@mlightcad/data-model 1.2.6 → 1.2.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/data-model.cjs +5 -5
- package/dist/data-model.js +422 -394
- package/lib/converter/AcDbDxfConverter.d.ts +2 -3
- package/lib/converter/AcDbDxfConverter.d.ts.map +1 -1
- package/lib/converter/AcDbDxfConverter.js +16 -25
- package/lib/converter/AcDbDxfConverter.js.map +1 -1
- package/lib/database/AcDbBlockTableRecord.d.ts +3 -3
- package/lib/database/AcDbBlockTableRecord.d.ts.map +1 -1
- package/lib/database/AcDbBlockTableRecord.js +15 -5
- package/lib/database/AcDbBlockTableRecord.js.map +1 -1
- package/lib/database/AcDbDatabase.d.ts +4 -4
- package/lib/database/AcDbDatabase.d.ts.map +1 -1
- package/lib/database/AcDbDatabase.js +89 -24
- package/lib/database/AcDbDatabase.js.map +1 -1
- package/package.json +1 -1
package/dist/data-model.js
CHANGED
|
@@ -838,7 +838,7 @@ var po = { exports: {} };
|
|
|
838
838
|
function k(R, U, D) {
|
|
839
839
|
return f(R) || b.apply(this, arguments);
|
|
840
840
|
}
|
|
841
|
-
function
|
|
841
|
+
function M(R, U) {
|
|
842
842
|
var D = this, gt, ft, ut, W = "loglevel";
|
|
843
843
|
typeof R == "string" ? W += ":" + R : typeof R == "symbol" && (W = void 0);
|
|
844
844
|
function mt(xt) {
|
|
@@ -920,18 +920,18 @@ var po = { exports: {} };
|
|
|
920
920
|
var Ut = lt();
|
|
921
921
|
Ut != null && (ut = Ht(Ut)), S.call(D);
|
|
922
922
|
}
|
|
923
|
-
c = new
|
|
923
|
+
c = new M(), c.getLogger = function(R) {
|
|
924
924
|
if (typeof R != "symbol" && typeof R != "string" || R === "")
|
|
925
925
|
throw new TypeError("You must supply a name when creating a logger.");
|
|
926
926
|
var U = h[R];
|
|
927
|
-
return U || (U = h[R] = new
|
|
927
|
+
return U || (U = h[R] = new M(
|
|
928
928
|
R,
|
|
929
929
|
c.methodFactory
|
|
930
930
|
)), U;
|
|
931
931
|
};
|
|
932
|
-
var
|
|
932
|
+
var z = typeof window !== e ? window.log : void 0;
|
|
933
933
|
return c.noConflict = function() {
|
|
934
|
-
return typeof window !== e && window.log === c && (window.log =
|
|
934
|
+
return typeof window !== e && window.log === c && (window.log = z), c;
|
|
935
935
|
}, c.getLoggers = function() {
|
|
936
936
|
return h;
|
|
937
937
|
}, c.default = c, c;
|
|
@@ -1647,8 +1647,8 @@ function Et(a, t) {
|
|
|
1647
1647
|
return x;
|
|
1648
1648
|
}, [{}]), c = !1, g = h.length - 1;
|
|
1649
1649
|
for (; !Tt(e, 0, "EOF"); ) {
|
|
1650
|
-
let x = function(
|
|
1651
|
-
return
|
|
1650
|
+
let x = function(z, R, U) {
|
|
1651
|
+
return z.find((D, gt) => {
|
|
1652
1652
|
var ft;
|
|
1653
1653
|
return gt >= U && ((ft = D[R]) == null ? void 0 : ft.length);
|
|
1654
1654
|
});
|
|
@@ -1658,13 +1658,13 @@ function Et(a, t) {
|
|
|
1658
1658
|
break;
|
|
1659
1659
|
}
|
|
1660
1660
|
f.isMultiple || x[e.code].pop();
|
|
1661
|
-
let { name: S, parser: b, isMultiple: k } = f,
|
|
1662
|
-
if (
|
|
1661
|
+
let { name: S, parser: b, isMultiple: k } = f, M = b == null ? void 0 : b(e, s, o);
|
|
1662
|
+
if (M === qi) {
|
|
1663
1663
|
s.rewind();
|
|
1664
1664
|
break;
|
|
1665
1665
|
}
|
|
1666
1666
|
if (S) {
|
|
1667
|
-
let [
|
|
1667
|
+
let [z, R] = function(U, D) {
|
|
1668
1668
|
let gt = D.split("."), ft = U;
|
|
1669
1669
|
for (let ut = 0; ut < gt.length - 1; ++ut) {
|
|
1670
1670
|
let W = gt[ut];
|
|
@@ -1672,7 +1672,7 @@ function Et(a, t) {
|
|
|
1672
1672
|
}
|
|
1673
1673
|
return [ft, gt.at(-1)];
|
|
1674
1674
|
}(o, S);
|
|
1675
|
-
k ? (Object.hasOwn(
|
|
1675
|
+
k ? (Object.hasOwn(z, R) || (z[R] = []), z[R].push(M)) : z[R] = M;
|
|
1676
1676
|
}
|
|
1677
1677
|
f.pushContext && (g -= 1), c = !0, e = s.next();
|
|
1678
1678
|
}
|
|
@@ -4316,8 +4316,8 @@ const xi = class xl {
|
|
|
4316
4316
|
* @returns Return this matrix
|
|
4317
4317
|
*/
|
|
4318
4318
|
multiplyMatrices(t, e) {
|
|
4319
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], k = s[2],
|
|
4320
|
-
return h[0] = c * R + g * gt + x * W, h[3] = c * U + g * ft + x * mt, h[6] = c * D + g * ut + x * lt, h[1] = f * R + S * gt + b * W, h[4] = f * U + S * ft + b * mt, h[7] = f * D + S * ut + b * lt, h[2] = k * R +
|
|
4319
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], k = s[2], M = s[5], z = s[8], R = o[0], U = o[3], D = o[6], gt = o[1], ft = o[4], ut = o[7], W = o[2], mt = o[5], lt = o[8];
|
|
4320
|
+
return h[0] = c * R + g * gt + x * W, h[3] = c * U + g * ft + x * mt, h[6] = c * D + g * ut + x * lt, h[1] = f * R + S * gt + b * W, h[4] = f * U + S * ft + b * mt, h[7] = f * D + S * ut + b * lt, h[2] = k * R + M * gt + z * W, h[5] = k * U + M * ft + z * mt, h[8] = k * D + M * ut + z * lt, this;
|
|
4321
4321
|
}
|
|
4322
4322
|
/**
|
|
4323
4323
|
* Multiply every component of the matrix by the scalar value s.
|
|
@@ -4342,10 +4342,10 @@ const xi = class xl {
|
|
|
4342
4342
|
* @returns Return this matrix
|
|
4343
4343
|
*/
|
|
4344
4344
|
invert() {
|
|
4345
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = S * c - g * f, k = g * x - S * h,
|
|
4346
|
-
if (
|
|
4347
|
-
const R = 1 /
|
|
4348
|
-
return t[0] = b * R, t[1] = (o * f - S * s) * R, t[2] = (g * s - o * c) * R, t[3] = k * R, t[4] = (S * e - o * x) * R, t[5] = (o * h - g * e) * R, t[6] =
|
|
4345
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = S * c - g * f, k = g * x - S * h, M = f * h - c * x, z = e * b + s * k + o * M;
|
|
4346
|
+
if (z === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
4347
|
+
const R = 1 / z;
|
|
4348
|
+
return t[0] = b * R, t[1] = (o * f - S * s) * R, t[2] = (g * s - o * c) * R, t[3] = k * R, t[4] = (S * e - o * x) * R, t[5] = (o * h - g * e) * R, t[6] = M * R, t[7] = (s * x - f * e) * R, t[8] = (c * e - s * h) * R, this;
|
|
4349
4349
|
}
|
|
4350
4350
|
/**
|
|
4351
4351
|
* Transpose this matrix in place.
|
|
@@ -4579,8 +4579,8 @@ function Al(a, t, e = !1) {
|
|
|
4579
4579
|
const c = t.length;
|
|
4580
4580
|
for (let g = 0, x = c - 1; g < c; x = g++) {
|
|
4581
4581
|
const f = t[g].x, S = t[g].y, b = t[x].x, k = t[x].y;
|
|
4582
|
-
let
|
|
4583
|
-
e && (
|
|
4582
|
+
let M = S > o != k > o;
|
|
4583
|
+
e && (M = S >= o != k >= o), M && s < (b - f) * (o - S) / (k - S) + f && (h = !h);
|
|
4584
4584
|
}
|
|
4585
4585
|
return h;
|
|
4586
4586
|
}
|
|
@@ -4695,8 +4695,8 @@ function uc(a, t, e, s) {
|
|
|
4695
4695
|
t,
|
|
4696
4696
|
e,
|
|
4697
4697
|
s
|
|
4698
|
-
), k = b[0] - S[0],
|
|
4699
|
-
return g += Math.sqrt(k * k +
|
|
4698
|
+
), k = b[0] - S[0], M = b[1] - S[1], z = b[2] - S[2];
|
|
4699
|
+
return g += Math.sqrt(k * k + M * M + z * z), g;
|
|
4700
4700
|
}
|
|
4701
4701
|
function pd(a) {
|
|
4702
4702
|
return a.map((t) => [...t]);
|
|
@@ -4724,24 +4724,24 @@ class $r {
|
|
|
4724
4724
|
*/
|
|
4725
4725
|
static slerpFlat(t, e, s, o, h, c, g) {
|
|
4726
4726
|
let x = s[o + 0], f = s[o + 1], S = s[o + 2], b = s[o + 3];
|
|
4727
|
-
const k = h[c + 0],
|
|
4727
|
+
const k = h[c + 0], M = h[c + 1], z = h[c + 2], R = h[c + 3];
|
|
4728
4728
|
if (g === 0) {
|
|
4729
4729
|
t[e + 0] = x, t[e + 1] = f, t[e + 2] = S, t[e + 3] = b;
|
|
4730
4730
|
return;
|
|
4731
4731
|
}
|
|
4732
4732
|
if (g === 1) {
|
|
4733
|
-
t[e + 0] = k, t[e + 1] =
|
|
4733
|
+
t[e + 0] = k, t[e + 1] = M, t[e + 2] = z, t[e + 3] = R;
|
|
4734
4734
|
return;
|
|
4735
4735
|
}
|
|
4736
|
-
if (b !== R || x !== k || f !==
|
|
4736
|
+
if (b !== R || x !== k || f !== M || S !== z) {
|
|
4737
4737
|
let U = 1 - g;
|
|
4738
|
-
const D = x * k + f *
|
|
4738
|
+
const D = x * k + f * M + S * z + b * R, gt = D >= 0 ? 1 : -1, ft = 1 - D * D;
|
|
4739
4739
|
if (ft > Number.EPSILON) {
|
|
4740
4740
|
const W = Math.sqrt(ft), mt = Math.atan2(W, D * gt);
|
|
4741
4741
|
U = Math.sin(U * mt) / W, g = Math.sin(g * mt) / W;
|
|
4742
4742
|
}
|
|
4743
4743
|
const ut = g * gt;
|
|
4744
|
-
if (x = x * U + k * ut, f = f * U +
|
|
4744
|
+
if (x = x * U + k * ut, f = f * U + M * ut, S = S * U + z * ut, b = b * U + R * ut, U === 1 - g) {
|
|
4745
4745
|
const W = 1 / Math.sqrt(x * x + f * f + S * S + b * b);
|
|
4746
4746
|
x *= W, f *= W, S *= W, b *= W;
|
|
4747
4747
|
}
|
|
@@ -4759,8 +4759,8 @@ class $r {
|
|
|
4759
4759
|
* @returns Return an array
|
|
4760
4760
|
*/
|
|
4761
4761
|
static multiplyQuaternionsFlat(t, e, s, o, h, c) {
|
|
4762
|
-
const g = s[o], x = s[o + 1], f = s[o + 2], S = s[o + 3], b = h[c], k = h[c + 1],
|
|
4763
|
-
return t[e] = g *
|
|
4762
|
+
const g = s[o], x = s[o + 1], f = s[o + 2], S = s[o + 3], b = h[c], k = h[c + 1], M = h[c + 2], z = h[c + 3];
|
|
4763
|
+
return t[e] = g * z + S * b + x * M - f * k, t[e + 1] = x * z + S * k + f * b - g * M, t[e + 2] = f * z + S * M + g * k - x * b, t[e + 3] = S * z - g * b - x * k - f * M, t;
|
|
4764
4764
|
}
|
|
4765
4765
|
/**
|
|
4766
4766
|
* X cooridinate
|
|
@@ -4831,25 +4831,25 @@ class $r {
|
|
|
4831
4831
|
* @returns Return this quaternion
|
|
4832
4832
|
*/
|
|
4833
4833
|
setFromEuler(t, e = !0) {
|
|
4834
|
-
const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), S = g(o / 2), b = g(h / 2), k = x(s / 2),
|
|
4834
|
+
const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), S = g(o / 2), b = g(h / 2), k = x(s / 2), M = x(o / 2), z = x(h / 2);
|
|
4835
4835
|
switch (c) {
|
|
4836
4836
|
case "XYZ":
|
|
4837
|
-
this._x = k * S * b + f *
|
|
4837
|
+
this._x = k * S * b + f * M * z, this._y = f * M * b - k * S * z, this._z = f * S * z + k * M * b, this._w = f * S * b - k * M * z;
|
|
4838
4838
|
break;
|
|
4839
4839
|
case "YXZ":
|
|
4840
|
-
this._x = k * S * b + f *
|
|
4840
|
+
this._x = k * S * b + f * M * z, this._y = f * M * b - k * S * z, this._z = f * S * z - k * M * b, this._w = f * S * b + k * M * z;
|
|
4841
4841
|
break;
|
|
4842
4842
|
case "ZXY":
|
|
4843
|
-
this._x = k * S * b - f *
|
|
4843
|
+
this._x = k * S * b - f * M * z, this._y = f * M * b + k * S * z, this._z = f * S * z + k * M * b, this._w = f * S * b - k * M * z;
|
|
4844
4844
|
break;
|
|
4845
4845
|
case "ZYX":
|
|
4846
|
-
this._x = k * S * b - f *
|
|
4846
|
+
this._x = k * S * b - f * M * z, this._y = f * M * b + k * S * z, this._z = f * S * z - k * M * b, this._w = f * S * b + k * M * z;
|
|
4847
4847
|
break;
|
|
4848
4848
|
case "YZX":
|
|
4849
|
-
this._x = k * S * b + f *
|
|
4849
|
+
this._x = k * S * b + f * M * z, this._y = f * M * b + k * S * z, this._z = f * S * z - k * M * b, this._w = f * S * b - k * M * z;
|
|
4850
4850
|
break;
|
|
4851
4851
|
case "XZY":
|
|
4852
|
-
this._x = k * S * b - f *
|
|
4852
|
+
this._x = k * S * b - f * M * z, this._y = f * M * b - k * S * z, this._z = f * S * z + k * M * b, this._w = f * S * b + k * M * z;
|
|
4853
4853
|
break;
|
|
4854
4854
|
default:
|
|
4855
4855
|
console.warn(
|
|
@@ -4877,17 +4877,17 @@ class $r {
|
|
|
4877
4877
|
setFromRotationMatrix(t) {
|
|
4878
4878
|
const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], S = e[6], b = e[10], k = s + g + b;
|
|
4879
4879
|
if (k > 0) {
|
|
4880
|
-
const
|
|
4881
|
-
this._w = 0.25 /
|
|
4880
|
+
const M = 0.5 / Math.sqrt(k + 1);
|
|
4881
|
+
this._w = 0.25 / M, this._x = (S - x) * M, this._y = (h - f) * M, this._z = (c - o) * M;
|
|
4882
4882
|
} else if (s > g && s > b) {
|
|
4883
|
-
const
|
|
4884
|
-
this._w = (S - x) /
|
|
4883
|
+
const M = 2 * Math.sqrt(1 + s - g - b);
|
|
4884
|
+
this._w = (S - x) / M, this._x = 0.25 * M, this._y = (o + c) / M, this._z = (h + f) / M;
|
|
4885
4885
|
} else if (g > b) {
|
|
4886
|
-
const
|
|
4887
|
-
this._w = (h - f) /
|
|
4886
|
+
const M = 2 * Math.sqrt(1 + g - s - b);
|
|
4887
|
+
this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x + S) / M;
|
|
4888
4888
|
} else {
|
|
4889
|
-
const
|
|
4890
|
-
this._w = (c - o) /
|
|
4889
|
+
const M = 2 * Math.sqrt(1 + b - s - g);
|
|
4890
|
+
this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x + S) / M, this._z = 0.25 * M;
|
|
4891
4891
|
}
|
|
4892
4892
|
return this._onChangeCallback(), this;
|
|
4893
4893
|
}
|
|
@@ -5023,8 +5023,8 @@ class $r {
|
|
|
5023
5023
|
return this._w = c, this._x = s, this._y = o, this._z = h, this;
|
|
5024
5024
|
const x = 1 - g * g;
|
|
5025
5025
|
if (x <= Number.EPSILON) {
|
|
5026
|
-
const
|
|
5027
|
-
return this._w =
|
|
5026
|
+
const M = 1 - e;
|
|
5027
|
+
return this._w = M * c + e * this._w, this._x = M * s + e * this._x, this._y = M * o + e * this._y, this._z = M * h + e * this._z, this.normalize(), this;
|
|
5028
5028
|
}
|
|
5029
5029
|
const f = Math.sqrt(x), S = Math.atan2(f, g), b = Math.sin((1 - e) * S) / f, k = Math.sin(e * S) / f;
|
|
5030
5030
|
return this._w = c * b + this._w * k, this._x = s * b + this._x * k, this._y = o * b + this._y * k, this._z = h * b + this._z * k, this._onChangeCallback(), this;
|
|
@@ -5758,8 +5758,8 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
5758
5758
|
* @param n43 Input element in the forth row and the third column
|
|
5759
5759
|
* @param n44 Input element in the forth row and the forth column
|
|
5760
5760
|
*/
|
|
5761
|
-
constructor(t, e, s, o, h, c, g, x, f, S, b, k,
|
|
5762
|
-
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && k != null &&
|
|
5761
|
+
constructor(t, e, s, o, h, c, g, x, f, S, b, k, M, z, R, U) {
|
|
5762
|
+
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && k != null && M != null && z != null && R != null && U != null && this.set(
|
|
5763
5763
|
t,
|
|
5764
5764
|
e,
|
|
5765
5765
|
s,
|
|
@@ -5772,8 +5772,8 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
5772
5772
|
S,
|
|
5773
5773
|
b,
|
|
5774
5774
|
k,
|
|
5775
|
-
|
|
5776
|
-
|
|
5775
|
+
M,
|
|
5776
|
+
z,
|
|
5777
5777
|
R,
|
|
5778
5778
|
U
|
|
5779
5779
|
);
|
|
@@ -5799,9 +5799,9 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
5799
5799
|
* @param n44 Input element in the forth row and the forth column
|
|
5800
5800
|
* @returns Return this matrix
|
|
5801
5801
|
*/
|
|
5802
|
-
set(t, e, s, o, h, c, g, x, f, S, b, k,
|
|
5802
|
+
set(t, e, s, o, h, c, g, x, f, S, b, k, M, z, R, U) {
|
|
5803
5803
|
const D = this.elements;
|
|
5804
|
-
return D[0] = t, D[4] = e, D[8] = s, D[12] = o, D[1] = h, D[5] = c, D[9] = g, D[13] = x, D[2] = f, D[6] = S, D[10] = b, D[14] = k, D[3] =
|
|
5804
|
+
return D[0] = t, D[4] = e, D[8] = s, D[12] = o, D[1] = h, D[5] = c, D[9] = g, D[13] = x, D[2] = f, D[6] = S, D[10] = b, D[14] = k, D[3] = M, D[7] = z, D[11] = R, D[15] = U, this;
|
|
5805
5805
|
}
|
|
5806
5806
|
/**
|
|
5807
5807
|
* Reset this matrix to the identity matrix.
