@mlightcad/data-model 1.2.20 → 1.2.21
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/data-model.cjs +3 -3
- package/dist/data-model.js +718 -701
- package/lib/converter/AcDbDxfConverter.js +8 -4
- package/lib/converter/AcDbDxfConverter.js.map +1 -1
- package/lib/converter/AcDbEntitiyConverter.js +2 -1
- package/lib/converter/AcDbEntitiyConverter.js.map +1 -1
- package/lib/database/AcDbDatabase.d.ts +17 -2
- package/lib/database/AcDbDatabase.d.ts.map +1 -1
- package/lib/database/AcDbDatabase.js +92 -60
- package/lib/database/AcDbDatabase.js.map +1 -1
- package/lib/database/AcDbDatabaseConverter.d.ts.map +1 -1
- package/lib/database/AcDbDatabaseConverter.js +4 -0
- package/lib/database/AcDbDatabaseConverter.js.map +1 -1
- package/package.json +3 -3
package/dist/data-model.js
CHANGED
|
@@ -421,7 +421,7 @@ const Bs = {
|
|
|
421
421
|
function ns(i, t, e) {
|
|
422
422
|
return Math.max(t, Math.min(e, i));
|
|
423
423
|
}
|
|
424
|
-
const
|
|
424
|
+
const Po = class Io {
|
|
425
425
|
/**
|
|
426
426
|
* Constructs a new AcCmColor instance.
|
|
427
427
|
* Initializes the color to "ByLayer" (index 256) and null RGB values.
|
|
@@ -675,8 +675,8 @@ const So = class Io {
|
|
|
675
675
|
return null;
|
|
676
676
|
}
|
|
677
677
|
};
|
|
678
|
-
|
|
679
|
-
let on =
|
|
678
|
+
Po.NAMES = Bs;
|
|
679
|
+
let on = Po;
|
|
680
680
|
const Ge = {
|
|
681
681
|
/**
|
|
682
682
|
* Throw error ILLEGAL_PARAMETERS when cannot instantiate from given parameter
|
|
@@ -821,7 +821,7 @@ var Eo = { exports: {} };
|
|
|
821
821
|
function f(R) {
|
|
822
822
|
return R === "debug" && (R = "log"), typeof console === e ? !1 : R === "trace" && s ? x : console[R] !== void 0 ? g(console, R) : console.log !== void 0 ? g(console, "log") : t;
|
|
823
823
|
}
|
|
824
|
-
function
|
|
824
|
+
function S() {
|
|
825
825
|
for (var R = this.getLevel(), U = 0; U < o.length; U++) {
|
|
826
826
|
var F = o[U];
|
|
827
827
|
this[F] = U < R ? t : this.methodFactory(F, R, this.name);
|
|
@@ -831,7 +831,7 @@ var Eo = { exports: {} };
|
|
|
831
831
|
}
|
|
832
832
|
function b(R) {
|
|
833
833
|
return function() {
|
|
834
|
-
typeof console !== e && (
|
|
834
|
+
typeof console !== e && (S.call(this), this[R].apply(this, arguments));
|
|
835
835
|
};
|
|
836
836
|
}
|
|
837
837
|
function E(R, U, F) {
|
|
@@ -900,24 +900,24 @@ var Eo = { exports: {} };
|
|
|
900
900
|
}, F.methodFactory = U || E, F.getLevel = function() {
|
|
901
901
|
return ot ?? xt ?? gt;
|
|
902
902
|
}, F.setLevel = function(bt, Lt) {
|
|
903
|
-
return ot = Yt(bt), Lt !== !1 && ut(ot),
|
|
903
|
+
return ot = Yt(bt), Lt !== !1 && ut(ot), S.call(F);
|
|
904
904
|
}, F.setDefaultLevel = function(bt) {
|
|
905
905
|
xt = Yt(bt), st() || F.setLevel(bt, !1);
|
|
906
906
|
}, F.resetLevel = function() {
|
|
907
|
-
ot = null, Vt(),
|
|
907
|
+
ot = null, Vt(), S.call(F);
|
|
908
908
|
}, F.enableAll = function(bt) {
|
|
909
909
|
F.setLevel(F.levels.TRACE, bt);
|
|
910
910
|
}, F.disableAll = function(bt) {
|
|
911
911
|
F.setLevel(F.levels.SILENT, bt);
|
|
912
912
|
}, F.rebuild = function() {
|
|
913
|
-
if (c !== F && (gt = Yt(c.getLevel())),
|
|
913
|
+
if (c !== F && (gt = Yt(c.getLevel())), S.call(F), c === F)
|
|
914
914
|
for (var bt in h)
|
|
915
915
|
h[bt].rebuild();
|
|
916
916
|
}, gt = Yt(
|
|
917
917
|
c ? c.getLevel() : "WARN"
|
|
918
918
|
);
|
|
919
919
|
var Wt = st();
|
|
920
|
-
Wt != null && (ot = Yt(Wt)),
|
|
920
|
+
Wt != null && (ot = Yt(Wt)), S.call(F);
|
|
921
921
|
}
|
|
922
922
|
c = new M(), c.getLogger = function(R) {
|
|
923
923
|
if (typeof R != "symbol" && typeof R != "string" || R === "")
|
|
@@ -952,7 +952,7 @@ const Hd = (i) => {
|
|
|
952
952
|
function Ns(i) {
|
|
953
953
|
return i === null || typeof i != "object" ? i : Array.isArray(i) ? [...i] : { ...i };
|
|
954
954
|
}
|
|
955
|
-
function
|
|
955
|
+
function Ps(i, ...t) {
|
|
956
956
|
for (const e of t)
|
|
957
957
|
if (e)
|
|
958
958
|
for (const s in e)
|
|
@@ -1011,7 +1011,7 @@ let Bh = class Mo {
|
|
|
1011
1011
|
modelChanged: new ce()
|
|
1012
1012
|
}, this._changing = !1, this._previousAttributes = {}, this._pending = !1;
|
|
1013
1013
|
const s = t || {};
|
|
1014
|
-
e &&
|
|
1014
|
+
e && Ps(s, e), this.attributes = s, this.changed = {};
|
|
1015
1015
|
}
|
|
1016
1016
|
/**
|
|
1017
1017
|
* Gets the value of an attribute.
|
|
@@ -1048,9 +1048,9 @@ let Bh = class Mo {
|
|
|
1048
1048
|
typeof t == "object" ? (o = t, s = e) : (o = {}, o[t] = e), s || (s = {});
|
|
1049
1049
|
const h = s.unset, c = s.silent, g = [], x = this._changing;
|
|
1050
1050
|
this._changing = !0, x || (this._previousAttributes = Ns(this.attributes), this.changed = {});
|
|
1051
|
-
const f = this.attributes,
|
|
1051
|
+
const f = this.attributes, S = this.changed, b = this._previousAttributes;
|
|
1052
1052
|
for (const E in o)
|
|
1053
|
-
e = o[E], bs(f[E], e) || g.push(E), bs(b[E], e) ? delete
|
|
1053
|
+
e = o[E], bs(f[E], e) || g.push(E), bs(b[E], e) ? delete S[E] : S[E] = e, h ? delete f[E] : f[E] = e;
|
|
1054
1054
|
if (!c) {
|
|
1055
1055
|
g.length && (this._pending = s);
|
|
1056
1056
|
for (let E = 0; E < g.length; E++)
|
|
@@ -1382,7 +1382,7 @@ let Uh = class {
|
|
|
1382
1382
|
}
|
|
1383
1383
|
};
|
|
1384
1384
|
const Vh = /* @__PURE__ */ new Uh();
|
|
1385
|
-
let
|
|
1385
|
+
let Xd = class {
|
|
1386
1386
|
/**
|
|
1387
1387
|
* Creates a new AcCmLoader instance.
|
|
1388
1388
|
* @param manager The loadingManager for the loader to use. Default is DefaultLoadingManager.
|
|
@@ -1599,16 +1599,16 @@ class jh {
|
|
|
1599
1599
|
await s();
|
|
1600
1600
|
}
|
|
1601
1601
|
}
|
|
1602
|
-
var le, ss, Qt, ne, is, Qe, ve, mr, Je,
|
|
1602
|
+
var le, ss, Qt, ne, is, Qe, ve, mr, Je, Xr, as, os, Kr, $r, ls, hs, us, Ne, pr, qt, Zr, cs, _t, ye, ds, xe, ms, gr, fr, tr, ps, Qr, Ce, _r, Jr, di, mi, vr, yr, gs, fs, xr, _s, pi, gi, he, br, ue, Le, fi, _i, vi, yi, wr, Oe, tn, vs, en, ze, Ar, Re, Sr;
|
|
1603
1603
|
(le = {})[le.None = 0] = "None", le[le.Anonymous = 1] = "Anonymous", le[le.NonConstant = 2] = "NonConstant", le[le.Xref = 4] = "Xref", le[le.XrefOverlay = 8] = "XrefOverlay", le[le.ExternallyDependent = 16] = "ExternallyDependent", le[le.ResolvedOrDependent = 32] = "ResolvedOrDependent", le[le.ReferencedXref = 64] = "ReferencedXref";
|
|
1604
1604
|
(ss = {})[ss.BYBLOCK = 0] = "BYBLOCK", ss[ss.BYLAYER = 256] = "BYLAYER";
|
|
1605
1605
|
(Qt = {})[Qt.Rotated = 0] = "Rotated", Qt[Qt.Aligned = 1] = "Aligned", Qt[Qt.Angular = 2] = "Angular", Qt[Qt.Diameter = 3] = "Diameter", Qt[Qt.Radius = 4] = "Radius", Qt[Qt.Angular3Point = 5] = "Angular3Point", Qt[Qt.Ordinate = 6] = "Ordinate", Qt[Qt.ReferenceIsExclusive = 32] = "ReferenceIsExclusive", Qt[Qt.IsOrdinateXTypeFlag = 64] = "IsOrdinateXTypeFlag", Qt[Qt.IsCustomTextPositionFlag = 128] = "IsCustomTextPositionFlag";
|
|
1606
1606
|
(ne = {})[ne.TopLeft = 1] = "TopLeft", ne[ne.TopCenter = 2] = "TopCenter", ne[ne.TopRight = 3] = "TopRight", ne[ne.MiddleLeft = 4] = "MiddleLeft", ne[ne.MiddleCenter = 5] = "MiddleCenter", ne[ne.MiddleRight = 6] = "MiddleRight", ne[ne.BottomLeft = 7] = "BottomLeft", ne[ne.BottomCenter = 8] = "BottomCenter", ne[ne.BottomRight = 9] = "BottomRight";
|
|
1607
1607
|
(is = {})[is.AtLeast = 1] = "AtLeast", is[is.Exact = 2] = "Exact";
|
|
1608
|
-
var ao = ((Qe = {})[Qe.Center = 0] = "Center", Qe[Qe.Above = 1] = "Above", Qe[Qe.Outside = 2] = "Outside", Qe[Qe.JIS = 3] = "JIS", Qe[Qe.Below = 4] = "Below", Qe),
|
|
1608
|
+
var ao = ((Qe = {})[Qe.Center = 0] = "Center", Qe[Qe.Above = 1] = "Above", Qe[Qe.Outside = 2] = "Outside", Qe[Qe.JIS = 3] = "JIS", Qe[Qe.Below = 4] = "Below", Qe), Pn = ((ve = {})[ve.Feet = 0] = "Feet", ve[ve.None = 1] = "None", ve[ve.Inch = 2] = "Inch", ve[ve.FeetAndInch = 3] = "FeetAndInch", ve[ve.Leading = 4] = "Leading", ve[ve.Trailing = 8] = "Trailing", ve[ve.LeadingAndTrailing = 12] = "LeadingAndTrailing", ve), Gh = ((mr = {})[mr.None = 0] = "None", mr[mr.Leading = 1] = "Leading", mr[mr.Trailing = 2] = "Trailing", mr[mr.LeadingAndTrailing = 3] = "LeadingAndTrailing", mr), Wh = ((Je = {})[Je.Center = 0] = "Center", Je[Je.Left = 1] = "Left", Je[Je.Right = 2] = "Right", Je[Je.OverFirst = 3] = "OverFirst", Je[Je.OverSecond = 4] = "OverSecond", Je), Hh = ((Xr = {})[Xr.Bottom = 0] = "Bottom", Xr[Xr.Center = 1] = "Center", Xr[Xr.Top = 2] = "Top", Xr);
|
|
1609
1609
|
(as = {})[as.PatternFill = 0] = "PatternFill", as[as.SolidFill = 1] = "SolidFill";
|
|
1610
1610
|
(os = {})[os.NonAssociative = 0] = "NonAssociative", os[os.Associative = 1] = "Associative";
|
|
1611
|
-
(
|
|
1611
|
+
(Kr = {})[Kr.Normal = 0] = "Normal", Kr[Kr.Outer = 1] = "Outer", Kr[Kr.Ignore = 2] = "Ignore";
|
|
1612
1612
|
($r = {})[$r.UserDefined = 0] = "UserDefined", $r[$r.Predefined = 1] = "Predefined", $r[$r.Custom = 2] = "Custom";
|
|
1613
1613
|
(ls = {})[ls.NotAnnotated = 0] = "NotAnnotated", ls[ls.Annotated = 1] = "Annotated";
|
|
1614
1614
|
(hs = {})[hs.Solid = 0] = "Solid", hs[hs.Gradient = 1] = "Gradient";
|
|
@@ -1637,14 +1637,14 @@ let ra = Symbol();
|
|
|
1637
1637
|
function yt(i, t) {
|
|
1638
1638
|
return (e, s, o) => {
|
|
1639
1639
|
let h = function(x, f = !1) {
|
|
1640
|
-
return x.reduce((
|
|
1641
|
-
b.pushContext &&
|
|
1642
|
-
let E =
|
|
1640
|
+
return x.reduce((S, b) => {
|
|
1641
|
+
b.pushContext && S.push({});
|
|
1642
|
+
let E = S[S.length - 1];
|
|
1643
1643
|
for (let M of typeof b.code == "number" ? [b.code] : b.code) {
|
|
1644
1644
|
let z = E[M] ?? (E[M] = []);
|
|
1645
1645
|
b.isMultiple && z.length && f && console.warn(`Snippet ${z[z.length - 1].name} for code(${M}) is shadowed by ${b.name}`), z.push(b);
|
|
1646
1646
|
}
|
|
1647
|
-
return
|
|
1647
|
+
return S;
|
|
1648
1648
|
}, [{}]);
|
|
1649
1649
|
}(i, s.debug), c = !1, g = h.length - 1;
|
|
1650
1650
|
for (; !At(e, 0, "EOF"); ) {
|
|
@@ -1653,13 +1653,13 @@ function yt(i, t) {
|
|
|
1653
1653
|
var W;
|
|
1654
1654
|
return ot >= gt && ((W = xt[F]) == null ? void 0 : W.length);
|
|
1655
1655
|
});
|
|
1656
|
-
}(h, e.code, g), f = x == null ? void 0 : x[e.code],
|
|
1657
|
-
if (!x || !
|
|
1656
|
+
}(h, e.code, g), f = x == null ? void 0 : x[e.code], S = f == null ? void 0 : f[f.length - 1];
|
|
1657
|
+
if (!x || !S) {
|
|
1658
1658
|
s.rewind();
|
|
1659
1659
|
break;
|
|
1660
1660
|
}
|
|
1661
|
-
|
|
1662
|
-
let { name: b, parser: E, isMultiple: M, isReducible: z } =
|
|
1661
|
+
S.isMultiple || x[e.code].pop();
|
|
1662
|
+
let { name: b, parser: E, isMultiple: M, isReducible: z } = S, R = E == null ? void 0 : E(e, s, o);
|
|
1663
1663
|
if (R === ra) {
|
|
1664
1664
|
s.rewind();
|
|
1665
1665
|
break;
|
|
@@ -1677,7 +1677,7 @@ function yt(i, t) {
|
|
|
1677
1677
|
}(o, b);
|
|
1678
1678
|
M && !z ? (Object.prototype.hasOwnProperty.call(U, F) || (U[F] = []), U[F].push(R)) : U[F] = R;
|
|
1679
1679
|
}
|
|
1680
|
-
|
|
1680
|
+
S.pushContext && (g -= 1), c = !0, e = s.next();
|
|
1681
1681
|
}
|
|
1682
1682
|
return t && Object.setPrototypeOf(o, t), c;
|
|
1683
1683
|
};
|
|
@@ -1695,7 +1695,7 @@ function G(i, t) {
|
|
|
1695
1695
|
function Bt({ value: i }) {
|
|
1696
1696
|
return !!i;
|
|
1697
1697
|
}
|
|
1698
|
-
let
|
|
1698
|
+
let Xh = [{ code: 1001, name: "xdata", parser: No }];
|
|
1699
1699
|
function No(i, t) {
|
|
1700
1700
|
var o;
|
|
1701
1701
|
if (!At(i, 1001)) throw Error("XData must starts with code 1001");
|
|
@@ -1713,37 +1713,37 @@ function No(i, t) {
|
|
|
1713
1713
|
case 1040:
|
|
1714
1714
|
case 1070:
|
|
1715
1715
|
case 1071:
|
|
1716
|
-
h.push({ type:
|
|
1716
|
+
h.push({ type: Pr(i.code), value: i.value });
|
|
1717
1717
|
break;
|
|
1718
1718
|
case 1003:
|
|
1719
|
-
h.push({ name: "layer", type:
|
|
1719
|
+
h.push({ name: "layer", type: Pr(i.code), value: i.value });
|
|
1720
1720
|
break;
|
|
1721
1721
|
case 1005:
|
|
1722
|
-
h.push({ name: "handle", type:
|
|
1722
|
+
h.push({ name: "handle", type: Pr(i.code), value: i.value });
|
|
1723
1723
|
break;
|
|
1724
1724
|
case 1010:
|
|
1725
|
-
h.push({ type:
|
|
1725
|
+
h.push({ type: Pr(i.code), value: zt(t) });
|
|
1726
1726
|
break;
|
|
1727
1727
|
case 1011:
|
|
1728
|
-
h.push({ name: "worldSpacePosition", type:
|
|
1728
|
+
h.push({ name: "worldSpacePosition", type: Pr(i.code), value: zt(t) });
|
|
1729
1729
|
break;
|
|
1730
1730
|
case 1012:
|
|
1731
|
-
h.push({ name: "worldSpaceDisplacement", type:
|
|
1731
|
+
h.push({ name: "worldSpaceDisplacement", type: Pr(i.code), value: zt(t) });
|
|
1732
1732
|
break;
|
|
1733
1733
|
case 1013:
|
|
1734
|
-
h.push({ name: "worldSpaceDirection", type:
|
|
1734
|
+
h.push({ name: "worldSpaceDirection", type: Pr(i.code), value: zt(t) });
|
|
1735
1735
|
break;
|
|
1736
1736
|
case 1041:
|
|
1737
|
-
h.push({ name: "distance", type:
|
|
1737
|
+
h.push({ name: "distance", type: Pr(i.code), value: i.value });
|
|
1738
1738
|
break;
|
|
1739
1739
|
case 1042:
|
|
1740
|
-
h.push({ name: "scale", type:
|
|
1740
|
+
h.push({ name: "scale", type: Pr(i.code), value: i.value });
|
|
1741
1741
|
}
|
|
1742
1742
|
i = t.next();
|
|
1743
1743
|
}
|
|
1744
1744
|
return t.rewind(), e;
|
|
1745
1745
|
}
|
|
1746
|
-
function
|
|
1746
|
+
function Pr(i) {
|
|
1747
1747
|
switch (i) {
|
|
1748
1748
|
case 1e3:
|
|
1749
1749
|
case 1003:
|
|
@@ -1785,17 +1785,17 @@ function sn(i, t, e) {
|
|
|
1785
1785
|
}
|
|
1786
1786
|
t.rewind();
|
|
1787
1787
|
}
|
|
1788
|
-
let
|
|
1788
|
+
let Kh = 0;
|
|
1789
1789
|
function Co(i) {
|
|
1790
1790
|
if (!i) throw TypeError("entity cannot be undefined or null");
|
|
1791
|
-
i.handle || (i.handle =
|
|
1791
|
+
i.handle || (i.handle = Kh++);
|
|
1792
1792
|
}
|
|
1793
1793
|
var $h = [0, 16711680, 16776960, 65280, 65535, 255, 16711935, 16777215, 8421504, 12632256, 16711680, 16744319, 13369344, 13395558, 10027008, 10046540, 8323072, 8339263, 4980736, 4990502, 16727808, 16752511, 13382400, 13401958, 10036736, 10051404, 8331008, 8343359, 4985600, 4992806, 16744192, 16760703, 13395456, 13408614, 10046464, 10056268, 8339200, 8347455, 4990464, 4995366, 16760576, 16768895, 13408512, 13415014, 10056192, 10061132, 8347392, 8351551, 4995328, 4997670, 16776960, 16777087, 13421568, 13421670, 10000384, 10000460, 8355584, 8355647, 5000192, 5000230, 12582656, 14679935, 10079232, 11717734, 7510016, 8755276, 6258432, 7307071, 3755008, 4344870, 8388352, 12582783, 6736896, 10079334, 5019648, 7510092, 4161280, 6258495, 2509824, 3755046, 4194048, 10485631, 3394560, 8375398, 2529280, 6264908, 2064128, 5209919, 1264640, 3099686, 65280, 8388479, 52224, 6736998, 38912, 5019724, 32512, 4161343, 19456, 2509862, 65343, 8388511, 52275, 6737023, 38950, 5019743, 32543, 4161359, 19475, 2509871, 65407, 8388543, 52326, 6737049, 38988, 5019762, 32575, 4161375, 19494, 2509881, 65471, 8388575, 52377, 6737074, 39026, 5019781, 32607, 4161391, 19513, 2509890, 65535, 8388607, 52428, 6737100, 39064, 5019800, 32639, 4161407, 19532, 2509900, 49151, 8380415, 39372, 6730444, 29336, 5014936, 24447, 4157311, 14668, 2507340, 32767, 8372223, 26316, 6724044, 19608, 5010072, 16255, 4153215, 9804, 2505036, 16383, 8364031, 13260, 6717388, 9880, 5005208, 8063, 4149119, 4940, 2502476, 255, 8355839, 204, 6710988, 152, 5000344, 127, 4145023, 76, 2500172, 4129023, 10452991, 3342540, 8349388, 2490520, 6245528, 2031743, 5193599, 1245260, 3089996, 8323327, 12550143, 6684876, 10053324, 4980888, 7490712, 4128895, 6242175, 2490444, 3745356, 12517631, 14647295, 10027212, 11691724, 7471256, 8735896, 6226047, 7290751, 3735628, 4335180, 16711935, 16744447, 13369548, 13395660, 9961624, 9981080, 8323199, 8339327, 4980812, 4990540, 16711871, 16744415, 13369497, 13395634, 9961586, 9981061, 8323167, 8339311, 4980793, 4990530, 16711807, 16744383, 13369446, 13395609, 9961548, 9981042, 8323135, 8339295, 4980774, 4990521, 16711743, 16744351, 13369395, 13395583, 9961510, 9981023, 8323103, 8339279, 4980755, 4990511, 3355443, 5987163, 8684676, 11382189, 14079702, 16777215];
|
|
1794
1794
|
function Lo(i) {
|
|
1795
1795
|
return $h[i];
|
|
1796
1796
|
}
|
|
1797
1797
|
(fr = {})[fr.CAST_AND_RECEIVE = 0] = "CAST_AND_RECEIVE", fr[fr.CAST = 1] = "CAST", fr[fr.RECEIVE = 2] = "RECEIVE", fr[fr.IGNORE = 3] = "IGNORE";
|
|
1798
|
-
let Ut = [...
|
|
1798
|
+
let Ut = [...Xh, { code: 284, name: "shadowMode", parser: y }, { code: 390, name: "plotStyleHardId", parser: y }, { code: 380, name: "plotStyleType", parser: y }, { code: 440, name: "transparency", parser: y }, { code: 430, name: "colorName", parser: y }, { code: 420, name: "color", parser: y }, { code: 310, name: "proxyEntity", isMultiple: !0, parser: y }, { code: 92, name: "proxyByte", parser: y }, { code: 60, name: "isVisible", parser: Bt }, { code: 48, name: "lineTypeScale", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 62, name: "colorIndex", parser(i, t, e) {
|
|
1799
1799
|
let s = i.value;
|
|
1800
1800
|
return s > 0 && s < 256 && (e.color = Lo(Math.abs(s))), s;
|
|
1801
1801
|
} }, { code: 347, name: "materialObjectHardId", parser: y }, { code: 6, name: "lineType", parser: y }, { code: 8, name: "layer", parser: y }, { code: 410, name: "layoutTabName", parser: y }, { code: 67, name: "isInPaperSpace", parser: Bt }, { code: 100 }, { code: 160 }, { code: 330, name: "ownerBlockRecordSoftId", parser: y }, { code: 102, parser: sn }, { code: 102, parser: sn }, { code: 102, parser: sn }, { code: 5, name: "handle", parser: y }];
|
|
@@ -1857,7 +1857,7 @@ function nu(i, t) {
|
|
|
1857
1857
|
}
|
|
1858
1858
|
return e;
|
|
1859
1859
|
}
|
|
1860
|
-
function*
|
|
1860
|
+
function* Xs(i, t = 1 / 0, e = 1) {
|
|
1861
1861
|
for (let s = i; s !== t; s += e) yield s;
|
|
1862
1862
|
}
|
|
1863
1863
|
function Dr(i) {
|
|
@@ -1940,7 +1940,7 @@ let su = { textStyle: "STANDARD", extrusionDirection: { x: 0, y: 0, z: 1 }, rota
|
|
|
1940
1940
|
while (s.code !== 0);
|
|
1941
1941
|
e.rewind();
|
|
1942
1942
|
})(t);
|
|
1943
|
-
} }, { code: 50, name: "columnHeight", parser: y }, { code: 49, name: "columnGutter", parser: y }, { code: 48, name: "columnWidth", parser: y }, { code: 79, name: "columnAutoHeight", parser: y }, { code: 78, name: "columnFlowReversed", parser: y }, { code: 76, name: "columnCount", parser: y }, { code: 75, name: "columnType", parser: y }, { code: 441, name: "backgroundFillTransparency", parser: y }, { code: 63, name: "backgroundFillColor", parser: y }, { code: 45, name: "fillBoxScale", parser: y }, { code: [...
|
|
1943
|
+
} }, { code: 50, name: "columnHeight", parser: y }, { code: 49, name: "columnGutter", parser: y }, { code: 48, name: "columnWidth", parser: y }, { code: 79, name: "columnAutoHeight", parser: y }, { code: 78, name: "columnFlowReversed", parser: y }, { code: 76, name: "columnCount", parser: y }, { code: 75, name: "columnType", parser: y }, { code: 441, name: "backgroundFillTransparency", parser: y }, { code: 63, name: "backgroundFillColor", parser: y }, { code: 45, name: "fillBoxScale", parser: y }, { code: [...Xs(430, 440)], name: "backgroundColor", parser: y }, { code: [...Xs(420, 430)], name: "backgroundColor", parser: y }, { code: 90, name: "backgroundFill", parser: y }, { code: 44, name: "lineSpacing", parser: y }, { code: 73, name: "lineSpacingStyle", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43 }, { code: 42 }, { code: 11, name: "direction", parser: G }, { code: 210, name: "extrusionDirection", parser: G }, { code: 7, name: "styleName", parser: y }, ...ti("text"), { code: 72, name: "drawingDirection", parser: y }, { code: 71, name: "attachmentPoint", parser: y }, { code: 41, name: "width", parser: y }, { code: 40, name: "height", parser: y }, { code: 10, name: "insertionPoint", parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
1944
1944
|
class Go {
|
|
1945
1945
|
parseEntity(t, e) {
|
|
1946
1946
|
let s = {};
|
|
@@ -1980,21 +1980,21 @@ class Yo {
|
|
|
1980
1980
|
qo(this, "parser", yt(ou));
|
|
1981
1981
|
}
|
|
1982
1982
|
}
|
|
1983
|
-
function
|
|
1983
|
+
function Xo(i, t, e) {
|
|
1984
1984
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
1985
1985
|
}
|
|
1986
1986
|
qo(Yo, "ForEntityName", "BODY");
|
|
1987
1987
|
let lu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, hu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: G }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
1988
|
-
class
|
|
1988
|
+
class Ko {
|
|
1989
1989
|
parseEntity(t, e) {
|
|
1990
1990
|
let s = {};
|
|
1991
1991
|
return this.parser(e, t, s), s;
|
|
1992
1992
|
}
|
|
1993
1993
|
constructor() {
|
|
1994
|
-
|
|
1994
|
+
Xo(this, "parser", yt(hu, lu));
|
|
1995
1995
|
}
|
|
1996
1996
|
}
|
|
1997
|
-
Ko
|
|
1997
|
+
Xo(Ko, "ForEntityName", "CIRCLE");
|
|
1998
1998
|
class Us {
|
|
1999
1999
|
parseEntity(t, e) {
|
|
2000
2000
|
let s = {};
|
|
@@ -2153,28 +2153,28 @@ el(rl, "ForEntityName", "HATCH");
|
|
|
2153
2153
|
function nl(i, t, e) {
|
|
2154
2154
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2155
2155
|
}
|
|
2156
|
-
let Au = { brightness: 50, contrast: 50, fade: 0, clippingBoundaryPath: [] },
|
|
2156
|
+
let Au = { brightness: 50, contrast: 50, fade: 0, clippingBoundaryPath: [] }, Su = [{ code: 290, name: "clipMode", parser: y }, { code: 14, name: "clippingBoundaryPath", isMultiple: !0, parser: G }, { code: 91, name: "countBoundaryPoints", parser: y }, { code: 71, name: "clippingBoundaryType", parser: y }, { code: 360, name: "imageDefReactorHandle", parser: y }, { code: 283, name: "fade", parser: y }, { code: 282, name: "contrast", parser: y }, { code: 281, name: "brightness", parser: y }, { code: 280, name: "isClipped", parser: Bt }, { code: 70, name: "flags", parser: y }, { code: 340, name: "imageDefHandle", parser: y }, { code: 13, name: "imageSize", parser: G }, { code: 12, name: "vPixel", parser: G }, { code: 11, name: "uPixel", parser: G }, { code: 10, name: "position", parser: G }, { code: 90, name: "version", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
2157
2157
|
class sl {
|
|
2158
2158
|
parseEntity(t, e) {
|
|
2159
2159
|
let s = {};
|
|
2160
2160
|
return this.parser(e, t, s), s;
|
|
2161
2161
|
}
|
|
2162
2162
|
constructor() {
|
|
2163
|
-
nl(this, "parser", yt(
|
|
2163
|
+
nl(this, "parser", yt(Su, Au));
|
|
2164
2164
|
}
|
|
2165
2165
|
}
|
|
2166
2166
|
function il(i, t, e) {
|
|
2167
2167
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2168
2168
|
}
|
|
2169
2169
|
nl(sl, "ForEntityName", "IMAGE");
|
|
2170
|
-
let
|
|
2170
|
+
let Pu = { xScale: 1, yScale: 1, zScale: 1, rotation: 0, columnCount: 0, rowCount: 0, columnSpacing: 0, rowSpacing: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Iu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 45, name: "rowSpacing", parser: y }, { code: 44, name: "columnSpacing", parser: y }, { code: 71, name: "rowCount", parser: y }, { code: 70, name: "columnCount", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43, name: "zScale", parser: y }, { code: 42, name: "yScale", parser: y }, { code: 41, name: "xScale", parser: y }, { code: 10, name: "insertionPoint", parser: G }, { code: 2, name: "name", parser: y }, { code: 66, name: "isVariableAttributes", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
2171
2171
|
class al {
|
|
2172
2172
|
parseEntity(t, e) {
|
|
2173
2173
|
let s = {};
|
|
2174
2174
|
return this.parser(e, t, s), s;
|
|
2175
2175
|
}
|
|
2176
2176
|
constructor() {
|
|
2177
|
-
il(this, "parser", yt(Iu,
|
|
2177
|
+
il(this, "parser", yt(Iu, Pu));
|
|
2178
2178
|
}
|
|
2179
2179
|
}
|
|
2180
2180
|
function ol(i, t, e) {
|
|
@@ -2270,7 +2270,7 @@ ml(pl, "ForEntityName", "POINT");
|
|
|
2270
2270
|
function gl(i, t, e) {
|
|
2271
2271
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2272
2272
|
}
|
|
2273
|
-
let Fu = { startWidth: 0, endWidth: 0, bulge: 0 }, Du = [{ code: 91, name: "id", parser: y }, { code: [...
|
|
2273
|
+
let Fu = { startWidth: 0, endWidth: 0, bulge: 0 }, Du = [{ code: 91, name: "id", parser: y }, { code: [...Xs(71, 75)], name: "faces", isMultiple: !0, parser: y }, { code: 50, name: "tangentDirection", parser: y }, { code: 70, name: "flag", parser: y }, { code: 42, name: "bulge", parser: y }, { code: 41, name: "endWidth", parser: y }, { code: 40, name: "startWidth", parser: y }, { code: 30, name: "z", parser: y }, { code: 20, name: "y", parser: y }, { code: 10, name: "x", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 100 }, ...Ut];
|
|
2274
2274
|
class sa {
|
|
2275
2275
|
parseEntity(t, e) {
|
|
2276
2276
|
let s = {};
|
|
@@ -2336,32 +2336,32 @@ class Al {
|
|
|
2336
2336
|
wl(this, "parser", yt(Hu, Wu));
|
|
2337
2337
|
}
|
|
2338
2338
|
}
|
|
2339
|
-
function
|
|
2339
|
+
function Sl(i, t, e) {
|
|
2340
2340
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2341
2341
|
}
|
|
2342
2342
|
wl(Al, "ForEntityName", "SECTION");
|
|
2343
|
-
let qu = { points: [], thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Yu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 39, name: "thickness", parser: y }, { code: [...
