, u) {
13615
13615
  Pt.call(this, pt.conicalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13616
13616
  };
13617
- b["verb.geom.ConicalSurface"] = Qn, Qn.__name__ = ["verb", "geom", "ConicalSurface"], Qn.__super__ = Pt, Qn.prototype = M(Pt.prototype, {
13617
+ b["verb.geom.ConicalSurface"] = Qn, Qn.__name__ = ["verb", "geom", "ConicalSurface"], Qn.__super__ = Pt, Qn.prototype = T(Pt.prototype, {
13618
13618
  axis: function() {
13619
13619
  return this._axis;
13620
13620
  },
@@ -13635,7 +13635,7 @@ var Ah = { exports: {} };
13635
13635
  var Jn = f.geom.CylindricalSurface = function(r, n, a, l, u) {
13636
13636
  Pt.call(this, pt.cylindricalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13637
13637
  };
13638
- b["verb.geom.CylindricalSurface"] = Jn, Jn.__name__ = ["verb", "geom", "CylindricalSurface"], Jn.__super__ = Pt, Jn.prototype = M(Pt.prototype, {
13638
+ b["verb.geom.CylindricalSurface"] = Jn, Jn.__name__ = ["verb", "geom", "CylindricalSurface"], Jn.__super__ = Pt, Jn.prototype = T(Pt.prototype, {
13639
13639
  axis: function() {
13640
13640
  return this._axis;
13641
13641
  },
@@ -13654,9 +13654,9 @@ var Ah = { exports: {} };
13654
13654
  __class__: Jn
13655
13655
  });
13656
13656
  var Rr = f.geom.EllipseArc = function(r, n, a, l, u) {
13657
- Tt.call(this, pt.ellipseArc(r, n, a, l, u)), this._center = r, this._xaxis = n, this._yaxis = a, this._minAngle = l, this._maxAngle = u;
13657
+ Mt.call(this, pt.ellipseArc(r, n, a, l, u)), this._center = r, this._xaxis = n, this._yaxis = a, this._minAngle = l, this._maxAngle = u;
13658
13658
  };
13659
- b["verb.geom.EllipseArc"] = Rr, Rr.__name__ = ["verb", "geom", "EllipseArc"], Rr.__super__ = Tt, Rr.prototype = M(Tt.prototype, {
13659
+ b["verb.geom.EllipseArc"] = Rr, Rr.__name__ = ["verb", "geom", "EllipseArc"], Rr.__super__ = Mt, Rr.prototype = T(Mt.prototype, {
13660
13660
  center: function() {
13661
13661
  return this._center;
13662
13662
  },
@@ -13677,13 +13677,13 @@ var Ah = { exports: {} };
13677
13677
  var ts = f.geom.Ellipse = function(r, n, a) {
13678
13678
  Rr.call(this, r, n, a, 0, Math.PI * 2);
13679
13679
  };
13680
- b["verb.geom.Ellipse"] = ts, ts.__name__ = ["verb", "geom", "Ellipse"], ts.__super__ = Rr, ts.prototype = M(Rr.prototype, {
13680
+ b["verb.geom.Ellipse"] = ts, ts.__name__ = ["verb", "geom", "Ellipse"], ts.__super__ = Rr, ts.prototype = T(Rr.prototype, {
13681
13681
  __class__: ts
13682
13682
  });
13683
13683
  var es = f.geom.ExtrudedSurface = function(r, n) {
13684
13684
  Pt.call(this, pt.extrudedSurface(m.normalized(n), m.norm(n), r.asNurbs())), this._profile = r, this._direction = n;
13685
13685
  };
13686
- b["verb.geom.ExtrudedSurface"] = es, es.__name__ = ["verb", "geom", "ExtrudedSurface"], es.__super__ = Pt, es.prototype = M(Pt.prototype, {
13686
+ b["verb.geom.ExtrudedSurface"] = es, es.__name__ = ["verb", "geom", "ExtrudedSurface"], es.__super__ = Pt, es.prototype = T(Pt.prototype, {
13687
13687
  profile: function() {
13688
13688
  return this._profile;
13689
13689
  },
@@ -13704,19 +13704,19 @@ var Ah = { exports: {} };
13704