|
|
@@ -6085,8 +6085,8 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
6085
6085
|
* @returns Return this matrix
|
|
6086
6086
|
*/
|
|
6087
6087
|
multiplyMatrices(t, e) {
|
|
6088
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], k = s[9],
|
|
6089
|
-
return h[0] = c * mt + g * Ut + x * me + f * Q, h[4] = c * lt + g * xt + x * Ie + f * It, h[8] = c * Wt + g * Nt + x * Qt + f * ae, h[12] = c * Ht + g * de + x * ie + f * ir, h[1] = S * mt + b * Ut + k * me +
|
|
6088
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], k = s[9], M = s[13], z = s[2], R = s[6], U = s[10], D = s[14], gt = s[3], ft = s[7], ut = s[11], W = s[15], mt = o[0], lt = o[4], Wt = o[8], Ht = o[12], Ut = o[1], xt = o[5], Nt = o[9], de = o[13], me = o[2], Ie = o[6], Qt = o[10], ie = o[14], Q = o[3], It = o[7], ae = o[11], ir = o[15];
|
|
6089
|
+
return h[0] = c * mt + g * Ut + x * me + f * Q, h[4] = c * lt + g * xt + x * Ie + f * It, h[8] = c * Wt + g * Nt + x * Qt + f * ae, h[12] = c * Ht + g * de + x * ie + f * ir, h[1] = S * mt + b * Ut + k * me + M * Q, h[5] = S * lt + b * xt + k * Ie + M * It, h[9] = S * Wt + b * Nt + k * Qt + M * ae, h[13] = S * Ht + b * de + k * ie + M * ir, h[2] = z * mt + R * Ut + U * me + D * Q, h[6] = z * lt + R * xt + U * Ie + D * It, h[10] = z * Wt + R * Nt + U * Qt + D * ae, h[14] = z * Ht + R * de + U * ie + D * ir, h[3] = gt * mt + ft * Ut + ut * me + W * Q, h[7] = gt * lt + ft * xt + ut * Ie + W * It, h[11] = gt * Wt + ft * Nt + ut * Qt + W * ae, h[15] = gt * Ht + ft * de + ut * ie + W * ir, this;
|
|
6090
6090
|
}
|
|
6091
6091
|
/**
|
|
6092
6092
|
* Multiply every component of the matrix by a scalar value s.
|
|
@@ -6102,8 +6102,8 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
6102
6102
|
* @returns Return the determinant of this matrix.
|
|
6103
6103
|
*/
|
|
6104
6104
|
determinant() {
|
|
6105
|
-
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], k = t[10],
|
|
6106
|
-
return
|
|
6105
|
+
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], k = t[10], M = t[14], z = t[3], R = t[7], U = t[11], D = t[15];
|
|
6106
|
+
return z * (+h * x * b - o * f * b - h * g * k + s * f * k + o * g * M - s * x * M) + R * (+e * x * M - e * f * k + h * c * k - o * c * M + o * f * S - h * x * S) + U * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * S - s * f * S) + D * (-o * g * S - e * x * b + e * g * k + o * c * b - s * c * k + s * x * S);
|
|
6107
6107
|
}
|
|
6108
6108
|
/**
|
|
6109
6109
|
* Transposes this matrix.
|
|
@@ -6131,11 +6131,11 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
6131
6131
|
* @returns Return this matrix
|
|
6132
6132
|
*/
|
|
6133
6133
|
invert() {
|
|
6134
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], k = t[10],
|
|
6134
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], k = t[10], M = t[11], z = t[12], R = t[13], U = t[14], D = t[15], gt = b * U * f - R * k * f + R * x * M - g * U * M - b * x * D + g * k * D, ft = z * k * f - S * U * f - z * x * M + c * U * M + S * x * D - c * k * D, ut = S * R * f - z * b * f + z * g * M - c * R * M - S * g * D + c * b * D, W = z * b * x - S * R * x - z * g * k + c * R * k + S * g * U - c * b * U, mt = e * gt + s * ft + o * ut + h * W;
|
|
6135
6135
|
if (mt === 0)
|
|
6136
6136
|
return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
6137
6137
|
const lt = 1 / mt;
|
|
6138
|
-
return t[0] = gt * lt, t[1] = (R * k * h - b * U * h - R * o *
|
|
6138
|
+
return t[0] = gt * lt, t[1] = (R * k * h - b * U * h - R * o * M + s * U * M + b * o * D - s * k * D) * lt, t[2] = (g * U * h - R * x * h + R * o * f - s * U * f - g * o * D + s * x * D) * lt, t[3] = (b * x * h - g * k * h - b * o * f + s * k * f + g * o * M - s * x * M) * lt, t[4] = ft * lt, t[5] = (S * U * h - z * k * h + z * o * M - e * U * M - S * o * D + e * k * D) * lt, t[6] = (z * x * h - c * U * h - z * o * f + e * U * f + c * o * D - e * x * D) * lt, t[7] = (c * k * h - S * x * h + S * o * f - e * k * f - c * o * M + e * x * M) * lt, t[8] = ut * lt, t[9] = (z * b * h - S * R * h - z * s * M + e * R * M + S * s * D - e * b * D) * lt, t[10] = (c * R * h - z * g * h + z * s * f - e * R * f - c * s * D + e * g * D) * lt, t[11] = (S * g * h - c * b * h - S * s * f + e * b * f + c * s * M - e * g * M) * lt, t[12] = W * lt, t[13] = (S * R * o - z * b * o + z * s * k - e * R * k - S * s * U + e * b * U) * lt, t[14] = (z * g * o - c * R * o - z * s * x + e * R * x + c * s * U - e * g * U) * lt, t[15] = (c * b * o - S * g * o + S * s * x - e * b * x - c * s * k + e * g * k) * lt, this;
|
|
6139
6139
|
}
|
|
6140
6140
|
/**
|
|
6141
6141
|
* Multiply the columns of this matrix by vector v.
|
|
@@ -6249,8 +6249,8 @@ const mi = /* @__PURE__ */ new $(), to = /* @__PURE__ */ new $r(), wi = class Il
|
|
|
6249
6249
|
* @returns Return this matrix
|
|
6250
6250
|
*/
|
|
6251
6251
|
compose(t, e, s) {
|
|
6252
|
-
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, k = h * f,
|
|
6253
|
-
return o[0] = (1 - (R + D)) * W, o[1] = (
|
|
6252
|
+
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, k = h * f, M = h * S, z = h * b, R = c * S, U = c * b, D = g * b, gt = x * f, ft = x * S, ut = x * b, W = s.x, mt = s.y, lt = s.z;
|
|
6253
|
+
return o[0] = (1 - (R + D)) * W, o[1] = (M + ut) * W, o[2] = (z - ft) * W, o[3] = 0, o[4] = (M - ut) * mt, o[5] = (1 - (k + D)) * mt, o[6] = (U + gt) * mt, o[7] = 0, o[8] = (z + ft) * lt, o[9] = (U - gt) * lt, o[10] = (1 - (k + R)) * lt, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
|
|
6254
6254
|
}
|
|
6255
6255
|
/**
|
|
6256
6256
|
* Decompose this matrix into its position, quaternion and scale components.
|
|
@@ -7171,25 +7171,25 @@ const no = /* @__PURE__ */ new wn(), so = /* @__PURE__ */ new $r(), kl = class P
|
|
|
7171
7171
|
* @returns Return this euler
|
|
7172
7172
|
*/
|
|
7173
7173
|
setFromRotationMatrix(t, e = this._order, s = !0) {
|
|
7174
|
-
const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], S = o[9], b = o[2], k = o[6],
|
|
7174
|
+
const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], S = o[9], b = o[2], k = o[6], M = o[10];
|
|
7175
7175
|
switch (e) {
|
|
7176
7176
|
case "XYZ":
|
|
7177
|
-
this._y = Math.asin(Lr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-S,
|
|
7177
|
+
this._y = Math.asin(Lr(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-S, M), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(k, f), this._z = 0);
|
|
7178
7178
|
break;
|
|
7179
7179
|
case "YXZ":
|
|
7180
|
-
this._x = Math.asin(-Lr(S, -1, 1)), Math.abs(S) < 0.9999999 ? (this._y = Math.atan2(g,
|
|
7180
|
+
this._x = Math.asin(-Lr(S, -1, 1)), Math.abs(S) < 0.9999999 ? (this._y = Math.atan2(g, M), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
|
|
7181
7181
|
break;
|
|
7182
7182
|
case "ZXY":
|
|
7183
|
-
this._x = Math.asin(Lr(k, -1, 1)), Math.abs(k) < 0.9999999 ? (this._y = Math.atan2(-b,
|
|
7183
|
+
this._x = Math.asin(Lr(k, -1, 1)), Math.abs(k) < 0.9999999 ? (this._y = Math.atan2(-b, M), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
|
|
7184
7184
|
break;
|
|
7185
7185
|
case "ZYX":
|
|
7186
|
-
this._y = Math.asin(-Lr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(k,
|
|
7186
|
+
this._y = Math.asin(-Lr(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(k, M), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
|
|
7187
7187
|
break;
|
|
7188
7188
|
case "YZX":
|
|
7189
|
-
this._z = Math.asin(Lr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-S, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g,
|
|
7189
|
+
this._z = Math.asin(Lr(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-S, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, M));
|
|
7190
7190
|
break;
|
|
7191
7191
|
case "XZY":
|
|
7192
|
-
this._z = Math.asin(-Lr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(k, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-S,
|
|
7192
|
+
this._z = Math.asin(-Lr(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(k, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-S, M), this._y = 0);
|
|
7193
7193
|
break;
|
|
7194
7194
|
default:
|
|
7195
7195
|
console.warn(
|
|
@@ -7368,12 +7368,12 @@ class Zi extends Ml {
|
|
|
7368
7368
|
const f = o[x], S = e[f], b = s[f];
|
|
7369
7369
|
let k = x + 1;
|
|
7370
7370
|
for (; k < c; k++) {
|
|
7371
|
-
const
|
|
7372
|
-
if (s[
|
|
7371
|
+
const M = o[k], z = e[M];
|
|
7372
|
+
if (s[M].containsBox(b) && ac.isPointInPolygon(
|
|
7373
7373
|
S[Ot.randInt(0, S.length - 1)],
|
|
7374
|
-
|
|
7374
|
+
z
|
|
7375
7375
|
)) {
|
|
7376
|
-
(t = h.get(
|
|
7376
|
+
(t = h.get(M)) == null || t.children.push(h.get(f));
|
|
7377
7377
|
break;
|
|
7378
7378
|
}
|
|
7379
7379
|
}
|
|
@@ -7576,10 +7576,10 @@ class us extends ms {
|
|
|
7576
7576
|
const o = (lt, Wt) => ({
|
|
7577
7577
|
x: (lt.x + Wt.x) / 2,
|
|
7578
7578
|
y: (lt.y + Wt.y) / 2
|
|
7579
|
-
}), h = (lt, Wt) => (Wt.y - lt.y) / (Wt.x - lt.x), c = (lt) => -1 / lt, g = o(t, e), x = o(e, s), f = h(t, e), S = h(e, s), b = c(f), k = c(S),
|
|
7579
|
+
}), h = (lt, Wt) => (Wt.y - lt.y) / (Wt.x - lt.x), c = (lt) => -1 / lt, g = o(t, e), x = o(e, s), f = h(t, e), S = h(e, s), b = c(f), k = c(S), M = (lt, Wt, Ht, Ut) => {
|
|
7580
7580
|
const xt = (Ut - Wt) / (lt - Ht), Nt = lt * xt + Wt;
|
|
7581
7581
|
return { x: xt, y: Nt };
|
|
7582
|
-
},
|
|
7582
|
+
}, z = g.y - b * g.x, R = x.y - k * x.x, U = M(b, z, k, R), D = Math.sqrt(
|
|
7583
7583
|
Math.pow(t.x - U.x, 2) + Math.pow(t.y - U.y, 2)
|
|
7584
7584
|
), gt = (lt, Wt) => Math.atan2(lt.y - Wt.y, lt.x - Wt.x), ft = gt(t, U), ut = gt(e, U), W = gt(s, U), mt = W > ft && W < ut || ft > W && ft < ut || ut > W && ut < ft;
|
|
7585
7585
|
this.center = U, this.radius = D, this.startAngle = ft, this.endAngle = W, this.clockwise = !mt;
|
|
@@ -7601,17 +7601,17 @@ class us extends ms {
|
|
|
7601
7601
|
const g = new $t().subVectors(c, h), x = g.length(), f = new $t().addVectors(h, g.multiplyScalar(0.5)), S = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
|
|
7602
7602
|
let k;
|
|
7603
7603
|
if (o < Math.PI) {
|
|
7604
|
-
const
|
|
7604
|
+
const M = new $t(
|
|
7605
7605
|
b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
|
|
7606
7606
|
b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
|
|
7607
7607
|
);
|
|
7608
|
-
k = f.add(
|
|
7608
|
+
k = f.add(M.multiplyScalar(-S));
|
|
7609
7609
|
} else {
|
|
7610
|
-
const
|
|
7610
|
+
const M = new $t(
|
|
7611
7611
|
b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
|
|
7612
7612
|
b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
|
|
7613
7613
|
);
|
|
7614
|
-
k = f.add(
|
|
7614
|
+
k = f.add(M.multiplyScalar(S));
|
|
7615
7615
|
}
|
|
7616
7616
|
s < 0 ? (this.startAngle = Math.atan2(h.y - k.y, h.x - k.x), this.endAngle = Math.atan2(c.y - k.y, c.x - k.x)) : (this.startAngle = Math.atan2(c.y - k.y, c.x - k.x), this.endAngle = Math.atan2(h.y - k.y, h.x - k.x)), this.clockwise = s < 0, this.center = k, this.radius = c.sub(k).length();
|
|
7617
7617
|
}
|
|
@@ -8006,8 +8006,8 @@ class xn extends ps {
|
|
|
8006
8006
|
const o = new $().addVectors(t, e).multiplyScalar(0.5), h = new $().addVectors(t, s).multiplyScalar(0.5), c = new $().subVectors(e, t), g = new $().subVectors(s, t), x = new $().crossVectors(c, g).normalize();
|
|
8007
8007
|
if (x.lengthSq() === 0)
|
|
8008
8008
|
return console.error("Points are collinear and cannot form a valid arc."), null;
|
|
8009
|
-
const f = new $().crossVectors(c, x).normalize(), S = new $().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), k = S.clone().multiplyScalar(Number.MAX_SAFE_INTEGER),
|
|
8010
|
-
return
|
|
8009
|
+
const f = new $().crossVectors(c, x).normalize(), S = new $().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), k = S.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new Zr(o, o.clone().add(b)), z = new Zr(h, h.clone().add(k)), R = new $();
|
|
8010
|
+
return M.closestPointToPoint(z.startPoint, !0, R) ? R : (console.error("Cannot find a valid center for the arc."), null);
|
|
8011
8011
|
}
|
|
8012
8012
|
/**
|
|
8013
8013
|
* Create arc by three points
|
|
@@ -8973,7 +8973,7 @@ var Tl = { exports: {} };
|
|
|
8973
8973
|
var b = {}, k = function() {
|
|
8974
8974
|
return It.__string_rec(this, "");
|
|
8975
8975
|
};
|
|
8976
|
-
function
|
|
8976
|
+
function M(r, n) {
|
|
8977
8977
|
function i() {
|
|
8978
8978
|
}
|
|
8979
8979
|
i.prototype = r;
|
|
@@ -8981,9 +8981,9 @@ var Tl = { exports: {} };
|
|
|
8981
8981
|
for (var u in n) l[u] = n[u];
|
|
8982
8982
|
return n.toString !== Object.prototype.toString && (l.toString = n.toString), l;
|
|
8983
8983
|
}
|
|
8984
|
-
var
|
|
8984
|
+
var z = function() {
|
|
8985
8985
|
};
|
|
8986
|
-
b.HxOverrides =
|
|
8986
|
+
b.HxOverrides = z, z.__name__ = ["HxOverrides"], z.strDate = function(r) {
|
|
8987
8987
|
var n = r.length;
|
|
8988
8988
|
switch (n) {
|
|
8989
8989
|
case 8:
|
|
@@ -8998,13 +8998,13 @@ var Tl = { exports: {} };
|
|
|
8998
8998
|
default:
|
|
8999
8999
|
throw new Q("Invalid date format : " + r);
|
|
9000
9000
|
}
|
|
9001
|
-
},
|
|
9001
|
+
}, z.cca = function(r, n) {
|
|
9002
9002
|
var i = r.charCodeAt(n);
|
|
9003
9003
|
if (i == i)
|
|
9004
9004
|
return i;
|
|
9005
|
-
},
|
|
9005
|
+
}, z.substr = function(r, n, i) {
|
|
9006
9006
|
return n != null && n != 0 && i != null && i < 0 ? "" : (i == null && (i = r.length), n < 0 ? (n = r.length + n, n < 0 && (n = 0)) : i < 0 && (i = r.length + i - n), r.substr(n, i));
|
|
9007
|
-
},
|
|
9007
|
+
}, z.iter = function(r) {
|
|
9008
9008
|
return {
|
|
9009
9009
|
cur: 0,
|
|
9010
9010
|
arr: r,
|
|
@@ -9240,16 +9240,16 @@ var Tl = { exports: {} };
|
|
|
9240
9240
|
break;
|
|
9241
9241
|
case me:
|
|
9242
9242
|
this.buf.b += "b";
|
|
9243
|
-
for (var
|
|
9243
|
+
for (var T = r, L = T.keys(); L.hasNext(); ) {
|
|
9244
9244
|
var N = L.next();
|
|
9245
|
-
this.serializeString(N), this.serialize(Ks[N] != null ?