|
|
2344
|
-
class
|
|
2343
|
+
let qu = { points: [], thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Yu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 39, name: "thickness", parser: y }, { code: [...Xs(10, 14)], name: "points", isMultiple: !0, parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
2344
|
+
class Pl {
|
|
2345
2345
|
parseEntity(t, e) {
|
|
2346
2346
|
let s = {};
|
|
2347
2347
|
return this.parser(e, t, s), s;
|
|
2348
2348
|
}
|
|
2349
2349
|
constructor() {
|
|
2350
|
-
|
|
2350
|
+
Sl(this, "parser", yt(Yu, qu));
|
|
2351
2351
|
}
|
|
2352
2352
|
}
|
|
2353
2353
|
function Il(i, t, e) {
|
|
2354
2354
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2355
2355
|
}
|
|
2356
|
-
Pl
|
|
2357
|
-
let
|
|
2356
|
+
Sl(Pl, "ForEntityName", "SOLID");
|
|
2357
|
+
let Xu = [{ code: 350, name: "historyObjectSoftId", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...ti("data"), { code: 70, name: "version", parser: y }, { code: 100 }, ...Ut];
|
|
2358
2358
|
class El {
|
|
2359
2359
|
parseEntity(t, e) {
|
|
2360
2360
|
let s = {};
|
|
2361
2361
|
return this.parser(e, t, s), s;
|
|
2362
2362
|
}
|
|
2363
2363
|
constructor() {
|
|
2364
|
-
Il(this, "parser", yt(
|
|
2364
|
+
Il(this, "parser", yt(Xu));
|
|
2365
2365
|
}
|
|
2366
2366
|
}
|
|
2367
2367
|
Il(El, "ForEntityName", "3DSOLID");
|
|
@@ -2369,14 +2369,14 @@ Il(El, "ForEntityName", "3DSOLID");
|
|
|
2369
2369
|
function kl(i, t, e) {
|
|
2370
2370
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2371
2371
|
}
|
|
2372
|
-
let
|
|
2372
|
+
let Ku = { knotTolerance: 1e-6, controlTolerance: 1e-6, fitTolerance: 1e-9, knotValues: [], controlPoints: [], fitPoints: [] }, $u = [{ code: 11, name: "fitPoints", isMultiple: !0, parser: G }, { code: 10, name: "controlPoints", isMultiple: !0, parser: G }, { code: 41, name: "weights", isMultiple: !0, parser: y }, { code: 40, name: "knots", isMultiple: !0, parser: y }, { code: 13, name: "endTangent", parser: G }, { code: 12, name: "startTangent", parser: G }, { code: 44, name: "fitTolerance", parser: y }, { code: 43, name: "controlTolerance", parser: y }, { code: 42, name: "knotTolerance", parser: y }, { code: 74, name: "numberOfFitPoints", parser: y }, { code: 73, name: "numberOfControlPoints", parser: y }, { code: 72, name: "numberOfKnots", parser: y }, { code: 71, name: "degree", parser: y }, { code: 70, name: "flag", parser: y }, { code: 210, name: "normal", parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
|
|
2373
2373
|
class Ml {
|
|
2374
2374
|
parseEntity(t, e) {
|
|
2375
2375
|
let s = {};
|
|
2376
2376
|
return this.parser(e, t, s), s;
|
|
2377
2377
|
}
|
|
2378
2378
|
constructor() {
|
|
2379
|
-
kl(this, "parser", yt($u,
|
|
2379
|
+
kl(this, "parser", yt($u, Ku));
|
|
2380
2380
|
}
|
|
2381
2381
|
}
|
|
2382
2382
|
kl(Ml, "ForEntityName", "SPLINE");
|
|
@@ -2521,25 +2521,25 @@ class js {
|
|
|
2521
2521
|
x.topBorderVisibility = !!(h.value ?? !0), h = o.next();
|
|
2522
2522
|
break;
|
|
2523
2523
|
case 301:
|
|
2524
|
-
(function(f,
|
|
2524
|
+
(function(f, S, b) {
|
|
2525
2525
|
for (; b.code !== 304; ) switch (b.code) {
|
|
2526
2526
|
case 301:
|
|
2527
2527
|
case 93:
|
|
2528
2528
|
case 90:
|
|
2529
2529
|
case 94:
|
|
2530
|
-
b =
|
|
2530
|
+
b = S.next();
|
|
2531
2531
|
break;
|
|
2532
2532
|
case 1:
|
|
2533
|
-
f.text = b.value, b =
|
|
2533
|
+
f.text = b.value, b = S.next();
|
|
2534
2534
|
break;
|
|
2535
2535
|
case 300:
|
|
2536
|
-
f.attrText = b.value, b =
|
|
2536
|
+
f.attrText = b.value, b = S.next();
|
|
2537
2537
|
break;
|
|
2538
2538
|
case 302:
|
|
2539
|
-
f.text = b.value ? b.value : f.text, b =
|
|
2539
|
+
f.text = b.value ? b.value : f.text, b = S.next();
|
|
2540
2540
|
break;
|
|
2541
2541
|
default:
|
|
2542
|
-
console.log(`Ignore code: ${b.code}, value: ${b.value}`), b =
|
|
2542
|
+
console.log(`Ignore code: ${b.code}, value: ${b.value}`), b = S.next();
|
|
2543
2543
|
}
|
|
2544
2544
|
})(x, o, h), h = o.next();
|
|
2545
2545
|
break;
|
|
@@ -2794,7 +2794,7 @@ class Bl {
|
|
|
2794
2794
|
}
|
|
2795
2795
|
}
|
|
2796
2796
|
Rl(Bl, "ForEntityName", "MULTILEADER");
|
|
2797
|
-
let nc = Object.fromEntries([zo, Vo, Ho, Yo,
|
|
2797
|
+
let nc = Object.fromEntries([zo, Vo, Ho, Yo, Ko, Us, Zo, Jo, sl, al, ll, ul, Vs, dl, Go, Bl, pl, _l, yl, bl, Al, Pl, El, Ml, js, Do, Nl, rl, sa, Gs, Ll, zl].map((i) => [i.ForEntityName, new i()]));
|
|
2798
2798
|
function Fl(i, t) {
|
|
2799
2799
|
let e = [];
|
|
2800
2800
|
for (; !At(i, 0, "EOF"); ) {
|
|
@@ -2913,8 +2913,8 @@ function dc(i, t) {
|
|
|
2913
2913
|
}
|
|
2914
2914
|
let Ln = [{ code: 100, name: "subclassMarker", parser: y }, { code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser(i, t) {
|
|
2915
2915
|
for (; !At(i, 0, "EOF") && !At(i, 102, "}"); ) i = t.next();
|
|
2916
|
-
} }, { code: 5, name: "handle", parser: y }], mc = yt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]), pc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: ao.Above, defaultValueImperial: ao.Center }, { name: "DIMZIN", code: 78, defaultValue:
|
|
2917
|
-
(
|
|
2916
|
+
} }, { code: 5, name: "handle", parser: y }], mc = yt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]), pc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: ao.Above, defaultValueImperial: ao.Center }, { name: "DIMZIN", code: 78, defaultValue: Pn.Trailing, defaultValueImperial: Pn.Feet }, { name: "DIMAZIN", code: 79, defaultValue: Gh.None }, { name: "DIMALT", code: 170, defaultValue: 0 }, { name: "DIMALTD", code: 171, defaultValue: 3, defaultValueImperial: 2 }, { name: "DIMTOFL", code: 172, defaultValue: 1, defaultValueImperial: 0 }, { name: "DIMSAH", code: 173, defaultValue: 0 }, { name: "DIMTIX", code: 174, defaultValue: 0 }, { name: "DIMSOXD", code: 175, defaultValue: 0 }, { name: "DIMCLRD", code: 176, defaultValue: 0 }, { name: "DIMCLRE", code: 177, defaultValue: 0 }, { name: "DIMCLRT", code: 178, defaultValue: 0 }, { name: "DIMADEC", code: 179 }, { name: "DIMUNIT", code: 270 }, { name: "DIMDEC", code: 271, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMTDEC", code: 272, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMALTU", code: 273, defaultValue: 2 }, { name: "DIMALTTD", code: 274, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMAUNIT", code: 275, defaultValue: 0 }, { name: "DIMFRAC", code: 276, defaultValue: 0 }, { name: "DIMLUNIT", code: 277, defaultValue: 2 }, { name: "DIMDSEP", code: 278, defaultValue: ",", defaultValueImperial: "." }, { name: "DIMJUST", code: 280, defaultValue: Wh.Center }, { name: "DIMSD1", code: 281, defaultValue: 0 }, { name: "DIMSD2", code: 282, defaultValue: 0 }, { name: "DIMTOLJ", code: 283, defaultValue: Hh.Center }, { name: "DIMTZIN", code: 284, defaultValue: Pn.Trailing, defaultValueImperial: Pn.Feet }, { name: "DIMALTZ", code: 285, defaultValue: Pn.Trailing }, { name: "DIMALTTZ", code: 286, defaultValue: Pn.Trailing }, { name: "DIMFIT", code: 287 }, { name: "DIMUPT", code: 288, defaultValue: 0 }, { name: "DIMATFIT", code: 289, defaultValue: 3 }, { name: "DIMTXSTY", code: 340 }, { name: "DIMLDRBLK", code: 341 }, { name: "DIMBLK", code: 342 }, { name: "DIMBLK1", code: 343 }, { name: "DIMBLK2", code: 344 }, { name: "DIMLWD", code: 371, defaultValue: -2 }, { name: "DIMLWD", code: 372, defaultValue: -2 }], gc = yt([...pc.map((i) => ({ ...i, parser: y })), { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 105, name: "handle", parser: y }, ...Ln.filter((i) => i.code !== 5)]), fc = yt([{ code: 347, name: "materialObjectId", parser: y }, { code: 390, name: "plotStyleNameObjectId", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 290, name: "isPlotting", parser: Bt }, { code: 6, name: "lineType", parser: y }, { code: 62, name: "colorIndex", parser: y }, { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]);
|
|
2917
|
+
(Sr = {})[Sr.NONE = 0] = "NONE", Sr[Sr.AbsoluteRotation = 1] = "AbsoluteRotation", Sr[Sr.TextEmbedded = 2] = "TextEmbedded", Sr[Sr.ShapeEmbedded = 4] = "ShapeEmbedded";
|
|
2918
2918
|
let _c = yt([{ code: 9, name: "text", parser: y }, { code: 45, name: "offsetY", parser: y }, { code: 44, name: "offsetX", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 46, name: "scale", parser: y }, { code: 340, name: "styleObjectId", parser: y }, { code: 75, name: "shapeNumber", parser: y }, { code: 74, name: "elementTypeFlag", parser: y }, { code: 49, name: "elementLength", parser: y }], { elementTypeFlag: 0, elementLength: 0 }), vc = yt([{ code: 49, name: "pattern", parser(i, t) {
|
|
2919
2919
|
let e = {};
|
|
2920
2920
|
return _c(i, t, e), e;
|
|
@@ -2981,12 +2981,12 @@ function uo(i, t, e = !1) {
|
|
|
2981
2981
|
function Ei(i, t, e) {
|
|
2982
2982
|
return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
|
|
2983
2983
|
}
|
|
2984
|
-
class
|
|
2984
|
+
class Sc {
|
|
2985
2985
|
constructor() {
|
|
2986
2986
|
Ei(this, "encoding", "utf-8"), Ei(this, "encodingFailureFatal", !1);
|
|
2987
2987
|
}
|
|
2988
2988
|
}
|
|
2989
|
-
class
|
|
2989
|
+
class Pc extends EventTarget {
|
|
2990
2990
|
parseSync(t, e = !1) {
|
|
2991
2991
|
let s = new ho(t.split(/\r\n|\r|\n/g), e);
|
|
2992
2992
|
if (!s.hasNext()) throw Error("Empty file");
|
|
@@ -3029,7 +3029,7 @@ class Sc extends EventTarget {
|
|
|
3029
3029
|
for (; !At(s, 0, "EOF"); ) At(s, 0, "SECTION") && (At(s = t.next(), 2, "HEADER") ? (s = t.next(), e.header = ac(s, t)) : At(s, 2, "BLOCKS") ? (s = t.next(), e.blocks = sc(s, t)) : At(s, 2, "ENTITIES") ? (s = t.next(), e.entities = Fl(s, t)) : At(s, 2, "TABLES") ? (s = t.next(), e.tables = Ac(s, t)) : At(s, 2, "OBJECTS") && (s = t.next(), e.objects = dc(s, t))), s = t.next();
|
|
3030
3030
|
return e;
|
|
3031
3031
|
}
|
|
3032
|
-
constructor(t = new
|
|
3032
|
+
constructor(t = new Sc()) {
|
|
3033
3033
|
super(), Ei(this, "_decoder", void 0), this._decoder = new TextDecoder(t.encoding, { fatal: t.encodingFailureFatal });
|
|
3034
3034
|
}
|
|
3035
3035
|
}
|
|
@@ -3170,8 +3170,8 @@ class an {
|
|
|
3170
3170
|
if (this.has(x))
|
|
3171
3171
|
f = this.get(x);
|
|
3172
3172
|
else {
|
|
3173
|
-
const
|
|
3174
|
-
for (const b of
|
|
3173
|
+
const S = e.newIterator();
|
|
3174
|
+
for (const b of S)
|
|
3175
3175
|
b.color.isByBlock && s ? (co.copy(b.color), b.color.color = s, this.addEntity(b, g, t), b.color.copy(co)) : this.addEntity(b, g, t);
|
|
3176
3176
|
f = t.group(g), f && o && this.set(x, f);
|
|
3177
3177
|
}
|
|
@@ -3251,7 +3251,7 @@ class aa {
|
|
|
3251
3251
|
}
|
|
3252
3252
|
}
|
|
3253
3253
|
const jl = "Load Database";
|
|
3254
|
-
class
|
|
3254
|
+
class Pe extends Fh {
|
|
3255
3255
|
constructor(t, e) {
|
|
3256
3256
|
super(t.stage), this.data = t, this.progress = e;
|
|
3257
3257
|
}
|
|
@@ -3318,8 +3318,8 @@ class kc {
|
|
|
3318
3318
|
data: { total: 0 },
|
|
3319
3319
|
format() {
|
|
3320
3320
|
let f = "";
|
|
3321
|
-
return Object.keys(this.data).forEach((
|
|
3322
|
-
|
|
3321
|
+
return Object.keys(this.data).forEach((S) => {
|
|
3322
|
+
S !== "total" && (f += `- ${S}: ${this.data[S]} ms
|
|
3323
3323
|
`);
|
|
3324
3324
|
}), f += `- total: ${this.data.total} ms`, f;
|
|
3325
3325
|
}
|
|
@@ -3327,7 +3327,7 @@ class kc {
|
|
|
3327
3327
|
To.getInstance().collect(h), this.progress = o;
|
|
3328
3328
|
const c = { value: 0 }, g = new Dh();
|
|
3329
3329
|
g.setCompleteCallback(() => this.onFinished()), g.setErrorCallback((f) => this.onError(f)), g.addTask(
|
|
3330
|
-
new
|
|
3330
|
+
new Pe(
|
|
3331
3331
|
{
|
|
3332
3332
|
stage: "START",
|
|
3333
3333
|
step: 1,
|
|
@@ -3337,7 +3337,7 @@ class kc {
|
|
|
3337
3337
|
o
|
|
3338
3338
|
)
|
|
3339
3339
|
), g.addTask(
|
|
3340
|
-
new
|
|
3340
|
+
new Pe(
|
|
3341
3341
|
{
|
|
3342
3342
|
stage: "PARSE",
|
|
3343
3343
|
step: 5,
|
|
@@ -3347,20 +3347,20 @@ class kc {
|
|
|
3347
3347
|
o
|
|
3348
3348
|
)
|
|
3349
3349
|
), g.addTask(
|
|
3350
|
-
new
|
|
3350
|
+
new Pe(
|
|
3351
3351
|
{
|
|
3352
3352
|
stage: "FONT",
|
|
3353
3353
|
step: 5,
|
|
3354
3354
|
progress: c,
|
|
3355
3355
|
task: async (f) => {
|
|
3356
|
-
const
|
|
3357
|
-
return { model: f.model, data:
|
|
3356
|
+
const S = this.getFonts(f.model);
|
|
3357
|
+
return { model: f.model, data: S };
|
|
3358
3358
|
}
|
|
3359
3359
|
},
|
|
3360
3360
|
o
|
|
3361
3361
|
)
|
|
3362
3362
|
), g.addTask(
|
|
3363
|
-
new
|
|
3363
|
+
new Pe(
|
|
3364
3364
|
{
|
|
3365
3365
|
stage: "LTYPE",
|
|
3366
3366
|
step: 1,
|
|
@@ -3370,7 +3370,7 @@ class kc {
|
|
|
3370
3370
|
o
|
|
3371
3371
|
)
|
|
3372
3372
|
), g.addTask(
|
|
3373
|
-
new
|
|
3373
|
+
new Pe(
|
|
3374
3374
|
{
|
|
3375
3375
|
stage: "STYLE",
|
|
3376
3376
|
step: 1,
|
|
@@ -3380,7 +3380,7 @@ class kc {
|
|
|
3380
3380
|
o
|
|
3381
3381
|
)
|
|
3382
3382
|
), g.addTask(
|
|
3383
|
-
new
|
|
3383
|
+
new Pe(
|
|
3384
3384
|
{
|
|
3385
3385
|
stage: "DIMSTYLE",
|
|
3386
3386
|
step: 1,
|
|
@@ -3390,7 +3390,7 @@ class kc {
|
|
|
3390
3390
|
o
|
|
3391
3391
|
)
|
|
3392
3392
|
), g.addTask(
|
|
3393
|
-
new
|
|
3393
|
+
new Pe(
|
|
3394
3394
|
{
|
|
3395
3395
|
stage: "LAYER",
|
|
3396
3396
|
step: 1,
|
|
@@ -3400,7 +3400,7 @@ class kc {
|
|
|
3400
3400
|
o
|
|
3401
3401
|
)
|
|
3402
3402
|
), g.addTask(
|
|
3403
|
-
new
|
|
3403
|
+
new Pe(
|
|
3404
3404
|
{
|
|
3405
3405
|
stage: "VPORT",
|
|
3406
3406
|
step: 1,
|
|
@@ -3410,7 +3410,7 @@ class kc {
|
|
|
3410
3410
|
o
|
|
3411
3411
|
)
|
|
3412
3412
|
), g.addTask(
|
|
3413
|
-
new
|
|
3413
|
+
new Pe(
|
|
3414
3414
|
{
|
|
3415
3415
|
stage: "HEADER",
|
|
3416
3416
|
step: 1,
|
|
@@ -3420,7 +3420,7 @@ class kc {
|
|
|
3420
3420
|
o
|
|
3421
3421
|
)
|
|
3422
3422
|
), g.addTask(
|
|
3423
|
-
new
|
|
3423
|
+
new Pe(
|
|
3424
3424
|
{
|
|
3425
3425
|
stage: "BLOCK_RECORD",
|
|
3426
3426
|
step: 5,
|
|
@@ -3430,17 +3430,17 @@ class kc {
|
|
|
3430
3430
|
o
|
|
3431
3431
|
)
|
|
3432
3432
|
), g.addTask(
|
|
3433
|
-
new
|
|
3433
|
+
new Pe(
|
|
3434
3434
|
{
|
|
3435
3435
|
stage: "OBJECT",
|
|
3436
3436
|
step: 5,
|
|
3437
3437
|
progress: c,
|
|
3438
|
-
task: async (f) => (this.processObjects(f.model, e), f)
|
|
3438
|
+
task: async (f) => (this.processObjects(f.model, e), e.dictionaries.layouts.numEntries === 0 && e.createDefaultData({ layout: !0 }), f)
|
|
3439
3439
|
},
|
|
3440
3440
|
o
|
|
3441
3441
|
)
|
|
3442
3442
|
), g.addTask(
|
|
3443
|
-
new
|
|
3443
|
+
new Pe(
|
|
3444
3444
|
{
|
|
3445
3445
|
stage: "BLOCK",
|
|
3446
3446
|
step: 5,
|
|
@@ -3450,7 +3450,7 @@ class kc {
|
|
|
3450
3450
|
o
|
|
3451
3451
|
)
|
|
3452
3452
|
), g.addTask(
|
|
3453
|
-
new
|
|
3453
|
+
new Pe(
|
|
3454
3454
|
{
|
|
3455
3455
|
stage: "ENTITY",
|
|
3456
3456
|
step: 100,
|
|
@@ -3466,7 +3466,7 @@ class kc {
|
|
|
3466
3466
|
o
|
|
3467
3467
|
)
|
|
3468
3468
|
), g.addTask(
|
|
3469
|
-
new
|
|
3469
|
+
new Pe(
|
|
3470
3470
|
{
|
|
3471
3471
|
stage: "END",
|
|
3472
3472
|
step: 0,
|
|
@@ -3899,7 +3899,7 @@ const kt = {
|
|
|
3899
3899
|
isBetweenAngle: qc,
|
|
3900
3900
|
intPartLength: Yl,
|
|
3901
3901
|
relativeEps: Yc
|
|
3902
|
-
}, Mi = class
|
|
3902
|
+
}, Mi = class Xl {
|
|
3903
3903
|
/**
|
|
3904
3904
|
* Construct one vector by two numbers
|
|
3905
3905
|
*/
|
|
@@ -4015,7 +4015,7 @@ const kt = {
|
|
|
4015
4015
|
* @returns Return the cloned vector
|
|
4016
4016
|
*/
|
|
4017
4017
|
clone() {
|
|
4018
|
-
return new
|
|
4018
|
+
return new Xl(this.x, this.y);
|
|
4019
4019
|
}
|
|
4020
4020
|
/**
|
|
4021
4021
|
* Copy the values of the passed vector's x and y properties to this vector.
|
|
@@ -4397,7 +4397,7 @@ const kt = {
|
|
|
4397
4397
|
};
|
|
4398
4398
|
Mi.EMPTY = Object.freeze(new Mi(0, 0));
|
|
4399
4399
|
let Zt = Mi;
|
|
4400
|
-
const Ti = class
|
|
4400
|
+
const Ti = class Kl {
|
|
4401
4401
|
/**
|
|
4402
4402
|
* Create a 3x3 matrix with the given arguments in row-major order. If no arguments are provided,
|
|
4403
4403
|
* the constructor initializes the Matrix3 to the 3x3 identity matrix.
|
|
@@ -4429,8 +4429,8 @@ const Ti = class Xl {
|
|
|
4429
4429
|
* @returns Return this matrix
|
|
4430
4430
|
*/
|
|
4431
4431
|
set(t, e, s, o, h, c, g, x, f) {
|
|
4432
|
-
const
|
|
4433
|
-
return
|
|
4432
|
+
const S = this.elements;
|
|
4433
|
+
return S[0] = t, S[1] = o, S[2] = g, S[3] = e, S[4] = h, S[5] = x, S[6] = s, S[7] = c, S[8] = f, this;
|
|
4434
4434
|
}
|
|
4435
4435
|
/**
|
|
4436
4436
|
* Reset this matrix to the 3x3 identity matrix:
|
|
@@ -4490,8 +4490,8 @@ const Ti = class Xl {
|
|
|
4490
4490
|
* @returns Return this matrix
|
|
4491
4491
|
*/
|
|
4492
4492
|
multiplyMatrices(t, e) {
|
|
4493
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1],
|
|
4494
|
-
return h[0] = c * R + g * gt + x * W, h[3] = c * U + g * xt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * R +
|
|
4493
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], E = s[2], M = s[5], z = s[8], R = o[0], U = o[3], F = o[6], gt = o[1], xt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
|
|
4494
|
+
return h[0] = c * R + g * gt + x * W, h[3] = c * U + g * xt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * R + S * gt + b * W, h[4] = f * U + S * xt + b * ut, h[7] = f * F + S * ot + b * st, h[2] = E * R + M * gt + z * W, h[5] = E * U + M * xt + z * ut, h[8] = E * F + M * ot + z * st, this;
|
|
4495
4495
|
}
|
|
4496
4496
|
/**
|
|
4497
4497
|
* Multiply every component of the matrix by the scalar value s.
|
|
@@ -4507,8 +4507,8 @@ const Ti = class Xl {
|
|
|
4507
4507
|
* @returns Return the determinant of this matrix
|
|
4508
4508
|
*/
|
|
4509
4509
|
determinant() {
|
|
4510
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7],
|
|
4511
|
-
return e * c *
|
|
4510
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8];
|
|
4511
|
+
return e * c * S - e * g * f - s * h * S + s * g * x + o * h * f - o * c * x;
|
|
4512
4512
|
}
|
|
4513
4513
|
/**
|
|
4514
4514
|
* Invert this matrix, using the analytic method. You can not invert with a determinant of zero.
|
|
@@ -4516,10 +4516,10 @@ const Ti = class Xl {
|
|
|
4516
4516
|
* @returns Return this matrix
|
|
4517
4517
|
*/
|
|
4518
4518
|
invert() {
|
|
4519
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7],
|
|
4519
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = S * c - g * f, E = g * x - S * h, M = f * h - c * x, z = e * b + s * E + o * M;
|
|
4520
4520
|
if (z === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
4521
4521
|
const R = 1 / z;
|
|
4522
|
-
return t[0] = b * R, t[1] = (o * f -
|
|
4522
|
+
return t[0] = b * R, t[1] = (o * f - S * s) * R, t[2] = (g * s - o * c) * R, t[3] = E * R, t[4] = (S * e - o * x) * R, t[5] = (o * h - g * e) * R, t[6] = M * R, t[7] = (s * x - f * e) * R, t[8] = (c * e - s * h) * R, this;
|
|
4523
4523
|
}
|
|
4524
4524
|
/**
|
|
4525
4525
|
* Transpose this matrix in place.
|
|
@@ -4664,7 +4664,7 @@ const Ti = class Xl {
|
|
|
4664
4664
|
* @returns Return the cloned matrix
|
|
4665
4665
|
*/
|
|
4666
4666
|
clone() {
|
|
4667
|
-
return new
|
|
4667
|
+
return new Kl().fromArray(this.elements);
|
|
4668
4668
|
}
|
|
4669
4669
|
};
|
|
4670
4670
|
Ti.IDENTITY = Object.freeze(new Ti());
|
|
@@ -4752,13 +4752,13 @@ function Jl(i, t, e = !1) {
|
|
|
4752
4752
|
let h = !1;
|
|
4753
4753
|
const c = t.length;
|
|
4754
4754
|
for (let g = 0, x = c - 1; g < c; x = g++) {
|
|
4755
|
-
const f = t[g].x,
|
|
4756
|
-
let M =
|
|
4757
|
-
e && (M =
|
|
4755
|
+
const f = t[g].x, S = t[g].y, b = t[x].x, E = t[x].y;
|
|
4756
|
+
let M = S > o != E > o;
|
|
4757
|
+
e && (M = S >= o != E >= o), M && s < (b - f) * (o - S) / (E - S) + f && (h = !h);
|
|
4758
4758
|
}
|
|
4759
4759
|
return h;
|
|
4760
4760
|
}
|
|
4761
|
-
function
|
|
4761
|
+
function Xc(i, t) {
|
|
4762
4762
|
if (i.length === 0 || t.length === 0)
|
|
4763
4763
|
return !1;
|
|
4764
4764
|
const e = new be().setFromPoints(i), s = new be().setFromPoints(t);
|
|
@@ -4771,9 +4771,9 @@ function Kc(i, t) {
|
|
|
4771
4771
|
}
|
|
4772
4772
|
return !1;
|
|
4773
4773
|
}
|
|
4774
|
-
const
|
|
4774
|
+
const Kc = {
|
|
4775
4775
|
isPointInPolygon: Jl,
|
|
4776
|
-
isPolygonIntersect:
|
|
4776
|
+
isPolygonIntersect: Xc
|
|
4777
4777
|
};
|
|
4778
4778
|
function $c(i, t) {
|
|
4779
4779
|
const e = [], s = t - 1, o = i;
|
|
@@ -4789,7 +4789,7 @@ function Zc(i, t) {
|
|
|
4789
4789
|
const e = t.length - 1, s = i, o = [0];
|
|
4790
4790
|
let h = 0;
|
|
4791
4791
|
for (let g = 1; g <= e; g++) {
|
|
4792
|
-
const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1],
|
|
4792
|
+
const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1], S = t[g][2] - t[g - 1][2], b = Math.sqrt(x * x + f * f + S * S);
|
|
4793
4793
|
h += b, o.push(h);
|
|
4794
4794
|
}
|
|
4795
4795
|
const c = [];
|
|
@@ -4807,7 +4807,7 @@ function Qc(i, t) {
|
|
|
4807
4807
|
const e = t.length - 1, s = i, o = [0];
|
|
4808
4808
|
let h = 0;
|
|
4809
4809
|
for (let g = 1; g <= e; g++) {
|
|
4810
|
-
const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1],
|
|
4810
|
+
const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1], S = t[g][2] - t[g - 1][2], b = Math.sqrt(x * x + f * f + S * S), E = Math.sqrt(b);
|
|
4811
4811
|
h += E, o.push(h);
|
|
4812
4812
|
}
|
|
4813
4813
|
const c = [];
|
|
@@ -4836,7 +4836,7 @@ function Hs(i, t, e, s, o) {
|
|
|
4836
4836
|
const g = [0, 0, 0];
|
|
4837
4837
|
let x = 0;
|
|
4838
4838
|
for (let f = 0; f <= h; f++) {
|
|
4839
|
-
const
|
|
4839
|
+
const S = Ni(f, c, i, e), b = o[f] * S;
|
|
4840
4840
|
g[0] += s[f][0] * b, g[1] += s[f][1] * b, g[2] += s[f][2] * b, x += b;
|
|
4841
4841
|
}
|
|
4842
4842
|
if (x < 1e-10) {
|
|
@@ -4852,7 +4852,7 @@ function Jc(i, t, e, s) {
|
|
|
4852
4852
|
const o = i, h = t[o], c = t[t.length - o - 1];
|
|
4853
4853
|
let g = 0;
|
|
4854
4854
|
const x = 1e3, f = (c - h) / x;
|
|
4855
|
-
let
|
|
4855
|
+
let S = Hs(
|
|
4856
4856
|
h,
|
|
4857
4857
|
i,
|
|
4858
4858
|
t,
|
|
@@ -4860,8 +4860,8 @@ function Jc(i, t, e, s) {
|
|
|
4860
4860
|
s
|
|
4861
4861
|
);
|
|
4862
4862
|
for (let R = 1; R <= x; R++) {
|
|
4863
|
-
const U = h + R * f, F = Hs(U, i, t, e, s), gt = F[0] -
|
|
4864
|
-
g += Math.sqrt(gt * gt + xt * xt + ot * ot),
|
|
4863
|
+
const U = h + R * f, F = Hs(U, i, t, e, s), gt = F[0] - S[0], xt = F[1] - S[1], ot = F[2] - S[2];
|
|
4864
|
+
g += Math.sqrt(gt * gt + xt * xt + ot * ot), S = F;
|
|
4865
4865
|
}
|
|
4866
4866
|
const b = Hs(
|
|
4867
4867
|
c,
|
|
@@ -4869,7 +4869,7 @@ function Jc(i, t, e, s) {
|
|
|
4869
4869
|
t,
|
|
4870
4870
|
e,
|
|
4871
4871
|
s
|
|
4872
|
-
), E = b[0] -
|
|
4872
|
+
), E = b[0] - S[0], M = b[1] - S[1], z = b[2] - S[2];
|
|
4873
4873
|
return g += Math.sqrt(E * E + M * M + z * z), g;
|
|
4874
4874
|
}
|
|
4875
4875
|
function r0(i) {
|
|
@@ -4897,30 +4897,30 @@ class ln {
|
|
|
4897
4897
|
* @param t Input normalized interpolation factor (between 0 and 1).
|
|
4898
4898
|
*/
|
|
4899
4899
|
static slerpFlat(t, e, s, o, h, c, g) {
|
|
4900
|
-
let x = s[o + 0], f = s[o + 1],
|
|
4900
|
+
let x = s[o + 0], f = s[o + 1], S = s[o + 2], b = s[o + 3];
|
|
4901
4901
|
const E = h[c + 0], M = h[c + 1], z = h[c + 2], R = h[c + 3];
|
|
4902
4902
|
if (g === 0) {
|
|
4903
|
-
t[e + 0] = x, t[e + 1] = f, t[e + 2] =
|
|
4903
|
+
t[e + 0] = x, t[e + 1] = f, t[e + 2] = S, t[e + 3] = b;
|
|
4904
4904
|
return;
|
|
4905
4905
|
}
|
|
4906
4906
|
if (g === 1) {
|
|
4907
4907
|
t[e + 0] = E, t[e + 1] = M, t[e + 2] = z, t[e + 3] = R;
|
|
4908
4908
|
return;
|
|
4909
4909
|
}
|
|
4910
|
-
if (b !== R || x !== E || f !== M ||
|
|
4910
|
+
if (b !== R || x !== E || f !== M || S !== z) {
|
|
4911
4911
|
let U = 1 - g;
|
|
4912
|
-
const F = x * E + f * M +
|
|
4912
|
+
const F = x * E + f * M + S * z + b * R, gt = F >= 0 ? 1 : -1, xt = 1 - F * F;
|
|
4913
4913
|
if (xt > Number.EPSILON) {
|
|
4914
4914
|
const W = Math.sqrt(xt), ut = Math.atan2(W, F * gt);
|
|
4915
4915
|
U = Math.sin(U * ut) / W, g = Math.sin(g * ut) / W;
|
|
4916
4916
|
}
|
|
4917
4917
|
const ot = g * gt;
|
|
4918
|
-
if (x = x * U + E * ot, f = f * U + M * ot,
|
|
4919
|
-
const W = 1 / Math.sqrt(x * x + f * f +
|
|
4920
|
-
x *= W, f *= W,
|
|
4918
|
+
if (x = x * U + E * ot, f = f * U + M * ot, S = S * U + z * ot, b = b * U + R * ot, U === 1 - g) {
|
|
4919
|
+
const W = 1 / Math.sqrt(x * x + f * f + S * S + b * b);
|
|
4920
|
+
x *= W, f *= W, S *= W, b *= W;
|
|
4921
4921
|
}
|
|
4922
4922
|
}
|
|
4923
|
-
t[e] = x, t[e + 1] = f, t[e + 2] =
|
|
4923
|
+
t[e] = x, t[e + 1] = f, t[e + 2] = S, t[e + 3] = b;
|
|
4924
4924
|
}
|
|
4925
4925
|
/**
|
|
4926
4926
|
* This multiplication implementation assumes the quaternion data are managed in flat arrays.
