@mlightcad/data-model 1.2.20 → 1.2.21

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -421,7 +421,7 @@ const Bs = {
421
421
  function ns(i, t, e) {
422
422
  return Math.max(t, Math.min(e, i));
423
423
  }
424
- const So = class Io {
424
+ const Po = class Io {
425
425
  /**
426
426
  * Constructs a new AcCmColor instance.
427
427
  * Initializes the color to "ByLayer" (index 256) and null RGB values.
@@ -675,8 +675,8 @@ const So = class Io {
675
675
  return null;
676
676
  }
677
677
  };
678
- So.NAMES = Bs;
679
- let on = So;
678
+ Po.NAMES = Bs;
679
+ let on = Po;
680
680
  const Ge = {
681
681
  /**
682
682
  * Throw error ILLEGAL_PARAMETERS when cannot instantiate from given parameter
@@ -821,7 +821,7 @@ var Eo = { exports: {} };
821
821
  function f(R) {
822
822
  return R === "debug" && (R = "log"), typeof console === e ? !1 : R === "trace" && s ? x : console[R] !== void 0 ? g(console, R) : console.log !== void 0 ? g(console, "log") : t;
823
823
  }
824
- function P() {
824
+ function S() {
825
825
  for (var R = this.getLevel(), U = 0; U < o.length; U++) {
826
826
  var F = o[U];
827
827
  this[F] = U < R ? t : this.methodFactory(F, R, this.name);
@@ -831,7 +831,7 @@ var Eo = { exports: {} };
831
831
  }
832
832
  function b(R) {
833
833
  return function() {
834
- typeof console !== e && (P.call(this), this[R].apply(this, arguments));
834
+ typeof console !== e && (S.call(this), this[R].apply(this, arguments));
835
835
  };
836
836
  }
837
837
  function E(R, U, F) {
@@ -900,24 +900,24 @@ var Eo = { exports: {} };
900
900
  }, F.methodFactory = U || E, F.getLevel = function() {
901
901
  return ot ?? xt ?? gt;
902
902
  }, F.setLevel = function(bt, Lt) {
903
- return ot = Yt(bt), Lt !== !1 && ut(ot), P.call(F);
903
+ return ot = Yt(bt), Lt !== !1 && ut(ot), S.call(F);
904
904
  }, F.setDefaultLevel = function(bt) {
905
905
  xt = Yt(bt), st() || F.setLevel(bt, !1);
906
906
  }, F.resetLevel = function() {
907
- ot = null, Vt(), P.call(F);
907
+ ot = null, Vt(), S.call(F);
908
908
  }, F.enableAll = function(bt) {
909
909
  F.setLevel(F.levels.TRACE, bt);
910
910
  }, F.disableAll = function(bt) {
911
911
  F.setLevel(F.levels.SILENT, bt);
912
912
  }, F.rebuild = function() {
913
- if (c !== F && (gt = Yt(c.getLevel())), P.call(F), c === F)
913
+ if (c !== F && (gt = Yt(c.getLevel())), S.call(F), c === F)
914
914
  for (var bt in h)
915
915
  h[bt].rebuild();
916
916
  }, gt = Yt(
917
917
  c ? c.getLevel() : "WARN"
918
918
  );
919
919
  var Wt = st();
920
- Wt != null && (ot = Yt(Wt)), P.call(F);
920
+ Wt != null && (ot = Yt(Wt)), S.call(F);
921
921
  }
922
922
  c = new M(), c.getLogger = function(R) {
923
923
  if (typeof R != "symbol" && typeof R != "string" || R === "")
@@ -952,7 +952,7 @@ const Hd = (i) => {
952
952
  function Ns(i) {
953
953
  return i === null || typeof i != "object" ? i : Array.isArray(i) ? [...i] : { ...i };
954
954
  }
955
- function Ss(i, ...t) {
955
+ function Ps(i, ...t) {
956
956
  for (const e of t)
957
957
  if (e)
958
958
  for (const s in e)
@@ -1011,7 +1011,7 @@ let Bh = class Mo {
1011
1011
  modelChanged: new ce()
1012
1012
  }, this._changing = !1, this._previousAttributes = {}, this._pending = !1;
1013
1013
  const s = t || {};
1014
- e && Ss(s, e), this.attributes = s, this.changed = {};
1014
+ e && Ps(s, e), this.attributes = s, this.changed = {};
1015
1015
  }
1016
1016
  /**
1017
1017
  * Gets the value of an attribute.
@@ -1048,9 +1048,9 @@ let Bh = class Mo {
1048
1048
  typeof t == "object" ? (o = t, s = e) : (o = {}, o[t] = e), s || (s = {});
1049
1049
  const h = s.unset, c = s.silent, g = [], x = this._changing;
1050
1050
  this._changing = !0, x || (this._previousAttributes = Ns(this.attributes), this.changed = {});
1051
- const f = this.attributes, P = this.changed, b = this._previousAttributes;
1051
+ const f = this.attributes, S = this.changed, b = this._previousAttributes;
1052
1052
  for (const E in o)
1053
- e = o[E], bs(f[E], e) || g.push(E), bs(b[E], e) ? delete P[E] : P[E] = e, h ? delete f[E] : f[E] = e;
1053
+ e = o[E], bs(f[E], e) || g.push(E), bs(b[E], e) ? delete S[E] : S[E] = e, h ? delete f[E] : f[E] = e;
1054
1054
  if (!c) {
1055
1055
  g.length && (this._pending = s);
1056
1056
  for (let E = 0; E < g.length; E++)
@@ -1382,7 +1382,7 @@ let Uh = class {
1382
1382
  }
1383
1383
  };
1384
1384
  const Vh = /* @__PURE__ */ new Uh();
1385
- let Kd = class {
1385
+ let Xd = class {
1386
1386
  /**
1387
1387
  * Creates a new AcCmLoader instance.