13704
  return a == null && (a = 1e-3), wt.dispatchMethod(lt, "curveAndSurface", [r.asNurbs(), n.asNurbs(), a]);
13705
13705
  }, Fr.surfaces = function(r, n, a) {
13706
13706
  return a == null && (a = 1e-3), lt.surfaces(r.asNurbs(), n.asNurbs(), a).map(function(l) {
13707
- return new Tt(l);
13707
+ return new Mt(l);
13708
13708
  });
13709
13709
  }, Fr.surfacesAsync = function(r, n, a) {
13710
13710
  return a == null && (a = 1e-3), wt.dispatchMethod(lt, "surfaces", [r.asNurbs(), n.asNurbs(), a]).then(function(l) {
13711
13711
  return l.map(function(u) {
13712
- return new Tt(u);
13712
+ return new Mt(u);
13713
13713
  });
13714
13714
  });
13715
13715
  };
13716
13716
  var rs = f.geom.Line = function(r, n) {
13717
- Tt.call(this, pt.polyline([r, n])), this._start = r, this._end = n;
13717
+ Mt.call(this, pt.polyline([r, n])), this._start = r, this._end = n;
13718
13718
  };
13719
- b["verb.geom.Line"] = rs, rs.__name__ = ["verb", "geom", "Line"], rs.__super__ = Tt, rs.prototype = M(Tt.prototype, {
13719
+ b["verb.geom.Line"] = rs, rs.__name__ = ["verb", "geom", "Line"], rs.__super__ = Mt, rs.prototype = T(Mt.prototype, {
13720
13720
  start: function() {
13721
13721
  return this._start;
13722
13722
  },
@@ -13728,7 +13728,7 @@ var Ah = { exports: {} };
13728
13728
  var ns = f.geom.RevolvedSurface = function(r, n, a, l) {
13729
13729
  Pt.call(this, pt.revolvedSurface(r.asNurbs(), n, a, l)), this._profile = r, this._center = n, this._axis = a, this._angle = l;
13730
13730
  };
13731
- b["verb.geom.RevolvedSurface"] = ns, ns.__name__ = ["verb", "geom", "RevolvedSurface"], ns.__super__ = Pt, ns.prototype = M(Pt.prototype, {
13731
+ b["verb.geom.RevolvedSurface"] = ns, ns.__name__ = ["verb", "geom", "RevolvedSurface"], ns.__super__ = Pt, ns.prototype = T(Pt.prototype, {
13732
13732
  profile: function() {
13733
13733
  return this._profile;
13734
13734
  },
@@ -13746,7 +13746,7 @@ var Ah = { exports: {} };
13746
13746
  var ss = f.geom.SphericalSurface = function(r, n) {
13747
13747
  Pt.call(this, pt.sphericalSurface(r, [0, 0, 1], [1, 0, 0], n)), this._center = r, this._radius = n;
13748
13748
  };
13749
- b["verb.geom.SphericalSurface"] = ss, ss.__name__ = ["verb", "geom", "SphericalSurface"], ss.__super__ = Pt, ss.prototype = M(Pt.prototype, {
13749
+ b["verb.geom.SphericalSurface"] = ss, ss.__name__ = ["verb", "geom", "SphericalSurface"], ss.__super__ = Pt, ss.prototype = T(Pt.prototype, {
13750
13750
  center: function() {
13751
13751
  return this._center;
13752
13752
  },
@@ -13758,7 +13758,7 @@ var Ah = { exports: {} };
13758
13758
  var is = f.geom.SweptSurface = function(r, n) {
13759
13759
  Pt.call(this, pt.rationalTranslationalSurface(r.asNurbs(), n.asNurbs())), this._profile = r, this._rail = n;
13760
13760
  };
13761
- b["verb.geom.SweptSurface"] = is, is.__name__ = ["verb", "geom", "SweptSurface"], is.__super__ = Pt, is.prototype = M(Pt.prototype, {
13761
+ b["verb.geom.SweptSurface"] = is, is.__name__ = ["verb", "geom", "SweptSurface"], is.__super__ = Pt, is.prototype = T(Pt.prototype, {
13762
13762
  profile: function() {
