@mlightcad/data-model 1.3.12 → 1.3.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -837,7 +837,7 @@ var Go = { exports: {} };
837
837
  function E(z, D, B) {
838
838
  return f(z) || b.apply(this, arguments);
839
839
  }
840
- function M(z, D) {
840
+ function T(z, D) {
841
841
  var B = this, dt, vt, ot, W = "loglevel";
842
842
  typeof z == "string" ? W += ":" + z : typeof z == "symbol" && (W = void 0);
843
843
  function ut(bt) {
@@ -919,11 +919,11 @@ var Go = { exports: {} };
919
919
  var Wt = st();
920
920
  Wt != null && (ot = qt(Wt)), w.call(B);
921
921
  }
922
- c = new M(), c.getLogger = function(z) {
922
+ c = new T(), c.getLogger = function(z) {
923
923
  if (typeof z != "symbol" && typeof z != "string" || z === "")
924
924
  throw new TypeError("You must supply a name when creating a logger.");
925
925
  var D = h[z];
926
- return D || (D = h[z] = new M(
926
+ return D || (D = h[z] = new T(
927
927
  z,
928
928
  c.methodFactory
929
929
  )), D;
@@ -965,7 +965,7 @@ function Jh(i, t) {
965
965
  function tu(i) {
966
966
  return i == null ? !0 : Array.isArray(i) || typeof i == "string" ? i.length === 0 : i instanceof Map || i instanceof Set ? i.size === 0 : typeof i == "object" ? Object.keys(i).length === 0 : !1;
967
967
  }
968
- function Ps(i, t) {
968
+ function Is(i, t) {
969
969
  if (i === t)
970
970
  return !0;
971
971
  if (i == null || t == null)
@@ -980,7 +980,7 @@ function Ps(i, t) {
980
980
  if (i.length !== t.length)
981
981
  return !1;
982
982
  for (let o = 0; o < i.length; o++)
983
- if (!Ps(i[o], t[o]))
983
+ if (!Is(i[o], t[o]))
984
984
  return !1;
985
985
  return !0;
986
986
  }
@@ -991,7 +991,7 @@ function Ps(i, t) {
991
991
  if (!Object.prototype.hasOwnProperty.call(
992
992
  t,
993
993
  o
994
- ) || !Ps(
994
+ ) || !Is(
995
995
  i[o],
996
996
  t[o]
997
997
  ))
@@ -1050,7 +1050,7 @@ let eu = class Wo {
1050
1050
  this._changing = !0, x || (this._previousAttributes = Os(this.attributes), this.changed = {});
1051
1051
  const f = this.attributes, w = this.changed, b = this._previousAttributes;
1052
1052
  for (const E in o)
1053
- e = o[E], Ps(f[E], e) || g.push(E), Ps(b[E], e) ? delete w[E] : w[E] = e, h ? delete f[E] : f[E] = e;
1053
+ e = o[E], Is(f[E], e) || g.push(E), Is(b[E], e) ? delete w[E] : w[E] = e, h ? delete f[E] : f[E] = e;
1054
1054
  if (!c) {
1055
1055
  g.length && (this._pending = s);
1056
1056
  for (let E = 0; E < g.length; E++)
@@ -1092,7 +1092,7 @@ let eu = class Wo {
1092
1092
  const e = this._changing ? this._previousAttributes : this.attributes, s = {};
1093
1093
  for (const o in t) {
1094
1094
  const h = t[o];
1095
- Ps(e[o], h) || (s[o] = h);
1095
+ Is(e[o], h) || (s[o] = h);
1096
1096
  }
1097
1097
  return s;
1098
1098
  }
@@ -1739,11 +1739,11 @@ class on {
1739
1739
  const b = (x = t.basePoint) == null ? void 0 : x.clone();
1740
1740
  t.basePoint = void 0;
1741
1741
  const E = e.newIterator();
1742
- let M = !0;
1742
+ let T = !0;
1743
1743
  for (const L of E)
1744
- if (L.color.isByBlock && s ? (yo.copy(L.color), L.color.color = s, this.addEntity(L, g, t), L.color.copy(yo)) : this.addEntity(L, g, t), M) {
1744
+ if (L.color.isByBlock && s ? (yo.copy(L.color), L.color.color = s, this.addEntity(L, g, t), L.color.copy(yo)) : this.addEntity(L, g, t), T) {
1745
1745
  const z = g[0];
1746
- t.basePoint = z.basePoint, M = !1;
1746
+ t.basePoint = z.basePoint, T = !1;
1747
1747
  }
1748
1748
  w = t.group(g), w && o && this.set(f, w), t.basePoint = b;
1749
1749
  }
@@ -1919,7 +1919,7 @@ class ua {
1919
1919
  }
1920
1920
  }
1921
1921
  const $o = "Load Database";
1922
- class Pe extends ru {
1922
+ class Ie extends ru {
1923
1923
  constructor(t, e) {
1924
1924
  super(t.stage), this.data = t, this.progress = e;
1925
1925
  }
@@ -1991,7 +1991,7 @@ class Zo {
1991
1991
  Ho.getInstance().collect(h), this.progress = o;
1992
1992
  const c = { value: 0 }, g = new nu();
1993
1993
  g.setCompleteCallback(() => this.onFinished()), g.setErrorCallback((f) => this.onError(f)), g.addTask(
1994
- new Pe(
1994
+ new Ie(
1995
1995
  {
1996
1996
  stage: "START",
1997
1997
  step: 1,
@@ -2001,7 +2001,7 @@ class Zo {
2001
2001
  o
2002
2002
  )
2003
2003
  ), g.addTask(
2004
- new Pe(
2004
+ new Ie(
2005
2005
  {
2006
2006
  stage: "PARSE",
2007
2007
  step: 5,
@@ -2011,7 +2011,7 @@ class Zo {
2011
2011
  o
2012
2012
  )
2013
2013
  ), g.addTask(
2014
- new Pe(
2014
+ new Ie(
2015
2015
  {
2016
2016
  stage: "FONT",
2017
2017
  step: 5,
@@ -2024,7 +2024,7 @@ class Zo {
2024
2024
  o
2025
2025
  )
2026
2026
  ), g.addTask(
2027
- new Pe(
2027
+ new Ie(
2028
2028
  {
2029
2029
  stage: "LTYPE",
2030
2030
  step: 1,
@@ -2034,7 +2034,7 @@ class Zo {
2034
2034
  o
2035
2035
  )
2036
2036
  ), g.addTask(
2037
- new Pe(
2037
+ new Ie(
2038
2038
  {
2039
2039
  stage: "STYLE",
2040
2040
  step: 1,
@@ -2044,7 +2044,7 @@ class Zo {
2044
2044
  o
2045
2045
  )
2046
2046
  ), g.addTask(
2047
- new Pe(
2047
+ new Ie(
2048
2048
  {
2049
2049
  stage: "DIMSTYLE",
2050
2050
  step: 1,
@@ -2054,7 +2054,7 @@ class Zo {
2054
2054
  o
2055
2055
  )
2056
2056
  ), g.addTask(
2057
- new Pe(
2057
+ new Ie(
2058
2058
  {
2059
2059
  stage: "LAYER",
2060
2060
  step: 1,
@@ -2064,7 +2064,7 @@ class Zo {
2064
2064
  o
2065
2065
  )
2066
2066
  ), g.addTask(
2067
- new Pe(
2067
+ new Ie(
2068
2068
  {
2069
2069
  stage: "VPORT",
2070
2070
  step: 1,
@@ -2074,7 +2074,7 @@ class Zo {
2074
2074
  o
2075
2075
  )
2076
2076
  ), g.addTask(
2077
- new Pe(
2077
+ new Ie(
2078
2078
  {
2079
2079
  stage: "HEADER",
2080
2080
  step: 1,
@@ -2084,7 +2084,7 @@ class Zo {
2084
2084
  o
2085
2085
  )
2086
2086
  ), g.addTask(
2087
- new Pe(
2087
+ new Ie(
2088
2088
  {
2089
2089
  stage: "BLOCK_RECORD",
2090
2090
  step: 5,
@@ -2094,7 +2094,7 @@ class Zo {
2094
2094
  o
2095
2095
  )
2096
2096
  ), g.addTask(
2097
- new Pe(
2097
+ new Ie(
2098
2098
  {
2099
2099
  stage: "OBJECT",
2100
2100
  step: 5,
@@ -2104,7 +2104,7 @@ class Zo {
2104
2104
  o
2105
2105
  )
2106
2106
  ), g.addTask(
2107
- new Pe(
2107
+ new Ie(
2108
2108
  {
2109
2109
  stage: "BLOCK",
2110
2110
  step: 5,
@@ -2114,7 +2114,7 @@ class Zo {
2114
2114
  o
2115
2115
  )
2116
2116
  ), g.addTask(
2117
- new Pe(
2117
+ new Ie(
2118
2118
  {
2119
2119
  stage: "ENTITY",
2120
2120
  step: 100,
@@ -2130,7 +2130,7 @@ class Zo {
2130
2130
  o
2131
2131
  )
2132
2132
  ), g.addTask(
2133
- new Pe(
2133
+ new Ie(
2134
2134
  {
2135
2135
  stage: "END",
2136
2136
  step: 0,
@@ -2199,7 +2199,7 @@ class Zo {
2199
2199
  throw new Error("Not impelemented yet!");
2200
2200
  }
2201
2201
  }
2202
- var le, os, Qt, ne, ls, tr, ve, pr, er, $r, hs, us, Zr, Qr, cs, ds, ms, Oe, gr, Yt, Jr, ps, _t, ye, gs, xe, fs, fr, _r, rr, _s, tn, ze, vr, en, _i, vi, yr, xr, vs, ys, br, xs, yi, xi, he, wr, ue, Re, bi, wi, Ai, Si, Ar, Fe, rn, bs, nn, Be, Sr, De, Pr;
2202
+ var le, os, Qt, ne, ls, tr, ve, pr, er, $r, hs, us, Zr, Qr, cs, ds, ms, Oe, gr, Yt, Jr, ps, _t, ye, gs, xe, fs, fr, _r, rr, _s, tn, ze, vr, en, _i, vi, yr, xr, vs, ys, br, xs, yi, xi, he, wr, ue, Re, bi, wi, Ai, Si, Ar, Fe, rn, bs, nn, Be, Sr, De, Ir;
2203
2203
  (le = {})[le.None = 0] = "None", le[le.Anonymous = 1] = "Anonymous", le[le.NonConstant = 2] = "NonConstant", le[le.Xref = 4] = "Xref", le[le.XrefOverlay = 8] = "XrefOverlay", le[le.ExternallyDependent = 16] = "ExternallyDependent", le[le.ResolvedOrDependent = 32] = "ResolvedOrDependent", le[le.ReferencedXref = 64] = "ReferencedXref";
2204
2204
  (os = {})[os.BYBLOCK = 0] = "BYBLOCK", os[os.BYLAYER = 256] = "BYLAYER";
2205
2205
  (Qt = {})[Qt.Rotated = 0] = "Rotated", Qt[Qt.Aligned = 1] = "Aligned", Qt[Qt.Angular = 2] = "Angular", Qt[Qt.Diameter = 3] = "Diameter", Qt[Qt.Radius = 4] = "Radius", Qt[Qt.Angular3Point = 5] = "Angular3Point", Qt[Qt.Ordinate = 6] = "Ordinate", Qt[Qt.ReferenceIsExclusive = 32] = "ReferenceIsExclusive", Qt[Qt.IsOrdinateXTypeFlag = 64] = "IsOrdinateXTypeFlag", Qt[Qt.IsCustomTextPositionFlag = 128] = "IsCustomTextPositionFlag";
@@ -2240,9 +2240,9 @@ function xt(i, t) {
2240
2240
  return x.reduce((w, b) => {
2241
2241
  b.pushContext && w.push({});
2242
2242
  let E = w[w.length - 1];
2243
- for (let M of typeof b.code == "number" ? [b.code] : b.code) {
2244
- let L = E[M] ?? (E[M] = []);
2245
- b.isMultiple && L.length && f && console.warn(`Snippet ${L[L.length - 1].name} for code(${M}) is shadowed by ${b.name}`), L.push(b);
2243
+ for (let T of typeof b.code == "number" ? [b.code] : b.code) {
2244
+ let L = E[T] ?? (E[T] = []);
2245
+ b.isMultiple && L.length && f && console.warn(`Snippet ${L[L.length - 1].name} for code(${T}) is shadowed by ${b.name}`), L.push(b);
2246
2246
  }
2247
2247
  return w;
2248
2248
  }, [{}]);
@@ -2259,7 +2259,7 @@ function xt(i, t) {
2259
2259
  break;
2260
2260
  }
2261
2261
  w.isMultiple || x[e.code].pop();
2262
- let { name: b, parser: E, isMultiple: M, isReducible: L } = w, z = E == null ? void 0 : E(e, s, o);
2262
+ let { name: b, parser: E, isMultiple: T, isReducible: L } = w, z = E == null ? void 0 : E(e, s, o);
2263
2263
  if (z === ca) {
2264
2264
  s.rewind();
2265
2265
  break;
@@ -2270,19 +2270,19 @@ function xt(i, t) {
2270
2270
  if (!ot.length) throw Error("[parserGenerator::getObjectByPath] Invalid empty path");
2271
2271
  let W = dt;
2272
2272
  for (let ut = 0; ut < ot.length - 1; ++ut) {
2273
- let st = Pi(ot[ut]), Vt = Pi(ot[ut + 1]);
2273
+ let st = Ii(ot[ut]), Vt = Ii(ot[ut + 1]);
2274
2274
  Object.prototype.hasOwnProperty.call(W, st) || (typeof Vt == "number" ? W[st] = [] : W[st] = {}), W = W[st];
2275
2275
  }
2276
- return [W, Pi(ot[ot.length - 1])];
2276
+ return [W, Ii(ot[ot.length - 1])];
2277
2277
  }(o, b);
2278
- M && !L ? (Object.prototype.hasOwnProperty.call(D, B) || (D[B] = []), D[B].push(z)) : D[B] = z;
2278
+ T && !L ? (Object.prototype.hasOwnProperty.call(D, B) || (D[B] = []), D[B].push(z)) : D[B] = z;
2279
2279
  }
2280
2280
  w.pushContext && (g -= 1), c = !0, e = s.next();
2281
2281
  }
2282
2282
  return t && Object.setPrototypeOf(o, t), c;
2283
2283
  };
2284
2284
  }
2285
- function Pi(i) {
2285
+ function Ii(i) {
2286
2286
  let t = Number.parseInt(i);
2287
2287
  return Number.isNaN(t) ? i : t;
2288
2288
  }
@@ -2313,37 +2313,37 @@ function Qo(i, t) {
2313
2313
  case 1040:
2314
2314
  case 1070:
2315
2315
  case 1071:
2316
- h.push({ type: Ir(i.code), value: i.value });
2316
+ h.push({ type: Pr(i.code), value: i.value });
2317
2317
  break;
2318
2318
  case 1003:
2319
- h.push({ name: "layer", type: Ir(i.code), value: i.value });
2319
+ h.push({ name: "layer", type: Pr(i.code), value: i.value });
2320
2320
  break;
2321
2321
  case 1005:
2322
- h.push({ name: "handle", type: Ir(i.code), value: i.value });
2322
+ h.push({ name: "handle", type: Pr(i.code), value: i.value });
2323
2323
  break;
2324
2324
  case 1010:
2325
- h.push({ type: Ir(i.code), value: Rt(t) });
2325
+ h.push({ type: Pr(i.code), value: Rt(t) });
2326
2326
  break;
2327
2327
  case 1011:
2328
- h.push({ name: "worldSpacePosition", type: Ir(i.code), value: Rt(t) });
2328
+ h.push({ name: "worldSpacePosition", type: Pr(i.code), value: Rt(t) });
2329
2329
  break;
2330
2330
  case 1012:
2331
- h.push({ name: "worldSpaceDisplacement", type: Ir(i.code), value: Rt(t) });
2331
+ h.push({ name: "worldSpaceDisplacement", type: Pr(i.code), value: Rt(t) });
2332
2332
  break;
2333
2333
  case 1013:
2334
- h.push({ name: "worldSpaceDirection", type: Ir(i.code), value: Rt(t) });
2334
+ h.push({ name: "worldSpaceDirection", type: Pr(i.code), value: Rt(t) });
2335
2335
  break;
2336
2336
  case 1041:
2337
- h.push({ name: "distance", type: Ir(i.code), value: i.value });
2337
+ h.push({ name: "distance", type: Pr(i.code), value: i.value });
2338
2338
  break;
2339
2339
  case 1042:
2340
- h.push({ name: "scale", type: Ir(i.code), value: i.value });
2340
+ h.push({ name: "scale", type: Pr(i.code), value: i.value });
2341
2341
  }
2342
2342
  i = t.next();
2343
2343
  }
2344
2344
  return t.rewind(), e;
2345
2345
  }
2346
- function Ir(i) {
2346
+ function Pr(i) {
2347
2347
  switch (i) {
2348
2348
  case 1e3:
2349
2349
  case 1003:
@@ -2530,7 +2530,7 @@ function da(i, t, e) {
2530
2530
  function hl(i, t, e) {
2531
2531
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2532
2532
  }
2533
- let Pu = { textStyle: "STANDARD", extrusionDirection: { x: 0, y: 0, z: 1 }, rotation: 0 }, js = [{ code: 46, name: "annotationHeight", parser: y }, { code: 101, parser(i, t) {
2533
+ let Iu = { textStyle: "STANDARD", extrusionDirection: { x: 0, y: 0, z: 1 }, rotation: 0 }, js = [{ code: 46, name: "annotationHeight", parser: y }, { code: 101, parser(i, t) {
2534
2534
  (function(e) {
2535
2535
  e.rewind();
2536
2536
  let s = e.next();
@@ -2547,14 +2547,14 @@ class ul {
2547
2547
  return this.parser(e, t, s), s;
2548
2548
  }
2549
2549
  constructor() {
2550
- hl(this, "parser", xt(js, Pu));
2550
+ hl(this, "parser", xt(js, Iu));
2551
2551
  }
2552
2552
  }
2553
2553
  function cl(i, t, e) {
2554
2554
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2555
2555
  }
2556
2556
  hl(ul, "ForEntityName", "MTEXT");
2557
- let Iu = { thickness: 0, rotation: 0, scale: 1, obliqueAngle: 0, textStyle: "STANDARD", textGenerationFlag: 0, horizontalJustification: 0, verticalJustification: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Eu = [...js.slice(js.findIndex(({ name: i }) => i === "columnType"), js.findIndex(({ name: i }) => i === "subclassMarker") + 1), { code: 100 }, { code: 0, parser(i) {
2557
+ let Pu = { thickness: 0, rotation: 0, scale: 1, obliqueAngle: 0, textStyle: "STANDARD", textGenerationFlag: 0, horizontalJustification: 0, verticalJustification: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Eu = [...js.slice(js.findIndex(({ name: i }) => i === "columnType"), js.findIndex(({ name: i }) => i === "subclassMarker") + 1), { code: 100 }, { code: 0, parser(i) {
2558
2558
  if (!At(i, 0, "MTEXT")) return ca;
2559
2559
  } }, { code: 2, name: "definitionTag", parser: y }, { code: 40, name: "annotationScale", parser: y }, { code: 10, name: "alignmentPoint", parser: j }, { code: 340, name: "secondaryAttributesHardId", parser: y }, { code: 70, name: "numberOfSecondaryAttributes", parser: y }, { code: 70, name: "isReallyLocked", parser: Bt }, { code: 70, name: "mtextFlag", parser: y }, { code: 280, name: "isDuplicatedEntriesKeep", parser: Bt }, { code: 100 }, { code: 280, name: "lockPositionFlag", parser: Bt }, { code: 210, name: "extrusionDirection", parser: j }, { code: 11, name: "alignmentPoint", parser: j }, { code: 74, name: "verticalJustification", parser: y }, { code: 72, name: "horizontalJustification", parser: y }, { code: 71, name: "textGenerationFlag", parser: y }, { code: 7, name: "textStyle", parser: y }, { code: 51, name: "obliqueAngle", parser: y }, { code: 41, name: "scale", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 73 }, { code: 70, name: "attributeFlag", parser: y }, { code: 2, name: "tag", parser: y }, { code: 280 }, { code: 100, name: "subclassMarker", parser: y }, { code: 1, name: "text", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 10, name: "startPoint", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100 }, ...Ut];
2560
2560
  class dl {
@@ -2563,7 +2563,7 @@ class dl {
2563
2563
  return this.parser(e, t, s), s;
2564
2564
  }
2565
2565
  constructor() {
2566
- cl(this, "parser", xt(Eu, Iu));
2566
+ cl(this, "parser", xt(Eu, Pu));
2567
2567
  }
2568
2568
  }
2569
2569
  function ml(i, t, e) {
@@ -2584,14 +2584,14 @@ function gl(i, t, e) {
2584
2584
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2585
2585
  }
2586
2586
  ml(pl, "ForEntityName", "BODY");
2587
- let Mu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Tu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2587
+ let Tu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Mu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2588
2588
  class fl {
2589
2589
  parseEntity(t, e) {
2590
2590
  let s = {};
2591
2591
  return this.parser(e, t, s), s;
2592
2592
  }
2593
2593
  constructor() {
2594
- gl(this, "parser", xt(Tu, Mu));
2594
+ gl(this, "parser", xt(Mu, Tu));
2595
2595
  }
2596
2596
  }
2597
2597
  gl(fl, "ForEntityName", "CIRCLE");
@@ -2754,7 +2754,7 @@ function Sl(i, t, e) {
2754
2754
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2755
2755
  }
2756
2756
  let Wu = { brightness: 50, contrast: 50, fade: 0, clippingBoundaryPath: [] }, Hu = [{ code: 290, name: "clipMode", parser: y }, { code: 14, name: "clippingBoundaryPath", isMultiple: !0, parser: j }, { code: 91, name: "countBoundaryPoints", parser: y }, { code: 71, name: "clippingBoundaryType", parser: y }, { code: 360, name: "imageDefReactorHandle", parser: y }, { code: 283, name: "fade", parser: y }, { code: 282, name: "contrast", parser: y }, { code: 281, name: "brightness", parser: y }, { code: 280, name: "isClipped", parser: Bt }, { code: 70, name: "flags", parser: y }, { code: 340, name: "imageDefHandle", parser: y }, { code: 13, name: "imageSize", parser: j }, { code: 12, name: "vPixel", parser: j }, { code: 11, name: "uPixel", parser: j }, { code: 10, name: "position", parser: j }, { code: 90, name: "version", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2757
- class Pl {
2757
+ class Il {
2758
2758
  parseEntity(t, e) {
2759
2759
  let s = {};
2760
2760
  return this.parser(e, t, s), s;
@@ -2763,10 +2763,10 @@ class Pl {
2763
2763
  Sl(this, "parser", xt(Hu, Wu));
2764
2764
  }
2765
2765
  }
2766
- function Il(i, t, e) {
2766
+ function Pl(i, t, e) {
2767
2767
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2768
2768
  }
2769
- Sl(Pl, "ForEntityName", "IMAGE");
2769
+ Sl(Il, "ForEntityName", "IMAGE");
2770
2770
  let Yu = { xScale: 1, yScale: 1, zScale: 1, rotation: 0, columnCount: 0, rowCount: 0, columnSpacing: 0, rowSpacing: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, qu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 45, name: "rowSpacing", parser: y }, { code: 44, name: "columnSpacing", parser: y }, { code: 71, name: "rowCount", parser: y }, { code: 70, name: "columnCount", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43, name: "zScale", parser: y }, { code: 42, name: "yScale", parser: y }, { code: 41, name: "xScale", parser: y }, { code: 10, name: "insertionPoint", parser: j }, { code: 2, name: "name", parser: y }, { code: 66, name: "isVariableAttributes", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2771
2771
  class El {
2772
2772
  parseEntity(t, e) {
@@ -2774,14 +2774,14 @@ class El {
2774
2774
  return this.parser(e, t, s), s;
2775
2775
  }
2776
2776
  constructor() {
2777
- Il(this, "parser", xt(qu, Yu));
2777
+ Pl(this, "parser", xt(qu, Yu));
2778
2778
  }
2779
2779
  }
2780
2780
  function kl(i, t, e) {
2781
2781
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2782
2782
  }
2783
- Il(El, "ForEntityName", "INSERT");
2784
- let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotation", parser: j }, { code: 212, name: "offsetFromBlock", parser: j }, { code: 211, name: "horizontalDirection", parser: j }, { code: 210, name: "normal", parser: j }, { code: 340, name: "associatedAnnotation", parser: y }, { code: 77, name: "byBlockColor", parser: y }, { code: 10, name: "vertices", parser: j, isMultiple: !0 }, { code: 76, name: "numberOfVertices", parser: y }, { code: 41, name: "textWidth", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 75, name: "isHooklineExists", parser: Bt }, { code: 74, name: "isHooklineSameDirection", parser: Bt }, { code: 73, name: "leaderCreationFlag", parser: y }, { code: 72, name: "isSpline", parser: Bt }, { code: 71, name: "isArrowheadEnabled", parser: Bt }, { code: 3, name: "styleName", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut], Ml = class {
2783
+ Pl(El, "ForEntityName", "INSERT");
2784
+ let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotation", parser: j }, { code: 212, name: "offsetFromBlock", parser: j }, { code: 211, name: "horizontalDirection", parser: j }, { code: 210, name: "normal", parser: j }, { code: 340, name: "associatedAnnotation", parser: y }, { code: 77, name: "byBlockColor", parser: y }, { code: 10, name: "vertices", parser: j, isMultiple: !0 }, { code: 76, name: "numberOfVertices", parser: y }, { code: 41, name: "textWidth", parser: y }, { code: 40, name: "textHeight", parser: y }, { code: 75, name: "isHooklineExists", parser: Bt }, { code: 74, name: "isHooklineSameDirection", parser: Bt }, { code: 73, name: "leaderCreationFlag", parser: y }, { code: 72, name: "isSpline", parser: Bt }, { code: 71, name: "isArrowheadEnabled", parser: Bt }, { code: 3, name: "styleName", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut], Tl = class {
2785
2785
  parseEntity(t, e) {
2786
2786
  let s = {};
2787
2787
  return this.parser(e, t, s), s;
@@ -2790,9 +2790,9 @@ let Xu = { isArrowheadEnabled: !0 }, Ku = [{ code: 213, name: "offsetFromAnnotat
2790
2790
  kl(this, "parser", xt(Ku, Xu));
2791
2791
  }
2792
2792
  };
2793
- kl(Ml, "ForEntityName", "LEADER");
2793
+ kl(Tl, "ForEntityName", "LEADER");
2794
2794
  (br = {})[br.TextAnnotation = 0] = "TextAnnotation", br[br.ToleranceAnnotation = 1] = "ToleranceAnnotation", br[br.BlockReferenceAnnotation = 2] = "BlockReferenceAnnotation", br[br.NoAnnotation = 3] = "NoAnnotation";
2795
- function Tl(i, t, e) {
2795
+ function Ml(i, t, e) {
2796
2796
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2797
2797
  }
2798
2798
  let $u = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Zu = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 11, name: "endPoint", parser: j }, { code: 10, name: "startPoint", parser: j }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
@@ -2802,10 +2802,10 @@ class Nl {
2802
2802
  return this.parser(e, t, s), s;
2803
2803
  }
2804
2804
  constructor() {
2805
- Tl(this, "parser", xt(Zu, $u));
2805
+ Ml(this, "parser", xt(Zu, $u));
2806
2806
  }
2807
2807
  }
2808
- Tl(Nl, "ForEntityName", "LINE");
2808
+ Ml(Nl, "ForEntityName", "LINE");
2809
2809
  (xs = {})[xs.IS_CLOSED = 1] = "IS_CLOSED", xs[xs.PLINE_GEN = 128] = "PLINE_GEN";
2810
2810
  let Qu = { flag: 0, elevation: 0, thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 }, vertices: [] }, Ju = { bulge: 0 }, tc = [{ code: 42, name: "bulge", parser: y }, { code: 41, name: "endWidth", parser: y }, { code: 40, name: "startWidth", parser: y }, { code: 91, name: "id", parser: y }, { code: 20, name: "y", parser: y }, { code: 10, name: "x", parser: y }], ec = [{ code: 210, name: "extrusionDirection", parser: j }, { code: 10, name: "vertices", isMultiple: !0, parser(i, t) {
2811
2811
  let e = {};
@@ -3393,7 +3393,7 @@ class sh {
3393
3393
  }
3394
3394
  }
3395
3395
  nh(sh, "ForEntityName", "MULTILEADER");
3396
- let Pc = Object.fromEntries([rl, ll, dl, pl, fl, Ws, vl, xl, Pl, El, Ml, Nl, Hs, Ll, ul, sh, zl, Bl, Ul, Gl, Wl, Yl, Xl, $l, Ys, al, Ql, Al, ma, qs, th, rh].map((i) => [i.ForEntityName, new i()]));
3396
+ let Ic = Object.fromEntries([rl, ll, dl, pl, fl, Ws, vl, xl, Il, El, Tl, Nl, Hs, Ll, ul, sh, zl, Bl, Ul, Gl, Wl, Yl, Xl, $l, Ys, al, Ql, Al, ma, qs, th, rh].map((i) => [i.ForEntityName, new i()]));
3397
3397
  function ih(i, t) {
3398
3398
  let e = [];
3399
3399
  for (; !At(i, 0, "EOF"); ) {
@@ -3402,7 +3402,7 @@ function ih(i, t) {
3402
3402
  t.rewind();
3403
3403
  break;
3404
3404
  }
3405
- let s = Pc[i.value];
3405
+ let s = Ic[i.value];
3406
3406
  if (s) {
3407
3407
  let o = i.value;
3408
3408
  i = t.next();
@@ -3414,7 +3414,7 @@ function ih(i, t) {
3414
3414
  }
3415
3415
  return e;
3416
3416
  }
3417
- function Ic(i, t) {
3417
+ function Pc(i, t) {
3418
3418
  let e = {};
3419
3419
  for (; !At(i, 0, "EOF") && !At(i, 0, "ENDSEC"); ) {
3420
3420
  if (At(i, 0, "BLOCK")) {
@@ -3478,10 +3478,10 @@ function kc(i, t) {
3478
3478
  return s;
3479
3479
  }
3480
3480
  (Fe = {})[Fe.NOT_APPLICABLE = 0] = "NOT_APPLICABLE", Fe[Fe.KEEP_EXISTING = 1] = "KEEP_EXISTING", Fe[Fe.USE_CLONE = 2] = "USE_CLONE", Fe[Fe.XREF_VALUE_NAME = 3] = "XREF_VALUE_NAME", Fe[Fe.VALUE_NAME = 4] = "VALUE_NAME", Fe[Fe.UNMANGLE_NAME = 5] = "UNMANGLE_NAME";
3481
- let pa = [{ code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 5, name: "handle", parser: y }], Mc = [{ code: 3, name: "entries", parser: (i, t) => {
3481
+ let pa = [{ code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 102, parser: ln }, { code: 5, name: "handle", parser: y }], Tc = [{ code: 3, name: "entries", parser: (i, t) => {
3482
3482
  let e = { name: i.value };
3483
3483
  return (i = t.next()).code === 350 ? e.objectSoftId = i.value : i.code === 360 ? e.objectHardId = i.value : t.rewind(), e;
3484
- }, isMultiple: !0 }, { code: 281, name: "recordCloneFlag", parser: y }, { code: 280, name: "isHardOwned", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...pa], Tc = [{ code: 330, name: "imageDefReactorIdSoft", isMultiple: !0, parser: y }, { code: 90, name: "version", parser: y }, { code: 1, name: "fileName", parser: y }, { code: 10, name: "size", parser: j }, { code: 11, name: "sizeOfOnePixel", parser: j }, { code: 280, name: "isLoaded", parser: y }, { code: 281, name: "resolutionUnits", parser: y }, { code: 100, name: "subclassMarker", parser: y }];
3484
+ }, isMultiple: !0 }, { code: 281, name: "recordCloneFlag", parser: y }, { code: 280, name: "isHardOwned", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...pa], Mc = [{ code: 330, name: "imageDefReactorIdSoft", isMultiple: !0, parser: y }, { code: 90, name: "version", parser: y }, { code: 1, name: "fileName", parser: y }, { code: 10, name: "size", parser: j }, { code: 11, name: "sizeOfOnePixel", parser: j }, { code: 280, name: "isLoaded", parser: y }, { code: 281, name: "resolutionUnits", parser: y }, { code: 100, name: "subclassMarker", parser: y }];
3485
3485
  (rn = {})[rn.NOUNIT = 0] = "NOUNIT", rn[rn.CENTIMETERS = 2] = "CENTIMETERS", rn[rn.INCH = 5] = "INCH";
3486
3486
  (bs = {})[bs.PSLTSCALE = 1] = "PSLTSCALE", bs[bs.LIMCHECK = 2] = "LIMCHECK";
3487
3487
  (nn = {})[nn.INCHES = 0] = "INCHES", nn[nn.MILLIMETERS = 1] = "MILLIMETERS", nn[nn.PIXELS = 2] = "PIXELS";
@@ -3498,7 +3498,7 @@ function wo(i, t) {
3498
3498
  }
3499
3499
  return t.rewind(), e;
3500
3500
  }
3501
- let Lc = { LAYOUT: Nc, PLOTSETTINGS: ah, DICTIONARY: Mc, SPATIAL_FILTER: Cc, IMAGEDEF: Tc };
3501
+ let Lc = { LAYOUT: Nc, PLOTSETTINGS: ah, DICTIONARY: Tc, SPATIAL_FILTER: Cc, IMAGEDEF: Mc };
3502
3502
  function Oc(i, t) {
3503
3503
  let e = [];
3504
3504
  for (; i.code !== 0 || !["EOF", "ENDSEC"].includes(i.value); ) {
@@ -3513,7 +3513,7 @@ function Oc(i, t) {
3513
3513
  let zn = [{ code: 100, name: "subclassMarker", parser: y }, { code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser(i, t) {
3514
3514
  for (; !At(i, 0, "EOF") && !At(i, 102, "}"); ) i = t.next();
3515
3515
  } }, { code: 5, name: "handle", parser: y }], zc = xt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...zn]), Rc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: xo.Above, defaultValueImperial: xo.Center }, { name: "DIMZIN", code: 78, defaultValue: kn.Trailing, defaultValueImperial: kn.Feet }, { name: "DIMAZIN", code: 79, defaultValue: uu.None }, { name: "DIMALT", code: 170, defaultValue: 0 }, { name: "DIMALTD", code: 171, defaultValue: 3, defaultValueImperial: 2 }, { name: "DIMTOFL", code: 172, defaultValue: 1, defaultValueImperial: 0 }, { name: "DIMSAH", code: 173, defaultValue: 0 }, { name: "DIMTIX", code: 174, defaultValue: 0 }, { name: "DIMSOXD", code: 175, defaultValue: 0 }, { name: "DIMCLRD", code: 176, defaultValue: 0 }, { name: "DIMCLRE", code: 177, defaultValue: 0 }, { name: "DIMCLRT", code: 178, defaultValue: 0 }, { name: "DIMADEC", code: 179 }, { name: "DIMUNIT", code: 270 }, { name: "DIMDEC", code: 271, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMTDEC", code: 272, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMALTU", code: 273, defaultValue: 2 }, { name: "DIMALTTD", code: 274, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMAUNIT", code: 275, defaultValue: 0 }, { name: "DIMFRAC", code: 276, defaultValue: 0 }, { name: "DIMLUNIT", code: 277, defaultValue: 2 }, { name: "DIMDSEP", code: 278, defaultValue: ",", defaultValueImperial: "." }, { name: "DIMJUST", code: 280, defaultValue: cu.Center }, { name: "DIMSD1", code: 281, defaultValue: 0 }, { name: "DIMSD2", code: 282, defaultValue: 0 }, { name: "DIMTOLJ", code: 283, defaultValue: du.Center }, { name: "DIMTZIN", code: 284, defaultValue: kn.Trailing, defaultValueImperial: kn.Feet }, { name: "DIMALTZ", code: 285, defaultValue: kn.Trailing }, { name: "DIMALTTZ", code: 286, defaultValue: kn.Trailing }, { name: "DIMFIT", code: 287 }, { name: "DIMUPT", code: 288, defaultValue: 0 }, { name: "DIMATFIT", code: 289, defaultValue: 3 }, { name: "DIMTXSTY", code: 340 }, { name: "DIMLDRBLK", code: 341 }, { name: "DIMBLK", code: 342 }, { name: "DIMBLK1", code: 343 }, { name: "DIMBLK2", code: 344 }, { name: "DIMLWD", code: 371, defaultValue: -2 }, { name: "DIMLWD", code: 372, defaultValue: -2 }], Fc = xt([...Rc.map((i) => ({ ...i, parser: y })), { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 105, name: "handle", parser: y }, ...zn.filter((i) => i.code !== 5)]), Bc = xt([{ code: 347, name: "materialObjectId", parser: y }, { code: 390, name: "plotStyleNameObjectId", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 290, name: "isPlotting", parser: Bt }, { code: 6, name: "lineType", parser: y }, { code: 62, name: "colorIndex", parser: y }, { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...zn]);
3516
- (Pr = {})[Pr.NONE = 0] = "NONE", Pr[Pr.AbsoluteRotation = 1] = "AbsoluteRotation", Pr[Pr.TextEmbedded = 2] = "TextEmbedded", Pr[Pr.ShapeEmbedded = 4] = "ShapeEmbedded";
3516
+ (Ir = {})[Ir.NONE = 0] = "NONE", Ir[Ir.AbsoluteRotation = 1] = "AbsoluteRotation", Ir[Ir.TextEmbedded = 2] = "TextEmbedded", Ir[Ir.ShapeEmbedded = 4] = "ShapeEmbedded";
3517
3517
  let Dc = xt([{ code: 9, name: "text", parser: y }, { code: 45, name: "offsetY", parser: y }, { code: 44, name: "offsetX", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 46, name: "scale", parser: y }, { code: 340, name: "styleObjectId", parser: y }, { code: 75, name: "shapeNumber", parser: y }, { code: 74, name: "elementTypeFlag", parser: y }, { code: 49, name: "elementLength", parser: y }], { elementTypeFlag: 0, elementLength: 0 }), Uc = xt([{ code: 49, name: "pattern", parser(i, t) {
3518
3518
  let e = {};
3519
3519
  return Dc(i, t, e), e;
@@ -3625,14 +3625,14 @@ class qc extends EventTarget {
3625
3625
  }
3626
3626
  parseAll(t) {
3627
3627
  let e = { header: {}, blocks: {}, entities: [], tables: {}, objects: { byName: {}, byTree: void 0 } }, s = t.next();
3628
- for (; !At(s, 0, "EOF"); ) At(s, 0, "SECTION") && (At(s = t.next(), 2, "HEADER") ? (s = t.next(), e.header = kc(s, t)) : At(s, 2, "BLOCKS") ? (s = t.next(), e.blocks = Ic(s, t)) : At(s, 2, "ENTITIES") ? (s = t.next(), e.entities = ih(s, t)) : At(s, 2, "TABLES") ? (s = t.next(), e.tables = Hc(s, t)) : At(s, 2, "OBJECTS") && (s = t.next(), e.objects = Oc(s, t))), s = t.next();
3628
+ for (; !At(s, 0, "EOF"); ) At(s, 0, "SECTION") && (At(s = t.next(), 2, "HEADER") ? (s = t.next(), e.header = kc(s, t)) : At(s, 2, "BLOCKS") ? (s = t.next(), e.blocks = Pc(s, t)) : At(s, 2, "ENTITIES") ? (s = t.next(), e.entities = ih(s, t)) : At(s, 2, "TABLES") ? (s = t.next(), e.tables = Hc(s, t)) : At(s, 2, "OBJECTS") && (s = t.next(), e.objects = Oc(s, t))), s = t.next();
3629
3629
  return e;
3630
3630
  }
3631
3631
  constructor(t = new Yc()) {
3632
3632
  super(), Ci(this, "_decoder", void 0), this._decoder = new TextDecoder(t.encoding, { fatal: t.encodingFailureFatal });
3633
3633
  }
3634
3634
  }
3635
- const Po = [
3635
+ const Io = [
3636
3636
  { name: "AC1.2", value: 1 },
3637
3637
  { name: "AC1.40", value: 2 },
3638
3638
  { name: "AC1.50", value: 3 },
@@ -3725,14 +3725,14 @@ class Li {
3725
3725
  */
3726
3726
  constructor(t) {
3727
3727
  if (typeof t == "string") {
3728
- const e = Po.find((s) => s.name === t);
3728
+ const e = Io.find((s) => s.name === t);
3729
3729
  if (!e)
3730
3730
  throw new Error(`Unknown DWG version name: ${t}`);
3731
3731
  this.name = e.name, this.value = e.value;
3732
3732
  return;
3733
3733
  }
3734
3734
  if (typeof t == "number") {
3735
- const e = Po.find((s) => s.value === t);
3735
+ const e = Io.find((s) => s.value === t);
3736
3736
  if (!e)
3737
3737
  throw new Error(`Unknown DWG version value: ${t}`);
3738
3738
  this.name = e.name, this.value = e.value;
@@ -3756,9 +3756,9 @@ class Xc {
3756
3756
  const s = new TextDecoder("utf-8");
3757
3757
  let o = 0, h = "", c = null, g = null, x = !1;
3758
3758
  for (; o < t.byteLength; ) {
3759
- const E = Math.min(o + 65536, t.byteLength), M = t.slice(o, E);
3759
+ const E = Math.min(o + 65536, t.byteLength), T = t.slice(o, E);
3760
3760
  o = E;
3761
- const z = (h + s.decode(M, { stream: !0 })).split(/\r?\n/);
3761
+ const z = (h + s.decode(T, { stream: !0 })).split(/\r?\n/);
3762
3762
  h = z.pop() ?? "";
3763
3763
  for (let D = 0; D < z.length; D++) {
3764
3764
  const B = z[D].trim();
@@ -4041,7 +4041,7 @@ const fe = [
4041
4041
  "fe",
4042
4042
  "ff"
4043
4043
  ];
4044
- let Io = 1234567;
4044
+ let Po = 1234567;
4045
4045
  const oh = Math.PI / 180, lh = 180 / Math.PI;
4046
4046
  function Kc() {
4047
4047
  const i = Math.random() * 4294967295 | 0, t = Math.random() * 4294967295 | 0, e = Math.random() * 4294967295 | 0, s = Math.random() * 4294967295 | 0;
@@ -4084,8 +4084,8 @@ function sd(i) {
4084
4084
  return i * (0.5 - Math.random());
4085
4085
  }
4086
4086
  function id(i) {
4087
- i !== void 0 && (Io = i);
4088
- let t = Io += 1831565813;
4087
+ i !== void 0 && (Po = i);
4088
+ let t = Po += 1831565813;
4089
4089
  return t = Math.imul(t ^ t >>> 15, t | 1), t ^= t + Math.imul(t ^ t >>> 7, t | 61), ((t ^ t >>> 14) >>> 0) / 4294967296;
4090
4090
  }
4091
4091
  function ad(i) {
@@ -4738,8 +4738,8 @@ const zi = class mh {
4738
4738
  * @returns Return this matrix
4739
4739
  */
4740
4740
  multiplyMatrices(t, e) {
4741
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], w = s[4], b = s[7], E = s[2], M = s[5], L = s[8], z = o[0], D = o[3], B = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4742
- return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * B + g * ot + x * st, h[1] = f * z + w * dt + b * W, h[4] = f * D + w * vt + b * ut, h[7] = f * B + w * ot + b * st, h[2] = E * z + M * dt + L * W, h[5] = E * D + M * vt + L * ut, h[8] = E * B + M * ot + L * st, this;
4741
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], w = s[4], b = s[7], E = s[2], T = s[5], L = s[8], z = o[0], D = o[3], B = o[6], dt = o[1], vt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4742
+ return h[0] = c * z + g * dt + x * W, h[3] = c * D + g * vt + x * ut, h[6] = c * B + g * ot + x * st, h[1] = f * z + w * dt + b * W, h[4] = f * D + w * vt + b * ut, h[7] = f * B + w * ot + b * st, h[2] = E * z + T * dt + L * W, h[5] = E * D + T * vt + L * ut, h[8] = E * B + T * ot + L * st, this;
4743
4743
  }
4744
4744
  /**
4745
4745
  * Multiply every component of the matrix by the scalar value s.