1388
1388
  * @param manager The loadingManager for the loader to use. Default is DefaultLoadingManager.
@@ -1599,16 +1599,16 @@ class jh {
1599
1599
  await s();
1600
1600
  }
1601
1601
  }
1602
- var le, ss, Qt, ne, is, Qe, ve, mr, Je, Kr, as, os, Xr, $r, ls, hs, us, Ne, pr, qt, Zr, cs, _t, ye, ds, xe, ms, gr, fr, tr, ps, Qr, Ce, _r, Jr, di, mi, vr, yr, gs, fs, xr, _s, pi, gi, he, br, ue, Le, fi, _i, vi, yi, wr, Oe, tn, vs, en, ze, Ar, Re, Pr;
1602
+ var le, ss, Qt, ne, is, Qe, ve, mr, Je, Xr, as, os, Kr, $r, ls, hs, us, Ne, pr, qt, Zr, cs, _t, ye, ds, xe, ms, gr, fr, tr, ps, Qr, Ce, _r, Jr, di, mi, vr, yr, gs, fs, xr, _s, pi, gi, he, br, ue, Le, fi, _i, vi, yi, wr, Oe, tn, vs, en, ze, Ar, Re, Sr;
1603
1603
  (le = {})[le.None = 0] = "None", le[le.Anonymous = 1] = "Anonymous", le[le.NonConstant = 2] = "NonConstant", le[le.Xref = 4] = "Xref", le[le.XrefOverlay = 8] = "XrefOverlay", le[le.ExternallyDependent = 16] = "ExternallyDependent", le[le.ResolvedOrDependent = 32] = "ResolvedOrDependent", le[le.ReferencedXref = 64] = "ReferencedXref";
1604
1604
  (ss = {})[ss.BYBLOCK = 0] = "BYBLOCK", ss[ss.BYLAYER = 256] = "BYLAYER";
1605
1605
  (Qt = {})[Qt.Rotated = 0] = "Rotated", Qt[Qt.Aligned = 1] = "Aligned", Qt[Qt.Angular = 2] = "Angular", Qt[Qt.Diameter = 3] = "Diameter", Qt[Qt.Radius = 4] = "Radius", Qt[Qt.Angular3Point = 5] = "Angular3Point", Qt[Qt.Ordinate = 6] = "Ordinate", Qt[Qt.ReferenceIsExclusive = 32] = "ReferenceIsExclusive", Qt[Qt.IsOrdinateXTypeFlag = 64] = "IsOrdinateXTypeFlag", Qt[Qt.IsCustomTextPositionFlag = 128] = "IsCustomTextPositionFlag";
1606
1606
  (ne = {})[ne.TopLeft = 1] = "TopLeft", ne[ne.TopCenter = 2] = "TopCenter", ne[ne.TopRight = 3] = "TopRight", ne[ne.MiddleLeft = 4] = "MiddleLeft", ne[ne.MiddleCenter = 5] = "MiddleCenter", ne[ne.MiddleRight = 6] = "MiddleRight", ne[ne.BottomLeft = 7] = "BottomLeft", ne[ne.BottomCenter = 8] = "BottomCenter", ne[ne.BottomRight = 9] = "BottomRight";
1607
1607
  (is = {})[is.AtLeast = 1] = "AtLeast", is[is.Exact = 2] = "Exact";
1608
- var ao = ((Qe = {})[Qe.Center = 0] = "Center", Qe[Qe.Above = 1] = "Above", Qe[Qe.Outside = 2] = "Outside", Qe[Qe.JIS = 3] = "JIS", Qe[Qe.Below = 4] = "Below", Qe), Sn = ((ve = {})[ve.Feet = 0] = "Feet", ve[ve.None = 1] = "None", ve[ve.Inch = 2] = "Inch", ve[ve.FeetAndInch = 3] = "FeetAndInch", ve[ve.Leading = 4] = "Leading", ve[ve.Trailing = 8] = "Trailing", ve[ve.LeadingAndTrailing = 12] = "LeadingAndTrailing", ve), Gh = ((mr = {})[mr.None = 0] = "None", mr[mr.Leading = 1] = "Leading", mr[mr.Trailing = 2] = "Trailing", mr[mr.LeadingAndTrailing = 3] = "LeadingAndTrailing", mr), Wh = ((Je = {})[Je.Center = 0] = "Center", Je[Je.Left = 1] = "Left", Je[Je.Right = 2] = "Right", Je[Je.OverFirst = 3] = "OverFirst", Je[Je.OverSecond = 4] = "OverSecond", Je), Hh = ((Kr = {})[Kr.Bottom = 0] = "Bottom", Kr[Kr.Center = 1] = "Center", Kr[Kr.Top = 2] = "Top", Kr);
1608
+ var ao = ((Qe = {})[Qe.Center = 0] = "Center", Qe[Qe.Above = 1] = "Above", Qe[Qe.Outside = 2] = "Outside", Qe[Qe.JIS = 3] = "JIS", Qe[Qe.Below = 4] = "Below", Qe), Pn = ((ve = {})[ve.Feet = 0] = "Feet", ve[ve.None = 1] = "None", ve[ve.Inch = 2] = "Inch", ve[ve.FeetAndInch = 3] = "FeetAndInch", ve[ve.Leading = 4] = "Leading", ve[ve.Trailing = 8] = "Trailing", ve[ve.LeadingAndTrailing = 12] = "LeadingAndTrailing", ve), Gh = ((mr = {})[mr.None = 0] = "None", mr[mr.Leading = 1] = "Leading", mr[mr.Trailing = 2] = "Trailing", mr[mr.LeadingAndTrailing = 3] = "LeadingAndTrailing", mr), Wh = ((Je = {})[Je.Center = 0] = "Center", Je[Je.Left = 1] = "Left", Je[Je.Right = 2] = "Right", Je[Je.OverFirst = 3] = "OverFirst", Je[Je.OverSecond = 4] = "OverSecond", Je), Hh = ((Xr = {})[Xr.Bottom = 0] = "Bottom", Xr[Xr.Center = 1] = "Center", Xr[Xr.Top = 2] = "Top", Xr);
1609
1609
  (as = {})[as.PatternFill = 0] = "PatternFill", as[as.SolidFill = 1] = "SolidFill";
1610
1610
  (os = {})[os.NonAssociative = 0] = "NonAssociative", os[os.Associative = 1] = "Associative";
1611
- (Xr = {})[Xr.Normal = 0] = "Normal", Xr[Xr.Outer = 1] = "Outer", Xr[Xr.Ignore = 2] = "Ignore";
1611
+ (Kr = {})[Kr.Normal = 0] = "Normal", Kr[Kr.Outer = 1] = "Outer", Kr[Kr.Ignore = 2] = "Ignore";
1612
1612
  ($r = {})[$r.UserDefined = 0] = "UserDefined", $r[$r.Predefined = 1] = "Predefined", $r[$r.Custom = 2] = "Custom";
1613
1613
  (ls = {})[ls.NotAnnotated = 0] = "NotAnnotated", ls[ls.Annotated = 1] = "Annotated";
1614
1614
  (hs = {})[hs.Solid = 0] = "Solid", hs[hs.Gradient = 1] = "Gradient";
@@ -1637,14 +1637,14 @@ let ra = Symbol();
1637
1637
  function yt(i, t) {
1638
1638