13763
13763
  return this._profile;
13764
13764
  },
@@ -13857,7 +13857,7 @@ var Ah = { exports: {} };
13857
13857
  return r.postMessage(R + V, "*"), V;
13858
13858
  };
13859
13859
  }
13860
- function T() {
13860
+ function M() {
13861
13861
  var R = new MessageChannel();
13862
13862
  R.port1.onmessage = function(U) {
13863
13863
  var V = U.data;
@@ -13883,18 +13883,18 @@ var Ah = { exports: {} };
13883
13883
  };
13884
13884
  }
13885
13885
  var F = Object.getPrototypeOf && Object.getPrototypeOf(r);
13886
- F = F && F.setTimeout ? F : r, {}.toString.call(r.process) === "[object process]" ? S() : P() ? k() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? O() : C(), F.setImmediate = p, F.clearImmediate = I;
13886
+ F = F && F.setTimeout ? F : r, {}.toString.call(r.process) === "[object process]" ? S() : P() ? k() : r.MessageChannel ? M() : d && "onreadystatechange" in d.createElement("script") ? O() : C(), F.setImmediate = p, F.clearImmediate = I;
13887
13887
  })(new Function("return this")()), qt.USE_CACHE = !1, qt.USE_ENUM_INDEX = !1, qt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Ot.count = 0, ie.i64tmp = function(r) {
13888
13888
  var n, a = new Vt(0, 0);
13889
13889
  return n = a, n;
13890
- }(), Mt.__toStr = {}.toString, sr.BYTES_PER_ELEMENT = 1, St.queue = new D(), Ft.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Or.basePath = "", Yr.uuid = 0, Ns.main();
13890
+ }(), Tt.__toStr = {}.toString, sr.BYTES_PER_ELEMENT = 1, St.queue = new D(), Ft.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Or.basePath = "", Yr.uuid = 0, Ns.main();
13891
13891
  }(typeof console < "u" ? console : { log: function() {
13892
13892
  } }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
13893
13893
  });
13894
13894
  })(Ah);
13895
13895
  var kd = Ah.exports;
13896
13896
  const Nn = /* @__PURE__ */ Ed(kd);
13897
- class Ti {
13897
+ class Mi {
13898
13898
  constructor() {
13899
13899
  this.c0 = 0, this.c1 = 0, this.c2 = 0, this.c3 = 0;
13900
13900
  }
@@ -13930,7 +13930,7 @@ class Ti {
13930
13930
  return this.c0 + this.c1 * t + this.c2 * e + this.c3 * s;
13931
13931
  }
13932
13932
  }
13933
- class Md extends Ts {
13933
+ class Td extends Ms {
13934
13934
  /**
13935
13935
  * Constructs a new Catmull-Rom curve.
13936
13936
  *
@@ -13940,7 +13940,7 @@ class Md extends Ts {
13940
13940
  * @param tension - Tension of the curve.
13941
13941
  */
13942
13942
  constructor(t = [], e = !1, s = "centripetal", o = 0.5) {
13943
- super(), this.isCatmullRomCurve3d = !0, this.type = "CatmullRomCurve3d", this._tmp = new Z(), this._px = new Ti(), this._py = new Ti(), this._pz = new Ti(), this._points = t.map((h) => new Y(h)), this._closed = e, this._curveType = s, this._tension = o;
13943
+ super(), this.isCatmullRomCurve3d = !0, this.type = "CatmullRomCurve3d", this._tmp = new Z(), this._px = new Mi(), this._py = new Mi(), this._pz = new Mi(), this._points = t.map((h) => new Y(h)), this._closed = e, this._curveType = s, this._tension = o;
13944
13944
  }
13945
13945
  /**
13946
13946
  * An array of 3D points defining the curve.