@@ -4764,10 +4764,10 @@ const zi = class mh {
4764
4764
  * @returns Return this matrix
4765
4765
  */
4766
4766
  invert() {
4767
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = w * c - g * f, E = g * x - w * h, M = f * h - c * x, L = e * b + s * E + o * M;
4767
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = w * c - g * f, E = g * x - w * h, T = f * h - c * x, L = e * b + s * E + o * T;
4768
4768
  if (L === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
4769
4769
  const z = 1 / L;
4770
- return t[0] = b * z, t[1] = (o * f - w * s) * z, t[2] = (g * s - o * c) * z, t[3] = E * z, t[4] = (w * e - o * x) * z, t[5] = (o * h - g * e) * z, t[6] = M * z, t[7] = (s * x - f * e) * z, t[8] = (c * e - s * h) * z, this;
4770
+ return t[0] = b * z, t[1] = (o * f - w * s) * z, t[2] = (g * s - o * c) * z, t[3] = E * z, t[4] = (w * e - o * x) * z, t[5] = (o * h - g * e) * z, t[6] = T * z, t[7] = (s * x - f * e) * z, t[8] = (c * e - s * h) * z, this;
4771
4771
  }
4772
4772
  /**
4773
4773
  * Transpose this matrix in place.
@@ -4829,7 +4829,7 @@ const zi = class mh {
4829
4829
  * @returns Return this matrix
4830
4830
  */
4831
4831
  scale(t, e) {
4832
- return this.premultiply(Ii.makeScale(t, e)), this;
4832
+ return this.premultiply(Pi.makeScale(t, e)), this;
4833
4833
  }
4834
4834
  /**
4835
4835
  * Rotate this matrix by the given angle (in radians).
@@ -4837,7 +4837,7 @@ const zi = class mh {
4837
4837
  * @returns Return this matrix
4838
4838
  */
4839
4839
  rotate(t) {
4840
- return this.premultiply(Ii.makeRotation(-t)), this;
4840
+ return this.premultiply(Pi.makeRotation(-t)), this;
4841
4841
  }
4842
4842
  /**
4843
4843
  * Translate this matrix by the given scalar values.
@@ -4846,7 +4846,7 @@ const zi = class mh {
4846
4846
  * @returns Return this matrix
4847
4847
  */
4848
4848
  translate(t, e) {
4849
- return this.premultiply(Ii.makeTranslation(t, e)), this;
4849
+ return this.premultiply(Pi.makeTranslation(t, e)), this;
4850
4850
  }
4851
4851
  /**
4852
4852
  * Set this matrix as a 2D translation transform:
@@ -4917,7 +4917,7 @@ const zi = class mh {
4917
4917
  };
4918
4918
  zi.IDENTITY = Object.freeze(new zi());
4919
4919
  let ga = zi;
4920
- const Ii = /* @__PURE__ */ new ga(), Mn = 1e-6, se = 2 * Math.PI, S0 = {
4920
+ const Pi = /* @__PURE__ */ new ga(), Tn = 1e-6, se = 2 * Math.PI, S0 = {
4921
4921
  x: 0,
4922
4922
  y: 0
4923
4923
  }, ph = {
@@ -4930,7 +4930,7 @@ class gh {
4930
4930
  * Create tolerance class with default tolerance values
4931
4931
  */
4932
4932
  constructor() {
4933
- this.equalPointTol = Mn, this.equalVectorTol = Mn;
4933
+ this.equalPointTol = Tn, this.equalVectorTol = Tn;
4934
4934
  }
4935
4935
  /**
4936
4936
  * Return true if two points are equal with the specified tolerance.
@@ -4953,7 +4953,7 @@ class gh {
4953
4953
  /**
4954
4954
  * Return true if the value is equal to zero with the specified tolerance.
4955
4955
  */
4956
- static equalToZero(t, e = Mn) {
4956
+ static equalToZero(t, e = Tn) {
4957
4957
  return t < e && t > -e;
4958
4958
  }
4959
4959
  /**
@@ -4964,7 +4964,7 @@ class gh {
4964
4964
  * @param tol Input the tolerance value
4965
4965
  * @returns Return true if two values are equal with the sepcified tolerance
4966
4966
  */
4967
- static equal(t, e, s = Mn) {
4967
+ static equal(t, e, s = Tn) {
4968
4968
  return Math.abs(t - e) < s;
4969
4969
  }
4970
4970
  /**
@@ -4977,7 +4977,7 @@ class gh {
4977
4977
  * @returns Return true if the first argument are greater than the second argument with the
4978
4978
  * sepcified tolerance.
4979
4979
  */
4980
- static great(t, e, s = Mn) {
4980
+ static great(t, e, s = Tn) {
4981
4981
  return t - e > s;
4982
4982
  }
4983
4983
  /**
@@ -4990,7 +4990,7 @@ class gh {
4990
4990
  * @returns Return *true* if the first argument less than the second argument with the specified
4991
4991
  * tolerance value
4992
4992
  */
4993
- static less(t, e, s = Mn) {
4993
+ static less(t, e, s = Tn) {
4994
4994
  return t - e < s;
4995
4995
  }
4996
4996
  }
@@ -5001,8 +5001,8 @@ function _h(i, t, e = !1) {
5001
5001
  const c = t.length;
5002
5002
  for (let g = 0, x = c - 1; g < c; x = g++) {
5003
5003
  const f = t[g].x, w = t[g].y, b = t[x].x, E = t[x].y;
5004
- let M = w > o != E > o;
5005
- e && (M = w >= o != E >= o), M && s < (b - f) * (o - w) / (E - w) + f && (h = !h);
5004
+ let T = w > o != E > o;
5005
+ e && (T = w >= o != E >= o), T && s < (b - f) * (o - w) / (E - w) + f && (h = !h);
5006
5006
  }
5007
5007
  return h;
5008
5008
  }
@@ -5117,10 +5117,10 @@ function yd(i, t, e, s) {
5117
5117
  t,
5118
5118
  e,
5119
5119
  s
5120
- ), E = b[0] - w[0], M = b[1] - w[1], L = b[2] - w[2];
5121
- return g += Math.sqrt(E * E + M * M + L * L), g;
5120
+ ), E = b[0] - w[0], T = b[1] - w[1], L = b[2] - w[2];
5121
+ return g += Math.sqrt(E * E + T * T + L * L), g;
5122
5122
  }
5123
- function P0(i) {
5123
+ function I0(i) {
5124
5124
  return i.map((t) => [...t]);
5125
5125
  }
5126
5126
  class un {
@@ -5146,24 +5146,24 @@ class un {
5146
5146
  */
5147
5147
  static slerpFlat(t, e, s, o, h, c, g) {
5148
5148
  let x = s[o + 0], f = s[o + 1], w = s[o + 2], b = s[o + 3];
5149
- const E = h[c + 0], M = h[c + 1], L = h[c + 2], z = h[c + 3];
5149
+ const E = h[c + 0], T = h[c + 1], L = h[c + 2], z = h[c + 3];
5150
5150
  if (g === 0) {
5151
5151
  t[e + 0] = x, t[e + 1] = f, t[e + 2] = w, t[e + 3] = b;
5152
5152
  return;
5153
5153
  }
5154
5154
  if (g === 1) {
5155
- t[e + 0] = E, t[e + 1] = M, t[e + 2] = L, t[e + 3] = z;
5155
+ t[e + 0] = E, t[e + 1] = T, t[e + 2] = L, t[e + 3] = z;
5156
5156
  return;
5157
5157
  }
5158
- if (b !== z || x !== E || f !== M || w !== L) {
5158
+ if (b !== z || x !== E || f !== T || w !== L) {
5159
5159
  let D = 1 - g;
5160
- const B = x * E + f * M + w * L + b * z, dt = B >= 0 ? 1 : -1, vt = 1 - B * B;
5160
+ const B = x * E + f * T + w * L + b * z, dt = B >= 0 ? 1 : -1, vt = 1 - B * B;
5161
5161
  if (vt > Number.EPSILON) {
5162
5162
  const W = Math.sqrt(vt), ut = Math.atan2(W, B * dt);
5163
5163
  D = Math.sin(D * ut) / W, g = Math.sin(g * ut) / W;
5164
5164
  }
5165
5165
  const ot = g * dt;
5166
- if (x = x * D + E * ot, f = f * D + M * ot, w = w * D + L * ot, b = b * D + z * ot, D === 1 - g) {
5166
+ if (x = x * D + E * ot, f = f * D + T * ot, w = w * D + L * ot, b = b * D + z * ot, D === 1 - g) {
5167
5167
  const W = 1 / Math.sqrt(x * x + f * f + w * w + b * b);
5168
5168
  x *= W, f *= W, w *= W, b *= W;
5169
5169
  }
@@ -5181,8 +5181,8 @@ class un {
5181
5181
  * @returns Return an array
5182
5182
  */
5183
5183
  static multiplyQuaternionsFlat(t, e, s, o, h, c) {
5184
- const g = s[o], x = s[o + 1], f = s[o + 2], w = s[o + 3], b = h[c], E = h[c + 1], M = h[c + 2], L = h[c + 3];
5185
- return t[e] = g * L + w * b + x * M - f * E, t[e + 1] = x * L + w * E + f * b - g * M, t[e + 2] = f * L + w * M + g * E - x * b, t[e + 3] = w * L - g * b - x * E - f * M, t;
5184
+ const g = s[o], x = s[o + 1], f = s[o + 2], w = s[o + 3], b = h[c], E = h[c + 1], T = h[c + 2], L = h[c + 3];
5185
+ return t[e] = g * L + w * b + x * T - f * E, t[e + 1] = x * L + w * E + f * b - g * T, t[e + 2] = f * L + w * T + g * E - x * b, t[e + 3] = w * L - g * b - x * E - f * T, t;
5186
5186
  }
5187
5187
  /**
5188
5188
  * X cooridinate
@@ -5253,25 +5253,25 @@ class un {
5253
5253
  * @returns Return this quaternion
5254
5254
  */
5255
5255
  setFromEuler(t, e = !0) {
5256
- const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), w = g(o / 2), b = g(h / 2), E = x(s / 2), M = x(o / 2), L = x(h / 2);
5256
+ const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), w = g(o / 2), b = g(h / 2), E = x(s / 2), T = x(o / 2), L = x(h / 2);
5257
5257
  switch (c) {
5258
5258
  case "XYZ":
5259
- this._x = E * w * b + f * M * L, this._y = f * M * b - E * w * L, this._z = f * w * L + E * M * b, this._w = f * w * b - E * M * L;
5259
+ this._x = E * w * b + f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b - E * T * L;
5260
5260
  break;
5261
5261
  case "YXZ":
5262
- this._x = E * w * b + f * M * L, this._y = f * M * b - E * w * L, this._z = f * w * L - E * M * b, this._w = f * w * b + E * M * L;
5262
+ this._x = E * w * b + f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b + E * T * L;
5263
5263
  break;
5264
5264
  case "ZXY":
5265
- this._x = E * w * b - f * M * L, this._y = f * M * b + E * w * L, this._z = f * w * L + E * M * b, this._w = f * w * b - E * M * L;
5265
+ this._x = E * w * b - f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b - E * T * L;
5266
5266
  break;
5267
5267
  case "ZYX":
5268
- this._x = E * w * b - f * M * L, this._y = f * M * b + E * w * L, this._z = f * w * L - E * M * b, this._w = f * w * b + E * M * L;
5268
+ this._x = E * w * b - f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b + E * T * L;
5269
5269
  break;
5270
5270
  case "YZX":
5271
- this._x = E * w * b + f * M * L, this._y = f * M * b + E * w * L, this._z = f * w * L - E * M * b, this._w = f * w * b - E * M * L;
5271
+ this._x = E * w * b + f * T * L, this._y = f * T * b + E * w * L, this._z = f * w * L - E * T * b, this._w = f * w * b - E * T * L;
5272
5272
  break;
5273
5273
  case "XZY":
5274
- this._x = E * w * b - f * M * L, this._y = f * M * b - E * w * L, this._z = f * w * L + E * M * b, this._w = f * w * b + E * M * L;
5274
+ this._x = E * w * b - f * T * L, this._y = f * T * b - E * w * L, this._z = f * w * L + E * T * b, this._w = f * w * b + E * T * L;
5275
5275
  break;
5276
5276
  default:
5277
5277
  console.warn(
@@ -5299,17 +5299,17 @@ class un {
5299
5299
  setFromRotationMatrix(t) {
5300
5300
  const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], w = e[6], b = e[10], E = s + g + b;
5301
5301
  if (E > 0) {
5302
- const M = 0.5 / Math.sqrt(E + 1);
5303
- this._w = 0.25 / M, this._x = (w - x) * M, this._y = (h - f) * M, this._z = (c - o) * M;
5302
+ const T = 0.5 / Math.sqrt(E + 1);
5303
+ this._w = 0.25 / T, this._x = (w - x) * T, this._y = (h - f) * T, this._z = (c - o) * T;
5304
5304
  } else if (s > g && s > b) {
5305
- const M = 2 * Math.sqrt(1 + s - g - b);
5306
- this._w = (w - x) / M, this._x = 0.25 * M, this._y = (o + c) / M, this._z = (h + f) / M;
5305
+ const T = 2 * Math.sqrt(1 + s - g - b);
5306
+ this._w = (w - x) / T, this._x = 0.25 * T, this._y = (o + c) / T, this._z = (h + f) / T;
5307
5307
  } else if (g > b) {
5308
- const M = 2 * Math.sqrt(1 + g - s - b);
5309
- this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x + w) / M;
5308
+ const T = 2 * Math.sqrt(1 + g - s - b);
5309
+ this._w = (h - f) / T, this._x = (o + c) / T, this._y = 0.25 * T, this._z = (x + w) / T;
5310
5310
  } else {
5311
- const M = 2 * Math.sqrt(1 + b - s - g);
5312
- this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x + w) / M, this._z = 0.25 * M;
5311
+ const T = 2 * Math.sqrt(1 + b - s - g);
5312
+ this._w = (c - o) / T, this._x = (h + f) / T, this._y = (x + w) / T, this._z = 0.25 * T;
5313
5313
  }
5314
5314
  return this._onChangeCallback(), this;
5315
5315
  }
@@ -5445,8 +5445,8 @@ class un {
5445
5445
  return this._w = c, this._x = s, this._y = o, this._z = h, this;
5446
5446
  const x = 1 - g * g;
5447
5447
  if (x <= Number.EPSILON) {
5448
- const M = 1 - e;
5449
- return this._w = M * c + e * this._w, this._x = M * s + e * this._x, this._y = M * o + e * this._y, this._z = M * h + e * this._z, this.normalize(), this;
5448
+ const T = 1 - e;
5449
+ return this._w = T * c + e * this._w, this._x = T * s + e * this._x, this._y = T * o + e * this._y, this._z = T * h + e * this._z, this.normalize(), this;
5450
5450
  }
5451
5451
  const f = Math.sqrt(x), w = Math.atan2(f, g), b = Math.sin((1 - e) * w) / f, E = Math.sin(e * w) / f;
5452
5452
  return this._w = c * b + this._w * E, this._x = s * b + this._x * E, this._y = o * b + this._y * E, this._z = h * b + this._z * E, this._onChangeCallback(), this;
@@ -6180,8 +6180,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6180
6180
  * @param n43 Input element in the forth row and the third column
6181
6181
  * @param n44 Input element in the forth row and the forth column
6182
6182
  */
6183
- constructor(t, e, s, o, h, c, g, x, f, w, b, E, M, L, z, D) {
6184
- this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && w != null && b != null && E != null && M != null && L != null && z != null && D != null && this.set(
6183
+ constructor(t, e, s, o, h, c, g, x, f, w, b, E, T, L, z, D) {
6184
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && w != null && b != null && E != null && T != null && L != null && z != null && D != null && this.set(
6185
6185
  t,
6186
6186
  e,
6187
6187
  s,
@@ -6194,7 +6194,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6194
6194
  w,
6195
6195
  b,
6196
6196
  E,
6197
- M,
6197
+ T,
6198
6198
  L,
6199
6199
  z,
6200
6200
  D
@@ -6221,9 +6221,9 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6221
6221
  * @param n44 Input element in the forth row and the forth column
6222
6222
  * @returns Return this matrix
6223
6223
  */
6224
- set(t, e, s, o, h, c, g, x, f, w, b, E, M, L, z, D) {
6224
+ set(t, e, s, o, h, c, g, x, f, w, b, E, T, L, z, D) {
6225
6225
  const B = this.elements;
6226
- return B[0] = t, B[4] = e, B[8] = s, B[12] = o, B[1] = h, B[5] = c, B[9] = g, B[13] = x, B[2] = f, B[6] = w, B[10] = b, B[14] = E, B[3] = M, B[7] = L, B[11] = z, B[15] = D, this;
6226
+ return B[0] = t, B[4] = e, B[8] = s, B[12] = o, B[1] = h, B[5] = c, B[9] = g, B[13] = x, B[2] = f, B[6] = w, B[10] = b, B[14] = E, B[3] = T, B[7] = L, B[11] = z, B[15] = D, this;
6227
6227
  }
6228
6228
  /**
6229
6229
  * Reset this matrix to the identity matrix.
@@ -6355,7 +6355,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6355
6355
  * @returns Return this matrix
6356
6356
  */
6357
6357
  extractRotation(t) {
6358
- const e = this.elements, s = t.elements, o = 1 / Tn.setFromMatrixColumn(t, 0).length(), h = 1 / Tn.setFromMatrixColumn(t, 1).length(), c = 1 / Tn.setFromMatrixColumn(t, 2).length();
6358
+ const e = this.elements, s = t.elements, o = 1 / Mn.setFromMatrixColumn(t, 0).length(), h = 1 / Mn.setFromMatrixColumn(t, 1).length(), c = 1 / Mn.setFromMatrixColumn(t, 2).length();
6359
6359
  return e[0] = s[0] * o, e[1] = s[1] * o, e[2] = s[2] * o, e[3] = 0, e[4] = s[4] * h, e[5] = s[5] * h, e[6] = s[6] * h, e[7] = 0, e[8] = s[8] * c, e[9] = s[9] * c, e[10] = s[10] * c, e[11] = 0, e[12] = 0, e[13] = 0, e[14] = 0, e[15] = 1, this;
6360
6360
  }
6361
6361
  // makeRotationFromEuler(euler) {
@@ -6507,8 +6507,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6507
6507
  * @returns Return this matrix
6508
6508
  */
6509
6509
  multiplyMatrices(t, e) {
6510
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], w = s[1], b = s[5], E = s[9], M = s[13], L = s[2], z = s[6], D = s[10], B = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], qt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], Me = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], hr = o[15];
6511
- return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Me + f * Mt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * qt + g * de + x * ie + f * hr, h[1] = w * ut + b * Wt + E * me + M * Q, h[5] = w * st + b * bt + E * Me + M * Mt, h[9] = w * Vt + b * Ot + E * Jt + M * ae, h[13] = w * qt + b * de + E * ie + M * hr, h[2] = L * ut + z * Wt + D * me + B * Q, h[6] = L * st + z * bt + D * Me + B * Mt, h[10] = L * Vt + z * Ot + D * Jt + B * ae, h[14] = L * qt + z * de + D * ie + B * hr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * Me + W * Mt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * qt + vt * de + ot * ie + W * hr, this;
6510
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], w = s[1], b = s[5], E = s[9], T = s[13], L = s[2], z = s[6], D = s[10], B = s[14], dt = s[3], vt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], qt = o[12], Wt = o[1], bt = o[5], Ot = o[9], de = o[13], me = o[2], Te = o[6], Jt = o[10], ie = o[14], Q = o[3], Tt = o[7], ae = o[11], hr = o[15];
6511
+ return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Te + f * Tt, h[8] = c * Vt + g * Ot + x * Jt + f * ae, h[12] = c * qt + g * de + x * ie + f * hr, h[1] = w * ut + b * Wt + E * me + T * Q, h[5] = w * st + b * bt + E * Te + T * Tt, h[9] = w * Vt + b * Ot + E * Jt + T * ae, h[13] = w * qt + b * de + E * ie + T * hr, h[2] = L * ut + z * Wt + D * me + B * Q, h[6] = L * st + z * bt + D * Te + B * Tt, h[10] = L * Vt + z * Ot + D * Jt + B * ae, h[14] = L * qt + z * de + D * ie + B * hr, h[3] = dt * ut + vt * Wt + ot * me + W * Q, h[7] = dt * st + vt * bt + ot * Te + W * Tt, h[11] = dt * Vt + vt * Ot + ot * Jt + W * ae, h[15] = dt * qt + vt * de + ot * ie + W * hr, this;
6512
6512
  }
6513
6513
  /**
6514
6514
  * Multiply every component of the matrix by a scalar value s.
@@ -6524,8 +6524,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6524
6524
  * @returns Return the determinant of this matrix.
6525
6525
  */
6526
6526
  determinant() {
6527
- const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], w = t[2], b = t[6], E = t[10], M = t[14], L = t[3], z = t[7], D = t[11], B = t[15];
6528
- return L * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + z * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * w - h * x * w) + D * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * w - s * f * w) + B * (-o * g * w - e * x * b + e * g * E + o * c * b - s * c * E + s * x * w);
6527
+ const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], w = t[2], b = t[6], E = t[10], T = t[14], L = t[3], z = t[7], D = t[11], B = t[15];
6528
+ return L * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * T - s * x * T) + z * (+e * x * T - e * f * E + h * c * E - o * c * T + o * f * w - h * x * w) + D * (+e * f * b - e * g * T - h * c * b + s * c * T + h * g * w - s * f * w) + B * (-o * g * w - e * x * b + e * g * E + o * c * b - s * c * E + s * x * w);
6529
6529
  }
6530
6530
  /**
6531
6531
  * Transposes this matrix.
@@ -6553,11 +6553,11 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6553
6553
  * @returns Return this matrix
6554
6554
  */
6555
6555
  invert() {
6556
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = t[9], E = t[10], M = t[11], L = t[12], z = t[13], D = t[14], B = t[15], dt = b * D * f - z * E * f + z * x * M - g * D * M - b * x * B + g * E * B, vt = L * E * f - w * D * f - L * x * M + c * D * M + w * x * B - c * E * B, ot = w * z * f - L * b * f + L * g * M - c * z * M - w * g * B + c * b * B, W = L * b * x - w * z * x - L * g * E + c * z * E + w * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
6556
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], w = t[8], b = t[9], E = t[10], T = t[11], L = t[12], z = t[13], D = t[14], B = t[15], dt = b * D * f - z * E * f + z * x * T - g * D * T - b * x * B + g * E * B, vt = L * E * f - w * D * f - L * x * T + c * D * T + w * x * B - c * E * B, ot = w * z * f - L * b * f + L * g * T - c * z * T - w * g * B + c * b * B, W = L * b * x - w * z * x - L * g * E + c * z * E + w * g * D - c * b * D, ut = e * dt + s * vt + o * ot + h * W;
6557
6557
  if (ut === 0)
6558
6558
  return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
6559
6559
  const st = 1 / ut;
6560
- return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * M + s * D * M + b * o * B - s * E * B) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * B + s * x * B) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = vt * st, t[5] = (w * D * h - L * E * h + L * o * M - e * D * M - w * o * B + e * E * B) * st, t[6] = (L * x * h - c * D * h - L * o * f + e * D * f + c * o * B - e * x * B) * st, t[7] = (c * E * h - w * x * h + w * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (L * b * h - w * z * h - L * s * M + e * z * M + w * s * B - e * b * B) * st, t[10] = (c * z * h - L * g * h + L * s * f - e * z * f - c * s * B + e * g * B) * st, t[11] = (w * g * h - c * b * h - w * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (w * z * o - L * b * o + L * s * E - e * z * E - w * s * D + e * b * D) * st, t[14] = (L * g * o - c * z * o - L * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - w * g * o + w * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6560
+ return t[0] = dt * st, t[1] = (z * E * h - b * D * h - z * o * T + s * D * T + b * o * B - s * E * B) * st, t[2] = (g * D * h - z * x * h + z * o * f - s * D * f - g * o * B + s * x * B) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * T - s * x * T) * st, t[4] = vt * st, t[5] = (w * D * h - L * E * h + L * o * T - e * D * T - w * o * B + e * E * B) * st, t[6] = (L * x * h - c * D * h - L * o * f + e * D * f + c * o * B - e * x * B) * st, t[7] = (c * E * h - w * x * h + w * o * f - e * E * f - c * o * T + e * x * T) * st, t[8] = ot * st, t[9] = (L * b * h - w * z * h - L * s * T + e * z * T + w * s * B - e * b * B) * st, t[10] = (c * z * h - L * g * h + L * s * f - e * z * f - c * s * B + e * g * B) * st, t[11] = (w * g * h - c * b * h - w * s * f + e * b * f + c * s * T - e * g * T) * st, t[12] = W * st, t[13] = (w * z * o - L * b * o + L * s * E - e * z * E - w * s * D + e * b * D) * st, t[14] = (L * g * o - c * z * o - L * s * x + e * z * x + c * s * D - e * g * D) * st, t[15] = (c * b * o - w * g * o + w * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6561
6561
  }
6562
6562
  /**
6563
6563
  * Multiply the columns of this matrix by vector v.
@@ -6671,8 +6671,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6671
6671
  * @returns Return this matrix
6672
6672
  */
6673
6673
  compose(t, e, s) {
6674
- const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, w = c + c, b = g + g, E = h * f, M = h * w, L = h * b, z = c * w, D = c * b, B = g * b, dt = x * f, vt = x * w, ot = x * b, W = s.x, ut = s.y, st = s.z;
6675
- return o[0] = (1 - (z + B)) * W, o[1] = (M + ot) * W, o[2] = (L - vt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + B)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (L + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6674
+ const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, w = c + c, b = g + g, E = h * f, T = h * w, L = h * b, z = c * w, D = c * b, B = g * b, dt = x * f, vt = x * w, ot = x * b, W = s.x, ut = s.y, st = s.z;
6675
+ return o[0] = (1 - (z + B)) * W, o[1] = (T + ot) * W, o[2] = (L - vt) * W, o[3] = 0, o[4] = (T - ot) * ut, o[5] = (1 - (E + B)) * ut, o[6] = (D + dt) * ut, o[7] = 0, o[8] = (L + vt) * st, o[9] = (D - dt) * st, o[10] = (1 - (E + z)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6676
6676
  }
6677
6677
  /**
6678
6678
  * Decompose this matrix into its position, quaternion and scale components.
@@ -6687,8 +6687,8 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6687
6687
  */
6688
6688
  decompose(t, e, s) {
6689
6689
  const o = this.elements;
6690
- let h = Tn.set(o[0], o[1], o[2]).length();
6691
- const c = Tn.set(o[4], o[5], o[6]).length(), g = Tn.set(o[8], o[9], o[10]).length();
6690
+ let h = Mn.set(o[0], o[1], o[2]).length();
6691
+ const c = Mn.set(o[4], o[5], o[6]).length(), g = Mn.set(o[8], o[9], o[10]).length();
6692
6692
  this.determinant() < 0 && (h = -h), t.x = o[12], t.y = o[13], t.z = o[14], nr.copy(this);
6693
6693
  const x = 1 / h, f = 1 / c, w = 1 / g;
6694
6694
  return nr.elements[0] *= x, nr.elements[1] *= x, nr.elements[2] *= x, nr.elements[4] *= f, nr.elements[5] *= f, nr.elements[6] *= f, nr.elements[8] *= w, nr.elements[9] *= w, nr.elements[10] *= w, e.setFromRotationMatrix(nr), s.x = h, s.y = c, s.z = g, this;
@@ -6819,7 +6819,7 @@ const Ei = /* @__PURE__ */ new Z(), Eo = /* @__PURE__ */ new un(), Fi = class yh
6819
6819
  };
6820
6820
  Fi.IDENTITY = Object.freeze(new Fi());
6821
6821
  let cn = Fi;
6822
- const Tn = /* @__PURE__ */ new Z(), nr = /* @__PURE__ */ new cn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Dr = /* @__PURE__ */ new Z(), Fs = /* @__PURE__ */ new Z(), Ue = /* @__PURE__ */ new Z();
6822
+ const Mn = /* @__PURE__ */ new Z(), nr = /* @__PURE__ */ new cn(), xd = /* @__PURE__ */ new Z(0, 0, 0), bd = /* @__PURE__ */ new Z(1, 1, 1), Dr = /* @__PURE__ */ new Z(), Fs = /* @__PURE__ */ new Z(), Ue = /* @__PURE__ */ new Z();
6823
6823
  class Ct {
6824
6824
  /**
6825
6825
  * Create a 3d box bounded by min and max.
@@ -7295,7 +7295,7 @@ class be {
7295
7295
  return t.min.equals(this.min) && t.max.equals(this.max);
7296
7296
  }
7297
7297
  }
7298
- const Mo = /* @__PURE__ */ new Z(), wd = /* @__PURE__ */ new Z(), Ad = /* @__PURE__ */ new ga();
7298
+ const To = /* @__PURE__ */ new Z(), wd = /* @__PURE__ */ new Z(), Ad = /* @__PURE__ */ new ga();
7299
7299
  class ai {
7300
7300
  /**
7301
7301
  * Create one plane
@@ -7344,7 +7344,7 @@ class ai {
7344
7344
  * @returns Return this plane
7345
7345
  */
7346
7346
  setFromCoplanarPoints(t, e, s) {
7347
- const o = Mo.subVectors(s, e).cross(wd.subVectors(t, e)).normalize();
7347
+ const o = To.subVectors(s, e).cross(wd.subVectors(t, e)).normalize();
7348
7348
  return this.setFromNormalAndCoplanarPoint(o, t), this;
7349
7349
  }
7350
7350
  /**
@@ -7446,7 +7446,7 @@ class ai {
7446
7446
  * @returns Return this plane
7447
7447
  */
7448
7448
  applyMatrix4(t, e) {
7449
- const s = e || Ad.getNormalMatrix(t), o = this.coplanarPoint(Mo).applyMatrix4(t), h = this.normal.applyMatrix3(s).normalize();
7449
+ const s = e || Ad.getNormalMatrix(t), o = this.coplanarPoint(To).applyMatrix4(t), h = this.normal.applyMatrix3(s).normalize();
7450
7450
  return this.constant = -o.dot(h), this;
7451
7451
  }
7452
7452
  /**
@@ -7501,7 +7501,7 @@ class Y extends Z {
7501
7501
  }), o;
7502
7502
  }
7503
7503
  }
7504
- const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class Bi {
7504
+ const Mo = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class Bi {
7505
7505
  /**
7506
7506
  * Create one instance of this class
7507
7507
  * @param x (optional) the angle of the x axis in radians. Default is 0.
@@ -7593,25 +7593,25 @@ const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class B
7593
7593
  * @returns Return this euler
7594
7594
  */
7595
7595
  setFromRotationMatrix(t, e = this._order, s = !0) {
7596
- const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], w = o[9], b = o[2], E = o[6], M = o[10];
7596
+ const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], w = o[9], b = o[2], E = o[6], T = o[10];
7597
7597
  switch (e) {
7598
7598
  case "XYZ":
7599
- this._y = Math.asin(Vr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-w, M), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
7599
+ this._y = Math.asin(Vr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-w, T), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
7600
7600
  break;
7601
7601
  case "YXZ":
7602
- this._x = Math.asin(-Vr(w, -1, 1)), Math.abs(w) < 0.9999999 ? (this._y = Math.atan2(g, M), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
7602
+ this._x = Math.asin(-Vr(w, -1, 1)), Math.abs(w) < 0.9999999 ? (this._y = Math.atan2(g, T), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
7603
7603
  break;
7604
7604
  case "ZXY":
7605
- this._x = Math.asin(Vr(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, M), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
7605
+ this._x = Math.asin(Vr(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, T), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
7606
7606
  break;
7607
7607
  case "ZYX":
7608
- this._y = Math.asin(-Vr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, M), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
7608
+ this._y = Math.asin(-Vr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, T), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
7609
7609
  break;
7610
7610
  case "YZX":
7611
- this._z = Math.asin(Vr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-w, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, M));
7611
+ this._z = Math.asin(Vr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-w, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, T));
7612
7612
  break;
7613
7613
  case "XZY":
7614
- this._z = Math.asin(-Vr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-w, M), this._y = 0);
7614
+ this._z = Math.asin(-Vr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-w, T), this._y = 0);
7615
7615
  break;
7616
7616
  default:
7617
7617
  console.warn(
@@ -7630,7 +7630,7 @@ const To = /* @__PURE__ */ new cn(), No = /* @__PURE__ */ new un(), xh = class B
7630
7630
  * @returns Return this euler
7631
7631
  */
7632
7632
  setFromQuaternion(t, e, s = !0) {
7633
- return To.makeRotationFromQuaternion(t), this.setFromRotationMatrix(To, e, s);
7633
+ return Mo.makeRotationFromQuaternion(t), this.setFromRotationMatrix(Mo, e, s);
7634
7634
  }
7635
7635
  /**
7636
7636
  * Set the x, y and z, and optionally update the order.
@@ -7790,12 +7790,12 @@ class fa extends wh {
7790
7790
  const f = o[x], w = e[f], b = s[f];
7791
7791
  let E = x + 1;
7792
7792
  for (; E < c; E++) {
7793
- const M = o[E], L = e[M];
7794
- if (s[M].containsBox(b) && gd.isPointInPolygon(
7793
+ const T = o[E], L = e[T];
7794
+ if (s[T].containsBox(b) && gd.isPointInPolygon(
7795
7795
  w[kt.randInt(0, w.length - 1)],
7796
7796
  L
7797
7797
  )) {
7798
- (t = h.get(M)) == null || t.children.push(h.get(f));
7798
+ (t = h.get(T)) == null || t.children.push(h.get(f));
7799
7799
  break;
7800
7800
  }
7801
7801
  }
@@ -7834,7 +7834,7 @@ class fa extends wh {
7834
7834
  }), s;
7835
7835
  }
7836
7836
  }
7837
- class Ms extends wh {
7837
+ class Ts extends wh {
7838
7838
  constructor() {
7839
7839
  super(), this.arcLengthDivisions = 100;
7840
7840
  }
@@ -7968,7 +7968,7 @@ class Ms extends wh {
7968
7968
  return this.getTangent(e);
7969
7969
  }
7970
7970
  }
7971
- class Is extends Ms {
7971
+ class Ps extends Ts {
7972
7972
  constructor(t, e, s, o, h) {
7973
7973
  super();
7974
7974
  const c = +(t !== void 0) + +(e !== void 0) + +(s !== void 0) + +(o !== void 0) + +(h !== void 0);
@@ -7998,10 +7998,10 @@ class Is extends Ms {
7998
7998
  const o = (st, Vt) => ({
7999
7999
  x: (st.x + Vt.x) / 2,
8000
8000
  y: (st.y + Vt.y) / 2
8001
- }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), w = h(e, s), b = c(f), E = c(w), M = (st, Vt, qt, Wt) => {
8001
+ }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), w = h(e, s), b = c(f), E = c(w), T = (st, Vt, qt, Wt) => {
8002
8002
  const bt = (Wt - Vt) / (st - qt), Ot = st * bt + Vt;
8003
8003
  return { x: bt, y: Ot };
8004
- }, L = g.y - b * g.x, z = x.y - E * x.x, D = M(b, L, E, z), B = Math.sqrt(
8004
+ }, L = g.y - b * g.x, z = x.y - E * x.x, D = T(b, L, E, z), B = Math.sqrt(
8005
8005
  Math.pow(t.x - D.x, 2) + Math.pow(t.y - D.y, 2)
8006
8006
  ), dt = (st, Vt) => Math.atan2(st.y - Vt.y, st.x - Vt.x), vt = dt(t, D), ot = dt(e, D), W = dt(s, D), ut = W > vt && W < ot || vt > W && vt < ot || ot > W && ot < vt;
8007
8007
  this.center = D, this.radius = B, this._clockwise = !ut, this._startAngle = vt, this._endAngle = W;
@@ -8023,17 +8023,17 @@ class Is extends Ms {
8023
8023
  const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)), w = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
8024
8024
  let E;
8025
8025
  if (o < Math.PI) {
8026
- const M = new Zt(
8026
+ const T = new Zt(
8027
8027
  b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
8028
8028
  b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
8029
8029
  );
8030
- E = f.add(M.multiplyScalar(-w));
8030
+ E = f.add(T.multiplyScalar(-w));
8031
8031
  } else {
8032
- const M = new Zt(
8032
+ const T = new Zt(
8033
8033
  b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
8034
8034
  b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
8035
8035
  );
8036
- E = f.add(M.multiplyScalar(w));
8036
+ E = f.add(T.multiplyScalar(w));
8037
8037
  }
8038
8038
  s < 0 ? (this._startAngle = Math.atan2(h.y - E.y, h.x - E.x), this._endAngle = Math.atan2(c.y - E.y, c.x - E.x)) : (this._startAngle = Math.atan2(c.y - E.y, c.x - E.x), this._endAngle = Math.atan2(h.y - E.y, h.x - E.x)), this._clockwise = s < 0, this.center = E, this.radius = c.sub(E).length();
8039
8039
  }
@@ -8174,7 +8174,7 @@ class Is extends Ms {
8174
8174
  * @inheritdoc
8175
8175
  */
8176
8176
  clone() {
8177
- return new Is(
8177
+ return new Ps(
8178
8178
  this.center.clone(),
8179
8179
  this.radius,
8180
8180
  this._startAngle,
@@ -8212,7 +8212,7 @@ class Is extends Ms {
8212
8212
  return e;
8213
8213
  }
8214
8214
  }
8215
- class Pd extends bh {
8215
+ class Id extends bh {
8216
8216
  /**
8217
8217
  * Return new shape translated by given vector.
8218
8218
  * Translation vector may be also defined by a pair of numbers.