|
|
@@ -4933,8 +4933,8 @@ class ln {
|
|
|
4933
4933
|
* @returns Return an array
|
|
4934
4934
|
*/
|
|
4935
4935
|
static multiplyQuaternionsFlat(t, e, s, o, h, c) {
|
|
4936
|
-
const g = s[o], x = s[o + 1], f = s[o + 2],
|
|
4937
|
-
return t[e] = g * z +
|
|
4936
|
+
const g = s[o], x = s[o + 1], f = s[o + 2], S = s[o + 3], b = h[c], E = h[c + 1], M = h[c + 2], z = h[c + 3];
|
|
4937
|
+
return t[e] = g * z + S * b + x * M - f * E, t[e + 1] = x * z + S * E + f * b - g * M, t[e + 2] = f * z + S * M + g * E - x * b, t[e + 3] = S * z - g * b - x * E - f * M, t;
|
|
4938
4938
|
}
|
|
4939
4939
|
/**
|
|
4940
4940
|
* X cooridinate
|
|
@@ -5005,25 +5005,25 @@ class ln {
|
|
|
5005
5005
|
* @returns Return this quaternion
|
|
5006
5006
|
*/
|
|
5007
5007
|
setFromEuler(t, e = !0) {
|
|
5008
|
-
const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2),
|
|
5008
|
+
const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), S = g(o / 2), b = g(h / 2), E = x(s / 2), M = x(o / 2), z = x(h / 2);
|
|
5009
5009
|
switch (c) {
|
|
5010
5010
|
case "XYZ":
|
|
5011
|
-
this._x = E *
|
|
5011
|
+
this._x = E * S * b + f * M * z, this._y = f * M * b - E * S * z, this._z = f * S * z + E * M * b, this._w = f * S * b - E * M * z;
|
|
5012
5012
|
break;
|
|
5013
5013
|
case "YXZ":
|
|
5014
|
-
this._x = E *
|
|
5014
|
+
this._x = E * S * b + f * M * z, this._y = f * M * b - E * S * z, this._z = f * S * z - E * M * b, this._w = f * S * b + E * M * z;
|
|
5015
5015
|
break;
|
|
5016
5016
|
case "ZXY":
|
|
5017
|
-
this._x = E *
|
|
5017
|
+
this._x = E * S * b - f * M * z, this._y = f * M * b + E * S * z, this._z = f * S * z + E * M * b, this._w = f * S * b - E * M * z;
|
|
5018
5018
|
break;
|
|
5019
5019
|
case "ZYX":
|
|
5020
|
-
this._x = E *
|
|
5020
|
+
this._x = E * S * b - f * M * z, this._y = f * M * b + E * S * z, this._z = f * S * z - E * M * b, this._w = f * S * b + E * M * z;
|
|
5021
5021
|
break;
|
|
5022
5022
|
case "YZX":
|
|
5023
|
-
this._x = E *
|
|
5023
|
+
this._x = E * S * b + f * M * z, this._y = f * M * b + E * S * z, this._z = f * S * z - E * M * b, this._w = f * S * b - E * M * z;
|
|
5024
5024
|
break;
|
|
5025
5025
|
case "XZY":
|
|
5026
|
-
this._x = E *
|
|
5026
|
+
this._x = E * S * b - f * M * z, this._y = f * M * b - E * S * z, this._z = f * S * z + E * M * b, this._w = f * S * b + E * M * z;
|
|
5027
5027
|
break;
|
|
5028
5028
|
default:
|
|
5029
5029
|
console.warn(
|
|
@@ -5049,19 +5049,19 @@ class ln {
|
|
|
5049
5049
|
* @returns Return this quaternion
|
|
5050
5050
|
*/
|
|
5051
5051
|
setFromRotationMatrix(t) {
|
|
5052
|
-
const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2],
|
|
5052
|
+
const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], S = e[6], b = e[10], E = s + g + b;
|
|
5053
5053
|
if (E > 0) {
|
|
5054
5054
|
const M = 0.5 / Math.sqrt(E + 1);
|
|
5055
|
-
this._w = 0.25 / M, this._x = (
|
|
5055
|
+
this._w = 0.25 / M, this._x = (S - x) * M, this._y = (h - f) * M, this._z = (c - o) * M;
|
|
5056
5056
|
} else if (s > g && s > b) {
|
|
5057
5057
|
const M = 2 * Math.sqrt(1 + s - g - b);
|
|
5058
|
-
this._w = (
|
|
5058
|
+
this._w = (S - x) / M, this._x = 0.25 * M, this._y = (o + c) / M, this._z = (h + f) / M;
|
|
5059
5059
|
} else if (g > b) {
|
|
5060
5060
|
const M = 2 * Math.sqrt(1 + g - s - b);
|
|
5061
|
-
this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x +
|
|
5061
|
+
this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x + S) / M;
|
|
5062
5062
|
} else {
|
|
5063
5063
|
const M = 2 * Math.sqrt(1 + b - s - g);
|
|
5064
|
-
this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x +
|
|
5064
|
+
this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x + S) / M, this._z = 0.25 * M;
|
|
5065
5065
|
}
|
|
5066
5066
|
return this._onChangeCallback(), this;
|
|
5067
5067
|
}
|
|
@@ -5178,8 +5178,8 @@ class ln {
|
|
|
5178
5178
|
* @returns Return this quaternion
|
|
5179
5179
|
*/
|
|
5180
5180
|
multiplyQuaternions(t, e) {
|
|
5181
|
-
const s = t._x, o = t._y, h = t._z, c = t._w, g = e._x, x = e._y, f = e._z,
|
|
5182
|
-
return this._x = s *
|
|
5181
|
+
const s = t._x, o = t._y, h = t._z, c = t._w, g = e._x, x = e._y, f = e._z, S = e._w;
|
|
5182
|
+
return this._x = s * S + c * g + o * f - h * x, this._y = o * S + c * x + h * g - s * f, this._z = h * S + c * f + s * x - o * g, this._w = c * S - s * g - o * x - h * f, this._onChangeCallback(), this;
|
|
5183
5183
|
}
|
|
5184
5184
|
/**
|
|
5185
5185
|
* Handles the spherical linear interpolation between quaternions. t represents the amount of rotation
|
|
@@ -5200,7 +5200,7 @@ class ln {
|
|
|
5200
5200
|
const M = 1 - e;
|
|
5201
5201
|
return this._w = M * c + e * this._w, this._x = M * s + e * this._x, this._y = M * o + e * this._y, this._z = M * h + e * this._z, this.normalize(), this;
|
|
5202
5202
|
}
|
|
5203
|
-
const f = Math.sqrt(x),
|
|
5203
|
+
const f = Math.sqrt(x), S = Math.atan2(f, g), b = Math.sin((1 - e) * S) / f, E = Math.sin(e * S) / f;
|
|
5204
5204
|
return this._w = c * b + this._w * E, this._x = s * b + this._x * E, this._y = o * b + this._y * E, this._z = h * b + this._z * E, this._onChangeCallback(), this;
|
|
5205
5205
|
}
|
|
5206
5206
|
/**
|
|
@@ -5526,8 +5526,8 @@ const Fe = class th {
|
|
|
5526
5526
|
* @returns Return this vector
|
|
5527
5527
|
*/
|
|
5528
5528
|
applyQuaternion(t) {
|
|
5529
|
-
const e = this.x, s = this.y, o = this.z, h = t.x, c = t.y, g = t.z, x = t.w, f = 2 * (c * o - g * s),
|
|
5530
|
-
return this.x = e + x * f + c * b - g *
|
|
5529
|
+
const e = this.x, s = this.y, o = this.z, h = t.x, c = t.y, g = t.z, x = t.w, f = 2 * (c * o - g * s), S = 2 * (g * e - h * o), b = 2 * (h * s - c * e);
|
|
5530
|
+
return this.x = e + x * f + c * b - g * S, this.y = s + x * S + g * f - h * b, this.z = o + x * b + h * S - c * f, this;
|
|
5531
5531
|
}
|
|
5532
5532
|
/**
|
|
5533
5533
|
* Transforms the direction of this vector by a matrix (the upper left 3 x 3 subset of a m) and
|
|
@@ -5932,8 +5932,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
5932
5932
|
* @param n43 Input element in the forth row and the third column
|
|
5933
5933
|
* @param n44 Input element in the forth row and the forth column
|
|
5934
5934
|
*/
|
|
5935
|
-
constructor(t, e, s, o, h, c, g, x, f,
|
|
5936
|
-
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null &&
|
|
5935
|
+
constructor(t, e, s, o, h, c, g, x, f, S, b, E, M, z, R, U) {
|
|
5936
|
+
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && E != null && M != null && z != null && R != null && U != null && this.set(
|
|
5937
5937
|
t,
|
|
5938
5938
|
e,
|
|
5939
5939
|
s,
|
|
@@ -5943,7 +5943,7 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
5943
5943
|
g,
|
|
5944
5944
|
x,
|
|
5945
5945
|
f,
|
|
5946
|
-
|
|
5946
|
+
S,
|
|
5947
5947
|
b,
|
|
5948
5948
|
E,
|
|
5949
5949
|
M,
|
|
@@ -5973,9 +5973,9 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
5973
5973
|
* @param n44 Input element in the forth row and the forth column
|
|
5974
5974
|
* @returns Return this matrix
|
|
5975
5975
|
*/
|
|
5976
|
-
set(t, e, s, o, h, c, g, x, f,
|
|
5976
|
+
set(t, e, s, o, h, c, g, x, f, S, b, E, M, z, R, U) {
|
|
5977
5977
|
const F = this.elements;
|
|
5978
|
-
return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] =
|
|
5978
|
+
return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = S, F[10] = b, F[14] = E, F[3] = M, F[7] = z, F[11] = R, F[15] = U, this;
|
|
5979
5979
|
}
|
|
5980
5980
|
/**
|
|
5981
5981
|
* Reset this matrix to the identity matrix.
|
|
@@ -6259,8 +6259,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
6259
6259
|
* @returns Return this matrix
|
|
6260
6260
|
*/
|
|
6261
6261
|
multiplyMatrices(t, e) {
|
|
6262
|
-
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12],
|
|
6263
|
-
return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Ie + f * Mt, h[8] = c * Vt + g * Lt + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] =
|
|
6262
|
+
const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], E = s[9], M = s[13], z = s[2], R = s[6], U = s[10], F = s[14], gt = s[3], xt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], Yt = o[12], Wt = o[1], bt = o[5], Lt = o[9], de = o[13], me = o[2], Ie = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], lr = o[15];
|
|
6263
|
+
return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Ie + f * Mt, h[8] = c * Vt + g * Lt + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = S * ut + b * Wt + E * me + M * Q, h[5] = S * st + b * bt + E * Ie + M * Mt, h[9] = S * Vt + b * Lt + E * Jt + M * ae, h[13] = S * Yt + b * de + E * ie + M * lr, h[2] = z * ut + R * Wt + U * me + F * Q, h[6] = z * st + R * bt + U * Ie + F * Mt, h[10] = z * Vt + R * Lt + U * Jt + F * ae, h[14] = z * Yt + R * de + U * ie + F * lr, h[3] = gt * ut + xt * Wt + ot * me + W * Q, h[7] = gt * st + xt * bt + ot * Ie + W * Mt, h[11] = gt * Vt + xt * Lt + ot * Jt + W * ae, h[15] = gt * Yt + xt * de + ot * ie + W * lr, this;
|
|
6264
6264
|
}
|
|
6265
6265
|
/**
|
|
6266
6266
|
* Multiply every component of the matrix by a scalar value s.
|
|
@@ -6276,8 +6276,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
6276
6276
|
* @returns Return the determinant of this matrix.
|
|
6277
6277
|
*/
|
|
6278
6278
|
determinant() {
|
|
6279
|
-
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13],
|
|
6280
|
-
return z * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + R * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f *
|
|
6279
|
+
const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], E = t[10], M = t[14], z = t[3], R = t[7], U = t[11], F = t[15];
|
|
6280
|
+
return z * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + R * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * S - h * x * S) + U * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * S - s * f * S) + F * (-o * g * S - e * x * b + e * g * E + o * c * b - s * c * E + s * x * S);
|
|
6281
6281
|
}
|
|
6282
6282
|
/**
|
|
6283
6283
|
* Transposes this matrix.
|
|
@@ -6305,11 +6305,11 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
6305
6305
|
* @returns Return this matrix
|
|
6306
6306
|
*/
|
|
6307
6307
|
invert() {
|
|
6308
|
-
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7],
|
|
6308
|
+
const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], E = t[10], M = t[11], z = t[12], R = t[13], U = t[14], F = t[15], gt = b * U * f - R * E * f + R * x * M - g * U * M - b * x * F + g * E * F, xt = z * E * f - S * U * f - z * x * M + c * U * M + S * x * F - c * E * F, ot = S * R * f - z * b * f + z * g * M - c * R * M - S * g * F + c * b * F, W = z * b * x - S * R * x - z * g * E + c * R * E + S * g * U - c * b * U, ut = e * gt + s * xt + o * ot + h * W;
|
|
6309
6309
|
if (ut === 0)
|
|
6310
6310
|
return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
6311
6311
|
const st = 1 / ut;
|
|
6312
|
-
return t[0] = gt * st, t[1] = (R * E * h - b * U * h - R * o * M + s * U * M + b * o * F - s * E * F) * st, t[2] = (g * U * h - R * x * h + R * o * f - s * U * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = xt * st, t[5] = (
|
|
6312
|
+
return t[0] = gt * st, t[1] = (R * E * h - b * U * h - R * o * M + s * U * M + b * o * F - s * E * F) * st, t[2] = (g * U * h - R * x * h + R * o * f - s * U * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = xt * st, t[5] = (S * U * h - z * E * h + z * o * M - e * U * M - S * o * F + e * E * F) * st, t[6] = (z * x * h - c * U * h - z * o * f + e * U * f + c * o * F - e * x * F) * st, t[7] = (c * E * h - S * x * h + S * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (z * b * h - S * R * h - z * s * M + e * R * M + S * s * F - e * b * F) * st, t[10] = (c * R * h - z * g * h + z * s * f - e * R * f - c * s * F + e * g * F) * st, t[11] = (S * g * h - c * b * h - S * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (S * R * o - z * b * o + z * s * E - e * R * E - S * s * U + e * b * U) * st, t[14] = (z * g * o - c * R * o - z * s * x + e * R * x + c * s * U - e * g * U) * st, t[15] = (c * b * o - S * g * o + S * s * x - e * b * x - c * s * E + e * g * E) * st, this;
|
|
6313
6313
|
}
|
|
6314
6314
|
/**
|
|
6315
6315
|
* Multiply the columns of this matrix by vector v.
|
|
@@ -6372,18 +6372,18 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
6372
6372
|
* @returns Return this matrix
|
|
6373
6373
|
*/
|
|
6374
6374
|
makeRotationAxis(t, e) {
|
|
6375
|
-
const s = Math.cos(e), o = Math.sin(e), h = 1 - s, c = t.x, g = t.y, x = t.z, f = h * c,
|
|
6375
|
+
const s = Math.cos(e), o = Math.sin(e), h = 1 - s, c = t.x, g = t.y, x = t.z, f = h * c, S = h * g;
|
|
6376
6376
|
return this.set(
|
|
6377
6377
|
f * c + s,
|
|
6378
6378
|
f * g - o * x,
|
|
6379
6379
|
f * x + o * g,
|
|
6380
6380
|
0,
|
|
6381
6381
|
f * g + o * x,
|
|
6382
|
-
|
|
6383
|
-
|
|
6382
|
+
S * g + s,
|
|
6383
|
+
S * x - o * c,
|
|
6384
6384
|
0,
|
|
6385
6385
|
f * x - o * g,
|
|
6386
|
-
|
|
6386
|
+
S * x + o * c,
|
|
6387
6387
|
h * x * x + s,
|
|
6388
6388
|
0,
|
|
6389
6389
|
0,
|
|
@@ -6423,7 +6423,7 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
6423
6423
|
* @returns Return this matrix
|
|
6424
6424
|
*/
|
|
6425
6425
|
compose(t, e, s) {
|
|
6426
|
-
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h,
|
|
6426
|
+
const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, E = h * f, M = h * S, z = h * b, R = c * S, U = c * b, F = g * b, gt = x * f, xt = x * S, ot = x * b, W = s.x, ut = s.y, st = s.z;
|
|
6427
6427
|
return o[0] = (1 - (R + F)) * W, o[1] = (M + ot) * W, o[2] = (z - xt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + F)) * ut, o[6] = (U + gt) * ut, o[7] = 0, o[8] = (z + xt) * st, o[9] = (U - gt) * st, o[10] = (1 - (E + R)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
|
|
6428
6428
|
}
|
|
6429
6429
|
/**
|
|
@@ -6442,8 +6442,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
|
|
|
6442
6442
|
let h = En.set(o[0], o[1], o[2]).length();
|
|
6443
6443
|
const c = En.set(o[4], o[5], o[6]).length(), g = En.set(o[8], o[9], o[10]).length();
|
|
6444
6444
|
this.determinant() < 0 && (h = -h), t.x = o[12], t.y = o[13], t.z = o[14], er.copy(this);
|
|
6445
|
-
const x = 1 / h, f = 1 / c,
|
|
6446
|
-
return er.elements[0] *= x, er.elements[1] *= x, er.elements[2] *= x, er.elements[4] *= f, er.elements[5] *= f, er.elements[6] *= f, er.elements[8] *=
|
|
6445
|
+
const x = 1 / h, f = 1 / c, S = 1 / g;
|
|
6446
|
+
return er.elements[0] *= x, er.elements[1] *= x, er.elements[2] *= x, er.elements[4] *= f, er.elements[5] *= f, er.elements[6] *= f, er.elements[8] *= S, er.elements[9] *= S, er.elements[10] *= S, e.setFromRotationMatrix(er), s.x = h, s.y = c, s.z = g, this;
|
|
6447
6447
|
}
|
|
6448
6448
|
// makePerspective(
|
|
6449
6449
|
// left,
|
|
@@ -6601,7 +6601,7 @@ class Ft {
|
|
|
6601
6601
|
setFromArray(t) {
|
|
6602
6602
|
this.makeEmpty();
|
|
6603
6603
|
for (let e = 0, s = t.length; e < s; e += 3)
|
|
6604
|
-
this.expandByPoint(
|
|
6604
|
+
this.expandByPoint(Si.fromArray(t, e));
|
|
6605
6605
|
return this;
|
|
6606
6606
|
}
|
|
6607
6607
|
/**
|
|
@@ -6622,7 +6622,7 @@ class Ft {
|
|
|
6622
6622
|
* @returns Return this box
|
|
6623
6623
|
*/
|
|
6624
6624
|
setFromCenterAndSize(t, e) {
|
|
6625
|
-
const s =
|
|
6625
|
+
const s = Si.copy(e).multiplyScalar(0.5);
|
|
6626
6626
|
return this.min.copy(t).sub(s), this.max.copy(t).add(s), this;
|
|
6627
6627
|
}
|
|
6628
6628
|
/**
|
|
@@ -6773,7 +6773,7 @@ class Ft {
|
|
|
6773
6773
|
* @returns Return the distance from any edge of this box to the specified point.
|
|
6774
6774
|
*/
|
|
6775
6775
|
distanceToPoint(t) {
|
|
6776
|
-
return this.clampPoint(t,
|
|
6776
|
+
return this.clampPoint(t, Si).distanceTo(t);
|
|
6777
6777
|
}
|
|
6778
6778
|
/**
|
|
6779
6779
|
* Compute the intersection of this and box, setting the upper bound of this box to the lesser of the
|
|
@@ -6829,7 +6829,7 @@ const Ir = [
|
|
|
6829
6829
|
/* @__PURE__ */ new Z(),
|
|
6830
6830
|
/* @__PURE__ */ new Z(),
|
|
6831
6831
|
/* @__PURE__ */ new Z()
|
|
6832
|
-
],
|
|
6832
|
+
], Si = /* @__PURE__ */ new Z(), go = /* @__PURE__ */ new Zt();
|
|
6833
6833
|
class be {
|
|
6834
6834
|
/**
|
|
6835
6835
|
* Create a 2d box bounded by min and max.
|
|
@@ -7345,13 +7345,13 @@ const _o = /* @__PURE__ */ new Cn(), vo = /* @__PURE__ */ new ln(), rh = class L
|
|
|
7345
7345
|
* @returns Return this euler
|
|
7346
7346
|
*/
|
|
7347
7347
|
setFromRotationMatrix(t, e = this._order, s = !0) {
|
|
7348
|
-
const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5],
|
|
7348
|
+
const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], S = o[9], b = o[2], E = o[6], M = o[10];
|
|
7349
7349
|
switch (e) {
|
|
7350
7350
|
case "XYZ":
|
|
7351
|
-
this._y = Math.asin(Ur(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-
|
|
7351
|
+
this._y = Math.asin(Ur(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-S, M), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
|
|
7352
7352
|
break;
|
|
7353
7353
|
case "YXZ":
|
|
7354
|
-
this._x = Math.asin(-Ur(
|
|
7354
|
+
this._x = Math.asin(-Ur(S, -1, 1)), Math.abs(S) < 0.9999999 ? (this._y = Math.atan2(g, M), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
|
|
7355
7355
|
break;
|
|
7356
7356
|
case "ZXY":
|
|
7357
7357
|
this._x = Math.asin(Ur(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, M), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
|
|
@@ -7360,10 +7360,10 @@ const _o = /* @__PURE__ */ new Cn(), vo = /* @__PURE__ */ new ln(), rh = class L
|
|
|
7360
7360
|
this._y = Math.asin(-Ur(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, M), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
|
|
7361
7361
|
break;
|
|
7362
7362
|
case "YZX":
|
|
7363
|
-
this._z = Math.asin(Ur(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-
|
|
7363
|
+
this._z = Math.asin(Ur(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-S, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, M));
|
|
7364
7364
|
break;
|
|
7365
7365
|
case "XZY":
|
|
7366
|
-
this._z = Math.asin(-Ur(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-
|
|
7366
|
+
this._z = Math.asin(-Ur(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-S, M), this._y = 0);
|
|
7367
7367
|
break;
|
|
7368
7368
|
default:
|
|
7369
7369
|
console.warn(
|
|
@@ -7539,12 +7539,12 @@ class la extends sh {
|
|
|
7539
7539
|
});
|
|
7540
7540
|
const g = { index: -1, children: [] };
|
|
7541
7541
|
for (let x = 0; x < c; x++) {
|
|
7542
|
-
const f = o[x],
|
|
7542
|
+
const f = o[x], S = e[f], b = s[f];
|
|
7543
7543
|
let E = x + 1;
|
|
7544
7544
|
for (; E < c; E++) {
|
|
7545
7545
|
const M = o[E], z = e[M];
|
|
7546
|
-
if (s[M].containsBox(b) &&
|
|
7547
|
-
|
|
7546
|
+
if (s[M].containsBox(b) && Kc.isPointInPolygon(
|
|
7547
|
+
S[kt.randInt(0, S.length - 1)],
|
|
7548
7548
|
z
|
|
7549
7549
|
)) {
|
|
7550
7550
|
(t = h.get(M)) == null || t.children.push(h.get(f));
|
|
@@ -7692,7 +7692,7 @@ class Is extends sh {
|
|
|
7692
7692
|
}
|
|
7693
7693
|
if (o = x, s[o] === c)
|
|
7694
7694
|
return o / (h - 1);
|
|
7695
|
-
const
|
|
7695
|
+
const S = s[o], b = s[o + 1] - S, E = (c - S) / b;
|
|
7696
7696
|
return (o + E) / (h - 1);
|
|
7697
7697
|
}
|
|
7698
7698
|
/**
|
|
@@ -7750,7 +7750,7 @@ class ws extends Is {
|
|
|
7750
7750
|
const o = (st, Vt) => ({
|
|
7751
7751
|
x: (st.x + Vt.x) / 2,
|
|
7752
7752
|
y: (st.y + Vt.y) / 2
|
|
7753
|
-
}), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e),
|
|
7753
|
+
}), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), S = h(e, s), b = c(f), E = c(S), M = (st, Vt, Yt, Wt) => {
|
|
7754
7754
|
const bt = (Wt - Vt) / (st - Yt), Lt = st * bt + Vt;
|
|
7755
7755
|
return { x: bt, y: Lt };
|
|
7756
7756
|
}, z = g.y - b * g.x, R = x.y - E * x.x, U = M(b, z, E, R), F = Math.sqrt(
|
|
@@ -7772,20 +7772,20 @@ class ws extends Is {
|
|
|
7772
7772
|
createByStartEndPointsAndBulge(t, e, s) {
|
|
7773
7773
|
let o, h, c;
|
|
7774
7774
|
s < 0 ? (o = Math.atan(-s) * 4, h = new Zt(t), c = new Zt(e)) : (o = Math.atan(s) * 4, h = new Zt(e), c = new Zt(t));
|
|
7775
|
-
const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)),
|
|
7775
|
+
const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)), S = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
|
|
7776
7776
|
let E;
|
|
7777
7777
|
if (o < Math.PI) {
|
|
7778
7778
|
const M = new Zt(
|
|
7779
7779
|
b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
|
|
7780
7780
|
b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
|
|
7781
7781
|
);
|
|
7782
|
-
E = f.add(M.multiplyScalar(-
|
|
7782
|
+
E = f.add(M.multiplyScalar(-S));
|
|
7783
7783
|
} else {
|
|
7784
7784
|
const M = new Zt(
|
|
7785
7785
|
b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
|
|
7786
7786
|
b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
|
|
7787
7787
|
);
|
|
7788
|
-
E = f.add(M.multiplyScalar(
|
|
7788
|
+
E = f.add(M.multiplyScalar(S));
|
|
7789
7789
|
}
|
|
7790
7790
|
s < 0 ? (this._startAngle = Math.atan2(h.y - E.y, h.x - E.x), this._endAngle = Math.atan2(c.y - E.y, c.x - E.x)) : (this._startAngle = Math.atan2(c.y - E.y, c.x - E.x), this._endAngle = Math.atan2(h.y - E.y, h.x - E.x)), this._clockwise = s < 0, this.center = E, this.radius = c.sub(E).length();
|
|
7791
7791
|
}
|
|
@@ -8205,7 +8205,7 @@ class Tn extends Es {
|
|
|
8205
8205
|
const o = new Z().addVectors(t, e).multiplyScalar(0.5), h = new Z().addVectors(t, s).multiplyScalar(0.5), c = new Z().subVectors(e, t), g = new Z().subVectors(s, t), x = new Z().crossVectors(c, g).normalize();
|
|
8206
8206
|
if (x.lengthSq() === 0)
|
|
8207
8207
|
return console.error("Points are collinear and cannot form a valid arc."), null;
|
|
8208
|
-
const f = new Z().crossVectors(c, x).normalize(),
|
|
8208
|
+
const f = new Z().crossVectors(c, x).normalize(), S = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = S.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new hn(o, o.clone().add(b)), z = new hn(h, h.clone().add(E)), R = new Z();
|
|
8209
8209
|
return M.closestPointToPoint(z.startPoint, !0, R) ? R : (console.error("Cannot find a valid center for the arc."), null);
|
|
8210
8210
|
}
|
|
8211
8211
|
/**
|
|
@@ -8377,7 +8377,7 @@ class Tn extends Es {
|
|
|
8377
8377
|
* @inheritdoc
|
|
8378
8378
|
*/
|
|
8379
8379
|
transform(t) {
|
|
8380
|
-
const e =
|
|
8380
|
+
const e = Pi.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Pi.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
|
|
8381
8381
|
return this.center.applyMatrix3d(t), e.applyMatrix3d(t), s.applyMatrix3d(t), this.normal.applyMatrix3d(t).normalize(), this.refVec.applyMatrix3d(t).normalize(), this.startAngle = this.getAngle(e), this.endAngle = this.getAngle(s), this._boundingBoxNeedsUpdate = !0, this;
|
|
8382
8382
|
}
|
|
8383
8383
|
/**
|
|
@@ -8406,7 +8406,7 @@ class Tn extends Es {
|
|
|
8406
8406
|
*/
|
|
8407
8407
|
getAngle(t) {
|
|
8408
8408
|
return t.sub(this.center), Math.atan2(
|
|
8409
|
-
t.dot(
|
|
8409
|
+
t.dot(Pi.crossVectors(this.refVec, this.normal)),
|
|
8410
8410
|
t.dot(this.refVec)
|
|
8411
8411
|
);
|
|
8412
8412
|
}
|
|
@@ -8434,7 +8434,7 @@ class Tn extends Es {
|
|
|
8434
8434
|
return new ei(this.normal, t);
|
|
8435
8435
|
}
|
|
8436
8436
|
}
|
|
8437
|
-
const
|
|
8437
|
+
const Pi = /* @__PURE__ */ new Z();
|
|
8438
8438
|
class ha extends Is {
|
|
8439
8439
|
/**
|
|
8440
8440
|
* Construct an instance of the ellipse arc.
|
|
@@ -8562,8 +8562,8 @@ class ha extends Is {
|
|
|
8562
8562
|
const h = this.startAngle + t * s;
|
|
8563
8563
|
let c = this.center.x + this.majorAxisRadius * Math.cos(h), g = this.center.y + this.minorAxisRadius * Math.sin(h);
|
|
8564
8564
|
if (this.rotation !== 0) {
|
|
8565
|
-
const x = Math.cos(this.rotation), f = Math.sin(this.rotation),
|
|
8566
|
-
c =
|
|
8565
|
+
const x = Math.cos(this.rotation), f = Math.sin(this.rotation), S = c - this.center.x, b = g - this.center.y;
|
|
8566
|
+
c = S * x - b * f + this.center.x, g = S * f + b * x + this.center.y;
|
|
8567
8567
|
}
|
|
8568
8568
|
return new Nt(c, g);
|
|
8569
8569
|
}
|
|
@@ -8731,8 +8731,8 @@ class ua extends Es {
|
|
|
8731
8731
|
const t = 1e3, e = this.deltaAngle / t;
|
|
8732
8732
|
let s = 0, o = this.getPointAtAngle(this.startAngle);
|
|
8733
8733
|
for (let h = 1; h <= t; h++) {
|
|
8734
|
-
const c = this.startAngle + h * e, g = this.getPointAtAngle(c), x = g.x - o.x, f = g.y - o.y,
|
|
8735
|
-
s += Math.sqrt(x * x + f * f +
|
|
8734
|
+
const c = this.startAngle + h * e, g = this.getPointAtAngle(c), x = g.x - o.x, f = g.y - o.y, S = g.z - o.z;
|
|
8735
|
+
s += Math.sqrt(x * x + f * f + S * S), o = g;
|
|
8736
8736
|
}
|
|
8737
8737
|
return s;
|
|
8738
8738
|
}
|
|
@@ -8966,8 +8966,8 @@ class ri extends Is {
|
|
|
8966
8966
|
if (o < s - 1 ? c = this._vertices[o + 1] : o == s - 1 && this.closed && (c = this._vertices[0]), c) {
|
|
8967
8967
|
const g = new ws(h, c, h.bulge).getPoints(t), x = g.length;
|
|
8968
8968
|
for (let f = 0; f < x; ++f) {
|
|
8969
|
-
const
|
|
8970
|
-
e.push(new Nt(
|
|
8969
|
+
const S = g[f];
|
|
8970
|
+
e.push(new Nt(S.x, S.y));
|
|
8971
8971
|
}
|
|
8972
8972
|
}
|
|
8973
8973
|
} else
|
|
@@ -9152,10 +9152,10 @@ var ih = { exports: {} };
|
|
|
9152
9152
|
var c = s;
|
|
9153
9153
|
if (h()) {
|
|
9154
9154
|
var g = function(x, f) {
|
|
9155
|
-
var
|
|
9155
|
+
var S = s;
|
|
9156
9156
|
return x.split(".").forEach(function(b) {
|
|
9157
|
-
|
|
9158
|
-
}),
|
|
9157
|
+
S && (S = S[b]);
|
|
9158
|
+
}), S ? S[f] : null;
|
|
9159
9159
|
};
|
|
9160
9160
|
onmessage = function(x) {
|
|
9161
9161
|
if (!(!x.data.className || !x.data.methodName)) {
|
|
@@ -9167,7 +9167,7 @@ var ih = { exports: {} };
|
|
|
9167
9167
|
};
|
|
9168
9168
|
}
|
|
9169
9169
|
}
|
|
9170
|
-
return function(x, f,
|
|
9170
|
+
return function(x, f, S) {
|
|
9171
9171
|
f.geom = f.geom || {}, f.exe = f.exe || {}, f.eval = f.eval || {}, f.core = f.core || {}, f.promhx = f.promhx || {};
|
|
9172
9172
|
var b = {}, E = function() {
|
|
9173
9173
|
return Mt.__string_rec(this, "");
|
|
@@ -9427,9 +9427,9 @@ var ih = { exports: {} };
|
|
|
9427
9427
|
break;
|
|
9428
9428
|
case U:
|
|
9429
9429
|
this.buf.b += "l";
|
|
9430
|
-
for (var w = r,
|
|
9430
|
+
for (var w = r, P = w.h, A = null; P != null; ) {
|
|
9431
9431
|
var I;
|
|
9432
|
-
A =
|
|
9432
|
+
A = P[0], P = P[1], I = A, this.serialize(I);
|
|
9433
9433
|
}
|
|
9434
9434
|
this.buf.b += "h";
|
|
9435
9435
|
break;
|
|
@@ -9462,15 +9462,15 @@ var ih = { exports: {} };
|
|
|
9462
9462
|
this.buf.b += "h";
|
|
9463
9463
|
break;
|
|
9464
9464
|
case Ie:
|
|
9465
|
-
for (var j = r,
|
|
9466
|
-
var ht = j.get(
|
|
9465
|
+
for (var j = r, X = 0, tt = j.length - 2, et = new xt(), it = Yt.BASE64; X < tt; ) {
|
|
9466
|
+
var ht = j.get(X++), at = j.get(X++), ct = j.get(X++);
|
|
9467
9467
|
et.add(it.charAt(ht >> 2)), et.add(it.charAt((ht << 4 | at >> 4) & 63)), et.add(it.charAt((at << 2 | ct >> 6) & 63)), et.add(it.charAt(ct & 63));
|
|
9468
9468
|
}
|
|
9469
|
-
if (
|
|
9470
|
-
var nt = j.get(
|
|
9469
|
+
if (X == tt) {
|
|
9470
|
+
var nt = j.get(X++), dt = j.get(X++);
|
|
9471
9471
|
et.add(it.charAt(nt >> 2)), et.add(it.charAt((nt << 4 | dt >> 4) & 63)), et.add(it.charAt(dt << 2 & 63));
|
|
9472
|
-
} else if (
|
|
9473
|
-
var Y = j.get(
|
|
9472
|
+
} else if (X == tt + 1) {
|
|
9473
|
+
var Y = j.get(X++);
|
|
9474
9474
|
et.add(it.charAt(Y >> 2)), et.add(it.charAt(Y << 4 & 63));
|
|
9475
9475
|
}
|
|
9476
9476
|
var pt = et.b;
|
|
@@ -9482,8 +9482,8 @@ var ih = { exports: {} };
|
|
|
9482
9482
|
break;
|
|
9483
9483
|
case 4:
|
|
9484
9484
|
if (Mt.__instanceof(r, qa)) {
|
|
9485
|
-
var
|
|
9486
|
-
this.buf.b += "A", this.serializeString(
|
|
9485
|
+
var Pt = ut.getClassName(r);
|
|
9486
|
+
this.buf.b += "A", this.serializeString(Pt);
|
|
9487
9487
|
} else if (Mt.__instanceof(r, Ya))
|
|
9488
9488
|
this.buf.b += "B", this.serializeString(ut.getEnumName(r));
|
|
9489
9489
|
else {
|
|
@@ -9498,11 +9498,11 @@ var ih = { exports: {} };
|
|
|
9498
9498
|
this.cache.pop();
|
|
9499
9499
|
}
|
|
9500
9500
|
this.useEnumIndex ? this.buf.b += "j" : this.buf.b += "w", this.serializeString(ut.getEnumName(Gt)), this.useEnumIndex ? (this.buf.b += ":", this.buf.b += gt.string(r[1])) : this.serializeString(r[0]), this.buf.b += ":";
|
|
9501
|
-
var
|
|
9502
|
-
this.buf.b += gt.string(
|
|
9503
|
-
for (var Dt = 2; Dt <
|
|
9504
|
-
var
|
|
9505
|
-
this.serialize(r[
|
|
9501
|
+
var Xt = r.length;
|
|
9502
|
+
this.buf.b += gt.string(Xt - 2);
|
|
9503
|
+
for (var Dt = 2; Dt < Xt; ) {
|
|
9504
|
+
var Kt = Dt++;
|
|
9505
|
+
this.serialize(r[Kt]);
|
|
9506
9506
|
}
|
|
9507
9507
|
this.useCache && this.cache.push(r);
|
|
9508
9508
|
break;
|
|
@@ -9636,9 +9636,9 @@ var ih = { exports: {} };
|
|
|
9636
9636
|
case 120:
|
|
9637
9637
|
throw new Q(this.unserialize());
|
|
9638
9638
|
case 99:
|
|
9639
|
-
var w = this.unserialize(),
|
|
9640
|
-
if (
|
|
9641
|
-
var A = ut.createEmptyInstance(
|
|
9639
|
+
var w = this.unserialize(), P = this.resolver.resolveClass(w);
|
|
9640
|
+
if (P == null) throw new Q("Class not found " + w);
|
|
9641
|
+
var A = ut.createEmptyInstance(P);
|
|
9642
9642
|
return this.cache.push(A), this.unserializeObject(A), A;
|
|
9643
9643
|
case 119:
|
|
9644
9644
|
var I = this.unserialize(), k = this.resolver.resolveEnum(I);
|
|
@@ -9668,8 +9668,8 @@ var ih = { exports: {} };
|
|
|
9668
9668
|
var H = new bt();
|
|
9669
9669
|
this.cache.push(H), this.buf;
|
|
9670
9670
|
for (var j = this.get(this.pos++); j == 58; ) {
|
|
9671
|
-
var
|
|
9672
|
-
H.set(
|
|
9671
|
+
var X = this.readDigits();
|
|
9672
|
+
H.set(X, this.unserialize()), j = this.get(this.pos++);
|
|
9673
9673
|
}
|
|
9674
9674
|
if (j != 104) throw new Q("Invalid IntMap format");
|
|
9675
9675
|
return H;
|
|
@@ -9695,28 +9695,28 @@ var ih = { exports: {} };
|
|
|
9695
9695
|
if (this.get(this.pos++) != 58 || this.length - this.pos < nt) throw new Q("Invalid bytes length");
|
|
9696
9696
|
var Y = Wt.CODES;
|
|
9697
9697
|
Y == null && (Y = Wt.initCodes(), Wt.CODES = Y);
|
|
9698
|
-
var pt = this.pos,
|
|
9699
|
-
Gt = (nt >> 2) * 3 + (
|
|
9700
|
-
for (var
|
|
9698
|
+
var pt = this.pos, Pt = nt & 3, Gt;
|
|
9699
|
+
Gt = (nt >> 2) * 3 + (Pt >= 2 ? Pt - 1 : 0);
|
|
9700
|
+
for (var Xt = pt + (nt - Pt), Dt = Ie.alloc(Gt), Kt = 0; pt < Xt; ) {
|
|
9701
9701
|
var Ae = Y[ot.fastCodeAt(dt, pt++)], Ve = Y[ot.fastCodeAt(dt, pt++)];
|
|
9702
|
-
Dt.set(
|
|
9702
|
+
Dt.set(Kt++, Ae << 2 | Ve >> 4);
|
|
9703
9703
|
var _e = Y[ot.fastCodeAt(dt, pt++)];
|
|
9704
|
-
Dt.set(
|
|
9704
|
+
Dt.set(Kt++, Ve << 4 | _e >> 2);
|
|
9705
9705
|
var ge = Y[ot.fastCodeAt(dt, pt++)];
|
|
9706
|
-
Dt.set(
|
|
9706
|
+
Dt.set(Kt++, _e << 6 | ge);
|
|
9707
9707
|
}
|
|
9708
|
-
if (
|
|
9709
|
-
var
|
|
9710
|
-
if (Dt.set(
|
|
9711
|
-
var
|
|
9712
|
-
Dt.set(
|
|
9708
|
+
if (Pt >= 2) {
|
|
9709
|
+
var Se = Y[ot.fastCodeAt(dt, pt++)], Te = Y[ot.fastCodeAt(dt, pt++)];
|
|
9710
|
+
if (Dt.set(Kt++, Se << 2 | Te >> 4), Pt == 3) {
|
|
9711
|
+
var Xe = Y[ot.fastCodeAt(dt, pt++)];
|
|
9712
|
+
Dt.set(Kt++, Te << 4 | Xe >> 2);
|
|
9713
9713
|
}
|
|
9714
9714
|
}
|
|
9715
9715
|
return this.pos += nt, this.cache.push(Dt), Dt;
|
|
9716
9716
|
case 67:
|
|
9717
|
-
var or = this.unserialize(),
|
|
9718
|
-
if (
|
|
9719
|
-
var $e = ut.createEmptyInstance(
|
|
9717
|
+
var or = this.unserialize(), Ke = this.resolver.resolveClass(or);
|
|
9718
|
+
if (Ke == null) throw new Q("Class not found " + or);
|
|
9719
|
+
var $e = ut.createEmptyInstance(Ke);
|
|
9720
9720
|
if (this.cache.push($e), $e.hxUnserialize(this), this.get(this.pos++) != 103) throw new Q("Invalid custom data");
|
|
9721
9721
|
return $e;
|
|
9722
9722
|
case 65:
|
|
@@ -9885,8 +9885,8 @@ var ih = { exports: {} };
|
|
|
9885
9885
|
var _ = r.length, v = "[";
|
|
9886
9886
|
n += " ";
|
|
9887
9887
|
for (var w = 0; w < _; ) {
|
|
9888
|
-
var
|
|
9889
|
-
v += (
|
|
9888
|
+
var P = w++;
|
|
9889
|
+
v += (P > 0 ? "," : "") + Mt.__string_rec(r[P], n);
|
|
9890
9890
|
}
|
|
9891
9891
|
return v += "]", v;
|
|
9892
9892
|
}
|
|
@@ -9956,7 +9956,7 @@ var ih = { exports: {} };
|
|
|
9956
9956
|
}, Mt.__isNativeObj = function(r) {
|
|
9957
9957
|
return Mt.__nativeClassName(r) != null;
|
|
9958
9958
|
}, Mt.__resolveNativeClass = function(r) {
|
|
9959
|
-
return
|
|
9959
|
+
return S[r];
|
|
9960
9960
|
};
|
|
9961
9961
|
var ae = function(r) {
|
|
9962
9962
|
if (r instanceof Array && r.__enum__ == null)
|
|
@@ -10073,8 +10073,8 @@ var ih = { exports: {} };
|
|
|
10073
10073
|
var _ = r;
|
|
10074
10074
|
if (_.length + n > a.byteLength) throw new Q("set() outside of range");
|
|
10075
10075
|
for (var v = 0, w = _.length; v < w; ) {
|
|
10076
|
-
var
|
|
10077
|
-
a[
|
|
10076
|
+
var P = v++;
|
|
10077
|
+
a[P + n] = _[P];
|
|
10078
10078
|
}
|
|
10079
10079
|
} else throw new Q("TODO");
|
|
10080
10080
|
}, nr._subarray = function(r, n) {
|
|
@@ -10102,8 +10102,8 @@ var ih = { exports: {} };
|
|
|
10102
10102
|
}, Et.linkAll = function(r, n) {
|
|
10103
10103
|
for (var a = function(d, p, _) {
|
|
10104
10104
|
if (d.length == 0 || Et.allFulfilled(d)) {
|
|
10105
|
-
for (var v, w = [],
|
|
10106
|
-
var A =
|
|
10105
|
+
for (var v, w = [], P = Ye(r)(); P.hasNext(); ) {
|
|
10106
|
+
var A = P.next();
|
|
10107
10107
|
w.push(A == p ? _ : A._val);
|
|
10108
10108
|
}
|
|
10109
10109
|
v = w, n.handleResolve(v);
|
|
@@ -10189,11 +10189,11 @@ var ih = { exports: {} };
|
|
|
10189
10189
|
},
|
|
10190
10190
|
_resolve: function(r) {
|
|
10191
10191
|
var n = this;
|
|
10192
|
-
this._pending ?