@@ -14010,8 +14010,8 @@ class Md extends Ts {
14010
14010
  this._closed || g > 0 ? f = o[(g - 1) % h] : (this._tmp.subVectors(o[0], o[1]).add(o[0]), f = new Y(this._tmp.x, this._tmp.y, this._tmp.z));
14011
14011
  const b = o[g % h], E = o[(g + 1) % h];
14012
14012
  if (this._closed || g + 2 < h ? w = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), w = new Y(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
14013
- const M = this._curveType === "chordal" ? 0.5 : 0.25;
14014
- let L = Math.pow(f.distanceToSquared(b), M), z = Math.pow(b.distanceToSquared(E), M), D = Math.pow(E.distanceToSquared(w), M);
14013
+ const T = this._curveType === "chordal" ? 0.5 : 0.25;
14014
+ let L = Math.pow(f.distanceToSquared(b), T), z = Math.pow(b.distanceToSquared(E), T), D = Math.pow(E.distanceToSquared(w), T);
14015
14015
  z < 1e-4 && (z = 1), L < 1e-4 && (L = z), D < 1e-4 && (D = z), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, w.x, L, z, D), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, w.y, L, z, D), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, w.z, L, z, D);
14016
14016
  } else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, w.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, w.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, w.z, this._tension));
14017
14017
  return s.set(
@@ -14195,7 +14195,7 @@ class On {
14195
14195
  static createFitPointsForClosedCurve(t) {
14196
14196
  if (t.length < 4)
14197
14197
  throw new Error("At least 4 points are required for a closed NURBS curve");
14198
- const e = new Md(
14198
+ const e = new Td(
14199
14199
  t,
14200
14200
  !0,
14201
14201
  "centripetal"
@@ -14210,7 +14210,7 @@ class On {
14210
14210
  return On.byPoints(o, e, s);
14211
14211
  }
14212
14212
  }
14213
- class mn extends Ts {
14213
+ class mn extends Ms {
14214
14214
  constructor(t, e, s, o, h) {
14215
14215
  super();
14216
14216
  const c = arguments.length;
@@ -14416,7 +14416,7 @@ class mn extends Ts {
14416
14416
  }
14417
14417
  var an = 256, Sh = [], Lo = 256, Ds;
14418
14418
  for (; an--; ) Sh[an] = (an + 256).toString(16).substring(1);
14419
- function Td(i) {
14419
+ function Md(i) {
14420
14420
  var t = 0, e = 11;
14421
14421
  if (!Ds || an + e > Lo * 2)
14422
14422
  for (Ds = "", an = 0; t < Lo; t++)
@@ -14436,7 +14436,7 @@ class pn {
14436
14436
  * ```
14437
14437
  */
14438
14438
  constructor(t, e) {
14439
- t = t || {}, ks(t, { objectId: Td() }), this._attrs = new eu(t, e);
14439
+ t = t || {}, ks(t, { objectId: Md() }), this._attrs = new eu(t, e);
14440
14440
  }
14441
14441
  /**
14442
14442
  * Gets the attributes object for this AcDbObject.
@@ -15509,7 +15509,7 @@ const ka = class ka extends Ee {
15509
15509
  };
15510
15510
  ka.typeName = "3dVertex";
15511
15511
  let zo = ka;
15512
- const Ma = class Ma extends ke {
15512
+ const Ta = class Ta extends ke {
15513
15513
  /**
15514
15514
  * Creates a new arc entity.