  return (e, s, o) => {
1639
1639
  let h = function(x, f = !1) {
1640
- return x.reduce((P, b) => {
1641
- b.pushContext && P.push({});
1642
- let E = P[P.length - 1];
1640
+ return x.reduce((S, b) => {
1641
+ b.pushContext && S.push({});
1642
+ let E = S[S.length - 1];
1643
1643
  for (let M of typeof b.code == "number" ? [b.code] : b.code) {
1644
1644
  let z = E[M] ?? (E[M] = []);
1645
1645
  b.isMultiple && z.length && f && console.warn(`Snippet ${z[z.length - 1].name} for code(${M}) is shadowed by ${b.name}`), z.push(b);
1646
1646
  }
1647
- return P;
1647
+ return S;
1648
1648
  }, [{}]);
1649
1649
  }(i, s.debug), c = !1, g = h.length - 1;
1650
1650
  for (; !At(e, 0, "EOF"); ) {
@@ -1653,13 +1653,13 @@ function yt(i, t) {
1653
1653
  var W;
1654
1654
  return ot >= gt && ((W = xt[F]) == null ? void 0 : W.length);
1655
1655
  });
1656
- }(h, e.code, g), f = x == null ? void 0 : x[e.code], P = f == null ? void 0 : f[f.length - 1];
1657
- if (!x || !P) {
1656
+ }(h, e.code, g), f = x == null ? void 0 : x[e.code], S = f == null ? void 0 : f[f.length - 1];
1657
+ if (!x || !S) {
1658
1658
  s.rewind();
1659
1659
  break;
1660
1660
  }
1661
- P.isMultiple || x[e.code].pop();
1662
- let { name: b, parser: E, isMultiple: M, isReducible: z } = P, R = E == null ? void 0 : E(e, s, o);
1661
+ S.isMultiple || x[e.code].pop();
1662
+ let { name: b, parser: E, isMultiple: M, isReducible: z } = S, R = E == null ? void 0 : E(e, s, o);
1663
1663
  if (R === ra) {
1664
1664
  s.rewind();
1665
1665
  break;
@@ -1677,7 +1677,7 @@ function yt(i, t) {
1677
1677
  }(o, b);
1678
1678
  M && !z ? (Object.prototype.hasOwnProperty.call(U, F) || (U[F] = []), U[F].push(R)) : U[F] = R;
1679
1679
  }
1680
- P.pushContext && (g -= 1), c = !0, e = s.next();
1680
+ S.pushContext && (g -= 1), c = !0, e = s.next();
1681
1681
  }
1682
1682
  return t && Object.setPrototypeOf(o, t), c;
1683
1683
  };
@@ -1695,7 +1695,7 @@ function G(i, t) {
1695
1695
  function Bt({ value: i }) {
1696
1696
  return !!i;
1697
1697
  }
1698
- let Kh = [{ code: 1001, name: "xdata", parser: No }];
1698
+ let Xh = [{ code: 1001, name: "xdata", parser: No }];
1699
1699
  function No(i, t) {
1700
1700
  var o;
1701
1701
  if (!At(i, 1001)) throw Error("XData must starts with code 1001");
@@ -1713,37 +1713,37 @@ function No(i, t) {
1713
1713
  case 1040:
1714
1714
  case 1070:
1715
1715
  case 1071:
1716
- h.push({ type: Sr(i.code), value: i.value });
1716
+ h.push({ type: Pr(i.code), value: i.value });
1717
1717
  break;
1718
1718
  case 1003:
1719
- h.push({ name: "layer", type: Sr(i.code), value: i.value });
1719
+ h.push({ name: "layer", type: Pr(i.code), value: i.value });
1720
1720
  break;
1721
1721
  case 1005:
1722
- h.push({ name: "handle", type: Sr(i.code), value: i.value });
1722
+ h.push({ name: "handle", type: Pr(i.code), value: i.value });
1723
1723
  break;
1724
1724
  case 1010:
1725
- h.push({ type: Sr(i.code), value: zt(t) });
1725
+ h.push({ type: Pr(i.code), value: zt(t) });
1726
1726
  break;
1727
1727
  case 1011:
1728
- h.push({ name: "worldSpacePosition", type: Sr(i.code), value: zt(t) });
1728
+ h.push({ name: "worldSpacePosition", type: Pr(i.code), value: zt(t) });
1729
1729
  break;
1730
1730
  case 1012:
1731
- h.push({ name: "worldSpaceDisplacement", type: Sr(i.code), value: zt(t) });
1731
+ h.push({ name: "worldSpaceDisplacement", type: Pr(i.code), value: zt(t) });
1732
1732
  break;
1733
1733
  case 1013:
1734
- h.push({ name: "worldSpaceDirection", type: Sr(i.code), value: zt(t) });
1734
+ h.push({ name: "worldSpaceDirection", type: Pr(i.code), value: zt(t) });
1735
1735
  break;
1736
1736
  case 1041:
1737
- h.push({ name: "distance", type: Sr(i.code), value: i.value });
1737
+ h.push({ name: "distance", type: Pr(i.code), value: i.value });
1738
1738
  break;
1739
1739
  case 1042:
1740
- h.push({ name: "scale", type: Sr(i.code), value: i.value });
1740
+ h.push({ name: "scale", type: Pr(i.code), value: i.value });
1741
1741
  }
1742
1742
  i = t.next();
1743
1743
  }
1744
1744
  return t.rewind(), e;
1745
1745
  }
1746
- function Sr(i) {
1746
+ function Pr(i) {
1747
1747
  switch (i) {
1748
1748
  case 1e3:
1749
1749
  case 1003:
@@ -1785,17 +1785,17 @@ function sn(i, t, e) {
1785
1785
  }
1786
1786
  t.rewind();
1787
1787
  }
1788
- let Xh = 0;
1788
+ let Kh = 0;
1789
1789
  function Co(i) {
1790
1790
  if (!i) throw TypeError("entity cannot be undefined or null");
1791
- i.handle || (i.handle = Xh++);
1791
+ i.handle || (i.handle = Kh++);
1792
1792
  }
1793
1793