|
|
10192
|
+
this._pending ? St.enqueue(/* @__PURE__ */ function(a, l) {
|
|
10193
10193
|
return function() {
|
|
10194
10194
|
a(l);
|
|
10195
10195
|
};
|
|
10196
|
-
}(Me(this, this._resolve), r)) : (this._resolved = !0, this._pending = !0,
|
|
10196
|
+
}(Me(this, this._resolve), r)) : (this._resolved = !0, this._pending = !0, St.queue.add(function() {
|
|
10197
10197
|
n._val = r;
|
|
10198
10198
|
for (var a = 0, l = n._update; a < l.length; ) {
|
|
10199
10199
|
var u = l[a];
|
|
@@ -10205,7 +10205,7 @@ var ih = { exports: {} };
|
|
|
10205
10205
|
}
|
|
10206
10206
|
}
|
|
10207
10207
|
n._fulfilled = !0, n._pending = !1;
|
|
10208
|
-
}),
|
|
10208
|
+
}), St.continueOnNextLoop());
|
|
10209
10209
|
},
|
|
10210
10210
|
handleError: function(r) {
|
|
10211
10211
|
this._handleError(r);
|
|
@@ -10225,14 +10225,14 @@ var ih = { exports: {} };
|
|
|
10225
10225
|
else throw new Q(l);
|
|
10226
10226
|
n._errorPending = !1;
|
|
10227
10227
|
};
|
|
10228
|
-
this._errorPending || (this._errorPending = !0, this._errored = !0, this._errorVal = r,
|
|
10228
|
+
this._errorPending || (this._errorPending = !0, this._errored = !0, this._errorVal = r, St.queue.add(function() {
|
|
10229
10229
|
if (n._errorMap != null) try {
|
|
10230
10230
|
n._resolve(n._errorMap(r));
|
|
10231
10231
|
} catch (l) {
|
|
10232
10232
|
l instanceof Q && (l = l.val), a(l);
|
|
10233
10233
|
}
|
|
10234
10234
|
else a(r);
|
|
10235
|
-
}),
|
|
10235
|
+
}), St.continueOnNextLoop());
|
|
10236
10236
|
},
|
|
10237
10237
|
then: function(r) {
|
|
10238
10238
|
var n = new Et(null);
|
|
@@ -10240,11 +10240,11 @@ var ih = { exports: {} };
|
|
|
10240
10240
|
},
|
|
10241
10241
|
unlink: function(r) {
|
|
10242
10242
|
var n = this;
|
|
10243
|
-
|
|
10243
|
+
St.queue.add(function() {
|
|
10244
10244
|
n._update = n._update.filter(function(a) {
|
|
10245
10245
|
return a.async != r;
|
|
10246
10246
|
});
|
|
10247
|
-
}),
|
|
10247
|
+
}), St.continueOnNextLoop();
|
|
10248
10248
|
},
|
|
10249
10249
|
isLinked: function(r) {
|
|
10250
10250
|
for (var n = !1, a = 0, l = this._update; a < l.length; ) {
|
|
@@ -10305,7 +10305,7 @@ var ih = { exports: {} };
|
|
|
10305
10305
|
},
|
|
10306
10306
|
unlink: function(r) {
|
|
10307
10307
|
var n = this;
|
|
10308
|
-
|
|
10308
|
+
St.queue.add(function() {
|
|
10309
10309
|
if (n._fulfilled)
|
|
10310
10310
|
n._update = n._update.filter(function(l) {
|
|
10311
10311
|
return l.async != r;
|
|
@@ -10314,7 +10314,7 @@ var ih = { exports: {} };
|
|
|
10314
10314
|
var a = "Downstream Promise is not fullfilled";
|
|
10315
10315
|
n.handleError(mn.DownstreamNotFullfilled(a));
|
|
10316
10316
|
}
|
|
10317
|
-
}),
|
|
10317
|
+
}), St.continueOnNextLoop();
|
|
10318
10318
|
},
|
|
10319
10319
|
handleError: function(r) {
|
|
10320
10320
|
this._rejected = !0, this._handleError(r);
|
|
@@ -10407,7 +10407,7 @@ var ih = { exports: {} };
|
|
|
10407
10407
|
},
|
|
10408
10408
|
handleEnd: function() {
|
|
10409
10409
|
if (this._pending)
|
|
10410
|
-
|
|
10410
|
+
St.queue.add(Me(this, this.handleEnd)), St.continueOnNextLoop();
|
|
10411
10411
|
else {
|
|
10412
10412
|
if (this._end_promise._resolved) return;
|
|
10413
10413
|
this._end = !0;
|
|
@@ -10416,7 +10416,7 @@ var ih = { exports: {} };
|
|
|
10416
10416
|
}
|
|
10417
10417
|
},
|
|
10418
10418
|
end: function() {
|
|
10419
|
-
return
|
|
10419
|
+
return St.queue.add(Me(this, this.handleEnd)), St.continueOnNextLoop(), this;
|
|
10420
10420
|
},
|
|
10421
10421
|
endThen: function(r) {
|
|
10422
10422
|
return this._end_promise.then(r);
|
|
@@ -10472,26 +10472,26 @@ var ih = { exports: {} };
|
|
|
10472
10472
|
},
|
|
10473
10473
|
__class__: kr
|
|
10474
10474
|
});
|
|
10475
|
-
var
|
|
10475
|
+
var St = function() {
|
|
10476
10476
|
};
|
|
10477
|
-
b["promhx.base.EventLoop"] =
|
|
10478
|
-
|
|
10479
|
-
},
|
|
10480
|
-
if (
|
|
10481
|
-
return
|
|
10482
|
-
},
|
|
10483
|
-
return
|
|
10484
|
-
},
|
|
10477
|
+
b["promhx.base.EventLoop"] = St, St.__name__ = ["promhx", "base", "EventLoop"], St.enqueue = function(r) {
|
|
10478
|
+
St.queue.add(r), St.continueOnNextLoop();
|
|
10479
|
+
}, St.set_nextLoop = function(r) {
|
|
10480
|
+
if (St.nextLoop != null) throw new Q("nextLoop has already been set");
|
|
10481
|
+
return St.nextLoop = r, St.nextLoop;
|
|
10482
|
+
}, St.queueEmpty = function() {
|
|
10483
|
+
return St.queue.isEmpty();
|
|
10484
|
+
}, St.finish = function(r) {
|
|
10485
10485
|
r == null && (r = 1e3);
|
|
10486
|
-
for (var n = null; r-- > 0 && (n =
|
|
10487
|
-
return
|
|
10488
|
-
},
|
|
10489
|
-
|
|
10490
|
-
},
|
|
10491
|
-
var r =
|
|
10492
|
-
r != null && r(),
|
|
10493
|
-
},
|
|
10494
|
-
|
|
10486
|
+
for (var n = null; r-- > 0 && (n = St.queue.pop()) != null; ) n();
|
|
10487
|
+
return St.queue.isEmpty();
|
|
10488
|
+
}, St.clear = function() {
|
|
10489
|
+
St.queue = new U();
|
|
10490
|
+
}, St.f = function() {
|
|
10491
|
+
var r = St.queue.pop();
|
|
10492
|
+
r != null && r(), St.queue.isEmpty() || St.continueOnNextLoop();
|
|
10493
|
+
}, St.continueOnNextLoop = function() {
|
|
10494
|
+
St.nextLoop != null ? St.nextLoop(St.f) : setImmediate(St.f);
|
|
10495
10495
|
};
|
|
10496
10496
|
var mn = b["promhx.error.PromiseError"] = { __ename__: ["promhx", "error", "PromiseError"], __constructs__: ["AlreadyResolved", "DownstreamNotFullfilled"] };
|
|
10497
10497
|
mn.AlreadyResolved = function(r) {
|
|
@@ -10506,33 +10506,33 @@ var ih = { exports: {} };
|
|
|
10506
10506
|
b["verb.Verb"] = ks, ks.__name__ = ["verb", "Verb"], ks.main = function() {
|
|
10507
10507
|
x.log("verb 2.1.0");
|
|
10508
10508
|
};
|
|
10509
|
-
var
|
|
10509
|
+
var K = function() {
|
|
10510
10510
|
};
|
|
10511
|
-
b["verb.core.ArrayExtensions"] =
|
|
10511
|
+
b["verb.core.ArrayExtensions"] = K, K.__name__ = ["verb", "core", "ArrayExtensions"], K.alloc = function(r, n) {
|
|
10512
10512
|
if (!(n < 0))
|
|
10513
10513
|
for (; r.length < n; ) r.push(null);
|
|
10514
|
-
},
|
|
10514
|
+
}, K.reversed = function(r) {
|
|
10515
10515
|
var n = r.slice();
|
|
10516
10516
|
return n.reverse(), n;
|
|
10517
|
-
},
|
|
10517
|
+
}, K.last = function(r) {
|
|
10518
10518
|
return r[r.length - 1];
|
|
10519
|
-
},
|
|
10519
|
+
}, K.first = function(r) {
|
|
10520
10520
|
return r[0];
|
|
10521
|
-
},
|
|
10521
|
+
}, K.spliceAndInsert = function(r, n, a, l) {
|
|
10522
10522
|
r.splice(n, a), r.splice(n, 0, l);
|
|
10523
|
-
},
|
|
10523
|
+
}, K.left = function(r) {
|
|
10524
10524
|
if (r.length == 0) return [];
|
|
10525
10525
|
var n = Math.ceil(r.length / 2);
|
|
10526
10526
|
return r.slice(0, n);
|
|
10527
|
-
},
|
|
10527
|
+
}, K.right = function(r) {
|
|
10528
10528
|
if (r.length == 0) return [];
|
|
10529
10529
|
var n = Math.ceil(r.length / 2);
|
|
10530
10530
|
return r.slice(n);
|
|
10531
|
-
},
|
|
10531
|
+
}, K.rightWithPivot = function(r) {
|
|
10532
10532
|
if (r.length == 0) return [];
|
|
10533
10533
|
var n = Math.ceil(r.length / 2);
|
|
10534
10534
|
return r.slice(n - 1);
|
|
10535
|
-
},
|
|
10535
|
+
}, K.unique = function(r, n) {
|
|
10536
10536
|
if (r.length == 0) return [];
|
|
10537
10537
|
for (var a = [r.pop()]; r.length > 0; ) {
|
|
10538
10538
|
for (var l = r.pop(), u = !0, d = 0; d < a.length; ) {
|
|
@@ -10635,8 +10635,8 @@ var ih = { exports: {} };
|
|
|
10635
10635
|
var a = this.min, l = this.max, u = r.min, d = r.max;
|
|
10636
10636
|
if (!this.intersects(r, n)) return null;
|
|
10637
10637
|
for (var p = [], _ = [], v = 0, w = this.dim; v < w; ) {
|
|
10638
|
-
var
|
|
10639
|
-
p.push(Math.min(l[
|
|
10638
|
+
var P = v++;
|
|
10639
|
+
p.push(Math.min(l[P], d[P])), _.push(Math.max(a[P], u[P]));
|
|
10640
10640
|
}
|
|
10641
10641
|
return new Ee([_, p]);
|
|
10642
10642
|
},
|
|
@@ -10785,8 +10785,8 @@ var ih = { exports: {} };
|
|
|
10785
10785
|
for (var I, k = A.dimension, T = l.distanceFunction(r, A.kdPoint.point), L, C = [], B = 0, O = l.dim; B < O; )
|
|
10786
10786
|
B++, C.push(0);
|
|
10787
10787
|
L = C;
|
|
10788
|
-
for (var D, V, q = function(
|
|
10789
|
-
u.push(new ee(
|
|
10788
|
+
for (var D, V, q = function(X, tt) {
|
|
10789
|
+
u.push(new ee(X, tt)), u.size() > n && u.pop();
|
|
10790
10790
|
}, J = 0, H = l.dim; J < H; ) {
|
|
10791
10791
|
var j = J++;
|
|
10792
10792
|
j == A.dimension ? L[j] = r[j] : L[j] = A.kdPoint.point[j];
|
|
@@ -10801,8 +10801,8 @@ var ih = { exports: {} };
|
|
|
10801
10801
|
_++, u.push(new ee(null, a));
|
|
10802
10802
|
d(this.root);
|
|
10803
10803
|
for (var v = [], w = 0; w < n; ) {
|
|
10804
|
-
var
|
|
10805
|
-
u.content[
|
|
10804
|
+
var P = w++;
|
|
10805
|
+
u.content[P].item0 != null && v.push(new ee(u.content[P].item0.kdPoint, u.content[P].item1));
|
|
10806
10806
|
}
|
|
10807
10807
|
return v;
|
|
10808
10808
|
},
|
|
@@ -10852,8 +10852,8 @@ var ih = { exports: {} };
|
|
|
10852
10852
|
_ = this.scoreFunction(v), _ < l && (p = d);
|
|
10853
10853
|
}
|
|
10854
10854
|
if (u < n) {
|
|
10855
|
-
var w = this.content[u],
|
|
10856
|
-
|
|
10855
|
+
var w = this.content[u], P = this.scoreFunction(w);
|
|
10856
|
+
P < (p == -1 ? l : _) && (p = u);
|
|
10857
10857
|
}
|
|
10858
10858
|
if (p != -1)
|
|
10859
10859
|
this.content[r] = this.content[p], this.content[p] = a, r = p;
|
|
@@ -10884,7 +10884,7 @@ var ih = { exports: {} };
|
|
|
10884
10884
|
};
|
|
10885
10885
|
b["verb.core.LazyCurveBoundingBoxTree"] = sr, sr.__name__ = ["verb", "core", "LazyCurveBoundingBoxTree"], sr.__interfaces__ = [hr], sr.prototype = {
|
|
10886
10886
|
split: function() {
|
|
10887
|
-
var r =
|
|
10887
|
+
var r = K.first(this._curve.knots), n = K.last(this._curve.knots), a = n - r, l = oe.curveSplit(this._curve, (n + r) / 2 + a * 0.1 * Math.random());
|
|
10888
10888
|
return new ee(new sr(l[0], this._knotTol), new sr(l[1], this._knotTol));
|
|
10889
10889
|
},
|
|
10890
10890
|
boundingBox: function() {
|
|
@@ -10913,7 +10913,7 @@ var ih = { exports: {} };
|
|
|
10913
10913
|
};
|
|
10914
10914
|
b["verb.core.LazyMeshBoundingBoxTree"] = ir, ir.__name__ = ["verb", "core", "LazyMeshBoundingBoxTree"], ir.__interfaces__ = [hr], ir.prototype = {
|
|
10915
10915
|
split: function() {
|
|
10916
|
-
var r = re.sortTrianglesOnLongestAxis(this.boundingBox(), this._mesh, this._faceIndices), n =
|
|
10916
|
+
var r = re.sortTrianglesOnLongestAxis(this.boundingBox(), this._mesh, this._faceIndices), n = K.left(r), a = K.right(r);
|
|
10917
10917
|
return new ee(new ir(this._mesh, n), new ir(this._mesh, a));
|
|
10918
10918
|
},
|
|
10919
10919
|
boundingBox: function() {
|
|
@@ -10958,7 +10958,7 @@ var ih = { exports: {} };
|
|
|
10958
10958
|
b["verb.core.LazySurfaceBoundingBoxTree"] = Tr, Tr.__name__ = ["verb", "core", "LazySurfaceBoundingBoxTree"], Tr.__interfaces__ = [hr], Tr.prototype = {
|
|
10959
10959
|
split: function() {
|
|
10960
10960
|
var r, n;
|
|
10961
|
-
this._splitV ? (r =
|
|
10961
|
+
this._splitV ? (r = K.first(this._surface.knotsV), n = K.last(this._surface.knotsV)) : (r = K.first(this._surface.knotsU), n = K.last(this._surface.knotsU));
|
|
10962
10962
|
var a = (r + n) / 2, l = oe.surfaceSplit(this._surface, a, this._splitV);
|
|
10963
10963
|
return new ee(new Tr(l[0], !this._splitV, this._knotTolU, this._knotTolV), new Tr(l[1], !this._splitV, this._knotTolU, this._knotTolV));
|
|
10964
10964
|
},
|
|
@@ -10994,13 +10994,13 @@ var ih = { exports: {} };
|
|
|
10994
10994
|
}, Ct.mult = function(r, n) {
|
|
10995
10995
|
var a, l, u, d, p, _, v, w;
|
|
10996
10996
|
a = r.length, l = n.length, u = n[0].length, d = [];
|
|
10997
|
-
for (var
|
|
10998
|
-
for (p = [], _ = r[
|
|
10997
|
+
for (var P = a - 1, A = 0, I = 0; P >= 0; ) {
|
|
10998
|
+
for (p = [], _ = r[P], I = u - 1; I >= 0; ) {
|
|
10999
10999
|
for (v = _[l - 1] * n[l - 1][I], A = l - 2; A >= 1; )
|
|
11000
11000
|
w = A - 1, v += _[A] * n[A][I] + _[w] * n[w][I], A -= 2;
|
|
11001
11001
|
A == 0 && (v += _[0] * n[0][I]), p[I] = v, I--;
|
|
11002
11002
|
}
|
|
11003
|
-
d[
|
|
11003
|
+
d[P] = p, P--;
|
|
11004
11004
|
}
|
|
11005
11005
|
return d;
|
|
11006
11006
|
}, Ct.add = function(r, n) {
|
|
@@ -11039,8 +11039,8 @@ var ih = { exports: {} };
|
|
|
11039
11039
|
var u = a++;
|
|
11040
11040
|
n.push(function(d) {
|
|
11041
11041
|
for (var p, _ = [], v = 0, w = r.length; v < w; ) {
|
|
11042
|
-
var
|
|
11043
|
-
_.push(r[
|
|
11042
|
+
var P = v++;
|
|
11043
|
+
_.push(r[P][u]);
|
|
11044
11044
|
}
|
|
11045
11045
|
return p = _, p;
|
|
11046
11046
|
}());
|
|
@@ -11049,11 +11049,11 @@ var ih = { exports: {} };
|
|
|
11049
11049
|
}, Ct.solve = function(r, n) {
|
|
11050
11050
|
return Ct.LUsolve(Ct.LU(r), n);
|
|
11051
11051
|
}, Ct.LUsolve = function(r, n) {
|
|
11052
|
-
var a, l, u = r.LU, d = u.length, p = n.slice(), _ = r.P, v, w,
|
|
11052
|
+
var a, l, u = r.LU, d = u.length, p = n.slice(), _ = r.P, v, w, P;
|
|
11053
11053
|
for (a = d - 1; a != -1; )
|
|
11054
11054
|
p[a] = n[a], --a;
|
|
11055
11055
|
for (a = 0; a < d; ) {
|
|
11056
|
-
for (v = _[a], _[a] != a && (
|
|
11056
|
+
for (v = _[a], _[a] != a && (P = p[a], p[a] = p[v], p[v] = P), w = u[a], l = 0; l < a; )
|
|
11057
11057
|
p[a] -= p[l] * w[l], ++l;
|
|
11058
11058
|
++a;
|
|
11059
11059
|
}
|
|
@@ -11064,11 +11064,11 @@ var ih = { exports: {} };
|
|
|
11064
11064
|
}
|
|
11065
11065
|
return p;
|
|
11066
11066
|
}, Ct.LU = function(r) {
|
|
11067
|
-
for (var n, a, l, u, d, p, _, v, w,
|
|
11067
|
+
for (var n, a, l, u, d, p, _, v, w, P = [], A = 0, I = r.length; A < I; ) {
|
|
11068
11068
|
var k = A++;
|
|
11069
|
-
|
|
11069
|
+
P.push(r[k].slice());
|
|
11070
11070
|
}
|
|
11071
|
-
r =
|
|
11071
|
+
r = P;
|
|
11072
11072
|
var T = r.length, L = T - 1, C = [];
|
|
11073
11073
|
for (l = 0; l < T; ) {
|
|
11074
11074
|
for (_ = l, p = r[l], w = Math.abs(p[l]), a = l + 1; a < T; )
|
|
@@ -11112,7 +11112,7 @@ var ih = { exports: {} };
|
|
|
11112
11112
|
var T = I.item0, L = k.item0;
|
|
11113
11113
|
return T == L ? 0 : T > L ? 1 : -1;
|
|
11114
11114
|
});
|
|
11115
|
-
for (var v = [], w = 0,
|
|
11115
|
+
for (var v = [], w = 0, P = u.length; w < P; ) {
|
|
11116
11116
|
var A = w++;
|
|
11117
11117
|
v.push(u[A].item1);
|
|
11118
11118
|
}
|
|
@@ -11135,7 +11135,7 @@ var ih = { exports: {} };
|
|
|
11135
11135
|
}
|
|
11136
11136
|
return a;
|
|
11137
11137
|
}, re.triangleUVFromPoint = function(r, n, a) {
|
|
11138
|
-
var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], w = r.uvs[l[2]],
|
|
11138
|
+
var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], w = r.uvs[l[2]], P = m.sub(u, a), A = m.sub(d, a), I = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), T = m.norm(m.cross(A, I)) / k, L = m.norm(m.cross(I, P)) / k, C = m.norm(m.cross(P, A)) / k;
|
|
11139
11139
|
return m.add(m.mul(T, _), m.add(m.mul(L, v), m.mul(C, w)));
|
|
11140
11140
|
};
|
|
11141
11141
|
var Nr = function(r, n) {
|
|
@@ -11153,7 +11153,7 @@ var ih = { exports: {} };
|
|
|
11153
11153
|
this._face = n[0];
|
|
11154
11154
|
return;
|
|
11155
11155
|
}
|
|
11156
|
-
var p = re.sortTrianglesOnLongestAxis(this._boundingBox, r, n), _ =
|
|
11156
|
+
var p = re.sortTrianglesOnLongestAxis(this._boundingBox, r, n), _ = K.left(p), v = K.right(p);
|
|
11157
11157
|
this._children = new ee(new Nr(r, _), new Nr(r, v));
|
|
11158
11158
|
};
|
|
11159
11159
|
b["verb.core.MeshBoundingBoxTree"] = Nr, Nr.__name__ = ["verb", "core", "MeshBoundingBoxTree"], Nr.__interfaces__ = [hr], Nr.prototype = {
|
|
@@ -11183,13 +11183,13 @@ var ih = { exports: {} };
|
|
|
11183
11183
|
var d = n.length, p = r(n), _ = p, v;
|
|
11184
11184
|
if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
|
|
11185
11185
|
a = Math.max(a, rt.EPSILON);
|
|
11186
|
-
var w,
|
|
11187
|
-
for (
|
|
11188
|
-
if (!m.all(m.finite(
|
|
11186
|
+
var w, P, A, I = Ct.identity(d), k = 0, T = [], L, C, B, O, D, V, q = "";
|
|
11187
|
+
for (P = l(n); k < u; ) {
|
|
11188
|
+
if (!m.all(m.finite(P))) {
|
|
11189
11189
|
q = "Gradient has Infinity or NaN";
|
|
11190
11190
|
break;
|
|
11191
11191
|
}
|
|
11192
|
-
if (w = m.neg(Ct.dot(I,
|
|
11192
|
+
if (w = m.neg(Ct.dot(I, P)), !m.all(m.finite(w))) {
|
|
11193
11193
|
q = "Search direction has Infinity or NaN";
|
|
11194
11194
|
break;
|
|
11195
11195
|
}
|
|
@@ -11197,7 +11197,7 @@ var ih = { exports: {} };
|
|
|
11197
11197
|
q = "Newton step smaller than tol";
|
|
11198
11198
|
break;
|
|
11199
11199
|
}
|
|
11200
|
-
for (D = 1, v = m.dot(
|
|
11200
|
+
for (D = 1, v = m.dot(P, w), L = n; k < u && !(D * V < a); ) {
|
|
11201
11201
|
if (T = m.mul(D, w), L = m.add(n, T), _ = r(L), _ - p >= 0.1 * D * v || isNaN(_)) {
|
|
11202
11202
|
D *= 0.5, ++k;
|
|
11203
11203
|
continue;
|
|
@@ -11212,20 +11212,20 @@ var ih = { exports: {} };
|
|
|
11212
11212
|
q = "maxit reached during line search";
|
|
11213
11213
|
break;
|
|
11214
11214
|
}
|
|
11215
|
-
A = l(L), C = m.sub(A,
|
|
11215
|
+
A = l(L), C = m.sub(A, P), O = m.dot(C, T), B = Ct.dot(I, C), I = Ct.sub(Ct.add(I, Ct.mul((O + m.dot(C, B)) / (O * O), qe.tensor(T, T))), Ct.div(Ct.add(qe.tensor(B, T), qe.tensor(T, B)), O)), n = L, p = _, P = A, ++k;
|
|
11216
11216
|
}
|
|
11217
|
-
return new qn(n, p,
|
|
11217
|
+
return new qn(n, p, P, I, k, q);
|
|
11218
11218
|
}, qe.numericalGradient = function(r, n) {
|
|
11219
11219
|
var a = n.length, l = r(n);
|
|
11220
11220
|
if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
|
|
11221
|
-
for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3,
|
|
11221
|
+
for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, P, A, I, k = 0, T, L, C, B = 0; B < a; )
|
|
11222
11222
|
for (var O = B++, D = Math.max(1e-6 * l, 1e-8); ; ) {
|
|
11223
11223
|
if (++k, k > 20) throw new Q("Numerical gradient fails");
|
|
11224
11224
|
if (u[O] = n[O] + D, d = r(u), u[O] = n[O] - D, p = r(u), u[O] = n[O], isNaN(d) || isNaN(p)) {
|
|
11225
11225
|
D /= 16;
|
|
11226
11226
|
continue;
|
|
11227
11227
|
}
|
|
11228
|
-
if (_[O] = (d - p) / (2 * D),
|
|
11228
|
+
if (_[O] = (d - p) / (2 * D), P = n[O] - D, A = n[O], I = n[O] + D, T = (d - l) / D, L = (l - p) / D, C = m.max([Math.abs(_[O]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(P), Math.abs(A), Math.abs(I), 1e-8]), v = Math.min(m.max([Math.abs(T - _[O]), Math.abs(L - _[O]), Math.abs(T - L)]) / C, D / C), v > w) D /= 16;
|
|
11229
11229
|
else break;
|
|
11230
11230
|
}
|
|
11231
11231
|
return _;
|
|
@@ -11276,24 +11276,24 @@ var ih = { exports: {} };
|
|
|
11276
11276
|
}, ke.segmentClosestPoint = function(r, n, a, l, u) {
|
|
11277
11277
|
var d = m.sub(a, n), p = m.norm(d);
|
|
11278
11278
|
if (p < rt.EPSILON) return { u: l, pt: n };
|
|
11279
|
-
var _ = n, v = m.mul(1 / p, d), w = m.sub(r, _),
|
|
11280
|
-
return
|
|
11279
|
+
var _ = n, v = m.mul(1 / p, d), w = m.sub(r, _), P = m.dot(w, v);
|
|
11280
|
+
return P < 0 ? { u: l, pt: n } : P > p ? { u, pt: a } : { u: l + (u - l) * P / p, pt: m.add(_, m.mul(P, v)) };
|
|
11281
11281
|
};
|
|
11282
11282
|
var m = f.core.Vec = function() {
|
|
11283
11283
|
};
|
|
11284
11284
|
b["verb.core.Vec"] = m, m.__name__ = ["verb", "core", "Vec"], m.angleBetween = function(r, n) {
|
|
11285
11285
|
return Math.acos(m.dot(r, n) / (m.norm(r) * m.norm(n)));
|
|
11286
11286
|
}, m.positiveAngleBetween = function(r, n, a) {
|
|
11287
|
-
var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p,
|
|
11288
|
-
return Math.abs(A) < rt.EPSILON || A > 0 ?
|
|
11287
|
+
var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p, P = Math.atan2(v, w), A = m.dot(a, l);
|
|
11288
|
+
return Math.abs(A) < rt.EPSILON || A > 0 ? P : -P;
|
|
11289
11289
|
}, m.signedAngleBetween = function(r, n, a) {
|
|
11290
|
-
var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p,
|
|
11291
|
-
return A > 0 ?