15515
15515
  *
@@ -15921,9 +15921,9 @@ const Ma = class Ma extends ke {
15921
15921
  return t.circularArc(this._geo, this.lineStyle);
15922
15922
  }
15923
15923
  };
15924
- Ma.typeName = "Arc";
15925
- let Vi = Ma;
15926
- const Ta = class Ta extends Ee {
15924
+ Ta.typeName = "Arc";
15925
+ let Vi = Ta;
15926
+ const Ma = class Ma extends Ee {
15927
15927
  /**
15928
15928
  * Creates a new block reference entity.
15929
15929
  *
@@ -16269,8 +16269,8 @@ const Ta = class Ta extends Ee {
16269
16269
  );
16270
16270
  }
16271
16271
  };
16272
- Ta.typeName = "BlockReference";
16273
- let ti = Ta;
16272
+ Ma.typeName = "BlockReference";
16273
+ let ti = Ma;
16274
16274
  const Na = class Na extends ke {
16275
16275
  /**
16276
16276
  * Creates a new circle entity.
@@ -18647,8 +18647,8 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18647
18647
  let c = 0;
18648
18648
  for (let E = 0; E <= this.numRows; E++) {
18649
18649
  e -= E > 0 ? this.rowHeight(E - 1) : 0, s = 0;
18650
- for (let M = 0; M <= this.numColumns; M++)
18651
- s += M > 0 ? this.columnWidth(M - 1) : 0, h[c++] = s, h[c++] = e, h[c++] = 0;
18650
+ for (let T = 0; T <= this.numColumns; T++)
18651
+ s += T > 0 ? this.columnWidth(T - 1) : 0, h[c++] = s, h[c++] = e, h[c++] = 0;
18652
18652
  }
18653
18653
  const g = [], x = new Array(this.numRows * this.numColumns).fill(
18654
18654
  !1
@@ -18657,10 +18657,10 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18657
18657
  let f = 0;
18658
18658
  for (let E = 0; E < this.numColumns; E++) {
18659
18659
  s += E > 0 ? this.columnWidth(E - 1) : 0, e = 0;
18660
- for (let M = 0; M < this.numRows; M++) {
18661
- e += M > 0 ? this.rowHeight(M - 1) : 0;
18662
- const L = this.cell(M * this.numColumns + E);
18663
- if (f = M * this.numColumns + E, L && !x[f]) {
18660
+ for (let T = 0; T < this.numRows; T++) {
18661
+ e += T > 0 ? this.rowHeight(T - 1) : 0;
18662
+ const L = this.cell(T * this.numColumns + E);
18663
+ if (f = T * this.numColumns + E, L && !x[f]) {
18664
18664
  const z = L.borderWidth ?? 1, D = L.borderHeight ?? 1;
18665
18665
  this.fillVisited(
18666
18666
  x,
@@ -18668,11 +18668,11 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18668
18668
  this.numColumns,
18669
18669
  z,
18670
18670
  D
18671
- ), o[c++] = E + M * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1) + z;
18672
- const B = h[o[c - 1] * 3] - s, dt = E + (M + D) * (this.numColumns + 1) + z;
18673
- E + z == this.numColumns && (o[c++] = E + M * (this.numColumns + 1) + z, o[c++] = dt);
18671
+ ), o[c++] = E + T * (this.numColumns + 1), o[c++] = E + T * (this.numColumns + 1) + z;
18672
+ const B = h[o[c - 1] * 3] - s, dt = E + (T + D) * (this.numColumns + 1) + z;
18673
+ E + z == this.numColumns && (o[c++] = E + T * (this.numColumns + 1) + z, o[c++] = dt);
18674
18674
  const vt = -h[dt * 3 + 1] - e;
18675
- if (M + D == this.numRows && (o[c++] = E + (M + D) * (this.numColumns + 1) + D, o[c++] = E + (M + D) * (this.numColumns + 1)), o[c++] = E + (M + D) * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1), L.text) {
18675