@@ -8229,9 +8229,9 @@ class Pd extends bh {
8229
8229
  return (this._box == null || this._boundingBoxNeedsUpdate) && (this._box = this.calculateBoundingBox(), this._boundingBoxNeedsUpdate = !1), this._box;
8230
8230
  }
8231
8231
  }
8232
- class Ts extends Pd {
8232
+ class Ms extends Id {
8233
8233
  }
8234
- class dn extends Ts {
8234
+ class dn extends Ms {
8235
8235
  /**
8236
8236
  * This constructor initializes the line object to use start as the start point, and end
8237
8237
  * as the endpoint. Both points must be in WCS coordinates.
@@ -8441,7 +8441,7 @@ class dn extends Ts {
8441
8441
  }
8442
8442
  }
8443
8443
  const sn = /* @__PURE__ */ new Z(), Co = /* @__PURE__ */ new Z(), Bs = /* @__PURE__ */ new Z();
8444
- class Ln extends Ts {
8444
+ class Ln extends Ms {
8445
8445
  /**
8446
8446
  * Compute center point of the arc given three points
8447
8447
  * @param startPoint Input start point of the arc
@@ -8453,8 +8453,8 @@ class Ln extends Ts {
8453
8453
  const o = new Z().addVectors(t, e).multiplyScalar(0.5), h = new Z().addVectors(t, s).multiplyScalar(0.5), c = new Z().subVectors(e, t), g = new Z().subVectors(s, t), x = new Z().crossVectors(c, g).normalize();
8454
8454
  if (x.lengthSq() === 0)
8455
8455
  return console.error("Points are collinear and cannot form a valid arc."), null;
8456
- const f = new Z().crossVectors(c, x).normalize(), w = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = w.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new dn(o, o.clone().add(b)), L = new dn(h, h.clone().add(E)), z = new Z();
8457
- return M.closestPointToPoint(L.startPoint, !0, z) ? z : (console.error("Cannot find a valid center for the arc."), null);
8456
+ const f = new Z().crossVectors(c, x).normalize(), w = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = w.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), T = new dn(o, o.clone().add(b)), L = new dn(h, h.clone().add(E)), z = new Z();
8457
+ return T.closestPointToPoint(L.startPoint, !0, z) ? z : (console.error("Cannot find a valid center for the arc."), null);
8458
8458
  }
8459
8459
  /**
8460
8460
  * Create arc by three points
@@ -8625,7 +8625,7 @@ class Ln extends Ts {
8625
8625
  * @inheritdoc
8626
8626
  */
8627
8627
  transform(t) {
8628
- const e = Mi.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Mi.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
8628
+ const e = Ti.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Ti.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
8629
8629
  return this.center.applyMatrix4(t), e.applyMatrix4(t), s.applyMatrix4(t), this.normal.applyMatrix4(t).normalize(), this.refVec.applyMatrix4(t).normalize(), this.startAngle = this.getAngle(e), this.endAngle = this.getAngle(s), this._boundingBoxNeedsUpdate = !0, this;
8630
8630
  }
8631
8631
  /**
@@ -8654,7 +8654,7 @@ class Ln extends Ts {
8654
8654
  */
8655
8655
  getAngle(t) {
8656
8656
  return t.sub(this.center), Math.atan2(
8657
- t.dot(Mi.crossVectors(this.refVec, this.normal)),
8657
+ t.dot(Ti.crossVectors(this.refVec, this.normal)),
8658
8658
  t.dot(this.refVec)
8659
8659
  );
8660
8660
  }
@@ -8682,8 +8682,8 @@ class Ln extends Ts {
8682
8682
  return new ai(this.normal, t);
8683
8683
  }
8684
8684
  }
8685
- const Mi = /* @__PURE__ */ new Z();
8686
- class _a extends Ms {
8685
+ const Ti = /* @__PURE__ */ new Z();
8686
+ class _a extends Ts {
8687
8687
  /**
8688
8688
  * Construct an instance of the ellipse arc.
8689
8689
  * @param center Center point of the ellipse.
@@ -8842,7 +8842,7 @@ class _a extends Ms {
8842
8842
  );
8843
8843
  }
8844
8844
  }
8845
- class va extends Ts {
8845
+ class va extends Ms {
8846
8846
  /**
8847
8847
  * Construct an instance of the ellipse arc.
8848
8848
  * @param center Center point of the ellipse.
@@ -9087,7 +9087,7 @@ class va extends Ts {
9087
9087
  return new ai(this.normal, t);
9088
9088
  }
9089
9089
  }
9090
- class Rn extends Ms {
9090
+ class Rn extends Ts {
9091
9091
  constructor(t = null, e = !1) {
9092
9092
  super(), this._vertices = t || new Array(), this._closed = e;
9093
9093
  }
@@ -9139,7 +9139,7 @@ class Rn extends Ms {
9139
9139
  let h = null;
9140
9140
  if (s < e - 1 ? h = this._vertices[s + 1] : s == e - 1 && this.closed && (h = this._vertices[0]), h)
9141
9141
  if (o.bulge) {
9142
- const c = new Is(o, h, o.bulge);
9142
+ const c = new Ps(o, h, o.bulge);
9143
9143
  t += c.length;
9144
9144
  } else
9145
9145
  t += new Nt(o.x, o.y).distanceTo(h);
@@ -9212,7 +9212,7 @@ class Rn extends Ms {
9212
9212
  if (h.bulge) {
9213
9213
  let c = null;
9214
9214
  if (o < s - 1 ? c = this._vertices[o + 1] : o == s - 1 && this.closed && (c = this._vertices[0]), c) {
9215
- const g = new Is(h, c, h.bulge).getPoints(t), x = g.length;
9215
+ const g = new Ps(h, c, h.bulge).getPoints(t), x = g.length;
9216
9216
  for (let f = 0; f < x; ++f) {
9217
9217
  const w = g[f];
9218
9218
  e.push(new Nt(w.x, w.y));
@@ -9224,7 +9224,7 @@ class Rn extends Ms {
9224
9224
  return e;
9225
9225
  }
9226
9226
  }
9227
- class ya extends Ms {
9227
+ class ya extends Ts {
9228
9228
  /**
9229
9229
  * This constructor initializes the line object to use start as the start point, and end
9230
9230
  * as the endpoint. Both points must be in WCS coordinates.
@@ -9303,7 +9303,7 @@ class ya extends Ms {
9303
9303
  return new ya(this._start.clone(), this._end.clone());
9304
9304
  }
9305
9305
  }
9306
- class Id extends Ms {
9306
+ class Pd extends Ts {
9307
9307
  /**
9308
9308
  * Create one loop by connected curves
9309
9309
  * @param curves Input one array of connected curves
@@ -9418,9 +9418,9 @@ var Ah = { exports: {} };
9418
9418
  return function(x, f, w) {
9419
9419
  f.geom = f.geom || {}, f.exe = f.exe || {}, f.eval = f.eval || {}, f.core = f.core || {}, f.promhx = f.promhx || {};
9420
9420
  var b = {}, E = function() {
9421
- return Mt.__string_rec(this, "");
9421
+ return Tt.__string_rec(this, "");
9422
9422
  };
9423
- function M(r, n) {
9423
+ function T(r, n) {
9424
9424
  function a() {
9425
9425
  }
9426
9426
  a.prototype = r;
@@ -9516,7 +9516,7 @@ var Ah = { exports: {} };
9516
9516
  var dt = function() {
9517
9517
  };
9518
9518
  b.Std = dt, dt.__name__ = ["Std"], dt.string = function(r) {
9519
- return Mt.__string_rec(r, "");
9519
+ return Tt.__string_rec(r, "");
9520
9520
  }, dt.parseFloat = function(r) {
9521
9521
  return parseFloat(r);
9522
9522
  };
@@ -9585,7 +9585,7 @@ var Ah = { exports: {} };
9585
9585
  if (r == null) return W.TNull;
9586
9586
  var a = r.__enum__;
9587
9587
  if (a != null) return W.TEnum(a);
9588
- var l = Mt.getClass(r);
9588
+ var l = Tt.getClass(r);
9589
9589
  return l != null ? W.TClass(l) : W.TObject;
9590
9590
  case "function":
9591
9591
  return r.__name__ || r.__ename__ ? W.TObject : W.TFunction;
@@ -9675,9 +9675,9 @@ var Ah = { exports: {} };
9675
9675
  break;
9676
9676
  case D:
9677
9677
  this.buf.b += "l";
9678
- for (var A = r, P = A.h, S = null; P != null; ) {
9679
- var I;
9680
- S = P[0], P = P[1], I = S, this.serialize(I);
9678
+ for (var A = r, I = A.h, S = null; I != null; ) {
9679
+ var P;
9680
+ S = I[0], I = I[1], P = S, this.serialize(P);
9681
9681
  }
9682
9682
  this.buf.b += "h";
9683
9683
  break;
@@ -9687,9 +9687,9 @@ var Ah = { exports: {} };
9687
9687
  break;
9688
9688
  case me:
9689
9689
  this.buf.b += "b";
9690
- for (var T = r, O = T.keys(); O.hasNext(); ) {
9690
+ for (var M = r, O = M.keys(); O.hasNext(); ) {
9691
9691
  var C = O.next();
9692
- this.serializeString(C), this.serialize(hi[C] != null ? T.getReserved(C) : T.h[C]);
9692
+ this.serializeString(C), this.serialize(hi[C] != null ? M.getReserved(C) : M.h[C]);
9693
9693
  }
9694
9694
  this.buf.b += "h";
9695
9695
  break;
@@ -9709,7 +9709,7 @@ var Ah = { exports: {} };
9709
9709
  }
9710
9710
  this.buf.b += "h";
9711
9711
  break;
9712
- case Me:
9712
+ case Te:
9713
9713
  for (var G = r, K = 0, tt = G.length - 2, et = new vt(), it = qt.BASE64; K < tt; ) {
9714
9714
  var ht = G.get(K++), at = G.get(K++), ct = G.get(K++);
9715
9715
  et.add(it.charAt(ht >> 2)), et.add(it.charAt((ht << 4 | at >> 4) & 63)), et.add(it.charAt((at << 2 | ct >> 6) & 63)), et.add(it.charAt(ct & 63));
@@ -9729,10 +9729,10 @@ var Ah = { exports: {} };
9729
9729
  }
9730
9730
  break;
9731
9731
  case 4:
9732
- if (Mt.__instanceof(r, so)) {
9733
- var Pt = ut.getClassName(r);
9734
- this.buf.b += "A", this.serializeString(Pt);
9735
- } else if (Mt.__instanceof(r, io))
9732
+ if (Tt.__instanceof(r, so)) {
9733
+ var It = ut.getClassName(r);
9734
+ this.buf.b += "A", this.serializeString(It);
9735
+ } else if (Tt.__instanceof(r, io))
9736
9736
  this.buf.b += "B", this.serializeString(ut.getEnumName(r));
9737
9737
  else {
9738
9738
  if (this.useCache && this.serializeRef(r)) return;
@@ -9884,15 +9884,15 @@ var Ah = { exports: {} };
9884
9884
  case 120:
9885
9885
  throw new Q(this.unserialize());
9886
9886
  case 99:
9887
- var A = this.unserialize(), P = this.resolver.resolveClass(A);
9888
- if (P == null) throw new Q("Class not found " + A);
9889
- var S = ut.createEmptyInstance(P);
9887
+ var A = this.unserialize(), I = this.resolver.resolveClass(A);
9888
+ if (I == null) throw new Q("Class not found " + A);
9889
+ var S = ut.createEmptyInstance(I);
9890
9890
  return this.cache.push(S), this.unserializeObject(S), S;
9891
9891
  case 119:
9892
- var I = this.unserialize(), k = this.resolver.resolveEnum(I);
9893
- if (k == null) throw new Q("Enum not found " + I);
9894
- var T = this.unserializeEnum(k, this.unserialize());
9895
- return this.cache.push(T), T;
9892
+ var P = this.unserialize(), k = this.resolver.resolveEnum(P);
9893
+ if (k == null) throw new Q("Enum not found " + P);
9894
+ var M = this.unserializeEnum(k, this.unserialize());
9895
+ return this.cache.push(M), M;
9896
9896
  case 106:
9897
9897
  var O = this.unserialize(), C = this.resolver.resolveEnum(O);
9898
9898
  if (C == null) throw new Q("Enum not found " + O);
@@ -9943,19 +9943,19 @@ var Ah = { exports: {} };
9943
9943
  if (this.get(this.pos++) != 58 || this.length - this.pos < nt) throw new Q("Invalid bytes length");
9944
9944
  var X = Wt.CODES;
9945
9945
  X == null && (X = Wt.initCodes(), Wt.CODES = X);
9946
- var gt = this.pos, Pt = nt & 3, jt;
9947
- jt = (nt >> 2) * 3 + (Pt >= 2 ? Pt - 1 : 0);
9948
- for (var Xt = gt + (nt - Pt), Dt = Me.alloc(jt), Kt = 0; gt < Xt; ) {
9949
- var Ae = X[ot.fastCodeAt(mt, gt++)], We = X[ot.fastCodeAt(mt, gt++)];
9950
- Dt.set(Kt++, Ae << 2 | We >> 4);
9946
+ var gt = this.pos, It = nt & 3, jt;
9947
+ jt = (nt >> 2) * 3 + (It >= 2 ? It - 1 : 0);
9948
+ for (var Xt = gt + (nt - It), Dt = Te.alloc(jt), Kt = 0; gt < Xt; ) {
9949
+ var Ae = X[ot.fastCodeAt(mt, gt++)], He = X[ot.fastCodeAt(mt, gt++)];
9950
+ Dt.set(Kt++, Ae << 2 | He >> 4);
9951
9951
  var _e = X[ot.fastCodeAt(mt, gt++)];
9952
- Dt.set(Kt++, We << 4 | _e >> 2);
9952
+ Dt.set(Kt++, He << 4 | _e >> 2);
9953
9953
  var ge = X[ot.fastCodeAt(mt, gt++)];
9954
9954
  Dt.set(Kt++, _e << 6 | ge);
9955
9955
  }
9956
- if (Pt >= 2) {
9956
+ if (It >= 2) {
9957
9957
  var Se = X[ot.fastCodeAt(mt, gt++)], Le = X[ot.fastCodeAt(mt, gt++)];
9958
- if (Dt.set(Kt++, Se << 2 | Le >> 4), Pt == 3) {
9958
+ if (Dt.set(Kt++, Se << 2 | Le >> 4), It == 3) {
9959
9959
  var $e = X[ot.fastCodeAt(mt, gt++)];
9960
9960
  Dt.set(Kt++, Le << 4 | $e >> 2);
9961
9961
  }
@@ -9972,8 +9972,8 @@ var Ah = { exports: {} };
9972
9972
  if (dr == null) throw new Q("Class not found " + Je);
9973
9973
  return dr;
9974
9974
  case 66:
9975
- var In = this.unserialize(), qr = this.resolver.resolveEnum(In);
9976
- if (qr == null) throw new Q("Enum not found " + In);
9975
+ var Pn = this.unserialize(), qr = this.resolver.resolveEnum(Pn);
9976
+ if (qr == null) throw new Q("Enum not found " + Pn);
9977
9977
  return qr;
9978
9978
  }
9979
9979
  throw this.pos--, new Q("Invalid char " + this.buf.charAt(this.pos) + " at position " + this.pos);
@@ -10050,19 +10050,19 @@ var Ah = { exports: {} };
10050
10050
  },
10051
10051
  __class__: me
10052
10052
  };
10053
- var Me = function(r) {
10053
+ var Te = function(r) {
10054
10054
  this.length = r.byteLength, this.b = new ui(r), this.b.bufferValue = r, r.hxBytes = this, r.bytes = this.b;
10055
10055
  };
10056
- b["haxe.io.Bytes"] = Me, Me.__name__ = ["haxe", "io", "Bytes"], Me.alloc = function(r) {
10057
- return new Me(new Ls(r));
10058
- }, Me.prototype = {
10056
+ b["haxe.io.Bytes"] = Te, Te.__name__ = ["haxe", "io", "Bytes"], Te.alloc = function(r) {
10057
+ return new Te(new Ls(r));
10058
+ }, Te.prototype = {
10059
10059
  get: function(r) {
10060
10060
  return this.b[r];
10061
10061
  },
10062
10062
  set: function(r, n) {
10063
10063
  this.b[r] = n & 255;
10064
10064
  },
10065
- __class__: Me
10065
+ __class__: Te
10066
10066
  };
10067
10067
  var Jt = b["haxe.io.Error"] = { __ename__: ["haxe", "io", "Error"], __constructs__: ["Blocked", "Overflow", "OutsideBounds", "Custom"] };
10068
10068
  Jt.Blocked = ["Blocked", 0], Jt.Blocked.toString = E, Jt.Blocked.__enum__ = Jt, Jt.Overflow = ["Overflow", 1], Jt.Overflow.toString = E, Jt.Overflow.__enum__ = Jt, Jt.OutsideBounds = ["OutsideBounds", 2], Jt.OutsideBounds.toString = E, Jt.OutsideBounds.__enum__ = Jt, Jt.Custom = function(r) {
@@ -10102,18 +10102,18 @@ var Ah = { exports: {} };
10102
10102
  var Q = function(r) {
10103
10103
  Error.call(this), this.val = r, this.message = String(r), Error.captureStackTrace && Error.captureStackTrace(this, Q);
10104
10104
  };
10105
- b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype = M(Error.prototype, {
10105
+ b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype = T(Error.prototype, {
10106
10106
  __class__: Q
10107
10107
  });
10108
- var Mt = function() {
10108
+ var Tt = function() {
10109
10109
  };
10110
- b["js.Boot"] = Mt, Mt.__name__ = ["js", "Boot"], Mt.getClass = function(r) {
10110
+ b["js.Boot"] = Tt, Tt.__name__ = ["js", "Boot"], Tt.getClass = function(r) {
10111
10111
  if (r instanceof Array && r.__enum__ == null) return Array;
10112
10112
  var n = r.__class__;
10113
10113
  if (n != null) return n;
10114
- var a = Mt.__nativeClassName(r);
10115
- return a != null ? Mt.__resolveNativeClass(a) : null;
10116
- }, Mt.__string_rec = function(r, n) {
10114
+ var a = Tt.__nativeClassName(r);
10115
+ return a != null ? Tt.__resolveNativeClass(a) : null;
10116
+ }, Tt.__string_rec = function(r, n) {
10117
10117
  if (r == null) return "null";
10118
10118
  if (n.length >= 5) return "<...>";
10119
10119
  var a = typeof r;
@@ -10126,15 +10126,15 @@ var Ah = { exports: {} };
10126
10126
  n += " ";
10127
10127
  for (var u = 2, d = r.length; u < d; ) {
10128
10128
  var p = u++;
10129
- p != 2 ? l += "," + Mt.__string_rec(r[p], n) : l += Mt.__string_rec(r[p], n);
10129
+ p != 2 ? l += "," + Tt.__string_rec(r[p], n) : l += Tt.__string_rec(r[p], n);
10130
10130
  }
10131
10131
  return l + ")";
10132
10132
  }
10133
10133
  var _ = r.length, v = "[";
10134
10134
  n += " ";
10135
10135
  for (var A = 0; A < _; ) {
10136
- var P = A++;
10137
- v += (P > 0 ? "," : "") + Mt.__string_rec(r[P], n);
10136
+ var I = A++;
10137
+ v += (I > 0 ? "," : "") + Tt.__string_rec(r[I], n);
10138
10138
  }
10139
10139
  return v += "]", v;
10140
10140
  }
@@ -10145,18 +10145,18 @@ var Ah = { exports: {} };
10145
10145
  return C instanceof Q && (C = C.val), "???";
10146
10146
  }
10147
10147
  if (S != null && S != Object.toString && typeof S == "function") {
10148
- var I = r.toString();
10149
- if (I != "[object Object]") return I;
10148
+ var P = r.toString();
10149
+ if (P != "[object Object]") return P;
10150
10150
  }
10151
- var k = null, T = `{
10151
+ var k = null, M = `{
10152
10152
  `;
10153
10153
  n += " ";
10154
10154
  var O = r.hasOwnProperty != null;
10155
10155
  for (var k in r)
10156
- O && !r.hasOwnProperty(k) || k == "prototype" || k == "__class__" || k == "__super__" || k == "__interfaces__" || k == "__properties__" || (T.length != 2 && (T += `,
10157
- `), T += n + k + " : " + Mt.__string_rec(r[k], n));
10158
- return n = n.substring(1), T += `
10159
- ` + n + "}", T;
10156
+ O && !r.hasOwnProperty(k) || k == "prototype" || k == "__class__" || k == "__super__" || k == "__interfaces__" || k == "__properties__" || (M.length != 2 && (M += `,
10157
+ `), M += n + k + " : " + Tt.__string_rec(r[k], n));
10158
+ return n = n.substring(1), M += `
10159
+ ` + n + "}", M;
10160
10160
  case "function":
10161
10161
  return "<function>";
10162
10162
  case "string":
@@ -10164,17 +10164,17 @@ var Ah = { exports: {} };
10164
10164
  default:
10165
10165
  return String(r);
10166
10166
  }
10167
- }, Mt.__interfLoop = function(r, n) {
10167
+ }, Tt.__interfLoop = function(r, n) {
10168
10168
  if (r == null) return !1;
10169
10169
  if (r == n) return !0;
10170
10170
  var a = r.__interfaces__;
10171
10171
  if (a != null)
10172
10172
  for (var l = 0, u = a.length; l < u; ) {
10173
10173
  var d = l++, p = a[d];
10174
- if (p == n || Mt.__interfLoop(p, n)) return !0;
10174
+ if (p == n || Tt.__interfLoop(p, n)) return !0;
10175
10175
  }
10176
- return Mt.__interfLoop(r.__super__, n);
10177
- }, Mt.__instanceof = function(r, n) {
10176
+ return Tt.__interfLoop(r.__super__, n);
10177
+ }, Tt.__instanceof = function(r, n) {
10178
10178
  if (n == null) return !1;
10179
10179
  switch (n) {
10180
10180
  case Lh:
@@ -10192,18 +10192,18 @@ var Ah = { exports: {} };
10192
10192
  default:
10193
10193
  if (r != null) {
10194
10194
  if (typeof n == "function") {
10195
- if (r instanceof n || Mt.__interfLoop(Mt.getClass(r), n)) return !0;
10196
- } else if (typeof n == "object" && Mt.__isNativeObj(n) && r instanceof n)
10195
+ if (r instanceof n || Tt.__interfLoop(Tt.getClass(r), n)) return !0;
10196
+ } else if (typeof n == "object" && Tt.__isNativeObj(n) && r instanceof n)
10197
10197
  return !0;
10198
10198
  } else return !1;
10199
10199
  return n == so && r.__name__ != null || n == io && r.__ename__ != null ? !0 : r.__enum__ == n;
10200
10200
  }
10201
- }, Mt.__nativeClassName = function(r) {
10202
- var n = Mt.__toStr.call(r).slice(8, -1);
10201
+ }, Tt.__nativeClassName = function(r) {
10202
+ var n = Tt.__toStr.call(r).slice(8, -1);
10203
10203
  return n == "Object" || n == "Function" || n == "Math" || n == "JSON" ? null : n;
10204
- }, Mt.__isNativeObj = function(r) {
10205
- return Mt.__nativeClassName(r) != null;
10206
- }, Mt.__resolveNativeClass = function(r) {
10204
+ }, Tt.__isNativeObj = function(r) {
10205
+ return Tt.__nativeClassName(r) != null;
10206
+ }, Tt.__resolveNativeClass = function(r) {
10207
10207
  return w[r];
10208
10208
  };
10209
10209
  var ae = function(r) {
@@ -10301,7 +10301,7 @@ var Ah = { exports: {} };
10301
10301
  l[d] = 0;
10302
10302
  }
10303
10303
  l.byteLength = l.length, l.byteOffset = 0, l.buffer = new ae(l);
10304
- } else if (Mt.__instanceof(r, ae)) {
10304
+ } else if (Tt.__instanceof(r, ae)) {
10305
10305
  var p = r;
10306
10306
  n == null && (n = 0), a == null && (a = p.byteLength - n), n == 0 ? l = p.a : l = p.a.slice(n, n + a), l.byteLength = l.length, l.byteOffset = n, l.buffer = p;
10307
10307
  } else if (r instanceof Array && r.__enum__ == null)
@@ -10310,7 +10310,7 @@ var Ah = { exports: {} };
10310
10310
  return l.subarray = sr._subarray, l.set = sr._set, l;
10311
10311
  }, sr._set = function(r, n) {
10312
10312
  var a = this;
10313
- if (Mt.__instanceof(r.buffer, ae)) {
10313
+ if (Tt.__instanceof(r.buffer, ae)) {
10314
10314
  var l = r;
10315
10315
  if (r.byteLength + n > a.byteLength) throw new Q("set() outside of range");
10316
10316
  for (var u = 0, d = r.byteLength; u < d; ) {
@@ -10321,8 +10321,8 @@ var Ah = { exports: {} };
10321
10321
  var _ = r;
10322
10322
  if (_.length + n > a.byteLength) throw new Q("set() outside of range");
10323
10323
  for (var v = 0, A = _.length; v < A; ) {
10324
- var P = v++;
10325
- a[P + n] = _[P];
10324
+ var I = v++;
10325
+ a[I + n] = _[I];
10326
10326
  }
10327
10327
  } else throw new Q("TODO");
10328
10328
  }, sr._subarray = function(r, n) {
@@ -10350,8 +10350,8 @@ var Ah = { exports: {} };
10350
10350
  }, Et.linkAll = function(r, n) {
10351
10351
  for (var a = function(d, p, _) {
10352
10352
  if (d.length == 0 || Et.allFulfilled(d)) {
10353
- for (var v, A = [], P = Ke(r)(); P.hasNext(); ) {
10354
- var S = P.next();
10353
+ for (var v, A = [], I = Ke(r)(); I.hasNext(); ) {
10354
+ var S = I.next();
10355
10355
  A.push(S == p ? _ : S._val);
10356
10356
  }
10357
10357
  v = A, n.handleResolve(v);
@@ -10506,7 +10506,7 @@ var Ah = { exports: {} };
10506
10506
  var gn = f.promhx.Deferred = function() {
10507
10507
  Et.call(this);
10508
10508
  };
10509
- b["promhx.Deferred"] = gn, gn.__name__ = ["promhx", "Deferred"], gn.__super__ = Et, gn.prototype = M(Et.prototype, {
10509
+ b["promhx.Deferred"] = gn, gn.__name__ = ["promhx", "Deferred"], gn.__super__ = Et, gn.prototype = T(Et.prototype, {
10510
10510
  resolve: function(r) {
10511
10511
  this.handleResolve(r);
10512
10512
  },
@@ -10520,7 +10520,7 @@ var Ah = { exports: {} };
10520
10520
  return new Ht(this);
10521
10521
  },
10522
10522
  publicStream: function() {
10523
- return new Mr(this);
10523
+ return new Tr(this);
10524
10524
  },
10525
10525
  __class__: gn
10526
10526
  });
@@ -10533,7 +10533,7 @@ var Ah = { exports: {} };
10533
10533
  }, pe.promise = function(r) {
10534
10534
  var n = new pe();
10535
10535
  return n.handleResolve(r), n;
10536
- }, pe.__super__ = Et, pe.prototype = M(Et.prototype, {
10536
+ }, pe.__super__ = Et, pe.prototype = T(Et.prototype, {
10537
10537
  isRejected: function() {
10538
10538
  return this._rejected;
10539
10539
  },
@@ -10607,7 +10607,7 @@ var Ah = { exports: {} };
10607
10607
  }, Ht.stream = function(r) {
10608
10608
  var n = new Ht(null);
10609
10609
  return n.handleResolve(r), n;
10610
- }, Ht.__super__ = Et, Ht.prototype = M(Et.prototype, {
10610
+ }, Ht.__super__ = Et, Ht.prototype = T(Et.prototype, {
10611
10611
  then: function(r) {
10612
10612
  var n = new Ht(null);
10613
10613
  return Et.link(this, n, r), this._end_promise._update.push({
@@ -10702,13 +10702,13 @@ var Ah = { exports: {} };
10702
10702
  },
10703
10703
  __class__: Ht
10704
10704
  });
10705
- var Mr = f.promhx.PublicStream = function(r) {
10705
+ var Tr = f.promhx.PublicStream = function(r) {
10706
10706
  Ht.call(this, r);
10707
10707
  };
10708
- b["promhx.PublicStream"] = Mr, Mr.__name__ = ["promhx", "PublicStream"], Mr.publicstream = function(r) {
10709
- var n = new Mr(null);
10708
+ b["promhx.PublicStream"] = Tr, Tr.__name__ = ["promhx", "PublicStream"], Tr.publicstream = function(r) {
10709
+ var n = new Tr(null);
10710
10710
  return n.handleResolve(r), n;
10711
- }, Mr.__super__ = Ht, Mr.prototype = M(Ht.prototype, {
10711
+ }, Tr.__super__ = Ht, Tr.prototype = T(Ht.prototype, {
10712
10712
  resolve: function(r) {
10713
10713
  this.handleResolve(r);
10714
10714
  },
@@ -10718,7 +10718,7 @@ var Ah = { exports: {} };
10718
10718
  update: function(r) {
10719
10719
  this.handleResolve(r);
10720
10720
  },
10721
- __class__: Mr
10721
+ __class__: Tr
10722
10722
  });
10723
10723
  var St = function() {
10724
10724
  };
@@ -10825,18 +10825,18 @@ var Ah = { exports: {} };
10825
10825
  }, Ft.memoize = function(r, n, a) {
10826
10826
  Ft.memo.h.hasOwnProperty(r) || Ft.memo.set(r, new bt()), Ft.memo.h[r].h[n] = a;
10827
10827
  };
10828
- var Te = f.core.BoundingBox = function(r) {
10828
+ var Me = f.core.BoundingBox = function(r) {
10829
10829
  this.max = null, this.min = null, this.dim = 3, this.initialized = !1, r != null && this.addRange(r);
10830
10830
  };
10831
- b["verb.core.BoundingBox"] = Te, Te.__name__ = ["verb", "core", "BoundingBox"], Te.intervalsOverlap = function(r, n, a, l, u) {
10831
+ b["verb.core.BoundingBox"] = Me, Me.__name__ = ["verb", "core", "BoundingBox"], Me.intervalsOverlap = function(r, n, a, l, u) {
10832
10832
  u == null && (u = -1);
10833
10833
  var d;
10834
10834
  u < -0.5 ? d = rt.TOLERANCE : d = u;
10835
10835
  var p = Math.min(r, n) - d, _ = Math.max(r, n) + d, v = Math.min(a, l) - d, A = Math.max(a, l) + d;
10836
10836
  return p >= v && p <= A || _ >= v && _ <= A || v >= p && v <= _ || A >= p && A <= _;
10837
- }, Te.prototype = {
10837
+ }, Me.prototype = {
10838
10838
  fromPoint: function(r) {
10839
- return new Te([r]);
10839
+ return new Me([r]);
10840
10840
  },
10841
10841
  add: function(r) {
10842
10842
  if (!this.initialized)
@@ -10855,13 +10855,13 @@ var Ah = { exports: {} };
10855
10855
  return this;
10856
10856
  },
10857
10857
  contains: function(r, n) {
10858
- return n == null && (n = -1), this.initialized ? this.intersects(new Te([r]), n) : !1;
10858
+ return n == null && (n = -1), this.initialized ? this.intersects(new Me([r]), n) : !1;
10859
10859
  },
10860
10860
  intersects: function(r, n) {
10861
10861
  if (n == null && (n = -1), !this.initialized || !r.initialized) return !1;
10862
10862
  for (var a = this.min, l = this.max, u = r.min, d = r.max, p = 0, _ = this.dim; p < _; ) {
10863
10863
  var v = p++;
10864
- if (!Te.intervalsOverlap(a[v], l[v], u[v], d[v], n)) return !1;
10864
+ if (!Me.intervalsOverlap(a[v], l[v], u[v], d[v], n)) return !1;
10865
10865
  }
10866
10866
  return !0;
10867
10867
  },
@@ -10883,12 +10883,12 @@ var Ah = { exports: {} };
10883
10883
  var a = this.min, l = this.max, u = r.min, d = r.max;
10884
10884
  if (!this.intersects(r, n)) return null;
10885
10885
  for (var p = [], _ = [], v = 0, A = this.dim; v < A; ) {
10886
- var P = v++;
10887
- p.push(Math.min(l[P], d[P])), _.push(Math.max(a[P], u[P]));
10886
+ var I = v++;
10887
+ p.push(Math.min(l[I], d[I])), _.push(Math.max(a[I], u[I]));
10888
10888
  }
10889
- return new Te([_, p]);
10889
+ return new Me([_, p]);
10890
10890
  },
10891
- __class__: Te
10891
+ __class__: Me
10892
10892
  };
10893
10893
  var rt = f.core.Constants = function() {
10894
10894
  };
@@ -10905,25 +10905,25 @@ var Ah = { exports: {} };
10905
10905
  var Dn = f.core.Plane = function(r, n) {
10906
10906
  this.origin = r, this.normal = n;
10907
10907
  };
10908
- b["verb.core.Plane"] = Dn, Dn.__name__ = ["verb", "core", "Plane"], Dn.__super__ = $t, Dn.prototype = M($t.prototype, {
10908
+ b["verb.core.Plane"] = Dn, Dn.__name__ = ["verb", "core", "Plane"], Dn.__super__ = $t, Dn.prototype = T($t.prototype, {
10909
10909
  __class__: Dn
10910
10910
  });
10911
10911
  var _n = f.core.Ray = function(r, n) {
10912
10912
  this.origin = r, this.dir = n;
10913
10913
  };
10914
- b["verb.core.Ray"] = _n, _n.__name__ = ["verb", "core", "Ray"], _n.__super__ = $t, _n.prototype = M($t.prototype, {
10914
+ b["verb.core.Ray"] = _n, _n.__name__ = ["verb", "core", "Ray"], _n.__super__ = $t, _n.prototype = T($t.prototype, {
10915
10915
  __class__: _n
10916
10916
  });
10917
10917
  var Gt = f.core.NurbsCurveData = function(r, n, a) {
10918
10918
  this.degree = r, this.controlPoints = a, this.knots = n;
10919
10919
  };
10920
- b["verb.core.NurbsCurveData"] = Gt, Gt.__name__ = ["verb", "core", "NurbsCurveData"], Gt.__super__ = $t, Gt.prototype = M($t.prototype, {
10920
+ b["verb.core.NurbsCurveData"] = Gt, Gt.__name__ = ["verb", "core", "NurbsCurveData"], Gt.__super__ = $t, Gt.prototype = T($t.prototype, {
10921
10921
  __class__: Gt
10922
10922
  });
10923
10923
  var te = f.core.NurbsSurfaceData = function(r, n, a, l, u) {
10924
10924
  this.degreeU = r, this.degreeV = n, this.knotsU = a, this.knotsV = l, this.controlPoints = u;
10925
10925
  };
10926
- b["verb.core.NurbsSurfaceData"] = te, te.__name__ = ["verb", "core", "NurbsSurfaceData"], te.__super__ = $t, te.prototype = M($t.prototype, {
10926
+ b["verb.core.NurbsSurfaceData"] = te, te.__name__ = ["verb", "core", "NurbsSurfaceData"], te.__super__ = $t, te.prototype = T($t.prototype, {
10927
10927
  __class__: te
10928
10928
  });
10929
10929
  var qe = f.core.MeshData = function(r, n, a, l) {
@@ -10931,19 +10931,19 @@ var Ah = { exports: {} };
10931
10931
  };
10932
10932
  b["verb.core.MeshData"] = qe, qe.__name__ = ["verb", "core", "MeshData"], qe.empty = function() {
10933
10933
  return new qe([], [], [], []);
10934
- }, qe.__super__ = $t, qe.prototype = M($t.prototype, {
10934
+ }, qe.__super__ = $t, qe.prototype = T($t.prototype, {
10935
10935
  __class__: qe
10936
10936
  });
10937
10937
  var Un = f.core.PolylineData = function(r, n) {
10938
10938
  this.points = r, this.params = n;
10939
10939
  };
10940
- b["verb.core.PolylineData"] = Un, Un.__name__ = ["verb", "core", "PolylineData"], Un.__super__ = $t, Un.prototype = M($t.prototype, {
10940
+ b["verb.core.PolylineData"] = Un, Un.__name__ = ["verb", "core", "PolylineData"], Un.__super__ = $t, Un.prototype = T($t.prototype, {
10941
10941
  __class__: Un
10942
10942
  });
10943
10943
  var Vn = f.core.VolumeData = function(r, n, a, l, u, d, p) {
10944
10944
  this.degreeU = r, this.degreeV = n, this.degreeW = a, this.knotsU = l, this.knotsV = u, this.knotsW = d, this.controlPoints = p;
10945
10945
  };
10946
- b["verb.core.VolumeData"] = Vn, Vn.__name__ = ["verb", "core", "VolumeData"], Vn.__super__ = $t, Vn.prototype = M($t.prototype, {
10946
+ b["verb.core.VolumeData"] = Vn, Vn.__name__ = ["verb", "core", "VolumeData"], Vn.__super__ = $t, Vn.prototype = T($t.prototype, {
10947
10947
  __class__: Vn
10948
10948
  });
10949
10949
  var ee = f.core.Pair = function(r, n) {
@@ -10970,11 +10970,11 @@ var Ah = { exports: {} };
10970
10970
  b["verb.core.CurveSurfaceIntersection"] = Gn, Gn.__name__ = ["verb", "core", "CurveSurfaceIntersection"], Gn.prototype = {
10971
10971
  __class__: Gn
10972
10972
  };
10973
- var Tr = f.core.MeshIntersectionPoint = function(r, n, a, l, u) {
10973
+ var Mr = f.core.MeshIntersectionPoint = function(r, n, a, l, u) {
10974
10974
  this.visited = !1, this.adj = null, this.opp = null, this.uv0 = r, this.uv1 = n, this.point = a, this.faceIndex0, this.faceIndex1;
10975
10975
  };
10976
- b["verb.core.MeshIntersectionPoint"] = Tr, Tr.__name__ = ["verb", "core", "MeshIntersectionPoint"], Tr.prototype = {
10977
- __class__: Tr
10976
+ b["verb.core.MeshIntersectionPoint"] = Mr, Mr.__name__ = ["verb", "core", "MeshIntersectionPoint"], Mr.prototype = {
10977
+ __class__: Mr
10978
10978
  };
10979
10979
  var jn = f.core.PolylineMeshIntersection = function(r, n, a, l, u) {
10980
10980
  this.point = r, this.u = n, this.uv = a, this.polylineIndex = l, this.faceIndex = u;
@@ -11000,13 +11000,13 @@ var Ah = { exports: {} };
11000
11000
  b["verb.core.CurveTriPoint"] = vn, vn.__name__ = ["verb", "core", "CurveTriPoint"], vn.prototype = {
11001
11001
  __class__: vn
11002
11002
  };
11003
- var Ge = function(r, n, a, l, u) {
11003
+ var je = function(r, n, a, l, u) {
11004
11004
  u == null && (u = !1), l == null && (l = -1), this.uv = a, this.point = r, this.normal = n, this.id = l, this.degen = u;
11005
11005
  };
11006
- b["verb.core.SurfacePoint"] = Ge, Ge.__name__ = ["verb", "core", "SurfacePoint"], Ge.fromUv = function(r, n) {
11007
- return new Ge(null, null, [r, n]);
11008
- }, Ge.prototype = {
11009
- __class__: Ge
11006
+ b["verb.core.SurfacePoint"] = je, je.__name__ = ["verb", "core", "SurfacePoint"], je.fromUv = function(r, n) {
11007
+ return new je(null, null, [r, n]);
11008
+ }, je.prototype = {
11009
+ __class__: je
11010
11010
  };
11011
11011
  var Cs = f.core.CurvePoint = function(r, n) {
11012
11012
  this.u = r, this.pt = n;
@@ -11030,7 +11030,7 @@ var Ah = { exports: {} };
11030
11030
  return -S.item1;
11031
11031
  }), d, p = null;
11032
11032
  p = function(S) {
11033