|
|
9245
|
+
this.serializeString(N), this.serialize(Ks[N] != null ? T.getReserved(N) : T.h[N]);
|
|
9246
9246
|
}
|
|
9247
9247
|
this.buf.b += "h";
|
|
9248
9248
|
break;
|
|
9249
9249
|
case xt:
|
|
9250
9250
|
this.buf.b += "q";
|
|
9251
|
-
for (var B = r,
|
|
9252
|
-
var F =
|
|
9251
|
+
for (var B = r, O = B.keys(); O.hasNext(); ) {
|
|
9252
|
+
var F = O.next();
|
|
9253
9253
|
this.buf.b += ":", F == null ? this.buf.b += "null" : this.buf.b += "" + F, this.serialize(B.h[F]);
|
|
9254
9254
|
}
|
|
9255
9255
|
this.buf.b += "h";
|
|
@@ -9361,7 +9361,7 @@ var Tl = { exports: {} };
|
|
|
9361
9361
|
if (n >= 43 && n < 58 || n == 101 || n == 69) this.pos++;
|
|
9362
9362
|
else break;
|
|
9363
9363
|
}
|
|
9364
|
-
return gt.parseFloat(
|
|
9364
|
+
return gt.parseFloat(z.substr(this.buf, r, this.pos - r));
|
|
9365
9365
|
},
|
|
9366
9366
|
unserializeObject: function(r) {
|
|
9367
9367
|
for (; ; ) {
|
|
@@ -9399,7 +9399,7 @@ var Tl = { exports: {} };
|
|
|
9399
9399
|
case 121:
|
|
9400
9400
|
var n = this.readDigits();
|
|
9401
9401
|
if (this.get(this.pos++) != 58 || this.length - this.pos < n) throw new Q("Invalid string length");
|
|
9402
|
-
var i =
|
|
9402
|
+
var i = z.substr(this.buf, this.pos, n);
|
|
9403
9403
|
return this.pos += n, i = decodeURIComponent(i.split("+").join(" ")), this.scache.push(i), i;
|
|
9404
9404
|
case 107:
|
|
9405
9405
|
return NaN;
|
|
@@ -9444,15 +9444,15 @@ var Tl = { exports: {} };
|
|
|
9444
9444
|
case 119:
|
|
9445
9445
|
var I = this.unserialize(), E = this.resolver.resolveEnum(I);
|
|
9446
9446
|
if (E == null) throw new Q("Enum not found " + I);
|
|
9447
|
-
var
|
|
9448
|
-
return this.cache.push(
|
|
9447
|
+
var T = this.unserializeEnum(E, this.unserialize());
|
|
9448
|
+
return this.cache.push(T), T;
|
|
9449
9449
|
case 106:
|
|
9450
9450
|
var L = this.unserialize(), N = this.resolver.resolveEnum(L);
|
|
9451
9451
|
if (N == null) throw new Q("Enum not found " + L);
|
|
9452
9452
|
this.pos++;
|
|
9453
|
-
var B = this.readDigits(),
|
|
9454
|
-
if (
|
|
9455
|
-
var F = this.unserializeEnum(N,
|
|
9453
|
+
var B = this.readDigits(), O = mt.getEnumConstructs(N)[B];
|
|
9454
|
+
if (O == null) throw new Q("Unknown enum index " + L + "@" + B);
|
|
9455
|
+
var F = this.unserializeEnum(N, O);
|
|
9456
9456
|
return this.cache.push(F), F;
|
|
9457
9457
|
case 108:
|
|
9458
9458
|
var V = new U();
|
|
@@ -9484,8 +9484,8 @@ var Tl = { exports: {} };
|
|
|
9484
9484
|
case 118:
|
|
9485
9485
|
var st;
|
|
9486
9486
|
if (this.buf.charCodeAt(this.pos) >= 48 && this.buf.charCodeAt(this.pos) <= 57 && this.buf.charCodeAt(this.pos + 1) >= 48 && this.buf.charCodeAt(this.pos + 1) <= 57 && this.buf.charCodeAt(this.pos + 2) >= 48 && this.buf.charCodeAt(this.pos + 2) <= 57 && this.buf.charCodeAt(this.pos + 3) >= 48 && this.buf.charCodeAt(this.pos + 3) <= 57 && this.buf.charCodeAt(this.pos + 4) == 45) {
|
|
9487
|
-
var ot =
|
|
9488
|
-
st =
|
|
9487
|
+
var ot = z.substr(this.buf, this.pos, 19);
|
|
9488
|
+
st = z.strDate(ot), this.pos += 19;
|
|
9489
9489
|
} else {
|
|
9490
9490
|
var it = this.readFloat(), ht = /* @__PURE__ */ new Date();
|
|
9491
9491
|
ht.setTime(it), st = ht;
|
|
@@ -9547,7 +9547,7 @@ var Tl = { exports: {} };
|
|
|
9547
9547
|
var r = [];
|
|
9548
9548
|
for (var n in this.h)
|
|
9549
9549
|
this.h.hasOwnProperty(n) && r.push(n | 0);
|
|
9550
|
-
return
|
|
9550
|
+
return z.iter(r);
|
|
9551
9551
|
},
|
|
9552
9552
|
__class__: xt
|
|
9553
9553
|
};
|
|
@@ -9563,7 +9563,7 @@ var Tl = { exports: {} };
|
|
|
9563
9563
|
var r = [];
|
|
9564
9564
|
for (var n in this.h.__keys__)
|
|
9565
9565
|
this.h.hasOwnProperty(n) && r.push(this.h.__keys__[n]);
|
|
9566
|
-
return
|
|
9566
|
+
return z.iter(r);
|
|
9567
9567
|
},
|
|
9568
9568
|
__class__: Nt
|
|
9569
9569
|
};
|
|
@@ -9590,7 +9590,7 @@ var Tl = { exports: {} };
|
|
|
9590
9590
|
},
|
|
9591
9591
|
keys: function() {
|
|
9592
9592
|
var r = this.arrayKeys();
|
|
9593
|
-
return
|
|
9593
|
+
return z.iter(r);
|
|
9594
9594
|
},
|
|
9595
9595
|
arrayKeys: function() {
|
|
9596
9596
|
var r = [];
|
|
@@ -9655,7 +9655,7 @@ var Tl = { exports: {} };
|
|
|
9655
9655
|
var Q = function(r) {
|
|
9656
9656
|
Error.call(this), this.val = r, this.message = String(r), Error.captureStackTrace && Error.captureStackTrace(this, Q);
|
|
9657
9657
|
};
|
|
9658
|
-
b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype =
|
|
9658
|
+
b["js._Boot.HaxeError"] = Q, Q.__name__ = ["js", "_Boot", "HaxeError"], Q.__super__ = Error, Q.prototype = M(Error.prototype, {
|
|
9659
9659
|
__class__: Q
|
|
9660
9660
|
});
|
|
9661
9661
|
var It = function() {
|
|
@@ -9701,15 +9701,15 @@ var Tl = { exports: {} };
|
|
|
9701
9701
|
var I = r.toString();
|
|
9702
9702
|
if (I != "[object Object]") return I;
|
|
9703
9703
|
}
|
|
9704
|
-
var E = null,
|
|
9704
|
+
var E = null, T = `{
|
|
9705
9705
|
`;
|
|
9706
9706
|
n += " ";
|
|
9707
9707
|
var L = r.hasOwnProperty != null;
|
|
9708
9708
|
for (var E in r)
|
|
9709
|
-
L && !r.hasOwnProperty(E) || E == "prototype" || E == "__class__" || E == "__super__" || E == "__interfaces__" || E == "__properties__" || (
|
|
9710
|
-
`),
|
|
9711
|
-
return n = n.substring(1),
|
|
9712
|
-
` + n + "}",
|
|
9709
|
+
L && !r.hasOwnProperty(E) || E == "prototype" || E == "__class__" || E == "__super__" || E == "__interfaces__" || E == "__properties__" || (T.length != 2 && (T += `,
|
|
9710
|
+
`), T += n + E + " : " + It.__string_rec(r[E], n));
|
|
9711
|
+
return n = n.substring(1), T += `
|
|
9712
|
+
` + n + "}", T;
|
|
9713
9713
|
case "function":
|
|
9714
9714
|
return "<function>";
|
|
9715
9715
|
case "string":
|
|
@@ -10059,7 +10059,7 @@ var Tl = { exports: {} };
|
|
|
10059
10059
|
var tn = f.promhx.Deferred = function() {
|
|
10060
10060
|
St.call(this);
|
|
10061
10061
|
};
|
|
10062
|
-
b["promhx.Deferred"] = tn, tn.__name__ = ["promhx", "Deferred"], tn.__super__ = St, tn.prototype =
|
|
10062
|
+
b["promhx.Deferred"] = tn, tn.__name__ = ["promhx", "Deferred"], tn.__super__ = St, tn.prototype = M(St.prototype, {
|
|
10063
10063
|
resolve: function(r) {
|
|
10064
10064
|
this.handleResolve(r);
|
|
10065
10065
|
},
|
|
@@ -10086,7 +10086,7 @@ var Tl = { exports: {} };
|
|
|
10086
10086
|
}, pe.promise = function(r) {
|
|
10087
10087
|
var n = new pe();
|
|
10088
10088
|
return n.handleResolve(r), n;
|
|
10089
|
-
}, pe.__super__ = St, pe.prototype =
|
|
10089
|
+
}, pe.__super__ = St, pe.prototype = M(St.prototype, {
|
|
10090
10090
|
isRejected: function() {
|
|
10091
10091
|
return this._rejected;
|
|
10092
10092
|
},
|
|
@@ -10160,7 +10160,7 @@ var Tl = { exports: {} };
|
|
|
10160
10160
|
}, jt.stream = function(r) {
|
|
10161
10161
|
var n = new jt(null);
|
|
10162
10162
|
return n.handleResolve(r), n;
|
|
10163
|
-
}, jt.__super__ = St, jt.prototype =
|
|
10163
|
+
}, jt.__super__ = St, jt.prototype = M(St.prototype, {
|
|
10164
10164
|
then: function(r) {
|
|
10165
10165
|
var n = new jt(null);
|
|
10166
10166
|
return St.link(this, n, r), this._end_promise._update.push({
|
|
@@ -10261,7 +10261,7 @@ var Tl = { exports: {} };
|
|
|
10261
10261
|
b["promhx.PublicStream"] = br, br.__name__ = ["promhx", "PublicStream"], br.publicstream = function(r) {
|
|
10262
10262
|
var n = new br(null);
|
|
10263
10263
|
return n.handleResolve(r), n;
|
|
10264
|
-
}, br.__super__ = jt, br.prototype =
|
|
10264
|
+
}, br.__super__ = jt, br.prototype = M(jt.prototype, {
|
|
10265
10265
|
resolve: function(r) {
|
|
10266
10266
|
this.handleResolve(r);
|
|
10267
10267
|
},
|
|
@@ -10458,25 +10458,25 @@ var Tl = { exports: {} };
|
|
|
10458
10458
|
var In = f.core.Plane = function(r, n) {
|
|
10459
10459
|
this.origin = r, this.normal = n;
|
|
10460
10460
|
};
|
|
10461
|
-
b["verb.core.Plane"] = In, In.__name__ = ["verb", "core", "Plane"], In.__super__ = Xt, In.prototype =
|
|
10461
|
+
b["verb.core.Plane"] = In, In.__name__ = ["verb", "core", "Plane"], In.__super__ = Xt, In.prototype = M(Xt.prototype, {
|
|
10462
10462
|
__class__: In
|
|
10463
10463
|
});
|
|
10464
10464
|
var rn = f.core.Ray = function(r, n) {
|
|
10465
10465
|
this.origin = r, this.dir = n;
|
|
10466
10466
|
};
|
|
10467
|
-
b["verb.core.Ray"] = rn, rn.__name__ = ["verb", "core", "Ray"], rn.__super__ = Xt, rn.prototype =
|
|
10467
|
+
b["verb.core.Ray"] = rn, rn.__name__ = ["verb", "core", "Ray"], rn.__super__ = Xt, rn.prototype = M(Xt.prototype, {
|
|
10468
10468
|
__class__: rn
|
|
10469
10469
|
});
|
|
10470
10470
|
var Ft = f.core.NurbsCurveData = function(r, n, i) {
|
|
10471
10471
|
this.degree = r, this.controlPoints = i, this.knots = n;
|
|
10472
10472
|
};
|
|
10473
|
-
b["verb.core.NurbsCurveData"] = Ft, Ft.__name__ = ["verb", "core", "NurbsCurveData"], Ft.__super__ = Xt, Ft.prototype =
|
|
10473
|
+
b["verb.core.NurbsCurveData"] = Ft, Ft.__name__ = ["verb", "core", "NurbsCurveData"], Ft.__super__ = Xt, Ft.prototype = M(Xt.prototype, {
|
|
10474
10474
|
__class__: Ft
|
|
10475
10475
|
});
|
|
10476
10476
|
var Jt = f.core.NurbsSurfaceData = function(r, n, i, l, u) {
|
|
10477
10477
|
this.degreeU = r, this.degreeV = n, this.knotsU = i, this.knotsV = l, this.controlPoints = u;
|
|
10478
10478
|
};
|
|
10479
|
-
b["verb.core.NurbsSurfaceData"] = Jt, Jt.__name__ = ["verb", "core", "NurbsSurfaceData"], Jt.__super__ = Xt, Jt.prototype =
|
|
10479
|
+
b["verb.core.NurbsSurfaceData"] = Jt, Jt.__name__ = ["verb", "core", "NurbsSurfaceData"], Jt.__super__ = Xt, Jt.prototype = M(Xt.prototype, {
|
|
10480
10480
|
__class__: Jt
|
|
10481
10481
|
});
|
|
10482
10482
|
var je = f.core.MeshData = function(r, n, i, l) {
|
|
@@ -10484,19 +10484,19 @@ var Tl = { exports: {} };
|
|
|
10484
10484
|
};
|
|
10485
10485
|
b["verb.core.MeshData"] = je, je.__name__ = ["verb", "core", "MeshData"], je.empty = function() {
|
|
10486
10486
|
return new je([], [], [], []);
|
|
10487
|
-
}, je.__super__ = Xt, je.prototype =
|
|
10487
|
+
}, je.__super__ = Xt, je.prototype = M(Xt.prototype, {
|
|
10488
10488
|
__class__: je
|
|
10489
10489
|
});
|
|
10490
10490
|
var kn = f.core.PolylineData = function(r, n) {
|
|
10491
10491
|
this.points = r, this.params = n;
|
|
10492
10492
|
};
|
|
10493
|
-
b["verb.core.PolylineData"] = kn, kn.__name__ = ["verb", "core", "PolylineData"], kn.__super__ = Xt, kn.prototype =
|
|
10493
|
+
b["verb.core.PolylineData"] = kn, kn.__name__ = ["verb", "core", "PolylineData"], kn.__super__ = Xt, kn.prototype = M(Xt.prototype, {
|
|
10494
10494
|
__class__: kn
|
|
10495
10495
|
});
|
|
10496
10496
|
var En = f.core.VolumeData = function(r, n, i, l, u, d, p) {
|
|
10497
10497
|
this.degreeU = r, this.degreeV = n, this.degreeW = i, this.knotsU = l, this.knotsV = u, this.knotsW = d, this.controlPoints = p;
|
|
10498
10498
|
};
|
|
10499
|
-
b["verb.core.VolumeData"] = En, En.__name__ = ["verb", "core", "VolumeData"], En.__super__ = Xt, En.prototype =
|
|
10499
|
+
b["verb.core.VolumeData"] = En, En.__name__ = ["verb", "core", "VolumeData"], En.__super__ = Xt, En.prototype = M(Xt.prototype, {
|
|
10500
10500
|
__class__: En
|
|
10501
10501
|
});
|
|
10502
10502
|
var te = f.core.Pair = function(r, n) {
|
|
@@ -10583,7 +10583,7 @@ var Tl = { exports: {} };
|
|
|
10583
10583
|
return -P.item1;
|
|
10584
10584
|
}), d, p = null;
|
|
10585
10585
|
p = function(P) {
|
|
10586
|
-
for (var I, E = P.dimension,
|
|
10586
|
+
for (var I, E = P.dimension, T = l.distanceFunction(r, P.kdPoint.point), L, N = [], B = 0, O = l.dim; B < O; )
|
|
10587
10587
|
B++, N.push(0);
|
|
10588
10588
|
L = N;
|
|
10589
10589
|
for (var F, V, H = function(Y, tt) {
|
|
@@ -10593,10 +10593,10 @@ var Tl = { exports: {} };
|
|
|
10593
10593
|
j == P.dimension ? L[j] = r[j] : L[j] = P.kdPoint.point[j];
|
|
10594
10594
|
}
|
|
10595
10595
|
if (F = l.distanceFunction(L, P.kdPoint.point), P.right == null && P.left == null) {
|
|
10596
|
-
(u.size() < n ||
|
|
10596
|
+
(u.size() < n || T < u.peek().item1) && H(P, T);
|
|
10597
10597
|
return;
|
|
10598
10598
|
}
|
|
10599
|
-
P.right == null ? I = P.left : P.left == null ? I = P.right : r[E] < P.kdPoint.point[E] ? I = P.left : I = P.right, p(I), (u.size() < n ||
|
|
10599
|
+
P.right == null ? I = P.left : P.left == null ? I = P.right : r[E] < P.kdPoint.point[E] ? I = P.left : I = P.right, p(I), (u.size() < n || T < u.peek().item1) && H(P, T), (u.size() < n || Math.abs(F) < u.peek().item1) && (I == P.left ? V = P.right : V = P.left, V != null && p(V));
|
|
10600
10600
|
}, d = p;
|
|
10601
10601
|
for (var _ = 0; _ < n; )
|
|
10602
10602
|
_++, u.push(new te(null, i));
|
|
@@ -10870,13 +10870,13 @@ var Tl = { exports: {} };
|
|
|
10870
10870
|
A.push(r[E].slice());
|
|
10871
10871
|
}
|
|
10872
10872
|
r = A;
|
|
10873
|
-
var
|
|
10874
|
-
for (l = 0; l <
|
|
10875
|
-
for (_ = l, p = r[l], w = Math.abs(p[l]), i = l + 1; i <
|
|
10873
|
+
var T = r.length, L = T - 1, N = [];
|
|
10874
|
+
for (l = 0; l < T; ) {
|
|
10875
|
+
for (_ = l, p = r[l], w = Math.abs(p[l]), i = l + 1; i < T; )
|
|
10876
10876
|
u = Math.abs(r[i][l]), w < u && (w = u, _ = i), ++i;
|
|
10877
|
-
for (N[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n <
|
|
10877
|
+
for (N[l] = _, _ != l && (r[l] = r[_], r[_] = p, p = r[l]), d = p[l], n = l + 1; n < T; )
|
|
10878
10878
|
r[n][l] /= d, ++n;
|
|
10879
|
-
for (n = l + 1; n <
|
|
10879
|
+
for (n = l + 1; n < T; ) {
|
|
10880
10880
|
for (v = r[n], i = l + 1; i < L; )
|
|
10881
10881
|
v[i] -= v[l] * p[i], ++i, v[i] -= v[l] * p[i], ++i;
|
|
10882
10882
|
i == L && (v[i] -= v[l] * p[i]), ++n;
|
|
@@ -10910,8 +10910,8 @@ var Tl = { exports: {} };
|
|
|
10910
10910
|
u.push(new te(_, p));
|
|
10911
10911
|
}
|
|
10912
10912
|
u.sort(function(I, E) {
|
|
10913
|
-
var
|
|
10914
|
-
return
|
|
10913
|
+
var T = I.item0, L = E.item0;
|
|
10914
|
+
return T == L ? 0 : T > L ? 1 : -1;
|
|
10915
10915
|
});
|
|
10916
10916
|
for (var v = [], w = 0, A = u.length; w < A; ) {
|
|
10917
10917
|
var P = w++;
|
|
@@ -10936,8 +10936,8 @@ var Tl = { exports: {} };
|
|
|
10936
10936
|
}
|
|
10937
10937
|
return i;
|
|
10938
10938
|
}, ee.triangleUVFromPoint = function(r, n, i) {
|
|
10939
|
-
var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], w = r.uvs[l[2]], A = m.sub(u, i), P = m.sub(d, i), I = m.sub(p, i), E = m.norm(m.cross(m.sub(u, d), m.sub(u, p))),
|
|
10940
|
-
return m.add(m.mul(
|
|
10939
|
+
var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], w = r.uvs[l[2]], A = m.sub(u, i), P = m.sub(d, i), I = m.sub(p, i), E = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), T = m.norm(m.cross(P, I)) / E, L = m.norm(m.cross(I, A)) / E, N = m.norm(m.cross(A, P)) / E;
|
|
10940
|
+
return m.add(m.mul(T, _), m.add(m.mul(L, v), m.mul(N, w)));
|
|
10941
10941
|
};
|
|
10942
10942
|
var Ar = function(r, n) {
|
|
10943
10943
|
if (this._empty = !1, this._face = -1, n == null) {
|
|
@@ -10984,7 +10984,7 @@ var Tl = { exports: {} };
|
|
|
10984
10984
|
var d = n.length, p = r(n), _ = p, v;
|
|
10985
10985
|
if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
|
|
10986
10986
|
i = Math.max(i, rt.EPSILON);
|
|
10987
|
-
var w, A, P, I = Mt.identity(d), E = 0,
|
|
10987
|
+
var w, A, P, I = Mt.identity(d), E = 0, T = [], L, N, B, O, F, V, H = "";
|
|
10988
10988
|
for (A = l(n); E < u; ) {
|
|
10989
10989
|
if (!m.all(m.finite(A))) {
|
|
10990
10990
|
H = "Gradient has Infinity or NaN";
|
|
@@ -10999,7 +10999,7 @@ var Tl = { exports: {} };
|
|
|
10999
10999
|
break;
|
|
11000
11000
|
}
|
|
11001
11001
|
for (F = 1, v = m.dot(A, w), L = n; E < u && !(F * V < i); ) {
|
|
11002
|
-
if (
|
|
11002
|
+
if (T = m.mul(F, w), L = m.add(n, T), _ = r(L), _ - p >= 0.1 * F * v || isNaN(_)) {
|
|
11003
11003
|
F *= 0.5, ++E;
|
|
11004
11004
|
continue;
|
|
11005
11005
|
}
|
|
@@ -11013,20 +11013,20 @@ var Tl = { exports: {} };
|
|
|
11013
11013
|
H = "maxit reached during line search";
|
|
11014
11014
|
break;
|
|
11015
11015
|
}
|
|
11016
|
-
P = l(L), N = m.sub(P, A),
|
|
11016
|
+
P = l(L), N = m.sub(P, A), O = m.dot(N, T), B = Mt.dot(I, N), I = Mt.sub(Mt.add(I, Mt.mul((O + m.dot(N, B)) / (O * O), Ge.tensor(T, T))), Mt.div(Mt.add(Ge.tensor(B, T), Ge.tensor(T, B)), O)), n = L, p = _, A = P, ++E;
|
|
11017
11017
|
}
|
|
11018
11018
|
return new Rn(n, p, A, I, E, H);