+ if (T + D == this.numRows && (o[c++] = E + (T + D) * (this.numColumns + 1) + D, o[c++] = E + (T + D) * (this.numColumns + 1)), o[c++] = E + (T + D) * (this.numColumns + 1), o[c++] = E + T * (this.numColumns + 1), L.text) {
18676
18676
  const ot = L.attachmentPoint || this.attachmentPoint || Pe.MiddleCenter, W = this.getTableTextOffset(
18677
18677
  ot,
18678
18678
  B,
@@ -22353,14 +22353,14 @@ class Do {
22353
22353
  new Zt().subVectors(w.end, w.center);
22354
22354
  const E = Math.sqrt(
22355
22355
  Math.pow(w.end.x, 2) + Math.pow(w.end.y, 2)
22356
- ), M = E * w.lengthOfMinorAxis;
22356
+ ), T = E * w.lengthOfMinorAxis;
22357
22357
  let L = kt.degToRad(w.startAngle || 0), z = kt.degToRad(w.endAngle || 0);
22358
22358
  const D = Math.atan2(w.end.y, w.end.x);
22359
22359
  w.isCCW || (L = Math.PI * 2 - L, z = Math.PI * 2 - z), x.add(
22360
22360
  new _a(
22361
22361
  { ...w.center, z: 0 },
22362
22362
  E,
22363
- M,
22363
+ T,
22364
22364
  L,
22365
22365
  z,
22366
22366
  !w.isCCW,
@@ -22378,12 +22378,12 @@ class Do {
22378
22378
  })
22379
22379
  );
22380
22380
  let E = !0;
22381
- const M = w.controlPoints.map((L) => (L.weight == null && (E = !1), L.weight || 1));
22381
+ const T = w.controlPoints.map((L) => (L.weight == null && (E = !1), L.weight || 1));
22382
22382
  x.add(
22383
22383
  new mn(
22384
22384
  b,
22385
22385
  w.knots,
22386
- E ? M : void 0
22386
+ E ? T : void 0
22387
22387
  )
22388
22388
  );
22389
22389
  } else if (w.numberOfFitData > 0) {
@@ -22973,7 +22973,7 @@ class ba extends pn {
22973
22973
  this._extents.copy(t);
22974
22974
  }
22975
22975
  }
22976
- class Mh extends pn {
22976
+ class Th extends pn {
22977
22977
  /**
22978
22978
  * Creates a new AcDbDictionary instance.
22979
22979
  *
@@ -23164,7 +23164,7 @@ class Mh extends pn {
23164
23164
  return new ua(this._recordsByName);
23165
23165
  }
23166
23166
  }
23167
- class Gd extends Mh {
23167
+ class Gd extends Th {
23168
23168
  /**
23169
23169
  * Searches the dictionary for a layout associated with the specified block table record ID.
23170
23170
  *
@@ -23257,10 +23257,11 @@ class Wd {
23257
23257
  convertLayout(t, e) {
23258
23258
  var o, h;
23259
23259
  const s = new ba();
23260
- if (s.layoutName = t.layoutName, s.tabOrder = t.tabOrder, t.ownerObjectId ? s.blockTableRecordId = t.ownerObjectId : (o = e.tables.BLOCK_RECORD) == null || o.entries.some((c) => c.layoutObjects === t.handle ? (s.blockTableRecordId = c.handle, !0) : !1), !s.blockTableRecordId && t.layoutName === "Model") {
23260
+ if (s.layoutName = t.layoutName, s.tabOrder = t.tabOrder, t.layoutName === "Model") {
23261
23261
  const c = Ge.MODEL_SPACE_NAME;
23262
- (h = e.tables.BLOCK_RECORD) == null || h.entries.some((g) => g.name.toUpperCase() === c ? (s.blockTableRecordId = g.handle, !0) : !1);
23263
- }
23262
+ (o = e.tables.BLOCK_RECORD) == null || o.entries.some((g) => g.name.toUpperCase() === c ? (s.blockTableRecordId = g.handle, !0) : !1);
23263
+ } else
23264
+ (h = e.tables.BLOCK_RECORD) == null || h.entries.some((c) => c.layoutObjects === t.handle ? (s.blockTableRecordId = c.handle, !0) : !1), s.blockTableRecordId || (s.blockTableRecordId = t.paperSpaceTableId);