|
|
11290
|
+
var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p, P = Math.atan2(v, w), A = m.dot(a, l);
|
|
11291
|
+
return A > 0 ? P : 2 * Math.PI - P;
|
|
11292
11292
|
}, m.angleBetweenNormalized2d = function(r, n) {
|
|
11293
11293
|
var a = r[0] * n[1] - r[1] * n[0];
|
|
11294
11294
|
return Math.atan2(a, m.dot(r, n));
|
|
11295
11295
|
}, m.domain = function(r) {
|
|
11296
|
-
return
|
|
11296
|
+
return K.last(r) - K.first(r);
|
|
11297
11297
|
}, m.range = function(r) {
|
|
11298
11298
|
for (var n = [], a = 0, l = 0; l < r; )
|
|
11299
11299
|
l++, n.push(a), a += 1;
|
|
@@ -11486,7 +11486,7 @@ var ih = { exports: {} };
|
|
|
11486
11486
|
var a;
|
|
11487
11487
|
n ? a = r.controlPoints : a = Ct.transpose(r.controlPoints);
|
|
11488
11488
|
for (var l = 0, u = a[0].length; l < u; ) {
|
|
11489
|
-
var d = l++, p = m.dist(
|
|
11489
|
+
var d = l++, p = m.dist(K.first(a)[d], K.last(a)[d]) < rt.EPSILON;
|
|
11490
11490
|
if (!p) return !1;
|
|
11491
11491
|
}
|
|
11492
11492
|
return !0;
|
|
@@ -11494,23 +11494,23 @@ var ih = { exports: {} };
|
|
|
11494
11494
|
var a = vt.rationalSurfaceClosestParam(r, n);
|
|
11495
11495
|
return N.rationalSurfacePoint(r, a[0], a[1]);
|
|
11496
11496
|
}, vt.rationalSurfaceClosestParam = function(r, n) {
|
|
11497
|
-
for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w =
|
|
11497
|
+
for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = K.last(r.knotsU), P = r.knotsV[0], A = K.last(r.knotsV), I = vt.isRationalSurfaceClosed(r), k = vt.isRationalSurfaceClosed(r, !1), T, L = Ot.rationalSurfaceAdaptive(r, new Cr()), C = 1 / 0, B = 0, O = L.points.length; B < O; ) {
|
|
11498
11498
|
var D = B++, V = L.points[D], q = m.normSquared(m.sub(n, V));
|
|
11499
11499
|
q < C && (C = q, T = L.uvs[D]);
|
|
11500
11500
|
}
|
|
11501
11501
|
for (var J = function(Gt) {
|
|
11502
11502
|
return N.rationalSurfaceDerivatives(r, Gt[0], Gt[1], 2);
|
|
11503
|
-
}, H = function(Gt,
|
|
11504
|
-
var
|
|
11503
|
+
}, H = function(Gt, Xt, Dt) {
|
|
11504
|
+
var Kt = Xt[1][0], Ae = Xt[0][1], Ve = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Se = Xt[1][1], Te = m.dot(Kt, Dt), Xe = m.dot(Ae, Dt), or = [-Te, -Xe], Ke = m.dot(Kt, Kt) + m.dot(Ve, Dt), $e = m.dot(Kt, Ae) + m.dot(ge, Dt), Ze = m.dot(Kt, Ae) + m.dot(Se, Dt), cr = m.dot(Ae, Ae) + m.dot(_e, Dt), An = [[Ke, $e], [Ze, cr]], Hr = Ct.solve(An, or);
|
|
11505
11505
|
return m.add(Hr, Gt);
|
|
11506
11506
|
}; l < a; ) {
|
|
11507
11507
|
u = J(T), _ = m.sub(u[0][0], n);
|
|
11508
|
-
var j = m.norm(_),
|
|
11508
|
+
var j = m.norm(_), X = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * j, et = m.dot(u[0][1], _), it = m.norm(u[0][1]) * j, ht = X / tt, at = et / it, ct = j < d, nt = ht < p, dt = at < p;
|
|
11509
11509
|
if (ct && nt && dt) return T;
|
|
11510
11510
|
var Y = H(T, u, _);
|
|
11511
|
-
Y[0] < v ? I ? Y = [w - (Y[0] - v), Y[1]] : Y = [v + rt.EPSILON, Y[1]] : Y[0] > w && (I ? Y = [v + (Y[0] - w), Y[1]] : Y = [w - rt.EPSILON, Y[1]]), Y[1] <
|
|
11512
|
-
var pt = m.norm(m.mul(Y[0] - T[0], u[1][0])),
|
|
11513
|
-
if (pt +
|
|
11511
|
+
Y[0] < v ? I ? Y = [w - (Y[0] - v), Y[1]] : Y = [v + rt.EPSILON, Y[1]] : Y[0] > w && (I ? Y = [v + (Y[0] - w), Y[1]] : Y = [w - rt.EPSILON, Y[1]]), Y[1] < P ? k ? Y = [Y[0], A - (Y[1] - P)] : Y = [Y[0], P + rt.EPSILON] : Y[1] > A && (k ? Y = [Y[0], P + (Y[0] - A)] : Y = [Y[0], A - rt.EPSILON]);
|
|
11512
|
+
var pt = m.norm(m.mul(Y[0] - T[0], u[1][0])), Pt = m.norm(m.mul(Y[1] - T[1], u[0][1]));
|
|
11513
|
+
if (pt + Pt < d) return T;
|
|
11514
11514
|
T = Y, l++;
|
|
11515
11515
|
}
|
|
11516
11516
|
return T;
|
|
@@ -11518,19 +11518,19 @@ var ih = { exports: {} };
|
|
|
11518
11518
|
return N.rationalCurvePoint(r, vt.rationalCurveClosestParam(r, n));
|
|
11519
11519
|
}, vt.rationalCurveClosestParam = function(r, n) {
|
|
11520
11520
|
for (var a = 1 / 0, l = 0, u = Ot.rationalCurveRegularSample(r, r.controlPoints.length * r.degree, !0), d = 0, p = u.length - 1; d < p; ) {
|
|
11521
|
-
var _ = d++, v = u[_][0], w = u[_ + 1][0],
|
|
11521
|
+
var _ = d++, v = u[_][0], w = u[_ + 1][0], P = u[_].slice(1), A = u[_ + 1].slice(1), I = ke.segmentClosestPoint(n, P, A, v, w), k = m.norm(m.sub(n, I.pt));
|
|
11522
11522
|
k < a && (a = k, l = I.u);
|
|
11523
11523
|
}
|
|
11524
|
-
for (var T = 5, L = 0, C, B = 1e-4, O = 5e-4, D, V = r.knots[0], q =
|
|
11524
|
+
for (var T = 5, L = 0, C, B = 1e-4, O = 5e-4, D, V = r.knots[0], q = K.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], K.last(r.controlPoints))) < rt.EPSILON, H = l, j = function(Y) {
|
|
11525
11525
|
return N.rationalCurveDerivatives(r, Y, 2);
|
|
11526
|
-
},
|
|
11527
|
-
var Gt = m.dot(pt[1],
|
|
11528
|
-
return Y - Gt /
|
|
11526
|
+
}, X = function(Y, pt, Pt) {
|
|
11527
|
+
var Gt = m.dot(pt[1], Pt), Xt = m.dot(pt[2], Pt), Dt = m.dot(pt[1], pt[1]), Kt = Xt + Dt;
|
|
11528
|
+
return Y - Gt / Kt;
|
|
11529
11529
|
}; L < T; ) {
|
|
11530
11530
|
C = j(H), D = m.sub(C[0], n);
|
|
11531
11531
|
var tt = m.norm(D), et = m.dot(C[1], D), it = m.norm(C[1]) * tt, ht = et / it, at = tt < B, ct = Math.abs(ht) < O;
|
|
11532
11532
|
if (at && ct) return H;
|
|
11533
|
-
var nt =
|
|
11533
|
+
var nt = X(H, C, D);
|
|
11534
11534
|
nt < V ? J ? nt = q - (nt - V) : nt = V : nt > q && (J ? nt = V + (nt - q) : nt = q);
|
|
11535
11535
|
var dt = m.norm(m.mul(nt - H, C[1]));
|
|
11536
11536
|
if (dt < B) return H;
|
|
@@ -11552,25 +11552,25 @@ var ih = { exports: {} };
|
|
|
11552
11552
|
}, vt.rationalBezierCurveParamAtArcLength = function(r, n, a, l) {
|
|
11553
11553
|
if (n < 0) return r.knots[0];
|
|
11554
11554
|
var u;
|
|
11555
|
-
if (l != null ? u = l : u = vt.rationalBezierCurveArcLength(r), n > u) return
|
|
11556
|
-
var d = r.knots[0], p = 0, _ =
|
|
11555
|
+
if (l != null ? u = l : u = vt.rationalBezierCurveArcLength(r), n > u) return K.last(r.knots);
|
|
11556
|
+
var d = r.knots[0], p = 0, _ = K.last(r.knots), v = u, w = 0, P = 0, A;
|
|
11557
11557
|
for (a != null ? A = a : A = rt.TOLERANCE * 2; v - p > A; )
|
|
11558
|
-
w = (d + _) / 2,
|
|
11558
|
+
w = (d + _) / 2, P = vt.rationalBezierCurveArcLength(r, w), P > n ? (_ = w, v = P) : (d = w, p = P);
|
|
11559
11559
|
return (d + _) / 2;
|
|
11560
11560
|
}, vt.rationalCurveArcLength = function(r, n, a) {
|
|
11561
|
-
a == null && (a = 16), n == null ? n =
|
|
11561
|
+
a == null && (a = 16), n == null ? n = K.last(r.knots) : n = n;
|
|
11562
11562
|
for (var l = ft.decomposeCurveIntoBeziers(r), u = 0, d = l[0], p = 0; u < l.length && d.knots[0] + rt.EPSILON < n; ) {
|
|
11563
|
-
var _ = Math.min(
|
|
11563
|
+
var _ = Math.min(K.last(d.knots), n);
|
|
11564
11564
|
p += vt.rationalBezierCurveArcLength(d, _, a), d = l[++u];
|
|
11565
11565
|
}
|
|
11566
11566
|
return p;
|
|
11567
11567
|
}, vt.rationalBezierCurveArcLength = function(r, n, a) {
|
|
11568
11568
|
a == null && (a = 16);
|
|
11569
11569
|
var l;
|
|
11570
|
-
n == null ? l =
|
|
11570
|
+
n == null ? l = K.last(r.knots) : l = n;
|
|
11571
11571
|
for (var u = (l - r.knots[0]) / 2, d = 0, p = r.degree + a, _, v, w = 0; w < p; ) {
|
|
11572
|
-
var
|
|
11573
|
-
_ = u * vt.Tvalues[p][
|
|
11572
|
+
var P = w++;
|
|
11573
|
+
_ = u * vt.Tvalues[p][P] + u + r.knots[0], v = N.rationalCurveDerivatives(r, _, 1), d += vt.Cvalues[p][P] * m.norm(v[1]);
|
|
11574
11574
|
}
|
|
11575
11575
|
return u * d;
|
|
11576
11576
|
};
|
|
@@ -11587,18 +11587,18 @@ var ih = { exports: {} };
|
|
|
11587
11587
|
};
|
|
11588
11588
|
b["verb.eval.Check"] = Ue, Ue.__name__ = ["verb", "eval", "Check"], Ue.isValidKnotVector = function(r, n) {
|
|
11589
11589
|
if (r.length == 0 || r.length < (n + 1) * 2) return !1;
|
|
11590
|
-
for (var a =
|
|
11590
|
+
for (var a = K.first(r), l = 0, u = n + 1; l < u; ) {
|
|
11591
11591
|
var d = l++;
|
|
11592
11592
|
if (Math.abs(r[d] - a) > rt.EPSILON) return !1;
|
|
11593
11593
|
}
|
|
11594
|
-
a =
|
|
11594
|
+
a = K.last(r);
|
|
11595
11595
|
for (var p = r.length - n - 1, _ = r.length; p < _; ) {
|
|
11596
11596
|
var v = p++;
|
|
11597
11597
|
if (Math.abs(r[v] - a) > rt.EPSILON) return !1;
|
|
11598
11598
|
}
|
|
11599
11599
|
return Ue.isNonDecreasing(r);
|
|
11600
11600
|
}, Ue.isNonDecreasing = function(r) {
|
|
11601
|
-
for (var n =
|
|
11601
|
+
for (var n = K.first(r), a = 0, l = r.length; a < l; ) {
|
|
11602
11602
|
var u = a++;
|
|
11603
11603
|
if (r[u] < n - rt.EPSILON) return !1;
|
|
11604
11604
|
n = r[u];
|
|
@@ -11634,20 +11634,20 @@ var ih = { exports: {} };
|
|
|
11634
11634
|
for (var p, _ = [], v = 0, w = u + 1; v < w; )
|
|
11635
11635
|
v++, _.push(n);
|
|
11636
11636
|
p = _;
|
|
11637
|
-
for (var
|
|
11637
|
+
for (var P = [], A = [], I = N.knotSpan(u, n, l), k = null, T = 0; T < d.length; ) {
|
|
11638
11638
|
var L = d[T];
|
|
11639
|
-
++T, k = ft.curveKnotRefine(new jt(u, l, L), p),
|
|
11639
|
+
++T, k = ft.curveKnotRefine(new jt(u, l, L), p), P.push(k.controlPoints.slice(0, I + 1)), A.push(k.controlPoints.slice(I + 1));
|
|
11640
11640
|
}
|
|
11641
11641
|
var C = k.knots.slice(0, I + u + 2), B = k.knots.slice(I + 1);
|
|
11642
|
-
return a ? [new te(r.degreeU, u, r.knotsU.slice(), C,
|
|
11642
|
+
return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, P), new te(r.degreeU, u, r.knotsU.slice(), B, A)] : (P = Ct.transpose(P), A = Ct.transpose(A), [new te(u, r.degreeV, C, r.knotsV.slice(), P), new te(u, r.degreeV, B, r.knotsV.slice(), A)]);
|
|
11643
11643
|
}, oe.curveSplit = function(r, n) {
|
|
11644
11644
|
var a = r.degree;
|
|
11645
11645
|
r.controlPoints;
|
|
11646
11646
|
for (var l = r.knots, u, d = [], p = 0, _ = a + 1; p < _; )
|
|
11647
11647
|
p++, d.push(n);
|
|
11648
11648
|
u = d;
|
|
11649
|
-
var v = ft.curveKnotRefine(r, u), w = N.knotSpan(a, n, l),
|
|
11650
|
-
return [new jt(a,
|
|
11649
|
+
var v = ft.curveKnotRefine(r, u), w = N.knotSpan(a, n, l), P = v.knots.slice(0, w + a + 2), A = v.knots.slice(w + 1), I = v.controlPoints.slice(0, w + 1), k = v.controlPoints.slice(w + 1);
|
|
11650
|
+
return [new jt(a, P, I), new jt(a, A, k)];
|
|
11651
11651
|
}, oe.rationalCurveByEqualArcLength = function(r, n) {
|
|
11652
11652
|
var a = vt.rationalCurveArcLength(r), l = a / n;
|
|
11653
11653
|
return oe.rationalCurveByArcLength(r, l);
|
|
@@ -11656,10 +11656,10 @@ var ih = { exports: {} };
|
|
|
11656
11656
|
return vt.rationalBezierCurveArcLength(I);
|
|
11657
11657
|
}), u = m.sum(l), d = [new xn(r.knots[0], 0)];
|
|
11658
11658
|
if (n > u) return d;
|
|
11659
|
-
for (var p = n, _ = 0, v = p, w = 0,
|
|
11659
|
+
for (var p = n, _ = 0, v = p, w = 0, P = 0, A; _ < a.length; ) {
|
|
11660
11660
|
for (w += l[_]; v < w + rt.EPSILON; )
|
|
11661
|
-
A = vt.rationalBezierCurveParamAtArcLength(a[_], v -
|
|
11662
|
-
|
|
11661
|
+
A = vt.rationalBezierCurveParamAtArcLength(a[_], v - P, rt.TOLERANCE, l[_]), d.push(new xn(A, v)), v += p;
|
|
11662
|
+
P += l[_], _++;
|
|
11663
11663
|
}
|
|
11664
11664
|
return d;
|
|
11665
11665
|
};
|
|
@@ -11679,7 +11679,7 @@ var ih = { exports: {} };
|
|
|
11679
11679
|
return m.cross(l[1][0], l[0][1]);
|
|
11680
11680
|
}, N.rationalSurfaceDerivatives = function(r, n, a, l) {
|
|
11681
11681
|
l == null && (l = 1);
|
|
11682
|
-
for (var u = N.surfaceDerivatives(r, n, a, l), d = N.rational2d(u), p = N.weight2d(u), _ = [], v = d[0][0].length, w = 0,
|
|
11682
|
+
for (var u = N.surfaceDerivatives(r, n, a, l), d = N.rational2d(u), p = N.weight2d(u), _ = [], v = d[0][0].length, w = 0, P = l + 1; w < P; ) {
|
|
11683
11683
|
var A = w++;
|
|
11684
11684
|
_.push([]);
|
|
11685
11685
|
for (var I = 0, k = l - A + 1; I < k; ) {
|
|
@@ -11691,8 +11691,8 @@ var ih = { exports: {} };
|
|
|
11691
11691
|
var q = D++;
|
|
11692
11692
|
m.subMulMutate(L, Rt.get(A, q) * p[q][0], _[A - q][T]);
|
|
11693
11693
|
for (var J = m.zeros1d(v), H = 1, j = T + 1; H < j; ) {
|
|
11694
|
-
var
|
|
11695
|
-
m.addMulMutate(J, Rt.get(T,
|
|
11694
|
+
var X = H++;
|
|
11695
|
+
m.addMulMutate(J, Rt.get(T, X) * p[q][X], _[A - q][T - X]);
|
|
11696
11696
|
}
|
|
11697
11697
|
m.subMulMutate(L, Rt.get(A, q), J);
|
|
11698
11698
|
}
|
|
@@ -11705,11 +11705,11 @@ var ih = { exports: {} };
|
|
|
11705
11705
|
}, N.rationalCurveDerivatives = function(r, n, a) {
|
|
11706
11706
|
a == null && (a = 1);
|
|
11707
11707
|
for (var l = N.curveDerivatives(r, n, a), u = N.rational1d(l), d = N.weight1d(l), p = [], _ = 0, v = a + 1; _ < v; ) {
|
|
11708
|
-
for (var w = _++,
|
|
11708
|
+
for (var w = _++, P = u[w], A = 1, I = w + 1; A < I; ) {
|
|
11709
11709
|
var k = A++;
|
|
11710
|
-
m.subMulMutate(
|
|
11710
|
+
m.subMulMutate(P, Rt.get(w, k) * d[k], p[w - k]);
|
|
11711
11711
|
}
|
|
11712
|
-
m.mulMutate(1 / d[0],
|
|
11712
|
+
m.mulMutate(1 / d[0], P), p.push(P);
|
|
11713
11713
|
}
|
|
11714
11714
|
return p;
|
|
11715
11715
|
}, N.rationalCurvePoint = function(r, n) {
|
|
@@ -11718,14 +11718,14 @@ var ih = { exports: {} };
|
|
|
11718
11718
|
var u = r.knotsU.length - r.degreeU - 2, d = r.knotsV.length - r.degreeV - 2;
|
|
11719
11719
|
return N.surfaceDerivativesGivenNM(u, d, r, n, a, l);
|
|
11720
11720
|
}, N.surfaceDerivativesGivenNM = function(r, n, a, l, u, d) {
|
|
11721
|
-
var p = a.degreeU, _ = a.degreeV, v = a.controlPoints, w = a.knotsU,
|
|
11722
|
-
if (!N.areValidRelations(p, v.length, w.length) || !N.areValidRelations(_, v[0].length,
|
|
11721
|
+
var p = a.degreeU, _ = a.degreeV, v = a.controlPoints, w = a.knotsU, P = a.knotsV;
|
|
11722
|
+
if (!N.areValidRelations(p, v.length, w.length) || !N.areValidRelations(_, v[0].length, P.length)) throw new Q("Invalid relations between control points, knot vector, and n");
|
|
11723
11723
|
var A = v[0][0].length, I;
|
|
11724
11724
|
d < p ? I = d : I = p;
|
|
11725
11725
|
var k;
|
|
11726
11726
|
d < _ ? k = d : k = _;
|
|
11727
|
-
for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u,
|
|
11728
|
-
for (var H = q++, j = 0,
|
|
11727
|
+
for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, P), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), O = N.derivativeBasisFunctionsGivenNI(C, u, _, n, P), D = m.zeros2d(_ + 1, A), V = 0, q = 0, J = I + 1; q < J; ) {
|
|
11728
|
+
for (var H = q++, j = 0, X = _ + 1; j < X; ) {
|
|
11729
11729
|
var tt = j++;
|
|
11730
11730
|
D[tt] = m.zeros1d(A);
|
|
11731
11731
|
for (var et = 0, it = p + 1; et < it; ) {
|
|
@@ -11739,8 +11739,8 @@ var ih = { exports: {} };
|
|
|
11739
11739
|
var dt = ct++;
|
|
11740
11740
|
T[H][dt] = m.zeros1d(A);
|
|
11741
11741
|
for (var Y = 0, pt = _ + 1; Y < pt; ) {
|
|
11742
|
-
var
|
|
11743
|
-
m.addMulMutate(T[H][dt], O[dt][
|
|
11742
|
+
var Pt = Y++;
|
|
11743
|
+
m.addMulMutate(T[H][dt], O[dt][Pt], D[Pt]);
|
|
11744
11744
|
}
|
|
11745
11745
|
}
|
|
11746
11746
|
}
|
|
@@ -11751,9 +11751,9 @@ var ih = { exports: {} };
|
|
|
11751
11751
|
}, N.surfacePointGivenNM = function(r, n, a, l, u) {
|
|
11752
11752
|
var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, w = a.knotsV;
|
|
11753
11753
|
if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, w.length)) throw new Q("Invalid relations between control points, knot vector, and n");
|
|
11754
|
-
for (var
|
|
11754
|
+
for (var P = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), I = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(I, u, p, w), L = A - d, C = I, B = m.zeros1d(P), O = m.zeros1d(P), D = 0, V = p + 1; D < V; ) {
|
|
11755
11755
|
var q = D++;
|
|
11756
|
-
O = m.zeros1d(
|
|
11756
|
+
O = m.zeros1d(P), C = I - p + q;
|
|
11757
11757
|
for (var J = 0, H = d + 1; J < H; ) {
|
|
11758
11758
|
var j = J++;
|
|
11759
11759
|
m.addMulMutate(O, k[j], _[L + j][C]);
|
|
@@ -11762,24 +11762,24 @@ var ih = { exports: {} };
|
|
|
11762
11762
|
}
|
|
11763
11763
|
return B;
|
|
11764
11764
|
}, N.curveRegularSamplePoints = function(r, n) {
|
|
11765
|
-
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _),
|
|
11766
|
-
k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w,
|
|
11765
|
+
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _), P = m.add(v, v), A = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
|
|
11766
|
+
k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w, P]), m.addAllMutate([_, v]);
|
|
11767
11767
|
return I;
|
|
11768
11768
|
}, N.curveRegularSamplePoints2 = function(r, n) {
|
|
11769
|
-
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _),
|
|
11770
|
-
k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w,
|
|
11769
|
+
for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _), P = m.add(v, v), A = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
|
|
11770
|
+
k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w, P]), m.addAllMutate([_, v]);
|
|
11771
11771
|
return I;
|
|
11772
11772
|
}, N.rationalSurfaceRegularSampleDerivatives = function(r, n, a, l) {
|
|
11773
11773
|
for (var u = N.surfaceRegularSampleDerivatives(r, n, a, l), d = [], p = n + 1, _ = a + 1, v = l + 1, w = 0; w < p; ) {
|
|
11774
|
-
var
|
|
11774
|
+
var P = w++, A = [];
|
|
11775
11775
|
d.push(A);
|
|
11776
11776
|
for (var I = 0; I < _; ) {
|
|
11777
|
-
for (var k = I++, T = u[
|
|
11777
|
+
for (var k = I++, T = u[P][k], L = N.rational2d(T), C = N.weight2d(T), B = [], O = L[0][0].length, D = 0; D < v; ) {
|
|
11778
11778
|
var V = D++;
|
|
11779
11779
|
B.push([]);
|
|
11780
11780
|
for (var q = 0, J = v - V; q < J; ) {
|
|
11781
|
-
for (var H = q++, j = L[V][H],
|
|
11782
|
-
var et =
|
|
11781
|
+
for (var H = q++, j = L[V][H], X = 1, tt = H + 1; X < tt; ) {
|
|
11782
|
+
var et = X++;
|
|
11783
11783
|
m.subMulMutate(j, Rt.get(H, et) * C[0][et], B[V][H - et]);
|
|
11784
11784
|
}
|
|
11785
11785
|
for (var it = 1, ht = V + 1; it < ht; ) {
|
|
@@ -11800,8 +11800,8 @@ var ih = { exports: {} };
|
|
|
11800
11800
|
return d;
|
|
11801
11801
|
}, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
|
|
11802
11802
|
var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, w = p[0][0].length;
|
|
11803
|
-
(
|
|
11804
|
-
for (var
|
|
11803
|
+
(K.last(_) - _[0]) / n, (K.last(v) - v[0]) / a;
|
|
11804
|
+
for (var P = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = P.item0, I = P.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, O = a + 1, D = 0; D < B; ) {
|
|
11805
11805
|
var V = D++, q = [];
|
|
11806
11806
|
C.push(q);
|
|
11807
11807
|
for (var J = 0; J < O; ) {
|
|
@@ -11814,45 +11814,45 @@ var ih = { exports: {} };
|
|
|
11814
11814
|
return N.dehomogenize2d(N.surfaceRegularSamplePoints(r, n, a));
|
|
11815
11815
|
}, N.surfaceRegularSamplePoints = function(r, n, a) {
|
|
11816
11816
|
var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
|
|
11817
|
-
(
|
|
11818
|
-
for (var w = N.regularlySpacedBasisFunctions(l, p, n),
|
|
11817
|
+
(K.last(p) - p[0]) / n, (K.last(_) - _[0]) / a;
|
|
11818
|
+
for (var w = N.regularlySpacedBasisFunctions(l, p, n), P = w.item0, A = w.item1, I = N.regularlySpacedBasisFunctions(u, _, a), k = I.item0, T = I.item1, L = [], C = n + 1, B = a + 1, O = 0; O < C; ) {
|
|
11819
11819
|
var D = O++, V = [];
|
|
11820
11820
|
L.push(V);
|
|
11821
11821
|
for (var q = 0; q < B; ) {
|
|
11822
11822
|
var J = q++;
|
|
11823
|
-
V.push(N.surfacePointGivenBasesKnotSpans(l, u, d,
|
|
11823
|
+
V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, P[D], k[J], A[D], T[J], v));
|
|
11824
11824
|
}
|
|
11825
11825
|
}
|
|
11826
11826
|
return L;
|
|
11827
11827
|
}, N.regularlySpacedBasisFunctions = function(r, n, a) {
|
|
11828
|
-
for (var l = n.length - r - 2, u = (
|
|
11829
|
-
for (
|
|
11828
|
+
for (var l = n.length - r - 2, u = (K.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), w = a + 1, P = 0; P < w; ) {
|
|
11829
|
+
for (P++; _ >= n[v + 1]; ) v++;
|
|
11830
11830
|
p.push(v), d.push(N.basisFunctionsGivenKnotSpanIndex(v, _, r, n)), _ += u;
|
|
11831
11831
|
}
|
|
11832
11832
|
return new ee(p, d);
|
|
11833
11833
|
}, N.regularlySpacedDerivativeBasisFunctions = function(r, n, a) {
|
|
11834
|
-
for (var l = n.length - r - 2, u = (
|
|
11835
|
-
for (
|
|
11834
|
+
for (var l = n.length - r - 2, u = (K.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), w = a + 1, P = 0; P < w; ) {
|
|
11835
|
+
for (P++; _ >= n[v + 1]; ) v++;
|
|
11836
11836
|
p.push(v), d.push(N.derivativeBasisFunctionsGivenNI(v, _, r, l, n)), _ += u;
|
|
11837
11837
|
}
|
|
11838
11838
|
return new ee(p, d);
|
|
11839
11839
|
}, N.surfacePointGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _) {
|
|
11840
|
-
for (var v = m.zeros1d(_), w,
|
|
11840
|
+
for (var v = m.zeros1d(_), w, P = l - r, A = u - n, I = 0, k = n + 1; I < k; ) {
|
|
11841
11841
|
var T = I++;
|
|
11842
11842
|
w = m.zeros1d(_);
|
|
11843
11843
|
for (var L = 0, C = r + 1; L < C; ) {
|
|
11844
11844
|
var B = L++;
|
|
11845
|
-
m.addMulMutate(w, d[B], a[
|
|
11845
|
+
m.addMulMutate(w, d[B], a[P + B][A]);
|
|
11846
11846
|
}
|
|
11847
11847
|
A++, m.addMulMutate(v, p[T], w);
|
|
11848
11848
|
}
|
|
11849
11849
|
return v;
|
|
11850
11850
|
}, N.surfaceDerivativesGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _, v) {
|
|
11851
|
-
var w = a[0][0].length,
|
|
11852
|
-
v < r ?
|
|
11851
|
+
var w = a[0][0].length, P;
|
|
11852
|
+
v < r ? P = v : P = r;
|
|
11853
11853
|
var A;
|
|
11854
11854
|
v < n ? A = v : A = n;
|
|
11855
|
-
for (var I = m.zeros3d(
|
|
11855
|
+
for (var I = m.zeros3d(P + 1, A + 1, w), k = m.zeros2d(n + 1, w), T = 0, L = 0, C = P + 1; L < C; ) {
|
|
11856
11856
|
for (var B = L++, O = 0, D = n + 1; O < D; ) {
|
|
11857
11857
|
var V = O++;
|
|
11858
11858
|
k[V] = m.zeros1d(w);
|
|
@@ -11863,8 +11863,8 @@ var ih = { exports: {} };
|
|
|
11863
11863
|
}
|
|
11864
11864
|
var j = v - B;
|
|
11865
11865
|
j < A ? T = j : T = A;
|
|
11866
|
-
for (var
|
|
11867
|
-
var et =
|
|
11866
|
+
for (var X = 0, tt = T + 1; X < tt; ) {
|
|
11867
|
+
var et = X++;
|
|
11868
11868
|
I[B][et] = m.zeros1d(w);
|
|
11869
11869
|
for (var it = 0, ht = n + 1; it < ht; ) {
|
|
11870
11870
|
var at = it++;
|
|
@@ -11881,10 +11881,10 @@ var ih = { exports: {} };
|
|
|
11881
11881
|
if (!N.areValidRelations(u, d.length, p.length)) throw new Q("Invalid relations between control points, knot vector, and n");
|
|
11882
11882
|
var _ = d[0].length, v;
|
|
11883
11883
|
l < u ? v = l : v = u;
|
|
11884
|
-
for (var w = m.zeros2d(l + 1, _),
|
|
11884
|
+
for (var w = m.zeros2d(l + 1, _), P = N.knotSpanGivenN(r, u, a, p), A = N.derivativeBasisFunctionsGivenNI(P, a, u, v, p), I = 0, k = v + 1; I < k; )
|
|
11885
11885
|
for (var T = I++, L = 0, C = u + 1; L < C; ) {
|
|
11886
11886
|
var B = L++;
|
|
11887
|
-
m.addMulMutate(w[T], A[T][B], d[
|
|
11887
|
+
m.addMulMutate(w[T], A[T][B], d[P - u + B]);
|
|
11888
11888
|
}
|
|
11889
11889
|
return w;
|
|
11890
11890
|
}, N.curvePoint = function(r, n) {
|
|
@@ -11896,7 +11896,7 @@ var ih = { exports: {} };
|
|
|
11896
11896
|
var l = n.degree, u = n.controlPoints, d = n.knots;
|
|
11897
11897
|
if (!N.areValidRelations(l, u.length, d.length))
|
|
11898
11898
|
throw new Q("Invalid relations between control points, knot Array, and n");
|
|
11899
|
-
for (var p = N.knotSpanGivenN(r, l, a, d), _ = N.basisFunctionsGivenKnotSpanIndex(p, a, l, d), v = m.zeros1d(u[0].length), w = 0,
|
|
11899
|
+
for (var p = N.knotSpanGivenN(r, l, a, d), _ = N.basisFunctionsGivenKnotSpanIndex(p, a, l, d), v = m.zeros1d(u[0].length), w = 0, P = l + 1; w < P; ) {
|
|
11900
11900
|
var A = w++;
|
|
11901
11901
|
m.addMulMutate(v, _[A], u[p - l + A]);
|
|
11902
11902
|
}
|
|
@@ -11906,10 +11906,10 @@ var ih = { exports: {} };
|
|
|
11906
11906
|
return N.volumePointGivenNML(r, u, d, p, n, a, l);
|
|
11907
11907
|
}, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
|
|
11908
11908
|
if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
|
|
11909
|
-
for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV,
|
|
11910
|
-
var et =
|
|
11909
|
+
for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, P = r.degreeW, A = r.knotsU, I = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, I), B = N.knotSpanGivenN(l, P, p, k), O = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A), D = N.basisFunctionsGivenKnotSpanIndex(C, d, w, I), V = N.basisFunctionsGivenKnotSpanIndex(B, p, P, k), q = L - v, J = m.zeros1d(T), H = m.zeros1d(T), j = m.zeros1d(T), X = 0, tt = P + 1; X < tt; ) {
|
|
11910
|
+
var et = X++;
|
|
11911
11911
|
j = m.zeros1d(T);
|
|
11912
|
-
for (var it = B -
|
|
11912
|
+
for (var it = B - P + et, ht = 0, at = w + 1; ht < at; ) {
|
|
11913
11913
|
var ct = ht++;
|
|
11914
11914
|
H = m.zeros1d(T);
|
|
11915
11915
|
for (var nt = C - w + ct, dt = 0, Y = v + 1; dt < Y; ) {
|
|
@@ -11927,8 +11927,8 @@ var ih = { exports: {} };
|
|
|
11927
11927
|
}, N.derivativeBasisFunctionsGivenNI = function(r, n, a, l, u) {
|
|
11928
11928
|
var d = m.zeros2d(a + 1, a + 1), p = m.zeros1d(a + 1), _ = m.zeros1d(a + 1), v = 0, w = 0;
|
|
11929
11929
|
d[0][0] = 1;
|
|
11930
|
-
for (var
|
|
11931
|
-
var I =
|
|
11930
|
+
for (var P = 1, A = a + 1; P < A; ) {
|
|
11931
|
+
var I = P++;
|
|
11932
11932
|
p[I] = n - u[r + 1 - I], _[I] = u[r + I] - n, v = 0;
|
|
11933
11933
|
for (var k = 0; k < I; ) {
|
|
11934
11934
|
var T = k++;
|
|
@@ -11936,7 +11936,7 @@ var ih = { exports: {} };
|
|
|
11936
11936
|
}
|
|
11937
11937
|
d[I][I] = v;
|
|
11938
11938
|
}
|
|
11939
|
-
for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, O = 1, D = 0, V = 0, q = 0, J = 0, H = 0, j = 0,
|
|
11939
|
+
for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, O = 1, D = 0, V = 0, q = 0, J = 0, H = 0, j = 0, X = a + 1; j < X; ) {
|
|
11940
11940
|
var tt = j++;
|
|
11941
11941
|
L[0][tt] = d[tt][a];
|
|
11942
11942
|
}
|
|
@@ -11951,16 +11951,16 @@ var ih = { exports: {} };
|
|
|
11951
11951
|
C[O][pt] = (C[B][pt] - C[B][pt - 1]) / d[q + 1][V + pt], D += C[O][pt] * d[V + pt][q];
|
|
11952
11952
|
}
|
|
11953
11953
|
ht <= q && (C[O][nt] = -C[B][nt - 1] / d[q + 1][ht], D += C[O][nt] * d[ht][q]), L[nt][ht] = D;
|
|
11954
|
-
var
|
|
11955
|
-
B = O, O =
|
|
11954
|
+
var Pt = B;
|
|
11955
|
+
B = O, O = Pt;
|
|
11956
11956
|
}
|
|
11957
11957
|
}
|
|
11958
|
-
for (var Gt = a,
|
|
11959
|
-
for (var
|
|
11958
|
+
for (var Gt = a, Xt = 1, Dt = l + 1; Xt < Dt; ) {
|
|
11959
|
+
for (var Kt = Xt++, Ae = 0, Ve = a + 1; Ae < Ve; ) {
|
|
11960
11960
|
var _e = Ae++;
|
|
11961
|
-
L[
|
|
11961
|
+
L[Kt][_e] *= Gt;
|
|
11962
11962
|
}
|
|
11963
|
-
Gt *= a -
|
|
11963
|
+
Gt *= a - Kt;
|
|
11964
11964
|
}
|
|
11965
11965
|
return L;
|
|
11966
11966
|
}, N.basisFunctions = function(r, n, a) {
|
|
@@ -11969,7 +11969,7 @@ var ih = { exports: {} };
|
|
|
11969
11969
|
}, N.basisFunctionsGivenKnotSpanIndex = function(r, n, a, l) {
|
|
11970
11970
|
var u = m.zeros1d(a + 1), d = m.zeros1d(a + 1), p = m.zeros1d(a + 1), _ = 0, v = 0;
|
|
11971
11971
|
u[0] = 1;
|
|
11972
|
-
for (var w = 1,
|
|
11972
|
+
for (var w = 1, P = a + 1; w < P; ) {
|
|
11973
11973
|
var A = w++;
|
|
11974
11974
|
d[A] = n - l[r + 1 - A], p[A] = l[r + A] - n, _ = 0;
|
|
11975
11975
|
for (var I = 0; I < A; ) {
|
|
@@ -12015,13 +12015,13 @@ var ih = { exports: {} };
|
|
|
12015
12015
|
var a = r.length, l = r[0].length, u = [], d = 0, p = [], _;
|
|
12016
12016
|
n != null ? _ = n : _ = m.rep(r.length, 1);
|
|
12017
12017
|
for (var v = 0; v < a; ) {
|
|
12018
|
-
var w = v++,
|
|
12018
|
+
var w = v++, P = [];
|
|
12019
12019
|
p = r[w], d = _[w];
|
|
12020
12020
|
for (var A = 0; A < l; ) {
|
|
12021
12021
|
var I = A++;
|
|
12022
|
-
|
|
12022
|
+
P.push(p[I] * d);
|
|
12023
12023
|
}
|
|
12024
|
-
|
|
12024
|
+
P.push(d), u.push(P);
|
|
12025
12025
|
}
|
|
12026
12026
|
return u;
|
|
12027
12027
|
}, N.homogenize2d = function(r, n) {
|
|
@@ -12052,31 +12052,31 @@ var ih = { exports: {} };
|
|
|
12052
12052
|
}), 3);
|
|
12053
12053
|
});
|
|
12054
12054
|
}, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
|
|
12055
|
-
var d, p, _, v, w,
|
|
12055
|
+
var d, p, _, v, w, P, A, I, k, T, L, C, B, O = 5, D = 0;
|
|
12056
12056
|
do {
|
|
12057
|
-
if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)),
|
|
12058
|
-
var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_,
|
|
12057
|
+
if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), P = m.dot(_, p), A = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), I = A[0][0], T = A[1][0], L = A[0][1], k = m.normalized(m.cross(T, L)), C = m.dot(k, I), B = m.distSquared(p, I), B < u * u) break;
|
|
12058
|
+
var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, P, k, C, V, q);
|
|
12059
12059
|
if (J == null) throw new Q("panic!");
|
|
12060
|
-
var H = m.sub(J, p), j = m.sub(J, I),
|
|
12060
|
+
var H = m.sub(J, p), j = m.sub(J, I), X = m.cross(v, _), tt = m.cross(w, _), et = m.cross(T, k), it = m.cross(L, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(X, H) / m.dot(X, w), ct = m.dot(it, j) / m.dot(it, T), nt = m.dot(et, j) / m.dot(et, L);
|
|
12061
12061
|
a = m.add([ht, at], a), l = m.add([ct, nt], l), D++;
|
|
12062
12062
|
} while (D < O);