  var $h = [0, 16711680, 16776960, 65280, 65535, 255, 16711935, 16777215, 8421504, 12632256, 16711680, 16744319, 13369344, 13395558, 10027008, 10046540, 8323072, 8339263, 4980736, 4990502, 16727808, 16752511, 13382400, 13401958, 10036736, 10051404, 8331008, 8343359, 4985600, 4992806, 16744192, 16760703, 13395456, 13408614, 10046464, 10056268, 8339200, 8347455, 4990464, 4995366, 16760576, 16768895, 13408512, 13415014, 10056192, 10061132, 8347392, 8351551, 4995328, 4997670, 16776960, 16777087, 13421568, 13421670, 10000384, 10000460, 8355584, 8355647, 5000192, 5000230, 12582656, 14679935, 10079232, 11717734, 7510016, 8755276, 6258432, 7307071, 3755008, 4344870, 8388352, 12582783, 6736896, 10079334, 5019648, 7510092, 4161280, 6258495, 2509824, 3755046, 4194048, 10485631, 3394560, 8375398, 2529280, 6264908, 2064128, 5209919, 1264640, 3099686, 65280, 8388479, 52224, 6736998, 38912, 5019724, 32512, 4161343, 19456, 2509862, 65343, 8388511, 52275, 6737023, 38950, 5019743, 32543, 4161359, 19475, 2509871, 65407, 8388543, 52326, 6737049, 38988, 5019762, 32575, 4161375, 19494, 2509881, 65471, 8388575, 52377, 6737074, 39026, 5019781, 32607, 4161391, 19513, 2509890, 65535, 8388607, 52428, 6737100, 39064, 5019800, 32639, 4161407, 19532, 2509900, 49151, 8380415, 39372, 6730444, 29336, 5014936, 24447, 4157311, 14668, 2507340, 32767, 8372223, 26316, 6724044, 19608, 5010072, 16255, 4153215, 9804, 2505036, 16383, 8364031, 13260, 6717388, 9880, 5005208, 8063, 4149119, 4940, 2502476, 255, 8355839, 204, 6710988, 152, 5000344, 127, 4145023, 76, 2500172, 4129023, 10452991, 3342540, 8349388, 2490520, 6245528, 2031743, 5193599, 1245260, 3089996, 8323327, 12550143, 6684876, 10053324, 4980888, 7490712, 4128895, 6242175, 2490444, 3745356, 12517631, 14647295, 10027212, 11691724, 7471256, 8735896, 6226047, 7290751, 3735628, 4335180, 16711935, 16744447, 13369548, 13395660, 9961624, 9981080, 8323199, 8339327, 4980812, 4990540, 16711871, 16744415, 13369497, 13395634, 9961586, 9981061, 8323167, 8339311, 4980793, 4990530, 16711807, 16744383, 13369446, 13395609, 9961548, 9981042, 8323135, 8339295, 4980774, 4990521, 16711743, 16744351, 13369395, 13395583, 9961510, 9981023, 8323103, 8339279, 4980755, 4990511, 3355443, 5987163, 8684676, 11382189, 14079702, 16777215];
1794
1794
  function Lo(i) {
1795
1795
  return $h[i];
1796
1796
  }
1797
1797
  (fr = {})[fr.CAST_AND_RECEIVE = 0] = "CAST_AND_RECEIVE", fr[fr.CAST = 1] = "CAST", fr[fr.RECEIVE = 2] = "RECEIVE", fr[fr.IGNORE = 3] = "IGNORE";
1798
- let Ut = [...Kh, { code: 284, name: "shadowMode", parser: y }, { code: 390, name: "plotStyleHardId", parser: y }, { code: 380, name: "plotStyleType", parser: y }, { code: 440, name: "transparency", parser: y }, { code: 430, name: "colorName", parser: y }, { code: 420, name: "color", parser: y }, { code: 310, name: "proxyEntity", isMultiple: !0, parser: y }, { code: 92, name: "proxyByte", parser: y }, { code: 60, name: "isVisible", parser: Bt }, { code: 48, name: "lineTypeScale", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 62, name: "colorIndex", parser(i, t, e) {
1798
+ let Ut = [...Xh, { code: 284, name: "shadowMode", parser: y }, { code: 390, name: "plotStyleHardId", parser: y }, { code: 380, name: "plotStyleType", parser: y }, { code: 440, name: "transparency", parser: y }, { code: 430, name: "colorName", parser: y }, { code: 420, name: "color", parser: y }, { code: 310, name: "proxyEntity", isMultiple: !0, parser: y }, { code: 92, name: "proxyByte", parser: y }, { code: 60, name: "isVisible", parser: Bt }, { code: 48, name: "lineTypeScale", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 62, name: "colorIndex", parser(i, t, e) {
1799
1799
  let s = i.value;
1800
1800
  return s > 0 && s < 256 && (e.color = Lo(Math.abs(s))), s;
1801
1801
  } }, { code: 347, name: "materialObjectHardId", parser: y }, { code: 6, name: "lineType", parser: y }, { code: 8, name: "layer", parser: y }, { code: 410, name: "layoutTabName", parser: y }, { code: 67, name: "isInPaperSpace", parser: Bt }, { code: 100 }, { code: 160 }, { code: 330, name: "ownerBlockRecordSoftId", parser: y }, { code: 102, parser: sn }, { code: 102, parser: sn }, { code: 102, parser: sn }, { code: 5, name: "handle", parser: y }];
@@ -1857,7 +1857,7 @@ function nu(i, t) {
1857
1857
  }
1858
1858
  return e;
1859
1859
  }
1860
- function* Ks(i, t = 1 / 0, e = 1) {
1860
+ function* Xs(i, t = 1 / 0, e = 1) {
1861
1861
  for (let s = i; s !== t; s += e) yield s;
1862
1862
  }
1863
1863
  function Dr(i) {
@@ -1940,7 +1940,7 @@ let su = { textStyle: "STANDARD", extrusionDirection: { x: 0, y: 0, z: 1 }, rota