|
|
11019
11019
|
}, Ge.numericalGradient = function(r, n) {
|
|
11020
11020
|
var i = n.length, l = r(n);
|
|
11021
11021
|
if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
|
|
11022
|
-
for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, A, P, I, E = 0,
|
|
11023
|
-
for (var
|
|
11022
|
+
for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, A, P, I, E = 0, T, L, N, B = 0; B < i; )
|
|
11023
|
+
for (var O = B++, F = Math.max(1e-6 * l, 1e-8); ; ) {
|
|
11024
11024
|
if (++E, E > 20) throw new Q("Numerical gradient fails");
|
|
11025
|
-
if (u[
|
|
11025
|
+
if (u[O] = n[O] + F, d = r(u), u[O] = n[O] - F, p = r(u), u[O] = n[O], isNaN(d) || isNaN(p)) {
|
|
11026
11026
|
F /= 16;
|
|
11027
11027
|
continue;
|
|
11028
11028
|
}
|
|
11029
|
-
if (_[
|
|
11029
|
+
if (_[O] = (d - p) / (2 * F), A = n[O] - F, P = n[O], I = n[O] + F, T = (d - l) / F, L = (l - p) / F, N = m.max([Math.abs(_[O]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(A), Math.abs(P), Math.abs(I), 1e-8]), v = Math.min(m.max([Math.abs(T - _[O]), Math.abs(L - _[O]), Math.abs(T - L)]) / N, F / N), v > w) F /= 16;
|
|
11030
11030
|
else break;
|
|
11031
11031
|
}
|
|
11032
11032
|
return _;
|
|
@@ -11295,9 +11295,9 @@ var Tl = { exports: {} };
|
|
|
11295
11295
|
var i = yt.rationalSurfaceClosestParam(r, n);
|
|
11296
11296
|
return C.rationalSurfacePoint(r, i[0], i[1]);
|
|
11297
11297
|
}, yt.rationalSurfaceClosestParam = function(r, n) {
|
|
11298
|
-
for (var i = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = K.last(r.knotsU), A = r.knotsV[0], P = K.last(r.knotsV), I = yt.isRationalSurfaceClosed(r), E = yt.isRationalSurfaceClosed(r, !1),
|
|
11298
|
+
for (var i = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = K.last(r.knotsU), A = r.knotsV[0], P = K.last(r.knotsV), I = yt.isRationalSurfaceClosed(r), E = yt.isRationalSurfaceClosed(r, !1), T, L = Lt.rationalSurfaceAdaptive(r, new Sr()), N = 1 / 0, B = 0, O = L.points.length; B < O; ) {
|
|
11299
11299
|
var F = B++, V = L.points[F], H = m.normSquared(m.sub(n, V));
|
|
11300
|
-
H < N && (N = H,
|
|
11300
|
+
H < N && (N = H, T = L.uvs[F]);
|
|
11301
11301
|
}
|
|
11302
11302
|
for (var J = function(Vt) {
|
|
11303
11303
|
return C.rationalSurfaceDerivatives(r, Vt[0], Vt[1], 2);
|
|
@@ -11305,16 +11305,16 @@ var Tl = { exports: {} };
|
|
|
11305
11305
|
var Yt = qt[1][0], Pe = qt[0][1], De = qt[2][0], _e = qt[0][2], ge = qt[1][1], Ae = qt[1][1], Te = m.dot(Yt, Bt), He = m.dot(Pe, Bt), sr = [-Te, -He], qe = m.dot(Yt, Yt) + m.dot(De, Bt), Ye = m.dot(Yt, Pe) + m.dot(ge, Bt), Ke = m.dot(Yt, Pe) + m.dot(Ae, Bt), lr = m.dot(Pe, Pe) + m.dot(_e, Bt), dn = [[qe, Ye], [Ke, lr]], Dr = Mt.solve(dn, sr);
|
|
11306
11306
|
return m.add(Dr, Vt);
|
|
11307
11307
|
}; l < i; ) {
|
|
11308
|
-
u = J(
|
|
11308
|
+
u = J(T), _ = m.sub(u[0][0], n);
|
|
11309
11309
|
var j = m.norm(_), Y = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * j, et = m.dot(u[0][1], _), st = m.norm(u[0][1]) * j, ot = Y / tt, it = et / st, ht = j < d, nt = ot < p, ct = it < p;
|
|
11310
|
-
if (ht && nt && ct) return
|
|
11311
|
-
var q = G(
|
|
11310
|
+
if (ht && nt && ct) return T;
|
|
11311
|
+
var q = G(T, u, _);
|
|
11312
11312
|
q[0] < v ? I ? q = [w - (q[0] - v), q[1]] : q = [v + rt.EPSILON, q[1]] : q[0] > w && (I ? q = [v + (q[0] - w), q[1]] : q = [w - rt.EPSILON, q[1]]), q[1] < A ? E ? q = [q[0], P - (q[1] - A)] : q = [q[0], A + rt.EPSILON] : q[1] > P && (E ? q = [q[0], A + (q[0] - P)] : q = [q[0], P - rt.EPSILON]);
|
|
11313
|
-
var pt = m.norm(m.mul(q[0] -
|
|
11314
|
-
if (pt + Pt < d) return
|
|
11315
|
-
|
|
11313
|
+
var pt = m.norm(m.mul(q[0] - T[0], u[1][0])), Pt = m.norm(m.mul(q[1] - T[1], u[0][1]));
|
|
11314
|
+
if (pt + Pt < d) return T;
|
|
11315
|
+
T = q, l++;
|
|
11316
11316
|
}
|
|
11317
|
-
return
|
|
11317
|
+
return T;
|
|
11318
11318
|
}, yt.rationalCurveClosestPoint = function(r, n) {
|
|
11319
11319
|
return C.rationalCurvePoint(r, yt.rationalCurveClosestParam(r, n));
|
|
11320
11320
|
}, yt.rationalCurveClosestParam = function(r, n) {
|
|
@@ -11322,14 +11322,14 @@ var Tl = { exports: {} };
|
|
|
11322
11322
|
var _ = d++, v = u[_][0], w = u[_ + 1][0], A = u[_].slice(1), P = u[_ + 1].slice(1), I = Ee.segmentClosestPoint(n, A, P, v, w), E = m.norm(m.sub(n, I.pt));
|
|
11323
11323
|
E < i && (i = E, l = I.u);
|
|
11324
11324
|
}
|
|
11325
|
-
for (var
|
|
11325
|
+
for (var T = 5, L = 0, N, B = 1e-4, O = 5e-4, F, V = r.knots[0], H = K.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], K.last(r.controlPoints))) < rt.EPSILON, G = l, j = function(q) {
|
|
11326
11326
|
return C.rationalCurveDerivatives(r, q, 2);
|
|
11327
11327
|
}, Y = function(q, pt, Pt) {
|
|
11328
11328
|
var Vt = m.dot(pt[1], Pt), qt = m.dot(pt[2], Pt), Bt = m.dot(pt[1], pt[1]), Yt = qt + Bt;
|
|
11329
11329
|
return q - Vt / Yt;
|
|
11330
|
-
}; L <
|
|
11330
|
+
}; L < T; ) {
|
|
11331
11331
|
N = j(G), F = m.sub(N[0], n);
|
|
11332
|
-
var tt = m.norm(F), et = m.dot(N[1], F), st = m.norm(N[1]) * tt, ot = et / st, it = tt < B, ht = Math.abs(ot) <
|
|
11332
|
+
var tt = m.norm(F), et = m.dot(N[1], F), st = m.norm(N[1]) * tt, ot = et / st, it = tt < B, ht = Math.abs(ot) < O;
|
|
11333
11333
|
if (it && ht) return G;
|
|
11334
11334
|
var nt = Y(G, N, F);
|
|
11335
11335
|
nt < V ? J ? nt = H - (nt - V) : nt = V : nt > H && (J ? nt = V + (nt - H) : nt = H);
|
|
@@ -11435,9 +11435,9 @@ var Tl = { exports: {} };
|
|
|
11435
11435
|
for (var p, _ = [], v = 0, w = u + 1; v < w; )
|
|
11436
11436
|
v++, _.push(n);
|
|
11437
11437
|
p = _;
|
|
11438
|
-
for (var A = [], P = [], I = C.knotSpan(u, n, l), E = null,
|
|
11439
|
-
var L = d[
|
|
11440
|
-
++
|
|
11438
|
+
for (var A = [], P = [], I = C.knotSpan(u, n, l), E = null, T = 0; T < d.length; ) {
|
|
11439
|
+
var L = d[T];
|
|
11440
|
+
++T, E = _t.curveKnotRefine(new Ft(u, l, L), p), A.push(E.controlPoints.slice(0, I + 1)), P.push(E.controlPoints.slice(I + 1));
|
|
11441
11441
|
}
|
|
11442
11442
|
var N = E.knots.slice(0, I + u + 2), B = E.knots.slice(I + 1);
|
|
11443
11443
|
return i ? [new Jt(r.degreeU, u, r.knotsU.slice(), N, A), new Jt(r.degreeU, u, r.knotsU.slice(), B, P)] : (A = Mt.transpose(A), P = Mt.transpose(P), [new Jt(u, r.degreeV, N, r.knotsV.slice(), A), new Jt(u, r.degreeV, B, r.knotsV.slice(), P)]);
|
|
@@ -11484,16 +11484,16 @@ var Tl = { exports: {} };
|
|
|
11484
11484
|
var P = w++;
|
|
11485
11485
|
_.push([]);
|
|
11486
11486
|
for (var I = 0, E = l - P + 1; I < E; ) {
|
|
11487
|
-
for (var
|
|
11488
|
-
var
|
|
11489
|
-
m.subMulMutate(L, zt.get(
|
|
11487
|
+
for (var T = I++, L = d[P][T], N = 1, B = T + 1; N < B; ) {
|
|
11488
|
+
var O = N++;
|
|
11489
|
+
m.subMulMutate(L, zt.get(T, O) * p[0][O], _[P][T - O]);
|
|
11490
11490
|
}
|
|
11491
11491
|
for (var F = 1, V = P + 1; F < V; ) {
|
|
11492
11492
|
var H = F++;
|
|
11493
|
-
m.subMulMutate(L, zt.get(P, H) * p[H][0], _[P - H][
|
|
11494
|
-
for (var J = m.zeros1d(v), G = 1, j =
|
|
11493
|
+
m.subMulMutate(L, zt.get(P, H) * p[H][0], _[P - H][T]);
|
|
11494
|
+
for (var J = m.zeros1d(v), G = 1, j = T + 1; G < j; ) {
|
|
11495
11495
|
var Y = G++;
|
|
11496
|
-
m.addMulMutate(J, zt.get(
|
|
11496
|
+
m.addMulMutate(J, zt.get(T, Y) * p[H][Y], _[P - H][T - Y]);
|
|
11497
11497
|
}
|
|
11498
11498
|
m.subMulMutate(L, zt.get(P, H), J);
|
|
11499
11499
|
}
|
|
@@ -11525,7 +11525,7 @@ var Tl = { exports: {} };
|
|
|
11525
11525
|
d < p ? I = d : I = p;
|
|
11526
11526
|
var E;
|
|
11527
11527
|
d < _ ? E = d : E = _;
|
|
11528
|
-
for (var
|
|
11528
|
+
for (var T = m.zeros3d(d + 1, d + 1, P), L = C.knotSpanGivenN(r, p, l, w), N = C.knotSpanGivenN(n, _, u, A), B = C.derivativeBasisFunctionsGivenNI(L, l, p, r, w), O = C.derivativeBasisFunctionsGivenNI(N, u, _, n, A), F = m.zeros2d(_ + 1, P), V = 0, H = 0, J = I + 1; H < J; ) {
|
|
11529
11529
|
for (var G = H++, j = 0, Y = _ + 1; j < Y; ) {
|
|
11530
11530
|
var tt = j++;
|
|
11531
11531
|
F[tt] = m.zeros1d(P);
|
|
@@ -11538,36 +11538,36 @@ var Tl = { exports: {} };
|
|
|
11538
11538
|
it < E ? V = it : V = E;
|
|
11539
11539
|
for (var ht = 0, nt = V + 1; ht < nt; ) {
|
|
11540
11540
|
var ct = ht++;
|
|
11541
|
-
|
|
11541
|
+
T[G][ct] = m.zeros1d(P);
|
|
11542
11542
|
for (var q = 0, pt = _ + 1; q < pt; ) {
|
|
11543
11543
|
var Pt = q++;
|
|
11544
|
-
m.addMulMutate(
|
|
11544
|
+
m.addMulMutate(T[G][ct], O[ct][Pt], F[Pt]);
|
|
11545
11545
|
}
|
|
11546
11546
|
}
|
|
11547
11547
|
}
|
|
11548
|
-
return
|
|
11548
|
+
return T;
|
|
11549
11549
|
}, C.surfacePoint = function(r, n, i) {
|
|
11550
11550
|
var l = r.knotsU.length - r.degreeU - 2, u = r.knotsV.length - r.degreeV - 2;
|
|
11551
11551
|
return C.surfacePointGivenNM(l, u, r, n, i);
|
|
11552
11552
|
}, C.surfacePointGivenNM = function(r, n, i, l, u) {
|
|
11553
11553
|
var d = i.degreeU, p = i.degreeV, _ = i.controlPoints, v = i.knotsU, w = i.knotsV;
|
|
11554
11554
|
if (!C.areValidRelations(d, _.length, v.length) || !C.areValidRelations(p, _[0].length, w.length)) throw new Q("Invalid relations between control points, knot vector, and n");
|
|
11555
|
-
for (var A = _[0][0].length, P = C.knotSpanGivenN(r, d, l, v), I = C.knotSpanGivenN(n, p, u, w), E = C.basisFunctionsGivenKnotSpanIndex(P, l, d, v),
|
|
11555
|
+
for (var A = _[0][0].length, P = C.knotSpanGivenN(r, d, l, v), I = C.knotSpanGivenN(n, p, u, w), E = C.basisFunctionsGivenKnotSpanIndex(P, l, d, v), T = C.basisFunctionsGivenKnotSpanIndex(I, u, p, w), L = P - d, N = I, B = m.zeros1d(A), O = m.zeros1d(A), F = 0, V = p + 1; F < V; ) {
|
|
11556
11556
|
var H = F++;
|
|
11557
|
-
|
|
11557
|
+
O = m.zeros1d(A), N = I - p + H;
|
|
11558
11558
|
for (var J = 0, G = d + 1; J < G; ) {
|
|
11559
11559
|
var j = J++;
|
|
11560
|
-
m.addMulMutate(
|
|
11560
|
+
m.addMulMutate(O, E[j], _[L + j][N]);
|
|
11561
11561
|
}
|
|
11562
|
-
m.addMulMutate(B,
|
|
11562
|
+
m.addMulMutate(B, T[H], O);
|
|
11563
11563
|
}
|
|
11564
11564
|
return B;
|
|
11565
11565
|
}, C.curveRegularSamplePoints = function(r, n) {
|
|
11566
|
-
for (var i = C.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = i[0], p = m.mul(l, i[1]), _ = m.mul(u * 0.5, i[2]), v = m.mul(u * l * 0.5, i[3]), w = m.add(_, _), A = m.add(v, v), P = m.mul(0.3333333333333333, v), I = [], E = 0,
|
|
11566
|
+
for (var i = C.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = i[0], p = m.mul(l, i[1]), _ = m.mul(u * 0.5, i[2]), v = m.mul(u * l * 0.5, i[3]), w = m.add(_, _), A = m.add(v, v), P = m.mul(0.3333333333333333, v), I = [], E = 0, T = n + 1; E < T; )
|
|
11567
11567
|
E++, I.push(C.dehomogenize(d)), m.addAllMutate([d, p, _, P]), m.addAllMutate([p, w, v]), m.addAllMutate([w, A]), m.addAllMutate([_, v]);
|
|
11568
11568
|
return I;
|
|
11569
11569
|
}, C.curveRegularSamplePoints2 = function(r, n) {
|
|
11570
|
-
for (var i = C.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = i[0], p = m.mul(l, i[1]), _ = m.mul(u * 0.5, i[2]), v = m.mul(u * l * 0.5, i[3]), w = m.add(_, _), A = m.add(v, v), P = m.mul(0.3333333333333333, v), I = [], E = 0,
|
|
11570
|
+
for (var i = C.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = i[0], p = m.mul(l, i[1]), _ = m.mul(u * 0.5, i[2]), v = m.mul(u * l * 0.5, i[3]), w = m.add(_, _), A = m.add(v, v), P = m.mul(0.3333333333333333, v), I = [], E = 0, T = n + 1; E < T; )
|
|
11571
11571
|
E++, I.push(C.dehomogenize(d)), m.addAllMutate([d, p, _, P]), m.addAllMutate([p, w, v]), m.addAllMutate([w, A]), m.addAllMutate([_, v]);
|
|
11572
11572
|
return I;
|
|
11573
11573
|
}, C.rationalSurfaceRegularSampleDerivatives = function(r, n, i, l) {
|
|
@@ -11575,7 +11575,7 @@ var Tl = { exports: {} };
|
|
|
11575
11575
|
var A = w++, P = [];
|
|
11576
11576
|
d.push(P);
|
|
11577
11577
|
for (var I = 0; I < _; ) {
|
|
11578
|
-
for (var E = I++,
|
|
11578
|
+
for (var E = I++, T = u[A][E], L = C.rational2d(T), N = C.weight2d(T), B = [], O = L[0][0].length, F = 0; F < v; ) {
|
|
11579
11579
|
var V = F++;
|
|
11580
11580
|
B.push([]);
|
|
11581
11581
|
for (var H = 0, J = v - V; H < J; ) {
|
|
@@ -11586,7 +11586,7 @@ var Tl = { exports: {} };
|
|
|
11586
11586
|
for (var st = 1, ot = V + 1; st < ot; ) {
|
|
11587
11587
|
var it = st++;
|
|
11588
11588
|
m.subMulMutate(j, zt.get(V, it) * N[it][0], B[V - it][G]);
|
|
11589
|
-
for (var ht = m.zeros1d(
|
|
11589
|
+
for (var ht = m.zeros1d(O), nt = 1, ct = G + 1; nt < ct; ) {
|
|
11590
11590
|
var q = nt++;
|
|
11591
11591
|
m.addMulMutate(ht, zt.get(G, q) * N[it][q], B[V - it][G - q]);
|
|
11592
11592
|
}
|
|
@@ -11602,12 +11602,12 @@ var Tl = { exports: {} };
|
|
|
11602
11602
|
}, C.surfaceRegularSampleDerivatives = function(r, n, i, l) {
|
|
11603
11603
|
var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, w = p[0][0].length;
|
|
11604
11604
|
(K.last(_) - _[0]) / n, (K.last(v) - v[0]) / i;
|
|
11605
|
-
for (var A = C.regularlySpacedDerivativeBasisFunctions(u, _, n), P = A.item0, I = A.item1, E = C.regularlySpacedDerivativeBasisFunctions(d, v, i),
|
|
11605
|
+
for (var A = C.regularlySpacedDerivativeBasisFunctions(u, _, n), P = A.item0, I = A.item1, E = C.regularlySpacedDerivativeBasisFunctions(d, v, i), T = E.item0, L = E.item1, N = [], B = n + 1, O = i + 1, F = 0; F < B; ) {
|
|
11606
11606
|
var V = F++, H = [];
|
|
11607
11607
|
N.push(H);
|
|
11608
|
-
for (var J = 0; J <
|
|
11608
|
+
for (var J = 0; J < O; ) {
|
|
11609
11609
|
var G = J++;
|
|
11610
|
-
H.push(C.surfaceDerivativesGivenBasesKnotSpans(u, d, p, P[V],
|
|
11610
|
+
H.push(C.surfaceDerivativesGivenBasesKnotSpans(u, d, p, P[V], T[G], I[V], L[G], w, l));
|
|
11611
11611
|
}
|
|
11612
11612
|
}
|
|
11613
11613
|
return N;
|
|
@@ -11616,12 +11616,12 @@ var Tl = { exports: {} };
|
|
|
11616
11616
|
}, C.surfaceRegularSamplePoints = function(r, n, i) {
|
|
11617
11617
|
var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
|
|
11618
11618
|
(K.last(p) - p[0]) / n, (K.last(_) - _[0]) / i;
|
|
11619
|
-
for (var w = C.regularlySpacedBasisFunctions(l, p, n), A = w.item0, P = w.item1, I = C.regularlySpacedBasisFunctions(u, _, i), E = I.item0,
|
|
11620
|
-
var F =
|
|
11619
|
+
for (var w = C.regularlySpacedBasisFunctions(l, p, n), A = w.item0, P = w.item1, I = C.regularlySpacedBasisFunctions(u, _, i), E = I.item0, T = I.item1, L = [], N = n + 1, B = i + 1, O = 0; O < N; ) {
|
|
11620
|
+
var F = O++, V = [];
|
|
11621
11621
|
L.push(V);
|
|
11622
11622
|
for (var H = 0; H < B; ) {
|
|
11623
11623
|
var J = H++;
|
|
11624
|
-
V.push(C.surfacePointGivenBasesKnotSpans(l, u, d, A[F], E[J], P[F],
|
|
11624
|
+
V.push(C.surfacePointGivenBasesKnotSpans(l, u, d, A[F], E[J], P[F], T[J], v));
|
|
11625
11625
|
}
|
|
11626
11626
|
}
|
|
11627
11627
|
return L;
|
|
@@ -11639,13 +11639,13 @@ var Tl = { exports: {} };
|
|
|
11639
11639
|
return new te(p, d);
|
|
11640
11640
|
}, C.surfacePointGivenBasesKnotSpans = function(r, n, i, l, u, d, p, _) {
|
|
11641
11641
|
for (var v = m.zeros1d(_), w, A = l - r, P = u - n, I = 0, E = n + 1; I < E; ) {
|
|
11642
|
-
var
|
|
11642
|
+
var T = I++;
|
|
11643
11643
|
w = m.zeros1d(_);
|
|
11644
11644
|
for (var L = 0, N = r + 1; L < N; ) {
|
|
11645
11645
|
var B = L++;
|
|
11646
11646
|
m.addMulMutate(w, d[B], i[A + B][P]);
|
|
11647
11647
|
}
|
|
11648
|
-
P++, m.addMulMutate(v, p[
|
|
11648
|
+
P++, m.addMulMutate(v, p[T], w);
|
|
11649
11649
|
}
|
|
11650
11650
|
return v;
|
|
11651
11651
|
}, C.surfaceDerivativesGivenBasesKnotSpans = function(r, n, i, l, u, d, p, _, v) {
|
|
@@ -11653,9 +11653,9 @@ var Tl = { exports: {} };
|
|
|
11653
11653
|
v < r ? A = v : A = r;
|
|
11654
11654
|
var P;
|
|
11655
11655
|
v < n ? P = v : P = n;
|
|
11656
|
-
for (var I = m.zeros3d(A + 1, P + 1, w), E = m.zeros2d(n + 1, w),
|
|
11657
|
-
for (var B = L++,
|
|
11658
|
-
var V =
|
|
11656
|
+
for (var I = m.zeros3d(A + 1, P + 1, w), E = m.zeros2d(n + 1, w), T = 0, L = 0, N = A + 1; L < N; ) {
|
|
11657
|
+
for (var B = L++, O = 0, F = n + 1; O < F; ) {
|
|
11658
|
+
var V = O++;
|
|
11659
11659
|
E[V] = m.zeros1d(w);
|
|
11660
11660
|
for (var H = 0, J = r + 1; H < J; ) {
|
|
11661
11661
|
var G = H++;
|
|
@@ -11663,8 +11663,8 @@ var Tl = { exports: {} };
|
|
|
11663
11663
|
}
|
|
11664
11664
|
}
|
|
11665
11665
|
var j = v - B;
|
|
11666
|
-
j < P ?