- for (var I, k = S.dimension, T = l.distanceFunction(r, S.kdPoint.point), O, C = [], F = 0, R = l.dim; F < R; )
11033
+ for (var P, k = S.dimension, M = l.distanceFunction(r, S.kdPoint.point), O, C = [], F = 0, R = l.dim; F < R; )
11034
11034
  F++, C.push(0);
11035
11035
  O = C;
11036
11036
  for (var U, V, q = function(K, tt) {
@@ -11040,17 +11040,17 @@ var Ah = { exports: {} };
11040
11040
  G == S.dimension ? O[G] = r[G] : O[G] = S.kdPoint.point[G];
11041
11041
  }
11042
11042
  if (U = l.distanceFunction(O, S.kdPoint.point), S.right == null && S.left == null) {
11043
- (u.size() < n || T < u.peek().item1) && q(S, T);
11043
+ (u.size() < n || M < u.peek().item1) && q(S, M);
11044
11044
  return;
11045
11045
  }
11046
- S.right == null ? I = S.left : S.left == null ? I = S.right : r[k] < S.kdPoint.point[k] ? I = S.left : I = S.right, p(I), (u.size() < n || T < u.peek().item1) && q(S, T), (u.size() < n || Math.abs(U) < u.peek().item1) && (I == S.left ? V = S.right : V = S.left, V != null && p(V));
11046
+ S.right == null ? P = S.left : S.left == null ? P = S.right : r[k] < S.kdPoint.point[k] ? P = S.left : P = S.right, p(P), (u.size() < n || M < u.peek().item1) && q(S, M), (u.size() < n || Math.abs(U) < u.peek().item1) && (P == S.left ? V = S.right : V = S.left, V != null && p(V));
11047
11047
  }, d = p;
11048
11048
  for (var _ = 0; _ < n; )
11049
11049
  _++, u.push(new ee(null, a));
11050
11050
  d(this.root);
11051
11051
  for (var v = [], A = 0; A < n; ) {
11052
- var P = A++;
11053
- u.content[P].item0 != null && v.push(new ee(u.content[P].item0.kdPoint, u.content[P].item1));
11052
+ var I = A++;
11053
+ u.content[I].item0 != null && v.push(new ee(u.content[I].item0.kdPoint, u.content[I].item1));
11054
11054
  }
11055
11055
  return v;
11056
11056
  },
@@ -11100,8 +11100,8 @@ var Ah = { exports: {} };
11100
11100
  _ = this.scoreFunction(v), _ < l && (p = d);
11101
11101
  }
11102
11102
  if (u < n) {
11103
- var A = this.content[u], P = this.scoreFunction(A);
11104
- P < (p == -1 ? l : _) && (p = u);
11103
+ var A = this.content[u], I = this.scoreFunction(A);
11104
+ I < (p == -1 ? l : _) && (p = u);
11105
11105
  }
11106
11106
  if (p != -1)
11107
11107
  this.content[r] = this.content[p], this.content[p] = a, r = p;
@@ -11136,7 +11136,7 @@ var Ah = { exports: {} };
11136
11136
  return new ee(new ir(l[0], this._knotTol), new ir(l[1], this._knotTol));
11137
11137
  },
11138
11138
  boundingBox: function() {
11139
- return this._boundingBox == null && (this._boundingBox = new Te(N.dehomogenize1d(this._curve.controlPoints))), this._boundingBox;
11139
+ return this._boundingBox == null && (this._boundingBox = new Me(N.dehomogenize1d(this._curve.controlPoints))), this._boundingBox;
11140
11140
  },
11141
11141
  yield: function() {
11142
11142
  return this._curve;
@@ -11187,7 +11187,7 @@ var Ah = { exports: {} };
11187
11187
  return new ee(new or(this._polyline, l), new or(this._polyline, u));
11188
11188
  },
11189
11189
  boundingBox: function() {
11190
- return this._boundingBox == null && (this._boundingBox = new Te(this._polyline.points)), this._boundingBox;
11190
+ return this._boundingBox == null && (this._boundingBox = new Me(this._polyline.points)), this._boundingBox;
11191
11191
  },
11192
11192
  yield: function() {
11193
11193
  return this._interval.min;
@@ -11212,7 +11212,7 @@ var Ah = { exports: {} };
11212
11212
  },
11213
11213
  boundingBox: function() {
11214
11214
  if (this._boundingBox == null) {
11215
- this._boundingBox = new Te();
11215
+ this._boundingBox = new Me();
11216
11216
  for (var r = 0, n = this._surface.controlPoints; r < n.length; ) {
11217
11217
  var a = n[r];
11218
11218
  ++r, this._boundingBox.addRange(N.dehomogenize1d(a));
@@ -11242,13 +11242,13 @@ var Ah = { exports: {} };
11242
11242
  }, Lt.mult = function(r, n) {
11243
11243
  var a, l, u, d, p, _, v, A;
11244
11244
  a = r.length, l = n.length, u = n[0].length, d = [];
11245
- for (var P = a - 1, S = 0, I = 0; P >= 0; ) {
11246
- for (p = [], _ = r[P], I = u - 1; I >= 0; ) {
11247
- for (v = _[l - 1] * n[l - 1][I], S = l - 2; S >= 1; )
11248
- A = S - 1, v += _[S] * n[S][I] + _[A] * n[A][I], S -= 2;
11249
- S == 0 && (v += _[0] * n[0][I]), p[I] = v, I--;
11245
+ for (var I = a - 1, S = 0, P = 0; I >= 0; ) {
11246
+ for (p = [], _ = r[I], P = u - 1; P >= 0; ) {
11247
+ for (v = _[l - 1] * n[l - 1][P], S = l - 2; S >= 1; )
11248
+ A = S - 1, v += _[S] * n[S][P] + _[A] * n[A][P], S -= 2;
11249
+ S == 0 && (v += _[0] * n[0][P]), p[P] = v, P--;
11250
11250
  }
11251
- d[P] = p, P--;
11251
+ d[I] = p, I--;
11252
11252
  }
11253
11253
  return d;
11254
11254
  }, Lt.add = function(r, n) {
@@ -11287,8 +11287,8 @@ var Ah = { exports: {} };
11287
11287
  var u = a++;
11288
11288
  n.push(function(d) {
11289
11289
  for (var p, _ = [], v = 0, A = r.length; v < A; ) {
11290
- var P = v++;
11291
- _.push(r[P][u]);
11290
+ var I = v++;
11291
+ _.push(r[I][u]);
11292
11292
  }
11293
11293
  return p = _, p;
11294
11294
  }());
@@ -11297,11 +11297,11 @@ var Ah = { exports: {} };
11297
11297
  }, Lt.solve = function(r, n) {
11298
11298
  return Lt.LUsolve(Lt.LU(r), n);
11299
11299
  }, Lt.LUsolve = function(r, n) {
11300
- var a, l, u = r.LU, d = u.length, p = n.slice(), _ = r.P, v, A, P;
11300
+ var a, l, u = r.LU, d = u.length, p = n.slice(), _ = r.P, v, A, I;
11301
11301
  for (a = d - 1; a != -1; )
11302
11302
  p[a] = n[a], --a;
11303
11303
  for (a = 0; a < d; ) {
11304
- for (v = _[a], _[a] != a && (P = p[a], p[a] = p[v], p[v] = P), A = u[a], l = 0; l < a; )
11304
+ for (v = _[a], _[a] != a && (I = p[a], p[a] = p[v], p[v] = I), A = u[a], l = 0; l < a; )
11305
11305
  p[a] -= p[l] * A[l], ++l;
11306
11306
  ++a;
11307
11307
  }
@@ -11312,18 +11312,18 @@ var Ah = { exports: {} };
11312
11312
  }
11313
11313
  return p;
11314
11314
  }, Lt.LU = function(r) {
11315
- for (var n, a, l, u, d, p, _, v, A, P = [], S = 0, I = r.length; S < I; ) {
11315
+ for (var n, a, l, u, d, p, _, v, A, I = [], S = 0, P = r.length; S < P; ) {
11316
11316
  var k = S++;
11317
- P.push(r[k].slice());
11317
+ I.push(r[k].slice());
11318
11318
  }
11319
- r = P;
11320
- var T = r.length, O = T - 1, C = [];
11321
- for (l = 0; l < T; ) {
11322
- for (_ = l, p = r[l], A = Math.abs(p[l]), a = l + 1; a < T; )
11319
+ r = I;
11320
+ var M = r.length, O = M - 1, C = [];
11321
+ for (l = 0; l < M; ) {
11322
+ for (_ = l, p = r[l], A = Math.abs(p[l]), a = l + 1; a < M; )
11323
11323
  u = Math.abs(r[a][l]), A < u && (A = u, _ = a), ++a;
11324
- for (C[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n < T; )
11324
+ for (C[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n < M; )
11325
11325
  r[n][l] /= d, ++n;
11326
- for (n = l + 1; n < T; ) {
11326
+ for (n = l + 1; n < M; ) {
11327
11327
  for (v = r[n], a = l + 1; a < O; )
11328
11328
  v[a] -= v[l] * p[a], ++a, v[a] -= v[l] * p[a], ++a;
11329
11329
  a == O && (v[a] -= v[l] * p[a]), ++n;
@@ -11344,7 +11344,7 @@ var Ah = { exports: {} };
11344
11344
  var a = r[n[0]], l = r[n[1]], u = r[n[2]], d = m.sub(l, a), p = m.sub(u, a), _ = m.cross(d, p);
11345
11345
  return m.mul(1 / m.norm(_), _);
11346
11346
  }, re.makeMeshAabb = function(r, n) {
11347
- for (var a = new Te(), l = 0; l < n.length; ) {
11347
+ for (var a = new Me(), l = 0; l < n.length; ) {
11348
11348
  var u = n[l];
11349
11349
  ++l, a.add(r.points[r.faces[u][0]]), a.add(r.points[r.faces[u][1]]), a.add(r.points[r.faces[u][2]]);
11350
11350
  }
@@ -11356,11 +11356,11 @@ var Ah = { exports: {} };
11356
11356
  var _ = re.getMinCoordOnAxis(n.points, n.faces[p], l);
11357
11357
  u.push(new ee(_, p));
11358
11358
  }
11359
- u.sort(function(I, k) {
11360
- var T = I.item0, O = k.item0;
11361
- return T == O ? 0 : T > O ? 1 : -1;
11359
+ u.sort(function(P, k) {
11360
+ var M = P.item0, O = k.item0;
11361
+ return M == O ? 0 : M > O ? 1 : -1;
11362
11362
  });
11363
- for (var v = [], A = 0, P = u.length; A < P; ) {
11363
+ for (var v = [], A = 0, I = u.length; A < I; ) {
11364
11364
  var S = A++;
11365
11365
  v.push(u[S].item1);
11366
11366
  }
@@ -11383,8 +11383,8 @@ var Ah = { exports: {} };
11383
11383
  }
11384
11384
  return a;
11385
11385
  }, re.triangleUVFromPoint = function(r, n, a) {
11386
- var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], A = r.uvs[l[2]], P = m.sub(u, a), S = m.sub(d, a), I = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), T = m.norm(m.cross(S, I)) / k, O = m.norm(m.cross(I, P)) / k, C = m.norm(m.cross(P, S)) / k;
11387
- return m.add(m.mul(T, _), m.add(m.mul(O, v), m.mul(C, A)));
11386
+ var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], A = r.uvs[l[2]], I = m.sub(u, a), S = m.sub(d, a), P = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), M = m.norm(m.cross(S, P)) / k, O = m.norm(m.cross(P, I)) / k, C = m.norm(m.cross(I, S)) / k;
11387
+ return m.add(m.mul(M, _), m.add(m.mul(O, v), m.mul(C, A)));
11388
11388
  };
11389
11389
  var Cr = function(r, n) {
11390
11390
  if (this._empty = !1, this._face = -1, n == null) {
@@ -11431,13 +11431,13 @@ var Ah = { exports: {} };
11431
11431
  var d = n.length, p = r(n), _ = p, v;
11432
11432
  if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
11433
11433
  a = Math.max(a, rt.EPSILON);
11434
- var A, P, S, I = Lt.identity(d), k = 0, T = [], O, C, F, R, U, V, q = "";
11435
- for (P = l(n); k < u; ) {
11436
- if (!m.all(m.finite(P))) {
11434
+ var A, I, S, P = Lt.identity(d), k = 0, M = [], O, C, F, R, U, V, q = "";
11435
+ for (I = l(n); k < u; ) {
11436
+ if (!m.all(m.finite(I))) {
11437
11437
  q = "Gradient has Infinity or NaN";
11438
11438
  break;
11439
11439
  }
11440
- if (A = m.neg(Lt.dot(I, P)), !m.all(m.finite(A))) {
11440
+ if (A = m.neg(Lt.dot(P, I)), !m.all(m.finite(A))) {
11441
11441
  q = "Search direction has Infinity or NaN";
11442
11442
  break;
11443
11443
  }
@@ -11445,8 +11445,8 @@ var Ah = { exports: {} };
11445
11445
  q = "Newton step smaller than tol";
11446
11446
  break;
11447
11447
  }
11448
- for (U = 1, v = m.dot(P, A), O = n; k < u && !(U * V < a); ) {
11449
- if (T = m.mul(U, A), O = m.add(n, T), _ = r(O), _ - p >= 0.1 * U * v || isNaN(_)) {
11448
+ for (U = 1, v = m.dot(I, A), O = n; k < u && !(U * V < a); ) {
11449
+ if (M = m.mul(U, A), O = m.add(n, M), _ = r(O), _ - p >= 0.1 * U * v || isNaN(_)) {
11450
11450
  U *= 0.5, ++k;
11451
11451
  continue;
11452
11452
  }
@@ -11460,20 +11460,20 @@ var Ah = { exports: {} };
11460
11460
  q = "maxit reached during line search";
11461
11461
  break;
11462
11462
  }
11463
- S = l(O), C = m.sub(S, P), R = m.dot(C, T), F = Lt.dot(I, C), I = Lt.sub(Lt.add(I, Lt.mul((R + m.dot(C, F)) / (R * R), Xe.tensor(T, T))), Lt.div(Lt.add(Xe.tensor(F, T), Xe.tensor(T, F)), R)), n = O, p = _, P = S, ++k;
11463
+ S = l(O), C = m.sub(S, I), R = m.dot(C, M), F = Lt.dot(P, C), P = Lt.sub(Lt.add(P, Lt.mul((R + m.dot(C, F)) / (R * R), Xe.tensor(M, M))), Lt.div(Lt.add(Xe.tensor(F, M), Xe.tensor(M, F)), R)), n = O, p = _, I = S, ++k;
11464
11464
  }
11465
- return new Kn(n, p, P, I, k, q);
11465
+ return new Kn(n, p, I, P, k, q);
11466
11466
  }, Xe.numericalGradient = function(r, n) {
11467
11467
  var a = n.length, l = r(n);
11468
11468
  if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
11469
- for (var u = n.slice(0), d, p, _ = [], v, A = 1e-3, P, S, I, k = 0, T, O, C, F = 0; F < a; )
11469
+ for (var u = n.slice(0), d, p, _ = [], v, A = 1e-3, I, S, P, k = 0, M, O, C, F = 0; F < a; )
11470
11470
  for (var R = F++, U = Math.max(1e-6 * l, 1e-8); ; ) {
11471
11471
  if (++k, k > 20) throw new Q("Numerical gradient fails");
11472
11472
  if (u[R] = n[R] + U, d = r(u), u[R] = n[R] - U, p = r(u), u[R] = n[R], isNaN(d) || isNaN(p)) {
11473
11473
  U /= 16;
11474
11474
  continue;
11475
11475
  }
11476
- if (_[R] = (d - p) / (2 * U), P = n[R] - U, S = n[R], I = n[R] + U, T = (d - l) / U, O = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(P), Math.abs(S), Math.abs(I), 1e-8]), v = Math.min(m.max([Math.abs(T - _[R]), Math.abs(O - _[R]), Math.abs(T - O)]) / C, U / C), v > A) U /= 16;
11476
+ if (_[R] = (d - p) / (2 * U), I = n[R] - U, S = n[R], P = n[R] + U, M = (d - l) / U, O = (l - p) / U, C = m.max([Math.abs(_[R]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(I), Math.abs(S), Math.abs(P), 1e-8]), v = Math.min(m.max([Math.abs(M - _[R]), Math.abs(O - _[R]), Math.abs(M - O)]) / C, U / C), v > A) U /= 16;
11477
11477
  else break;
11478
11478
  }
11479
11479
  return _;
@@ -11524,19 +11524,19 @@ var Ah = { exports: {} };
11524
11524
  }, Ne.segmentClosestPoint = function(r, n, a, l, u) {
11525
11525
  var d = m.sub(a, n), p = m.norm(d);
11526
11526
  if (p < rt.EPSILON) return { u: l, pt: n };
11527
- var _ = n, v = m.mul(1 / p, d), A = m.sub(r, _), P = m.dot(A, v);
11528
- return P < 0 ? { u: l, pt: n } : P > p ? { u, pt: a } : { u: l + (u - l) * P / p, pt: m.add(_, m.mul(P, v)) };
11527
+ var _ = n, v = m.mul(1 / p, d), A = m.sub(r, _), I = m.dot(A, v);
11528
+ return I < 0 ? { u: l, pt: n } : I > p ? { u, pt: a } : { u: l + (u - l) * I / p, pt: m.add(_, m.mul(I, v)) };
11529
11529
  };
11530
11530
  var m = f.core.Vec = function() {
11531
11531
  };
11532
11532
  b["verb.core.Vec"] = m, m.__name__ = ["verb", "core", "Vec"], m.angleBetween = function(r, n) {
11533
11533
  return Math.acos(m.dot(r, n) / (m.norm(r) * m.norm(n)));
11534
11534
  }, m.positiveAngleBetween = function(r, n, a) {
11535
- var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, A = _ / p, P = Math.atan2(v, A), S = m.dot(a, l);
11536
- return Math.abs(S) < rt.EPSILON || S > 0 ? P : -P;
11535
+ var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, A = _ / p, I = Math.atan2(v, A), S = m.dot(a, l);
11536
+ return Math.abs(S) < rt.EPSILON || S > 0 ? I : -I;
11537
11537
  }, m.signedAngleBetween = function(r, n, a) {
11538
- var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, A = _ / p, P = Math.atan2(v, A), S = m.dot(a, l);
11539
- return S > 0 ? P : 2 * Math.PI - P;
11538
+ var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, A = _ / p, I = Math.atan2(v, A), S = m.dot(a, l);
11539
+ return S > 0 ? I : 2 * Math.PI - I;
11540
11540
  }, m.angleBetweenNormalized2d = function(r, n) {
11541
11541
  var a = r[0] * n[1] - r[1] * n[0];
11542
11542
  return Math.atan2(a, m.dot(r, n));
@@ -11742,39 +11742,39 @@ var Ah = { exports: {} };
11742
11742
  var a = yt.rationalSurfaceClosestParam(r, n);
11743
11743
  return N.rationalSurfacePoint(r, a[0], a[1]);
11744
11744
  }, yt.rationalSurfaceClosestParam = function(r, n) {
11745
- for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], A = $.last(r.knotsU), P = r.knotsV[0], S = $.last(r.knotsV), I = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), T, O = zt.rationalSurfaceAdaptive(r, new Lr()), C = 1 / 0, F = 0, R = O.points.length; F < R; ) {
11745
+ for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], A = $.last(r.knotsU), I = r.knotsV[0], S = $.last(r.knotsV), P = yt.isRationalSurfaceClosed(r), k = yt.isRationalSurfaceClosed(r, !1), M, O = zt.rationalSurfaceAdaptive(r, new Lr()), C = 1 / 0, F = 0, R = O.points.length; F < R; ) {
11746
11746
  var U = F++, V = O.points[U], q = m.normSquared(m.sub(n, V));
11747
- q < C && (C = q, T = O.uvs[U]);
11747
+ q < C && (C = q, M = O.uvs[U]);
11748
11748
  }
11749
11749
  for (var J = function(jt) {
11750
11750
  return N.rationalSurfaceDerivatives(r, jt[0], jt[1], 2);
11751
11751
  }, H = function(jt, Xt, Dt) {
11752
- var Kt = Xt[1][0], Ae = Xt[0][1], We = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Se = Xt[1][1], Le = m.dot(Kt, Dt), $e = m.dot(Ae, Dt), lr = [-Le, -$e], Ze = m.dot(Kt, Kt) + m.dot(We, Dt), Qe = m.dot(Kt, Ae) + m.dot(ge, Dt), Je = m.dot(Kt, Ae) + m.dot(Se, Dt), dr = m.dot(Ae, Ae) + m.dot(_e, Dt), In = [[Ze, Qe], [Je, dr]], qr = Lt.solve(In, lr);
11752
+ var Kt = Xt[1][0], Ae = Xt[0][1], He = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Se = Xt[1][1], Le = m.dot(Kt, Dt), $e = m.dot(Ae, Dt), lr = [-Le, -$e], Ze = m.dot(Kt, Kt) + m.dot(He, Dt), Qe = m.dot(Kt, Ae) + m.dot(ge, Dt), Je = m.dot(Kt, Ae) + m.dot(Se, Dt), dr = m.dot(Ae, Ae) + m.dot(_e, Dt), Pn = [[Ze, Qe], [Je, dr]], qr = Lt.solve(Pn, lr);
11753
11753
  return m.add(qr, jt);
11754
11754
  }; l < a; ) {
11755
- u = J(T), _ = m.sub(u[0][0], n);
11755
+ u = J(M), _ = m.sub(u[0][0], n);
11756
11756
  var G = m.norm(_), K = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * G, et = m.dot(u[0][1], _), it = m.norm(u[0][1]) * G, ht = K / tt, at = et / it, ct = G < d, nt = ht < p, mt = at < p;
11757
- if (ct && nt && mt) return T;
11758
- var X = H(T, u, _);
11759
- X[0] < v ? I ? X = [A - (X[0] - v), X[1]] : X = [v + rt.EPSILON, X[1]] : X[0] > A && (I ? X = [v + (X[0] - A), X[1]] : X = [A - rt.EPSILON, X[1]]), X[1] < P ? k ? X = [X[0], S - (X[1] - P)] : X = [X[0], P + rt.EPSILON] : X[1] > S && (k ? X = [X[0], P + (X[0] - S)] : X = [X[0], S - rt.EPSILON]);
11760
- var gt = m.norm(m.mul(X[0] - T[0], u[1][0])), Pt = m.norm(m.mul(X[1] - T[1], u[0][1]));
11761
- if (gt + Pt < d) return T;
11762
- T = X, l++;
11757
+ if (ct && nt && mt) return M;
11758
+ var X = H(M, u, _);
11759
+ X[0] < v ? P ? X = [A - (X[0] - v), X[1]] : X = [v + rt.EPSILON, X[1]] : X[0] > A && (P ? X = [v + (X[0] - A), X[1]] : X = [A - rt.EPSILON, X[1]]), X[1] < I ? k ? X = [X[0], S - (X[1] - I)] : X = [X[0], I + rt.EPSILON] : X[1] > S && (k ? X = [X[0], I + (X[0] - S)] : X = [X[0], S - rt.EPSILON]);
11760
+ var gt = m.norm(m.mul(X[0] - M[0], u[1][0])), It = m.norm(m.mul(X[1] - M[1], u[0][1]));
11761
+ if (gt + It < d) return M;
11762
+ M = X, l++;
11763
11763
  }
11764
- return T;
11764
+ return M;
11765
11765
  }, yt.rationalCurveClosestPoint = function(r, n) {
11766
11766
  return N.rationalCurvePoint(r, yt.rationalCurveClosestParam(r, n));
11767
11767
  }, yt.rationalCurveClosestParam = function(r, n) {
11768
11768
  for (var a = 1 / 0, l = 0, u = zt.rationalCurveRegularSample(r, r.controlPoints.length * r.degree, !0), d = 0, p = u.length - 1; d < p; ) {
11769
- var _ = d++, v = u[_][0], A = u[_ + 1][0], P = u[_].slice(1), S = u[_ + 1].slice(1), I = Ne.segmentClosestPoint(n, P, S, v, A), k = m.norm(m.sub(n, I.pt));
11770
- k < a && (a = k, l = I.u);
11769
+ var _ = d++, v = u[_][0], A = u[_ + 1][0], I = u[_].slice(1), S = u[_ + 1].slice(1), P = Ne.segmentClosestPoint(n, I, S, v, A), k = m.norm(m.sub(n, P.pt));
11770
+ k < a && (a = k, l = P.u);
11771
11771
  }
11772
- for (var T = 5, O = 0, C, F = 1e-4, R = 5e-4, U, V = r.knots[0], q = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
11772
+ for (var M = 5, O = 0, C, F = 1e-4, R = 5e-4, U, V = r.knots[0], q = $.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], $.last(r.controlPoints))) < rt.EPSILON, H = l, G = function(X) {
11773
11773
  return N.rationalCurveDerivatives(r, X, 2);
11774
- }, K = function(X, gt, Pt) {
11775
- var jt = m.dot(gt[1], Pt), Xt = m.dot(gt[2], Pt), Dt = m.dot(gt[1], gt[1]), Kt = Xt + Dt;
11774
+ }, K = function(X, gt, It) {
11775
+ var jt = m.dot(gt[1], It), Xt = m.dot(gt[2], It), Dt = m.dot(gt[1], gt[1]), Kt = Xt + Dt;
11776
11776
  return X - jt / Kt;
11777
- }; O < T; ) {
11777
+ }; O < M; ) {
11778
11778
  C = G(H), U = m.sub(C[0], n);
11779
11779
  var tt = m.norm(U), et = m.dot(C[1], U), it = m.norm(C[1]) * tt, ht = et / it, at = tt < F, ct = Math.abs(ht) < R;
11780
11780
  if (at && ct) return H;
@@ -11801,9 +11801,9 @@ var Ah = { exports: {} };
11801
11801
  if (n < 0) return r.knots[0];
11802
11802
  var u;
11803
11803
  if (l != null ? u = l : u = yt.rationalBezierCurveArcLength(r), n > u) return $.last(r.knots);
11804
- var d = r.knots[0], p = 0, _ = $.last(r.knots), v = u, A = 0, P = 0, S;
11804
+ var d = r.knots[0], p = 0, _ = $.last(r.knots), v = u, A = 0, I = 0, S;
11805
11805
  for (a != null ? S = a : S = rt.TOLERANCE * 2; v - p > S; )
11806
- A = (d + _) / 2, P = yt.rationalBezierCurveArcLength(r, A), P > n ? (_ = A, v = P) : (d = A, p = P);
11806
+ A = (d + _) / 2, I = yt.rationalBezierCurveArcLength(r, A), I > n ? (_ = A, v = I) : (d = A, p = I);
11807
11807
  return (d + _) / 2;
11808
11808
  }, yt.rationalCurveArcLength = function(r, n, a) {
11809
11809
  a == null && (a = 16), n == null ? n = $.last(r.knots) : n = n;
@@ -11817,8 +11817,8 @@ var Ah = { exports: {} };
11817
11817
  var l;
11818
11818
  n == null ? l = $.last(r.knots) : l = n;
11819
11819
  for (var u = (l - r.knots[0]) / 2, d = 0, p = r.degree + a, _, v, A = 0; A < p; ) {
11820
- var P = A++;
11821
- _ = u * yt.Tvalues[p][P] + u + r.knots[0], v = N.rationalCurveDerivatives(r, _, 1), d += yt.Cvalues[p][P] * m.norm(v[1]);
11820
+ var I = A++;
11821
+ _ = u * yt.Tvalues[p][I] + u + r.knots[0], v = N.rationalCurveDerivatives(r, _, 1), d += yt.Cvalues[p][I] * m.norm(v[1]);
11822
11822
  }
11823
11823
  return u * d;
11824
11824
  };
@@ -11831,9 +11831,9 @@ var Ah = { exports: {} };
11831
11831
  },
11832
11832
  __class__: wn
11833
11833
  };
11834
- var je = f.eval.Check = function() {
11834
+ var We = f.eval.Check = function() {
11835
11835
  };
11836
- b["verb.eval.Check"] = je, je.__name__ = ["verb", "eval", "Check"], je.isValidKnotVector = function(r, n) {
11836
+ b["verb.eval.Check"] = We, We.__name__ = ["verb", "eval", "Check"], We.isValidKnotVector = function(r, n) {
11837
11837
  if (r.length == 0 || r.length < (n + 1) * 2) return !1;
11838
11838
  for (var a = $.first(r), l = 0, u = n + 1; l < u; ) {
11839
11839
  var d = l++;
@@ -11844,23 +11844,23 @@ var Ah = { exports: {} };
11844
11844
  var v = p++;
11845
11845
  if (Math.abs(r[v] - a) > rt.EPSILON) return !1;
11846
11846
  }
11847
- return je.isNonDecreasing(r);
11848
- }, je.isNonDecreasing = function(r) {
11847
+ return We.isNonDecreasing(r);
11848
+ }, We.isNonDecreasing = function(r) {
11849
11849
  for (var n = $.first(r), a = 0, l = r.length; a < l; ) {
11850
11850
  var u = a++;
11851
11851
  if (r[u] < n - rt.EPSILON) return !1;
11852
11852
  n = r[u];
11853
11853
  }
11854
11854
  return !0;
11855
- }, je.isValidNurbsCurveData = function(r) {
11855
+ }, We.isValidNurbsCurveData = function(r) {
11856
11856
  if (r.controlPoints == null) throw new Q("Control points array cannot be null!");
11857
11857
  if (r.degree == null) throw new Q("Degree cannot be null!");
11858
11858
  if (r.degree < 1) throw new Q("Degree must be greater than 1!");
11859
11859
  if (r.knots == null) throw new Q("Knots cannot be null!");
11860
11860
  if (r.knots.length != r.controlPoints.length + r.degree + 1) throw new Q("controlPoints.length + degree + 1 must equal knots.length!");
11861
- if (!je.isValidKnotVector(r.knots, r.degree)) throw new Q("Invalid knot vector format! Should begin with degree + 1 repeats and end with degree + 1 repeats!");
11861
+ if (!We.isValidKnotVector(r.knots, r.degree)) throw new Q("Invalid knot vector format! Should begin with degree + 1 repeats and end with degree + 1 repeats!");
11862
11862
  return r;
11863
- }, je.isValidNurbsSurfaceData = function(r) {
11863
+ }, We.isValidNurbsSurfaceData = function(r) {
11864
11864
  if (r.controlPoints == null) throw new Q("Control points array cannot be null!");
11865
11865
  if (r.degreeU == null) throw new Q("DegreeU cannot be null!");
11866
11866
  if (r.degreeV == null) throw new Q("DegreeV cannot be null!");
@@ -11870,7 +11870,7 @@ var Ah = { exports: {} };
11870
11870
  if (r.knotsV == null) throw new Q("KnotsV cannot be null!");
11871
11871
  if (r.knotsU.length != r.controlPoints.length + r.degreeU + 1) throw new Q("controlPointsU.length + degreeU + 1 must equal knotsU.length!");
11872
11872
  if (r.knotsV.length != r.controlPoints[0].length + r.degreeV + 1) throw new Q("controlPointsV.length + degreeV + 1 must equal knotsV.length!");
11873
- if (!je.isValidKnotVector(r.knotsU, r.degreeU) || !je.isValidKnotVector(r.knotsV, r.degreeV)) throw new Q("Invalid knot vector format! Should begin with degree + 1 repeats and end with degree + 1 repeats!");
11873
+ if (!We.isValidKnotVector(r.knotsU, r.degreeU) || !We.isValidKnotVector(r.knotsV, r.degreeV)) throw new Q("Invalid knot vector format! Should begin with degree + 1 repeats and end with degree + 1 repeats!");
11874
11874
  return r;
11875
11875
  };
11876
11876
  var oe = f.eval.Divide = function() {
@@ -11882,32 +11882,32 @@ var Ah = { exports: {} };
11882
11882
  for (var p, _ = [], v = 0, A = u + 1; v < A; )
11883
11883
  v++, _.push(n);
11884
11884
  p = _;
11885
- for (var P = [], S = [], I = N.knotSpan(u, n, l), k = null, T = 0; T < d.length; ) {
11886
- var O = d[T];
11887
- ++T, k = ft.curveKnotRefine(new Gt(u, l, O), p), P.push(k.controlPoints.slice(0, I + 1)), S.push(k.controlPoints.slice(I + 1));
11885
+ for (var I = [], S = [], P = N.knotSpan(u, n, l), k = null, M = 0; M < d.length; ) {
11886
+ var O = d[M];
11887
+ ++M, k = ft.curveKnotRefine(new Gt(u, l, O), p), I.push(k.controlPoints.slice(0, P + 1)), S.push(k.controlPoints.slice(P + 1));
11888
11888
  }
11889
- var C = k.knots.slice(0, I + u + 2), F = k.knots.slice(I + 1);
11890
- return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, P), new te(r.degreeU, u, r.knotsU.slice(), F, S)] : (P = Lt.transpose(P), S = Lt.transpose(S), [new te(u, r.degreeV, C, r.knotsV.slice(), P), new te(u, r.degreeV, F, r.knotsV.slice(), S)]);
11889
+ var C = k.knots.slice(0, P + u + 2), F = k.knots.slice(P + 1);
11890
+ return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, I), new te(r.degreeU, u, r.knotsU.slice(), F, S)] : (I = Lt.transpose(I), S = Lt.transpose(S), [new te(u, r.degreeV, C, r.knotsV.slice(), I), new te(u, r.degreeV, F, r.knotsV.slice(), S)]);
11891
11891
  }, oe.curveSplit = function(r, n) {
11892
11892
  var a = r.degree;
11893
11893
  r.controlPoints;
11894
11894
  for (var l = r.knots, u, d = [], p = 0, _ = a + 1; p < _; )
11895
11895
  p++, d.push(n);
11896
11896
  u = d;
11897
- var v = ft.curveKnotRefine(r, u), A = N.knotSpan(a, n, l), P = v.knots.slice(0, A + a + 2), S = v.knots.slice(A + 1), I = v.controlPoints.slice(0, A + 1), k = v.controlPoints.slice(A + 1);
11898
- return [new Gt(a, P, I), new Gt(a, S, k)];
11897
+ var v = ft.curveKnotRefine(r, u), A = N.knotSpan(a, n, l), I = v.knots.slice(0, A + a + 2), S = v.knots.slice(A + 1), P = v.controlPoints.slice(0, A + 1), k = v.controlPoints.slice(A + 1);
11898
+ return [new Gt(a, I, P), new Gt(a, S, k)];
11899
11899
  }, oe.rationalCurveByEqualArcLength = function(r, n) {
11900
11900
  var a = yt.rationalCurveArcLength(r), l = a / n;
11901
11901
  return oe.rationalCurveByArcLength(r, l);
11902
11902
  }, oe.rationalCurveByArcLength = function(r, n) {
11903
- var a = ft.decomposeCurveIntoBeziers(r), l = a.map(function(I) {
11904
- return yt.rationalBezierCurveArcLength(I);
11903
+ var a = ft.decomposeCurveIntoBeziers(r), l = a.map(function(P) {
11904
+ return yt.rationalBezierCurveArcLength(P);
11905
11905
  }), u = m.sum(l), d = [new An(r.knots[0], 0)];
11906
11906
  if (n > u) return d;
11907
- for (var p = n, _ = 0, v = p, A = 0, P = 0, S; _ < a.length; ) {
11907
+ for (var p = n, _ = 0, v = p, A = 0, I = 0, S; _ < a.length; ) {
11908
11908
  for (A += l[_]; v < A + rt.EPSILON; )
11909
- S = yt.rationalBezierCurveParamAtArcLength(a[_], v - P, rt.TOLERANCE, l[_]), d.push(new An(S, v)), v += p;
11910
- P += l[_], _++;
11909
+ S = yt.rationalBezierCurveParamAtArcLength(a[_], v - I, rt.TOLERANCE, l[_]), d.push(new An(S, v)), v += p;
11910
+ I += l[_], _++;
11911
11911
  }
11912
11912
  return d;
11913
11913
  };
@@ -11927,20 +11927,20 @@ var Ah = { exports: {} };
11927
11927
  return m.cross(l[1][0], l[0][1]);
11928
11928
  }, N.rationalSurfaceDerivatives = function(r, n, a, l) {
11929
11929
  l == null && (l = 1);
11930
- for (var u = N.surfaceDerivatives(r, n, a, l), d = N.rational2d(u), p = N.weight2d(u), _ = [], v = d[0][0].length, A = 0, P = l + 1; A < P; ) {
11930
+ for (var u = N.surfaceDerivatives(r, n, a, l), d = N.rational2d(u), p = N.weight2d(u), _ = [], v = d[0][0].length, A = 0, I = l + 1; A < I; ) {
11931
11931
  var S = A++;
11932
11932
  _.push([]);
11933
- for (var I = 0, k = l - S + 1; I < k; ) {
11934
- for (var T = I++, O = d[S][T], C = 1, F = T + 1; C < F; ) {
11933
+ for (var P = 0, k = l - S + 1; P < k; ) {
11934
+ for (var M = P++, O = d[S][M], C = 1, F = M + 1; C < F; ) {
11935
11935
  var R = C++;
11936
- m.subMulMutate(O, Ft.get(T, R) * p[0][R], _[S][T - R]);
11936
+ m.subMulMutate(O, Ft.get(M, R) * p[0][R], _[S][M - R]);
11937
11937
  }
11938
11938
  for (var U = 1, V = S + 1; U < V; ) {
11939
11939
  var q = U++;
11940
- m.subMulMutate(O, Ft.get(S, q) * p[q][0], _[S - q][T]);
11941
- for (var J = m.zeros1d(v), H = 1, G = T + 1; H < G; ) {
11940
+ m.subMulMutate(O, Ft.get(S, q) * p[q][0], _[S - q][M]);
11941
+ for (var J = m.zeros1d(v), H = 1, G = M + 1; H < G; ) {
11942
11942
  var K = H++;
11943
- m.addMulMutate(J, Ft.get(T, K) * p[q][K], _[S - q][T - K]);
11943
+ m.addMulMutate(J, Ft.get(M, K) * p[q][K], _[S - q][M - K]);
11944
11944
  }
11945
11945
  m.subMulMutate(O, Ft.get(S, q), J);
11946
11946
  }
@@ -11953,11 +11953,11 @@ var Ah = { exports: {} };
11953
11953
  }, N.rationalCurveDerivatives = function(r, n, a) {
11954
11954
  a == null && (a = 1);
11955
11955
  for (var l = N.curveDerivatives(r, n, a), u = N.rational1d(l), d = N.weight1d(l), p = [], _ = 0, v = a + 1; _ < v; ) {
11956
- for (var A = _++, P = u[A], S = 1, I = A + 1; S < I; ) {
11956
+ for (var A = _++, I = u[A], S = 1, P = A + 1; S < P; ) {
11957
11957
  var k = S++;
11958
- m.subMulMutate(P, Ft.get(A, k) * d[k], p[A - k]);
11958
+ m.subMulMutate(I, Ft.get(A, k) * d[k], p[A - k]);
11959
11959
  }
11960
- m.mulMutate(1 / d[0], P), p.push(P);
11960
+ m.mulMutate(1 / d[0], I), p.push(I);
11961
11961
  }
11962
11962
  return p;
11963
11963
  }, N.rationalCurvePoint = function(r, n) {
@@ -11966,13 +11966,13 @@ var Ah = { exports: {} };
11966
11966
  var u = r.knotsU.length - r.degreeU - 2, d = r.knotsV.length - r.degreeV - 2;
11967
11967
  return N.surfaceDerivativesGivenNM(u, d, r, n, a, l);
11968
11968
  }, N.surfaceDerivativesGivenNM = function(r, n, a, l, u, d) {
11969
- var p = a.degreeU, _ = a.degreeV, v = a.controlPoints, A = a.knotsU, P = a.knotsV;
11970
- if (!N.areValidRelations(p, v.length, A.length) || !N.areValidRelations(_, v[0].length, P.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11971
- var S = v[0][0].length, I;
11972
- d < p ? I = d : I = p;
11969
+ var p = a.degreeU, _ = a.degreeV, v = a.controlPoints, A = a.knotsU, I = a.knotsV;
11970
+ if (!N.areValidRelations(p, v.length, A.length) || !N.areValidRelations(_, v[0].length, I.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11971
+ var S = v[0][0].length, P;
11972
+ d < p ? P = d : P = p;
11973
11973
  var k;
11974
11974
  d < _ ? k = d : k = _;
11975
- for (var T = m.zeros3d(d + 1, d + 1, S), O = N.knotSpanGivenN(r, p, l, A), C = N.knotSpanGivenN(n, _, u, P), F = N.derivativeBasisFunctionsGivenNI(O, l, p, r, A), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, P), U = m.zeros2d(_ + 1, S), V = 0, q = 0, J = I + 1; q < J; ) {
11975
+ for (var M = m.zeros3d(d + 1, d + 1, S), O = N.knotSpanGivenN(r, p, l, A), C = N.knotSpanGivenN(n, _, u, I), F = N.derivativeBasisFunctionsGivenNI(O, l, p, r, A), R = N.derivativeBasisFunctionsGivenNI(C, u, _, n, I), U = m.zeros2d(_ + 1, S), V = 0, q = 0, J = P + 1; q < J; ) {
11976
11976
  for (var H = q++, G = 0, K = _ + 1; G < K; ) {
11977
11977
  var tt = G++;
11978
11978
  U[tt] = m.zeros1d(S);
@@ -11985,44 +11985,44 @@ var Ah = { exports: {} };
11985
11985
  at < k ? V = at : V = k;
11986
11986
  for (var ct = 0, nt = V + 1; ct < nt; ) {
11987
11987
  var mt = ct++;
11988
- T[H][mt] = m.zeros1d(S);
11988
+ M[H][mt] = m.zeros1d(S);
11989
11989
  for (var X = 0, gt = _ + 1; X < gt; ) {