1940
1940
  while (s.code !== 0);
1941
1941
  e.rewind();
1942
1942
  })(t);
1943
- } }, { code: 50, name: "columnHeight", parser: y }, { code: 49, name: "columnGutter", parser: y }, { code: 48, name: "columnWidth", parser: y }, { code: 79, name: "columnAutoHeight", parser: y }, { code: 78, name: "columnFlowReversed", parser: y }, { code: 76, name: "columnCount", parser: y }, { code: 75, name: "columnType", parser: y }, { code: 441, name: "backgroundFillTransparency", parser: y }, { code: 63, name: "backgroundFillColor", parser: y }, { code: 45, name: "fillBoxScale", parser: y }, { code: [...Ks(430, 440)], name: "backgroundColor", parser: y }, { code: [...Ks(420, 430)], name: "backgroundColor", parser: y }, { code: 90, name: "backgroundFill", parser: y }, { code: 44, name: "lineSpacing", parser: y }, { code: 73, name: "lineSpacingStyle", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43 }, { code: 42 }, { code: 11, name: "direction", parser: G }, { code: 210, name: "extrusionDirection", parser: G }, { code: 7, name: "styleName", parser: y }, ...ti("text"), { code: 72, name: "drawingDirection", parser: y }, { code: 71, name: "attachmentPoint", parser: y }, { code: 41, name: "width", parser: y }, { code: 40, name: "height", parser: y }, { code: 10, name: "insertionPoint", parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
1943
+ } }, { code: 50, name: "columnHeight", parser: y }, { code: 49, name: "columnGutter", parser: y }, { code: 48, name: "columnWidth", parser: y }, { code: 79, name: "columnAutoHeight", parser: y }, { code: 78, name: "columnFlowReversed", parser: y }, { code: 76, name: "columnCount", parser: y }, { code: 75, name: "columnType", parser: y }, { code: 441, name: "backgroundFillTransparency", parser: y }, { code: 63, name: "backgroundFillColor", parser: y }, { code: 45, name: "fillBoxScale", parser: y }, { code: [...Xs(430, 440)], name: "backgroundColor", parser: y }, { code: [...Xs(420, 430)], name: "backgroundColor", parser: y }, { code: 90, name: "backgroundFill", parser: y }, { code: 44, name: "lineSpacing", parser: y }, { code: 73, name: "lineSpacingStyle", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43 }, { code: 42 }, { code: 11, name: "direction", parser: G }, { code: 210, name: "extrusionDirection", parser: G }, { code: 7, name: "styleName", parser: y }, ...ti("text"), { code: 72, name: "drawingDirection", parser: y }, { code: 71, name: "attachmentPoint", parser: y }, { code: 41, name: "width", parser: y }, { code: 40, name: "height", parser: y }, { code: 10, name: "insertionPoint", parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
1944
1944
  class Go {
1945
1945
  parseEntity(t, e) {
1946
1946
  let s = {};
@@ -1980,21 +1980,21 @@ class Yo {
1980
1980
  qo(this, "parser", yt(ou));
1981
1981
  }
1982
1982
  }
1983
- function Ko(i, t, e) {
1983
+ function Xo(i, t, e) {
1984
1984
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
1985
1985
  }
1986
1986
  qo(Yo, "ForEntityName", "BODY");
1987
1987
  let lu = { thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, hu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 40, name: "radius", parser: y }, { code: 10, name: "center", parser: G }, { code: 39, name: "thickness", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
1988
- class Xo {
1988
+ class Ko {
1989
1989
  parseEntity(t, e) {
1990
1990
  let s = {};
1991
1991
  return this.parser(e, t, s), s;
1992
1992
  }
1993
1993
  constructor() {
1994
- Ko(this, "parser", yt(hu, lu));
1994
+ Xo(this, "parser", yt(hu, lu));
1995
1995
  }
1996
1996
  }
1997
- Ko(Xo, "ForEntityName", "CIRCLE");
1997
+ Xo(Ko, "ForEntityName", "CIRCLE");
1998
1998
  class Us {
1999
1999
  parseEntity(t, e) {
2000
2000
  let s = {};
@@ -2153,28 +2153,28 @@ el(rl, "ForEntityName", "HATCH");
2153
2153
  function nl(i, t, e) {
2154
2154
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2155
2155
  }
2156
- let Au = { brightness: 50, contrast: 50, fade: 0, clippingBoundaryPath: [] }, Pu = [{ code: 290, name: "clipMode", parser: y }, { code: 14, name: "clippingBoundaryPath", isMultiple: !0, parser: G }, { code: 91, name: "countBoundaryPoints", parser: y }, { code: 71, name: "clippingBoundaryType", parser: y }, { code: 360, name: "imageDefReactorHandle", parser: y }, { code: 283, name: "fade", parser: y }, { code: 282, name: "contrast", parser: y }, { code: 281, name: "brightness", parser: y }, { code: 280, name: "isClipped", parser: Bt }, { code: 70, name: "flags", parser: y }, { code: 340, name: "imageDefHandle", parser: y }, { code: 13, name: "imageSize", parser: G }, { code: 12, name: "vPixel", parser: G }, { code: 11, name: "uPixel", parser: G }, { code: 10, name: "position", parser: G }, { code: 90, name: "version", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2156