|
|
11667
|
-
for (var Y = 0, tt =
|
|
11666
|
+
j < P ? T = j : T = P;
|
|
11667
|
+
for (var Y = 0, tt = T + 1; Y < tt; ) {
|
|
11668
11668
|
var et = Y++;
|
|
11669
11669
|
I[B][et] = m.zeros1d(w);
|
|
11670
11670
|
for (var st = 0, ot = n + 1; st < ot; ) {
|
|
@@ -11683,9 +11683,9 @@ var Tl = { exports: {} };
|
|
|
11683
11683
|
var _ = d[0].length, v;
|
|
11684
11684
|
l < u ? v = l : v = u;
|
|
11685
11685
|
for (var w = m.zeros2d(l + 1, _), A = C.knotSpanGivenN(r, u, i, p), P = C.derivativeBasisFunctionsGivenNI(A, i, u, v, p), I = 0, E = v + 1; I < E; )
|
|
11686
|
-
for (var
|
|
11686
|
+
for (var T = I++, L = 0, N = u + 1; L < N; ) {
|
|
11687
11687
|
var B = L++;
|
|
11688
|
-
m.addMulMutate(w[
|
|
11688
|
+
m.addMulMutate(w[T], P[T][B], d[A - u + B]);
|
|
11689
11689
|
}
|
|
11690
11690
|
return w;
|
|
11691
11691
|
}, C.curvePoint = function(r, n) {
|
|
@@ -11707,15 +11707,15 @@ var Tl = { exports: {} };
|
|
|
11707
11707
|
return C.volumePointGivenNML(r, u, d, p, n, i, l);
|
|
11708
11708
|
}, C.volumePointGivenNML = function(r, n, i, l, u, d, p) {
|
|
11709
11709
|
if (!C.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !C.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !C.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
|
|
11710
|
-
for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, A = r.degreeW, P = r.knotsU, I = r.knotsV, E = r.knotsW,
|
|
11710
|
+
for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, A = r.degreeW, P = r.knotsU, I = r.knotsV, E = r.knotsW, T = _[0][0][0].length, L = C.knotSpanGivenN(n, v, u, P), N = C.knotSpanGivenN(i, w, d, I), B = C.knotSpanGivenN(l, A, p, E), O = C.basisFunctionsGivenKnotSpanIndex(L, u, v, P), F = C.basisFunctionsGivenKnotSpanIndex(N, d, w, I), V = C.basisFunctionsGivenKnotSpanIndex(B, p, A, E), H = L - v, J = m.zeros1d(T), G = m.zeros1d(T), j = m.zeros1d(T), Y = 0, tt = A + 1; Y < tt; ) {
|
|
11711
11711
|
var et = Y++;
|
|
11712
|
-
j = m.zeros1d(
|
|
11712
|
+
j = m.zeros1d(T);
|
|
11713
11713
|
for (var st = B - A + et, ot = 0, it = w + 1; ot < it; ) {
|
|
11714
11714
|
var ht = ot++;
|
|
11715
|
-
G = m.zeros1d(
|
|
11715
|
+
G = m.zeros1d(T);
|
|
11716
11716
|
for (var nt = N - w + ht, ct = 0, q = v + 1; ct < q; ) {
|
|
11717
11717
|
var pt = ct++;
|
|
11718
|
-
m.addMulMutate(G,
|
|
11718
|
+
m.addMulMutate(G, O[pt], _[H + pt][nt][st]);
|
|
11719
11719
|
}
|
|
11720
11720
|
m.addMulMutate(j, F[ht], G);
|
|
11721
11721
|
}
|
|
@@ -11732,28 +11732,28 @@ var Tl = { exports: {} };
|
|
|
11732
11732
|
var I = A++;
|
|
11733
11733
|
p[I] = n - u[r + 1 - I], _[I] = u[r + I] - n, v = 0;
|
|
11734
11734
|
for (var E = 0; E < I; ) {
|
|
11735
|
-
var
|
|
11736
|
-
d[I][
|
|
11735
|
+
var T = E++;
|
|
11736
|
+
d[I][T] = _[T + 1] + p[I - T], w = d[T][I - 1] / d[I][T], d[T][I] = v + _[T + 1] * w, v = p[I - T] * w;
|
|
11737
11737
|
}
|
|
11738
11738
|
d[I][I] = v;
|
|
11739
11739
|
}
|
|
11740
|
-
for (var L = m.zeros2d(l + 1, i + 1), N = m.zeros2d(2, i + 1), B = 0,
|
|
11740
|
+
for (var L = m.zeros2d(l + 1, i + 1), N = m.zeros2d(2, i + 1), B = 0, O = 1, F = 0, V = 0, H = 0, J = 0, G = 0, j = 0, Y = i + 1; j < Y; ) {
|
|
11741
11741
|
var tt = j++;
|
|
11742
11742
|
L[0][tt] = d[tt][i];
|
|
11743
11743
|
}
|
|
11744
11744
|
for (var et = 0, st = i + 1; et < st; ) {
|
|
11745
11745
|
var ot = et++;
|
|
11746
|
-
B = 0,
|
|
11746
|
+
B = 0, O = 1, N[0][0] = 1;
|
|
11747
11747
|
for (var it = 1, ht = l + 1; it < ht; ) {
|
|
11748
11748
|
var nt = it++;
|
|
11749
|
-
F = 0, V = ot - nt, H = i - nt, ot >= nt && (N[
|
|
11749
|
+
F = 0, V = ot - nt, H = i - nt, ot >= nt && (N[O][0] = N[B][0] / d[H + 1][V], F = N[O][0] * d[V][H]), V >= -1 ? J = 1 : J = -V, ot - 1 <= H ? G = nt - 1 : G = i - ot;
|
|
11750
11750
|
for (var ct = J, q = G + 1; ct < q; ) {
|
|
11751
11751
|
var pt = ct++;
|
|
11752
|
-
N[
|
|
11752
|
+
N[O][pt] = (N[B][pt] - N[B][pt - 1]) / d[H + 1][V + pt], F += N[O][pt] * d[V + pt][H];
|
|
11753
11753
|
}
|
|
11754
|
-
ot <= H && (N[
|
|
11754
|
+
ot <= H && (N[O][nt] = -N[B][nt - 1] / d[H + 1][ot], F += N[O][nt] * d[ot][H]), L[nt][ot] = F;
|
|
11755
11755
|
var Pt = B;
|
|
11756
|
-
B =
|
|
11756
|
+
B = O, O = Pt;
|
|
11757
11757
|
}
|
|
11758
11758
|
}
|
|
11759
11759
|
for (var Vt = i, qt = 1, Bt = l + 1; qt < Bt; ) {
|
|
@@ -11853,14 +11853,14 @@ var Tl = { exports: {} };
|
|
|
11853
11853
|
}), 3);
|
|
11854
11854
|
});
|
|
11855
11855
|
}, at.surfacesAtPointWithEstimate = function(r, n, i, l, u) {
|
|
11856
|
-
var d, p, _, v, w, A, P, I, E,
|
|
11856
|
+
var d, p, _, v, w, A, P, I, E, T, L, N, B, O = 5, F = 0;
|
|
11857
11857
|
do {
|
|
11858
|
-
if (d = C.rationalSurfaceDerivatives(r, i[0], i[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), A = m.dot(_, p), P = C.rationalSurfaceDerivatives(n, l[0], l[1], 1), I = P[0][0],
|
|
11858
|
+
if (d = C.rationalSurfaceDerivatives(r, i[0], i[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), A = m.dot(_, p), P = C.rationalSurfaceDerivatives(n, l[0], l[1], 1), I = P[0][0], T = P[1][0], L = P[0][1], E = m.normalized(m.cross(T, L)), N = m.dot(E, I), B = m.distSquared(p, I), B < u * u) break;
|
|
11859
11859
|
var V = m.normalized(m.cross(_, E)), H = m.dot(V, p), J = at.threePlanes(_, A, E, N, V, H);
|
|
11860
11860
|
if (J == null) throw new Q("panic!");
|
|
11861
|
-
var G = m.sub(J, p), j = m.sub(J, I), Y = m.cross(v, _), tt = m.cross(w, _), et = m.cross(
|
|
11861
|
+
var G = m.sub(J, p), j = m.sub(J, I), Y = m.cross(v, _), tt = m.cross(w, _), et = m.cross(T, E), st = m.cross(L, E), ot = m.dot(tt, G) / m.dot(tt, v), it = m.dot(Y, G) / m.dot(Y, w), ht = m.dot(st, j) / m.dot(st, T), nt = m.dot(et, j) / m.dot(et, L);
|
|
11862
11862
|
i = m.add([ot, it], i), l = m.add([ht, nt], l), F++;
|
|
11863
|
-
} while (F <
|
|
11863
|
+
} while (F < O);
|
|
11864
11864
|
return new Cn(i, l, p, B);
|
|
11865
11865
|
}, at.meshes = function(r, n, i, l) {
|
|
11866
11866
|
i == null && (i = new rr(r)), l == null && (l = new rr(n));
|
|
@@ -11871,7 +11871,7 @@ var Tl = { exports: {} };
|
|
|
11871
11871
|
}).filter(function(p) {
|
|
11872
11872
|
return m.distSquared(p.min.point, p.max.point) > rt.EPSILON;
|
|
11873
11873
|
}), function(p, _) {
|
|
11874
|
-
var v = m.sub(p.min.uv0, _.min.uv0), w = m.dot(v, v), A = m.sub(p.max.uv0, _.max.uv0), P = m.dot(A, A), I = m.sub(p.min.uv0, _.max.uv0), E = m.dot(I, I),
|
|
11874
|
+
var v = m.sub(p.min.uv0, _.min.uv0), w = m.dot(v, v), A = m.sub(p.max.uv0, _.max.uv0), P = m.dot(A, A), I = m.sub(p.min.uv0, _.max.uv0), E = m.dot(I, I), T = m.sub(p.max.uv0, _.min.uv0), L = m.dot(T, T);
|
|
11875
11875
|
return w < rt.EPSILON && P < rt.EPSILON || E < rt.EPSILON && L < rt.EPSILON;
|
|
11876
11876
|
});
|
|
11877
11877
|
return at.makeMeshIntersectionPolylines(d);
|
|
@@ -11879,7 +11879,7 @@ var Tl = { exports: {} };
|
|
|
11879
11879
|
for (var u = new Ar(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], w = d.max[1], A = m.span(n, i, l), P = [], I = 0; I < A.length; ) {
|
|
11880
11880
|
var E = A[I];
|
|
11881
11881
|
++I;
|
|
11882
|
-
var
|
|
11882
|
+
var T = [[p, _, E], [v, _, E], [v, w, E], [p, w, E]], L = [[0, 0], [1, 0], [1, 1], [0, 1]], N = [[0, 1, 2], [0, 2, 3]], B = new je(N, T, null, L);
|
|
11883
11883
|
P.push(at.meshes(r, B, u));
|
|
11884
11884
|
}
|
|
11885
11885
|
return P;
|
|
@@ -11900,14 +11900,14 @@ var Tl = { exports: {} };
|
|
|
11900
11900
|
w != null && w.adj == null && (v.adj = w, w.adj = v);
|
|
11901
11901
|
}
|
|
11902
11902
|
}
|
|
11903
|
-
var A = u.filter(function(
|
|
11904
|
-
return
|
|
11903
|
+
var A = u.filter(function(O) {
|
|
11904
|
+
return O.adj == null;
|
|
11905
11905
|
});
|
|
11906
11906
|
A.length == 0 && (A = u);
|
|
11907
11907
|
for (var P = [], I = 0, E = !1; A.length != 0; ) {
|
|
11908
|
-
var
|
|
11909
|
-
if (!
|
|
11910
|
-
for (var L = [], N =
|
|
11908
|
+
var T = A.pop();
|
|
11909
|
+
if (!T.visited) {
|
|
11910
|
+
for (var L = [], N = T; N != null && !(N.visited || (N.visited = !0, N.opp.visited = !0, L.push(N), I += 2, N = N.opp.adj, N == T)); )
|
|
11911
11911
|
;
|
|
11912
11912
|
L.length > 0 && (L.push(L[L.length - 1].opp), P.push(L));
|
|
11913
11913
|
}
|
|
@@ -11935,7 +11935,7 @@ var Tl = { exports: {} };
|
|
|
11935
11935
|
i == null && (i = 1e-3), l != null ? l = l : l = new er(r), u != null ? u = u : u = new Pr(n);
|
|
11936
11936
|
var d = at.boundingBoxTrees(l, u, i);
|
|
11937
11937
|
return K.unique(d.map(function(p) {
|
|
11938
|
-
var _ = p.item0, v = p.item1, w = K.first(_.knots), A = K.last(_.knots), P = (w + A) / 2, I = K.first(v.knotsU), E = K.last(v.knotsU),
|
|
11938
|
+
var _ = p.item0, v = p.item1, w = K.first(_.knots), A = K.last(_.knots), P = (w + A) / 2, I = K.first(v.knotsU), E = K.last(v.knotsU), T = K.first(v.knotsV), L = K.last(v.knotsV), N = [(I + E) / 2, (T + L) / 2];
|
|
11939
11939
|
return at.curveAndSurfaceWithEstimate(_, v, [P].concat(N), i);
|
|
11940
11940
|
}).filter(function(p) {
|
|
11941
11941
|
return m.distSquared(p.curvePoint, p.surfacePoint) < i * i;
|
|
@@ -11948,8 +11948,8 @@ var Tl = { exports: {} };
|
|
|
11948
11948
|
var w = C.rationalCurvePoint(r, v[0]), A = C.rationalSurfacePoint(n, v[1], v[2]), P = m.sub(w, A);
|
|
11949
11949
|
return m.dot(P, P);
|
|
11950
11950
|
}, d = function(v) {
|
|
11951
|
-
var w = C.rationalCurveDerivatives(r, v[0], 1), A = C.rationalSurfaceDerivatives(n, v[1], v[2], 1), P = m.sub(A[0][0], w[0]), I = m.mul(-1, w[1]), E = A[1][0],
|
|
11952
|
-
return [2 * m.dot(I, P), 2 * m.dot(E, P), 2 * m.dot(
|
|
11951
|
+
var w = C.rationalCurveDerivatives(r, v[0], 1), A = C.rationalSurfaceDerivatives(n, v[1], v[2], 1), P = m.sub(A[0][0], w[0]), I = m.mul(-1, w[1]), E = A[1][0], T = A[0][1];
|
|
11952
|
+
return [2 * m.dot(I, P), 2 * m.dot(E, P), 2 * m.dot(T, P)];
|
|
11953
11953
|
}, p = Ge.uncmin(u, i, l * l, d), _ = p.solution;
|
|
11954
11954
|
return new Mn(_[0], [_[1], _[2]], C.rationalCurvePoint(r, _[0]), C.rationalSurfacePoint(n, _[1], _[2]));
|
|
11955
11955
|
}, at.polylineAndMesh = function(r, n, i) {
|
|
@@ -11999,10 +11999,10 @@ var Tl = { exports: {} };
|
|
|
11999
11999
|
});
|
|
12000
12000
|
}, at.curvesWithEstimate = function(r, n, i, l, u) {
|
|
12001
12001
|
var d = function(I) {
|
|
12002
|
-
var E = C.rationalCurvePoint(r, I[0]),
|
|
12002
|
+
var E = C.rationalCurvePoint(r, I[0]), T = C.rationalCurvePoint(n, I[1]), L = m.sub(E, T);
|
|
12003
12003
|
return m.dot(L, L);
|
|
12004
12004
|
}, p = function(I) {
|
|
12005
|
-
var E = C.rationalCurveDerivatives(r, I[0], 1),
|
|
12005
|
+
var E = C.rationalCurveDerivatives(r, I[0], 1), T = C.rationalCurveDerivatives(n, I[1], 1), L = m.sub(E[0], T[0]), N = E[1], B = m.mul(-1, T[1]);
|
|
12006
12006
|
return [2 * m.dot(N, L), 2 * m.dot(B, L)];
|
|
12007
12007
|
}, _ = Ge.uncmin(d, [i, l], u * u, p), v = _.solution[0], w = _.solution[1], A = C.rationalCurvePoint(r, v), P = C.rationalCurvePoint(n, w);
|
|
12008
12008
|
return new Rr(A, P, v, w);
|
|
@@ -12017,10 +12017,10 @@ var Tl = { exports: {} };
|
|
|
12017
12017
|
return E == null ? null : new we(new wr(E.min.uv0, E.min.uv1, E.min.point, n, l), new wr(E.max.uv0, E.max.uv1, E.max.point, n, l));
|
|
12018
12018
|
}, at.clipRayInCoplanarTriangle = function(r, n, i) {
|
|
12019
12019
|
for (var l = n.faces[i], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), w = _.map(m.norm), A = null, P = null, I = 0; I < 3; ) {
|
|
12020
|
-
var E = I++,
|
|
12020
|
+
var E = I++, T = u[E], L = v[E], N = at.rays(T, L, r.origin, r.dir);
|
|
12021
12021
|
if (N != null) {
|
|
12022
|
-
var B = N.u0,
|
|
12023
|
-
B < -rt.EPSILON || B > w[E] + rt.EPSILON || ((A == null ||
|
|
12022
|
+
var B = N.u0, O = N.u1;
|
|
12023
|
+
B < -rt.EPSILON || B > w[E] + rt.EPSILON || ((A == null || O < A.u) && (A = new nn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[E], p[E], B / w[E]))), (P == null || O > P.u) && (P = new nn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[E], p[E], B / w[E]))));
|
|
12024
12024
|
}
|
|
12025
12025
|
}
|
|
12026
12026
|
return P == null || A == null ? null : new we(A, P);
|
|
@@ -12039,8 +12039,8 @@ var Tl = { exports: {} };
|
|
|
12039
12039
|
_ > p && (d = 1, p = _), v > p && (d = 2, p = v);
|
|
12040
12040
|
var w, A, P, I;
|
|
12041
12041
|
d == 0 ? (w = n[1], A = n[2], P = l[1], I = l[2]) : d == 1 ? (w = n[0], A = n[2], P = l[0], I = l[2]) : (w = n[0], A = n[1], P = l[0], I = l[1]);
|
|
12042
|
-
var E = -m.dot(r, n),
|
|
12043
|
-
return d == 0 ?