11990
- var Pt = X++;
11991
- m.addMulMutate(T[H][mt], R[mt][Pt], U[Pt]);
11990
+ var It = X++;
11991
+ m.addMulMutate(M[H][mt], R[mt][It], U[It]);
11992
11992
  }
11993
11993
  }
11994
11994
  }
11995
- return T;
11995
+ return M;
11996
11996
  }, N.surfacePoint = function(r, n, a) {
11997
11997
  var l = r.knotsU.length - r.degreeU - 2, u = r.knotsV.length - r.degreeV - 2;
11998
11998
  return N.surfacePointGivenNM(l, u, r, n, a);
11999
11999
  }, N.surfacePointGivenNM = function(r, n, a, l, u) {
12000
12000
  var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, A = a.knotsV;
12001
12001
  if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, A.length)) throw new Q("Invalid relations between control points, knot vector, and n");
12002
- for (var P = _[0][0].length, S = N.knotSpanGivenN(r, d, l, v), I = N.knotSpanGivenN(n, p, u, A), k = N.basisFunctionsGivenKnotSpanIndex(S, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(I, u, p, A), O = S - d, C = I, F = m.zeros1d(P), R = m.zeros1d(P), U = 0, V = p + 1; U < V; ) {
12002
+ for (var I = _[0][0].length, S = N.knotSpanGivenN(r, d, l, v), P = N.knotSpanGivenN(n, p, u, A), k = N.basisFunctionsGivenKnotSpanIndex(S, l, d, v), M = N.basisFunctionsGivenKnotSpanIndex(P, u, p, A), O = S - d, C = P, F = m.zeros1d(I), R = m.zeros1d(I), U = 0, V = p + 1; U < V; ) {
12003
12003
  var q = U++;
12004
- R = m.zeros1d(P), C = I - p + q;
12004
+ R = m.zeros1d(I), C = P - p + q;
12005
12005
  for (var J = 0, H = d + 1; J < H; ) {
12006
12006
  var G = J++;
12007
12007
  m.addMulMutate(R, k[G], _[O + G][C]);
12008
12008
  }
12009
- m.addMulMutate(F, T[q], R);
12009
+ m.addMulMutate(F, M[q], R);
12010
12010
  }
12011
12011
  return F;
12012
12012
  }, N.curveRegularSamplePoints = function(r, n) {
12013
- for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), P = m.add(v, v), S = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
12014
- k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, P]), m.addAllMutate([_, v]);
12015
- return I;
12013
+ for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, M = n + 1; k < M; )
12014
+ k++, P.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, I]), m.addAllMutate([_, v]);
12015
+ return P;
12016
12016
  }, N.curveRegularSamplePoints2 = function(r, n) {
12017
- for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), P = m.add(v, v), S = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
12018
- k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, P]), m.addAllMutate([_, v]);
12019
- return I;
12017
+ for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), A = m.add(_, _), I = m.add(v, v), S = m.mul(0.3333333333333333, v), P = [], k = 0, M = n + 1; k < M; )
12018
+ k++, P.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, S]), m.addAllMutate([p, A, v]), m.addAllMutate([A, I]), m.addAllMutate([_, v]);
12019
+ return P;
12020
12020
  }, N.rationalSurfaceRegularSampleDerivatives = function(r, n, a, l) {
12021
12021
  for (var u = N.surfaceRegularSampleDerivatives(r, n, a, l), d = [], p = n + 1, _ = a + 1, v = l + 1, A = 0; A < p; ) {
12022
- var P = A++, S = [];
12022
+ var I = A++, S = [];
12023
12023
  d.push(S);
12024
- for (var I = 0; I < _; ) {
12025
- for (var k = I++, T = u[P][k], O = N.rational2d(T), C = N.weight2d(T), F = [], R = O[0][0].length, U = 0; U < v; ) {
12024
+ for (var P = 0; P < _; ) {
12025
+ for (var k = P++, M = u[I][k], O = N.rational2d(M), C = N.weight2d(M), F = [], R = O[0][0].length, U = 0; U < v; ) {
12026
12026
  var V = U++;
12027
12027
  F.push([]);
12028
12028
  for (var q = 0, J = v - V; q < J; ) {
@@ -12049,12 +12049,12 @@ var Ah = { exports: {} };
12049
12049
  }, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
12050
12050
  var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, A = p[0][0].length;
12051
12051
  ($.last(_) - _[0]) / n, ($.last(v) - v[0]) / a;
12052
- for (var P = N.regularlySpacedDerivativeBasisFunctions(u, _, n), S = P.item0, I = P.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, O = k.item1, C = [], F = n + 1, R = a + 1, U = 0; U < F; ) {
12052
+ for (var I = N.regularlySpacedDerivativeBasisFunctions(u, _, n), S = I.item0, P = I.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), M = k.item0, O = k.item1, C = [], F = n + 1, R = a + 1, U = 0; U < F; ) {
12053
12053
  var V = U++, q = [];
12054
12054
  C.push(q);
12055
12055
  for (var J = 0; J < R; ) {
12056
12056
  var H = J++;
12057
- q.push(N.surfaceDerivativesGivenBasesKnotSpans(u, d, p, S[V], T[H], I[V], O[H], A, l));
12057
+ q.push(N.surfaceDerivativesGivenBasesKnotSpans(u, d, p, S[V], M[H], P[V], O[H], A, l));
12058
12058
  }
12059
12059
  }
12060
12060
  return C;
@@ -12063,44 +12063,44 @@ var Ah = { exports: {} };
12063
12063
  }, N.surfaceRegularSamplePoints = function(r, n, a) {
12064
12064
  var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
12065
12065
  ($.last(p) - p[0]) / n, ($.last(_) - _[0]) / a;
12066
- for (var A = N.regularlySpacedBasisFunctions(l, p, n), P = A.item0, S = A.item1, I = N.regularlySpacedBasisFunctions(u, _, a), k = I.item0, T = I.item1, O = [], C = n + 1, F = a + 1, R = 0; R < C; ) {
12066
+ for (var A = N.regularlySpacedBasisFunctions(l, p, n), I = A.item0, S = A.item1, P = N.regularlySpacedBasisFunctions(u, _, a), k = P.item0, M = P.item1, O = [], C = n + 1, F = a + 1, R = 0; R < C; ) {
12067
12067
  var U = R++, V = [];
12068
12068
  O.push(V);
12069
12069
  for (var q = 0; q < F; ) {
12070
12070
  var J = q++;
12071
- V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, P[U], k[J], S[U], T[J], v));
12071
+ V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, I[U], k[J], S[U], M[J], v));
12072
12072
  }
12073
12073
  }
12074
12074
  return O;
12075
12075
  }, N.regularlySpacedBasisFunctions = function(r, n, a) {
12076
- for (var l = n.length - r - 2, u = ($.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), A = a + 1, P = 0; P < A; ) {
12077
- for (P++; _ >= n[v + 1]; ) v++;
12076
+ for (var l = n.length - r - 2, u = ($.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), A = a + 1, I = 0; I < A; ) {
12077
+ for (I++; _ >= n[v + 1]; ) v++;
12078
12078
  p.push(v), d.push(N.basisFunctionsGivenKnotSpanIndex(v, _, r, n)), _ += u;
12079
12079
  }
12080
12080
  return new ee(p, d);
12081
12081
  }, N.regularlySpacedDerivativeBasisFunctions = function(r, n, a) {
12082
- for (var l = n.length - r - 2, u = ($.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), A = a + 1, P = 0; P < A; ) {
12083
- for (P++; _ >= n[v + 1]; ) v++;
12082
+ for (var l = n.length - r - 2, u = ($.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), A = a + 1, I = 0; I < A; ) {
12083
+ for (I++; _ >= n[v + 1]; ) v++;
12084
12084
  p.push(v), d.push(N.derivativeBasisFunctionsGivenNI(v, _, r, l, n)), _ += u;
12085
12085
  }
12086
12086
  return new ee(p, d);
12087
12087
  }, N.surfacePointGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _) {
12088
- for (var v = m.zeros1d(_), A, P = l - r, S = u - n, I = 0, k = n + 1; I < k; ) {
12089
- var T = I++;
12088
+ for (var v = m.zeros1d(_), A, I = l - r, S = u - n, P = 0, k = n + 1; P < k; ) {
12089
+ var M = P++;
12090
12090
  A = m.zeros1d(_);
12091
12091
  for (var O = 0, C = r + 1; O < C; ) {
12092
12092
  var F = O++;
12093
- m.addMulMutate(A, d[F], a[P + F][S]);
12093
+ m.addMulMutate(A, d[F], a[I + F][S]);
12094
12094
  }
12095
- S++, m.addMulMutate(v, p[T], A);
12095
+ S++, m.addMulMutate(v, p[M], A);
12096
12096
  }
12097
12097
  return v;
12098
12098
  }, N.surfaceDerivativesGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _, v) {
12099
- var A = a[0][0].length, P;
12100
- v < r ? P = v : P = r;
12099
+ var A = a[0][0].length, I;
12100
+ v < r ? I = v : I = r;
12101
12101
  var S;
12102
12102
  v < n ? S = v : S = n;
12103
- for (var I = m.zeros3d(P + 1, S + 1, A), k = m.zeros2d(n + 1, A), T = 0, O = 0, C = P + 1; O < C; ) {
12103
+ for (var P = m.zeros3d(I + 1, S + 1, A), k = m.zeros2d(n + 1, A), M = 0, O = 0, C = I + 1; O < C; ) {
12104
12104
  for (var F = O++, R = 0, U = n + 1; R < U; ) {
12105
12105
  var V = R++;
12106
12106
  k[V] = m.zeros1d(A);
@@ -12110,17 +12110,17 @@ var Ah = { exports: {} };
12110
12110
  }
12111
12111
  }
12112
12112
  var G = v - F;
12113
- G < S ? T = G : T = S;
12114
- for (var K = 0, tt = T + 1; K < tt; ) {
12113
+ G < S ? M = G : M = S;
12114
+ for (var K = 0, tt = M + 1; K < tt; ) {
12115
12115
  var et = K++;
12116
- I[F][et] = m.zeros1d(A);
12116
+ P[F][et] = m.zeros1d(A);
12117
12117
  for (var it = 0, ht = n + 1; it < ht; ) {
12118
12118
  var at = it++;
12119
- m.addMulMutate(I[F][et], p[et][at], k[at]);
12119
+ m.addMulMutate(P[F][et], p[et][at], k[at]);
12120
12120
  }
12121
12121
  }
12122
12122
  }
12123
- return I;
12123
+ return P;
12124
12124
  }, N.curveDerivatives = function(r, n, a) {
12125
12125
  var l = r.knots.length - r.degree - 2;
12126
12126
  return N.curveDerivativesGivenN(l, r, n, a);
@@ -12129,10 +12129,10 @@ var Ah = { exports: {} };
12129
12129
  if (!N.areValidRelations(u, d.length, p.length)) throw new Q("Invalid relations between control points, knot vector, and n");
12130
12130
  var _ = d[0].length, v;
12131
12131
  l < u ? v = l : v = u;
12132
- for (var A = m.zeros2d(l + 1, _), P = N.knotSpanGivenN(r, u, a, p), S = N.derivativeBasisFunctionsGivenNI(P, a, u, v, p), I = 0, k = v + 1; I < k; )
12133
- for (var T = I++, O = 0, C = u + 1; O < C; ) {
12132
+ for (var A = m.zeros2d(l + 1, _), I = N.knotSpanGivenN(r, u, a, p), S = N.derivativeBasisFunctionsGivenNI(I, a, u, v, p), P = 0, k = v + 1; P < k; )
12133
+ for (var M = P++, O = 0, C = u + 1; O < C; ) {
12134
12134
  var F = O++;
12135
- m.addMulMutate(A[T], S[T][F], d[P - u + F]);
12135
+ m.addMulMutate(A[M], S[M][F], d[I - u + F]);
12136
12136
  }
12137
12137
  return A;
12138
12138
  }, N.curvePoint = function(r, n) {
@@ -12144,7 +12144,7 @@ var Ah = { exports: {} };
12144
12144
  var l = n.degree, u = n.controlPoints, d = n.knots;
12145
12145
  if (!N.areValidRelations(l, u.length, d.length))
12146
12146
  throw new Q("Invalid relations between control points, knot Array, and n");
12147
- for (var p = N.knotSpanGivenN(r, l, a, d), _ = N.basisFunctionsGivenKnotSpanIndex(p, a, l, d), v = m.zeros1d(u[0].length), A = 0, P = l + 1; A < P; ) {
12147
+ for (var p = N.knotSpanGivenN(r, l, a, d), _ = N.basisFunctionsGivenKnotSpanIndex(p, a, l, d), v = m.zeros1d(u[0].length), A = 0, I = l + 1; A < I; ) {
12148
12148
  var S = A++;
12149
12149
  m.addMulMutate(v, _[S], u[p - l + S]);
12150
12150
  }
@@ -12154,12 +12154,12 @@ var Ah = { exports: {} };
12154
12154
  return N.volumePointGivenNML(r, u, d, p, n, a, l);
12155
12155
  }, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
12156
12156
  if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
12157
- for (var _ = r.controlPoints, v = r.degreeU, A = r.degreeV, P = r.degreeW, S = r.knotsU, I = r.knotsV, k = r.knotsW, T = _[0][0][0].length, O = N.knotSpanGivenN(n, v, u, S), C = N.knotSpanGivenN(a, A, d, I), F = N.knotSpanGivenN(l, P, p, k), R = N.basisFunctionsGivenKnotSpanIndex(O, u, v, S), U = N.basisFunctionsGivenKnotSpanIndex(C, d, A, I), V = N.basisFunctionsGivenKnotSpanIndex(F, p, P, k), q = O - v, J = m.zeros1d(T), H = m.zeros1d(T), G = m.zeros1d(T), K = 0, tt = P + 1; K < tt; ) {
12157
+ for (var _ = r.controlPoints, v = r.degreeU, A = r.degreeV, I = r.degreeW, S = r.knotsU, P = r.knotsV, k = r.knotsW, M = _[0][0][0].length, O = N.knotSpanGivenN(n, v, u, S), C = N.knotSpanGivenN(a, A, d, P), F = N.knotSpanGivenN(l, I, p, k), R = N.basisFunctionsGivenKnotSpanIndex(O, u, v, S), U = N.basisFunctionsGivenKnotSpanIndex(C, d, A, P), V = N.basisFunctionsGivenKnotSpanIndex(F, p, I, k), q = O - v, J = m.zeros1d(M), H = m.zeros1d(M), G = m.zeros1d(M), K = 0, tt = I + 1; K < tt; ) {
12158
12158
  var et = K++;
12159
- G = m.zeros1d(T);
12160
- for (var it = F - P + et, ht = 0, at = A + 1; ht < at; ) {
12159
+ G = m.zeros1d(M);
12160
+ for (var it = F - I + et, ht = 0, at = A + 1; ht < at; ) {
12161
12161
  var ct = ht++;
12162
- H = m.zeros1d(T);
12162
+ H = m.zeros1d(M);
12163
12163
  for (var nt = C - A + ct, mt = 0, X = v + 1; mt < X; ) {
12164
12164
  var gt = mt++;
12165
12165
  m.addMulMutate(H, R[gt], _[q + gt][nt][it]);
@@ -12175,14 +12175,14 @@ var Ah = { exports: {} };
12175
12175
  }, N.derivativeBasisFunctionsGivenNI = function(r, n, a, l, u) {
12176
12176
  var d = m.zeros2d(a + 1, a + 1), p = m.zeros1d(a + 1), _ = m.zeros1d(a + 1), v = 0, A = 0;
12177
12177
  d[0][0] = 1;
12178
- for (var P = 1, S = a + 1; P < S; ) {
12179
- var I = P++;
12180
- p[I] = n - u[r + 1 - I], _[I] = u[r + I] - n, v = 0;
12181
- for (var k = 0; k < I; ) {
12182
- var T = k++;
12183
- d[I][T] = _[T + 1] + p[I - T], A = d[T][I - 1] / d[I][T], d[T][I] = v + _[T + 1] * A, v = p[I - T] * A;
12178
+ for (var I = 1, S = a + 1; I < S; ) {
12179
+ var P = I++;
12180
+ p[P] = n - u[r + 1 - P], _[P] = u[r + P] - n, v = 0;
12181
+ for (var k = 0; k < P; ) {
12182
+ var M = k++;
12183
+ d[P][M] = _[M + 1] + p[P - M], A = d[M][P - 1] / d[P][M], d[M][P] = v + _[M + 1] * A, v = p[P - M] * A;
12184
12184
  }
12185
- d[I][I] = v;
12185
+ d[P][P] = v;
12186
12186
  }
12187
12187
  for (var O = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), F = 0, R = 1, U = 0, V = 0, q = 0, J = 0, H = 0, G = 0, K = a + 1; G < K; ) {
12188
12188
  var tt = G++;
@@ -12199,12 +12199,12 @@ var Ah = { exports: {} };
12199
12199
  C[R][gt] = (C[F][gt] - C[F][gt - 1]) / d[q + 1][V + gt], U += C[R][gt] * d[V + gt][q];
12200
12200
  }
12201
12201
  ht <= q && (C[R][nt] = -C[F][nt - 1] / d[q + 1][ht], U += C[R][nt] * d[ht][q]), O[nt][ht] = U;
12202
- var Pt = F;
12203
- F = R, R = Pt;
12202
+ var It = F;
12203
+ F = R, R = It;
12204
12204
  }
12205
12205
  }
12206
12206
  for (var jt = a, Xt = 1, Dt = l + 1; Xt < Dt; ) {
12207
- for (var Kt = Xt++, Ae = 0, We = a + 1; Ae < We; ) {
12207
+ for (var Kt = Xt++, Ae = 0, He = a + 1; Ae < He; ) {
12208
12208
  var _e = Ae++;
12209
12209
  O[Kt][_e] *= jt;
12210
12210
  }
@@ -12217,11 +12217,11 @@ var Ah = { exports: {} };
12217
12217
  }, N.basisFunctionsGivenKnotSpanIndex = function(r, n, a, l) {
12218
12218
  var u = m.zeros1d(a + 1), d = m.zeros1d(a + 1), p = m.zeros1d(a + 1), _ = 0, v = 0;
12219
12219
  u[0] = 1;
12220
- for (var A = 1, P = a + 1; A < P; ) {
12220
+ for (var A = 1, I = a + 1; A < I; ) {
12221
12221
  var S = A++;
12222
12222
  d[S] = n - l[r + 1 - S], p[S] = l[r + S] - n, _ = 0;
12223
- for (var I = 0; I < S; ) {
12224
- var k = I++;
12223
+ for (var P = 0; P < S; ) {
12224
+ var k = P++;
12225
12225
  v = u[k] / (p[k + 1] + d[S - k]), u[k] = _ + p[k + 1] * v, _ = d[S - k] * v;
12226
12226
  }
12227
12227
  u[S] = _;
@@ -12263,13 +12263,13 @@ var Ah = { exports: {} };
12263
12263
  var a = r.length, l = r[0].length, u = [], d = 0, p = [], _;
12264
12264
  n != null ? _ = n : _ = m.rep(r.length, 1);
12265
12265
  for (var v = 0; v < a; ) {
12266
- var A = v++, P = [];
12266
+ var A = v++, I = [];
12267
12267
  p = r[A], d = _[A];
12268
12268
  for (var S = 0; S < l; ) {
12269
- var I = S++;
12270
- P.push(p[I] * d);
12269
+ var P = S++;
12270
+ I.push(p[P] * d);
12271
12271
  }
12272
- P.push(d), u.push(P);
12272
+ I.push(d), u.push(I);
12273
12273
  }
12274
12274
  return u;
12275
12275
  }, N.homogenize2d = function(r, n) {
@@ -12300,12 +12300,12 @@ var Ah = { exports: {} };
12300
12300
  }), 3);
12301
12301
  });
12302
12302
  }, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
12303
- var d, p, _, v, A, P, S, I, k, T, O, C, F, R = 5, U = 0;
12303
+ var d, p, _, v, A, I, S, P, k, M, O, C, F, R = 5, U = 0;
12304
12304
  do {
12305
- if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], A = d[0][1], _ = m.normalized(m.cross(v, A)), P = m.dot(_, p), S = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), I = S[0][0], T = S[1][0], O = S[0][1], k = m.normalized(m.cross(T, O)), C = m.dot(k, I), F = m.distSquared(p, I), F < u * u) break;
12306
- var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, P, k, C, V, q);
12305
+ if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], A = d[0][1], _ = m.normalized(m.cross(v, A)), I = m.dot(_, p), S = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), P = S[0][0], M = S[1][0], O = S[0][1], k = m.normalized(m.cross(M, O)), C = m.dot(k, P), F = m.distSquared(p, P), F < u * u) break;
12306
+ var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, I, k, C, V, q);
12307
12307
  if (J == null) throw new Q("panic!");
12308
- var H = m.sub(J, p), G = m.sub(J, I), K = m.cross(v, _), tt = m.cross(A, _), et = m.cross(T, k), it = m.cross(O, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, A), ct = m.dot(it, G) / m.dot(it, T), nt = m.dot(et, G) / m.dot(et, O);
12308
+ var H = m.sub(J, p), G = m.sub(J, P), K = m.cross(v, _), tt = m.cross(A, _), et = m.cross(M, k), it = m.cross(O, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, A), ct = m.dot(it, G) / m.dot(it, M), nt = m.dot(et, G) / m.dot(et, O);
12309
12309
  a = m.add([ht, at], a), l = m.add([ct, nt], l), U++;
12310
12310
  } while (U < R);
12311
12311
  return new Wn(a, l, p, F);
@@ -12318,15 +12318,15 @@ var Ah = { exports: {} };
12318
12318
  }).filter(function(p) {
12319
12319
  return m.distSquared(p.min.point, p.max.point) > rt.EPSILON;
12320
12320
  }), function(p, _) {
12321
- var v = m.sub(p.min.uv0, _.min.uv0), A = m.dot(v, v), P = m.sub(p.max.uv0, _.max.uv0), S = m.dot(P, P), I = m.sub(p.min.uv0, _.max.uv0), k = m.dot(I, I), T = m.sub(p.max.uv0, _.min.uv0), O = m.dot(T, T);
12321
+ var v = m.sub(p.min.uv0, _.min.uv0), A = m.dot(v, v), I = m.sub(p.max.uv0, _.max.uv0), S = m.dot(I, I), P = m.sub(p.min.uv0, _.max.uv0), k = m.dot(P, P), M = m.sub(p.max.uv0, _.min.uv0), O = m.dot(M, M);
12322
12322
  return A < rt.EPSILON && S < rt.EPSILON || k < rt.EPSILON && O < rt.EPSILON;
12323
12323
  });
12324
12324
  return lt.makeMeshIntersectionPolylines(d);
12325
12325
  }, lt.meshSlices = function(r, n, a, l) {
12326
- for (var u = new Cr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], A = d.max[1], P = m.span(n, a, l), S = [], I = 0; I < P.length; ) {
12327
- var k = P[I];
12328
- ++I;
12329
- var T = [[p, _, k], [v, _, k], [v, A, k], [p, A, k]], O = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], F = new qe(C, T, null, O);
12326
+ for (var u = new Cr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], A = d.max[1], I = m.span(n, a, l), S = [], P = 0; P < I.length; ) {
12327
+ var k = I[P];
12328
+ ++P;
12329
+ var M = [[p, _, k], [v, _, k], [v, A, k], [p, A, k]], O = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], F = new qe(C, M, null, O);
12330
12330
  S.push(lt.meshes(r, F, u));
12331
12331
  }
12332
12332
  return S;
@@ -12347,21 +12347,21 @@ var Ah = { exports: {} };
12347
12347
  A != null && A.adj == null && (v.adj = A, A.adj = v);
12348
12348
  }
12349
12349
  }
12350
- var P = u.filter(function(R) {
12350
+ var I = u.filter(function(R) {
12351
12351
  return R.adj == null;
12352
12352
  });
12353
- P.length == 0 && (P = u);
12354
- for (var S = [], I = 0, k = !1; P.length != 0; ) {
12355
- var T = P.pop();
12356
- if (!T.visited) {
12357
- for (var O = [], C = T; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, O.push(C), I += 2, C = C.opp.adj, C == T)); )
12353
+ I.length == 0 && (I = u);
12354
+ for (var S = [], P = 0, k = !1; I.length != 0; ) {
12355
+ var M = I.pop();
12356
+ if (!M.visited) {
12357
+ for (var O = [], C = M; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, O.push(C), P += 2, C = C.opp.adj, C == M)); )
12358
12358
  ;
12359
12359
  O.length > 0 && (O.push(O[O.length - 1].opp), S.push(O));
12360
12360
  }
12361
- if (P.length == 0 && u.length > 0 && (k || I < u.length)) {
12361
+ if (I.length == 0 && u.length > 0 && (k || P < u.length)) {
12362
12362
  k = !0;
12363
12363
  var F = u.pop();
12364
- P.push(F);
12364
+ I.push(F);
12365
12365
  }
12366
12366
  }
12367
12367
  return S;
@@ -12382,7 +12382,7 @@ var Ah = { exports: {} };
12382
12382
  a == null && (a = 1e-3), l != null ? l = l : l = new ir(r), u != null ? u = u : u = new Nr(n);
12383
12383
  var d = lt.boundingBoxTrees(l, u, a);
12384
12384
  return $.unique(d.map(function(p) {
12385
- var _ = p.item0, v = p.item1, A = $.first(_.knots), P = $.last(_.knots), S = (A + P) / 2, I = $.first(v.knotsU), k = $.last(v.knotsU), T = $.first(v.knotsV), O = $.last(v.knotsV), C = [(I + k) / 2, (T + O) / 2];
12385
+ var _ = p.item0, v = p.item1, A = $.first(_.knots), I = $.last(_.knots), S = (A + I) / 2, P = $.first(v.knotsU), k = $.last(v.knotsU), M = $.first(v.knotsV), O = $.last(v.knotsV), C = [(P + k) / 2, (M + O) / 2];
12386
12386
  return lt.curveAndSurfaceWithEstimate(_, v, [S].concat(C), a);
12387
12387
  }).filter(function(p) {
12388
12388
  return m.distSquared(p.curvePoint, p.surfacePoint) < a * a;
@@ -12392,11 +12392,11 @@ var Ah = { exports: {} };
12392
12392
  }, lt.curveAndSurfaceWithEstimate = function(r, n, a, l) {
12393
12393
  l == null && (l = 1e-3);
12394
12394
  var u = function(v) {
12395
- var A = N.rationalCurvePoint(r, v[0]), P = N.rationalSurfacePoint(n, v[1], v[2]), S = m.sub(A, P);
12395
+ var A = N.rationalCurvePoint(r, v[0]), I = N.rationalSurfacePoint(n, v[1], v[2]), S = m.sub(A, I);
12396
12396
  return m.dot(S, S);
12397
12397
  }, d = function(v) {
12398
- var A = N.rationalCurveDerivatives(r, v[0], 1), P = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), S = m.sub(P[0][0], A[0]), I = m.mul(-1, A[1]), k = P[1][0], T = P[0][1];
12399
- return [2 * m.dot(I, S), 2 * m.dot(k, S), 2 * m.dot(T, S)];
12398
+ var A = N.rationalCurveDerivatives(r, v[0], 1), I = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), S = m.sub(I[0][0], A[0]), P = m.mul(-1, A[1]), k = I[1][0], M = I[0][1];
12399
+ return [2 * m.dot(P, S), 2 * m.dot(k, S), 2 * m.dot(M, S)];
12400
12400
  }, p = Xe.uncmin(u, a, l * l, d), _ = p.solution;
12401
12401
  return new Gn(_[0], [_[1], _[2]], N.rationalCurvePoint(r, _[0]), N.rationalSurfacePoint(n, _[1], _[2]));
12402
12402
  }, lt.polylineAndMesh = function(r, n, a) {
@@ -12405,8 +12405,8 @@ var Ah = { exports: {} };
12405
12405
  ++d;
12406
12406
  var _ = p.item0, v = p.item1, A = lt.segmentWithTriangle(r.points[_], r.points[_ + 1], n.points, n.faces[v]);
12407
12407
  if (A != null) {
12408
- var P = A.point, S = m.lerp(A.p, [r.params[_]], [r.params[_ + 1]])[0], I = re.triangleUVFromPoint(n, v, P);
12409
- u.push(new jn(P, S, I, _, v));
12408
+ var I = A.point, S = m.lerp(A.p, [r.params[_]], [r.params[_ + 1]])[0], P = re.triangleUVFromPoint(n, v, I);
12409
+ u.push(new jn(I, S, P, _, v));
12410
12410
  }
12411
12411
  }
12412
12412
  return u;
@@ -12422,16 +12422,16 @@ var Ah = { exports: {} };
12422
12422
  d.push(new ee(p.yield(), _.yield()));
12423
12423
  continue;
12424
12424
  } else if (v && !A) {
12425
- var P = _.split();
12426
- l.push(p), u.push(P.item1), l.push(p), u.push(P.item0);
12425
+ var I = _.split();
12426
+ l.push(p), u.push(I.item1), l.push(p), u.push(I.item0);
12427
12427
  continue;
12428
12428
  } else if (!v && A) {
12429
12429
  var S = p.split();
12430
12430
  l.push(S.item1), u.push(_), l.push(S.item0), u.push(_);
12431
12431
  continue;
12432
12432
  }
12433
- var I = p.split(), k = _.split();
12434
- l.push(I.item1), u.push(k.item1), l.push(I.item1), u.push(k.item0), l.push(I.item0), u.push(k.item1), l.push(I.item0), u.push(k.item0);
12433
+ var P = p.split(), k = _.split();
12434
+ l.push(P.item1), u.push(k.item1), l.push(P.item1), u.push(k.item0), l.push(P.item0), u.push(k.item1), l.push(P.item0), u.push(k.item0);
12435
12435
  }
12436
12436
  }
12437
12437
  return d;
@@ -12445,48 +12445,48 @@ var Ah = { exports: {} };
12445
12445
  return Math.abs(u.u0 - d.u0) < a * 5;
12446
12446
  });
12447
12447
  }, lt.curvesWithEstimate = function(r, n, a, l, u) {
12448
- var d = function(I) {
12449
- var k = N.rationalCurvePoint(r, I[0]), T = N.rationalCurvePoint(n, I[1]), O = m.sub(k, T);
12448
+ var d = function(P) {
12449
+ var k = N.rationalCurvePoint(r, P[0]), M = N.rationalCurvePoint(n, P[1]), O = m.sub(k, M);
12450
12450
  return m.dot(O, O);
12451
- }, p = function(I) {
12452
- var k = N.rationalCurveDerivatives(r, I[0], 1), T = N.rationalCurveDerivatives(n, I[1], 1), O = m.sub(k[0], T[0]), C = k[1], F = m.mul(-1, T[1]);
12451
+ }, p = function(P) {
12452
+ var k = N.rationalCurveDerivatives(r, P[0], 1), M = N.rationalCurveDerivatives(n, P[1], 1), O = m.sub(k[0], M[0]), C = k[1], F = m.mul(-1, M[1]);
12453
12453
  return [2 * m.dot(C, O), 2 * m.dot(F, O)];
12454
- }, _ = Xe.uncmin(d, [a, l], u * u, p), v = _.solution[0], A = _.solution[1], P = N.rationalCurvePoint(r, v), S = N.rationalCurvePoint(n, A);
12455
- return new Hr(P, S, v, A);
12454
+ }, _ = Xe.uncmin(d, [a, l], u * u, p), v = _.solution[0], A = _.solution[1], I = N.rationalCurvePoint(r, v), S = N.rationalCurvePoint(n, A);
12455
+ return new Hr(I, S, v, A);
12456
12456
  }, lt.triangles = function(r, n, a, l) {
12457
- var u = r.faces[n], d = a.faces[l], p = re.getTriangleNorm(r.points, u), _ = re.getTriangleNorm(a.points, d), v = r.points[u[0]], A = a.points[d[0]], P = lt.planes(v, p, A, _);
12458
- if (P == null) return null;
12459
- var S = lt.clipRayInCoplanarTriangle(P, r, n);
12460
- if (S == null) return null;
12461
- var I = lt.clipRayInCoplanarTriangle(P, a, l);
12457
+ var u = r.faces[n], d = a.faces[l], p = re.getTriangleNorm(r.points, u), _ = re.getTriangleNorm(a.points, d), v = r.points[u[0]], A = a.points[d[0]], I = lt.planes(v, p, A, _);
12462
12458
  if (I == null) return null;
12463
- var k = lt.mergeTriangleClipIntervals(S, I, r, n, a, l);
12464
- return k == null ? null : new we(new Tr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Tr(k.max.uv0, k.max.uv1, k.max.point, n, l));
12459
+ var S = lt.clipRayInCoplanarTriangle(I, r, n);
12460
+ if (S == null) return null;
12461
+ var P = lt.clipRayInCoplanarTriangle(I, a, l);
12462
+ if (P == null) return null;
12463
+ var k = lt.mergeTriangleClipIntervals(S, P, r, n, a, l);
12464
+ return k == null ? null : new we(new Mr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Mr(k.max.uv0, k.max.uv1, k.max.point, n, l));
12465
12465
  }, lt.clipRayInCoplanarTriangle = function(r, n, a) {
12466
- for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), A = _.map(m.norm), P = null, S = null, I = 0; I < 3; ) {
12467
- var k = I++, T = u[k], O = v[k], C = lt.rays(T, O, r.origin, r.dir);
12466
+ for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), A = _.map(m.norm), I = null, S = null, P = 0; P < 3; ) {
12467
+ var k = P++, M = u[k], O = v[k], C = lt.rays(M, O, r.origin, r.dir);
12468
12468
  if (C != null) {
12469
12469
  var F = C.u0, R = C.u1;
12470
- F < -rt.EPSILON || F > A[k] + rt.EPSILON || ((P == null || R < P.u) && (P = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))), (S == null || R > S.u) && (S = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))));
12470
+ F < -rt.EPSILON || F > A[k] + rt.EPSILON || ((I == null || R < I.u) && (I = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))), (S == null || R > S.u) && (S = new vn(R, m.onRay(r.origin, r.dir, R), m.onRay(d[k], p[k], F / A[k]))));
12471
12471
  }
12472
12472
  }
12473
- return S == null || P == null ? null : new we(P, S);
12473
+ return S == null || I == null ? null : new we(I, S);
12474
12474
  }, lt.mergeTriangleClipIntervals = function(r, n, a, l, u, d) {
12475
12475
  if (n.min.u > r.max.u + rt.EPSILON || r.min.u > n.max.u + rt.EPSILON) return null;
12476
12476
  var p;
12477
12477
  r.min.u > n.min.u ? p = new ee(r.min, 0) : p = new ee(n.min, 1);
12478
12478
  var _;
12479
12479
  r.max.u < n.max.u ? _ = new ee(r.max, 0) : _ = new ee(n.max, 1);
12480
- var v = new we(new Tr(null, null, p.item0.point, l, d), new Tr(null, null, _.item0.point, l, d));
12480
+ var v = new we(new Mr(null, null, p.item0.point, l, d), new Mr(null, null, _.item0.point, l, d));
12481
12481
  return p.item1 == 0 ? (v.min.uv0 = p.item0.uv, v.min.uv1 = re.triangleUVFromPoint(u, d, p.item0.point)) : (v.min.uv0 = re.triangleUVFromPoint(a, l, p.item0.point), v.min.uv1 = p.item0.uv), _.item1 == 0 ? (v.max.uv0 = _.item0.uv, v.max.uv1 = re.triangleUVFromPoint(u, d, _.item0.point)) : (v.max.uv0 = re.triangleUVFromPoint(a, l, _.item0.point), v.max.uv1 = _.item0.uv), v;
12482
12482
  }, lt.planes = function(r, n, a, l) {
12483
12483
  var u = m.cross(n, l);
12484
12484
  if (m.dot(u, u) < rt.EPSILON) return null;
12485
12485
  var d = 0, p = Math.abs(u[0]), _ = Math.abs(u[1]), v = Math.abs(u[2]);
12486
12486
  _ > p && (d = 1, p = _), v > p && (d = 2, p = v);
12487
- var A, P, S, I;
12488
- d == 0 ? (A = n[1], P = n[2], S = l[1], I = l[2]) : d == 1 ? (A = n[0], P = n[2], S = l[0], I = l[2]) : (A = n[0], P = n[1], S = l[0], I = l[1]);
12489
- var k = -m.dot(r, n), T = -m.dot(a, l), O = A * I - P * S, C = (P * T - k * I) / O, F = (k * S - A * T) / O, R;
12487
+ var A, I, S, P;
12488
+ d == 0 ? (A = n[1], I = n[2], S = l[1], P = l[2]) : d == 1 ? (A = n[0], I = n[2], S = l[0], P = l[2]) : (A = n[0], I = n[1], S = l[0], P = l[1]);
12489
+ var k = -m.dot(r, n), M = -m.dot(a, l), O = A * P - I * S, C = (I * M - k * P) / O, F = (k * S - A * M) / O, R;
12490
12490
  return d == 0 ? R = [0, C, F] : d == 1 ? R = [C, 0, F] : R = [C, F, 0], new _n(R, m.normalized(u));
12491
12491
  }, lt.threePlanes = function(r, n, a, l, u, d) {
12492
12492
  var p = m.cross(a, u), _ = m.dot(r, p);
@@ -12502,26 +12502,26 @@ var Ah = { exports: {} };
12502
12502
  }
12503
12503
  return u;
12504
12504
  }, lt.segments = function(r, n, a, l, u) {
12505
- var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), A = Math.sqrt(m.dot(v, v)), P = m.mul(1 / A, v), S = lt.rays(r, _, a, P);
12505
+ var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), A = Math.sqrt(m.dot(v, v)), I = m.mul(1 / A, v), S = lt.rays(r, _, a, I);
12506
12506
  if (S != null) {
12507
- var I = Math.min(Math.max(0, S.u0 / p), 1), k = Math.min(Math.max(0, S.u1 / A), 1), T = m.onRay(r, d, I), O = m.onRay(a, v, k), C = m.distSquared(T, O);
12508
- if (C < u * u) return new Hr(T, O, I, k);
12507
+ var P = Math.min(Math.max(0, S.u0 / p), 1), k = Math.min(Math.max(0, S.u1 / A), 1), M = m.onRay(r, d, P), O = m.onRay(a, v, k), C = m.distSquared(M, O);
12508
+ if (C < u * u) return new Hr(M, O, P, k);
12509
12509
  }
12510
12510
  return null;
12511
12511
  }, lt.rays = function(r, n, a, l) {
12512
- var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), A = m.dot(n, n), P = m.dot(l, l), S = A * P - u * u;
12512
+ var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), A = m.dot(n, n), I = m.dot(l, l), S = A * I - u * u;
12513
12513
  if (Math.abs(S) < rt.EPSILON) return null;
12514
- var I = u * (d - p) - A * (_ - v), k = I / S, T = (d - p + k * u) / A, O = m.onRay(r, n, T), C = m.onRay(a, l, k);
12515
- return new Hr(O, C, T, k);
12514
+ var P = u * (d - p) - A * (_ - v), k = P / S, M = (d - p + k * u) / A, O = m.onRay(r, n, M), C = m.onRay(a, l, k);
12515
+ return new Hr(O, C, M, k);
12516
12516
  }, lt.segmentWithTriangle = function(r, n, a, l) {
12517
- var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), A = m.cross(_, v), P = m.sub(n, r), S = m.sub(r, u), I = -m.dot(A, S), k = m.dot(A, P);
12517
+ var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), A = m.cross(_, v), I = m.sub(n, r), S = m.sub(r, u), P = -m.dot(A, S), k = m.dot(A, I);
12518
12518
  if (Math.abs(k) < rt.EPSILON) return null;
12519
- var T = I / k;
12520
- if (T < 0 || T > 1) return null;
12521
- var O = m.add(r, m.mul(T, P)), C = m.dot(_, v), F = m.dot(_, _), R = m.dot(v, v), U = m.sub(O, u), V = m.dot(U, _), q = m.dot(U, v), J = C * C - F * R;