23264
23265
  return s.limits.min.copy(t.minLimit), s.limits.max.copy(t.maxLimit), s.extents.min.copy(t.minExtent), s.extents.max.copy(t.maxExtent), this.processCommonAttrs(t, s), s;
23265
23266
  }
23266
23267
  /**
@@ -23346,11 +23347,11 @@ class Hd {
23346
23347
  timeout: x
23347
23348
  });
23348
23349
  const f = (b) => {
23349
- const { id: E, success: M, data: L, error: z } = b.data;
23350
+ const { id: E, success: T, data: L, error: z } = b.data;
23350
23351
  if (E !== t) return;
23351
23352
  this.cleanupTask(t);
23352
23353
  const D = Date.now() - o;
23353
- h(M ? {
23354
+ h(T ? {
23354
23355
  success: !0,
23355
23356
  data: L,
23356
23357
  duration: D
@@ -23653,12 +23654,12 @@ class Xd extends Zo {
23653
23654
  this.config.convertByEntityType && (g = this.groupAndFlattenByType(g));
23654
23655
  const w = e.tables.blockTable.modelSpace;
23655
23656
  await f.processChunk(async (b, E) => {
23656
- let M = [], L = b < E ? g[b].type : "";
23657
+ let T = [], L = b < E ? g[b].type : "";
23657
23658
  for (let z = b; z < E; z++) {
23658
23659
  const D = g[z], B = c.convert(D);
23659
- B && (this.config.convertByEntityType && D.type !== L && (w.appendEntity(M), M = [], L = D.type), M.push(B));
23660
+ B && (this.config.convertByEntityType && D.type !== L && (w.appendEntity(T), T = [], L = D.type), T.push(B));
23660
23661
  }
23661
- if (w.appendEntity(M), h) {
23662
+ if (w.appendEntity(T), h) {
23662
23663
  let z = o.value + E / x * (100 - o.value);
23663
23664
  z > 100 && (z = 100), await h(z, "ENTITY", "IN-PROGRESS");
23664
23665
  }
@@ -23879,7 +23880,7 @@ class Xd extends Zo {
23879
23880
  var o;
23880
23881
  const s = (o = t.tables.STYLE) == null ? void 0 : o.entries;
23881
23882
  s && s.length > 0 && s.forEach((h) => {
23882
- const c = new Th(h);
23883
+ const c = new Mh(h);
23883
23884
  this.processCommonTableEntryAttrs(h, c), e.tables.textStyleTable.add(c);
23884
23885
  });
23885
23886
  }
@@ -24061,10 +24062,10 @@ class Kd extends Zo {
24061
24062
  this.config.convertByEntityType && (c = this.groupAndFlattenByType(c));
24062
24063
  const f = e.tables.blockTable.modelSpace;
24063
24064
  await x.processChunk(async (w, b) => {
24064
- let E = [], M = w < b ? c[w].type : "";
24065
+ let E = [], T = w < b ? c[w].type : "";
24065
24066
  for (let L = w; L < b; L++) {
24066
24067
  const z = c[L];
24067
- this.config.convertByEntityType && z.type !== M && (this.triggerEvents(f, E), E = [], M = z.type), E.push(z);
24068
+ this.config.convertByEntityType && z.type !== T && (this.triggerEvents(f, E), E = [], T = z.type), E.push(z);
24068
24069
  }
24069
24070
  if (this.triggerEvents(f, E), h) {
24070
24071
  let L = o.value + b / g * (100 - o.value);
@@ -25055,7 +25056,7 @@ class Qs extends Fn {
25055
25056
  return this._linetype.pattern[t].elementLength;
25056
25057
  }
25057
25058
  }
25058
- class Th extends Fn {
25059
+ class Mh extends Fn {
25059
25060
  /**
25060
25061
  * Creates a new AcDbTextStyleTableRecord instance.