|
|
12042
|
+
var E = -m.dot(r, n), T = -m.dot(i, l), L = w * I - A * P, N = (A * T - E * I) / L, B = (E * P - w * T) / L, O;
|
|
12043
|
+
return d == 0 ? O = [0, N, B] : d == 1 ? O = [N, 0, B] : O = [N, B, 0], new rn(O, m.normalized(u));
|
|
12044
12044
|
}, at.threePlanes = function(r, n, i, l, u, d) {
|
|
12045
12045
|
var p = m.cross(i, u), _ = m.dot(r, p);
|
|
12046
12046
|
if (Math.abs(_) < rt.EPSILON) return null;
|
|
@@ -12057,24 +12057,24 @@ var Tl = { exports: {} };
|
|
|
12057
12057
|
}, at.segments = function(r, n, i, l, u) {
|
|
12058
12058
|
var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, i), w = Math.sqrt(m.dot(v, v)), A = m.mul(1 / w, v), P = at.rays(r, _, i, A);
|
|
12059
12059
|
if (P != null) {
|
|
12060
|
-
var I = Math.min(Math.max(0, P.u0 / p), 1), E = Math.min(Math.max(0, P.u1 / w), 1),
|
|
12061
|
-
if (N < u * u) return new Rr(
|
|
12060
|
+
var I = Math.min(Math.max(0, P.u0 / p), 1), E = Math.min(Math.max(0, P.u1 / w), 1), T = m.onRay(r, d, I), L = m.onRay(i, v, E), N = m.distSquared(T, L);
|
|
12061
|
+
if (N < u * u) return new Rr(T, L, I, E);
|
|
12062
12062
|
}
|
|
12063
12063
|
return null;
|
|
12064
12064
|
}, at.rays = function(r, n, i, l) {
|
|
12065
12065
|
var u = m.dot(n, l), d = m.dot(n, i), p = m.dot(n, r), _ = m.dot(l, i), v = m.dot(l, r), w = m.dot(n, n), A = m.dot(l, l), P = w * A - u * u;
|
|
12066
12066
|
if (Math.abs(P) < rt.EPSILON) return null;
|
|
12067
|
-
var I = u * (d - p) - w * (_ - v), E = I / P,
|
|
12068
|
-
return new Rr(L, N,
|
|
12067
|
+
var I = u * (d - p) - w * (_ - v), E = I / P, T = (d - p + E * u) / w, L = m.onRay(r, n, T), N = m.onRay(i, l, E);
|
|
12068
|
+
return new Rr(L, N, T, E);
|
|
12069
12069
|
}, at.segmentWithTriangle = function(r, n, i, l) {
|
|
12070
12070
|
var u = i[l[0]], d = i[l[1]], p = i[l[2]], _ = m.sub(d, u), v = m.sub(p, u), w = m.cross(_, v), A = m.sub(n, r), P = m.sub(r, u), I = -m.dot(w, P), E = m.dot(w, A);
|
|
12071
12071
|
if (Math.abs(E) < rt.EPSILON) return null;
|
|
12072
|
-
var
|
|
12073
|
-
if (
|
|
12074
|
-
var L = m.add(r, m.mul(
|
|
12072
|
+
var T = I / E;
|
|
12073
|
+
if (T < 0 || T > 1) return null;
|
|
12074
|
+
var L = m.add(r, m.mul(T, A)), N = m.dot(_, v), B = m.dot(_, _), O = m.dot(v, v), F = m.sub(L, u), V = m.dot(F, _), H = m.dot(F, v), J = N * N - B * O;
|
|
12075
12075
|
if (Math.abs(J) < rt.EPSILON) return null;
|
|
12076
|
-
var G = (N * H -
|
|
12077
|
-
return G > 1 + rt.EPSILON || j > 1 + rt.EPSILON || j < -rt.EPSILON || G < -rt.EPSILON || G + j > 1 + rt.EPSILON ? null : new Nn(L, G, j,
|
|
12076
|
+
var G = (N * H - O * V) / J, j = (N * V - B * H) / J;
|
|
12077
|
+
return G > 1 + rt.EPSILON || j > 1 + rt.EPSILON || j < -rt.EPSILON || G < -rt.EPSILON || G + j > 1 + rt.EPSILON ? null : new Nn(L, G, j, T);
|
|
12078
12078
|
}, at.segmentAndPlane = function(r, n, i, l) {
|
|
12079
12079
|
var u = m.dot(l, m.sub(n, r));
|
|
12080
12080
|
if (Math.abs(u) < rt.EPSILON) return null;
|
|
@@ -12111,11 +12111,11 @@ var Tl = { exports: {} };
|
|
|
12111
12111
|
A > 0 ? P = _t.surfaceKnotRefine(r, m.rep(A, n), i) : P = r;
|
|
12112
12112
|
var I = C.knotSpan(u, n, l);
|
|
12113
12113
|
return Math.abs(n - K.first(l)) < rt.EPSILON ? I = 0 : Math.abs(n - K.last(l)) < rt.EPSILON && (I = (i ? P.controlPoints[0].length : P.controlPoints.length) - 1), i ? new Ft(P.degreeU, P.knotsU, function(E) {
|
|
12114
|
-
for (var
|
|
12115
|
-
var
|
|
12116
|
-
++N, L.push(
|
|
12114
|
+
for (var T, L = [], N = 0, B = P.controlPoints; N < B.length; ) {
|
|
12115
|
+
var O = B[N];
|
|
12116
|
+
++N, L.push(O[I]);
|
|
12117
12117
|
}
|
|
12118
|
-
return
|
|
12118
|
+
return T = L, T;
|
|
12119
12119
|
}()) : new Ft(P.degreeV, P.knotsV, P.controlPoints[I]);
|
|
12120
12120
|
}, dt.loftedSurface = function(r, n) {
|
|
12121
12121
|
r = _t.unifyCurveKnotVectors(r);
|
|
@@ -12144,22 +12144,22 @@ var Tl = { exports: {} };
|
|
|
12144
12144
|
u == null && (u = 3);
|
|
12145
12145
|
for (var d = u, p = [], _ = 0, v = u + 1; _ < v; ) {
|
|
12146
12146
|
for (var w = _++, A = [], P = 0, I = u + 1; P < I; ) {
|
|
12147
|
-
var E = P++,
|
|
12147
|
+
var E = P++, T = 1 - w / d, L = m.lerp(T, r, n), N = m.lerp(T, l, i), B = m.lerp(1 - E / d, L, N);
|
|
12148
12148
|
B.push(1), A.push(B);
|
|
12149
12149
|
}
|
|
12150
12150
|
p.push(A);
|
|
12151
12151
|
}
|
|
12152
|
-
var
|
|
12153
|
-
return new Jt(u, u,
|
|
12152
|
+
var O = m.rep(u + 1, 0), F = m.rep(u + 1, 1);
|
|
12153
|
+
return new Jt(u, u, O.concat(F), O.concat(F), p);
|
|
12154
12154
|
}, dt.ellipseArc = function(r, n, i, l, u) {
|
|
12155
12155
|
var d = m.norm(n), p = m.norm(i);
|
|
12156
12156
|
n = m.normalized(n), i = m.normalized(i), u < l && (u = 2 * Math.PI + l);
|
|
12157
12157
|
var _ = u - l, v = 0;
|
|
12158
12158
|
_ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
|
|
12159
|
-
var w = _ / v, A = Math.cos(w / 2), P = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), i))), I = m.sub(m.mul(Math.cos(l), i), m.mul(Math.sin(l), n)), E = [],
|
|
12159
|
+
var w = _ / v, A = Math.cos(w / 2), P = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), i))), I = m.sub(m.mul(Math.cos(l), i), m.mul(Math.sin(l), n)), E = [], T = m.zeros1d(2 * v + 3), L = 0, N = l, B = m.zeros1d(v * 2);
|
|
12160
12160
|
E[0] = P, B[0] = 1;
|
|
12161
|
-
for (var
|
|
12162
|
-
var V =
|
|
12161
|
+
for (var O = 1, F = v + 1; O < F; ) {
|
|
12162
|
+
var V = O++;
|
|
12163
12163
|
N += w;
|
|
12164
12164
|
var H = m.add(r, m.add(m.mul(d * Math.cos(N), n), m.mul(p * Math.sin(N), i)));
|
|
12165
12165
|
B[L + 2] = 1, E[L + 2] = H;
|
|
@@ -12168,20 +12168,20 @@ var Tl = { exports: {} };
|
|
|
12168
12168
|
}
|
|
12169
12169
|
for (var Y = 2 * v + 1, tt = 0; tt < 3; ) {
|
|
12170
12170
|
var et = tt++;
|
|
12171
|
-
|
|
12171
|
+
T[et] = 0, T[et + Y] = 1;
|
|
12172
12172
|
}
|
|
12173
12173
|
switch (v) {
|
|
12174
12174
|
case 2:
|
|
12175
|
-
|
|
12175
|
+
T[3] = T[4] = 0.5;
|
|
12176
12176
|
break;
|
|
12177
12177
|
case 3:
|
|
12178
|
-
|
|
12178
|
+
T[3] = T[4] = 0.3333333333333333, T[5] = T[6] = 0.6666666666666666;
|
|
12179
12179
|
break;
|
|
12180
12180
|
case 4:
|
|
12181
|
-
|
|
12181
|
+
T[3] = T[4] = 0.25, T[5] = T[6] = 0.5, T[7] = T[8] = 0.75;
|
|
12182
12182
|
break;
|
|
12183
12183
|
}
|
|
12184
|
-
return new Ft(2,
|
|
12184
|
+
return new Ft(2, T, C.homogenize1d(E, B));
|
|
12185
12185
|
}, dt.arc = function(r, n, i, l, u, d) {
|
|
12186
12186
|
return dt.ellipseArc(r, m.mul(l, m.normalized(n)), m.mul(l, m.normalized(i)), u, d);
|
|
12187
12187
|
}, dt.polyline = function(r) {
|
|
@@ -12209,9 +12209,9 @@ var Tl = { exports: {} };
|
|
|
12209
12209
|
var P = A++;
|
|
12210
12210
|
_[P] = 0, _[w + P] = 1;
|
|
12211
12211
|
}
|
|
12212
|
-
for (var I = Math.cos(v / 2), E = 0,
|
|
12213
|
-
var V =
|
|
12214
|
-
E += v, L[V] = Math.cos(E),
|
|
12212
|
+
for (var I = Math.cos(v / 2), E = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), N = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), O = 1, F = p + 1; O < F; ) {
|
|
12213
|
+
var V = O++;
|
|
12214
|
+
E += v, L[V] = Math.cos(E), T[V] = Math.sin(E);
|
|
12215
12215
|
}
|
|
12216
12216
|
for (var H = 0, J = u.length; H < J; ) {
|
|
12217
12217
|
var G = H++, j = Ee.rayClosestPoint(u[G], n, i), Y = m.sub(u[G], j), tt = m.norm(Y), et = m.cross(i, Y);
|
|
@@ -12220,8 +12220,8 @@ var Tl = { exports: {} };
|
|
|
12220
12220
|
B[0][G] = d[G];
|
|
12221
12221
|
for (var ot = et, it = 0, ht = 1, nt = p + 1; ht < nt; ) {
|
|
12222
12222
|
var ct = ht++, q;
|
|
12223
|
-
tt == 0 ? q = j : q = m.add(j, m.add(m.mul(tt * L[ct], Y), m.mul(tt *
|
|
12224
|
-
var pt = m.sub(m.mul(L[ct], et), m.mul(
|
|
12223
|
+
tt == 0 ? q = j : q = m.add(j, m.add(m.mul(tt * L[ct], Y), m.mul(tt * T[ct], et))), N[it + 2][G] = q, B[it + 2][G] = d[G];
|
|
12224
|
+
var pt = m.sub(m.mul(L[ct], et), m.mul(T[ct], Y));
|
|
12225
12225
|
if (tt == 0) N[it + 1][G] = j;
|
|
12226
12226
|
else {
|
|
12227
12227
|
var Pt = at.rays(st, m.mul(1 / m.norm(ot), ot), q, m.mul(1 / m.norm(pt), pt)), Vt = m.add(st, m.mul(Pt.u0, ot));
|
|
@@ -12244,14 +12244,14 @@ var Tl = { exports: {} };
|
|
|
12244
12244
|
d.push(A + w);
|
|
12245
12245
|
}
|
|
12246
12246
|
for (var P = d[d.length - 1], I = 0, E = d.length; I < E; ) {
|
|
12247
|
-
var
|
|
12248
|
-
d[
|
|
12247
|
+
var T = I++;
|
|
12248
|
+
d[T] = d[T] / P;
|
|
12249
12249
|
}
|
|
12250
12250
|
var L = m.rep(n + 1, 0), N = l != null && u != null, B;
|
|
12251
12251
|
N ? B = 0 : B = 1;
|
|
12252
|
-
var
|
|
12253
|
-
N ?
|
|
12254
|
-
for (var F = B; F <
|
|
12252
|
+
var O;
|
|
12253
|
+
N ? O = d.length - n + 1 : O = d.length - n;
|
|
12254
|
+
for (var F = B; F < O; ) {
|
|
12255
12255
|
for (var V = F++, H = 0, J = 0; J < n; ) {
|
|
12256
12256
|
var G = J++;
|
|
12257
12257
|
H += d[V + G];
|
|
@@ -12340,15 +12340,15 @@ var Tl = { exports: {} };
|
|
|
12340
12340
|
}
|
|
12341
12341
|
for (var E = d.map(function(j) {
|
|
12342
12342
|
return j.max - j.min;
|
|
12343
|
-
}),
|
|
12343
|
+
}), T = R.fold(E, function(j, Y) {
|
|
12344
12344
|
return Math.max(j, Y);
|
|
12345
12345
|
}, 0), L = 0, N = r.length; L < N; ) {
|
|
12346
|
-
var B = L++,
|
|
12346
|
+
var B = L++, O = [T / E[B]];
|
|
12347
12347
|
r[B].knots = r[B].knots.map(/* @__PURE__ */ function(j) {
|
|
12348
12348
|
return function(Y) {
|
|
12349
12349
|
return Y * j[0];
|
|
12350
12350
|
};
|
|
12351
|
-
}(
|
|
12351
|
+
}(O));
|
|
12352
12352
|
}
|
|
12353
12353
|
for (var F = R.fold(r, function(j, Y) {
|
|
12354
12354
|
return m.sortedSetUnion(j.knots, Y);
|
|
@@ -12363,14 +12363,14 @@ var Tl = { exports: {} };
|
|
|
12363
12363
|
return r > n ? r : n;
|
|
12364
12364
|
}, _t.curveElevateDegree = function(r, n) {
|
|
12365
12365
|
if (n <= r.degree) return r;
|
|
12366
|
-
var i = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], A = [], P = [], I = i + l + 1, E = n,
|
|
12366
|
+
var i = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], A = [], P = [], I = i + l + 1, E = n, T = Math.floor(E / 2), L = [], N = [];
|
|
12367
12367
|
v[0][0] = 1, v[E][l] = 1;
|
|
12368
|
-
for (var B = 1,
|
|
12368
|
+
for (var B = 1, O = T + 1; B < O; )
|
|
12369
12369
|
for (var F = B++, V = 1 / zt.get(E, F), H = _t.imin(l, F), J = _t.imax(0, F - p), G = H + 1; J < G; ) {
|
|
12370
12370
|
var j = J++;
|
|
12371
12371
|
v[F][j] = V * zt.get(l, j) * zt.get(p, F - j);
|
|
12372
12372
|
}
|
|
12373
|
-
for (var Y =
|
|
12373
|
+
for (var Y = T + 1; Y < E; )
|
|
12374
12374
|
for (var tt = Y++, et = _t.imin(l, tt), st = _t.imax(0, tt - p), ot = et + 1; st < ot; ) {
|
|
12375
12375
|
var it = st++;
|
|
12376
12376
|
v[tt][it] = v[E - tt][l - it];
|
|
@@ -12482,22 +12482,22 @@ var Tl = { exports: {} };
|
|
|
12482
12482
|
}
|
|
12483
12483
|
l.length / d - 1;
|
|
12484
12484
|
for (var A = d * 2, P = [], I = 0; I < i.length; ) {
|
|
12485
|
-
var E = l.slice(I, I + A),
|
|
12486
|
-
P.push(new Ft(n, E,
|
|
12485
|
+
var E = l.slice(I, I + A), T = i.slice(I, I + d);
|
|
12486
|
+
P.push(new Ft(n, E, T)), I += d;
|
|
12487
12487
|
}
|
|
12488
12488
|
return P;
|
|
12489
12489
|
}, _t.curveKnotRefine = function(r, n) {
|
|
12490
12490
|
if (n.length == 0) return dt.clonedCurve(r);
|
|
12491
12491
|
for (var i = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + i + 1, _ = n.length - 1, v = C.knotSpan(i, n[0], u), w = C.knotSpan(i, n[_], u), A = [], P = [], I = 0, E = v - i + 1; I < E; ) {
|
|
12492
|
-
var
|
|
12493
|
-
A[
|
|
12492
|
+
var T = I++;
|
|
12493
|
+
A[T] = l[T];
|
|
12494
12494
|
}
|
|
12495
12495
|
for (var L = w - 1, N = d + 1; L < N; ) {
|
|
12496
12496
|
var B = L++;
|
|
12497
12497
|
A[B + _ + 1] = l[B];
|
|
12498
12498
|
}
|
|
12499
|
-
for (var
|
|
12500
|
-
var V =
|
|
12499
|
+
for (var O = 0, F = v + 1; O < F; ) {
|
|
12500
|
+
var V = O++;
|
|
12501
12501
|
P[V] = u[V];
|
|
12502
12502
|
}
|
|
12503
12503
|
for (var H = w + i, J = p + 1; H < J; ) {
|
|
@@ -12517,15 +12517,15 @@ var Tl = { exports: {} };
|
|
|
12517
12517
|
return new Ft(i, P, A);
|
|
12518
12518
|
}, _t.curveKnotInsert = function(r, n, i) {
|
|
12519
12519
|
for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = C.knotSpan(l, n, d), w = [], A = [], P = [], I = 1, E = v + 1; I < E; ) {
|
|
12520
|
-
var
|
|
12521
|
-
A[
|
|
12520
|
+
var T = I++;
|
|
12521
|
+
A[T] = d[T];
|
|
12522
12522
|
}
|
|
12523
12523
|
for (var L = 1, N = i + 1; L < N; ) {
|
|
12524
12524
|
var B = L++;
|
|
12525
12525
|
A[v + B] = n;
|
|
12526
12526
|
}
|
|
12527
|
-
for (var
|
|
12528
|
-
var V =
|
|
12527
|
+
for (var O = v + 1, F = d.length; O < F; ) {
|
|
12528
|
+
var V = O++;
|
|
12529
12529
|
A[V + i] = d[V];
|
|
12530
12530
|
}
|
|
12531
12531
|
for (var H = 0, J = v - l + 1; H < J; ) {
|
|
@@ -12580,16 +12580,16 @@ var Tl = { exports: {} };
|
|
|
12580
12580
|
}, Lt.rationalCurveAdaptiveSampleRange = function(r, n, i, l, u) {
|
|
12581
12581
|
var d = C.rationalCurvePoint(r, n), p = C.rationalCurvePoint(r, i), _ = 0.5 + 0.2 * Math.random(), v = n + (i - n) * _, w = C.rationalCurvePoint(r, v), A = m.sub(d, p), P = m.sub(d, w);
|
|
12582
12582
|
if (m.dot(A, A) < l && m.dot(P, P) > l || !Ee.threePointsAreFlat(d, w, p, l)) {
|
|
12583
|
-
var I = n + (i - n) * 0.5, E = Lt.rationalCurveAdaptiveSampleRange(r, n, I, l, u),
|
|
12584
|
-
return E.slice(0, -1).concat(
|
|
12583
|
+
var I = n + (i - n) * 0.5, E = Lt.rationalCurveAdaptiveSampleRange(r, n, I, l, u), T = Lt.rationalCurveAdaptiveSampleRange(r, I, i, l, u);
|
|
12584
|
+
return E.slice(0, -1).concat(T);
|
|
12585
12585
|
} else return u ? [[n].concat(d), [i].concat(p)] : [d, p];
|
|
12586
12586
|
}, Lt.rationalSurfaceNaive = function(r, n, i) {
|
|
12587
12587
|
n < 1 && (n = 1), i < 1 && (i = 1), r.degreeU, r.degreeV, r.controlPoints;
|
|
12588
12588
|
for (var l = r.knotsU, u = r.knotsV, d = K.last(l) - l[0], p = K.last(u) - u[0], _ = d / n, v = p / i, w = [], A = [], P = [], I = 0, E = n + 1; I < E; )
|
|
12589
|
-
for (var
|
|
12590
|
-
var B = L++,
|
|
12591
|
-
A.push([
|
|
12592
|
-
var V = C.rationalSurfaceDerivatives(r,
|
|
12589
|
+
for (var T = I++, L = 0, N = i + 1; L < N; ) {
|
|
12590
|
+
var B = L++, O = T * _, F = B * v;
|
|
12591
|
+
A.push([O, F]);
|
|
12592
|
+
var V = C.rationalSurfaceDerivatives(r, O, F, 1), H = V[0][0];
|
|
12593
12593
|
w.push(H);
|
|
12594