12519
+ var M = P / k;
12520
+ if (M < 0 || M > 1) return null;
12521
+ var O = m.add(r, m.mul(M, I)), C = m.dot(_, v), F = m.dot(_, _), R = m.dot(v, v), U = m.sub(O, u), V = m.dot(U, _), q = m.dot(U, v), J = C * C - F * R;
12522
12522
  if (Math.abs(J) < rt.EPSILON) return null;
12523
12523
  var H = (C * q - R * V) / J, G = (C * V - F * q) / J;
12524
- return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new Hn(O, H, G, T);
12524
+ return H > 1 + rt.EPSILON || G > 1 + rt.EPSILON || G < -rt.EPSILON || H < -rt.EPSILON || H + G > 1 + rt.EPSILON ? null : new Hn(O, H, G, M);
12525
12525
  }, lt.segmentAndPlane = function(r, n, a, l) {
12526
12526
  var u = m.dot(l, m.sub(n, r));
12527
12527
  if (Math.abs(u) < rt.EPSILON) return null;
@@ -12532,7 +12532,7 @@ var Ah = { exports: {} };
12532
12532
  };
12533
12533
  b["verb.eval.Make"] = pt, pt.__name__ = ["verb", "eval", "Make"], pt.rationalTranslationalSurface = function(r, n) {
12534
12534
  for (var a = N.rationalCurvePoint(n, $.first(n.knots)), l = $.first(n.knots), u = $.last(n.knots), d = 2 * n.controlPoints.length, p = (u - l) / (d - 1), _ = [], v = 0; v < d; ) {
12535
- var A = v++, P = m.sub(N.rationalCurvePoint(n, l + A * p), a), S = ft.rationalCurveTransform(r, [[1, 0, 0, P[0]], [0, 1, 0, P[1]], [0, 0, 1, P[2]], [0, 0, 0, 1]]);
12535
+ var A = v++, I = m.sub(N.rationalCurvePoint(n, l + A * p), a), S = ft.rationalCurveTransform(r, [[1, 0, 0, I[0]], [0, 1, 0, I[1]], [0, 0, 1, I[2]], [0, 0, 0, 1]]);
12536
12536
  _.push(S);
12537
12537
  }
12538
12538
  return pt.loftedSurface(_);
@@ -12552,29 +12552,29 @@ var Ah = { exports: {} };
12552
12552
  break;
12553
12553
  }
12554
12554
  }
12555
- var P = u + 1;
12556
- p >= 0 && (P = P - d[p].mult);
12555
+ var I = u + 1;
12556
+ p >= 0 && (I = I - d[p].mult);
12557
12557
  var S;
12558
- P > 0 ? S = ft.surfaceKnotRefine(r, m.rep(P, n), a) : S = r;
12559
- var I = N.knotSpan(u, n, l);
12560
- return Math.abs(n - $.first(l)) < rt.EPSILON ? I = 0 : Math.abs(n - $.last(l)) < rt.EPSILON && (I = (a ? S.controlPoints[0].length : S.controlPoints.length) - 1), a ? new Gt(S.degreeU, S.knotsU, function(k) {
12561
- for (var T, O = [], C = 0, F = S.controlPoints; C < F.length; ) {
12558
+ I > 0 ? S = ft.surfaceKnotRefine(r, m.rep(I, n), a) : S = r;
12559
+ var P = N.knotSpan(u, n, l);
12560
+ return Math.abs(n - $.first(l)) < rt.EPSILON ? P = 0 : Math.abs(n - $.last(l)) < rt.EPSILON && (P = (a ? S.controlPoints[0].length : S.controlPoints.length) - 1), a ? new Gt(S.degreeU, S.knotsU, function(k) {
12561
+ for (var M, O = [], C = 0, F = S.controlPoints; C < F.length; ) {
12562
12562
  var R = F[C];
12563
- ++C, O.push(R[I]);
12563
+ ++C, O.push(R[P]);
12564
12564
  }
12565
- return T = O, T;
12566
- }()) : new Gt(S.degreeV, S.knotsV, S.controlPoints[I]);
12565
+ return M = O, M;
12566
+ }()) : new Gt(S.degreeV, S.knotsV, S.controlPoints[P]);
12567
12567
  }, pt.loftedSurface = function(r, n) {
12568
12568
  r = ft.unifyCurveKnotVectors(r);
12569
12569
  var a = r[0].degree;
12570
12570
  n == null && (n = 3), n > r.length - 1 && (n = r.length - 1);
12571
12571
  for (var l = r[0].knots, u = [], d = [], p = 0, _ = r[0].controlPoints.length; p < _; ) {
12572
12572
  var v = [p++], A = r.map(/* @__PURE__ */ function(S) {
12573
- return function(I) {
12574
- return I.controlPoints[S[0]];
12573
+ return function(P) {
12574
+ return P.controlPoints[S[0]];
12575
12575
  };
12576
- }(v)), P = pt.rationalInterpCurve(A, n, !0);
12577
- d.push(P.controlPoints), u = P.knots;
12576
+ }(v)), I = pt.rationalInterpCurve(A, n, !0);
12577
+ d.push(I.controlPoints), u = I.knots;
12578
12578
  }
12579
12579
  return new te(a, n, l, u, d);
12580
12580
  }, pt.clonedCurve = function(r) {
@@ -12590,11 +12590,11 @@ var Ah = { exports: {} };
12590
12590
  }, pt.fourPointSurface = function(r, n, a, l, u) {
12591
12591
  u == null && (u = 3);
12592
12592
  for (var d = u, p = [], _ = 0, v = u + 1; _ < v; ) {
12593
- for (var A = _++, P = [], S = 0, I = u + 1; S < I; ) {
12594
- var k = S++, T = 1 - A / d, O = m.lerp(T, r, n), C = m.lerp(T, l, a), F = m.lerp(1 - k / d, O, C);
12595
- F.push(1), P.push(F);
12593
+ for (var A = _++, I = [], S = 0, P = u + 1; S < P; ) {
12594
+ var k = S++, M = 1 - A / d, O = m.lerp(M, r, n), C = m.lerp(M, l, a), F = m.lerp(1 - k / d, O, C);
12595
+ F.push(1), I.push(F);
12596
12596
  }
12597
- p.push(P);
12597
+ p.push(I);
12598
12598
  }
12599
12599
  var R = m.rep(u + 1, 0), U = m.rep(u + 1, 1);
12600
12600
  return new te(u, u, R.concat(U), R.concat(U), p);
@@ -12603,32 +12603,32 @@ var Ah = { exports: {} };
12603
12603
  n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
12604
12604
  var _ = u - l, v = 0;
12605
12605
  _ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
12606
- var A = _ / v, P = Math.cos(A / 2), S = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), I = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), O = 0, C = l, F = m.zeros1d(v * 2);
12606
+ var A = _ / v, I = Math.cos(A / 2), S = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), P = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], M = m.zeros1d(2 * v + 3), O = 0, C = l, F = m.zeros1d(v * 2);
12607
12607
  k[0] = S, F[0] = 1;
12608
12608
  for (var R = 1, U = v + 1; R < U; ) {
12609
12609
  var V = R++;
12610
12610
  C += A;
12611
12611
  var q = m.add(r, m.add(m.mul(d * Math.cos(C), n), m.mul(p * Math.sin(C), a)));
12612
12612
  F[O + 2] = 1, k[O + 2] = q;
12613
- var J = m.sub(m.mul(Math.cos(C), a), m.mul(Math.sin(C), n)), H = lt.rays(S, m.mul(1 / m.norm(I), I), q, m.mul(1 / m.norm(J), J)), G = m.add(S, m.mul(H.u0, I));
12614
- F[O + 1] = P, k[O + 1] = G, O += 2, V < v && (S = q, I = J);
12613
+ var J = m.sub(m.mul(Math.cos(C), a), m.mul(Math.sin(C), n)), H = lt.rays(S, m.mul(1 / m.norm(P), P), q, m.mul(1 / m.norm(J), J)), G = m.add(S, m.mul(H.u0, P));
12614
+ F[O + 1] = I, k[O + 1] = G, O += 2, V < v && (S = q, P = J);
12615
12615
  }
12616
12616
  for (var K = 2 * v + 1, tt = 0; tt < 3; ) {
12617
12617
  var et = tt++;
12618
- T[et] = 0, T[et + K] = 1;
12618
+ M[et] = 0, M[et + K] = 1;
12619
12619
  }
12620
12620
  switch (v) {
12621
12621
  case 2:
12622
- T[3] = T[4] = 0.5;
12622
+ M[3] = M[4] = 0.5;
12623
12623
  break;
12624
12624
  case 3:
12625
- T[3] = T[4] = 0.3333333333333333, T[5] = T[6] = 0.6666666666666666;
12625
+ M[3] = M[4] = 0.3333333333333333, M[5] = M[6] = 0.6666666666666666;
12626
12626
  break;
12627
12627
  case 4:
12628
- T[3] = T[4] = 0.25, T[5] = T[6] = 0.5, T[7] = T[8] = 0.75;
12628
+ M[3] = M[4] = 0.25, M[5] = M[6] = 0.5, M[7] = M[8] = 0.75;
12629
12629
  break;
12630
12630
  }
12631
- return new Gt(2, T, N.homogenize1d(k, F));
12631
+ return new Gt(2, M, N.homogenize1d(k, F));
12632
12632
  }, pt.arc = function(r, n, a, l, u, d) {
12633
12633
  return pt.ellipseArc(r, m.mul(l, m.normalized(n)), m.mul(l, m.normalized(a)), u, d);
12634
12634
  }, pt.polyline = function(r) {
@@ -12641,7 +12641,7 @@ var Ah = { exports: {} };
12641
12641
  v++, _.push(1);
12642
12642
  return p = _, new Gt(1, n, N.homogenize1d(r.slice(0), p));
12643
12643
  }, pt.extrudedSurface = function(r, n, a) {
12644
- for (var l = [[], [], []], u = [[], [], []], d = N.dehomogenize1d(a.controlPoints), p = N.weight1d(a.controlPoints), _ = m.mul(n, r), v = m.mul(0.5 * n, r), A = 0, P = d.length; A < P; ) {
12644
+ for (var l = [[], [], []], u = [[], [], []], d = N.dehomogenize1d(a.controlPoints), p = N.weight1d(a.controlPoints), _ = m.mul(n, r), v = m.mul(0.5 * n, r), A = 0, I = d.length; A < I; ) {
12645
12645
  var S = A++;
12646
12646
  l[2][S] = d[S], l[1][S] = m.add(v, d[S]), l[0][S] = m.add(_, d[S]), u[0][S] = p[S], u[1][S] = p[S], u[2][S] = p[S];
12647
12647
  }
@@ -12652,13 +12652,13 @@ var Ah = { exports: {} };
12652
12652
  }, pt.revolvedSurface = function(r, n, a, l) {
12653
12653
  var u = N.dehomogenize1d(r.controlPoints), d = N.weight1d(r.controlPoints), p, _;
12654
12654
  l <= Math.PI / 2 ? (p = 1, _ = m.zeros1d(6 + 2 * (p - 1))) : l <= Math.PI ? (p = 2, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.5) : l <= 3 * Math.PI / 2 ? (p = 3, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.3333333333333333, _[5] = _[6] = 0.6666666666666666) : (p = 4, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.25, _[5] = _[6] = 0.5, _[7] = _[8] = 0.75);
12655
- for (var v = l / p, A = 3 + 2 * (p - 1), P = 0; P < 3; ) {
12656
- var S = P++;
12655
+ for (var v = l / p, A = 3 + 2 * (p - 1), I = 0; I < 3; ) {
12656
+ var S = I++;
12657
12657
  _[S] = 0, _[A + S] = 1;
12658
12658
  }
12659
- for (var I = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), O = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), F = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
12659
+ for (var P = Math.cos(v / 2), k = 0, M = m.zeros1d(p + 1), O = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), F = m.zeros2d(2 * p + 1, u.length), R = 1, U = p + 1; R < U; ) {
12660
12660
  var V = R++;
12661
- k += v, O[V] = Math.cos(k), T[V] = Math.sin(k);
12661
+ k += v, O[V] = Math.cos(k), M[V] = Math.sin(k);
12662
12662
  }
12663
12663
  for (var q = 0, J = u.length; q < J; ) {
12664
12664
  var H = q++, G = Ne.rayClosestPoint(u[H], n, a), K = m.sub(u[H], G), tt = m.norm(K), et = m.cross(a, K);
@@ -12667,14 +12667,14 @@ var Ah = { exports: {} };
12667
12667
  F[0][H] = d[H];
12668
12668
  for (var ht = et, at = 0, ct = 1, nt = p + 1; ct < nt; ) {
12669
12669
  var mt = ct++, X;
12670
- tt == 0 ? X = G : X = m.add(G, m.add(m.mul(tt * O[mt], K), m.mul(tt * T[mt], et))), C[at + 2][H] = X, F[at + 2][H] = d[H];
12671
- var gt = m.sub(m.mul(O[mt], et), m.mul(T[mt], K));
12670
+ tt == 0 ? X = G : X = m.add(G, m.add(m.mul(tt * O[mt], K), m.mul(tt * M[mt], et))), C[at + 2][H] = X, F[at + 2][H] = d[H];
12671
+ var gt = m.sub(m.mul(O[mt], et), m.mul(M[mt], K));
12672
12672
  if (tt == 0) C[at + 1][H] = G;
12673
12673
  else {
12674
- var Pt = lt.rays(it, m.mul(1 / m.norm(ht), ht), X, m.mul(1 / m.norm(gt), gt)), jt = m.add(it, m.mul(Pt.u0, ht));
12674
+ var It = lt.rays(it, m.mul(1 / m.norm(ht), ht), X, m.mul(1 / m.norm(gt), gt)), jt = m.add(it, m.mul(It.u0, ht));
12675
12675
  C[at + 1][H] = jt;
12676
12676
  }
12677
- F[at + 1][H] = I * d[H], at += 2, mt < p && (it = X, ht = gt);
12677
+ F[at + 1][H] = P * d[H], at += 2, mt < p && (it = X, ht = gt);
12678
12678
  }
12679
12679
  }
12680
12680
  return new te(2, r.degree, _, r.knots, N.homogenize2d(C, F));
@@ -12682,17 +12682,17 @@ var Ah = { exports: {} };
12682
12682
  var u = pt.arc(r, m.mul(-1, n), a, l, 0, Math.PI);
12683
12683
  return pt.revolvedSurface(u, r, n, 2 * Math.PI);
12684
12684
  }, pt.conicalSurface = function(r, n, a, l, u) {
12685
- var d = 2 * Math.PI, p = 1, _ = [m.add(a, m.mul(l, r)), m.add(a, m.mul(u, n))], v = [0, 0, 1, 1], A = [1, 1], P = new Gt(p, v, N.homogenize1d(_, A));
12686
- return pt.revolvedSurface(P, a, r, d);
12685
+ var d = 2 * Math.PI, p = 1, _ = [m.add(a, m.mul(l, r)), m.add(a, m.mul(u, n))], v = [0, 0, 1, 1], A = [1, 1], I = new Gt(p, v, N.homogenize1d(_, A));
12686
+ return pt.revolvedSurface(I, a, r, d);
12687
12687
  }, pt.rationalInterpCurve = function(r, n, a, l, u) {
12688
12688
  if (a == null && (a = !1), n == null && (n = 3), r.length < n + 1) throw new Q("You need to supply at least degree + 1 points! You only supplied " + r.length + " points.");
12689
12689
  for (var d = [0], p = 1, _ = r.length; p < _; ) {
12690
- var v = p++, A = m.norm(m.sub(r[v], r[v - 1])), P = d[d.length - 1];
12691
- d.push(P + A);
12690
+ var v = p++, A = m.norm(m.sub(r[v], r[v - 1])), I = d[d.length - 1];
12691
+ d.push(I + A);
12692
12692
  }
12693
- for (var S = d[d.length - 1], I = 0, k = d.length; I < k; ) {
12694
- var T = I++;
12695
- d[T] = d[T] / S;
12693
+ for (var S = d[d.length - 1], P = 0, k = d.length; P < k; ) {
12694
+ var M = P++;
12695
+ d[M] = d[M] / S;
12696
12696
  }
12697
12697
  var O = m.rep(n + 1, 0), C = l != null && u != null, F;
12698
12698
  C ? F = 0 : F = 1;
@@ -12716,11 +12716,11 @@ var Ah = { exports: {} };
12716
12716
  K.push(mt.concat(ct).concat(X));
12717
12717
  }
12718
12718
  if (C) {
12719
- var gt = K[0].length - 2, Pt = [-1, 1].concat(m.zeros1d(gt)), jt = m.zeros1d(gt).concat([-1, 1]);
12720
- $.spliceAndInsert(K, 1, 0, Pt), $.spliceAndInsert(K, K.length - 1, 0, jt);
12719
+ var gt = K[0].length - 2, It = [-1, 1].concat(m.zeros1d(gt)), jt = m.zeros1d(gt).concat([-1, 1]);
12720
+ $.spliceAndInsert(K, 1, 0, It), $.spliceAndInsert(K, K.length - 1, 0, jt);
12721
12721
  }
12722
- for (var Xt = r[0].length, Dt = [], Kt = (1 - G[G.length - n - 2]) / n, Ae = G[n + 1] / n, We = 0; We < Xt; ) {
12723
- var _e = [We++], ge;
12722
+ for (var Xt = r[0].length, Dt = [], Kt = (1 - G[G.length - n - 2]) / n, Ae = G[n + 1] / n, He = 0; He < Xt; ) {
12723
+ var _e = [He++], ge;
12724
12724
  if (!C) ge = r.map(/* @__PURE__ */ function(Je) {
12725
12725
  return function(dr) {
12726
12726
  return dr[Je[0]];
@@ -12777,20 +12777,20 @@ var Ah = { exports: {} };
12777
12777
  ++_, p.push(new we($.first(v.knots), $.last(v.knots)));
12778
12778
  }
12779
12779
  d = p;
12780
- for (var A = 0, P = r.length; A < P; ) {
12781
- var S = A++, I = [d[S].min];
12780
+ for (var A = 0, I = r.length; A < I; ) {
12781
+ var S = A++, P = [d[S].min];
12782
12782
  r[S].knots = r[S].knots.map(/* @__PURE__ */ function(G) {
12783
12783
  return function(K) {
12784
12784
  return K - G[0];
12785
12785
  };
12786
- }(I));
12786
+ }(P));
12787
12787
  }
12788
12788
  for (var k = d.map(function(G) {
12789
12789
  return G.max - G.min;
12790
- }), T = z.fold(k, function(G, K) {
12790
+ }), M = z.fold(k, function(G, K) {
12791
12791
  return Math.max(G, K);
12792
12792
  }, 0), O = 0, C = r.length; O < C; ) {
12793
- var F = O++, R = [T / k[F]];
12793
+ var F = O++, R = [M / k[F]];
12794
12794
  r[F].knots = r[F].knots.map(/* @__PURE__ */ function(G) {
12795
12795
  return function(K) {
12796
12796
  return K * G[0];
@@ -12810,39 +12810,39 @@ var Ah = { exports: {} };
12810
12810
  return r > n ? r : n;
12811
12811
  }, ft.curveElevateDegree = function(r, n) {
12812
12812
  if (n <= r.degree) return r;
12813
- var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), A = [], P = [], S = [], I = a + l + 1, k = n, T = Math.floor(k / 2), O = [], C = [];
12813
+ var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), A = [], I = [], S = [], P = a + l + 1, k = n, M = Math.floor(k / 2), O = [], C = [];
12814
12814
  v[0][0] = 1, v[k][l] = 1;
12815
- for (var F = 1, R = T + 1; F < R; )
12815
+ for (var F = 1, R = M + 1; F < R; )
12816
12816
  for (var U = F++, V = 1 / Ft.get(k, U), q = ft.imin(l, U), J = ft.imax(0, U - p), H = q + 1; J < H; ) {
12817
12817
  var G = J++;
12818
12818
  v[U][G] = V * Ft.get(l, G) * Ft.get(p, U - G);
12819
12819
  }
12820
- for (var K = T + 1; K < k; )
12820
+ for (var K = M + 1; K < k; )
12821
12821
  for (var tt = K++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
12822
12822
  var at = it++;
12823
12823
  v[tt][at] = v[k - tt][l - at];
12824
12824
  }
12825
- var ct = k + 1, nt = -1, mt = l, X = l + 1, gt = 1, Pt = u[0];
12825
+ var ct = k + 1, nt = -1, mt = l, X = l + 1, gt = 1, It = u[0];
12826
12826
  O[0] = d[0];
12827
12827
  for (var jt = 0, Xt = k + 1; jt < Xt; ) {
12828
12828
  var Dt = jt++;
12829
- C[Dt] = Pt;
12829
+ C[Dt] = It;
12830
12830
  }
12831
12831
  for (var Kt = 0, Ae = l + 1; Kt < Ae; ) {
12832
- var We = Kt++;
12833
- A[We] = d[We];
12832
+ var He = Kt++;
12833
+ A[He] = d[He];
12834
12834
  }
12835
- for (; X < I; ) {
12836
- for (var _e = X; X < I && u[X] == u[X + 1]; ) X = X + 1;
12835
+ for (; X < P; ) {
12836
+ for (var _e = X; X < P && u[X] == u[X + 1]; ) X = X + 1;
12837
12837
  var ge = X - _e + 1, Se = u[X], Le = nt;
12838
12838
  nt = l - ge;
12839
12839
  var $e;
12840
12840
  Le > 0 ? $e = Math.floor((Le + 2) / 2) : $e = 1;
12841
12841
  var lr;
12842
12842
  if (nt > 0 ? lr = Math.floor(k - (nt + 1) / 2) : lr = k, nt > 0) {
12843
- for (var Ze = Se - Pt, Qe = [], Je = l; Je > ge; )
12844
- Qe[Je - ge - 1] = Ze / (u[mt + Je] - Pt), Je--;
12845
- for (var dr = 1, In = nt + 1; dr < In; ) {
12843
+ for (var Ze = Se - It, Qe = [], Je = l; Je > ge; )
12844
+ Qe[Je - ge - 1] = Ze / (u[mt + Je] - It), Je--;
12845
+ for (var dr = 1, Pn = nt + 1; dr < Pn; ) {
12846
12846
  for (var qr = dr++, zh = nt - qr, ci = ge + qr, Xr = l; Xr >= ci; )
12847
12847
  A[Xr] = m.add(m.mul(Qe[Xr - ci], A[Xr]), m.mul(1 - Qe[Xr - ci], A[Xr - 1])), Xr--;
12848
12848
  S[zh] = A[l];
@@ -12850,37 +12850,37 @@ var Ah = { exports: {} };
12850
12850
  }
12851
12851
  for (var ao = $e, Rh = k + 1; ao < Rh; ) {
12852
12852
  var En = ao++;
12853
- P[En] = m.zeros1d(_);
12853
+ I[En] = m.zeros1d(_);
12854
12854
  for (var Fh = ft.imin(l, En), oo = ft.imax(0, En - p), Bh = Fh + 1; oo < Bh; ) {
12855
12855
  var lo = oo++;
12856
- P[En] = m.add(P[En], m.mul(v[En][lo], A[lo]));
12856
+ I[En] = m.add(I[En], m.mul(v[En][lo], A[lo]));
12857
12857
  }
12858
12858
  }
12859
12859
  if (Le > 1)
12860
- for (var di = ct - 2, mi = ct, ho = Se - Pt, Dh = (Se - C[ct - 1]) / ho, uo = 1; uo < Le; ) {
12860
+ for (var di = ct - 2, mi = ct, ho = Se - It, Dh = (Se - C[ct - 1]) / ho, uo = 1; uo < Le; ) {
12861
12861
  for (var pi = uo++, mr = di, Kr = mi, Br = Kr - ct + 1; Kr - mr > pi; ) {
12862
12862
  if (mr < gt) {
12863
- var Uh = (Se - C[mr]) / (Pt - C[mr]);
12863
+ var Uh = (Se - C[mr]) / (It - C[mr]);
12864
12864
  O[mr] = m.lerp(Uh, O[mr], O[mr - 1]);
12865
12865
  }
12866
12866
  if (Kr >= $e) {
12867
12867
  if (Kr - pi <= ct - k + Le) {
12868
12868
  var Vh = (Se - C[Kr - pi]) / ho;
12869
- P[Br] = m.lerp(Vh, P[Br], P[Br + 1]);
12869
+ I[Br] = m.lerp(Vh, I[Br], I[Br + 1]);
12870
12870
  }
12871
- } else P[Br] = m.lerp(Dh, P[Br], P[Br + 1]);
12871
+ } else I[Br] = m.lerp(Dh, I[Br], I[Br + 1]);
12872
12872
  mr = mr + 1, Kr = Kr - 1, Br = Br - 1;
12873
12873
  }
12874
12874
  di = di - 1, mi = mi + 1;
12875
12875
  }
12876
12876
  if (mt != l)
12877
12877
  for (var co = 0, Gh = k - Le; co < Gh; )
12878
- co++, C[ct] = Pt, ct = ct + 1;
12878
+ co++, C[ct] = It, ct = ct + 1;
12879
12879
  for (var mo = $e, jh = lr + 1; mo < jh; ) {
12880
12880
  var Wh = mo++;
12881
- O[gt] = P[Wh], gt = gt + 1;
12881
+ O[gt] = I[Wh], gt = gt + 1;
12882
12882
  }
12883
- if (X < I) {
12883
+ if (X < P) {
12884
12884
  for (var po = 0; po < nt; ) {
12885
12885
  var go = po++;
12886
12886
  A[go] = S[go];
@@ -12889,7 +12889,7 @@ var Ah = { exports: {} };
12889
12889
  var _o = fo++;
12890
12890
  A[_o] = d[X - l + _o];
12891
12891
  }
12892
- mt = X, X = X + 1, Pt = Se;
12892
+ mt = X, X = X + 1, It = Se;
12893
12893
  } else
12894
12894
  for (var vo = 0, Yh = k + 1; vo < Yh; ) {
12895
12895
  var qh = vo++;
@@ -12917,8 +12917,8 @@ var Ah = { exports: {} };
12917
12917
  var A = p[v];
12918
12918
  ++v, _ = ft.curveKnotRefine(new Gt(d, u, A), n), l.push(_.controlPoints);
12919
12919
  }
12920
- var P = _.knots;
12921
- return a ? new te(r.degreeU, r.degreeV, r.knotsU.slice(), P, l) : (l = Lt.transpose(l), new te(r.degreeU, r.degreeV, P, r.knotsV.slice(), l));
12920
+ var I = _.knots;
12921
+ return a ? new te(r.degreeU, r.degreeV, r.knotsU.slice(), I, l) : (l = Lt.transpose(l), new te(r.degreeU, r.degreeV, I, r.knotsV.slice(), l));
12922
12922
  }, ft.decomposeCurveIntoBeziers = function(r) {
12923
12923
  for (var n = r.degree, a = r.controlPoints, l = r.knots, u = yt.knotMultiplicities(l), d = n + 1, p = 0; p < u.length; ) {
12924
12924
  var _ = u[p];
@@ -12928,20 +12928,20 @@ var Ah = { exports: {} };
12928
12928
  }
12929
12929
  }
12930
12930
  l.length / d - 1;
12931
- for (var P = d * 2, S = [], I = 0; I < a.length; ) {
12932
- var k = l.slice(I, I + P), T = a.slice(I, I + d);
12933
- S.push(new Gt(n, k, T)), I += d;
12931
+ for (var I = d * 2, S = [], P = 0; P < a.length; ) {
12932
+ var k = l.slice(P, P + I), M = a.slice(P, P + d);
12933
+ S.push(new Gt(n, k, M)), P += d;
12934
12934
  }
12935
12935
  return S;
12936
12936
  }, ft.curveKnotRefine = function(r, n) {
12937
12937
  if (n.length == 0) return pt.clonedCurve(r);
12938
- for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), A = N.knotSpan(a, n[_], u), P = [], S = [], I = 0, k = v - a + 1; I < k; ) {
12939
- var T = I++;
12940
- P[T] = l[T];
12938
+ for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), A = N.knotSpan(a, n[_], u), I = [], S = [], P = 0, k = v - a + 1; P < k; ) {
12939
+ var M = P++;
12940
+ I[M] = l[M];
12941
12941
  }
12942
12942
  for (var O = A - 1, C = d + 1; O < C; ) {
12943
12943
  var F = O++;
12944
- P[F + _ + 1] = l[F];
12944
+ I[F + _ + 1] = l[F];
12945
12945
  }
12946
12946
  for (var R = 0, U = v + 1; R < U; ) {
12947
12947
  var V = R++;
@@ -12953,27 +12953,27 @@ var Ah = { exports: {} };
12953
12953
  }
12954
12954
  for (var G = A + a - 1, K = A + a + _, tt = _; tt >= 0; ) {
12955
12955
  for (; n[tt] <= u[G] && G > v; )
12956
- P[K - a - 1] = l[G - a - 1], S[K] = u[G], K = K - 1, G = G - 1;
12957
- P[K - a - 1] = P[K - a];
12956
+ I[K - a - 1] = l[G - a - 1], S[K] = u[G], K = K - 1, G = G - 1;
12957
+ I[K - a - 1] = I[K - a];
12958
12958
  for (var et = 1, it = a + 1; et < it; ) {
12959
12959
  var ht = et++, at = K - a + ht, ct = S[K + ht] - n[tt];
12960
- Math.abs(ct) < rt.EPSILON ? P[at - 1] = P[at] : (ct = ct / (S[K + ht] - u[G - a + ht]), P[at - 1] = m.add(m.mul(ct, P[at - 1]), m.mul(1 - ct, P[at])));
12960
+ Math.abs(ct) < rt.EPSILON ? I[at - 1] = I[at] : (ct = ct / (S[K + ht] - u[G - a + ht]), I[at - 1] = m.add(m.mul(ct, I[at - 1]), m.mul(1 - ct, I[at])));
12961
12961
  }
12962
12962
  S[K] = n[tt], K = K - 1, tt--;
12963
12963
  }
12964
- return new Gt(a, S, P);
12964
+ return new Gt(a, S, I);
12965
12965
  }, ft.curveKnotInsert = function(r, n, a) {
12966
- for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), A = [], P = [], S = [], I = 1, k = v + 1; I < k; ) {
12967
- var T = I++;
12968
- P[T] = d[T];
12966
+ for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), A = [], I = [], S = [], P = 1, k = v + 1; P < k; ) {
12967
+ var M = P++;
12968
+ I[M] = d[M];
12969
12969
  }
12970
12970
  for (var O = 1, C = a + 1; O < C; ) {
12971
12971
  var F = O++;
12972
- P[v + F] = n;
12972
+ I[v + F] = n;
12973
12973
  }
12974
12974
  for (var R = v + 1, U = d.length; R < U; ) {
12975
12975
  var V = R++;
12976
- P[V + a] = d[V];
12976
+ I[V + a] = d[V];
12977
12977
  }
12978
12978
  for (var q = 0, J = v - l + 1; q < J; ) {
12979
12979
  var H = q++;
@@ -12991,8 +12991,8 @@ var Ah = { exports: {} };
12991
12991
  var mt = ct++;
12992
12992
  ht = v - l + mt;
12993
12993
  for (var X = 0, gt = l - mt - p + 1; X < gt; ) {
12994
- var Pt = X++;
12995
- at = (n - d[ht + Pt]) / (d[Pt + v + 1] - d[ht + Pt]), A[Pt] = m.add(m.mul(at, A[Pt + 1]), m.mul(1 - at, A[Pt]));
12994
+ var It = X++;
12995
+ at = (n - d[ht + It]) / (d[It + v + 1] - d[ht + It]), A[It] = m.add(m.mul(at, A[It + 1]), m.mul(1 - at, A[It]));
12996
12996
  }
12997
12997
  S[ht] = A[0], S[v + a - mt - p] = A[l - mt - p];
12998
12998
  }
@@ -13000,7 +13000,7 @@ var Ah = { exports: {} };
13000
13000
  var Dt = jt++;
13001
13001
  S[Dt] = A[Dt - ht];
13002
13002
  }
13003
- return new Gt(l, P, S);
13003
+ return new Gt(l, I, S);
13004
13004
  };
13005
13005
  var zt = f.eval.Tess = function() {
13006
13006
  };
@@ -13025,17 +13025,17 @@ var Ah = { exports: {} };
13025
13025
  return r.controlPoints.map(N.dehomogenize);
13026
13026
  return zt.rationalCurveAdaptiveSampleRange(r, r.knots[0], $.last(r.knots), n, a);
13027
13027
  }, zt.rationalCurveAdaptiveSampleRange = function(r, n, a, l, u) {
13028
- var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, A = N.rationalCurvePoint(r, v), P = m.sub(d, p), S = m.sub(d, A);
13029
- if (m.dot(P, P) < l && m.dot(S, S) > l || !Ne.threePointsAreFlat(d, A, p, l)) {
13030
- var I = n + (a - n) * 0.5, k = zt.rationalCurveAdaptiveSampleRange(r, n, I, l, u), T = zt.rationalCurveAdaptiveSampleRange(r, I, a, l, u);
13031
- return k.slice(0, -1).concat(T);
13028
+ var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, A = N.rationalCurvePoint(r, v), I = m.sub(d, p), S = m.sub(d, A);
13029
+ if (m.dot(I, I) < l && m.dot(S, S) > l || !Ne.threePointsAreFlat(d, A, p, l)) {
13030
+ var P = n + (a - n) * 0.5, k = zt.rationalCurveAdaptiveSampleRange(r, n, P, l, u), M = zt.rationalCurveAdaptiveSampleRange(r, P, a, l, u);
13031
+ return k.slice(0, -1).concat(M);
13032
13032
  } else return u ? [[n].concat(d), [a].concat(p)] : [d, p];
13033
13033
  }, zt.rationalSurfaceNaive = function(r, n, a) {
13034
13034
  n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
13035
- for (var l = r.knotsU, u = r.knotsV, d = $.last(l) - l[0], p = $.last(u) - u[0], _ = d / n, v = p / a, A = [], P = [], S = [], I = 0, k = n + 1; I < k; )
13036
- for (var T = I++, O = 0, C = a + 1; O < C; ) {
13037
- var F = O++, R = T * _, U = F * v;
13038
- P.push([R, U]);
13035
+ for (var l = r.knotsU, u = r.knotsV, d = $.last(l) - l[0], p = $.last(u) - u[0], _ = d / n, v = p / a, A = [], I = [], S = [], P = 0, k = n + 1; P < k; )
13036
+ for (var M = P++, O = 0, C = a + 1; O < C; ) {
13037
+ var F = O++, R = M * _, U = F * v;
13038
+ I.push([R, U]);
13039
13039
  var V = N.rationalSurfaceDerivatives(r, R, U, 1), q = V[0][0];
13040
13040
  A.push(q);
13041
13041
  var J = m.normalized(m.cross(V[1][0], V[0][1]));
@@ -13046,32 +13046,32 @@ var Ah = { exports: {} };
13046
13046
  var et = tt++, it = K * (a + 1) + et, ht = (K + 1) * (a + 1) + et, at = ht + 1, ct = it + 1, nt = [it, ht, at], mt = [it, at, ct];
13047
13047
  H.push(nt), H.push(mt);
13048
13048
  }
13049
- return new qe(H, A, S, P);
13049
+ return new qe(H, A, S, I);
13050
13050
  }, zt.divideRationalSurfaceAdaptive = function(r, n) {
13051
13051
  n == null && (n = new Lr()), n.minDivsU != null ? n.minDivsU = n.minDivsU : n.minDivsU = 1, n.minDivsV != null ? n.minDivsU = n.minDivsV : n.minDivsU = 1, n.refine != null ? n.refine = n.refine : n.refine = !0;
13052
13052
  var a = (r.controlPoints.length - 1) * 2, l = (r.controlPoints[0].length - 1) * 2, u;
13053
13053
  n.minDivsU > a ? u = n.minDivsU = n.minDivsU : u = n.minDivsU = a;
13054
13054
  var d;
13055
13055
  n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
13056
- for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), A = r.knotsV[0], P = (p - _) / u, S = (v - A) / d, I = [], k = [], T = 0, O = d + 1; T < O; ) {
13057
- for (var C = T++, F = [], R = 0, U = u + 1; R < U; ) {
13058
- var V = R++, q = _ + P * V, J = A + S * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), G = m.normalized(m.cross(H[0][1], H[1][0]));
13059
- F.push(new Ge(H[0][0], G, [q, J], -1, m.isZero(G)));
13056
+ for (var p = $.last(r.knotsU), _ = r.knotsU[0], v = $.last(r.knotsV), A = r.knotsV[0], I = (p - _) / u, S = (v - A) / d, P = [], k = [], M = 0, O = d + 1; M < O; ) {
13057
+ for (var C = M++, F = [], R = 0, U = u + 1; R < U; ) {
13058
+ var V = R++, q = _ + I * V, J = A + S * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), G = m.normalized(m.cross(H[0][1], H[1][0]));
13059
+ F.push(new je(H[0][0], G, [q, J], -1, m.isZero(G)));
13060
13060
  }
13061
13061
  k.push(F);
13062
13062
  }
13063
13063
  for (var K = 0; K < d; )
13064
13064
  for (var tt = K++, et = 0; et < u; ) {
13065
13065
  var it = et++, ht = [k[d - tt - 1][it], k[d - tt - 1][it + 1], k[d - tt][it + 1], k[d - tt][it]];
13066
- I.push(new cr(r, ht));
13066
+ P.push(new cr(r, ht));
13067
13067
  }
13068
- if (!n.refine) return I;
13068
+ if (!n.refine) return P;
13069
13069
  for (var at = 0; at < d; )
13070
13070
  for (var ct = at++, nt = 0; nt < u; ) {
13071
- var mt = nt++, X = ct * u + mt, gt = zt.north(X, ct, mt, u, d, I), Pt = zt.east(X, ct, mt, u, d, I), jt = zt.south(X, ct, mt, u, d, I), Xt = zt.west(X, ct, mt, u, d, I);
13072
- I[X].neighbors = [jt, Pt, gt, Xt], I[X].divide(n);
13071
+ var mt = nt++, X = ct * u + mt, gt = zt.north(X, ct, mt, u, d, P), It = zt.east(X, ct, mt, u, d, P), jt = zt.south(X, ct, mt, u, d, P), Xt = zt.west(X, ct, mt, u, d, P);
13072
+ P[X].neighbors = [jt, It, gt, Xt], P[X].divide(n);
13073
13073
  }
13074
- return I;
13074
+ return P;
13075
13075
  }, zt.north = function(r, n, a, l, u, d) {
13076
13076
  return n == 0 ? null : d[r - l];
13077
13077
  }, zt.south = function(r, n, a, l, u, d) {
@@ -13100,7 +13100,7 @@ var Ah = { exports: {} };
13100
13100
  var cr = f.core.AdaptiveRefinementNode = function(r, n, a) {
13101
13101
  if (this.srf = r, a == null ? this.neighbors = [null, null, null, null] : this.neighbors = a, this.corners = n, this.corners == null) {
13102
13102
  var l = r.knotsU[0], u = $.last(r.knotsU), d = r.knotsV[0], p = $.last(r.knotsV);
13103
- this.corners = [Ge.fromUv(l, d), Ge.fromUv(u, d), Ge.fromUv(u, p), Ge.fromUv(l, p)];
13103
+ this.corners = [je.fromUv(l, d), je.fromUv(u, d), je.fromUv(u, p), je.fromUv(l, p)];
13104
13104
  }
13105
13105
  };
13106
13106
  b["verb.eval.AdaptiveRefinementNode"] = cr, cr.__name__ = ["verb", "eval", "AdaptiveRefinementNode"], cr.prototype = {
@@ -13122,7 +13122,7 @@ var Ah = { exports: {} };
13122
13122
  },
13123
13123
  evalSrf: function(r, n, a) {
13124
13124
  var l = N.rationalSurfaceDerivatives(this.srf, r, n, 1), u = l[0][0], d = m.cross(l[0][1], l[1][0]), p = m.isZero(d);
13125
- return p || (d = m.normalized(d)), a != null ? (a.degen = p, a.point = u, a.normal = d, a) : new Ge(u, d, [r, n], -1, p);
13125
+ return p || (d = m.normalized(d)), a != null ? (a.degen = p, a.point = u, a.normal = d, a) : new je(u, d, [r, n], -1, p);
13126
13126
  },
13127
13127
  getEdgeCorners: function(r) {
13128
13128
  if (this.isLeaf()) return [this.corners[r]];
@@ -13229,17 +13229,17 @@ var Ah = { exports: {} };
13229
13229
  var p = d++, _ = this.getAllCorners(p);
13230
13230
  _.length == 2 && (u = p + 1);
13231
13231
  for (var v = 0, A = _.length; v < A; ) {
13232
- var P = v++;
13233
- a.push(_[P]);
13232
+ var I = v++;
13233
+ a.push(_[I]);
13234
13234
  }
13235
13235
  }
13236
13236
  for (var S = 0; S < a.length; ) {
13237
- var I = a[S];
13238
- if (++S, I.id != -1) {
13239
- l.push(I.id);
13237
+ var P = a[S];
13238
+ if (++S, P.id != -1) {
13239
+ l.push(P.id);
13240
13240
  continue;
13241
13241
  }
13242
- r.uvs.push(I.uv), r.points.push(I.point), r.normals.push(I.normal), I.id = n, l.push(n), n++;
13242
+ r.uvs.push(P.uv), r.points.push(P.point), r.normals.push(P.normal), P.id = n, l.push(n), n++;
13243
13243
  }
13244
13244
  if (a.length == 4)
13245
13245
  return r.faces.push([l[0], l[3], l[1]]), r.faces.push([l[3], l[2], l[1]]), r;
@@ -13247,8 +13247,8 @@ var Ah = { exports: {} };
13247
13247
  var k = l.length;
13248
13248
  return r.faces.push([l[u], l[(u + 2) % k], l[(u + 1) % k]]), r.faces.push([l[(u + 4) % k], l[(u + 3) % k], l[u]]), r.faces.push([l[u], l[(u + 3) % k], l[(u + 2) % k]]), r;
13249
13249
  }
13250
- var T = this.center();
13251
- r.uvs.push(T.uv), r.points.push(T.point), r.normals.push(T.normal);
13250
+ var M = this.center();
13251
+ r.uvs.push(M.uv), r.points.push(M.point), r.normals.push(M.normal);
13252
13252
  for (var O = r.points.length - 1, C = 0, F = a.length - 1; C < a.length; )
13253
13253
  r.faces.push([O, l[C], l[F]]), F = C++;
13254
13254
  return r;
@@ -13313,14 +13313,14 @@ var Ah = { exports: {} };
13313
13313
  b["verb.geom.ICurve"] = Sn, Sn.__name__ = ["verb", "geom", "ICurve"], Sn.__interfaces__ = [bn], Sn.prototype = {
13314
13314
  __class__: Sn
13315
13315
  };
13316
- var Tt = f.geom.NurbsCurve = function(r) {
13317
- this._data = je.isValidNurbsCurveData(r);
13316
+ var Mt = f.geom.NurbsCurve = function(r) {