+ let Au = { brightness: 50, contrast: 50, fade: 0, clippingBoundaryPath: [] }, Su = [{ code: 290, name: "clipMode", parser: y }, { code: 14, name: "clippingBoundaryPath", isMultiple: !0, parser: G }, { code: 91, name: "countBoundaryPoints", parser: y }, { code: 71, name: "clippingBoundaryType", parser: y }, { code: 360, name: "imageDefReactorHandle", parser: y }, { code: 283, name: "fade", parser: y }, { code: 282, name: "contrast", parser: y }, { code: 281, name: "brightness", parser: y }, { code: 280, name: "isClipped", parser: Bt }, { code: 70, name: "flags", parser: y }, { code: 340, name: "imageDefHandle", parser: y }, { code: 13, name: "imageSize", parser: G }, { code: 12, name: "vPixel", parser: G }, { code: 11, name: "uPixel", parser: G }, { code: 10, name: "position", parser: G }, { code: 90, name: "version", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2157
2157
  class sl {
2158
2158
  parseEntity(t, e) {
2159
2159
  let s = {};
2160
2160
  return this.parser(e, t, s), s;
2161
2161
  }
2162
2162
  constructor() {
2163
- nl(this, "parser", yt(Pu, Au));
2163
+ nl(this, "parser", yt(Su, Au));
2164
2164
  }
2165
2165
  }
2166
2166
  function il(i, t, e) {
2167
2167
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2168
2168
  }
2169
2169
  nl(sl, "ForEntityName", "IMAGE");
2170
- let Su = { xScale: 1, yScale: 1, zScale: 1, rotation: 0, columnCount: 0, rowCount: 0, columnSpacing: 0, rowSpacing: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Iu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 45, name: "rowSpacing", parser: y }, { code: 44, name: "columnSpacing", parser: y }, { code: 71, name: "rowCount", parser: y }, { code: 70, name: "columnCount", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43, name: "zScale", parser: y }, { code: 42, name: "yScale", parser: y }, { code: 41, name: "xScale", parser: y }, { code: 10, name: "insertionPoint", parser: G }, { code: 2, name: "name", parser: y }, { code: 66, name: "isVariableAttributes", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2170
+ let Pu = { xScale: 1, yScale: 1, zScale: 1, rotation: 0, columnCount: 0, rowCount: 0, columnSpacing: 0, rowSpacing: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Iu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 45, name: "rowSpacing", parser: y }, { code: 44, name: "columnSpacing", parser: y }, { code: 71, name: "rowCount", parser: y }, { code: 70, name: "columnCount", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 43, name: "zScale", parser: y }, { code: 42, name: "yScale", parser: y }, { code: 41, name: "xScale", parser: y }, { code: 10, name: "insertionPoint", parser: G }, { code: 2, name: "name", parser: y }, { code: 66, name: "isVariableAttributes", parser: Bt }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2171
2171
  class al {
2172
2172
  parseEntity(t, e) {
2173
2173
  let s = {};
2174
2174
  return this.parser(e, t, s), s;
2175
2175
  }
2176
2176
  constructor() {
2177
- il(this, "parser", yt(Iu, Su));
2177
+ il(this, "parser", yt(Iu, Pu));
2178
2178
  }
2179
2179
  }
2180
2180
  function ol(i, t, e) {
@@ -2270,7 +2270,7 @@ ml(pl, "ForEntityName", "POINT");
2270
2270
  function gl(i, t, e) {
2271
2271
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2272
2272
  }
2273
- let Fu = { startWidth: 0, endWidth: 0, bulge: 0 }, Du = [{ code: 91, name: "id", parser: y }, { code: [...Ks(71, 75)], name: "faces", isMultiple: !0, parser: y }, { code: 50, name: "tangentDirection", parser: y }, { code: 70, name: "flag", parser: y }, { code: 42, name: "bulge", parser: y }, { code: 41, name: "endWidth", parser: y }, { code: 40, name: "startWidth", parser: y }, { code: 30, name: "z", parser: y }, { code: 20, name: "y", parser: y }, { code: 10, name: "x", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 100 }, ...Ut];
2273
+ let Fu = { startWidth: 0, endWidth: 0, bulge: 0 }, Du = [{ code: 91, name: "id", parser: y }, { code: [...Xs(71, 75)], name: "faces", isMultiple: !0, parser: y }, { code: 50, name: "tangentDirection", parser: y }, { code: 70, name: "flag", parser: y }, { code: 42, name: "bulge", parser: y }, { code: 41, name: "endWidth", parser: y }, { code: 40, name: "startWidth", parser: y }, { code: 30, name: "z", parser: y }, { code: 20, name: "y", parser: y }, { code: 10, name: "x", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 100 }, ...Ut];