25061
25062
  *
@@ -26206,7 +26207,7 @@ class E0 extends pn {
26206
26207
  viewportTable: new e0(this)
26207
26208
  }, this._dictionaries = {
26208
26209
  layouts: new Gd(this),
26209
- imageDefs: new Mh(this)
26210
+ imageDefs: new Th(this)
26210
26211
  };
26211
26212
  }
26212
26213
  /**
@@ -26531,7 +26532,7 @@ class E0 extends pn {
26531
26532
  * @param options Input options to read drawing data
26532
26533
  */
26533
26534
  async openUri(t, e) {
26534
- var M;
26535
+ var T;
26535
26536
  this.events.openProgress.dispatch({
26536
26537
  database: this,
26537
26538
  percentage: 0,
@@ -26550,7 +26551,7 @@ class E0 extends pn {
26550
26551
  );
26551
26552
  const o = s.headers.get("content-length"), h = o ? parseInt(o, 10) : null;
26552
26553
  let c = 0;
26553
- const g = (M = s.body) == null ? void 0 : M.getReader();
26554
+ const g = (T = s.body) == null ? void 0 : T.getReader();
26554
26555
  if (!g)
26555
26556
  throw new Error("Failed to get response reader");
26556
26557
  const x = [];
@@ -26646,7 +26647,7 @@ class E0 extends pn {
26646
26647
  totalPatternLength: 0
26647
26648
  })
26648
26649
  )), t.textStyle && this._tables.textStyleTable.add(
26649
- new Th({
26650
+ new Mh({
26650
26651
  name: "Standard",
26651
26652
  standardFlag: 0,
26652
26653
  fixedTextHeight: 0,
@@ -27229,7 +27230,7 @@ export {
27229
27230
  Zo as AcDbDatabaseConverter,
27230
27231
  kr as AcDbDatabaseConverterManager,
27231
27232
  aa as AcDbDiametricDimension,
27232
- Mh as AcDbDictionary,
27233
+ Th as AcDbDictionary,
27233
27234
  hu as AcDbDimArrowType,
27234
27235
  Zd as AcDbDimStyleTable,
27235
27236
  Es as AcDbDimStyleTableRecord,
@@ -27284,7 +27285,7 @@ export {
27284
27285
  $i as AcDbText,
27285
27286
  Fd as AcDbTextHorizontalMode,
27286
27287
  t0 as AcDbTextStyleTable,
27287
- Th as AcDbTextStyleTableRecord,
27288
+ Mh as AcDbTextStyleTableRecord,
27288
27289
  Bd as AcDbTextVerticalMode,
27289
27290
  Zi as AcDbTrace,
27290
27291
  Ko as AcDbUnitsValue,
@@ -27298,10 +27299,10 @@ export {
27298
27299
  fa as AcGeArea2d,
27299
27300
  be as AcGeBox2d,
27300
27301
  Ct as AcGeBox3d,
27301
- Md as AcGeCatmullRomCurve3d,
27302
+ Td as AcGeCatmullRomCurve3d,
27302
27303
  Ps as AcGeCircArc2d,
27303
27304
  Ln as AcGeCircArc3d,
27304
- Ms as AcGeCurve2d,
27305
+ Ts as AcGeCurve2d,
27305
27306
  _a as AcGeEllipseArc2d,
27306
27307
  va as AcGeEllipseArc3d,
27307
27308
  Sd as AcGeEuler,
@@ -27338,7 +27339,7 @@ export {
27338
27339
  fh as DEFAULT_TOL,
27339
27340
  oh as DEG2RAD,
27340
27341
  iu as DefaultLoadingManager,
27341
- Mn as FLOAT_TOL,
27342
+ Tn as FLOAT_TOL,
27342
27343
  S0 as ORIGIN_POINT_2D,
27343
27344
  ph as ORIGIN_POINT_3D,
27344
27345
  lh as RAD2DEG,