|
|
12063
12063
|
return new Vn(a, l, p, B);
|
|
12064
12064
|
}, lt.meshes = function(r, n, a, l) {
|
|
12065
12065
|
a == null && (a = new ir(r)), l == null && (l = new ir(n));
|
|
12066
|
-
var u = lt.boundingBoxTrees(a, l, 0), d =
|
|
12066
|
+
var u = lt.boundingBoxTrees(a, l, 0), d = K.unique(u.map(function(p) {
|
|
12067
12067
|
return lt.triangles(r, p.item0, n, p.item1);
|
|
12068
12068
|
}).filter(function(p) {
|
|
12069
12069
|
return p != null;
|
|
12070
12070
|
}).filter(function(p) {
|
|
12071
12071
|
return m.distSquared(p.min.point, p.max.point) > rt.EPSILON;
|
|
12072
12072
|
}), function(p, _) {
|
|
12073
|
-
var v = m.sub(p.min.uv0, _.min.uv0), w = m.dot(v, v),
|
|
12073
|
+
var v = m.sub(p.min.uv0, _.min.uv0), w = m.dot(v, v), P = m.sub(p.max.uv0, _.max.uv0), A = m.dot(P, P), I = m.sub(p.min.uv0, _.max.uv0), k = m.dot(I, I), T = m.sub(p.max.uv0, _.min.uv0), L = m.dot(T, T);
|
|
12074
12074
|
return w < rt.EPSILON && A < rt.EPSILON || k < rt.EPSILON && L < rt.EPSILON;
|
|
12075
12075
|
});
|
|
12076
12076
|
return lt.makeMeshIntersectionPolylines(d);
|
|
12077
12077
|
}, lt.meshSlices = function(r, n, a, l) {
|
|
12078
|
-
for (var u = new Nr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], w = d.max[1],
|
|
12079
|
-
var k =
|
|
12078
|
+
for (var u = new Nr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], w = d.max[1], P = m.span(n, a, l), A = [], I = 0; I < P.length; ) {
|
|
12079
|
+
var k = P[I];
|
|
12080
12080
|
++I;
|
|
12081
12081
|
var T = [[p, _, k], [v, _, k], [v, w, k], [p, w, k]], L = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], B = new He(C, T, null, L);
|
|
12082
12082
|
A.push(lt.meshes(r, B, u));
|
|
@@ -12099,21 +12099,21 @@ var ih = { exports: {} };
|
|
|
12099
12099
|
w != null && w.adj == null && (v.adj = w, w.adj = v);
|
|
12100
12100
|
}
|
|
12101
12101
|
}
|
|
12102
|
-
var
|
|
12102
|
+
var P = u.filter(function(O) {
|
|
12103
12103
|
return O.adj == null;
|
|
12104
12104
|
});
|
|
12105
|
-
|
|
12106
|
-
for (var A = [], I = 0, k = !1;
|
|
12107
|
-
var T =
|
|
12105
|
+
P.length == 0 && (P = u);
|
|
12106
|
+
for (var A = [], I = 0, k = !1; P.length != 0; ) {
|
|
12107
|
+
var T = P.pop();
|
|
12108
12108
|
if (!T.visited) {
|
|
12109
12109
|
for (var L = [], C = T; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, L.push(C), I += 2, C = C.opp.adj, C == T)); )
|
|
12110
12110
|
;
|
|
12111
12111
|
L.length > 0 && (L.push(L[L.length - 1].opp), A.push(L));
|
|
12112
12112
|
}
|
|
12113
|
-
if (
|
|
12113
|
+
if (P.length == 0 && u.length > 0 && (k || I < u.length)) {
|
|
12114
12114
|
k = !0;
|
|
12115
12115
|
var B = u.pop();
|
|
12116
|
-
|
|
12116
|
+
P.push(B);
|
|
12117
12117
|
}
|
|
12118
12118
|
}
|
|
12119
12119
|
return A;
|
|
@@ -12133,8 +12133,8 @@ var ih = { exports: {} };
|
|
|
12133
12133
|
}, lt.curveAndSurface = function(r, n, a, l, u) {
|
|
12134
12134
|
a == null && (a = 1e-3), l != null ? l = l : l = new sr(r), u != null ? u = u : u = new Tr(n);
|
|
12135
12135
|
var d = lt.boundingBoxTrees(l, u, a);
|
|
12136
|
-
return
|
|
12137
|
-
var _ = p.item0, v = p.item1, w =
|
|
12136
|
+
return K.unique(d.map(function(p) {
|
|
12137
|
+
var _ = p.item0, v = p.item1, w = K.first(_.knots), P = K.last(_.knots), A = (w + P) / 2, I = K.first(v.knotsU), k = K.last(v.knotsU), T = K.first(v.knotsV), L = K.last(v.knotsV), C = [(I + k) / 2, (T + L) / 2];
|
|
12138
12138
|
return lt.curveAndSurfaceWithEstimate(_, v, [A].concat(C), a);
|
|
12139
12139
|
}).filter(function(p) {
|
|
12140
12140
|
return m.distSquared(p.curvePoint, p.surfacePoint) < a * a;
|
|
@@ -12144,10 +12144,10 @@ var ih = { exports: {} };
|
|
|
12144
12144
|
}, lt.curveAndSurfaceWithEstimate = function(r, n, a, l) {
|
|
12145
12145
|
l == null && (l = 1e-3);
|
|
12146
12146
|
var u = function(v) {
|
|
12147
|
-
var w = N.rationalCurvePoint(r, v[0]),
|
|
12147
|
+
var w = N.rationalCurvePoint(r, v[0]), P = N.rationalSurfacePoint(n, v[1], v[2]), A = m.sub(w, P);
|
|
12148
12148
|
return m.dot(A, A);
|
|
12149
12149
|
}, d = function(v) {
|
|
12150
|
-
var w = N.rationalCurveDerivatives(r, v[0], 1),
|
|
12150
|
+
var w = N.rationalCurveDerivatives(r, v[0], 1), P = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), A = m.sub(P[0][0], w[0]), I = m.mul(-1, w[1]), k = P[1][0], T = P[0][1];
|
|
12151
12151
|
return [2 * m.dot(I, A), 2 * m.dot(k, A), 2 * m.dot(T, A)];
|
|
12152
12152
|
}, p = qe.uncmin(u, a, l * l, d), _ = p.solution;
|
|
12153
12153
|
return new Dn(_[0], [_[1], _[2]], N.rationalCurvePoint(r, _[0]), N.rationalSurfacePoint(n, _[1], _[2]));
|
|
@@ -12157,8 +12157,8 @@ var ih = { exports: {} };
|
|
|
12157
12157
|
++d;
|
|
12158
12158
|
var _ = p.item0, v = p.item1, w = lt.segmentWithTriangle(r.points[_], r.points[_ + 1], n.points, n.faces[v]);
|
|
12159
12159
|
if (w != null) {
|
|
12160
|
-
var
|
|
12161
|
-
u.push(new Un(
|
|
12160
|
+
var P = w.point, A = m.lerp(w.p, [r.params[_]], [r.params[_ + 1]])[0], I = re.triangleUVFromPoint(n, v, P);
|
|
12161
|
+
u.push(new Un(P, A, I, _, v));
|
|
12162
12162
|
}
|
|
12163
12163
|
}
|
|
12164
12164
|
return u;
|
|
@@ -12174,8 +12174,8 @@ var ih = { exports: {} };
|
|
|
12174
12174
|
d.push(new ee(p.yield(), _.yield()));
|
|
12175
12175
|
continue;
|
|
12176
12176
|
} else if (v && !w) {
|
|
12177
|
-
var
|
|
12178
|
-
l.push(p), u.push(
|
|
12177
|
+
var P = _.split();
|
|
12178
|
+
l.push(p), u.push(P.item1), l.push(p), u.push(P.item0);
|
|
12179
12179
|
continue;
|
|
12180
12180
|
} else if (!v && w) {
|
|
12181
12181
|
var A = p.split();
|
|
@@ -12189,8 +12189,8 @@ var ih = { exports: {} };
|
|
|
12189
12189
|
return d;
|
|
12190
12190
|
}, lt.curves = function(r, n, a) {
|
|
12191
12191
|
var l = lt.boundingBoxTrees(new sr(r), new sr(n), 0);
|
|
12192
|
-
return
|
|
12193
|
-
return lt.curvesWithEstimate(r, n,
|
|
12192
|
+
return K.unique(l.map(function(u) {
|
|
12193
|
+
return lt.curvesWithEstimate(r, n, K.first(u.item0.knots), K.first(u.item1.knots), a);
|
|
12194
12194
|
}).filter(function(u) {
|
|
12195
12195
|
return m.distSquared(u.point0, u.point1) < a;
|
|
12196
12196
|
}), function(u, d) {
|
|
@@ -12203,26 +12203,26 @@ var ih = { exports: {} };
|
|
|
12203
12203
|
}, p = function(I) {
|
|
12204
12204
|
var k = N.rationalCurveDerivatives(r, I[0], 1), T = N.rationalCurveDerivatives(n, I[1], 1), L = m.sub(k[0], T[0]), C = k[1], B = m.mul(-1, T[1]);
|
|
12205
12205
|
return [2 * m.dot(C, L), 2 * m.dot(B, L)];
|
|
12206
|
-
}, _ = qe.uncmin(d, [a, l], u * u, p), v = _.solution[0], w = _.solution[1],
|
|
12207
|
-
return new Gr(
|
|
12206
|
+
}, _ = qe.uncmin(d, [a, l], u * u, p), v = _.solution[0], w = _.solution[1], P = N.rationalCurvePoint(r, v), A = N.rationalCurvePoint(n, w);
|
|
12207
|
+
return new Gr(P, A, v, w);
|
|
12208
12208
|
}, lt.triangles = function(r, n, a, l) {
|
|
12209
|
-
var u = r.faces[n], d = a.faces[l], p = re.getTriangleNorm(r.points, u), _ = re.getTriangleNorm(a.points, d), v = r.points[u[0]], w = a.points[d[0]],
|
|
12210
|
-
if (
|
|
12211
|
-
var A = lt.clipRayInCoplanarTriangle(
|
|
12209
|
+
var u = r.faces[n], d = a.faces[l], p = re.getTriangleNorm(r.points, u), _ = re.getTriangleNorm(a.points, d), v = r.points[u[0]], w = a.points[d[0]], P = lt.planes(v, p, w, _);
|
|
12210
|
+
if (P == null) return null;
|
|
12211
|
+
var A = lt.clipRayInCoplanarTriangle(P, r, n);
|
|
12212
12212
|
if (A == null) return null;
|
|
12213
|
-
var I = lt.clipRayInCoplanarTriangle(
|
|
12213
|
+
var I = lt.clipRayInCoplanarTriangle(P, a, l);
|
|
12214
12214
|
if (I == null) return null;
|
|
12215
12215
|
var k = lt.mergeTriangleClipIntervals(A, I, r, n, a, l);
|
|
12216
12216
|
return k == null ? null : new we(new Mr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Mr(k.max.uv0, k.max.uv1, k.max.point, n, l));
|
|
12217
12217
|
}, lt.clipRayInCoplanarTriangle = function(r, n, a) {
|
|
12218
|
-
for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), w = _.map(m.norm),
|
|
12218
|
+
for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), w = _.map(m.norm), P = null, A = null, I = 0; I < 3; ) {
|
|
12219
12219
|
var k = I++, T = u[k], L = v[k], C = lt.rays(T, L, r.origin, r.dir);
|
|
12220
12220
|
if (C != null) {
|
|
12221
12221
|
var B = C.u0, O = C.u1;
|
|
12222
|
-
B < -rt.EPSILON || B > w[k] + rt.EPSILON || ((
|
|
12222
|
+
B < -rt.EPSILON || B > w[k] + rt.EPSILON || ((P == null || O < P.u) && (P = new gn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[k], p[k], B / w[k]))), (A == null || O > A.u) && (A = new gn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[k], p[k], B / w[k]))));
|
|
12223
12223
|
}
|
|
12224
12224
|
}
|
|
12225
|
-
return A == null ||
|
|
12225
|
+
return A == null || P == null ? null : new we(P, A);
|
|
12226
12226
|
}, lt.mergeTriangleClipIntervals = function(r, n, a, l, u, d) {
|
|
12227
12227
|
if (n.min.u > r.max.u + rt.EPSILON || r.min.u > n.max.u + rt.EPSILON) return null;
|
|
12228
12228
|
var p;
|
|
@@ -12236,9 +12236,9 @@ var ih = { exports: {} };
|
|
|
12236
12236
|
if (m.dot(u, u) < rt.EPSILON) return null;
|
|
12237
12237
|
var d = 0, p = Math.abs(u[0]), _ = Math.abs(u[1]), v = Math.abs(u[2]);
|
|
12238
12238
|
_ > p && (d = 1, p = _), v > p && (d = 2, p = v);
|
|
12239
|
-
var w,
|
|
12240
|
-
d == 0 ? (w = n[1],
|
|
12241
|
-
var k = -m.dot(r, n), T = -m.dot(a, l), L = w * I -
|
|
12239
|
+
var w, P, A, I;
|
|
12240
|
+
d == 0 ? (w = n[1], P = n[2], A = l[1], I = l[2]) : d == 1 ? (w = n[0], P = n[2], A = l[0], I = l[2]) : (w = n[0], P = n[1], A = l[0], I = l[1]);
|
|
12241
|
+
var k = -m.dot(r, n), T = -m.dot(a, l), L = w * I - P * A, C = (P * T - k * I) / L, B = (k * A - w * T) / L, O;
|
|
12242
12242
|
return d == 0 ? O = [0, C, B] : d == 1 ? O = [C, 0, B] : O = [C, B, 0], new pn(O, m.normalized(u));
|
|
12243
12243
|
}, lt.threePlanes = function(r, n, a, l, u, d) {
|
|
12244
12244
|
var p = m.cross(a, u), _ = m.dot(r, p);
|
|
@@ -12254,23 +12254,23 @@ var ih = { exports: {} };
|
|
|
12254
12254
|
}
|
|
12255
12255
|
return u;
|
|
12256
12256
|
}, lt.segments = function(r, n, a, l, u) {
|
|
12257
|
-
var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), w = Math.sqrt(m.dot(v, v)),
|
|
12257
|
+
var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), w = Math.sqrt(m.dot(v, v)), P = m.mul(1 / w, v), A = lt.rays(r, _, a, P);
|
|
12258
12258
|
if (A != null) {
|
|
12259
12259
|
var I = Math.min(Math.max(0, A.u0 / p), 1), k = Math.min(Math.max(0, A.u1 / w), 1), T = m.onRay(r, d, I), L = m.onRay(a, v, k), C = m.distSquared(T, L);
|
|
12260
12260
|
if (C < u * u) return new Gr(T, L, I, k);
|
|
12261
12261
|
}
|
|
12262
12262
|
return null;
|
|
12263
12263
|
}, lt.rays = function(r, n, a, l) {
|
|
12264
|
-
var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), w = m.dot(n, n),
|
|
12264
|
+
var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), w = m.dot(n, n), P = m.dot(l, l), A = w * P - u * u;
|
|
12265
12265
|
if (Math.abs(A) < rt.EPSILON) return null;
|
|
12266
12266
|
var I = u * (d - p) - w * (_ - v), k = I / A, T = (d - p + k * u) / w, L = m.onRay(r, n, T), C = m.onRay(a, l, k);
|
|
12267
12267
|
return new Gr(L, C, T, k);
|
|
12268
12268
|
}, lt.segmentWithTriangle = function(r, n, a, l) {
|
|
12269
|
-
var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), w = m.cross(_, v),
|
|
12269
|
+
var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), w = m.cross(_, v), P = m.sub(n, r), A = m.sub(r, u), I = -m.dot(w, A), k = m.dot(w, P);
|
|
12270
12270
|
if (Math.abs(k) < rt.EPSILON) return null;
|
|
12271
12271
|
var T = I / k;
|
|
12272
12272
|
if (T < 0 || T > 1) return null;
|
|
12273
|
-
var L = m.add(r, m.mul(T,
|
|
12273
|
+
var L = m.add(r, m.mul(T, P)), C = m.dot(_, v), B = m.dot(_, _), O = m.dot(v, v), D = m.sub(L, u), V = m.dot(D, _), q = m.dot(D, v), J = C * C - B * O;
|
|
12274
12274
|
if (Math.abs(J) < rt.EPSILON) return null;
|
|
12275
12275
|
var H = (C * q - O * V) / J, j = (C * V - B * q) / J;
|
|
12276
12276
|
return H > 1 + rt.EPSILON || j > 1 + rt.EPSILON || j < -rt.EPSILON || H < -rt.EPSILON || H + j > 1 + rt.EPSILON ? null : new jn(L, H, j, T);
|
|
@@ -12283,13 +12283,13 @@ var ih = { exports: {} };
|
|
|
12283
12283
|
var mt = f.eval.Make = function() {
|
|
12284
12284
|
};
|
|
12285
12285
|
b["verb.eval.Make"] = mt, mt.__name__ = ["verb", "eval", "Make"], mt.rationalTranslationalSurface = function(r, n) {
|
|
12286
|
-
for (var a = N.rationalCurvePoint(n,
|
|
12287
|
-
var w = v++,
|
|
12286
|
+
for (var a = N.rationalCurvePoint(n, K.first(n.knots)), l = K.first(n.knots), u = K.last(n.knots), d = 2 * n.controlPoints.length, p = (u - l) / (d - 1), _ = [], v = 0; v < d; ) {
|
|
12287
|
+
var w = v++, P = m.sub(N.rationalCurvePoint(n, l + w * p), a), A = ft.rationalCurveTransform(r, [[1, 0, 0, P[0]], [0, 1, 0, P[1]], [0, 0, 1, P[2]], [0, 0, 0, 1]]);
|
|
12288
12288
|
_.push(A);
|
|
12289
12289
|
}
|
|
12290
12290
|
return mt.loftedSurface(_);
|
|
12291
12291
|
}, mt.surfaceBoundaryCurves = function(r) {
|
|
12292
|
-
var n = mt.surfaceIsocurve(r,
|
|
12292
|
+
var n = mt.surfaceIsocurve(r, K.first(r.knotsU), !1), a = mt.surfaceIsocurve(r, K.last(r.knotsU), !1), l = mt.surfaceIsocurve(r, K.first(r.knotsV), !0), u = mt.surfaceIsocurve(r, K.last(r.knotsV), !0);
|
|
12293
12293
|
return [n, a, l, u];
|
|
12294
12294
|
}, mt.surfaceIsocurve = function(r, n, a) {
|
|
12295
12295
|
a == null && (a = !1);
|
|
@@ -12304,12 +12304,12 @@ var ih = { exports: {} };
|
|
|
12304
12304
|
break;
|
|
12305
12305
|
}
|
|
12306
12306
|
}
|
|
12307
|
-
var
|
|
12308
|
-
p >= 0 && (
|
|
12307
|
+
var P = u + 1;
|
|
12308
|
+
p >= 0 && (P = P - d[p].mult);
|
|
12309
12309
|
var A;
|
|
12310
|
-
|
|
12310
|
+
P > 0 ? A = ft.surfaceKnotRefine(r, m.rep(P, n), a) : A = r;
|
|
12311
12311
|
var I = N.knotSpan(u, n, l);
|
|
12312
|
-
return Math.abs(n -
|
|
12312
|
+
return Math.abs(n - K.first(l)) < rt.EPSILON ? I = 0 : Math.abs(n - K.last(l)) < rt.EPSILON && (I = (a ? A.controlPoints[0].length : A.controlPoints.length) - 1), a ? new jt(A.degreeU, A.knotsU, function(k) {
|
|
12313
12313
|
for (var T, L = [], C = 0, B = A.controlPoints; C < B.length; ) {
|
|
12314
12314
|
var O = B[C];
|
|
12315
12315
|
++C, L.push(O[I]);
|
|
@@ -12325,8 +12325,8 @@ var ih = { exports: {} };
|
|
|
12325
12325
|
return function(I) {
|
|
12326
12326
|
return I.controlPoints[A[0]];
|
|
12327
12327
|
};
|
|
12328
|
-
}(v)),
|
|
12329
|
-
d.push(
|
|
12328
|
+
}(v)), P = mt.rationalInterpCurve(w, n, !0);
|
|
12329
|
+
d.push(P.controlPoints), u = P.knots;
|
|
12330
12330
|
}
|
|
12331
12331
|
return new te(a, n, l, u, d);
|
|
12332
12332
|
}, mt.clonedCurve = function(r) {
|
|
@@ -12342,11 +12342,11 @@ var ih = { exports: {} };
|
|
|
12342
12342
|
}, mt.fourPointSurface = function(r, n, a, l, u) {
|
|
12343
12343
|
u == null && (u = 3);
|
|
12344
12344
|
for (var d = u, p = [], _ = 0, v = u + 1; _ < v; ) {
|
|
12345
|
-
for (var w = _++,
|
|
12345
|
+
for (var w = _++, P = [], A = 0, I = u + 1; A < I; ) {
|
|
12346
12346
|
var k = A++, T = 1 - w / d, L = m.lerp(T, r, n), C = m.lerp(T, l, a), B = m.lerp(1 - k / d, L, C);
|
|
12347
|
-
B.push(1),
|
|
12347
|
+
B.push(1), P.push(B);
|
|
12348
12348
|
}
|
|
12349
|
-
p.push(
|
|
12349
|
+
p.push(P);
|
|
12350
12350
|
}
|
|
12351
12351
|
var O = m.rep(u + 1, 0), D = m.rep(u + 1, 1);
|
|
12352
12352
|
return new te(u, u, O.concat(D), O.concat(D), p);
|
|
@@ -12355,7 +12355,7 @@ var ih = { exports: {} };
|
|
|
12355
12355
|
n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
|
|
12356
12356
|
var _ = u - l, v = 0;
|
|
12357
12357
|
_ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
|
|
12358
|
-
var w = _ / v,
|
|
12358
|
+
var w = _ / v, P = Math.cos(w / 2), A = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), I = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), L = 0, C = l, B = m.zeros1d(v * 2);
|
|
12359
12359
|
k[0] = A, B[0] = 1;
|
|
12360
12360
|
for (var O = 1, D = v + 1; O < D; ) {
|
|
12361
12361
|
var V = O++;
|
|
@@ -12363,11 +12363,11 @@ var ih = { exports: {} };
|
|
|
12363
12363
|
var q = m.add(r, m.add(m.mul(d * Math.cos(C), n), m.mul(p * Math.sin(C), a)));
|
|
12364
12364
|
B[L + 2] = 1, k[L + 2] = q;
|
|
12365
12365
|
var J = m.sub(m.mul(Math.cos(C), a), m.mul(Math.sin(C), n)), H = lt.rays(A, m.mul(1 / m.norm(I), I), q, m.mul(1 / m.norm(J), J)), j = m.add(A, m.mul(H.u0, I));
|
|
12366
|
-
B[L + 1] =
|
|
12366
|
+
B[L + 1] = P, k[L + 1] = j, L += 2, V < v && (A = q, I = J);
|
|
12367
12367
|
}
|
|
12368
|
-
for (var
|
|
12368
|
+
for (var X = 2 * v + 1, tt = 0; tt < 3; ) {
|
|
12369
12369
|
var et = tt++;
|
|
12370
|
-
T[et] = 0, T[et +
|
|
12370
|
+
T[et] = 0, T[et + X] = 1;
|
|
12371
12371
|
}
|
|
12372
12372
|
switch (v) {
|
|
12373
12373
|
case 2:
|
|
@@ -12393,7 +12393,7 @@ var ih = { exports: {} };
|
|
|
12393
12393
|
v++, _.push(1);
|
|
12394
12394
|
return p = _, new jt(1, n, N.homogenize1d(r.slice(0), p));
|
|
12395
12395
|
}, mt.extrudedSurface = function(r, n, a) {
|
|
12396
|
-
for (var l = [[], [], []], u = [[], [], []], d = N.dehomogenize1d(a.controlPoints), p = N.weight1d(a.controlPoints), _ = m.mul(n, r), v = m.mul(0.5 * n, r), w = 0,
|
|
12396
|
+
for (var l = [[], [], []], u = [[], [], []], d = N.dehomogenize1d(a.controlPoints), p = N.weight1d(a.controlPoints), _ = m.mul(n, r), v = m.mul(0.5 * n, r), w = 0, P = d.length; w < P; ) {
|
|
12397
12397
|
var A = w++;
|
|
12398
12398
|
l[2][A] = d[A], l[1][A] = m.add(v, d[A]), l[0][A] = m.add(_, d[A]), u[0][A] = p[A], u[1][A] = p[A], u[2][A] = p[A];
|
|
12399
12399
|
}
|
|
@@ -12404,8 +12404,8 @@ var ih = { exports: {} };
|
|
|
12404
12404
|
}, mt.revolvedSurface = function(r, n, a, l) {
|
|
12405
12405
|
var u = N.dehomogenize1d(r.controlPoints), d = N.weight1d(r.controlPoints), p, _;
|
|
12406
12406
|
l <= Math.PI / 2 ? (p = 1, _ = m.zeros1d(6 + 2 * (p - 1))) : l <= Math.PI ? (p = 2, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.5) : l <= 3 * Math.PI / 2 ? (p = 3, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.3333333333333333, _[5] = _[6] = 0.6666666666666666) : (p = 4, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.25, _[5] = _[6] = 0.5, _[7] = _[8] = 0.75);
|
|
12407
|
-
for (var v = l / p, w = 3 + 2 * (p - 1),
|
|
12408
|
-
var A =
|
|
12407
|
+
for (var v = l / p, w = 3 + 2 * (p - 1), P = 0; P < 3; ) {
|
|
12408
|
+
var A = P++;
|
|
12409
12409
|
_[A] = 0, _[w + A] = 1;
|
|
12410
12410
|
}
|
|
12411
12411
|
for (var I = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), O = 1, D = p + 1; O < D; ) {
|
|
@@ -12413,17 +12413,17 @@ var ih = { exports: {} };
|
|
|
12413
12413
|
k += v, L[V] = Math.cos(k), T[V] = Math.sin(k);
|
|
12414
12414
|
}
|
|
12415
12415
|
for (var q = 0, J = u.length; q < J; ) {
|
|
12416
|
-
var H = q++, j = ke.rayClosestPoint(u[H], n, a),
|
|
12417
|
-
tt > rt.EPSILON && (
|
|
12416
|
+
var H = q++, j = ke.rayClosestPoint(u[H], n, a), X = m.sub(u[H], j), tt = m.norm(X), et = m.cross(a, X);
|
|
12417
|
+
tt > rt.EPSILON && (X = m.mul(1 / tt, X), et = m.mul(1 / tt, et)), C[0][H] = u[H];
|
|
12418
12418
|
var it = u[H];
|
|
12419
12419
|
B[0][H] = d[H];
|
|
12420
12420
|
for (var ht = et, at = 0, ct = 1, nt = p + 1; ct < nt; ) {
|
|
12421
12421
|
var dt = ct++, Y;
|
|
12422
|
-
tt == 0 ? Y = j : Y = m.add(j, m.add(m.mul(tt * L[dt],
|
|
12423
|
-
var pt = m.sub(m.mul(L[dt], et), m.mul(T[dt],
|
|
12422
|
+
tt == 0 ? Y = j : Y = m.add(j, m.add(m.mul(tt * L[dt], X), m.mul(tt * T[dt], et))), C[at + 2][H] = Y, B[at + 2][H] = d[H];
|
|
12423
|
+
var pt = m.sub(m.mul(L[dt], et), m.mul(T[dt], X));
|
|
12424
12424
|
if (tt == 0) C[at + 1][H] = j;
|
|
12425
12425
|
else {
|
|
12426
|
-
var
|
|
12426
|
+
var Pt = lt.rays(it, m.mul(1 / m.norm(ht), ht), Y, m.mul(1 / m.norm(pt), pt)), Gt = m.add(it, m.mul(Pt.u0, ht));
|
|
12427
12427
|
C[at + 1][H] = Gt;
|
|
12428
12428
|
}
|
|
12429
12429
|
B[at + 1][H] = I * d[H], at += 2, dt < p && (it = Y, ht = pt);
|
|
@@ -12434,13 +12434,13 @@ var ih = { exports: {} };
|
|
|
12434
12434
|
var u = mt.arc(r, m.mul(-1, n), a, l, 0, Math.PI);
|
|
12435
12435
|
return mt.revolvedSurface(u, r, n, 2 * Math.PI);
|
|
12436
12436
|
}, mt.conicalSurface = function(r, n, a, l, u) {
|
|
12437
|
-
var d = 2 * Math.PI, p = 1, _ = [m.add(a, m.mul(l, r)), m.add(a, m.mul(u, n))], v = [0, 0, 1, 1], w = [1, 1],
|
|
12438
|
-
return mt.revolvedSurface(
|
|
12437
|
+
var d = 2 * Math.PI, p = 1, _ = [m.add(a, m.mul(l, r)), m.add(a, m.mul(u, n))], v = [0, 0, 1, 1], w = [1, 1], P = new jt(p, v, N.homogenize1d(_, w));
|
|
12438
|
+
return mt.revolvedSurface(P, a, r, d);
|
|
12439
12439
|
}, mt.rationalInterpCurve = function(r, n, a, l, u) {
|
|
12440
12440
|
if (a == null && (a = !1), n == null && (n = 3), r.length < n + 1) throw new Q("You need to supply at least degree + 1 points! You only supplied " + r.length + " points.");
|
|
12441
12441
|
for (var d = [0], p = 1, _ = r.length; p < _; ) {
|
|
12442
|
-
var v = p++, w = m.norm(m.sub(r[v], r[v - 1])),
|
|
12443
|
-
d.push(
|
|
12442
|
+
var v = p++, w = m.norm(m.sub(r[v], r[v - 1])), P = d[d.length - 1];
|
|
12443
|
+
d.push(P + w);
|
|
12444
12444
|
}
|
|
12445
12445
|
for (var A = d[d.length - 1], I = 0, k = d.length; I < k; ) {
|
|
12446
12446
|
var T = I++;
|
|
@@ -12457,7 +12457,7 @@ var ih = { exports: {} };
|
|
|
12457
12457
|
}
|
|
12458
12458
|
L.push(1 / n * q);
|
|
12459
12459
|
}
|
|
12460
|
-
var j = L.concat(m.rep(n + 1, 1)),
|
|
12460
|
+
var j = L.concat(m.rep(n + 1, 1)), X = [], tt;
|
|
12461
12461
|
C ? tt = r.length + 1 : tt = r.length - 1;
|
|
12462
12462
|
var et;
|
|
12463
12463
|
C ? et = r.length - (n - 1) : et = r.length - (n + 1);
|
|
@@ -12465,13 +12465,13 @@ var ih = { exports: {} };
|
|
|
12465
12465
|
var ht = d[it];
|
|
12466
12466
|
++it;
|
|
12467
12467
|
var at = N.knotSpanGivenN(tt, n, ht, j), ct = N.basisFunctionsGivenKnotSpanIndex(at, ht, n, j), nt = at - n, dt = m.zeros1d(nt), Y = m.zeros1d(et - nt);
|
|
12468
|
-
|
|
12468
|
+
X.push(dt.concat(ct).concat(Y));
|
|
12469
12469
|
}
|
|
12470
12470
|
if (C) {
|
|
12471
|
-
var pt =
|
|
12472
|
-
|
|
12471
|
+
var pt = X[0].length - 2, Pt = [-1, 1].concat(m.zeros1d(pt)), Gt = m.zeros1d(pt).concat([-1, 1]);
|
|
12472
|
+
K.spliceAndInsert(X, 1, 0, Pt), K.spliceAndInsert(X, X.length - 1, 0, Gt);
|
|
12473
12473
|
}
|
|
12474
|
-
for (var
|
|
12474
|
+
for (var Xt = r[0].length, Dt = [], Kt = (1 - j[j.length - n - 2]) / n, Ae = j[n + 1] / n, Ve = 0; Ve < Xt; ) {
|
|
12475
12475
|
var _e = [Ve++], ge;
|
|
12476
12476
|
if (!C) ge = r.map(/* @__PURE__ */ function(Ze) {
|
|
12477
12477
|
return function(cr) {
|
|
@@ -12480,37 +12480,37 @@ var ih = { exports: {} };
|
|
|
12480
12480
|
}(_e));
|
|
12481
12481
|
else {
|
|
12482
12482
|
ge = [r[0][_e[0]]], ge.push(Ae * l[_e[0]]);
|
|
12483
|
-
for (var
|
|
12484
|
-
var
|
|
12485
|
-
ge.push(r[
|
|
12483
|
+
for (var Se = 1, Te = r.length - 1; Se < Te; ) {
|
|
12484
|
+
var Xe = Se++;
|
|
12485
|
+
ge.push(r[Xe][_e[0]]);
|
|
12486
12486
|
}
|
|
12487
|
-
ge.push(
|
|
12487
|
+
ge.push(Kt * u[_e[0]]), ge.push(K.last(r)[_e[0]]);
|
|
12488
12488
|
}
|
|
12489
|
-
var or = Ct.solve(
|
|
12489
|
+
var or = Ct.solve(X, ge);
|
|
12490
12490
|
Dt.push(or);
|
|
12491
12491
|
}
|
|
12492
|
-
var
|
|
12492
|
+
var Ke = Ct.transpose(Dt);
|
|
12493
12493
|
if (!a) {
|
|
12494
|
-
var $e = m.rep(
|
|
12495
|
-
|
|
12494
|
+
var $e = m.rep(Ke.length, 1);
|
|
12495
|
+
Ke = N.homogenize1d(Ke, $e);
|
|
12496
12496
|
}
|
|
12497
|
-
return new jt(n, j,
|
|
12497
|
+
return new jt(n, j, Ke);
|
|
12498
12498
|
};
|
|
12499
12499
|
var ft = f.eval.Modify = function() {
|
|
12500
12500
|
};
|
|
12501
12501
|
b["verb.eval.Modify"] = ft, ft.__name__ = ["verb", "eval", "Modify"], ft.curveReverse = function(r) {
|
|
12502
|
-
return new jt(r.degree, ft.knotsReverse(r.knots),
|
|
12502
|
+
return new jt(r.degree, ft.knotsReverse(r.knots), K.reversed(r.controlPoints));
|
|
12503
12503
|
}, ft.surfaceReverse = function(r, n) {
|
|
12504
12504
|
return n == null && (n = !1), n ? new te(r.degreeU, r.degreeV, r.knotsU, ft.knotsReverse(r.knotsV), function(a) {
|
|
12505
12505
|
for (var l, u = [], d = 0, p = r.controlPoints; d < p.length; ) {
|
|
12506
12506
|
var _ = p[d];
|
|
12507
|
-
++d, u.push(
|
|
12507
|
+
++d, u.push(K.reversed(_));
|
|
12508
12508
|
}
|
|
12509
12509
|
return l = u, l;
|
|
12510
|
-
}()) : new te(r.degreeU, r.degreeV, ft.knotsReverse(r.knotsU), r.knotsV,
|
|
12510
|
+
}()) : new te(r.degreeU, r.degreeV, ft.knotsReverse(r.knotsU), r.knotsV, K.reversed(r.controlPoints));
|
|
12511
12511
|
}, ft.knotsReverse = function(r) {
|
|
12512
|
-
var n =
|
|
12513
|
-
|
|
12512
|
+
var n = K.first(r);
|
|
12513
|
+
K.last(r);
|
|
12514
12514
|
for (var a = [n], l = r.length, u = 1; u < l; ) {
|
|
12515
12515
|
var d = u++;
|
|
12516
12516
|
a.push(a[d - 1] + (r[l - d] - r[l - d - 1]));
|
|
@@ -12518,39 +12518,39 @@ var ih = { exports: {} };
|
|
|
12518
12518
|
return a;
|
|
12519
12519
|
}, ft.unifyCurveKnotVectors = function(r) {
|
|
12520
12520
|
r = r.map(mt.clonedCurve);
|
|
12521
|
-
for (var n = R.fold(r, function(j,
|
|
12522
|
-
return ft.imax(j.degree,
|
|
12521
|
+
for (var n = R.fold(r, function(j, X) {
|
|
12522
|
+
return ft.imax(j.degree, X);
|
|
12523
12523
|
}, 0), a = 0, l = r.length; a < l; ) {
|
|
12524
12524
|
var u = a++;
|
|
12525
12525
|
r[u].degree < n && (r[u] = ft.curveElevateDegree(r[u], n));
|
|
12526
12526
|
}
|
|
12527
12527
|
for (var d, p = [], _ = 0; _ < r.length; ) {
|
|
12528
12528
|
var v = r[_];
|
|
12529
|
-
++_, p.push(new we(
|
|
12529
|
+
++_, p.push(new we(K.first(v.knots), K.last(v.knots)));
|
|
12530
12530
|
}
|
|
12531
12531
|
d = p;
|
|
12532
|
-
for (var w = 0,
|
|
12532
|
+
for (var w = 0, P = r.length; w < P; ) {
|
|
12533
12533
|
var A = w++, I = [d[A].min];
|
|
12534
12534
|
r[A].knots = r[A].knots.map(/* @__PURE__ */ function(j) {
|
|
12535
|
-
return function(
|
|
12536
|
-
return
|
|
12535
|
+
return function(X) {
|
|
12536
|
+
return X - j[0];
|
|
12537
12537
|
};
|
|
12538
12538
|
}(I));
|
|
12539
12539
|
}
|
|
12540
12540
|
for (var k = d.map(function(j) {
|
|
12541
12541
|
return j.max - j.min;
|
|
12542
|
-
}), T = R.fold(k, function(j,
|
|
12543
|
-
return Math.max(j,
|
|
12542
|
+
}), T = R.fold(k, function(j, X) {
|
|
12543
|
+
return Math.max(j, X);
|
|
12544
12544
|
}, 0), L = 0, C = r.length; L < C; ) {
|
|
12545
12545
|
var B = L++, O = [T / k[B]];
|
|
12546
12546
|
r[B].knots = r[B].knots.map(/* @__PURE__ */ function(j) {
|
|
12547
|
-
return function(
|
|
12548
|
-
return
|
|
12547
|
+
return function(X) {
|
|
12548
|
+
return X * j[0];
|
|
12549
12549
|
};
|
|
12550
12550
|
}(O));
|
|
12551
12551
|
}
|
|
12552
|
-
for (var D = R.fold(r, function(j,
|
|
12553
|
-
return m.sortedSetUnion(j.knots,
|
|
12552
|
+
for (var D = R.fold(r, function(j, X) {
|
|
12553
|
+
return m.sortedSetUnion(j.knots, X);
|
|
12554
12554
|
}, []), V = 0, q = r.length; V < q; ) {
|
|
12555
12555
|
var J = V++, H = m.sortedSetSub(D, r[J].knots);
|
|
12556
12556
|
H.length == 0 && (r[J] = r[J]), r[J] = ft.curveKnotRefine(r[J], H);
|
|
@@ -12562,75 +12562,75 @@ var ih = { exports: {} };
|
|
|
12562
12562
|
return r > n ? r : n;
|
|
12563
12563
|
}, ft.curveElevateDegree = function(r, n) {
|
|
12564
12564
|
if (n <= r.degree) return r;
|
|
12565
|
-
var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [],
|
|
12565
|
+
var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], P = [], A = [], I = a + l + 1, k = n, T = Math.floor(k / 2), L = [], C = [];
|
|
12566
12566
|
v[0][0] = 1, v[k][l] = 1;
|
|
12567
12567
|
for (var B = 1, O = T + 1; B < O; )
|
|
12568
12568
|
for (var D = B++, V = 1 / Rt.get(k, D), q = ft.imin(l, D), J = ft.imax(0, D - p), H = q + 1; J < H; ) {
|
|
12569
12569
|
var j = J++;
|
|
12570
12570
|
v[D][j] = V * Rt.get(l, j) * Rt.get(p, D - j);
|
|
12571
12571
|
}
|
|
12572
|
-
for (var
|
|
12573
|
-
for (var tt =
|
|
12572
|
+
for (var X = T + 1; X < k; )
|
|
12573
|
+
for (var tt = X++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
|
|
12574
12574
|
var at = it++;
|
|
12575
12575
|
v[tt][at] = v[k - tt][l - at];
|
|
12576
12576
|
}
|
|
12577
|
-
var ct = k + 1, nt = -1, dt = l, Y = l + 1, pt = 1,
|
|
12577
|
+
var ct = k + 1, nt = -1, dt = l, Y = l + 1, pt = 1, Pt = u[0];
|
|
12578
12578
|
L[0] = d[0];
|
|
12579
|
-
for (var Gt = 0,
|
|
12579
|
+
for (var Gt = 0, Xt = k + 1; Gt < Xt; ) {
|
|
12580
12580
|
var Dt = Gt++;
|
|
12581
|
-
C[Dt] =
|
|
12581
|
+
C[Dt] = Pt;
|
|
12582
12582
|
}
|
|
12583
|
-
for (var
|
|
12584
|
-
var Ve =
|
|
12583
|
+
for (var Kt = 0, Ae = l + 1; Kt < Ae; ) {
|
|
12584
|
+
var Ve = Kt++;
|
|
12585
12585
|
w[Ve] = d[Ve];
|
|
12586
12586
|
}
|
|
12587
12587
|
for (; Y < I; ) {
|
|
12588
12588
|
for (var _e = Y; Y < I && u[Y] == u[Y + 1]; ) Y = Y + 1;
|
|
12589
|
-
var ge = Y - _e + 1,
|
|
12589
|
+
var ge = Y - _e + 1, Se = u[Y], Te = nt;
|
|
12590
12590
|
nt = l - ge;
|
|
12591
|
-
var
|
|
12592
|
-
Te > 0 ?