2274
2274
  class sa {
2275
2275
  parseEntity(t, e) {
2276
2276
  let s = {};
@@ -2336,32 +2336,32 @@ class Al {
2336
2336
  wl(this, "parser", yt(Hu, Wu));
2337
2337
  }
2338
2338
  }
2339
- function Pl(i, t, e) {
2339
+ function Sl(i, t, e) {
2340
2340
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2341
2341
  }
2342
2342
  wl(Al, "ForEntityName", "SECTION");
2343
- let qu = { points: [], thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Yu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 39, name: "thickness", parser: y }, { code: [...Ks(10, 14)], name: "points", isMultiple: !0, parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2344
- class Sl {
2343
+ let qu = { points: [], thickness: 0, extrusionDirection: { x: 0, y: 0, z: 1 } }, Yu = [{ code: 210, name: "extrusionDirection", parser: G }, { code: 39, name: "thickness", parser: y }, { code: [...Xs(10, 14)], name: "points", isMultiple: !0, parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2344
+ class Pl {
2345
2345
  parseEntity(t, e) {
2346
2346
  let s = {};
2347
2347
  return this.parser(e, t, s), s;
2348
2348
  }
2349
2349
  constructor() {
2350
- Pl(this, "parser", yt(Yu, qu));
2350
+ Sl(this, "parser", yt(Yu, qu));
2351
2351
  }
2352
2352
  }
2353
2353
  function Il(i, t, e) {
2354
2354
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2355
2355
  }
2356
- Pl(Sl, "ForEntityName", "SOLID");
2357
- let Ku = [{ code: 350, name: "historyObjectSoftId", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...ti("data"), { code: 70, name: "version", parser: y }, { code: 100 }, ...Ut];
2356
+ Sl(Pl, "ForEntityName", "SOLID");
2357
+ let Xu = [{ code: 350, name: "historyObjectSoftId", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...ti("data"), { code: 70, name: "version", parser: y }, { code: 100 }, ...Ut];
2358
2358
  class El {
2359
2359
  parseEntity(t, e) {
2360
2360
  let s = {};
2361
2361
  return this.parser(e, t, s), s;
2362
2362
  }
2363
2363
  constructor() {
2364
- Il(this, "parser", yt(Ku));
2364
+ Il(this, "parser", yt(Xu));
2365
2365
  }
2366
2366
  }
2367
2367
  Il(El, "ForEntityName", "3DSOLID");
@@ -2369,14 +2369,14 @@ Il(El, "ForEntityName", "3DSOLID");
2369
2369
  function kl(i, t, e) {
2370
2370
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2371
2371
  }
2372
- let Xu = { knotTolerance: 1e-6, controlTolerance: 1e-6, fitTolerance: 1e-9, knotValues: [], controlPoints: [], fitPoints: [] }, $u = [{ code: 11, name: "fitPoints", isMultiple: !0, parser: G }, { code: 10, name: "controlPoints", isMultiple: !0, parser: G }, { code: 41, name: "weights", isMultiple: !0, parser: y }, { code: 40, name: "knots", isMultiple: !0, parser: y }, { code: 13, name: "endTangent", parser: G }, { code: 12, name: "startTangent", parser: G }, { code: 44, name: "fitTolerance", parser: y }, { code: 43, name: "controlTolerance", parser: y }, { code: 42, name: "knotTolerance", parser: y }, { code: 74, name: "numberOfFitPoints", parser: y }, { code: 73, name: "numberOfControlPoints", parser: y }, { code: 72, name: "numberOfKnots", parser: y }, { code: 71, name: "degree", parser: y }, { code: 70, name: "flag", parser: y }, { code: 210, name: "normal", parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2372
+ let Ku = { knotTolerance: 1e-6, controlTolerance: 1e-6, fitTolerance: 1e-9, knotValues: [], controlPoints: [], fitPoints: [] }, $u = [{ code: 11, name: "fitPoints", isMultiple: !0, parser: G }, { code: 10, name: "controlPoints", isMultiple: !0, parser: G }, { code: 41, name: "weights", isMultiple: !0, parser: y }, { code: 40, name: "knots", isMultiple: !0, parser: y }, { code: 13, name: "endTangent", parser: G }, { code: 12, name: "startTangent", parser: G }, { code: 44, name: "fitTolerance", parser: y }, { code: 43, name: "controlTolerance", parser: y }, { code: 42, name: "knotTolerance", parser: y }, { code: 74, name: "numberOfFitPoints", parser: y }, { code: 73, name: "numberOfControlPoints", parser: y }, { code: 72, name: "numberOfKnots", parser: y }, { code: 71, name: "degree", parser: y }, { code: 70, name: "flag", parser: y }, { code: 210, name: "normal", parser: G }, { code: 100, name: "subclassMarker", parser: y }, ...Ut];
2373
2373
  class Ml {
2374
2374
  parseEntity(t, e) {
2375
2375
  let s = {};
2376
2376
  return this.parser(e, t, s), s;
2377
2377
  }
2378
2378
  constructor() {
2379
- kl(this, "parser", yt($u, Xu));
2379
+ kl(this, "parser", yt($u, Ku));
2380
2380
  }
2381
2381
  }
2382
2382