13317
+ this._data = We.isValidNurbsCurveData(r);
13318
13318
  };
13319
- b["verb.geom.NurbsCurve"] = Tt, Tt.__name__ = ["verb", "geom", "NurbsCurve"], Tt.__interfaces__ = [Sn], Tt.byKnotsControlPointsWeights = function(r, n, a, l) {
13320
- return new Tt(new Gt(r, n.slice(), N.homogenize1d(a, l)));
13321
- }, Tt.byPoints = function(r, n) {
13322
- return n == null && (n = 3), new Tt(pt.rationalInterpCurve(r, n));
13323
- }, Tt.__super__ = $t, Tt.prototype = M($t.prototype, {
13319
+ b["verb.geom.NurbsCurve"] = Mt, Mt.__name__ = ["verb", "geom", "NurbsCurve"], Mt.__interfaces__ = [Sn], Mt.byKnotsControlPointsWeights = function(r, n, a, l) {
13320
+ return new Mt(new Gt(r, n.slice(), N.homogenize1d(a, l)));
13321
+ }, Mt.byPoints = function(r, n) {
13322
+ return n == null && (n = 3), new Mt(pt.rationalInterpCurve(r, n));
13323
+ }, Mt.__super__ = $t, Mt.prototype = T($t.prototype, {
13324
13324
  degree: function() {
13325
13325
  return this._data.degree;
13326
13326
  },
@@ -13337,17 +13337,17 @@ var Ah = { exports: {} };
13337
13337
  return new Gt(this.degree(), this.knots(), N.homogenize1d(this.controlPoints(), this.weights()));
13338
13338
  },
13339
13339
  clone: function() {
13340
- return new Tt(this._data);
13340
+ return new Mt(this._data);
13341
13341
  },
13342
13342
  domain: function() {
13343
13343
  return new we($.first(this._data.knots), $.last(this._data.knots));
13344
13344
  },
13345
13345
  transform: function(r) {
13346
- return new Tt(ft.rationalCurveTransform(this._data, r));
13346
+ return new Mt(ft.rationalCurveTransform(this._data, r));
13347
13347
  },
13348
13348
  transformAsync: function(r) {
13349
13349
  return wt.dispatchMethod(ft, "rationalCurveTransform", [this._data, r]).then(function(n) {
13350
- return new Tt(n);
13350
+ return new Mt(n);
13351
13351
  });
13352
13352
  },
13353
13353
  point: function(r) {
@@ -13412,22 +13412,22 @@ var Ah = { exports: {} };
13412
13412
  },
13413
13413
  split: function(r) {
13414
13414
  return oe.curveSplit(this._data, r).map(function(n) {
13415
- return new Tt(n);
13415
+ return new Mt(n);
13416
13416
  });
13417
13417
  },
13418
13418
  splitAsync: function(r) {
13419
13419
  return wt.dispatchMethod(oe, "curveSplit", [this._data, r]).then(function(n) {
13420
13420
  return n.map(function(a) {
13421
- return new Tt(a);
13421
+ return new Mt(a);
13422
13422
  });
13423
13423
  });
13424
13424
  },
13425
13425
  reverse: function() {
13426
- return new Tt(ft.curveReverse(this._data));
13426
+ return new Mt(ft.curveReverse(this._data));
13427
13427
  },
13428
13428
  reverseAsync: function() {
13429
13429
  return wt.dispatchMethod(ft, "curveReverse", [this._data]).then(function(r) {
13430
- return new Tt(r);
13430
+ return new Mt(r);
13431
13431
  });
13432
13432
  },
13433
13433
  tessellate: function(r) {
@@ -13436,12 +13436,12 @@ var Ah = { exports: {} };
13436
13436
  tessellateAsync: function(r) {
13437
13437
  return wt.dispatchMethod(zt, "rationalCurveAdaptiveSample", [this._data, r, !1]);
13438
13438
  },
13439
- __class__: Tt
13439
+ __class__: Mt
13440
13440
  });
13441
13441
  var zr = f.geom.Arc = function(r, n, a, l, u, d) {
13442
- Tt.call(this, pt.arc(r, n, a, l, u, d)), this._center = r, this._xaxis = n, this._yaxis = a, this._radius = l, this._minAngle = u, this._maxAngle = d;
13442
+ Mt.call(this, pt.arc(r, n, a, l, u, d)), this._center = r, this._xaxis = n, this._yaxis = a, this._radius = l, this._minAngle = u, this._maxAngle = d;
13443
13443
  };
13444
- b["verb.geom.Arc"] = zr, zr.__name__ = ["verb", "geom", "Arc"], zr.__super__ = Tt, zr.prototype = M(Tt.prototype, {
13444
+ b["verb.geom.Arc"] = zr, zr.__name__ = ["verb", "geom", "Arc"], zr.__super__ = Mt, zr.prototype = T(Mt.prototype, {
13445
13445
  center: function() {
13446
13446
  return this._center;
13447
13447
  },
@@ -13463,38 +13463,38 @@ var Ah = { exports: {} };
13463
13463
  __class__: zr
13464
13464
  });
13465
13465
  var $n = f.geom.BezierCurve = function(r, n) {
13466
- Tt.call(this, pt.rationalBezierCurve(r, n));
13466
+ Mt.call(this, pt.rationalBezierCurve(r, n));
13467
13467
  };
13468
- b["verb.geom.BezierCurve"] = $n, $n.__name__ = ["verb", "geom", "BezierCurve"], $n.__super__ = Tt, $n.prototype = M(Tt.prototype, {
13468
+ b["verb.geom.BezierCurve"] = $n, $n.__name__ = ["verb", "geom", "BezierCurve"], $n.__super__ = Mt, $n.prototype = T(Mt.prototype, {
13469
13469
  __class__: $n
13470
13470
  });
13471
13471
  var Zn = f.geom.Circle = function(r, n, a, l) {
13472
13472
  zr.call(this, r, n, a, l, 0, Math.PI * 2);
13473
13473
  };
13474
- b["verb.geom.Circle"] = Zn, Zn.__name__ = ["verb", "geom", "Circle"], Zn.__super__ = zr, Zn.prototype = M(zr.prototype, {
13474
+ b["verb.geom.Circle"] = Zn, Zn.__name__ = ["verb", "geom", "Circle"], Zn.__super__ = zr, Zn.prototype = T(zr.prototype, {
13475
13475
  __class__: Zn
13476
13476
  });
13477
- var Pn = function() {
13477
+ var In = function() {
13478
13478
  };
13479
- b["verb.geom.ISurface"] = Pn, Pn.__name__ = ["verb", "geom", "ISurface"], Pn.__interfaces__ = [bn], Pn.prototype = {
13480
- __class__: Pn
13479
+ b["verb.geom.ISurface"] = In, In.__name__ = ["verb", "geom", "ISurface"], In.__interfaces__ = [bn], In.prototype = {
13480
+ __class__: In
13481
13481
  };
13482
- var It = f.geom.NurbsSurface = function(r) {
13483
- this._data = je.isValidNurbsSurfaceData(r);
13482
+ var Pt = f.geom.NurbsSurface = function(r) {
13483
+ this._data = We.isValidNurbsSurfaceData(r);
13484
13484
  };
13485
- b["verb.geom.NurbsSurface"] = It, It.__name__ = ["verb", "geom", "NurbsSurface"], It.__interfaces__ = [Pn], It.byKnotsControlPointsWeights = function(r, n, a, l, u, d) {
13486
- return new It(new te(r, n, a, l, N.homogenize2d(u, d)));
13487
- }, It.byCorners = function(r, n, a, l) {
13488
- return new It(pt.fourPointSurface(r, n, a, l));
13489
- }, It.byLoftingCurves = function(r, n) {
13490
- return new It(pt.loftedSurface(function(a) {
13485
+ b["verb.geom.NurbsSurface"] = Pt, Pt.__name__ = ["verb", "geom", "NurbsSurface"], Pt.__interfaces__ = [In], Pt.byKnotsControlPointsWeights = function(r, n, a, l, u, d) {
13486
+ return new Pt(new te(r, n, a, l, N.homogenize2d(u, d)));
13487
+ }, Pt.byCorners = function(r, n, a, l) {
13488
+ return new Pt(pt.fourPointSurface(r, n, a, l));
13489
+ }, Pt.byLoftingCurves = function(r, n) {
13490
+ return new Pt(pt.loftedSurface(function(a) {
13491
13491
  for (var l, u = [], d = 0; d < r.length; ) {
13492
13492
  var p = r[d];
13493
13493
  ++d, u.push(p.asNurbs());
13494
13494
  }
13495
13495
  return l = u, l;
13496
13496
  }(), n));
13497
- }, It.__super__ = $t, It.prototype = M($t.prototype, {
13497
+ }, Pt.__super__ = $t, Pt.prototype = T($t.prototype, {
13498
13498
  degreeU: function() {
13499
13499
  return this._data.degreeU;
13500
13500
  },
@@ -13517,7 +13517,7 @@ var Ah = { exports: {} };
13517
13517
  return new te(this.degreeU(), this.degreeV(), this.knotsU(), this.knotsV(), N.homogenize2d(this.controlPoints(), this.weights()));
13518
13518
  },
13519
13519
  clone: function() {
13520
- return new It(this.asNurbs());
13520
+ return new Pt(this.asNurbs());
13521
13521
  },
13522
13522
  domainU: function() {
13523
13523
  return new we($.first(this._data.knotsU), $.last(this._data.knotsU));
@@ -13557,41 +13557,41 @@ var Ah = { exports: {} };
13557
13557
  },
13558
13558
  split: function(r, n) {
13559
13559
  return n == null && (n = !1), oe.surfaceSplit(this._data, r, n).map(function(a) {
13560
- return new It(a);
13560
+ return new Pt(a);
13561
13561
  });
13562
13562
  },
13563
13563
  splitAsync: function(r, n) {
13564
13564
  return n == null && (n = !1), wt.dispatchMethod(oe, "surfaceSplit", [this._data, r, n]).then(function(a) {
13565
13565
  return a.map(function(l) {
13566
- return new It(l);
13566
+ return new Pt(l);
13567
13567
  });
13568
13568
  });
13569
13569
  },
13570
13570
  reverse: function(r) {
13571
- return r == null && (r = !1), new It(ft.surfaceReverse(this._data, r));
13571
+ return r == null && (r = !1), new Pt(ft.surfaceReverse(this._data, r));
13572
13572
  },
13573
13573
  reverseAsync: function(r) {
13574
13574
  return r == null && (r = !1), wt.dispatchMethod(ft, "surfaceReverse", [this._data, r]).then(function(n) {
13575
- return new It(n);
13575
+ return new Pt(n);
13576
13576
  });
13577
13577
  },
13578
13578
  isocurve: function(r, n) {
13579
- return n == null && (n = !1), new Tt(pt.surfaceIsocurve(this._data, r, n));
13579
+ return n == null && (n = !1), new Mt(pt.surfaceIsocurve(this._data, r, n));
13580
13580
  },
13581
13581
  isocurveAsync: function(r, n) {
13582
13582
  return n == null && (n = !1), wt.dispatchMethod(pt, "surfaceIsocurve", [this._data, r, n]).then(function(a) {
13583
- return new Tt(a);
13583
+ return new Mt(a);
13584
13584
  });
13585
13585
  },
13586
13586
  boundaries: function(r) {
13587
13587
  return pt.surfaceBoundaryCurves(this._data).map(function(n) {
13588
- return new Tt(n);
13588
+ return new Mt(n);
13589
13589
  });
13590
13590
  },
13591
13591
  boundariesAsync: function(r) {
13592
13592
  return wt.dispatchMethod(pt, "surfaceBoundaryCurves", [this._data]).then(function(n) {
13593
13593
  return n.map(function(a) {
13594
- return new Tt(a);
13594
+ return new Mt(a);
13595
13595
  });
13596
13596
  });
13597
13597
  },
@@ -13602,19 +13602,19 @@ var Ah = { exports: {} };
13602
13602
  return wt.dispatchMethod(zt, "rationalSurfaceAdaptive", [this._data, r]);
13603
13603
  },
13604
13604
  transform: function(r) {
13605
- return new It(ft.rationalSurfaceTransform(this._data, r));
13605
+ return new Pt(ft.rationalSurfaceTransform(this._data, r));
13606
13606
  },
13607
13607
  transformAsync: function(r) {
13608
13608
  return wt.dispatchMethod(ft, "rationalSurfaceTransform", [this._data, r]).then(function(n) {
13609
- return new It(n);
13609
+ return new Pt(n);
13610
13610
  });
13611
13611
  },
13612
- __class__: It
13612
+ __class__: Pt
13613
13613
  });
13614
13614
  var Qn = f.geom.ConicalSurface = function(r, n, a, l, u) {
13615
- It.call(this, pt.conicalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13615
+ Pt.call(this, pt.conicalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13616
13616
  };
13617
- b["verb.geom.ConicalSurface"] = Qn, Qn.__name__ = ["verb", "geom", "ConicalSurface"], Qn.__super__ = It, Qn.prototype = M(It.prototype, {
13617
+ b["verb.geom.ConicalSurface"] = Qn, Qn.__name__ = ["verb", "geom", "ConicalSurface"], Qn.__super__ = Pt, Qn.prototype = T(Pt.prototype, {
13618
13618
  axis: function() {
13619
13619
  return this._axis;
13620
13620
  },
@@ -13633,9 +13633,9 @@ var Ah = { exports: {} };
13633
13633
  __class__: Qn
13634
13634
  });
13635
13635
  var Jn = f.geom.CylindricalSurface = function(r, n, a, l, u) {
13636
- It.call(this, pt.cylindricalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13636
+ Pt.call(this, pt.cylindricalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13637
13637
  };
13638
- b["verb.geom.CylindricalSurface"] = Jn, Jn.__name__ = ["verb", "geom", "CylindricalSurface"], Jn.__super__ = It, Jn.prototype = M(It.prototype, {
13638
+ b["verb.geom.CylindricalSurface"] = Jn, Jn.__name__ = ["verb", "geom", "CylindricalSurface"], Jn.__super__ = Pt, Jn.prototype = T(Pt.prototype, {
13639
13639
  axis: function() {
13640
13640
  return this._axis;
13641
13641
  },
@@ -13654,9 +13654,9 @@ var Ah = { exports: {} };
13654
13654
  __class__: Jn
13655
13655
  });
13656
13656
  var Rr = f.geom.EllipseArc = function(r, n, a, l, u) {
13657
- Tt.call(this, pt.ellipseArc(r, n, a, l, u)), this._center = r, this._xaxis = n, this._yaxis = a, this._minAngle = l, this._maxAngle = u;
13657
+ Mt.call(this, pt.ellipseArc(r, n, a, l, u)), this._center = r, this._xaxis = n, this._yaxis = a, this._minAngle = l, this._maxAngle = u;
13658
13658
  };
13659
- b["verb.geom.EllipseArc"] = Rr, Rr.__name__ = ["verb", "geom", "EllipseArc"], Rr.__super__ = Tt, Rr.prototype = M(Tt.prototype, {
13659
+ b["verb.geom.EllipseArc"] = Rr, Rr.__name__ = ["verb", "geom", "EllipseArc"], Rr.__super__ = Mt, Rr.prototype = T(Mt.prototype, {
13660
13660
  center: function() {
13661
13661
  return this._center;
13662
13662
  },
@@ -13677,13 +13677,13 @@ var Ah = { exports: {} };
13677
13677
  var ts = f.geom.Ellipse = function(r, n, a) {
13678
13678
  Rr.call(this, r, n, a, 0, Math.PI * 2);
13679
13679
  };
13680
- b["verb.geom.Ellipse"] = ts, ts.__name__ = ["verb", "geom", "Ellipse"], ts.__super__ = Rr, ts.prototype = M(Rr.prototype, {
13680
+ b["verb.geom.Ellipse"] = ts, ts.__name__ = ["verb", "geom", "Ellipse"], ts.__super__ = Rr, ts.prototype = T(Rr.prototype, {
13681
13681
  __class__: ts
13682
13682
  });
13683
13683
  var es = f.geom.ExtrudedSurface = function(r, n) {
13684
- It.call(this, pt.extrudedSurface(m.normalized(n), m.norm(n), r.asNurbs())), this._profile = r, this._direction = n;
13684
+ Pt.call(this, pt.extrudedSurface(m.normalized(n), m.norm(n), r.asNurbs())), this._profile = r, this._direction = n;
13685
13685
  };
13686
- b["verb.geom.ExtrudedSurface"] = es, es.__name__ = ["verb", "geom", "ExtrudedSurface"], es.__super__ = It, es.prototype = M(It.prototype, {
13686
+ b["verb.geom.ExtrudedSurface"] = es, es.__name__ = ["verb", "geom", "ExtrudedSurface"], es.__super__ = Pt, es.prototype = T(Pt.prototype, {
13687
13687
  profile: function() {
13688
13688
  return this._profile;
13689
13689
  },
@@ -13704,19 +13704,19 @@ var Ah = { exports: {} };
13704
13704
  return a == null && (a = 1e-3), wt.dispatchMethod(lt, "curveAndSurface", [r.asNurbs(), n.asNurbs(), a]);
13705
13705
  }, Fr.surfaces = function(r, n, a) {
13706
13706
  return a == null && (a = 1e-3), lt.surfaces(r.asNurbs(), n.asNurbs(), a).map(function(l) {
13707
- return new Tt(l);
13707
+ return new Mt(l);
13708
13708
  });
13709
13709
  }, Fr.surfacesAsync = function(r, n, a) {
13710
13710
  return a == null && (a = 1e-3), wt.dispatchMethod(lt, "surfaces", [r.asNurbs(), n.asNurbs(), a]).then(function(l) {
13711
13711
  return l.map(function(u) {
13712
- return new Tt(u);
13712
+ return new Mt(u);
13713
13713
  });
13714
13714
  });
13715
13715
  };
13716
13716
  var rs = f.geom.Line = function(r, n) {
13717
- Tt.call(this, pt.polyline([r, n])), this._start = r, this._end = n;
13717
+ Mt.call(this, pt.polyline([r, n])), this._start = r, this._end = n;
13718
13718
  };
13719
- b["verb.geom.Line"] = rs, rs.__name__ = ["verb", "geom", "Line"], rs.__super__ = Tt, rs.prototype = M(Tt.prototype, {
13719
+ b["verb.geom.Line"] = rs, rs.__name__ = ["verb", "geom", "Line"], rs.__super__ = Mt, rs.prototype = T(Mt.prototype, {
13720
13720
  start: function() {
13721
13721
  return this._start;
13722
13722
  },
@@ -13726,9 +13726,9 @@ var Ah = { exports: {} };
13726
13726
  __class__: rs
13727
13727
  });
13728
13728
  var ns = f.geom.RevolvedSurface = function(r, n, a, l) {
13729
- It.call(this, pt.revolvedSurface(r.asNurbs(), n, a, l)), this._profile = r, this._center = n, this._axis = a, this._angle = l;
13729
+ Pt.call(this, pt.revolvedSurface(r.asNurbs(), n, a, l)), this._profile = r, this._center = n, this._axis = a, this._angle = l;
13730
13730
  };
13731
- b["verb.geom.RevolvedSurface"] = ns, ns.__name__ = ["verb", "geom", "RevolvedSurface"], ns.__super__ = It, ns.prototype = M(It.prototype, {
13731
+ b["verb.geom.RevolvedSurface"] = ns, ns.__name__ = ["verb", "geom", "RevolvedSurface"], ns.__super__ = Pt, ns.prototype = T(Pt.prototype, {
13732
13732
  profile: function() {
13733
13733
  return this._profile;
13734
13734
  },
@@ -13744,9 +13744,9 @@ var Ah = { exports: {} };
13744
13744
  __class__: ns
13745
13745
  });
13746
13746
  var ss = f.geom.SphericalSurface = function(r, n) {
13747
- It.call(this, pt.sphericalSurface(r, [0, 0, 1], [1, 0, 0], n)), this._center = r, this._radius = n;
13747
+ Pt.call(this, pt.sphericalSurface(r, [0, 0, 1], [1, 0, 0], n)), this._center = r, this._radius = n;
13748
13748
  };
13749
- b["verb.geom.SphericalSurface"] = ss, ss.__name__ = ["verb", "geom", "SphericalSurface"], ss.__super__ = It, ss.prototype = M(It.prototype, {
13749
+ b["verb.geom.SphericalSurface"] = ss, ss.__name__ = ["verb", "geom", "SphericalSurface"], ss.__super__ = Pt, ss.prototype = T(Pt.prototype, {
13750
13750
  center: function() {
13751
13751
  return this._center;
13752
13752
  },
@@ -13756,9 +13756,9 @@ var Ah = { exports: {} };
13756
13756
  __class__: ss
13757
13757
  });
13758
13758
  var is = f.geom.SweptSurface = function(r, n) {
13759
- It.call(this, pt.rationalTranslationalSurface(r.asNurbs(), n.asNurbs())), this._profile = r, this._rail = n;
13759
+ Pt.call(this, pt.rationalTranslationalSurface(r.asNurbs(), n.asNurbs())), this._profile = r, this._rail = n;
13760
13760
  };
13761
- b["verb.geom.SweptSurface"] = is, is.__name__ = ["verb", "geom", "SweptSurface"], is.__super__ = It, is.prototype = M(It.prototype, {
13761
+ b["verb.geom.SweptSurface"] = is, is.__name__ = ["verb", "geom", "SweptSurface"], is.__super__ = Pt, is.prototype = T(Pt.prototype, {
13762
13762
  profile: function() {
13763
13763
  return this._profile;
13764
13764
  },
@@ -13826,12 +13826,12 @@ var Ah = { exports: {} };
13826
13826
  try {
13827
13827
  U();
13828
13828
  } finally {
13829
- P(R), u = !1;
13829
+ I(R), u = !1;
13830
13830
  }
13831
13831
  }
13832
13832
  }
13833
13833
  }
13834
- function P(R) {
13834
+ function I(R) {
13835
13835
  delete l[R];
13836
13836
  }
13837
13837
  function S() {
@@ -13840,7 +13840,7 @@ var Ah = { exports: {} };
13840
13840
  return process.nextTick(v(A, R)), R;
13841
13841
  };
13842
13842
  }
13843
- function I() {
13843
+ function P() {
13844
13844
  if (r.postMessage && !r.importScripts) {
13845
13845
  var R = !0, U = r.onmessage;
13846
13846
  return r.onmessage = function() {
@@ -13857,7 +13857,7 @@ var Ah = { exports: {} };
13857
13857
  return r.postMessage(R + V, "*"), V;
13858
13858
  };
13859
13859
  }
13860
- function T() {
13860
+ function M() {
13861
13861
  var R = new MessageChannel();
13862
13862
  R.port1.onmessage = function(U) {
13863
13863
  var V = U.data;
@@ -13883,18 +13883,18 @@ var Ah = { exports: {} };
13883
13883
  };
13884
13884
  }
13885
13885
  var F = Object.getPrototypeOf && Object.getPrototypeOf(r);
13886
- F = F && F.setTimeout ? F : r, {}.toString.call(r.process) === "[object process]" ? S() : I() ? k() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? O() : C(), F.setImmediate = p, F.clearImmediate = P;
13886
+ F = F && F.setTimeout ? F : r, {}.toString.call(r.process) === "[object process]" ? S() : P() ? k() : r.MessageChannel ? M() : d && "onreadystatechange" in d.createElement("script") ? O() : C(), F.setImmediate = p, F.clearImmediate = I;
13887
13887
  })(new Function("return this")()), qt.USE_CACHE = !1, qt.USE_ENUM_INDEX = !1, qt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Ot.count = 0, ie.i64tmp = function(r) {
13888
13888
  var n, a = new Vt(0, 0);
13889
13889
  return n = a, n;
13890
- }(), Mt.__toStr = {}.toString, sr.BYTES_PER_ELEMENT = 1, St.queue = new D(), Ft.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Or.basePath = "", Yr.uuid = 0, Ns.main();
13890
+ }(), Tt.__toStr = {}.toString, sr.BYTES_PER_ELEMENT = 1, St.queue = new D(), Ft.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", yt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], yt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Or.basePath = "", Yr.uuid = 0, Ns.main();
13891
13891
  }(typeof console < "u" ? console : { log: function() {
13892
13892
  } }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
13893
13893
  });
13894
13894
  })(Ah);
13895
13895
  var kd = Ah.exports;
13896
13896
  const Nn = /* @__PURE__ */ Ed(kd);
13897
- class Ti {
13897
+ class Mi {
13898
13898
  constructor() {
13899
13899
  this.c0 = 0, this.c1 = 0, this.c2 = 0, this.c3 = 0;
13900
13900
  }
@@ -13930,7 +13930,7 @@ class Ti {
13930
13930
  return this.c0 + this.c1 * t + this.c2 * e + this.c3 * s;
13931
13931
  }
13932
13932
  }
13933
- class Md extends Ts {
13933
+ class Td extends Ms {
13934
13934
  /**
13935
13935
  * Constructs a new Catmull-Rom curve.
13936
13936
  *
@@ -13940,7 +13940,7 @@ class Md extends Ts {
13940
13940
  * @param tension - Tension of the curve.
13941
13941
  */
13942
13942
  constructor(t = [], e = !1, s = "centripetal", o = 0.5) {
13943
- super(), this.isCatmullRomCurve3d = !0, this.type = "CatmullRomCurve3d", this._tmp = new Z(), this._px = new Ti(), this._py = new Ti(), this._pz = new Ti(), this._points = t.map((h) => new Y(h)), this._closed = e, this._curveType = s, this._tension = o;
13943
+ super(), this.isCatmullRomCurve3d = !0, this.type = "CatmullRomCurve3d", this._tmp = new Z(), this._px = new Mi(), this._py = new Mi(), this._pz = new Mi(), this._points = t.map((h) => new Y(h)), this._closed = e, this._curveType = s, this._tension = o;
13944
13944
  }
13945
13945
  /**
13946
13946
  * An array of 3D points defining the curve.
@@ -14010,8 +14010,8 @@ class Md extends Ts {
14010
14010
  this._closed || g > 0 ? f = o[(g - 1) % h] : (this._tmp.subVectors(o[0], o[1]).add(o[0]), f = new Y(this._tmp.x, this._tmp.y, this._tmp.z));
14011
14011
  const b = o[g % h], E = o[(g + 1) % h];
14012
14012
  if (this._closed || g + 2 < h ? w = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), w = new Y(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
14013
- const M = this._curveType === "chordal" ? 0.5 : 0.25;
14014
- let L = Math.pow(f.distanceToSquared(b), M), z = Math.pow(b.distanceToSquared(E), M), D = Math.pow(E.distanceToSquared(w), M);
14013
+ const T = this._curveType === "chordal" ? 0.5 : 0.25;
14014
+ let L = Math.pow(f.distanceToSquared(b), T), z = Math.pow(b.distanceToSquared(E), T), D = Math.pow(E.distanceToSquared(w), T);
14015
14015
  z < 1e-4 && (z = 1), L < 1e-4 && (L = z), D < 1e-4 && (D = z), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, w.x, L, z, D), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, w.y, L, z, D), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, w.z, L, z, D);
14016
14016
  } else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, w.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, w.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, w.z, this._tension));
14017
14017
  return s.set(
@@ -14195,7 +14195,7 @@ class On {
14195
14195
  static createFitPointsForClosedCurve(t) {
14196
14196
  if (t.length < 4)
14197
14197
  throw new Error("At least 4 points are required for a closed NURBS curve");
14198
- const e = new Md(
14198
+ const e = new Td(
14199
14199
  t,
14200
14200
  !0,
14201
14201
  "centripetal"
@@ -14210,7 +14210,7 @@ class On {
14210
14210
  return On.byPoints(o, e, s);
14211
14211
  }
14212
14212
  }
14213
- class mn extends Ts {
14213
+ class mn extends Ms {
14214
14214
  constructor(t, e, s, o, h) {
14215
14215
  super();
14216
14216
  const c = arguments.length;
@@ -14416,7 +14416,7 @@ class mn extends Ts {
14416
14416
  }
14417
14417
  var an = 256, Sh = [], Lo = 256, Ds;
14418
14418
  for (; an--; ) Sh[an] = (an + 256).toString(16).substring(1);
14419
- function Td(i) {
14419
+ function Md(i) {
14420
14420
  var t = 0, e = 11;
14421
14421
  if (!Ds || an + e > Lo * 2)
14422
14422
  for (Ds = "", an = 0; t < Lo; t++)
@@ -14436,7 +14436,7 @@ class pn {
14436
14436
  * ```
14437
14437
  */
14438
14438
  constructor(t, e) {
14439
- t = t || {}, ks(t, { objectId: Td() }), this._attrs = new eu(t, e);
14439
+ t = t || {}, ks(t, { objectId: Md() }), this._attrs = new eu(t, e);
14440
14440
  }
14441
14441
  /**
14442
14442
  * Gets the attributes object for this AcDbObject.
@@ -15072,7 +15072,7 @@ const Sa = class Sa extends Ee {
15072
15072
  Sa.typeName = "Curve";
15073
15073
  let ke = Sa;
15074
15074
  var Ss = /* @__PURE__ */ ((i) => (i[i.SimplePoly = 0] = "SimplePoly", i[i.FitCurvePoly = 1] = "FitCurvePoly", i[i.QuadSplinePoly = 2] = "QuadSplinePoly", i[i.CubicSplinePoly = 3] = "CubicSplinePoly", i))(Ss || {});
15075
- const Pa = class Pa extends ke {
15075
+ const Ia = class Ia extends ke {
15076
15076
  /**
15077
15077
  * Creates a new empty 2d polyline entity.
15078
15078
  */
@@ -15203,10 +15203,10 @@ const Pa = class Pa extends ke {
15203
15203
  ), t.lines(e, this.lineStyle);
15204
15204
  }
15205
15205
  };
15206
- Pa.typeName = "2dPolyline";
15207
- let Di = Pa;
15206
+ Ia.typeName = "2dPolyline";
15207
+ let Di = Ia;
15208
15208
  var Nd = /* @__PURE__ */ ((i) => (i[i.Vertex = 0] = "Vertex", i[i.CurveFitVertex = 1] = "CurveFitVertex", i[i.SplineFitVertex = 8] = "SplineFitVertex", i[i.SplineCtlVertex = 9] = "SplineCtlVertex", i))(Nd || {});
15209
- const Ia = class Ia extends Ee {
15209
+ const Pa = class Pa extends Ee {
15210
15210
  /**
15211
15211
  * Creates a new 2d vertex entity.
15212
15212
  */
@@ -15334,8 +15334,8 @@ const Ia = class Ia extends Ee {
15334
15334
  draw(t) {
15335
15335
  }
15336
15336
  };
15337
- Ia.typeName = "2dVertex";
15338
- let Oo = Ia;
15337
+ Pa.typeName = "2dVertex";
15338
+ let Oo = Pa;
15339
15339
  var $s = /* @__PURE__ */ ((i) => (i[i.SimplePoly = 0] = "SimplePoly", i[i.QuadSplinePoly = 1] = "QuadSplinePoly", i[i.CubicSplinePoly = 2] = "CubicSplinePoly", i))($s || {});
15340
15340
  const Ea = class Ea extends ke {
15341
15341
  /**
@@ -15509,7 +15509,7 @@ const ka = class ka extends Ee {
15509
15509
  };
15510
15510
  ka.typeName = "3dVertex";
15511
15511
  let zo = ka;
15512
- const Ma = class Ma extends ke {
15512
+ const Ta = class Ta extends ke {
15513
15513
  /**
15514
15514
  * Creates a new arc entity.
15515
15515
  *
@@ -15921,9 +15921,9 @@ const Ma = class Ma extends ke {
15921
15921
  return t.circularArc(this._geo, this.lineStyle);
15922
15922
  }
15923
15923
  };
15924
- Ma.typeName = "Arc";
15925
- let Vi = Ma;
15926
- const Ta = class Ta extends Ee {
15924
+ Ta.typeName = "Arc";
15925
+ let Vi = Ta;
15926
+ const Ma = class Ma extends Ee {
15927
15927
  /**
15928
15928
  * Creates a new block reference entity.
15929
15929
  *
@@ -16269,8 +16269,8 @@ const Ta = class Ta extends Ee {
16269
16269
  );
16270
16270
  }
16271
16271
  };
16272
- Ta.typeName = "BlockReference";
16273
- let ti = Ta;
16272
+ Ma.typeName = "BlockReference";
16273
+ let ti = Ma;
16274
16274
  const Na = class Na extends ke {
16275
16275
  /**
16276
16276
  * Creates a new circle entity.
@@ -17772,7 +17772,7 @@ const Ra = class Ra extends ke {
17772
17772
  };
17773
17773
  Ra.typeName = "Line";
17774
17774
  let qi = Ra;
17775
- var Ph = /* @__PURE__ */ ((i) => (i.ClosedFilled = "", i.Dot = "_DOT", i.DotSmall = "_DOTSMALL", i.DotBlank = "_DOTBLANK", i.Origin = "_ORIGIN", i.Origin2 = "_ORIGIN2", i.Open = "_OPEN", i.Open90 = "_OPEN90", i.Open30 = "_OPEN30", i.Closed = "_CLOSED", i.Small = "_SMALL", i.None = "_NONE", i.Oblique = "_OBLIQUE", i.BoxFilled = "_BOXFILLED", i.Box = "_BOXBLANK", i.ClosedBlank = "_CLOSEDBLANK", i.DatumBlank = "_DATUMBLANK", i.DatumFilled = "_DATUMFILLED", i.Integral = "_INTEGRAL", i.ArchTick = "_ARCHTICK", i))(Ph || {}), Gr = /* @__PURE__ */ ((i) => (i[i.LEFT_TO_RIGHT = 1] = "LEFT_TO_RIGHT", i[i.RIGHT_TO_LEFT = 2] = "RIGHT_TO_LEFT", i[i.TOP_TO_BOTTOM = 3] = "TOP_TO_BOTTOM", i[i.BOTTOM_TO_TOP = 4] = "BOTTOM_TO_TOP", i[i.BY_STYLE = 5] = "BY_STYLE", i))(Gr || {}), Ie = /* @__PURE__ */ ((i) => (i[i.TopLeft = 1] = "TopLeft", i[i.TopCenter = 2] = "TopCenter", i[i.TopRight = 3] = "TopRight", i[i.MiddleLeft = 4] = "MiddleLeft", i[i.MiddleCenter = 5] = "MiddleCenter", i[i.MiddleRight = 6] = "MiddleRight", i[i.BottomLeft = 7] = "BottomLeft", i[i.BottomCenter = 8] = "BottomCenter", i[i.BottomRight = 9] = "BottomRight", i))(Ie || {}), Ih = /* @__PURE__ */ ((i) => (i[i.OPTIMIZED_2D = 0] = "OPTIMIZED_2D", i[i.WIREFRAME = 1] = "WIREFRAME", i[i.HIDDEN_LINE = 2] = "HIDDEN_LINE", i[i.FLAT_SHADED = 3] = "FLAT_SHADED", i[i.GOURAUD_SHADED = 4] = "GOURAUD_SHADED", i[i.FLAT_SHADED_WITH_WIREFRAME = 5] = "FLAT_SHADED_WITH_WIREFRAME", i[i.GOURAUD_SHADED_WITH_WIREFRAME = 6] = "GOURAUD_SHADED_WITH_WIREFRAME", i))(Ih || {}), Eh = /* @__PURE__ */ ((i) => (i[i.NON_ORTHOGRAPHIC = 0] = "NON_ORTHOGRAPHIC", i[i.TOP = 1] = "TOP", i[i.BOTTOM = 2] = "BOTTOM", i[i.FRONT = 3] = "FRONT", i[i.BACK = 4] = "BACK", i[i.LEFT = 5] = "LEFT", i[i.RIGHT = 6] = "RIGHT", i))(Eh || {}), kh = /* @__PURE__ */ ((i) => (i[i.ONE_DISTANT_LIGHT = 0] = "ONE_DISTANT_LIGHT", i[i.TWO_DISTANT_LIGHTS = 1] = "TWO_DISTANT_LIGHTS", i))(kh || {});
17775
+ var Ih = /* @__PURE__ */ ((i) => (i.ClosedFilled = "", i.Dot = "_DOT", i.DotSmall = "_DOTSMALL", i.DotBlank = "_DOTBLANK", i.Origin = "_ORIGIN", i.Origin2 = "_ORIGIN2", i.Open = "_OPEN", i.Open90 = "_OPEN90", i.Open30 = "_OPEN30", i.Closed = "_CLOSED", i.Small = "_SMALL", i.None = "_NONE", i.Oblique = "_OBLIQUE", i.BoxFilled = "_BOXFILLED", i.Box = "_BOXBLANK", i.ClosedBlank = "_CLOSEDBLANK", i.DatumBlank = "_DATUMBLANK", i.DatumFilled = "_DATUMFILLED", i.Integral = "_INTEGRAL", i.ArchTick = "_ARCHTICK", i))(Ih || {}), Gr = /* @__PURE__ */ ((i) => (i[i.LEFT_TO_RIGHT = 1] = "LEFT_TO_RIGHT", i[i.RIGHT_TO_LEFT = 2] = "RIGHT_TO_LEFT", i[i.TOP_TO_BOTTOM = 3] = "TOP_TO_BOTTOM", i[i.BOTTOM_TO_TOP = 4] = "BOTTOM_TO_TOP", i[i.BY_STYLE = 5] = "BY_STYLE", i))(Gr || {}), Pe = /* @__PURE__ */ ((i) => (i[i.TopLeft = 1] = "TopLeft", i[i.TopCenter = 2] = "TopCenter", i[i.TopRight = 3] = "TopRight", i[i.MiddleLeft = 4] = "MiddleLeft", i[i.MiddleCenter = 5] = "MiddleCenter", i[i.MiddleRight = 6] = "MiddleRight", i[i.BottomLeft = 7] = "BottomLeft", i[i.BottomCenter = 8] = "BottomCenter", i[i.BottomRight = 9] = "BottomRight", i))(Pe || {}), Ph = /* @__PURE__ */ ((i) => (i[i.OPTIMIZED_2D = 0] = "OPTIMIZED_2D", i[i.WIREFRAME = 1] = "WIREFRAME", i[i.HIDDEN_LINE = 2] = "HIDDEN_LINE", i[i.FLAT_SHADED = 3] = "FLAT_SHADED", i[i.GOURAUD_SHADED = 4] = "GOURAUD_SHADED", i[i.FLAT_SHADED_WITH_WIREFRAME = 5] = "FLAT_SHADED_WITH_WIREFRAME", i[i.GOURAUD_SHADED_WITH_WIREFRAME = 6] = "GOURAUD_SHADED_WITH_WIREFRAME", i))(Ph || {}), Eh = /* @__PURE__ */ ((i) => (i[i.NON_ORTHOGRAPHIC = 0] = "NON_ORTHOGRAPHIC", i[i.TOP = 1] = "TOP", i[i.BOTTOM = 2] = "BOTTOM", i[i.FRONT = 3] = "FRONT", i[i.BACK = 4] = "BACK", i[i.LEFT = 5] = "LEFT", i[i.RIGHT = 6] = "RIGHT", i))(Eh || {}), kh = /* @__PURE__ */ ((i) => (i[i.ONE_DISTANT_LIGHT = 0] = "ONE_DISTANT_LIGHT", i[i.TWO_DISTANT_LIGHTS = 1] = "TWO_DISTANT_LIGHTS", i))(kh || {});
17776
17776
  class xa {
17777
17777
  constructor() {
17778
17778
  this._number = -1, this._id = "", this._groupId = "", this._centerPoint = new Y(), this._height = 0, this._width = 0, this._viewCenter = new Y(), this._viewHeight = 0;
@@ -17911,7 +17911,7 @@ const Fa = class Fa extends Ee {
17911
17911
  * ```
17912
17912
  */
17913
17913
  constructor() {
17914
- super(), this._contents = "", this._height = 0, this._width = 0, this._lineSpacingFactor = 0.25, this._lineSpacingStyle = 0, this._backgroundFill = !1, this._backgroundFillColor = 13158600, this._backgroundFillTransparency = 1, this._backgroundScaleFactor = 1, this._rotation = 0, this._styleName = "", this._location = new Y(), this._attachmentPoint = Ie.TopLeft, this._direction = new Z(1, 0, 0), this._drawingDirection = Gr.LEFT_TO_RIGHT;
17914
+ super(), this._contents = "", this._height = 0, this._width = 0, this._lineSpacingFactor = 0.25, this._lineSpacingStyle = 0, this._backgroundFill = !1, this._backgroundFillColor = 13158600, this._backgroundFillTransparency = 1, this._backgroundScaleFactor = 1, this._rotation = 0, this._styleName = "", this._location = new Y(), this._attachmentPoint = Pe.TopLeft, this._direction = new Z(1, 0, 0), this._drawingDirection = Gr.LEFT_TO_RIGHT;
17915
17915
  }
17916
17916
  /**
17917
17917
  * Gets the contents of the mtext object.