|
|
12591
|
+
var Xe;
|
|
12592
|
+
Te > 0 ? Xe = Math.floor((Te + 2) / 2) : Xe = 1;
|
|
12593
12593
|
var or;
|
|
12594
12594
|
if (nt > 0 ? or = Math.floor(k - (nt + 1) / 2) : or = k, nt > 0) {
|
|
12595
|
-
for (var
|
|
12596
|
-
$e[Ze - ge - 1] =
|
|
12595
|
+
for (var Ke = Se - Pt, $e = [], Ze = l; Ze > ge; )
|
|
12596
|
+
$e[Ze - ge - 1] = Ke / (u[dt + Ze] - Pt), Ze--;
|
|
12597
12597
|
for (var cr = 1, An = nt + 1; cr < An; ) {
|
|
12598
12598
|
for (var Hr = cr++, _h = nt - Hr, oi = ge + Hr, qr = l; qr >= oi; )
|
|
12599
12599
|
w[qr] = m.add(m.mul($e[qr - oi], w[qr]), m.mul(1 - $e[qr - oi], w[qr - 1])), qr--;
|
|
12600
12600
|
A[_h] = w[l];
|
|
12601
12601
|
}
|
|
12602
12602
|
}
|
|
12603
|
-
for (var
|
|
12604
|
-
var
|
|
12605
|
-
|
|
12606
|
-
for (var yh = ft.imin(l,
|
|
12607
|
-
var $a =
|
|
12608
|
-
|
|
12603
|
+
for (var Xa = Xe, vh = k + 1; Xa < vh; ) {
|
|
12604
|
+
var Sn = Xa++;
|
|
12605
|
+
P[Sn] = m.zeros1d(_);
|
|
12606
|
+
for (var yh = ft.imin(l, Sn), Ka = ft.imax(0, Sn - p), xh = yh + 1; Ka < xh; ) {
|
|
12607
|
+
var $a = Ka++;
|
|
12608
|
+
P[Sn] = m.add(P[Sn], m.mul(v[Sn][$a], w[$a]));
|
|
12609
12609
|
}
|
|
12610
12610
|
}
|
|
12611
12611
|
if (Te > 1)
|
|
12612
|
-
for (var li = ct - 2, hi = ct, Za =
|
|
12612
|
+
for (var li = ct - 2, hi = ct, Za = Se - Pt, bh = (Se - C[ct - 1]) / Za, Qa = 1; Qa < Te; ) {
|
|
12613
12613
|
for (var ui = Qa++, dr = li, Yr = hi, Br = Yr - ct + 1; Yr - dr > ui; ) {
|
|
12614
12614
|
if (dr < pt) {
|
|
12615
|
-
var wh = (
|
|
12615
|
+
var wh = (Se - C[dr]) / (Pt - C[dr]);
|
|
12616
12616
|
L[dr] = m.lerp(wh, L[dr], L[dr - 1]);
|
|
12617
12617
|
}
|
|
12618
|
-
if (Yr >=
|
|
12618
|
+
if (Yr >= Xe) {
|
|
12619
12619
|
if (Yr - ui <= ct - k + Te) {
|
|
12620
|
-
var Ah = (
|
|
12621
|
-
|
|
12620
|
+
var Ah = (Se - C[Yr - ui]) / Za;
|
|
12621
|
+
P[Br] = m.lerp(Ah, P[Br], P[Br + 1]);
|
|
12622
12622
|
}
|
|
12623
|
-
} else
|
|
12623
|
+
} else P[Br] = m.lerp(bh, P[Br], P[Br + 1]);
|
|
12624
12624
|
dr = dr + 1, Yr = Yr - 1, Br = Br - 1;
|
|
12625
12625
|
}
|
|
12626
12626
|
li = li - 1, hi = hi + 1;
|
|
12627
12627
|
}
|
|
12628
12628
|
if (dt != l)
|
|
12629
|
-
for (var Ja = 0,
|
|
12630
|
-
Ja++, C[ct] =
|
|
12631
|
-
for (var to =
|
|
12629
|
+
for (var Ja = 0, Sh = k - Te; Ja < Sh; )
|
|
12630
|
+
Ja++, C[ct] = Pt, ct = ct + 1;
|
|
12631
|
+
for (var to = Xe, Ph = or + 1; to < Ph; ) {
|
|
12632
12632
|
var Ih = to++;
|
|
12633
|
-
L[pt] =
|
|
12633
|
+
L[pt] = P[Ih], pt = pt + 1;
|
|
12634
12634
|
}
|
|
12635
12635
|
if (Y < I) {
|
|
12636
12636
|
for (var eo = 0; eo < nt; ) {
|
|
@@ -12641,11 +12641,11 @@ var ih = { exports: {} };
|
|
|
12641
12641
|
var so = no++;
|
|
12642
12642
|
w[so] = d[Y - l + so];
|
|
12643
12643
|
}
|
|
12644
|
-
dt = Y, Y = Y + 1,
|
|
12644
|
+
dt = Y, Y = Y + 1, Pt = Se;
|
|
12645
12645
|
} else
|
|
12646
12646
|
for (var io = 0, kh = k + 1; io < kh; ) {
|
|
12647
12647
|
var Mh = io++;
|
|
12648
|
-
C[ct + Mh] =
|
|
12648
|
+
C[ct + Mh] = Se;
|
|
12649
12649
|
}
|
|
12650
12650
|
}
|
|
12651
12651
|
return new jt(n, C, L);
|
|
@@ -12669,8 +12669,8 @@ var ih = { exports: {} };
|
|
|
12669
12669
|
var w = p[v];
|
|
12670
12670
|
++v, _ = ft.curveKnotRefine(new jt(d, u, w), n), l.push(_.controlPoints);
|
|
12671
12671
|
}
|
|
12672
|
-
var
|
|
12673
|
-
return a ? new te(r.degreeU, r.degreeV, r.knotsU.slice(),
|
|
12672
|
+
var P = _.knots;
|
|
12673
|
+
return a ? new te(r.degreeU, r.degreeV, r.knotsU.slice(), P, l) : (l = Ct.transpose(l), new te(r.degreeU, r.degreeV, P, r.knotsV.slice(), l));
|
|
12674
12674
|
}, ft.decomposeCurveIntoBeziers = function(r) {
|
|
12675
12675
|
for (var n = r.degree, a = r.controlPoints, l = r.knots, u = vt.knotMultiplicities(l), d = n + 1, p = 0; p < u.length; ) {
|
|
12676
12676
|
var _ = u[p];
|
|
@@ -12680,20 +12680,20 @@ var ih = { exports: {} };
|
|
|
12680
12680
|
}
|
|
12681
12681
|
}
|
|
12682
12682
|
l.length / d - 1;
|
|
12683
|
-
for (var
|
|
12684
|
-
var k = l.slice(I, I +
|
|
12683
|
+
for (var P = d * 2, A = [], I = 0; I < a.length; ) {
|
|
12684
|
+
var k = l.slice(I, I + P), T = a.slice(I, I + d);
|
|
12685
12685
|
A.push(new jt(n, k, T)), I += d;
|
|
12686
12686
|
}
|
|
12687
12687
|
return A;
|
|
12688
12688
|
}, ft.curveKnotRefine = function(r, n) {
|
|
12689
12689
|
if (n.length == 0) return mt.clonedCurve(r);
|
|
12690
|
-
for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), w = N.knotSpan(a, n[_], u),
|
|
12690
|
+
for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), w = N.knotSpan(a, n[_], u), P = [], A = [], I = 0, k = v - a + 1; I < k; ) {
|
|
12691
12691
|
var T = I++;
|
|
12692
|
-
|
|
12692
|
+
P[T] = l[T];
|
|
12693
12693
|
}
|
|
12694
12694
|
for (var L = w - 1, C = d + 1; L < C; ) {
|
|
12695
12695
|
var B = L++;
|
|
12696
|
-
|
|
12696
|
+
P[B + _ + 1] = l[B];
|
|
12697
12697
|
}
|
|
12698
12698
|
for (var O = 0, D = v + 1; O < D; ) {
|
|
12699
12699
|
var V = O++;
|
|
@@ -12703,37 +12703,37 @@ var ih = { exports: {} };
|
|
|
12703
12703
|
var H = q++;
|
|
12704
12704
|
A[H + _ + 1] = u[H];
|
|
12705
12705
|
}
|
|
12706
|
-
for (var j = w + a - 1,
|
|
12706
|
+
for (var j = w + a - 1, X = w + a + _, tt = _; tt >= 0; ) {
|
|
12707
12707
|
for (; n[tt] <= u[j] && j > v; )
|
|
12708
|
-
|
|
12709
|
-
|
|
12708
|
+
P[X - a - 1] = l[j - a - 1], A[X] = u[j], X = X - 1, j = j - 1;
|
|
12709
|
+
P[X - a - 1] = P[X - a];
|
|
12710
12710
|
for (var et = 1, it = a + 1; et < it; ) {
|
|
12711
|
-
var ht = et++, at =
|
|
12712
|
-
Math.abs(ct) < rt.EPSILON ?
|
|
12711
|
+
var ht = et++, at = X - a + ht, ct = A[X + ht] - n[tt];
|
|
12712
|
+
Math.abs(ct) < rt.EPSILON ? P[at - 1] = P[at] : (ct = ct / (A[X + ht] - u[j - a + ht]), P[at - 1] = m.add(m.mul(ct, P[at - 1]), m.mul(1 - ct, P[at])));
|
|
12713
12713
|
}
|
|
12714
|
-
A[
|
|
12714
|
+
A[X] = n[tt], X = X - 1, tt--;
|
|
12715
12715
|
}
|
|
12716
|
-
return new jt(a, A,
|
|
12716
|
+
return new jt(a, A, P);
|
|
12717
12717
|
}, ft.curveKnotInsert = function(r, n, a) {
|
|
12718
|
-
for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), w = [],
|
|
12718
|
+
for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), w = [], P = [], A = [], I = 1, k = v + 1; I < k; ) {
|
|
12719
12719
|
var T = I++;
|
|
12720
|
-
|
|
12720
|
+
P[T] = d[T];
|
|
12721
12721
|
}
|
|
12722
12722
|
for (var L = 1, C = a + 1; L < C; ) {
|
|
12723
12723
|
var B = L++;
|
|
12724
|
-
|
|
12724
|
+
P[v + B] = n;
|
|
12725
12725
|
}
|
|
12726
12726
|
for (var O = v + 1, D = d.length; O < D; ) {
|
|
12727
12727
|
var V = O++;
|
|
12728
|
-
|
|
12728
|
+
P[V + a] = d[V];
|
|
12729
12729
|
}
|
|
12730
12730
|
for (var q = 0, J = v - l + 1; q < J; ) {
|
|
12731
12731
|
var H = q++;
|
|
12732
12732
|
A[H] = u[H];
|
|
12733
12733
|
}
|
|
12734
12734
|
for (var j = v - p; j < _; ) {
|
|
12735
|
-
var
|
|
12736
|
-
A[
|
|
12735
|
+
var X = j++;
|
|
12736
|
+
A[X + a] = u[X];
|
|
12737
12737
|
}
|
|
12738
12738
|
for (var tt = 0, et = l - p + 1; tt < et; ) {
|
|
12739
12739
|
var it = tt++;
|
|
@@ -12743,21 +12743,21 @@ var ih = { exports: {} };
|
|
|
12743
12743
|
var dt = ct++;
|
|
12744
12744
|
ht = v - l + dt;
|
|
12745
12745
|
for (var Y = 0, pt = l - dt - p + 1; Y < pt; ) {
|
|
12746
|
-
var
|
|
12747
|
-
at = (n - d[ht +
|
|
12746
|
+
var Pt = Y++;
|
|
12747
|
+
at = (n - d[ht + Pt]) / (d[Pt + v + 1] - d[ht + Pt]), w[Pt] = m.add(m.mul(at, w[Pt + 1]), m.mul(1 - at, w[Pt]));
|
|
12748
12748
|
}
|
|
12749
12749
|
A[ht] = w[0], A[v + a - dt - p] = w[l - dt - p];
|
|
12750
12750
|
}
|
|
12751
|
-
for (var Gt = ht + 1,
|
|
12751
|
+
for (var Gt = ht + 1, Xt = v - p; Gt < Xt; ) {
|
|
12752
12752
|
var Dt = Gt++;
|
|
12753
12753
|
A[Dt] = w[Dt - ht];
|
|
12754
12754
|
}
|
|
12755
|
-
return new jt(l,
|
|
12755
|
+
return new jt(l, P, A);
|
|
12756
12756
|
};
|
|
12757
12757
|
var Ot = f.eval.Tess = function() {
|
|
12758
12758
|
};
|
|
12759
12759
|
b["verb.eval.Tess"] = Ot, Ot.__name__ = ["verb", "eval", "Tess"], Ot.rationalCurveRegularSample = function(r, n, a) {
|
|
12760
|
-
return Ot.rationalCurveRegularSampleRange(r, r.knots[0],
|
|
12760
|
+
return Ot.rationalCurveRegularSampleRange(r, r.knots[0], K.last(r.knots), n, a);
|
|
12761
12761
|
}, Ot.rationalCurveRegularSampleRange = function(r, n, a, l, u) {
|
|
12762
12762
|
l < 1 && (l = 2);
|
|
12763
12763
|
for (var d = [], p = (a - n) / (l - 1), _ = 0, v = 0; v < l; ) {
|
|
@@ -12775,53 +12775,53 @@ var ih = { exports: {} };
|
|
|
12775
12775
|
return l;
|
|
12776
12776
|
} else
|
|
12777
12777
|
return r.controlPoints.map(N.dehomogenize);
|
|
12778
|
-
return Ot.rationalCurveAdaptiveSampleRange(r, r.knots[0],
|
|
12778
|
+
return Ot.rationalCurveAdaptiveSampleRange(r, r.knots[0], K.last(r.knots), n, a);
|
|
12779
12779
|
}, Ot.rationalCurveAdaptiveSampleRange = function(r, n, a, l, u) {
|
|
12780
|
-
var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, w = N.rationalCurvePoint(r, v),
|
|
12781
|
-
if (m.dot(
|
|
12780
|
+
var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, w = N.rationalCurvePoint(r, v), P = m.sub(d, p), A = m.sub(d, w);
|
|
12781
|
+
if (m.dot(P, P) < l && m.dot(A, A) > l || !ke.threePointsAreFlat(d, w, p, l)) {
|
|
12782
12782
|
var I = n + (a - n) * 0.5, k = Ot.rationalCurveAdaptiveSampleRange(r, n, I, l, u), T = Ot.rationalCurveAdaptiveSampleRange(r, I, a, l, u);
|
|
12783
12783
|
return k.slice(0, -1).concat(T);
|
|
12784
12784
|
} else return u ? [[n].concat(d), [a].concat(p)] : [d, p];
|
|
12785
12785
|
}, Ot.rationalSurfaceNaive = function(r, n, a) {
|
|
12786
12786
|
n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
|
|
12787
|
-
for (var l = r.knotsU, u = r.knotsV, d =
|
|
12787
|
+
for (var l = r.knotsU, u = r.knotsV, d = K.last(l) - l[0], p = K.last(u) - u[0], _ = d / n, v = p / a, w = [], P = [], A = [], I = 0, k = n + 1; I < k; )
|
|
12788
12788
|
for (var T = I++, L = 0, C = a + 1; L < C; ) {
|
|
12789
12789
|
var B = L++, O = T * _, D = B * v;
|
|
12790
|
-
|
|
12790
|
+
P.push([O, D]);
|
|
12791
12791
|
var V = N.rationalSurfaceDerivatives(r, O, D, 1), q = V[0][0];
|
|
12792
12792
|
w.push(q);
|
|
12793
12793
|
var J = m.normalized(m.cross(V[1][0], V[0][1]));
|
|
12794
12794
|
A.push(J);
|
|
12795
12795
|
}
|
|
12796
12796
|
for (var H = [], j = 0; j < n; )
|
|
12797
|
-
for (var
|
|
12798
|
-
var et = tt++, it =
|
|
12797
|
+
for (var X = j++, tt = 0; tt < a; ) {
|
|
12798
|
+
var et = tt++, it = X * (a + 1) + et, ht = (X + 1) * (a + 1) + et, at = ht + 1, ct = it + 1, nt = [it, ht, at], dt = [it, at, ct];
|
|
12799
12799
|
H.push(nt), H.push(dt);
|
|
12800
12800
|
}
|
|
12801
|
-
return new He(H, w, A,
|
|
12801
|
+
return new He(H, w, A, P);
|
|
12802
12802
|
}, Ot.divideRationalSurfaceAdaptive = function(r, n) {
|
|
12803
12803
|
n == null && (n = new Cr()), n.minDivsU != null ? n.minDivsU = n.minDivsU : n.minDivsU = 1, n.minDivsV != null ? n.minDivsU = n.minDivsV : n.minDivsU = 1, n.refine != null ? n.refine = n.refine : n.refine = !0;
|
|
12804
12804
|
var a = (r.controlPoints.length - 1) * 2, l = (r.controlPoints[0].length - 1) * 2, u;
|
|
12805
12805
|
n.minDivsU > a ? u = n.minDivsU = n.minDivsU : u = n.minDivsU = a;
|
|
12806
12806
|
var d;
|
|
12807
12807
|
n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
|
|
12808
|
-
for (var p =
|
|
12808
|
+
for (var p = K.last(r.knotsU), _ = r.knotsU[0], v = K.last(r.knotsV), w = r.knotsV[0], P = (p - _) / u, A = (v - w) / d, I = [], k = [], T = 0, L = d + 1; T < L; ) {
|
|
12809
12809
|
for (var C = T++, B = [], O = 0, D = u + 1; O < D; ) {
|
|
12810
|
-
var V = O++, q = _ +
|
|
12810
|
+
var V = O++, q = _ + P * V, J = w + A * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), j = m.normalized(m.cross(H[0][1], H[1][0]));
|
|
12811
12811
|
B.push(new De(H[0][0], j, [q, J], -1, m.isZero(j)));
|
|
12812
12812
|
}
|
|
12813
12813
|
k.push(B);
|
|
12814
12814
|
}
|
|
12815
|
-
for (var
|
|
12816
|
-
for (var tt =
|
|
12815
|
+
for (var X = 0; X < d; )
|
|
12816
|
+
for (var tt = X++, et = 0; et < u; ) {
|
|
12817
12817
|
var it = et++, ht = [k[d - tt - 1][it], k[d - tt - 1][it + 1], k[d - tt][it + 1], k[d - tt][it]];
|
|
12818
12818
|
I.push(new ur(r, ht));
|
|
12819
12819
|
}
|
|
12820
12820
|
if (!n.refine) return I;
|
|
12821
12821
|
for (var at = 0; at < d; )
|
|
12822
12822
|
for (var ct = at++, nt = 0; nt < u; ) {
|
|
12823
|
-
var dt = nt++, Y = ct * u + dt, pt = Ot.north(Y, ct, dt, u, d, I),
|
|
12824
|
-
I[Y].neighbors = [Gt,
|
|
12823
|
+
var dt = nt++, Y = ct * u + dt, pt = Ot.north(Y, ct, dt, u, d, I), Pt = Ot.east(Y, ct, dt, u, d, I), Gt = Ot.south(Y, ct, dt, u, d, I), Xt = Ot.west(Y, ct, dt, u, d, I);
|
|
12824
|
+
I[Y].neighbors = [Gt, Pt, pt, Xt], I[Y].divide(n);
|
|
12825
12825
|
}
|
|
12826
12826
|
return I;
|
|
12827
12827
|
}, Ot.north = function(r, n, a, l, u, d) {
|
|
@@ -12851,7 +12851,7 @@ var ih = { exports: {} };
|
|
|
12851
12851
|
};
|
|
12852
12852
|
var ur = f.core.AdaptiveRefinementNode = function(r, n, a) {
|
|
12853
12853
|
if (this.srf = r, a == null ? this.neighbors = [null, null, null, null] : this.neighbors = a, this.corners = n, this.corners == null) {
|
|
12854
|
-
var l = r.knotsU[0], u =
|
|
12854
|
+
var l = r.knotsU[0], u = K.last(r.knotsU), d = r.knotsV[0], p = K.last(r.knotsV);
|
|
12855
12855
|
this.corners = [De.fromUv(l, d), De.fromUv(u, d), De.fromUv(u, p), De.fromUv(l, p)];
|
|
12856
12856
|
}
|
|
12857
12857
|
};
|
|
@@ -12981,8 +12981,8 @@ var ih = { exports: {} };
|
|
|
12981
12981
|
var p = d++, _ = this.getAllCorners(p);
|
|
12982
12982
|
_.length == 2 && (u = p + 1);
|
|
12983
12983
|
for (var v = 0, w = _.length; v < w; ) {
|
|
12984
|
-
var
|
|
12985
|
-
a.push(_[
|
|
12984
|
+
var P = v++;
|
|
12985
|
+
a.push(_[P]);
|
|
12986
12986
|
}
|
|
12987
12987
|
}
|
|
12988
12988
|
for (var A = 0; A < a.length; ) {
|
|
@@ -13092,7 +13092,7 @@ var ih = { exports: {} };
|
|
|
13092
13092
|
return new Tt(this._data);
|
|
13093
13093
|
},
|
|
13094
13094
|
domain: function() {
|
|
13095
|
-
return new we(
|
|
13095
|
+
return new we(K.first(this._data.knots), K.last(this._data.knots));
|
|
13096
13096
|
},
|
|
13097
13097
|
transform: function(r) {
|
|
13098
13098
|
return new Tt(ft.rationalCurveTransform(this._data, r));
|
|
@@ -13220,11 +13220,11 @@ var ih = { exports: {} };
|
|
|
13220
13220
|
b["verb.geom.BezierCurve"] = Yn, Yn.__name__ = ["verb", "geom", "BezierCurve"], Yn.__super__ = Tt, Yn.prototype = M(Tt.prototype, {
|
|
13221
13221
|
__class__: Yn
|
|
13222
13222
|
});
|
|
13223
|
-
var
|
|
13223
|
+
var Xn = f.geom.Circle = function(r, n, a, l) {
|
|
13224
13224
|
Or.call(this, r, n, a, l, 0, Math.PI * 2);
|
|
13225
13225
|
};
|
|
13226
|
-
b["verb.geom.Circle"] =
|
|
13227
|
-
__class__:
|
|
13226
|
+
b["verb.geom.Circle"] = Xn, Xn.__name__ = ["verb", "geom", "Circle"], Xn.__super__ = Or, Xn.prototype = M(Or.prototype, {
|
|
13227
|
+
__class__: Xn
|
|
13228
13228
|
});
|
|
13229
13229
|
var wn = function() {
|
|
13230
13230
|
};
|
|
@@ -13272,10 +13272,10 @@ var ih = { exports: {} };
|
|
|
13272
13272
|
return new It(this.asNurbs());
|
|
13273
13273
|
},
|
|
13274
13274
|
domainU: function() {
|
|
13275
|
-
return new we(
|
|
13275
|
+
return new we(K.first(this._data.knotsU), K.last(this._data.knotsU));
|
|
13276
13276
|
},
|
|
13277
13277
|
domainV: function() {
|
|
13278
|
-
return new we(
|
|
13278
|
+
return new we(K.first(this._data.knotsV), K.last(this._data.knotsV));
|
|
13279
13279
|
},
|
|
13280
13280
|
point: function(r, n) {
|
|
13281
13281
|
return N.rationalSurfacePoint(this._data, r, n);
|
|
@@ -13363,10 +13363,10 @@ var ih = { exports: {} };
|
|
|
13363
13363
|
},
|
|
13364
13364
|
__class__: It
|
|
13365
13365
|
});
|
|
13366
|
-
var
|
|
13366
|
+
var Kn = f.geom.ConicalSurface = function(r, n, a, l, u) {
|
|
13367
13367
|
It.call(this, mt.conicalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
|
|
13368
13368
|
};
|
|
13369
|
-
b["verb.geom.ConicalSurface"] =
|
|
13369
|
+
b["verb.geom.ConicalSurface"] = Kn, Kn.__name__ = ["verb", "geom", "ConicalSurface"], Kn.__super__ = It, Kn.prototype = M(It.prototype, {
|
|
13370
13370
|
axis: function() {
|
|
13371
13371
|
return this._axis;
|
|
13372
13372
|
},
|
|
@@ -13382,7 +13382,7 @@ var ih = { exports: {} };
|
|
|
13382
13382
|
radius: function() {
|
|
13383
13383
|
return this._radius;
|
|
13384
13384
|
},
|
|
13385
|
-
__class__:
|
|
13385
|
+
__class__: Kn
|
|
13386
13386
|
});
|
|
13387
13387
|
var $n = f.geom.CylindricalSurface = function(r, n, a, l, u) {
|
|
13388
13388
|
It.call(this, mt.cylindricalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
|
|
@@ -13552,9 +13552,9 @@ var ih = { exports: {} };
|
|
|
13552
13552
|
}
|
|
13553
13553
|
return n;
|
|
13554
13554
|
});
|
|
13555
|
-
var ii = {}, Ts =
|
|
13556
|
-
Ts.prototype.slice == null && (Ts.prototype.slice = ae.sliceImpl),
|
|
13557
|
-
var ai =
|
|
13555
|
+
var ii = {}, Ts = S.ArrayBuffer || ae;
|
|
13556
|
+
Ts.prototype.slice == null && (Ts.prototype.slice = ae.sliceImpl), S.DataView;
|
|
13557
|
+
var ai = S.Uint8Array || nr._new;
|
|
13558
13558
|
(function(r, n) {
|
|
13559
13559
|
if (r.setImmediate)
|
|
13560
13560
|
return;
|
|
@@ -13578,12 +13578,12 @@ var ih = { exports: {} };
|
|
|
13578
13578
|
try {
|
|
13579
13579
|
D();
|
|
13580
13580
|
} finally {
|
|
13581
|
-
|
|
13581
|
+
P(O), u = !1;
|
|
13582
13582
|
}
|
|
13583
13583
|
}
|
|
13584
13584
|
}
|
|
13585
13585
|
}
|
|
13586
|
-
function
|
|
13586
|
+
function P(O) {
|
|
13587
13587
|
delete l[O];
|
|
13588
13588
|
}
|
|
13589
13589
|
function A() {
|
|
@@ -13635,11 +13635,11 @@ var ih = { exports: {} };
|
|
|
13635
13635
|
};
|
|
13636
13636
|
}
|
|
13637
13637
|
var B = Object.getPrototypeOf && Object.getPrototypeOf(r);
|
|
13638
|
-
B = B && B.setTimeout ? B : r, {}.toString.call(r.process) === "[object process]" ? A() : I() ? k() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? L() : C(), B.setImmediate = p, B.clearImmediate =
|
|
13638
|
+
B = B && B.setTimeout ? B : r, {}.toString.call(r.process) === "[object process]" ? A() : I() ? k() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? L() : C(), B.setImmediate = p, B.clearImmediate = P;
|
|
13639
13639
|
})(new Function("return this")()), Yt.USE_CACHE = !1, Yt.USE_ENUM_INDEX = !1, Yt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Lt.count = 0, ie.i64tmp = function(r) {
|
|
13640
13640
|
var n, a = new Vt(0, 0);
|
|
13641
13641
|
return n = a, n;
|
|
13642
|
-
}(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, Pt.queue = new U(), Rt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", vt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], vt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, ks.main();
|
|
13642
|
+
}(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, St.queue = new U(), Rt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", vt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], vt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, ks.main();
|
|
13643
13643
|
}(typeof console < "u" ? console : { log: function() {
|
|
13644
13644
|
} }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
|
|
13645
13645
|
});
|
|
@@ -13758,14 +13758,14 @@ class hd extends Es {
|
|
|
13758
13758
|
const c = (h - (this._closed ? 0 : 1)) * t;
|
|
13759
13759
|
let g = Math.floor(c), x = c - g;
|
|
13760
13760
|
this._closed ? g += g > 0 ? 0 : (Math.floor(Math.abs(g) / h) + 1) * h : x === 0 && g === h - 1 && (g = h - 2, x = 1);
|
|
13761
|
-
let f,
|
|
13761
|
+
let f, S;
|
|
13762
13762
|
this._closed || g > 0 ? f = o[(g - 1) % h] : (this._tmp.subVectors(o[0], o[1]).add(o[0]), f = new $(this._tmp.x, this._tmp.y, this._tmp.z));
|
|
13763
13763
|
const b = o[g % h], E = o[(g + 1) % h];
|
|
13764
|
-
if (this._closed || g + 2 < h ?
|
|
13764
|
+
if (this._closed || g + 2 < h ? S = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), S = new $(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
|
|
13765
13765
|
const M = this._curveType === "chordal" ? 0.5 : 0.25;
|
|
13766
|
-
let z = Math.pow(f.distanceToSquared(b), M), R = Math.pow(b.distanceToSquared(E), M), U = Math.pow(E.distanceToSquared(
|
|
13767
|
-
R < 1e-4 && (R = 1), z < 1e-4 && (z = R), U < 1e-4 && (U = R), this._px.initNonuniformCatmullRom(f.x, b.x, E.x,
|
|
13768
|
-
} else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x,
|
|
13766
|
+
let z = Math.pow(f.distanceToSquared(b), M), R = Math.pow(b.distanceToSquared(E), M), U = Math.pow(E.distanceToSquared(S), M);
|
|
13767
|
+
R < 1e-4 && (R = 1), z < 1e-4 && (z = R), U < 1e-4 && (U = R), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, S.x, z, R, U), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, S.y, z, R, U), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, S.z, z, R, U);
|
|
13768
|
+
} else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, S.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, S.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, S.z, this._tension));
|
|
13769
13769
|
return s.set(
|
|
13770
13770
|
this._px.calc(x),
|
|
13771
13771
|
this._py.calc(x),
|
|
@@ -13973,11 +13973,11 @@ class un extends Es {
|
|
|
13973
13973
|
let g, x = 3, f = !1;
|
|
13974
13974
|
if (c >= 3 && (Array.isArray(s) ? (g = s, c >= 4 && (x = o || 3), c >= 5 && (f = h)) : s !== void 0 && (x = s || 3, c >= 4 && (f = o))), s === void 0 && c >= 4 && (x = o || 3, c >= 5 && (f = h)), this._degree = x, this._closed = f, this._controlPoints.length < this._degree + 1)
|
|
13975
13975
|
throw Ge.ILLEGAL_PARAMETERS;
|
|
13976
|
-
const
|
|
13976
|
+
const S = this.toVerbPoints(this._controlPoints);
|
|
13977
13977
|
this._nurbsCurve = kn.geom.NurbsCurve.byKnotsControlPointsWeights(
|
|
13978
13978
|
this._degree,
|
|
13979
13979
|
e,
|
|
13980
|
-
|
|
13980
|
+
S,
|
|
13981
13981
|
g
|
|
13982
13982
|
);
|
|
13983
13983
|
} else {
|
|
@@ -14086,7 +14086,7 @@ class un extends Es {
|
|
|
14086
14086
|
getPoints(t = 100) {
|
|
14087
14087
|
const e = this._nurbsCurve, s = [], o = e.knots(), h = this._nurbsCurve.degree(), c = o[h], g = o[o.length - h - 1], x = (g - c) / (t - 1);
|
|
14088
14088
|
for (let f = 0; f < t; f++) {
|
|
14089
|
-
const
|
|
14089
|
+
const S = f === t - 1 ? g : c + f * x, b = e.point(S);
|
|
14090
14090
|
s.push(new $(b[0], b[1], b[2]));
|
|
14091
14091
|
}
|
|
14092
14092
|
return s;
|
|
@@ -14188,7 +14188,7 @@ class cn {
|
|
|
14188
14188
|
* ```
|
|
14189
14189
|
*/
|
|
14190
14190
|
constructor(t, e) {
|
|
14191
|
-
t = t || {},
|
|
14191
|
+
t = t || {}, Ps(t, { objectId: ud() }), this._attrs = new Bh(t, e);
|
|
14192
14192
|
}
|
|
14193
14193
|
/**
|
|
14194
14194
|
* Gets the attributes object for this AcDbObject.
|
|
@@ -14964,7 +14964,7 @@ const _a = class _a extends rr {
|
|
|
14964
14964
|
}
|
|
14965
14965
|
};
|
|
14966
14966
|
_a.typeName = "BlockReference";
|
|
14967
|
-
let
|
|
14967
|
+
let Ks = _a;
|
|
14968
14968
|
const va = class va extends rr {
|
|
14969
14969
|
};
|
|
14970
14970
|
va.typeName = "Curve";
|
|
@@ -15969,7 +15969,7 @@ const Aa = class Aa extends We {
|
|
|
15969
15969
|
};
|
|
15970
15970
|
Aa.typeName = "Leader";
|
|
15971
15971
|
let Fi = Aa;
|
|
15972
|
-
const
|
|
15972
|
+
const Sa = class Sa extends We {
|
|
15973
15973
|
/**
|
|
15974
15974
|
* Creates a new line entity.