12594
|
var J = m.normalized(m.cross(V[1][0], V[0][1]));
|
|
12595
12595
|
P.push(J);
|
|
@@ -12606,9 +12606,9 @@ var Tl = { exports: {} };
|
|
|
12606
12606
|
n.minDivsU > i ? u = n.minDivsU = n.minDivsU : u = n.minDivsU = i;
|
|
12607
12607
|
var d;
|
|
12608
12608
|
n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
|
|
12609
|
-
for (var p = K.last(r.knotsU), _ = r.knotsU[0], v = K.last(r.knotsV), w = r.knotsV[0], A = (p - _) / u, P = (v - w) / d, I = [], E = [],
|
|
12610
|
-
for (var N =
|
|
12611
|
-
var V =
|
|
12609
|
+
for (var p = K.last(r.knotsU), _ = r.knotsU[0], v = K.last(r.knotsV), w = r.knotsV[0], A = (p - _) / u, P = (v - w) / d, I = [], E = [], T = 0, L = d + 1; T < L; ) {
|
|
12610
|
+
for (var N = T++, B = [], O = 0, F = u + 1; O < F; ) {
|
|
12611
|
+
var V = O++, H = _ + A * V, J = w + P * N, G = C.rationalSurfaceDerivatives(r, H, J, 1), j = m.normalized(m.cross(G[0][1], G[1][0]));
|
|
12612
12612
|
B.push(new Re(G[0][0], j, [H, J], -1, m.isZero(j)));
|
|
12613
12613
|
}
|
|
12614
12614
|
E.push(B);
|
|
@@ -12800,8 +12800,8 @@ var Tl = { exports: {} };
|
|
|
12800
12800
|
var E = l.length;
|
|
12801
12801
|
return r.faces.push([l[u], l[(u + 2) % E], l[(u + 1) % E]]), r.faces.push([l[(u + 4) % E], l[(u + 3) % E], l[u]]), r.faces.push([l[u], l[(u + 3) % E], l[(u + 2) % E]]), r;
|
|
12802
12802
|
}
|
|
12803
|
-
var
|
|
12804
|
-
r.uvs.push(
|
|
12803
|
+
var T = this.center();
|
|
12804
|
+
r.uvs.push(T.uv), r.points.push(T.point), r.normals.push(T.normal);
|
|
12805
12805
|
for (var L = r.points.length - 1, N = 0, B = i.length - 1; N < i.length; )
|
|
12806
12806
|
r.faces.push([L, l[N], l[B]]), B = N++;
|
|
12807
12807
|
return r;
|
|
@@ -12873,7 +12873,7 @@ var Tl = { exports: {} };
|
|
|
12873
12873
|
return new kt(new Ft(r, n.slice(), C.homogenize1d(i, l)));
|
|
12874
12874
|
}, kt.byPoints = function(r, n) {
|
|
12875
12875
|
return n == null && (n = 3), new kt(dt.rationalInterpCurve(r, n));
|
|
12876
|
-
}, kt.__super__ = Xt, kt.prototype =
|
|
12876
|
+
}, kt.__super__ = Xt, kt.prototype = M(Xt.prototype, {
|
|
12877
12877
|
degree: function() {
|
|
12878
12878
|
return this._data.degree;
|
|
12879
12879
|
},
|
|
@@ -12994,7 +12994,7 @@ var Tl = { exports: {} };
|
|
|
12994
12994
|
var kr = f.geom.Arc = function(r, n, i, l, u, d) {
|
|
12995
12995
|
kt.call(this, dt.arc(r, n, i, l, u, d)), this._center = r, this._xaxis = n, this._yaxis = i, this._radius = l, this._minAngle = u, this._maxAngle = d;
|
|
12996
12996
|
};
|
|
12997
|
-
b["verb.geom.Arc"] = kr, kr.__name__ = ["verb", "geom", "Arc"], kr.__super__ = kt, kr.prototype =
|
|
12997
|
+
b["verb.geom.Arc"] = kr, kr.__name__ = ["verb", "geom", "Arc"], kr.__super__ = kt, kr.prototype = M(kt.prototype, {
|
|
12998
12998
|
center: function() {
|
|
12999
12999
|
return this._center;
|
|
13000
13000
|
},
|
|
@@ -13018,13 +13018,13 @@ var Tl = { exports: {} };
|
|
|
13018
13018
|
var Bn = f.geom.BezierCurve = function(r, n) {
|
|
13019
13019
|
kt.call(this, dt.rationalBezierCurve(r, n));
|
|
13020
13020
|
};
|
|
13021
|
-
b["verb.geom.BezierCurve"] = Bn, Bn.__name__ = ["verb", "geom", "BezierCurve"], Bn.__super__ = kt, Bn.prototype =
|
|
13021
|
+
b["verb.geom.BezierCurve"] = Bn, Bn.__name__ = ["verb", "geom", "BezierCurve"], Bn.__super__ = kt, Bn.prototype = M(kt.prototype, {
|
|
13022
13022
|
__class__: Bn
|
|
13023
13023
|
});
|
|
13024
13024
|
var Dn = f.geom.Circle = function(r, n, i, l) {
|
|
13025
13025
|
kr.call(this, r, n, i, l, 0, Math.PI * 2);
|
|
13026
13026
|
};
|
|
13027
|
-
b["verb.geom.Circle"] = Dn, Dn.__name__ = ["verb", "geom", "Circle"], Dn.__super__ = kr, Dn.prototype =
|
|
13027
|
+
b["verb.geom.Circle"] = Dn, Dn.__name__ = ["verb", "geom", "Circle"], Dn.__super__ = kr, Dn.prototype = M(kr.prototype, {
|
|
13028
13028
|
__class__: Dn
|
|
13029
13029
|
});
|
|
13030
13030
|
var cn = function() {
|
|
@@ -13047,7 +13047,7 @@ var Tl = { exports: {} };
|
|
|
13047
13047
|
}
|
|
13048
13048
|
return l = u, l;
|
|
13049
13049
|
}(), n));
|
|
13050
|
-
}, At.__super__ = Xt, At.prototype =
|
|
13050
|
+
}, At.__super__ = Xt, At.prototype = M(Xt.prototype, {
|
|
13051
13051
|
degreeU: function() {
|
|
13052
13052
|
return this._data.degreeU;
|
|
13053
13053
|
},
|
|
@@ -13167,7 +13167,7 @@ var Tl = { exports: {} };
|
|
|
13167
13167
|
var Fn = f.geom.ConicalSurface = function(r, n, i, l, u) {
|
|
13168
13168
|
At.call(this, dt.conicalSurface(r, n, i, l, u)), this._axis = r, this._xaxis = n, this._base = i, this._height = l, this._radius = u;
|
|
13169
13169
|
};
|
|
13170
|
-
b["verb.geom.ConicalSurface"] = Fn, Fn.__name__ = ["verb", "geom", "ConicalSurface"], Fn.__super__ = At, Fn.prototype =
|
|
13170
|
+
b["verb.geom.ConicalSurface"] = Fn, Fn.__name__ = ["verb", "geom", "ConicalSurface"], Fn.__super__ = At, Fn.prototype = M(At.prototype, {
|
|
13171
13171
|
axis: function() {
|
|
13172
13172
|
return this._axis;
|
|
13173
13173
|
},
|
|
@@ -13188,7 +13188,7 @@ var Tl = { exports: {} };
|
|
|
13188
13188
|
var Vn = f.geom.CylindricalSurface = function(r, n, i, l, u) {
|
|
13189
13189
|
At.call(this, dt.cylindricalSurface(r, n, i, l, u)), this._axis = r, this._xaxis = n, this._base = i, this._height = l, this._radius = u;
|
|
13190
13190
|
};
|
|
13191
|
-
b["verb.geom.CylindricalSurface"] = Vn, Vn.__name__ = ["verb", "geom", "CylindricalSurface"], Vn.__super__ = At, Vn.prototype =
|
|
13191
|
+
b["verb.geom.CylindricalSurface"] = Vn, Vn.__name__ = ["verb", "geom", "CylindricalSurface"], Vn.__super__ = At, Vn.prototype = M(At.prototype, {
|
|
13192
13192
|
axis: function() {
|
|
13193
13193
|
return this._axis;
|
|
13194
13194
|
},
|
|
@@ -13209,7 +13209,7 @@ var Tl = { exports: {} };
|
|
|
13209
13209
|
var Er = f.geom.EllipseArc = function(r, n, i, l, u) {
|
|
13210
13210
|
kt.call(this, dt.ellipseArc(r, n, i, l, u)), this._center = r, this._xaxis = n, this._yaxis = i, this._minAngle = l, this._maxAngle = u;
|
|
13211
13211
|
};
|
|
13212
|
-
b["verb.geom.EllipseArc"] = Er, Er.__name__ = ["verb", "geom", "EllipseArc"], Er.__super__ = kt, Er.prototype =
|
|
13212
|
+
b["verb.geom.EllipseArc"] = Er, Er.__name__ = ["verb", "geom", "EllipseArc"], Er.__super__ = kt, Er.prototype = M(kt.prototype, {
|
|
13213
13213
|
center: function() {
|
|
13214
13214
|
return this._center;
|
|
13215
13215
|
},
|
|
@@ -13230,13 +13230,13 @@ var Tl = { exports: {} };
|
|
|
13230
13230
|
var Un = f.geom.Ellipse = function(r, n, i) {
|
|
13231
13231
|
Er.call(this, r, n, i, 0, Math.PI * 2);
|
|
13232
13232
|
};
|
|
13233
|
-
b["verb.geom.Ellipse"] = Un, Un.__name__ = ["verb", "geom", "Ellipse"], Un.__super__ = Er, Un.prototype =
|
|
13233
|
+
b["verb.geom.Ellipse"] = Un, Un.__name__ = ["verb", "geom", "Ellipse"], Un.__super__ = Er, Un.prototype = M(Er.prototype, {
|
|
13234
13234
|
__class__: Un
|
|
13235
13235
|
});
|
|
13236
13236
|
var jn = f.geom.ExtrudedSurface = function(r, n) {
|
|
13237
13237
|
At.call(this, dt.extrudedSurface(m.normalized(n), m.norm(n), r.asNurbs())), this._profile = r, this._direction = n;
|
|
13238
13238
|
};
|
|
13239
|
-
b["verb.geom.ExtrudedSurface"] = jn, jn.__name__ = ["verb", "geom", "ExtrudedSurface"], jn.__super__ = At, jn.prototype =
|
|
13239
|
+
b["verb.geom.ExtrudedSurface"] = jn, jn.__name__ = ["verb", "geom", "ExtrudedSurface"], jn.__super__ = At, jn.prototype = M(At.prototype, {
|
|
13240
13240
|
profile: function() {
|
|
13241
13241
|
return this._profile;
|
|
13242
13242
|
},
|
|
@@ -13269,7 +13269,7 @@ var Tl = { exports: {} };
|
|
|
13269
13269
|
var Gn = f.geom.Line = function(r, n) {
|
|
13270
13270
|
kt.call(this, dt.polyline([r, n])), this._start = r, this._end = n;
|
|
13271
13271
|
};
|
|
13272
|
-
b["verb.geom.Line"] = Gn, Gn.__name__ = ["verb", "geom", "Line"], Gn.__super__ = kt, Gn.prototype =
|
|
13272
|
+
b["verb.geom.Line"] = Gn, Gn.__name__ = ["verb", "geom", "Line"], Gn.__super__ = kt, Gn.prototype = M(kt.prototype, {
|
|
13273
13273
|
start: function() {
|
|
13274
13274
|
return this._start;
|
|
13275
13275
|
},
|
|
@@ -13281,7 +13281,7 @@ var Tl = { exports: {} };
|
|
|
13281
13281
|
var Wn = f.geom.RevolvedSurface = function(r, n, i, l) {
|
|
13282
13282
|
At.call(this, dt.revolvedSurface(r.asNurbs(), n, i, l)), this._profile = r, this._center = n, this._axis = i, this._angle = l;
|
|
13283
13283
|
};
|
|
13284
|
-
b["verb.geom.RevolvedSurface"] = Wn, Wn.__name__ = ["verb", "geom", "RevolvedSurface"], Wn.__super__ = At, Wn.prototype =
|
|
13284
|
+
b["verb.geom.RevolvedSurface"] = Wn, Wn.__name__ = ["verb", "geom", "RevolvedSurface"], Wn.__super__ = At, Wn.prototype = M(At.prototype, {
|
|
13285
13285
|
profile: function() {
|
|
13286
13286
|
return this._profile;
|
|
13287
13287
|
},
|
|
@@ -13299,7 +13299,7 @@ var Tl = { exports: {} };
|
|
|
13299
13299
|
var Hn = f.geom.SphericalSurface = function(r, n) {
|
|
13300
13300
|
At.call(this, dt.sphericalSurface(r, [0, 0, 1], [1, 0, 0], n)), this._center = r, this._radius = n;
|
|
13301
13301
|
};
|
|
13302
|
-
b["verb.geom.SphericalSurface"] = Hn, Hn.__name__ = ["verb", "geom", "SphericalSurface"], Hn.__super__ = At, Hn.prototype =
|
|
13302
|
+
b["verb.geom.SphericalSurface"] = Hn, Hn.__name__ = ["verb", "geom", "SphericalSurface"], Hn.__super__ = At, Hn.prototype = M(At.prototype, {
|
|
13303
13303
|
center: function() {
|
|
13304
13304
|
return this._center;
|
|
13305
13305
|
},
|
|
@@ -13311,7 +13311,7 @@ var Tl = { exports: {} };
|
|
|
13311
13311
|
var qn = f.geom.SweptSurface = function(r, n) {
|
|
13312
13312
|
At.call(this, dt.rationalTranslationalSurface(r.asNurbs(), n.asNurbs())), this._profile = r, this._rail = n;
|
|
13313
13313
|
};
|
|
13314
|
-
b["verb.geom.SweptSurface"] = qn, qn.__name__ = ["verb", "geom", "SweptSurface"], qn.__super__ = At, qn.prototype =
|
|
13314
|
+
b["verb.geom.SweptSurface"] = qn, qn.__name__ = ["verb", "geom", "SweptSurface"], qn.__super__ = At, qn.prototype = M(At.prototype, {
|
|
13315
13315
|
profile: function() {
|
|
13316
13316
|
return this._profile;
|
|
13317
13317
|
},
|
|
@@ -13322,7 +13322,7 @@ var Tl = { exports: {} };
|
|
|
13322
13322
|
});
|
|
13323
13323
|
function We(r) {
|
|
13324
13324
|
return r instanceof Array ? function() {
|
|
13325
|
-
return
|
|
13325
|
+
return z.iter(r);
|
|
13326
13326
|
} : typeof r.iterator == "function" ? Me(r, r.iterator) : r.iterator;
|
|
13327
13327
|
}
|
|
13328
13328
|
var Ys, Vl = 0;
|
|
@@ -13360,83 +13360,83 @@ var Tl = { exports: {} };
|
|
|
13360
13360
|
if (r.setImmediate)
|
|
13361
13361
|
return;
|
|
13362
13362
|
var i = 1, l = {}, u = !1, d = r.document, p;
|
|
13363
|
-
function _(
|
|
13364
|
-
return l[i] = v.apply(n,
|
|
13363
|
+
function _(O) {
|
|
13364
|
+
return l[i] = v.apply(n, O), i++;
|
|
13365
13365
|
}
|
|
13366
|
-
function v(
|
|
13366
|
+
function v(O) {
|
|
13367
13367
|
var F = [].slice.call(arguments, 1);
|
|
13368
13368
|
return function() {
|
|
13369
|
-
typeof
|
|
13369
|
+
typeof O == "function" ? O.apply(n, F) : new Function("" + O)();
|
|
13370
13370
|
};
|
|
13371
13371
|
}
|
|
13372
|
-
function w(
|
|
13372
|
+
function w(O) {
|
|
13373
13373
|
if (u)
|
|
13374
|
-
setTimeout(v(w,
|
|
13374
|
+
setTimeout(v(w, O), 0);
|
|
13375
13375
|
else {
|
|
13376
|
-
var F = l[
|
|
13376
|
+
var F = l[O];
|
|
13377
13377
|
if (F) {
|
|
13378
13378
|
u = !0;
|
|
13379
13379
|
try {
|
|
13380
13380
|
F();
|
|
13381
13381
|
} finally {
|
|
13382
|
-
A(
|
|
13382
|
+
A(O), u = !1;
|
|
13383
13383
|
}
|
|
13384
13384
|
}
|
|
13385
13385
|
}
|
|
13386
13386
|
}
|
|
13387
|
-
function A(
|
|
13388
|
-
delete l[
|
|
13387
|
+
function A(O) {
|
|
13388
|
+
delete l[O];
|
|
13389
13389
|
}
|
|
13390
13390
|
function P() {
|
|
13391
13391
|
p = function() {
|
|
13392
|
-
var
|
|
13393
|
-
return process.nextTick(v(w,
|
|
13392
|
+
var O = _(arguments);
|
|
13393
|
+
return process.nextTick(v(w, O)), O;
|
|
13394
13394
|
};
|
|
13395
13395
|
}
|
|
13396
13396
|
function I() {
|
|
13397
13397
|
if (r.postMessage && !r.importScripts) {
|
|
13398
|
-
var
|
|
13398
|
+
var O = !0, F = r.onmessage;
|
|
13399
13399
|
return r.onmessage = function() {
|
|
13400
|
-
|
|
13401
|
-
}, r.postMessage("", "*"), r.onmessage = F,
|
|
13400
|
+
O = !1;
|
|
13401
|
+
}, r.postMessage("", "*"), r.onmessage = F, O;
|
|
13402
13402
|
}
|
|
13403
13403
|
}
|
|
13404
13404
|
function E() {
|
|
13405
|
-
var
|
|
13406
|
-
V.source === r && typeof V.data == "string" && V.data.indexOf(
|
|
13405
|
+
var O = "setImmediate$" + Math.random() + "$", F = function(V) {
|
|
13406
|
+
V.source === r && typeof V.data == "string" && V.data.indexOf(O) === 0 && w(+V.data.slice(O.length));
|
|
13407
13407
|
};
|
|
13408
13408
|
r.addEventListener ? r.addEventListener("message", F, !1) : r.attachEvent("onmessage", F), p = function() {
|
|
13409
13409
|
var V = _(arguments);
|
|
13410
|
-
return r.postMessage(
|
|
13410
|
+
return r.postMessage(O + V, "*"), V;
|
|
13411
13411
|
};
|
|
13412
13412
|
}
|
|
13413
|
-
function
|
|
13414
|
-
var
|
|
13415
|
-
|
|
13413
|
+
function T() {
|
|
13414
|
+
var O = new MessageChannel();
|
|
13415
|
+
O.port1.onmessage = function(F) {
|
|
13416
13416
|
var V = F.data;
|
|
13417
13417
|
w(V);
|
|
13418
13418
|
}, p = function() {
|
|
13419
13419
|
var F = _(arguments);
|
|
13420
|
-
return
|
|
13420
|
+
return O.port2.postMessage(F), F;
|
|
13421
13421
|
};
|
|
13422
13422
|
}
|
|
13423
13423
|
function L() {
|
|
13424
|
-
var
|
|
13424
|
+
var O = d.documentElement;
|
|
13425
13425
|
p = function() {
|
|
13426
13426
|
var F = _(arguments), V = d.createElement("script");
|
|
13427
13427
|
return V.onreadystatechange = function() {
|
|
13428
|
-
w(F), V.onreadystatechange = null,
|
|
13429
|
-
},
|
|
13428
|
+
w(F), V.onreadystatechange = null, O.removeChild(V), V = null;
|
|
13429
|
+
}, O.appendChild(V), F;
|
|
13430
13430
|
};
|
|
13431
13431
|
}
|
|
13432
13432
|
function N() {
|
|
13433
13433
|
p = function() {
|
|
13434
|
-
var
|
|
13435
|
-
return setTimeout(v(w,
|
|
13434
|
+
var O = _(arguments);
|
|
13435
|
+
return setTimeout(v(w, O), 0), O;
|
|
13436
13436
|
};
|
|
13437
13437
|
}
|
|
13438
13438
|
var B = Object.getPrototypeOf && Object.getPrototypeOf(r);
|
|
13439
|
-
B = B && B.setTimeout ? B : r, {}.toString.call(r.process) === "[object process]" ? P() : I() ? E() : r.MessageChannel ?