@@ -18174,15 +18174,15 @@ const Fa = class Fa extends Ee {
18174
18174
  type: "enum",
18175
18175
  editable: !0,
18176
18176
  options: [
18177
- { label: Ie[1], value: 1 },
18178
- { label: Ie[2], value: 2 },
18179
- { label: Ie[3], value: 3 },
18180
- { label: Ie[4], value: 4 },
18181
- { label: Ie[5], value: 5 },
18182
- { label: Ie[6], value: 6 },
18183
- { label: Ie[7], value: 7 },
18184
- { label: Ie[8], value: 8 },
18185
- { label: Ie[9], value: 9 }
18177
+ { label: Pe[1], value: 1 },
18178
+ { label: Pe[2], value: 2 },
18179
+ { label: Pe[3], value: 3 },
18180
+ { label: Pe[4], value: 4 },
18181
+ { label: Pe[5], value: 5 },
18182
+ { label: Pe[6], value: 6 },
18183
+ { label: Pe[7], value: 7 },
18184
+ { label: Pe[8], value: 8 },
18185
+ { label: Pe[9], value: 9 }
18186
18186
  ],
18187
18187
  accessor: {
18188
18188
  get: () => this.attachmentPoint,
@@ -18460,7 +18460,7 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18460
18460
  * @param numColumns - The number of columns in the table
18461
18461
  */
18462
18462
  constructor(t, e, s) {
18463
- super(t), this._attachmentPoint = Ie.TopLeft, this._numColumns = s, this._numRows = e, this._columnWidth = new Array(s), this._rowHeight = new Array(e), this._cells = new Array(e * s);
18463
+ super(t), this._attachmentPoint = Pe.TopLeft, this._numColumns = s, this._numRows = e, this._columnWidth = new Array(s), this._rowHeight = new Array(e), this._cells = new Array(e * s);
18464
18464
  }
18465
18465
  /**
18466
18466
  * Gets or sets the cell alignment value for this table.
@@ -18647,8 +18647,8 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18647
18647
  let c = 0;
18648
18648
  for (let E = 0; E <= this.numRows; E++) {
18649
18649
  e -= E > 0 ? this.rowHeight(E - 1) : 0, s = 0;
18650
- for (let M = 0; M <= this.numColumns; M++)
18651
- s += M > 0 ? this.columnWidth(M - 1) : 0, h[c++] = s, h[c++] = e, h[c++] = 0;
18650
+ for (let T = 0; T <= this.numColumns; T++)
18651
+ s += T > 0 ? this.columnWidth(T - 1) : 0, h[c++] = s, h[c++] = e, h[c++] = 0;
18652
18652
  }
18653
18653
  const g = [], x = new Array(this.numRows * this.numColumns).fill(
18654
18654
  !1
@@ -18657,10 +18657,10 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18657
18657
  let f = 0;
18658
18658
  for (let E = 0; E < this.numColumns; E++) {
18659
18659
  s += E > 0 ? this.columnWidth(E - 1) : 0, e = 0;
18660
- for (let M = 0; M < this.numRows; M++) {
18661
- e += M > 0 ? this.rowHeight(M - 1) : 0;
18662
- const L = this.cell(M * this.numColumns + E);
18663
- if (f = M * this.numColumns + E, L && !x[f]) {
18660
+ for (let T = 0; T < this.numRows; T++) {
18661
+ e += T > 0 ? this.rowHeight(T - 1) : 0;
18662
+ const L = this.cell(T * this.numColumns + E);
18663
+ if (f = T * this.numColumns + E, L && !x[f]) {
18664
18664
  const z = L.borderWidth ?? 1, D = L.borderHeight ?? 1;
18665
18665
  this.fillVisited(
18666
18666
  x,
@@ -18668,12 +18668,12 @@ const Rd = /* @__PURE__ */ new Z(), Da = class Da extends ti {
18668
18668
  this.numColumns,
18669
18669
  z,
18670
18670
  D
18671
- ), o[c++] = E + M * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1) + z;
18672
- const B = h[o[c - 1] * 3] - s, dt = E + (M + D) * (this.numColumns + 1) + z;
18673
- E + z == this.numColumns && (o[c++] = E + M * (this.numColumns + 1) + z, o[c++] = dt);
18671
+ ), o[c++] = E + T * (this.numColumns + 1), o[c++] = E + T * (this.numColumns + 1) + z;
18672
+ const B = h[o[c - 1] * 3] - s, dt = E + (T + D) * (this.numColumns + 1) + z;
18673
+ E + z == this.numColumns && (o[c++] = E + T * (this.numColumns + 1) + z, o[c++] = dt);
18674
18674
  const vt = -h[dt * 3 + 1] - e;
18675
- if (M + D == this.numRows && (o[c++] = E + (M + D) * (this.numColumns + 1) + D, o[c++] = E + (M + D) * (this.numColumns + 1)), o[c++] = E + (M + D) * (this.numColumns + 1), o[c++] = E + M * (this.numColumns + 1), L.text) {
18676
- const ot = L.attachmentPoint || this.attachmentPoint || Ie.MiddleCenter, W = this.getTableTextOffset(
18675
+ if (T + D == this.numRows && (o[c++] = E + (T + D) * (this.numColumns + 1) + D, o[c++] = E + (T + D) * (this.numColumns + 1)), o[c++] = E + (T + D) * (this.numColumns + 1), o[c++] = E + T * (this.numColumns + 1), L.text) {
18676
+ const ot = L.attachmentPoint || this.attachmentPoint || Pe.MiddleCenter, W = this.getTableTextOffset(
18677
18677
  ot,
18678
18678
  B,
18679
18679
  vt
@@ -19276,7 +19276,7 @@ const Ua = class Ua extends Ee {
19276
19276
  rotation: this.rotation,
19277
19277
  // MText draw text from top to bottom.
19278
19278
  drawingDirection: Gr.BOTTOM_TO_TOP,
19279
- attachmentPoint: Ie.BottomLeft
19279
+ attachmentPoint: Pe.BottomLeft
19280
19280
  }, o = { ...this.getTextStyle(), color: this.rgbColor };
19281
19281
  return t.mtext(s, o, e);
19282
19282
  }
@@ -21250,7 +21250,7 @@ const Ka = class Ka extends Ee {
21250
21250
  */
21251
21251
  getArrowName(t) {
21252
21252
  const e = this.database.tables.blockTable.getIdAt(t);
21253
- return e ? e.name.toUpperCase() : Ph.Closed;
21253
+ return e ? e.name.toUpperCase() : Ih.Closed;
21254
21254
  }
21255
21255
  };
21256
21256
  Ka.typeName = "Dimension";
@@ -22332,7 +22332,7 @@ class Do {
22332
22332
  });
22333
22333
  }), e.add(x);
22334
22334
  } else {
22335
- const g = h, x = new Id();
22335
+ const g = h, x = new Pd();
22336
22336
  g.edges.forEach((f) => {
22337
22337
  if (f.type == 1) {
22338
22338
  const w = f;
@@ -22340,7 +22340,7 @@ class Do {
22340
22340
  } else if (f.type == 2) {
22341
22341
  const w = f;
22342
22342
  x.add(
22343
- new Is(
22343
+ new Ps(
22344
22344
  w.center,
22345
22345
  w.radius,
22346
22346
  kt.degToRad(w.startAngle || 0),
@@ -22353,14 +22353,14 @@ class Do {
22353
22353
  new Zt().subVectors(w.end, w.center);
22354
22354
  const E = Math.sqrt(
22355
22355
  Math.pow(w.end.x, 2) + Math.pow(w.end.y, 2)
22356
- ), M = E * w.lengthOfMinorAxis;
22356
+ ), T = E * w.lengthOfMinorAxis;
22357
22357
  let L = kt.degToRad(w.startAngle || 0), z = kt.degToRad(w.endAngle || 0);
22358
22358
  const D = Math.atan2(w.end.y, w.end.x);
22359
22359
  w.isCCW || (L = Math.PI * 2 - L, z = Math.PI * 2 - z), x.add(
22360
22360
  new _a(
22361
22361
  { ...w.center, z: 0 },
22362
22362
  E,
22363
- M,
22363
+ T,
22364
22364
  L,
22365
22365
  z,
22366
22366
  !w.isCCW,
@@ -22378,12 +22378,12 @@ class Do {
22378
22378
  })
22379
22379
  );
22380
22380
  let E = !0;
22381
- const M = w.controlPoints.map((L) => (L.weight == null && (E = !1), L.weight || 1));
22381
+ const T = w.controlPoints.map((L) => (L.weight == null && (E = !1), L.weight || 1));
22382
22382
  x.add(
22383
22383
  new mn(
22384
22384
  b,
22385
22385
  w.knots,
22386
- E ? M : void 0
22386
+ E ? T : void 0
22387
22387
  )
22388
22388
  );
22389
22389
  } else if (w.numberOfFitData > 0) {
@@ -22564,6 +22564,229 @@ class Do {
22564
22564
  return h;
22565
22565
  }
22566
22566
  }
22567
+ class Fn extends pn {
22568
+ /**
22569
+ * Creates a new AcDbSymbolTableRecord instance.
22570
+ *
22571
+ * @param attrs - Input attribute values for this symbol table record
22572
+ * @param defaultAttrs - Default values for attributes of this symbol table record
22573
+ *
22574
+ * @example
22575
+ * ```typescript
22576
+ * const record = new AcDbSymbolTableRecord({ name: 'MyRecord' });
22577
+ * ```
22578
+ */
22579
+ constructor(t, e) {
22580
+ t = t || {}, ks(t, { name: "" }), super(t, e);
22581
+ }
22582
+ /**
22583
+ * Gets or sets the name of the symbol table record.
22584
+ *
22585
+ * This property corresponds to DXF group code 2 and is used for
22586
+ * identifying and referencing the symbol table record.
22587
+ *
22588
+ * @returns The name of the symbol table record
22589
+ *
22590
+ * @example
22591
+ * ```typescript
22592
+ * const recordName = record.name;
22593
+ * record.name = 'NewRecordName';
22594
+ * ```
22595
+ */
22596
+ get name() {
22597
+ return this.getAttr("name");
22598
+ }
22599
+ set name(t) {
22600
+ this.setAttr("name", t);
22601
+ }
22602
+ }
22603
+ const jr = class jr extends Fn {
22604
+ /**
22605
+ * Returns true if the specified name is the name of the model space block table record.
22606
+ *
22607
+ * Model space is the primary drawing area where most entities are created.
22608
+ *
22609
+ * @param name - The name of one block table record.
22610
+ * @returns True if the specified name is the name of the model space block table record.
22611
+ *
22612
+ * @example
22613
+ * ```typescript
22614
+ * if (AcDbBlockTableRecord.isModelSapceName('*Model_Space')) {
22615
+ * console.log('This is the name of the model space block table record.');
22616
+ * }
22617
+ * ```
22618
+ */
22619
+ static isModelSapceName(t) {
22620
+ return t.toLowerCase() == jr.MODEL_SPACE_NAME.toLowerCase();
22621
+ }
22622
+ /**
22623
+ * Returns true if the specified name is the name of a paper space block table record.
22624
+ *
22625
+ * Paper space is used for creating layouts for printing and plotting.
22626
+ *
22627
+ * @param name - The name of one block table record.
22628
+ * @returns True if the specified name is the name of a paper space block table record.
22629
+ *
22630
+ * @example
22631
+ * ```typescript
22632
+ * if (AcDbBlockTableRecord.isPaperSapceName('*Paper_Space1')) {
22633
+ * console.log('This is the name of the paper space block table record.');
22634
+ * }
22635
+ * ```
22636
+ */
22637
+ static isPaperSapceName(t) {
22638
+ return t.toLowerCase().startsWith(jr.PAPER_SPACE_NAME_PREFIX.toLowerCase());
22639
+ }
22640
+ /**
22641
+ * Creates a new AcDbBlockTableRecord instance.
22642
+ *
22643
+ * @example
22644
+ * ```typescript
22645
+ * const blockRecord = new AcDbBlockTableRecord();
22646
+ * ```
22647
+ */
22648
+ constructor() {
22649
+ super(), this._origin = new Y(), this._layoutId = "", this._entities = /* @__PURE__ */ new Map();
22650
+ }
22651
+ /**
22652
+ * Returns true if this is a model space block table record.
22653
+ *
22654
+ * Model space is the primary drawing area where most entities are created.
22655
+ *
22656
+ * @returns True if this is a model space block table record
22657
+ *
22658
+ * @example
22659
+ * ```typescript
22660
+ * if (blockRecord.isModelSapce) {
22661
+ * console.log('This is model space');
22662
+ * }
22663
+ * ```
22664
+ */
22665
+ get isModelSapce() {
22666
+ return jr.isModelSapceName(this.name);
22667
+ }
22668
+ /**
22669
+ * Returns true if this is a paper space block table record.
22670
+ *
22671
+ * Paper space is used for creating layouts for printing and plotting.
22672
+ *
22673
+ * @returns True if this is a paper space block table record
22674
+ *
22675
+ * @example
22676
+ * ```typescript
22677
+ * if (blockRecord.isPaperSapce) {
22678
+ * console.log('This is paper space');
22679
+ * }
22680
+ * ```
22681
+ */
22682
+ get isPaperSapce() {
22683
+ return jr.isPaperSapceName(this.name);
22684
+ }
22685
+ /**
22686
+ * Gets or sets the base point of the block in WCS coordinates.
22687
+ *
22688
+ * This point is the origin of the MCS (Model Coordinate System), which is the
22689
+ * local WCS for the entities within the block table record.
22690
+ *
22691
+ * @returns The origin point of the block
22692
+ *
22693
+ * @example
22694
+ * ```typescript
22695
+ * const origin = blockRecord.origin;
22696
+ * blockRecord.origin = new AcGePoint3d(10, 20, 0);
22697
+ * ```
22698
+ */
22699
+ get origin() {
22700
+ return this._origin;
22701
+ }
22702
+ set origin(t) {
22703
+ this._origin.copy(t);
22704
+ }
22705
+ /**
22706
+ * Gets or sets the object ID of the associated AcDbLayout object in the Layouts dictionary.
22707
+ *
22708
+ * This property links the block table record to its corresponding layout object,
22709
+ * which defines the viewport configuration and display settings for the block.
22710
+ * For model space blocks, this is typically empty, while paper space blocks
22711
+ * have a corresponding layout ID.
22712
+ *
22713
+ * @returns The object ID of the associated layout
22714
+ *
22715
+ * @example
22716
+ * ```typescript
22717
+ * const layoutId = blockRecord.layoutId;
22718
+ * blockRecord.layoutId = 'some-layout-object-id';
22719
+ * ```
22720
+ */
22721
+ get layoutId() {
22722
+ return this._layoutId;
22723
+ }
22724
+ set layoutId(t) {
22725
+ this._layoutId = t;
22726
+ }
22727
+ /**
22728
+ * Appends the specified entity or entities to this block table record.
22729
+ *
22730
+ * This method adds an entity to the block and sets up the necessary
22731
+ * relationships between the entity and the block table record.
22732
+ *
22733
+ * @param entity - The entity or entities to append to this block table record
22734
+ *
22735
+ * @example
22736
+ * ```typescript
22737
+ * const line = new AcDbLine();
22738
+ * blockRecord.appendEntity(line);
22739
+ * ```
22740
+ */
22741
+ appendEntity(t) {
22742
+ if (Array.isArray(t))
22743
+ for (let e = 0; e < t.length; ++e) {
22744
+ const s = t[e];
22745
+ s.database = this.database, s.ownerId = this.objectId, this._entities.set(s.objectId, s);
22746
+ }
22747
+ else
22748
+ t.database = this.database, t.ownerId = this.objectId, this._entities.set(t.objectId, t);
22749
+ (this.isModelSapce || this.isPaperSapce) && this.database.events.entityAppended.dispatch({
22750
+ database: this.database,
22751
+ entity: t
22752
+ });
22753
+ }
22754
+ /**
22755
+ * Creates an iterator object that can be used to iterate over the entities in the block table record.
22756
+ *
22757
+ * @returns An iterator object that can be used to iterate over the entities
22758
+ *
22759
+ * @example
22760
+ * ```typescript
22761
+ * const iterator = blockRecord.newIterator();
22762
+ * for (const entity of iterator) {
22763
+ * console.log('Entity:', entity.type);
22764
+ * }
22765
+ * ```
22766
+ */
22767
+ newIterator() {
22768
+ return new ua(this._entities);
22769
+ }
22770
+ /**
22771
+ * Searches for an entity in this block table record with the specified ID.
22772
+ *
22773
+ * @param id - The entity ID to search for
22774
+ * @returns The entity with the specified ID, or undefined if not found
22775
+ *
22776
+ * @example
22777
+ * ```typescript
22778
+ * const entity = blockRecord.getIdAt('some-entity-id');
22779
+ * if (entity) {
22780
+ * console.log('Found entity:', entity.type);
22781
+ * }
22782
+ * ```
22783
+ */
22784
+ getIdAt(t) {
22785
+ return this._entities.get(t);
22786
+ }
22787
+ };
22788
+ jr.MODEL_SPACE_NAME = "*MODEL_SPACE", jr.PAPER_SPACE_NAME_PREFIX = "*PAPER_SPACE";
22789
+ let Ge = jr;
22567
22790
  class ba extends pn {
22568
22791
  /**
22569
22792
  * Creates a new AcDbLayout instance.
@@ -22750,7 +22973,7 @@ class ba extends pn {
22750
22973
  this._extents.copy(t);
22751
22974
  }
22752
22975
  }
22753
- class Mh extends pn {
22976
+ class Th extends pn {
22754
22977
  /**
22755
22978
  * Creates a new AcDbDictionary instance.
22756
22979
  *
@@ -22941,7 +23164,7 @@ class Mh extends pn {
22941
23164
  return new ua(this._recordsByName);
22942
23165
  }
22943
23166
  }
22944
- class Gd extends Mh {
23167
+ class Gd extends Th {
22945
23168
  /**
22946
23169
  * Searches the dictionary for a layout associated with the specified block table record ID.
22947
23170
  *
@@ -23032,9 +23255,14 @@ class Wd {
23032
23255
  * ```
23033
23256
  */
23034
23257
  convertLayout(t, e) {
23035
- var o;
23258
+ var o, h;
23036
23259
  const s = new ba();
23037
- return s.layoutName = t.layoutName, s.tabOrder = t.tabOrder, (o = e.tables.BLOCK_RECORD) == null || o.entries.some((h) => h.layoutObjects === t.handle ? (s.blockTableRecordId = h.handle, !0) : !1), s.limits.min.copy(t.minLimit), s.limits.max.copy(t.maxLimit), s.extents.min.copy(t.minExtent), s.extents.max.copy(t.maxExtent), this.processCommonAttrs(t, s), s;
23260
+ if (s.layoutName = t.layoutName, s.tabOrder = t.tabOrder, t.layoutName === "Model") {
23261
+ const c = Ge.MODEL_SPACE_NAME;
23262
+ (o = e.tables.BLOCK_RECORD) == null || o.entries.some((g) => g.name.toUpperCase() === c ? (s.blockTableRecordId = g.handle, !0) : !1);
23263
+ } else
23264
+ (h = e.tables.BLOCK_RECORD) == null || h.entries.some((c) => c.layoutObjects === t.handle ? (s.blockTableRecordId = c.handle, !0) : !1), s.blockTableRecordId || (s.blockTableRecordId = t.paperSpaceTableId);
23265
+ return s.limits.min.copy(t.minLimit), s.limits.max.copy(t.maxLimit), s.extents.min.copy(t.minExtent), s.extents.max.copy(t.maxExtent), this.processCommonAttrs(t, s), s;
23038
23266
  }
23039
23267
  /**
23040
23268
  * Converts a DXF image definition object to an AcDbRasterImageDef.
@@ -23119,11 +23347,11 @@ class Hd {
23119
23347
  timeout: x
23120
23348
  });
23121
23349
  const f = (b) => {
23122
- const { id: E, success: M, data: L, error: z } = b.data;
23350
+ const { id: E, success: T, data: L, error: z } = b.data;
23123
23351
  if (E !== t) return;
23124
23352
  this.cleanupTask(t);
23125
23353
  const D = Date.now() - o;
23126
- h(M ? {
23354
+ h(T ? {
23127
23355
  success: !0,
23128
23356
  data: L,
23129
23357
  duration: D
@@ -23246,7 +23474,7 @@ class Yd {
23246
23474
  function qd(i) {
23247
23475
  return new Yd(i);
23248
23476
  }
23249
- class I0 {
23477
+ class P0 {
23250
23478
  constructor() {
23251
23479
  this.setupMessageHandler();
23252
23480
  }
@@ -23426,12 +23654,12 @@ class Xd extends Zo {
23426
23654
  this.config.convertByEntityType && (g = this.groupAndFlattenByType(g));
23427
23655
  const w = e.tables.blockTable.modelSpace;
23428
23656
  await f.processChunk(async (b, E) => {
23429
- let M = [], L = b < E ? g[b].type : "";
23657
+ let T = [], L = b < E ? g[b].type : "";
23430
23658
  for (let z = b; z < E; z++) {
23431
23659
  const D = g[z], B = c.convert(D);
23432
- B && (this.config.convertByEntityType && D.type !== L && (w.appendEntity(M), M = [], L = D.type), M.push(B));
23660
+ B && (this.config.convertByEntityType && D.type !== L && (w.appendEntity(T), T = [], L = D.type), T.push(B));
23433
23661
  }
23434
- if (w.appendEntity(M), h) {
23662
+ if (w.appendEntity(T), h) {
23435
23663
  let z = o.value + E / x * (100 - o.value);
23436
23664
  z > 100 && (z = 100), await h(z, "ENTITY", "IN-PROGRESS");
23437
23665
  }
@@ -23477,7 +23705,7 @@ class Xd extends Zo {
23477
23705
  const s = t.blocks;
23478
23706
  for (const [o, h] of Object.entries(s)) {
23479
23707
  let c = e.tables.blockTable.getAt(h.name);
23480
- c || (c = new He(), c.objectId = h.handle, c.name = o, c.origin.copy(h.position), e.tables.blockTable.add(c)), h.entities && this.processEntitiesInBlock(h.entities, c);
23708
+ c || (c = new Ge(), c.objectId = h.handle, c.name = o, c.origin.copy(h.position), e.tables.blockTable.add(c)), h.entities && this.processEntitiesInBlock(h.entities, c);
23481
23709
  }
23482
23710
  }
23483
23711
  /**
@@ -23516,7 +23744,7 @@ class Xd extends Zo {
23516
23744
  var o;
23517
23745
  const s = (o = t.tables.BLOCK_RECORD) == null ? void 0 : o.entries;
23518
23746
  s && s.length > 0 && (e.tables.blockTable.removeAll(), s.forEach((h) => {
23519
- const c = new He();
23747
+ const c = new Ge();
23520
23748
  c.objectId = h.handle, c.name = h.name, c.layoutId = h.layoutObjects, e.tables.blockTable.add(c);
23521
23749
  }));
23522
23750
  }
@@ -23652,7 +23880,7 @@ class Xd extends Zo {
23652
23880
  var o;
23653
23881
  const s = (o = t.tables.STYLE) == null ? void 0 : o.entries;
23654
23882
  s && s.length > 0 && s.forEach((h) => {
23655
- const c = new Th(h);
23883
+ const c = new Mh(h);
23656
23884
  this.processCommonTableEntryAttrs(h, c), e.tables.textStyleTable.add(c);
23657
23885
  });
23658
23886
  }
@@ -23834,10 +24062,10 @@ class Kd extends Zo {
23834
24062
  this.config.convertByEntityType && (c = this.groupAndFlattenByType(c));
23835
24063
  const f = e.tables.blockTable.modelSpace;
23836
24064
  await x.processChunk(async (w, b) => {
23837
- let E = [], M = w < b ? c[w].type : "";
24065
+ let E = [], T = w < b ? c[w].type : "";
23838
24066
  for (let L = w; L < b; L++) {
23839
24067
  const z = c[L];
23840
- this.config.convertByEntityType && z.type !== M && (this.triggerEvents(f, E), E = [], M = z.type), E.push(z);
24068
+ this.config.convertByEntityType && z.type !== T && (this.triggerEvents(f, E), E = [], T = z.type), E.push(z);
23841
24069
  }
23842
24070
  if (this.triggerEvents(f, E), h) {
23843
24071
  let L = o.value + b / g * (100 - o.value);
@@ -24052,229 +24280,6 @@ class kr {
24052
24280
  }));
24053
24281
  }
24054
24282
  }
24055
- class Fn extends pn {
24056
- /**
24057
- * Creates a new AcDbSymbolTableRecord instance.
24058
- *
24059
- * @param attrs - Input attribute values for this symbol table record
24060
- * @param defaultAttrs - Default values for attributes of this symbol table record
24061
- *
24062
- * @example
24063
- * ```typescript
24064
- * const record = new AcDbSymbolTableRecord({ name: 'MyRecord' });
24065
- * ```
24066
- */
24067
- constructor(t, e) {
24068
- t = t || {}, ks(t, { name: "" }), super(t, e);
24069
- }
24070
- /**
24071
- * Gets or sets the name of the symbol table record.
24072
- *
24073
- * This property corresponds to DXF group code 2 and is used for
24074
- * identifying and referencing the symbol table record.
24075
- *
24076
- * @returns The name of the symbol table record
24077
- *
24078
- * @example
24079
- * ```typescript
24080
- * const recordName = record.name;
24081
- * record.name = 'NewRecordName';
24082
- * ```
24083
- */
24084
- get name() {
24085
- return this.getAttr("name");
24086
- }
24087
- set name(t) {
24088
- this.setAttr("name", t);
24089
- }
24090
- }
24091
- const jr = class jr extends Fn {
24092
- /**
24093
- * Returns true if the specified name is the name of the model space block table record.
24094
- *
24095
- * Model space is the primary drawing area where most entities are created.
24096
- *
24097
- * @param name - The name of one block table record.
24098
- * @returns True if the specified name is the name of the model space block table record.
24099
- *
24100
- * @example
24101
- * ```typescript
24102
- * if (AcDbBlockTableRecord.isModelSapceName('*Model_Space')) {
24103
- * console.log('This is the name of the model space block table record.');
24104
- * }
24105
- * ```
24106
- */
24107
- static isModelSapceName(t) {
24108
- return t.toLowerCase() == jr.MODEL_SPACE_NAME.toLowerCase();
24109
- }
24110
- /**
24111
- * Returns true if the specified name is the name of a paper space block table record.
24112
- *
24113
- * Paper space is used for creating layouts for printing and plotting.
24114
- *
24115
- * @param name - The name of one block table record.
24116
- * @returns True if the specified name is the name of a paper space block table record.
24117
- *
24118
- * @example
24119
- * ```typescript
24120
- * if (AcDbBlockTableRecord.isPaperSapceName('*Paper_Space1')) {
24121
- * console.log('This is the name of the paper space block table record.');
24122
- * }
24123
- * ```
24124
- */
24125
- static isPaperSapceName(t) {
24126
- return t.toLowerCase().startsWith(jr.PAPER_SPACE_NAME_PREFIX.toLowerCase());
24127
- }
24128
- /**
24129
- * Creates a new AcDbBlockTableRecord instance.
24130
- *
24131
- * @example
24132
- * ```typescript
24133
- * const blockRecord = new AcDbBlockTableRecord();
24134
- * ```
24135
- */
24136
- constructor() {
24137
- super(), this._origin = new Y(), this._layoutId = "", this._entities = /* @__PURE__ */ new Map();
24138
- }
24139
- /**
24140
- * Returns true if this is a model space block table record.
24141
- *
24142
- * Model space is the primary drawing area where most entities are created.
24143
- *
24144
- * @returns True if this is a model space block table record
24145
- *
24146
- * @example
24147
- * ```typescript
24148
- * if (blockRecord.isModelSapce) {
24149
- * console.log('This is model space');
24150
- * }
24151
- * ```
24152
- */
24153
- get isModelSapce() {
24154
- return jr.isModelSapceName(this.name);
24155
- }
24156
- /**
24157
- * Returns true if this is a paper space block table record.
24158
- *
24159
- * Paper space is used for creating layouts for printing and plotting.
24160
- *
24161
- * @returns True if this is a paper space block table record
24162
- *
24163
- * @example
24164
- * ```typescript
24165
- * if (blockRecord.isPaperSapce) {
24166
- * console.log('This is paper space');
24167
- * }
24168
- * ```
24169
- */
24170
- get isPaperSapce() {
24171
- return jr.isPaperSapceName(this.name);
24172
- }
24173
- /**
24174
- * Gets or sets the base point of the block in WCS coordinates.
24175
- *
24176
- * This point is the origin of the MCS (Model Coordinate System), which is the
24177
- * local WCS for the entities within the block table record.
24178
- *
24179
- * @returns The origin point of the block
24180
- *
24181
- * @example
24182
- * ```typescript
24183
- * const origin = blockRecord.origin;
24184
- * blockRecord.origin = new AcGePoint3d(10, 20, 0);
24185
- * ```
24186
- */
24187
- get origin() {
24188
- return this._origin;
24189
- }
24190
- set origin(t) {
24191
- this._origin.copy(t);
24192
- }
24193
- /**
24194
- * Gets or sets the object ID of the associated AcDbLayout object in the Layouts dictionary.
24195
- *
24196
- * This property links the block table record to its corresponding layout object,
24197
- * which defines the viewport configuration and display settings for the block.
24198
- * For model space blocks, this is typically empty, while paper space blocks
24199
- * have a corresponding layout ID.
24200
- *
24201
- * @returns The object ID of the associated layout
24202
- *
24203
- * @example
24204
- * ```typescript
24205
- * const layoutId = blockRecord.layoutId;
24206
- * blockRecord.layoutId = 'some-layout-object-id';
24207
- * ```
24208
- */
24209
- get layoutId() {
24210
- return this._layoutId;
24211
- }
24212
- set layoutId(t) {
24213
- this._layoutId = t;
24214
- }
24215
- /**
24216
- * Appends the specified entity or entities to this block table record.
24217
- *
24218
- * This method adds an entity to the block and sets up the necessary
24219
- * relationships between the entity and the block table record.
24220
- *
24221
- * @param entity - The entity or entities to append to this block table record
24222
- *
24223
- * @example
24224
- * ```typescript
24225
- * const line = new AcDbLine();
24226
- * blockRecord.appendEntity(line);
24227
- * ```
24228
- */
24229
- appendEntity(t) {
24230
- if (Array.isArray(t))
24231
- for (let e = 0; e < t.length; ++e) {
24232
- const s = t[e];
24233
- s.database = this.database, s.ownerId = this.objectId, this._entities.set(s.objectId, s);
24234
- }
24235
- else
24236
- t.database = this.database, t.ownerId = this.objectId, this._entities.set(t.objectId, t);
24237
- (this.isModelSapce || this.isPaperSapce) && this.database.events.entityAppended.dispatch({
24238
- database: this.database,
24239
- entity: t
24240
- });
24241
- }
24242
- /**
24243
- * Creates an iterator object that can be used to iterate over the entities in the block table record.
24244
- *
24245
- * @returns An iterator object that can be used to iterate over the entities
24246
- *
24247
- * @example
24248
- * ```typescript
24249
- * const iterator = blockRecord.newIterator();
24250
- * for (const entity of iterator) {
24251
- * console.log('Entity:', entity.type);
24252
- * }
24253
- * ```
24254
- */
24255
- newIterator() {
24256
- return new ua(this._entities);
24257
- }
24258
- /**
24259
- * Searches for an entity in this block table record with the specified ID.
24260
- *
24261
- * @param id - The entity ID to search for
24262
- * @returns The entity with the specified ID, or undefined if not found
24263
- *
24264
- * @example
24265
- * ```typescript
24266
- * const entity = blockRecord.getIdAt('some-entity-id');
24267
- * if (entity) {
24268
- * console.log('Found entity:', entity.type);
24269
- * }
24270
- * ```
24271
- */
24272
- getIdAt(t) {
24273
- return this._entities.get(t);
24274
- }
24275
- };
24276
- jr.MODEL_SPACE_NAME = "*MODEL_SPACE", jr.PAPER_SPACE_NAME_PREFIX = "*PAPER_SPACE";
24277
- let He = jr;
24278
24283
  class Bn extends pn {
24279
24284
  /**
24280
24285
  * Creates a new AcDbSymbolTable instance.
@@ -24509,8 +24514,8 @@ class $d extends Bn {
24509
24514
  * ```
24510
24515
  */
24511
24516
  get modelSpace() {
24512
- let t = this.getAt(He.MODEL_SPACE_NAME);
24513
- return t || (t = new He(), t.name = He.MODEL_SPACE_NAME, this.add(t)), t;
24517
+ let t = this.getAt(Ge.MODEL_SPACE_NAME);
24518
+ return t || (t = new Ge(), t.name = Ge.MODEL_SPACE_NAME, this.add(t)), t;
24514
24519
  }
24515
24520
  /**
24516
24521
  * Normalizes the specified block table record name if it is one paper spacce or model space
@@ -24522,10 +24527,10 @@ class $d extends Bn {
24522
24527
  */
24523
24528
  normalizeName(t) {
24524
24529
  let e = t;
24525
- if (He.isModelSapceName(t))
24526
- e = He.MODEL_SPACE_NAME;
24527
- else if (He.isPaperSapceName(t)) {
24528
- const s = He.PAPER_SPACE_NAME_PREFIX, o = t.substring(s.length);
24530
+ if (Ge.isModelSapceName(t))
24531
+ e = Ge.MODEL_SPACE_NAME;
24532
+ else if (Ge.isPaperSapceName(t)) {
24533
+ const s = Ge.PAPER_SPACE_NAME_PREFIX, o = t.substring(s.length);
24529
24534
  e = s + o;
24530
24535
  }
24531
24536
  return e;
@@ -25051,7 +25056,7 @@ class Qs extends Fn {
25051
25056
  return this._linetype.pattern[t].elementLength;
25052
25057
  }
25053
25058
  }
25054
- class Th extends Fn {
25059
+ class Mh extends Fn {
25055
25060
  /**
25056
25061
  * Creates a new AcDbTextStyleTableRecord instance.
25057
25062
  *
@@ -26202,7 +26207,7 @@ class E0 extends pn {
26202
26207
  viewportTable: new e0(this)
26203
26208
  }, this._dictionaries = {
26204
26209
  layouts: new Gd(this),
26205
- imageDefs: new Mh(this)
26210
+ imageDefs: new Th(this)
26206
26211
  };
26207
26212
  }
26208
26213
  /**
@@ -26527,7 +26532,7 @@ class E0 extends pn {
26527
26532
  * @param options Input options to read drawing data
26528
26533
  */
26529
26534
  async openUri(t, e) {
26530
- var M;
26535
+ var T;
26531
26536
  this.events.openProgress.dispatch({
26532
26537
  database: this,
26533
26538
  percentage: 0,
@@ -26546,7 +26551,7 @@ class E0 extends pn {
26546
26551
  );
26547
26552
  const o = s.headers.get("content-length"), h = o ? parseInt(o, 10) : null;
26548
26553
  let c = 0;
26549
- const g = (M = s.body) == null ? void 0 : M.getReader();
26554
+ const g = (T = s.body) == null ? void 0 : T.getReader();
26550
26555
  if (!g)
26551
26556
  throw new Error("Failed to get response reader");
26552
26557
  const x = [];
@@ -26642,7 +26647,7 @@ class E0 extends pn {
26642
26647
  totalPatternLength: 0
26643
26648
  })
26644
26649
  )), t.textStyle && this._tables.textStyleTable.add(
26645
- new Th({
26650
+ new Mh({
26646
26651
  name: "Standard",
26647
26652
  standardFlag: 0,
26648
26653
  fixedTextHeight: 0,
@@ -26724,7 +26729,7 @@ const o0 = {
26724
26729
  viewTwistAngle: 0,
26725
26730
  frozenLayers: [],
26726
26731
  styleSheet: "",
26727
- renderMode: Ih.OPTIMIZED_2D,
26732
+ renderMode: Ph.OPTIMIZED_2D,
26728
26733
  viewMode: 0,
26729
26734
  ucsIconSetting: 0,
26730
26735
  ucsOrigin: new Y(0, 0, 0),
@@ -27093,7 +27098,7 @@ class h0 {
27093
27098
  createLayout(t, e) {
27094
27099
  const s = this.getWorkingDatabase(e), o = new ba();
27095
27100
  o.layoutName = t, o.tabOrder = s.dictionaries.layouts.maxTabOrder;
27096
- const h = new He();
27101
+ const h = new Ge();
27097
27102
  return h.name = `*Paper_Space${o.tabOrder}`, s.tables.blockTable.add(h), s.dictionaries.layouts.setAt(t, o), this.events.layoutCreated.dispatch({
27098
27103
  layout: o
27099
27104
  }), { layout: o, btr: h };
@@ -27213,11 +27218,11 @@ export {
27213
27218
  qo as AcDbAngleUnits,
27214
27219
  Vi as AcDbArc,
27215
27220
  Bo as AcDbArcDimension,
27216
- I0 as AcDbBaseWorker,
27221
+ P0 as AcDbBaseWorker,
27217
27222
  Yo as AcDbBatchProcessing,
27218
27223
  ti as AcDbBlockReference,
27219
27224
  $d as AcDbBlockTable,
27220
- He as AcDbBlockTableRecord,
27225
+ Ge as AcDbBlockTableRecord,
27221
27226
  Gi as AcDbCircle,
27222
27227
  Xo as AcDbCodePage,
27223
27228
  ke as AcDbCurve,
@@ -27225,7 +27230,7 @@ export {
27225
27230
  Zo as AcDbDatabaseConverter,
27226
27231
  kr as AcDbDatabaseConverterManager,
27227
27232
  aa as AcDbDiametricDimension,
27228
- Mh as AcDbDictionary,
27233
+ Th as AcDbDictionary,
27229
27234
  hu as AcDbDimArrowType,
27230
27235
  Zd as AcDbDimStyleTable,
27231
27236
  Es as AcDbDimStyleTableRecord,
@@ -27280,7 +27285,7 @@ export {
27280
27285
  $i as AcDbText,
27281
27286
  Fd as AcDbTextHorizontalMode,
27282
27287
  t0 as AcDbTextStyleTable,
27283
- Th as AcDbTextStyleTableRecord,
27288
+ Mh as AcDbTextStyleTableRecord,
27284
27289
  Bd as AcDbTextVerticalMode,
27285
27290
  Zi as AcDbTrace,
27286
27291
  Ko as AcDbUnitsValue,
@@ -27294,17 +27299,17 @@ export {
27294
27299
  fa as AcGeArea2d,
27295
27300
  be as AcGeBox2d,
27296
27301
  Ct as AcGeBox3d,
27297
- Md as AcGeCatmullRomCurve3d,
27298
- Is as AcGeCircArc2d,
27302
+ Td as AcGeCatmullRomCurve3d,
27303
+ Ps as AcGeCircArc2d,
27299
27304
  Ln as AcGeCircArc3d,
27300
- Ms as AcGeCurve2d,
27305
+ Ts as AcGeCurve2d,
27301
27306
  _a as AcGeEllipseArc2d,
27302
27307
  va as AcGeEllipseArc3d,
27303
27308
  Sd as AcGeEuler,
27304
27309
  gd as AcGeGeometryUtil,
27305
27310
  ya as AcGeLine2d,
27306
27311
  dn as AcGeLine3d,
27307
- Id as AcGeLoop2d,
27312
+ Pd as AcGeLoop2d,
27308
27313
  kt as AcGeMathUtil,
27309
27314
  ga as AcGeMatrix2d,
27310
27315
  cn as AcGeMatrix3d,
@@ -27319,12 +27324,12 @@ export {
27319
27324
  gh as AcGeTol,
27320
27325
  Zt as AcGeVector2d,
27321
27326
  Z as AcGeVector3d,
27322
- Ph as AcGiArrowType,
27327
+ Ih as AcGiArrowType,
27323
27328
  kh as AcGiDefaultLightingType,
27324
- Ie as AcGiMTextAttachmentPoint,
27329
+ Pe as AcGiMTextAttachmentPoint,
27325
27330
  Gr as AcGiMTextFlowDirection,
27326
27331
  Eh as AcGiOrthographicType,
27327
- Ih as AcGiRenderMode,
27332
+ Ph as AcGiRenderMode,
27328
27333
  xa as AcGiViewport,
27329
27334
  g0 as AcTrStringUtil,
27330
27335
  lu as ByBlock,
@@ -27334,7 +27339,7 @@ export {
27334
27339
  fh as DEFAULT_TOL,
27335
27340
  oh as DEG2RAD,
27336
27341
  iu as DefaultLoadingManager,
27337
- Mn as FLOAT_TOL,
27342
+ Tn as FLOAT_TOL,
27338
27343
  S0 as ORIGIN_POINT_2D,
27339
27344
  ph as ORIGIN_POINT_3D,
27340
27345
  lh as RAD2DEG,
@@ -27359,12 +27364,12 @@ export {
27359
27364
  fd as generateUniformKnots,
27360
27365
  Jh as has,
27361
27366
  ch as intPartLength,
27362
- P0 as interpolateControlPoints,
27367
+ I0 as interpolateControlPoints,
27363
27368
  Zc as inverseLerp,
27364
27369
  cd as isBetween,
27365
27370
  dd as isBetweenAngle,
27366
27371
  tu as isEmpty,
27367
- Ps as isEqual,
27372
+ Is as isEqual,
27368
27373
  x0 as isImperialUnits,
27369
27374
  y0 as isMetricUnits,
27370
27375
  _h as isPointInPolygon,