|
|
15975
15975
|
*
|
|
@@ -16189,8 +16189,8 @@ const Pa = class Pa extends We {
|
|
|
16189
16189
|
return t.lines(o, this.lineStyle);
|
|
16190
16190
|
}
|
|
16191
16191
|
};
|
|
16192
|
-
|
|
16193
|
-
let Di =
|
|
16192
|
+
Sa.typeName = "Line";
|
|
16193
|
+
let Di = Sa;
|
|
16194
16194
|
var oh = /* @__PURE__ */ ((i) => (i.ClosedFilled = "", i.Dot = "_DOT", i.DotSmall = "_DOTSMALL", i.DotBlank = "_DOTBLANK", i.Origin = "_ORIGIN", i.Origin2 = "_ORIGIN2", i.Open = "_OPEN", i.Open90 = "_OPEN90", i.Open30 = "_OPEN30", i.Closed = "_CLOSED", i.Small = "_SMALL", i.None = "_NONE", i.Oblique = "_OBLIQUE", i.BoxFilled = "_BOXFILLED", i.Box = "_BOXBLANK", i.ClosedBlank = "_CLOSEDBLANK", i.DatumBlank = "_DATUMBLANK", i.DatumFilled = "_DATUMFILLED", i.Integral = "_INTEGRAL", i.ArchTick = "_ARCHTICK", i))(oh || {}), da = /* @__PURE__ */ ((i) => (i[i.LEFT_TO_RIGHT = 1] = "LEFT_TO_RIGHT", i[i.RIGHT_TO_LEFT = 2] = "RIGHT_TO_LEFT", i[i.TOP_TO_BOTTOM = 3] = "TOP_TO_BOTTOM", i[i.BOTTOM_TO_TOP = 4] = "BOTTOM_TO_TOP", i[i.BY_STYLE = 5] = "BY_STYLE", i))(da || {}), As = /* @__PURE__ */ ((i) => (i[i.TopLeft = 1] = "TopLeft", i[i.TopCenter = 2] = "TopCenter", i[i.TopRight = 3] = "TopRight", i[i.MiddleLeft = 4] = "MiddleLeft", i[i.MiddleCenter = 5] = "MiddleCenter", i[i.MiddleRight = 6] = "MiddleRight", i[i.BottomLeft = 7] = "BottomLeft", i[i.BottomCenter = 8] = "BottomCenter", i[i.BottomRight = 9] = "BottomRight", i))(As || {}), lh = /* @__PURE__ */ ((i) => (i[i.OPTIMIZED_2D = 0] = "OPTIMIZED_2D", i[i.WIREFRAME = 1] = "WIREFRAME", i[i.HIDDEN_LINE = 2] = "HIDDEN_LINE", i[i.FLAT_SHADED = 3] = "FLAT_SHADED", i[i.GOURAUD_SHADED = 4] = "GOURAUD_SHADED", i[i.FLAT_SHADED_WITH_WIREFRAME = 5] = "FLAT_SHADED_WITH_WIREFRAME", i[i.GOURAUD_SHADED_WITH_WIREFRAME = 6] = "GOURAUD_SHADED_WITH_WIREFRAME", i))(lh || {}), hh = /* @__PURE__ */ ((i) => (i[i.NON_ORTHOGRAPHIC = 0] = "NON_ORTHOGRAPHIC", i[i.TOP = 1] = "TOP", i[i.BOTTOM = 2] = "BOTTOM", i[i.FRONT = 3] = "FRONT", i[i.BACK = 4] = "BACK", i[i.LEFT = 5] = "LEFT", i[i.RIGHT = 6] = "RIGHT", i))(hh || {}), uh = /* @__PURE__ */ ((i) => (i[i.ONE_DISTANT_LIGHT = 0] = "ONE_DISTANT_LIGHT", i[i.TWO_DISTANT_LIGHTS = 1] = "TWO_DISTANT_LIGHTS", i))(uh || {});
|
|
16195
16195
|
class ma {
|
|
16196
16196
|
constructor() {
|
|
@@ -16314,7 +16314,7 @@ class ma {
|
|
|
16314
16314
|
return this.id = t.id, this.groupId = t.groupId, this.number = t.number, this.centerPoint.copy(t.centerPoint), this.height = t.height, this.width = t.width, this.viewCenter.copy(t.viewCenter), this.viewHeight = t.viewHeight, this;
|
|
16315
16315
|
}
|
|
16316
16316
|
}
|
|
16317
|
-
const
|
|
16317
|
+
const Pa = class Pa extends rr {
|
|
16318
16318
|
/**
|
|
16319
16319
|
* Creates a new multiline text entity.
|
|
16320
16320
|
*
|
|
@@ -16585,8 +16585,8 @@ const Sa = class Sa extends rr {
|
|
|
16585
16585
|
return t.mtext(s, o, e);
|
|
16586
16586
|
}
|
|
16587
16587
|
};
|
|
16588
|
-
|
|
16589
|
-
let Ui =
|
|
16588
|
+
Pa.typeName = "MText";
|
|
16589
|
+
let Ui = Pa;
|
|
16590
16590
|
const Ia = class Ia extends We {
|
|
16591
16591
|
constructor(t, e, s, o, h) {
|
|
16592
16592
|
super();
|
|
@@ -16670,7 +16670,7 @@ const Ia = class Ia extends We {
|
|
|
16670
16670
|
};
|
|
16671
16671
|
Ia.typeName = "Spline";
|
|
16672
16672
|
let $s = Ia;
|
|
16673
|
-
const pd = /* @__PURE__ */ new Z(), Ea = class Ea extends
|
|
16673
|
+
const pd = /* @__PURE__ */ new Z(), Ea = class Ea extends Ks {
|
|
16674
16674
|
/**
|
|
16675
16675
|
* Creates a new table entity.
|
|
16676
16676
|
*
|
|
@@ -16913,8 +16913,8 @@ const pd = /* @__PURE__ */ new Z(), Ea = class Ea extends Xs {
|
|
|
16913
16913
|
}
|
|
16914
16914
|
}
|
|
16915
16915
|
g.push(t.lineSegments(h, 3, o, this.lineStyle));
|
|
16916
|
-
const
|
|
16917
|
-
return b.setFromAxisAngle(Z.Z_AXIS, this.rotation), bo.compose(this.position, b, this.scaleFactors),
|
|
16916
|
+
const S = t.group(g), b = new ln();
|
|
16917
|
+
return b.setFromAxisAngle(Z.Z_AXIS, this.rotation), bo.compose(this.position, b, this.scaleFactors), S.applyMatrix(bo), this.attachEntityInfo(S), S;
|
|
16918
16918
|
}
|
|
16919
16919
|
/**
|
|
16920
16920
|
* Marks cells as visited to handle merged cell rendering.
|
|
@@ -18559,7 +18559,7 @@ const za = class za extends Zs {
|
|
|
18559
18559
|
}
|
|
18560
18560
|
};
|
|
18561
18561
|
za.typeName = "Wipeout";
|
|
18562
|
-
let
|
|
18562
|
+
let Xi = za;
|
|
18563
18563
|
const Ra = class Ra extends We {
|
|
18564
18564
|
/**
|
|
18565
18565
|
* Creates a new xline entity.
|
|
@@ -18712,7 +18712,7 @@ const Ra = class Ra extends We {
|
|
|
18712
18712
|
}
|
|
18713
18713
|
};
|
|
18714
18714
|
Ra.typeName = "Xline";
|
|
18715
|
-
let
|
|
18715
|
+
let Ki = Ra;
|
|
18716
18716
|
var yd = /* @__PURE__ */ ((i) => (i[i.AtLeast = 1] = "AtLeast", i[i.Exactly = 2] = "Exactly", i))(yd || {});
|
|
18717
18717
|
const Ba = class Ba extends rr {
|
|
18718
18718
|
/**
|
|
@@ -18804,7 +18804,7 @@ const Ba = class Ba extends rr {
|
|
|
18804
18804
|
let t;
|
|
18805
18805
|
this.dimensionStyleName && (t = this.database.tables.dimStyleTable.getAt(
|
|
18806
18806
|
this.dimensionStyleName
|
|
18807
|
-
)), t == null && (t = new
|
|
18807
|
+
)), t == null && (t = new Ss()), this._dimStyle = t;
|
|
18808
18808
|
}
|
|
18809
18809
|
return this._dimStyle;
|
|
18810
18810
|
}
|
|
@@ -19905,7 +19905,7 @@ const Ga = class Ga extends jr {
|
|
|
19905
19905
|
};
|
|
19906
19906
|
Ga.typeName = "RadialDimension";
|
|
19907
19907
|
let ta = Ga;
|
|
19908
|
-
class
|
|
19908
|
+
class So {
|
|
19909
19909
|
/**
|
|
19910
19910
|
* Converts a DXF entity to an AcDbEntity.
|
|
19911
19911
|
*
|
|
@@ -19999,7 +19999,7 @@ class Po {
|
|
|
19999
19999
|
const e = new Z(t.majorAxisEndPoint), s = e.length();
|
|
20000
20000
|
return new Oi(
|
|
20001
20001
|
t.center,
|
|
20002
|
-
Z.Z_AXIS,
|
|
20002
|
+
t.extrusionDirection ?? Z.Z_AXIS,
|
|
20003
20003
|
e,
|
|
20004
20004
|
s,
|
|
20005
20005
|
s * t.axisRatio,
|
|
@@ -20071,8 +20071,8 @@ class Po {
|
|
|
20071
20071
|
}), e.hatchStyle = t.hatchStyle, e.patternName = t.patternName, e.patternType = t.patternType, e.patternAngle = t.patternAngle == null ? 0 : t.patternAngle, e.patternScale = t.patternScale == null ? 0 : t.patternScale, t.boundaryPaths.forEach((h) => {
|
|
20072
20072
|
if (h.boundaryPathTypeFlag & 2) {
|
|
20073
20073
|
const g = h, x = new ri();
|
|
20074
|
-
x.closed = g.isClosed, g.vertices.forEach((f,
|
|
20075
|
-
x.addVertexAt(
|
|
20074
|
+
x.closed = g.isClosed, g.vertices.forEach((f, S) => {
|
|
20075
|
+
x.addVertexAt(S, {
|
|
20076
20076
|
x: f.x,
|
|
20077
20077
|
y: f.y,
|
|
20078
20078
|
bulge: f.bulge
|
|
@@ -20082,42 +20082,42 @@ class Po {
|
|
|
20082
20082
|
const g = h, x = new ad();
|
|
20083
20083
|
g.edges.forEach((f) => {
|
|
20084
20084
|
if (f.type == 1) {
|
|
20085
|
-
const
|
|
20086
|
-
x.add(new ca(
|
|
20085
|
+
const S = f;
|
|
20086
|
+
x.add(new ca(S.start, S.end));
|
|
20087
20087
|
} else if (f.type == 2) {
|
|
20088
|
-
const
|
|
20088
|
+
const S = f;
|
|
20089
20089
|
x.add(
|
|
20090
20090
|
new ws(
|
|
20091
|
-
|
|
20092
|
-
|
|
20093
|
-
kt.degToRad(
|
|
20094
|
-
kt.degToRad(
|
|
20095
|
-
!
|
|
20091
|
+
S.center,
|
|
20092
|
+
S.radius,
|
|
20093
|
+
kt.degToRad(S.startAngle || 0),
|
|
20094
|
+
kt.degToRad(S.endAngle || 0),
|
|
20095
|
+
!S.isCCW
|
|
20096
20096
|
)
|
|
20097
20097
|
);
|
|
20098
20098
|
} else if (f.type == 3) {
|
|
20099
|
-
const
|
|
20100
|
-
new Zt().subVectors(
|
|
20099
|
+
const S = f;
|
|
20100
|
+
new Zt().subVectors(S.end, S.center);
|
|
20101
20101
|
const E = Math.sqrt(
|
|
20102
|
-
Math.pow(
|
|
20103
|
-
), M = E *
|
|
20104
|
-
let z = kt.degToRad(
|
|
20105
|
-
const U = Math.atan2(
|
|
20106
|
-
|
|
20102
|
+
Math.pow(S.end.x, 2) + Math.pow(S.end.y, 2)
|
|
20103
|
+
), M = E * S.lengthOfMinorAxis;
|
|
20104
|
+
let z = kt.degToRad(S.startAngle || 0), R = kt.degToRad(S.endAngle || 0);
|
|
20105
|
+
const U = Math.atan2(S.end.y, S.end.x);
|
|
20106
|
+
S.isCCW || (z = Math.PI * 2 - z, R = Math.PI * 2 - R), x.add(
|
|
20107
20107
|
new ha(
|
|
20108
|
-
{ ...
|
|
20108
|
+
{ ...S.center, z: 0 },
|
|
20109
20109
|
E,
|
|
20110
20110
|
M,
|
|
20111
20111
|
z,
|
|
20112
20112
|
R,
|
|
20113
|
-
!
|
|
20113
|
+
!S.isCCW,
|
|
20114
20114
|
U
|
|
20115
20115
|
)
|
|
20116
20116
|
);
|
|
20117
20117
|
} else if (f.type == 4) {
|
|
20118
|
-
const
|
|
20119
|
-
if (
|
|
20120
|
-
const b =
|
|
20118
|
+
const S = f;
|
|
20119
|
+
if (S.numberOfControlPoints > 0 && S.numberOfKnots > 0) {
|
|
20120
|
+
const b = S.controlPoints.map(
|
|
20121
20121
|
(z) => ({
|
|
20122
20122
|
x: z.x,
|
|
20123
20123
|
y: z.y,
|
|
@@ -20125,16 +20125,16 @@ class Po {
|
|
|
20125
20125
|
})
|
|
20126
20126
|
);
|
|
20127
20127
|
let E = !0;
|
|
20128
|
-
const M =
|
|
20128
|
+
const M = S.controlPoints.map((z) => (z.weight == null && (E = !1), z.weight || 1));
|
|
20129
20129
|
x.add(
|
|
20130
20130
|
new un(
|
|
20131
20131
|
b,
|
|
20132
|
-
|
|
20132
|
+
S.knots,
|
|
20133
20133
|
E ? M : void 0
|
|
20134
20134
|
)
|
|
20135
20135
|
);
|
|
20136
|
-
} else if (
|
|
20137
|
-
const b =
|
|
20136
|
+
} else if (S.numberOfFitData > 0) {
|
|
20137
|
+
const b = S.fitDatum.map((E) => ({
|
|
20138
20138
|
x: E.x,
|
|
20139
20139
|
y: E.y,
|
|
20140
20140
|
z: 0
|
|
@@ -20236,7 +20236,7 @@ class Po {
|
|
|
20236
20236
|
) * t.imageSize.y, e.rotation = Math.atan2(t.uDirection.y, t.uDirection.x);
|
|
20237
20237
|
}
|
|
20238
20238
|
convertWipeout(t) {
|
|
20239
|
-
const e = new
|
|
20239
|
+
const e = new Xi();
|
|
20240
20240
|
return this.processWipeout(t, e), e;
|
|
20241
20241
|
}
|
|
20242
20242
|
convertViewport(t) {
|
|
@@ -20248,11 +20248,11 @@ class Po {
|
|
|
20248
20248
|
return e.basePoint.copy(t.position), e.unitDir.copy(t.direction), e;
|
|
20249
20249
|
}
|
|
20250
20250
|
convertXline(t) {
|
|
20251
|
-
const e = new
|
|
20251
|
+
const e = new Ki();
|
|
20252
20252
|
return e.basePoint.copy(t.position), e.unitDir.copy(t.direction), e;
|
|
20253
20253
|
}
|
|
20254
20254
|
convertBlockReference(t) {
|
|
20255
|
-
const e = new
|
|
20255
|
+
const e = new Ks(t.name);
|
|
20256
20256
|
return t.insertionPoint && e.position.copy(t.insertionPoint), e.scaleFactors.x = t.xScale || 1, e.scaleFactors.y = t.yScale || 1, e.scaleFactors.z = t.zScale || 1, e.rotation = t.rotation != null ? kt.degToRad(t.rotation) : 0, e.normal.copy(
|
|
20257
20257
|
t.extrusionDirection ?? { x: 0, y: 0, z: 1 }
|
|
20258
20258
|
), e;
|
|
@@ -20879,10 +20879,10 @@ class Ad {
|
|
|
20879
20879
|
error: R,
|
|
20880
20880
|
duration: U
|
|
20881
20881
|
});
|
|
20882
|
-
},
|
|
20882
|
+
}, S = (b) => {
|
|
20883
20883
|
this.cleanupTask(t), c(new Error(`Worker error: ${b.message}`));
|
|
20884
20884
|
};
|
|
20885
|
-
g.addEventListener("message", f), g.addEventListener("error",
|
|
20885
|
+
g.addEventListener("message", f), g.addEventListener("error", S), g.postMessage({
|
|
20886
20886
|
id: t,
|
|
20887
20887
|
input: e
|
|
20888
20888
|
});
|
|
@@ -20967,7 +20967,7 @@ class Ad {
|
|
|
20967
20967
|
this.workers.clear();
|
|
20968
20968
|
}
|
|
20969
20969
|
}
|
|
20970
|
-
class
|
|
20970
|
+
class Sd {
|
|
20971
20971
|
constructor(t) {
|
|
20972
20972
|
this.framework = new Ad(t);
|
|
20973
20973
|
}
|
|
@@ -20990,8 +20990,8 @@ class Pd {
|
|
|
20990
20990
|
this.framework.destroy();
|
|
20991
20991
|
}
|
|
20992
20992
|
}
|
|
20993
|
-
function
|
|
20994
|
-
return new
|
|
20993
|
+
function Pd(i) {
|
|
20994
|
+
return new Sd(i);
|
|
20995
20995
|
}
|
|
20996
20996
|
class n0 {
|
|
20997
20997
|
constructor() {
|
|
@@ -21042,7 +21042,7 @@ class Id extends kc {
|
|
|
21042
21042
|
*/
|
|
21043
21043
|
async parse(t) {
|
|
21044
21044
|
if (this.config.useWorker && this.config.parserWorkerUrl) {
|
|
21045
|
-
const e =
|
|
21045
|
+
const e = Pd({
|
|
21046
21046
|
workerUrl: this.config.parserWorkerUrl,
|
|
21047
21047
|
// One concurrent worker needed for parser
|
|
21048
21048
|
maxConcurrentWorkers: 1
|
|
@@ -21055,7 +21055,7 @@ class Id extends kc {
|
|
|
21055
21055
|
};
|
|
21056
21056
|
} else
|
|
21057
21057
|
return {
|
|
21058
|
-
model: new
|
|
21058
|
+
model: new Pc().parseSync(t),
|
|
21059
21059
|
data: {
|
|
21060
21060
|
unknownEntityCount: 0
|
|
21061
21061
|
}
|
|
@@ -21114,11 +21114,11 @@ class Id extends kc {
|
|
|
21114
21114
|
t.forEach((c) => {
|
|
21115
21115
|
if (c.type == "MTEXT") {
|
|
21116
21116
|
const g = c;
|
|
21117
|
-
[...g.text.matchAll(h)].forEach((
|
|
21118
|
-
o.add(
|
|
21117
|
+
[...g.text.matchAll(h)].forEach((S) => {
|
|
21118
|
+
o.add(S[1].toLowerCase());
|
|
21119
21119
|
});
|
|
21120
21120
|
const f = s.get(g.styleName);
|
|
21121
|
-
f == null || f.forEach((
|
|
21121
|
+
f == null || f.forEach((S) => o.add(S));
|
|
21122
21122
|
} else if (c.type == "TEXT") {
|
|
21123
21123
|
const g = c, x = s.get(g.styleName);
|
|
21124
21124
|
x == null || x.forEach((f) => o.add(f));
|
|
@@ -21148,7 +21148,7 @@ class Id extends kc {
|
|
|
21148
21148
|
* ```
|
|
21149
21149
|
*/
|
|
21150
21150
|
async processEntities(t, e, s, o, h) {
|
|
21151
|
-
const c = new
|
|
21151
|
+
const c = new So();
|
|
21152
21152
|
let g = t.entities;
|
|
21153
21153
|
const x = g.length, f = new jh(
|
|
21154
21154
|
x,
|
|
@@ -21156,14 +21156,14 @@ class Id extends kc {
|
|
|
21156
21156
|
s
|
|
21157
21157
|
);
|
|
21158
21158
|
this.config.convertByEntityType && (g = this.groupAndFlattenByType(g));
|
|
21159
|
-
const
|
|
21159
|
+
const S = e.tables.blockTable.modelSpace;
|
|
21160
21160
|
await f.processChunk(async (b, E) => {
|
|
21161
21161
|
let M = [], z = b < E ? g[b].type : "";
|
|
21162
21162
|
for (let R = b; R < E; R++) {
|
|
21163
21163
|
const U = g[R], F = c.convert(U);
|
|
21164
|
-
F && (this.config.convertByEntityType && U.type !== z && (
|
|
21164
|
+
F && (this.config.convertByEntityType && U.type !== z && (S.appendEntity(M), M = [], z = U.type), M.push(F));
|
|
21165
21165
|
}
|
|
21166
|
-
if (
|
|
21166
|
+
if (S.appendEntity(M), h) {
|
|
21167
21167
|
let R = o.value + E / x * (100 - o.value);
|
|
21168
21168
|
R > 100 && (R = 100), await h(R, "ENTITY", "IN-PROGRESS");
|
|
21169
21169
|
}
|
|
@@ -21184,7 +21184,7 @@ class Id extends kc {
|
|
|
21184
21184
|
* ```
|
|
21185
21185
|
*/
|
|
21186
21186
|
async processEntitiesInBlock(t, e) {
|
|
21187
|
-
const s = new
|
|
21187
|
+
const s = new So(), o = t.length, h = [];
|
|
21188
21188
|
for (let c = 0; c < o; c++) {
|
|
21189
21189
|
const g = t[c], x = s.convert(g);
|
|
21190
21190
|
x && h.push(x);
|
|
@@ -21228,7 +21228,7 @@ class Id extends kc {
|
|
|
21228
21228
|
*/
|
|
21229
21229
|
processHeader(t, e) {
|
|
21230
21230
|
const s = t.header;
|
|
21231
|
-
e.cecolor.colorIndex = s.$CECOLOR || 256, e.angBase = s.$ANGBASE || 0, e.angDir = s.$ANGDIR || 0, e.aunits = s.$AUNITS, e.extmax = s.$EXTMAX, e.extmin = s.$EXTMIN, e.insunits = s.$INSUNITS, e.pdmode = s.$PDMODE || 0, e.pdsize = s.$PDSIZE || 0;
|
|
21231
|
+
e.cecolor.colorIndex = s.$CECOLOR || 256, e.angBase = s.$ANGBASE || 0, e.angDir = s.$ANGDIR || 0, s.$AUNITS != null && (e.aunits = s.$AUNITS), s.$EXTMAX && (e.extmax = s.$EXTMAX), s.$EXTMIN && (e.extmin = s.$EXTMIN), s.$INSUNITS != null && (e.insunits = s.$INSUNITS), e.pdmode = s.$PDMODE || 0, e.pdsize = s.$PDSIZE || 0;
|
|
21232
21232
|
}
|
|
21233
21233
|
/**
|
|
21234
21234
|
* Processes block table records from the DXF file.
|
|
@@ -21476,7 +21476,7 @@ class Id extends kc {
|
|
|
21476
21476
|
dimblk2: h.DIMBLK2 || "",
|
|
21477
21477
|
dimlwd: h.DIMLWD,
|
|
21478
21478
|
dimlwe: h.DIMLWE
|
|
21479
|
-
}, g = new
|
|
21479
|
+
}, g = new Ss(c);
|
|
21480
21480
|
this.processCommonTableEntryAttrs(h, g), e.tables.dimStyleTable.add(g);
|
|
21481
21481
|
});
|
|
21482
21482
|
}
|
|
@@ -21640,7 +21640,7 @@ class On extends cn {
|
|
|
21640
21640
|
* ```
|
|
21641
21641
|
*/
|
|
21642
21642
|
constructor(t, e) {
|
|
21643
|
-
t = t || {},
|
|
21643
|
+
t = t || {}, Ps(t, { name: "" }), super(t, e);
|
|
21644
21644
|
}
|
|
21645
21645
|
/**
|
|
21646
21646
|
* Gets or sets the name of the symbol table record.
|
|
@@ -22129,7 +22129,7 @@ class ga extends On {
|
|
|
22129
22129
|
* ```
|
|
22130
22130
|
*/
|
|
22131
22131
|
constructor(t, e) {
|
|
22132
|
-
t = t || {},
|
|
22132
|
+
t = t || {}, Ps(t, {
|
|
22133
22133
|
color: new on(),
|
|
22134
22134
|
description: "",
|
|
22135
22135
|
standardFlags: 0,
|
|
@@ -22819,7 +22819,7 @@ class dh extends On {
|
|
|
22819
22819
|
var Ld = /* @__PURE__ */ ((i) => (i[i.Center = 0] = "Center", i[i.Left = 1] = "Left", i[i.Right = 2] = "Right", i[i.OverFirst = 3] = "OverFirst", i[i.OverSecond = 4] = "OverSecond", i))(Ld || {}), Od = /* @__PURE__ */ ((i) => (i[i.Center = 0] = "Center", i[i.Above = 1] = "Above", i[i.Outside = 2] = "Outside", i[i.JIS = 3] = "JIS", i[i.Below = 4] = "Below", i))(Od || {}), zd = /* @__PURE__ */ ((i) => (i[i.Feet = 0] = "Feet", i[i.None = 1] = "None", i[i.Inch = 2] = "Inch", i[i.FeetAndInch = 3] = "FeetAndInch", i[i.Leading = 4] = "Leading", i[i.Trailing = 8] = "Trailing", i[i.LeadingAndTrailing = 12] = "LeadingAndTrailing", i))(zd || {}), Rd = /* @__PURE__ */ ((i) => (i[i.None = 0] = "None", i[i.Leading = 1] = "Leading", i[i.Trailing = 2] = "Trailing", i[i.LeadingAndTrailing = 3] = "LeadingAndTrailing", i))(Rd || {}), Bd = /* @__PURE__ */ ((i) => (i[i.Bottom = 0] = "Bottom", i[i.Middle = 1] = "Middle", i[i.Top = 2] = "Top", i))(Bd || {});
|
|
22820
22820
|
const Qs = class Qs extends On {
|
|
22821
22821
|
constructor(t, e) {
|
|
22822
|
-
t = t || {},
|
|
22822
|
+
t = t || {}, Ps(t, Qs.DEFAULT_DIM_VALUES), super(t, e);
|
|
22823
22823
|
}
|
|
22824
22824
|
/**
|
|
22825
22825
|
* Dimension postfix. This property specifies a text prefix or suffix (or both) to the dimension
|
|
@@ -23735,7 +23735,7 @@ Qs.DEFAULT_DIM_VALUES = {
|
|
|
23735
23735
|
dimlwd: -2,
|
|
23736
23736
|
dimlwe: -2
|
|
23737
23737
|
};
|
|
23738
|
-
let
|
|
23738
|
+
let Ss = Qs;
|
|
23739
23739
|
class s0 extends cn {
|
|
23740
23740
|
/**
|
|
23741
23741
|
* Creates a new AcDbDatabase instance.
|
|
@@ -23981,7 +23981,7 @@ class s0 extends cn {
|
|
|
23981
23981
|
return this._extents.max;
|
|
23982
23982
|
}
|
|
23983
23983
|
set extmax(t) {
|
|
23984
|
-
this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmax");
|
|
23984
|
+
t && (this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmax"));
|
|
23985
23985
|
}
|
|
23986
23986
|
/**
|
|
23987
23987
|
* The current Model Space EXTMIN value
|
|
@@ -23990,7 +23990,13 @@ class s0 extends cn {
|
|
|
23990
23990
|
return this._extents.min;
|
|
23991
23991
|
}
|
|
23992
23992
|
set extmin(t) {
|
|
23993
|
-
this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmin");
|
|
23993
|
+
t && (this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmin"));
|
|
23994
|
+
}
|
|
23995
|
+
/**
|
|
23996
|
+
* The extents of current Model Space
|
|
23997
|
+
*/
|
|
23998
|
+
get extents() {
|
|
23999
|
+
return this._extents;
|
|
23994
24000
|
}
|
|
23995
24001
|
/**
|
|
23996
24002
|
* Point display mode. Please get more details on value of this property from [this page](https://help.autodesk.com/view/ACDLT/2022/ENU/?guid=GUID-82F9BB52-D026-4D6A-ABA6-BF29641F459B).
|
|
@@ -24109,9 +24115,9 @@ class s0 extends cn {
|
|
|
24109
24115
|
}
|
|
24110
24116
|
}
|
|
24111
24117
|
const f = new Uint8Array(c);
|
|
24112
|
-
let
|
|
24118
|
+
let S = 0;
|
|
24113
24119
|
for (const M of x)
|
|
24114
|
-
f.set(M,
|
|
24120
|
+
f.set(M, S), S += M.length;
|
|
24115
24121
|
if (t.toLowerCase().split(".").pop() === "dwg")
|
|
24116
24122
|
await this.read(f.buffer, e, qs.DWG);
|
|
24117
24123
|
else {
|
|
@@ -24127,20 +24133,30 @@ class s0 extends cn {
|
|
|
24127
24133
|
}
|
|
24128
24134
|
/**
|
|
24129
24135
|
* Create default layer, line type, dimension type, text style and layout.
|
|
24130
|
-
|
|
24131
|
-
|
|
24132
|
-
|
|
24133
|
-
|
|
24134
|
-
|
|
24135
|
-
|
|
24136
|
-
|
|
24137
|
-
|
|
24138
|
-
|
|
24139
|
-
|
|
24140
|
-
|
|
24141
|
-
|
|
24142
|
-
|
|
24143
|
-
|
|
24136
|
+
* @param - Options to specify data to create
|
|
24137
|
+
*/
|
|
24138
|
+
createDefaultData(t = {
|
|
24139
|
+
layer: !0,
|
|
24140
|
+
lineType: !0,
|
|
24141
|
+
textStyle: !0,
|
|
24142
|
+
dimStyle: !0,
|
|
24143
|
+
layout: !0
|
|
24144
|
+
}) {
|
|
24145
|
+
if (t.layer) {
|
|
24146
|
+
const e = new on();
|
|
24147
|
+
e.colorIndex = 7, this._tables.layerTable.add(
|
|
24148
|
+
new ga({
|
|
24149
|
+
name: "0",
|
|
24150
|
+
standardFlags: 0,
|
|
24151
|
+
linetype: "Continuous",
|
|
24152
|
+
lineWeight: 0,
|
|
24153
|
+
isOff: !1,
|
|
24154
|
+
color: e,
|
|
24155
|
+
isPlottable: !0
|
|
24156
|
+
})
|
|
24157
|
+
);
|
|
24158
|
+
}
|
|
24159
|
+
if (t.lineType && (this._tables.linetypeTable.add(
|
|
24144
24160
|
new Ys({
|
|
24145
24161
|
name: "ByBlock",
|
|
24146
24162
|
standardFlag: 0,
|
|
@@ -24161,7 +24177,7 @@ class s0 extends cn {
|
|
|
24161
24177
|
description: "Solid line",
|
|
24162
24178
|
totalPatternLength: 0
|
|
24163
24179
|
})
|
|
24164
|
-
), this._tables.textStyleTable.add(
|
|
24180
|
+
)), t.textStyle && this._tables.textStyleTable.add(
|
|
24165
24181
|
new dh({
|
|
24166
24182
|
name: "Standard",
|
|
24167
24183
|
standardFlag: 0,
|
|
@@ -24174,14 +24190,15 @@ class s0 extends cn {
|
|
|
24174
24190
|
bigFont: "",
|
|
24175
24191
|
extendedFont: "SimKai"
|
|
24176
24192
|
})
|
|
24177
|
-
), this._tables.dimStyleTable.add(
|
|
24178
|
-
new
|
|
24193
|
+
), t.dimStyle && this._tables.dimStyleTable.add(
|
|
24194
|
+
new Ss({
|
|
24179
24195
|
name: "Standard",
|
|
24180
24196
|
dimtxsty: "Standard"
|
|
24181
24197
|
})
|
|
24182
|
-
)
|
|
24183
|
-
|
|
24184
|
-
|
|
24198
|
+
), t.layout) {
|
|
24199
|
+
const e = new pa();
|
|
24200
|
+
e.layoutName = "Model", e.tabOrder = 0, e.blockTableRecordId = this._tables.blockTable.modelSpace.objectId, e.limits.min.copy({ x: 0, y: 0 }), e.limits.max.copy({ x: 1e6, y: 1e6 }), e.extents.min.copy({ x: 0, y: 0, z: 0 }), e.extents.max.copy({ x: 1e6, y: 1e6, z: 0 }), this._dictionaries.layouts.setAt(e.layoutName, e), this._tables.blockTable.modelSpace.layoutId = e.objectId;
|
|
24201
|
+
}
|
|
24185
24202
|
}
|
|
24186
24203
|
/**
|
|
24187
24204
|
* Clears all data from the database.
|
|
@@ -24700,7 +24717,7 @@ export {
|
|
|
24700
24717
|
Ge as AcCmErrors,
|
|
24701
24718
|
Vd as AcCmEventDispatcher,
|
|
24702
24719
|
ce as AcCmEventManager,
|
|
24703
|
-
|
|
24720
|
+
Xd as AcCmLoader,
|
|
24704
24721
|
Uh as AcCmLoadingManager,
|
|
24705
24722
|
Bh as AcCmObject,
|
|
24706
24723
|
To as AcCmPerformanceCollector,
|
|
@@ -24713,7 +24730,7 @@ export {
|
|
|
24713
24730
|
Ao as AcDbArcDimension,
|
|
24714
24731
|
n0 as AcDbBaseWorker,
|
|
24715
24732
|
jh as AcDbBatchProcessing,
|
|
24716
|
-
|
|
24733
|
+
Ks as AcDbBlockReference,
|
|
24717
24734
|
Ed as AcDbBlockTable,
|
|
24718
24735
|
je as AcDbBlockTableRecord,
|
|
24719
24736
|
Ri as AcDbCircle,
|
|
@@ -24725,7 +24742,7 @@ export {
|
|
|
24725
24742
|
ch as AcDbDictionary,
|
|
24726
24743
|
Ec as AcDbDimArrowType,
|
|
24727
24744
|
kd as AcDbDimStyleTable,
|
|
24728
|
-
|
|
24745
|
+
Ss as AcDbDimStyleTableRecord,
|
|
24729
24746
|
Ld as AcDbDimTextHorizontal,
|
|
24730
24747
|
Od as AcDbDimTextVertical,
|
|
24731
24748
|
Bd as AcDbDimVerticalJustification,
|
|
@@ -24779,10 +24796,10 @@ export {
|
|
|
24779
24796
|
Yi as AcDbViewport,
|
|
24780
24797
|
Cd as AcDbViewportTable,
|
|
24781
24798
|
Dd as AcDbViewportTableRecord,
|
|
24782
|
-
|
|
24783
|
-
|
|
24799
|
+
Xi as AcDbWipeout,
|
|
24800
|
+
Sd as AcDbWorkerApi,
|
|
24784
24801
|
Ad as AcDbWorkerManager,
|
|
24785
|
-
|
|
24802
|
+
Ki as AcDbXline,
|
|
24786
24803
|
la as AcGeArea2d,
|
|
24787
24804
|
be as AcGeBox2d,
|
|
24788
24805
|
Ft as AcGeBox3d,
|
|
@@ -24793,7 +24810,7 @@ export {
|
|
|
24793
24810
|
ha as AcGeEllipseArc2d,
|
|
24794
24811
|
ua as AcGeEllipseArc3d,
|
|
24795
24812
|
sd as AcGeEuler,
|
|
24796
|
-
|
|
24813
|
+
Kc as AcGeGeometryUtil,
|
|
24797
24814
|
ca as AcGeLine2d,
|
|
24798
24815
|
hn as AcGeLine3d,
|
|
24799
24816
|
ad as AcGeLoop2d,
|
|
@@ -24837,9 +24854,9 @@ export {
|
|
|
24837
24854
|
Gc as ceilPowerOfTwo,
|
|
24838
24855
|
Ur as clamp,
|
|
24839
24856
|
Ns as clone,
|
|
24840
|
-
|
|
24857
|
+
Pd as createWorkerApi,
|
|
24841
24858
|
Cc as damp,
|
|
24842
|
-
|
|
24859
|
+
Ps as defaults,
|
|
24843
24860
|
Uc as degToRad,
|
|
24844
24861
|
Hl as euclideanModulo,
|
|
24845
24862
|
Hs as evaluateNurbsPoint,
|
|
@@ -24859,7 +24876,7 @@ export {
|
|
|
24859
24876
|
t0 as isImperialUnits,
|
|
24860
24877
|
Jd as isMetricUnits,
|
|
24861
24878
|
Jl as isPointInPolygon,
|
|
24862
|
-
|
|
24879
|
+
Xc as isPolygonIntersect,
|
|
24863
24880
|
jc as isPowerOfTwo,
|
|
24864
24881
|
ql as lerp,
|
|
24865
24882
|
Fs as log,
|