|
|
13439
|
+
B = B && B.setTimeout ? B : r, {}.toString.call(r.process) === "[object process]" ? P() : I() ? E() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? L() : N(), B.setImmediate = p, B.clearImmediate = A;
|
|
13440
13440
|
})(new Function("return this")()), Ht.USE_CACHE = !1, Ht.USE_ENUM_INDEX = !1, Ht.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Ut.DEFAULT_RESOLVER = mt, Ut.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Nt.count = 0, ie.i64tmp = function(r) {
|
|
13441
13441
|
var n, i = new Wt(0, 0);
|
|
13442
13442
|
return n = i, n;
|
|
@@ -13563,9 +13563,9 @@ class xc extends ps {
|
|
|
13563
13563
|
this._closed || g > 0 ? f = o[(g - 1) % h] : (this._tmp.subVectors(o[0], o[1]).add(o[0]), f = new X(this._tmp.x, this._tmp.y, this._tmp.z));
|
|
13564
13564
|
const b = o[g % h], k = o[(g + 1) % h];
|
|
13565
13565
|
if (this._closed || g + 2 < h ? S = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), S = new X(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
|
|
13566
|
-
const
|
|
13567
|
-
let
|
|
13568
|
-
R < 1e-4 && (R = 1),
|
|
13566
|
+
const M = this._curveType === "chordal" ? 0.5 : 0.25;
|
|
13567
|
+
let z = Math.pow(f.distanceToSquared(b), M), R = Math.pow(b.distanceToSquared(k), M), U = Math.pow(k.distanceToSquared(S), M);
|
|
13568
|
+
R < 1e-4 && (R = 1), z < 1e-4 && (z = R), U < 1e-4 && (U = R), this._px.initNonuniformCatmullRom(f.x, b.x, k.x, S.x, z, R, U), this._py.initNonuniformCatmullRom(f.y, b.y, k.y, S.y, z, R, U), this._pz.initNonuniformCatmullRom(f.z, b.z, k.z, S.z, z, R, U);
|
|
13569
13569
|
} else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, k.x, S.x, this._tension), this._py.initCatmullRom(f.y, b.y, k.y, S.y, this._tension), this._pz.initCatmullRom(f.z, b.z, k.z, S.z, this._tension));
|
|
13570
13570
|
return s.set(
|
|
13571
13571
|
this._px.calc(x),
|
|
@@ -16640,8 +16640,8 @@ const Sc = /* @__PURE__ */ new $(), pa = class pa extends Ds {
|
|
|
16640
16640
|
let c = 0;
|
|
16641
16641
|
for (let k = 0; k <= this.numRows; k++) {
|
|
16642
16642
|
e -= k > 0 ? this.rowHeight(k - 1) : 0, s = 0;
|
|
16643
|
-
for (let
|
|
16644
|
-
s +=
|
|
16643
|
+
for (let M = 0; M <= this.numColumns; M++)
|
|
16644
|
+
s += M > 0 ? this.columnWidth(M - 1) : 0, h[c++] = s, h[c++] = e, h[c++] = 0;
|
|
16645
16645
|
}
|
|
16646
16646
|
const g = [], x = new Array(this.numRows * this.numColumns).fill(
|
|
16647
16647
|
!1
|
|
@@ -16650,35 +16650,35 @@ const Sc = /* @__PURE__ */ new $(), pa = class pa extends Ds {
|
|
|
16650
16650
|
let f = 0;
|
|
16651
16651
|
for (let k = 0; k < this.numColumns; k++) {
|
|
16652
16652
|
s += k > 0 ? this.columnWidth(k - 1) : 0, e = 0;
|
|
16653
|
-
for (let
|
|
16654
|
-
e +=
|
|
16655
|
-
const
|
|
16656
|
-
if (f =
|
|
16657
|
-
const R =
|
|
16653
|
+
for (let M = 0; M < this.numRows; M++) {
|
|
16654
|
+
e += M > 0 ? this.rowHeight(M - 1) : 0;
|
|
16655
|
+
const z = this.cell(M * this.numColumns + k);
|
|
16656
|
+
if (f = M * this.numColumns + k, z && !x[f]) {
|
|
16657
|
+
const R = z.borderWidth ?? 1, U = z.borderHeight ?? 1;
|
|
16658
16658
|
this.fillVisited(
|
|
16659
16659
|
x,
|
|
16660
16660
|
f,
|
|
16661
16661
|
this.numColumns,
|
|
16662
16662
|
R,
|
|
16663
16663
|
U
|
|
16664
|
-
), o[c++] = k +
|
|
16665
|
-
const D = h[o[c - 1] * 3] - s, gt = k + (
|
|
16666
|
-
k + R == this.numColumns && (o[c++] = k +
|
|
16664
|
+
), o[c++] = k + M * (this.numColumns + 1), o[c++] = k + M * (this.numColumns + 1) + R;
|
|
16665
|
+
const D = h[o[c - 1] * 3] - s, gt = k + (M + U) * (this.numColumns + 1) + R;
|
|
16666
|
+
k + R == this.numColumns && (o[c++] = k + M * (this.numColumns + 1) + R, o[c++] = gt);
|
|
16667
16667
|
const ft = -h[gt * 3 + 1] - e;
|
|
16668
|
-
if (
|
|
16669
|
-
const ut =
|
|
16668
|
+
if (M + U == this.numRows && (o[c++] = k + (M + U) * (this.numColumns + 1) + U, o[c++] = k + (M + U) * (this.numColumns + 1)), o[c++] = k + (M + U) * (this.numColumns + 1), o[c++] = k + M * (this.numColumns + 1), z.text) {
|
|
16669
|
+
const ut = z.attachmentPoint || this.attachmentPoint || cs.MiddleCenter, W = this.getTableTextOffset(
|
|
16670
16670
|
ut,
|
|
16671
16671
|
D,
|
|
16672
16672
|
ft
|
|
16673
16673
|
), mt = {
|
|
16674
|
-
text:
|
|
16675
|
-
height:
|
|
16674
|
+
text: z.text,
|
|
16675
|
+
height: z.textHeight,
|
|
16676
16676
|
width: D,
|
|
16677
16677
|
position: Sc.set(s, -e, 0).clone().add(W),
|
|
16678
16678
|
rotation: this.rotation,
|
|
16679
16679
|
attachmentPoint: ut
|
|
16680
16680
|
}, lt = {
|
|
16681
|
-
...this.getTextStyle(
|
|
16681
|
+
...this.getTextStyle(z),
|
|
16682
16682
|
color: this.color.color
|
|
16683
16683
|
};
|
|
16684
16684
|
g.push(t.mtext(mt, lt));
|
|
@@ -19859,15 +19859,15 @@ class uo {
|
|
|
19859
19859
|
new $t().subVectors(S.end, S.center);
|
|
19860
19860
|
const k = Math.sqrt(
|
|
19861
19861
|
Math.pow(S.end.x, 2) + Math.pow(S.end.y, 2)
|
|
19862
|
-
),
|
|
19863
|
-
let
|
|
19862
|
+
), M = k * S.lengthOfMinorAxis;
|
|
19863
|
+
let z = Ot.degToRad(S.startAngle || 0), R = Ot.degToRad(S.endAngle || 0);
|
|
19864
19864
|
const U = Math.atan2(S.end.y, S.end.x);
|
|
19865
|
-
S.isCCW || (
|
|
19865
|
+
S.isCCW || (z = Math.PI * 2 - z, R = Math.PI * 2 - R), x.add(
|
|
19866
19866
|
new Qi(
|
|
19867
19867
|
{ ...S.center, z: 0 },
|
|
19868
19868
|
k,
|
|
19869
|
-
|
|
19870
|
-
|
|
19869
|
+
M,
|
|
19870
|
+
z,
|
|
19871
19871
|
R,
|
|
19872
19872
|
!S.isCCW,
|
|
19873
19873
|
U
|
|
@@ -19877,19 +19877,19 @@ class uo {
|
|
|
19877
19877
|
const S = f;
|
|
19878
19878
|
if (S.numberOfControlPoints > 0 && S.numberOfKnots > 0) {
|
|
19879
19879
|
const b = S.controlPoints.map(
|
|
19880
|
-
(
|
|
19881
|
-
x:
|
|
19882
|
-
y:
|
|
19880
|
+
(z) => ({
|
|
19881
|
+
x: z.x,
|
|
19882
|
+
y: z.y,
|
|
19883
19883
|
z: 0
|
|
19884
19884
|
})
|
|
19885
19885
|
);
|
|
19886
19886
|
let k = !0;
|
|
19887
|
-
const
|
|
19887
|
+
const M = S.controlPoints.map((z) => (z.weight == null && (k = !1), z.weight || 1));
|
|
19888
19888
|
x.add(
|
|
19889
19889
|
new Qr(
|
|
19890
19890
|
b,
|
|
19891
19891
|
S.knots,
|
|
19892
|
-
k ?
|
|
19892
|
+
k ? M : void 0
|
|
19893
19893
|
)
|
|
19894
19894
|
);
|
|
19895
19895
|
} else if (S.numberOfFitData > 0) {
|
|
@@ -20616,13 +20616,13 @@ class zc {
|
|
|
20616
20616
|
timeout: x
|
|
20617
20617
|
});
|
|
20618
20618
|
const f = (b) => {
|
|
20619
|
-
const { id: k, success:
|
|
20619
|
+
const { id: k, success: M, data: z, error: R } = b.data;
|
|
20620
20620
|
if (k !== t) return;
|
|
20621
20621
|
this.cleanupTask(t);
|
|
20622
20622
|
const U = Date.now() - o;
|
|
20623
|
-
h(
|
|
20623
|
+
h(M ? {
|
|
20624
20624
|
success: !0,
|
|
20625
|
-
data:
|
|
20625
|
+
data: z,
|
|
20626
20626
|
duration: U
|
|
20627
20627
|
} : {
|
|
20628
20628
|
success: !1,
|
|
@@ -20888,18 +20888,16 @@ class Bc extends Fu {
|
|
|
20888
20888
|
x,
|
|
20889
20889
|
100 - o.value,
|
|
20890
20890
|
s
|
|
20891
|
-
), S = e.tables.blockTable.modelSpace
|
|
20892
|
-
await f.processChunk(async (
|
|
20893
|
-
|
|
20894
|
-
|
|
20895
|
-
|
|
20896
|
-
|
|
20897
|
-
R.ownerBlockRecordSoftId != null && (D = b.getIdAt(R.ownerBlockRecordSoftId) || D), D.appendEntity(U);
|
|
20898
|
-
}
|
|
20891
|
+
), S = e.tables.blockTable.modelSpace;
|
|
20892
|
+
await f.processChunk(async (b, k) => {
|
|
20893
|
+
const M = [];
|
|
20894
|
+
for (let z = b; z < k; z++) {
|
|
20895
|
+
const R = g[z], U = c.convert(R);
|
|
20896
|
+
U && M.push(U);
|
|
20899
20897
|
}
|
|
20900
|
-
if (h) {
|
|
20901
|
-
let
|
|
20902
|
-
|
|
20898
|
+
if (S.appendEntity(M), h) {
|
|
20899
|
+
let z = o.value + k / x * (100 - o.value);
|
|
20900
|
+
z > 100 && (z = 100), await h(z, "ENTITY", "IN-PROGRESS");
|
|
20903
20901
|
}
|
|
20904
20902
|
});
|
|
20905
20903
|
}
|
|
@@ -20910,23 +20908,20 @@ class Bc extends Fu {
|
|
|
20910
20908
|
* block table record.
|
|
20911
20909
|
*
|
|
20912
20910
|
* @param entities - Array of DXF entities to process
|
|
20913
|
-
* @param
|
|
20914
|
-
* @param blockTable - Block table reference
|
|
20911
|
+
* @param blockTableRecord - The block table record to use
|
|
20915
20912
|
*
|
|
20916
20913
|
* @example
|
|
20917
20914
|
* ```typescript
|
|
20918
|
-
* await converter.processEntitiesInBlock(entities, blockRecord
|
|
20915
|
+
* await converter.processEntitiesInBlock(entities, blockRecord);
|
|
20919
20916
|
* ```
|
|
20920
20917
|
*/
|
|
20921
|
-
async processEntitiesInBlock(t, e
|
|
20922
|
-
const
|
|
20923
|
-
for (let c = 0; c <
|
|
20924
|
-
const g = t[c], x =
|
|
20925
|
-
|
|
20926
|
-
let f = e;
|
|
20927
|
-
g.ownerBlockRecordSoftId != null && (f = s.getIdAt(g.ownerBlockRecordSoftId) || f), f.appendEntity(x);
|
|
20928
|
-
}
|
|
20918
|
+
async processEntitiesInBlock(t, e) {
|
|
20919
|
+
const s = new uo(), o = t.length, h = [];
|
|
20920
|
+
for (let c = 0; c < o; c++) {
|
|
20921
|
+
const g = t[c], x = s.convert(g);
|
|
20922
|
+
x && h.push(x);
|
|
20929
20923
|
}
|
|
20924
|
+
e.appendEntity(h);
|
|
20930
20925
|
}
|
|
20931
20926
|
/**
|
|
20932
20927
|
* Processes blocks defined in the DXF file.
|
|
@@ -20946,11 +20941,7 @@ class Bc extends Fu {
|
|
|
20946
20941
|
const s = t.blocks;
|
|
20947
20942
|
for (const [o, h] of Object.entries(s)) {
|
|
20948
20943
|
let c = e.tables.blockTable.getAt(h.name);
|
|
20949
|
-
c || (c = new Fe(), c.objectId = h.handle, c.name = o, c.origin.copy(h.position), e.tables.blockTable.add(c)), h.entities && this.processEntitiesInBlock(
|
|
20950
|
-
h.entities,
|
|
20951
|
-
c,
|
|
20952
|
-
e.tables.blockTable
|
|
20953
|
-
);
|
|
20944
|
+
c || (c = new Fe(), c.objectId = h.handle, c.name = o, c.origin.copy(h.position), e.tables.blockTable.add(c)), h.entities && this.processEntitiesInBlock(h.entities, c);
|
|
20954
20945
|
}
|
|
20955
20946
|
}
|
|
20956
20947
|
/**
|
|
@@ -21510,12 +21501,12 @@ const zr = class zr extends An {
|
|
|
21510
21501
|
this._layoutId = t;
|
|
21511
21502
|
}
|
|
21512
21503
|
/**
|
|
21513
|
-
* Appends the specified entity to this block table record.
|
|
21504
|
+
* Appends the specified entity or entities to this block table record.
|
|
21514
21505
|
*
|
|
21515
21506
|
* This method adds an entity to the block and sets up the necessary
|
|
21516
21507
|
* relationships between the entity and the block table record.
|
|
21517
21508
|
*
|
|
21518
|
-
* @param entity - The entity to append to this block table record
|
|
21509
|
+
* @param entity - The entity or entities to append to this block table record
|
|
21519
21510
|
*
|
|
21520
21511
|
* @example
|
|
21521
21512
|
* ```typescript
|
|
@@ -21524,7 +21515,14 @@ const zr = class zr extends An {
|
|
|
21524
21515
|
* ```
|
|
21525
21516
|
*/
|
|
21526
21517
|
appendEntity(t) {
|
|
21527
|
-
|
|
21518
|
+
if (Array.isArray(t))
|
|
21519
|
+
for (let e = 0; e < t.length; ++e) {
|
|
21520
|
+
const s = t[e];
|
|
21521
|
+
s.database = this.database, s.ownerId = this.objectId, this._entities.set(s.objectId, s);
|
|
21522
|
+
}
|
|
21523
|
+
else
|
|
21524
|
+
t.database = this.database, t.ownerId = this.objectId, this._entities.set(t.objectId, t);
|
|
21525
|
+
(this.isModelSapce || this.isPaperSapce) && this.database.events.entityAppended.dispatch({
|
|
21528
21526
|
database: this.database,
|
|
21529
21527
|
entity: t
|
|
21530
21528
|
});
|
|
@@ -22590,6 +22588,7 @@ class fd extends Jr {
|
|
|
22590
22588
|
* @param options Input options to read drawing data
|
|
22591
22589
|
*/
|
|
22592
22590
|
async openUri(t, e) {
|
|
22591
|
+
var k;
|
|
22593
22592
|
this.events.openProgress.dispatch({
|
|
22594
22593
|
database: this,
|
|
22595
22594
|
percentage: 0,
|
|
@@ -22597,22 +22596,51 @@ class fd extends Jr {
|
|
|
22597
22596
|
stageStatus: "START"
|
|
22598
22597
|
});
|
|
22599
22598
|
const s = await fetch(t);
|
|
22600
|
-
if (
|
|
22599
|
+
if (!s.ok)
|
|
22600
|
+
throw this.events.openProgress.dispatch({
|
|
22601
|
+
database: this,
|
|
22602
|
+
percentage: 100,
|
|
22603
|
+
stage: "FETCH_FILE",
|
|
22604
|
+
stageStatus: "ERROR"
|
|
22605
|
+
}), new Error(
|
|
22606
|
+
`Failed to fetch file '${t}' with HTTP status code '${s.status}'!`
|
|
22607
|
+
);
|
|
22608
|
+
const o = s.headers.get("content-length"), h = o ? parseInt(o, 10) : null;
|
|
22609
|
+
let c = 0;
|
|
22610
|
+
const g = (k = s.body) == null ? void 0 : k.getReader();
|
|
22611
|
+
if (!g)
|
|
22612
|
+
throw new Error("Failed to get response reader");
|
|
22613
|
+
const x = [];
|
|
22614
|
+
for (; ; ) {
|
|
22615
|
+
const { done: M, value: z } = await g.read();
|
|
22616
|
+
if (M)
|
|
22617
|
+
break;
|
|
22618
|
+
if (x.push(z), c += z.length, h !== null) {
|
|
22619
|
+
const R = Math.round(c / h * 100);
|
|
22620
|
+
this.events.openProgress.dispatch({
|
|
22621
|
+
database: this,
|
|
22622
|
+
percentage: R,
|
|
22623
|
+
stage: "FETCH_FILE",
|
|
22624
|
+
stageStatus: "IN-PROGRESS"
|
|
22625
|
+
});
|
|
22626
|
+
}
|
|
22627
|
+
}
|
|
22628
|
+
const f = new Uint8Array(c);
|
|
22629
|
+
let S = 0;
|
|
22630
|
+
for (const M of x)
|
|
22631
|
+
f.set(M, S), S += M.length;
|
|
22632
|
+
if (t.toLowerCase().split(".").pop() === "dwg")
|
|
22633
|
+
await this.read(f.buffer, e, Rs.DWG);
|
|
22634
|
+
else {
|
|
22635
|
+
const M = new TextDecoder().decode(f);
|
|
22636
|
+
await this.read(M, e, Rs.DXF);
|
|
22637
|
+
}
|
|
22638
|
+
this.events.openProgress.dispatch({
|
|
22601
22639
|
database: this,
|
|
22602
22640
|
percentage: 100,
|
|
22603
22641
|
stage: "FETCH_FILE",
|
|
22604
22642
|
stageStatus: "END"
|
|
22605
|
-
})
|
|
22606
|
-
throw new Error(
|
|
22607
|
-
`Failed to fetch file '${t}' with HTTP status codee '${s.status}'!`
|
|
22608
|
-
);
|
|
22609
|
-
if (t.toLowerCase().split(".").pop() === "dwg") {
|
|
22610
|
-
const h = await s.arrayBuffer();
|
|
22611
|
-
await this.read(h, e, Rs.DWG);
|
|
22612
|
-
} else {
|
|
22613
|
-
const h = await s.text();
|
|
22614
|
-
await this.read(h, e, Rs.DXF);
|
|
22615
|
-
}
|
|
22643
|
+
});
|
|
22616
22644
|
}
|
|
22617
22645
|
/**
|
|
22618
22646
|
* Clears all data from the database.
|