  kl(Ml, "ForEntityName", "SPLINE");
@@ -2521,25 +2521,25 @@ class js {
2521
2521
  x.topBorderVisibility = !!(h.value ?? !0), h = o.next();
2522
2522
  break;
2523
2523
  case 301:
2524
- (function(f, P, b) {
2524
+ (function(f, S, b) {
2525
2525
  for (; b.code !== 304; ) switch (b.code) {
2526
2526
  case 301:
2527
2527
  case 93:
2528
2528
  case 90:
2529
2529
  case 94:
2530
- b = P.next();
2530
+ b = S.next();
2531
2531
  break;
2532
2532
  case 1:
2533
- f.text = b.value, b = P.next();
2533
+ f.text = b.value, b = S.next();
2534
2534
  break;
2535
2535
  case 300:
2536
- f.attrText = b.value, b = P.next();
2536
+ f.attrText = b.value, b = S.next();
2537
2537
  break;
2538
2538
  case 302:
2539
- f.text = b.value ? b.value : f.text, b = P.next();
2539
+ f.text = b.value ? b.value : f.text, b = S.next();
2540
2540
  break;
2541
2541
  default:
2542
- console.log(`Ignore code: ${b.code}, value: ${b.value}`), b = P.next();
2542
+ console.log(`Ignore code: ${b.code}, value: ${b.value}`), b = S.next();
2543
2543
  }
2544
2544
  })(x, o, h), h = o.next();
2545
2545
  break;
@@ -2794,7 +2794,7 @@ class Bl {
2794
2794
  }
2795
2795
  }
2796
2796
  Rl(Bl, "ForEntityName", "MULTILEADER");
2797
- let nc = Object.fromEntries([zo, Vo, Ho, Yo, Xo, Us, Zo, Jo, sl, al, ll, ul, Vs, dl, Go, Bl, pl, _l, yl, bl, Al, Sl, El, Ml, js, Do, Nl, rl, sa, Gs, Ll, zl].map((i) => [i.ForEntityName, new i()]));
2797
+ let nc = Object.fromEntries([zo, Vo, Ho, Yo, Ko, Us, Zo, Jo, sl, al, ll, ul, Vs, dl, Go, Bl, pl, _l, yl, bl, Al, Pl, El, Ml, js, Do, Nl, rl, sa, Gs, Ll, zl].map((i) => [i.ForEntityName, new i()]));
2798
2798
  function Fl(i, t) {
2799
2799
  let e = [];
2800
2800
  for (; !At(i, 0, "EOF"); ) {
@@ -2913,8 +2913,8 @@ function dc(i, t) {
2913
2913
  }
2914
2914
  let Ln = [{ code: 100, name: "subclassMarker", parser: y }, { code: 330, name: "ownerObjectId", parser: y }, { code: 102, parser(i, t) {
2915
2915
  for (; !At(i, 0, "EOF") && !At(i, 102, "}"); ) i = t.next();
2916
- } }, { code: 5, name: "handle", parser: y }], mc = yt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]), pc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: ao.Above, defaultValueImperial: ao.Center }, { name: "DIMZIN", code: 78, defaultValue: Sn.Trailing, defaultValueImperial: Sn.Feet }, { name: "DIMAZIN", code: 79, defaultValue: Gh.None }, { name: "DIMALT", code: 170, defaultValue: 0 }, { name: "DIMALTD", code: 171, defaultValue: 3, defaultValueImperial: 2 }, { name: "DIMTOFL", code: 172, defaultValue: 1, defaultValueImperial: 0 }, { name: "DIMSAH", code: 173, defaultValue: 0 }, { name: "DIMTIX", code: 174, defaultValue: 0 }, { name: "DIMSOXD", code: 175, defaultValue: 0 }, { name: "DIMCLRD", code: 176, defaultValue: 0 }, { name: "DIMCLRE", code: 177, defaultValue: 0 }, { name: "DIMCLRT", code: 178, defaultValue: 0 }, { name: "DIMADEC", code: 179 }, { name: "DIMUNIT", code: 270 }, { name: "DIMDEC", code: 271, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMTDEC", code: 272, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMALTU", code: 273, defaultValue: 2 }, { name: "DIMALTTD", code: 274, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMAUNIT", code: 275, defaultValue: 0 }, { name: "DIMFRAC", code: 276, defaultValue: 0 }, { name: "DIMLUNIT", code: 277, defaultValue: 2 }, { name: "DIMDSEP", code: 278, defaultValue: ",", defaultValueImperial: "." }, { name: "DIMJUST", code: 280, defaultValue: Wh.Center }, { name: "DIMSD1", code: 281, defaultValue: 0 }, { name: "DIMSD2", code: 282, defaultValue: 0 }, { name: "DIMTOLJ", code: 283, defaultValue: Hh.Center }, { name: "DIMTZIN", code: 284, defaultValue: Sn.Trailing, defaultValueImperial: Sn.Feet }, { name: "DIMALTZ", code: 285, defaultValue: Sn.Trailing }, { name: "DIMALTTZ", code: 286, defaultValue: Sn.Trailing }, { name: "DIMFIT", code: 287 }, { name: "DIMUPT", code: 288, defaultValue: 0 }, { name: "DIMATFIT", code: 289, defaultValue: 3 }, { name: "DIMTXSTY", code: 340 }, { name: "DIMLDRBLK", code: 341 }, { name: "DIMBLK", code: 342 }, { name: "DIMBLK1", code: 343 }, { name: "DIMBLK2", code: 344 }, { name: "DIMLWD", code: 371, defaultValue: -2 }, { name: "DIMLWD", code: 372, defaultValue: -2 }], gc = yt([...pc.map((i) => ({ ...i, parser: y })), { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 105, name: "handle", parser: y }, ...Ln.filter((i) => i.code !== 5)]), fc = yt([{ code: 347, name: "materialObjectId", parser: y }, { code: 390, name: "plotStyleNameObjectId", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 290, name: "isPlotting", parser: Bt }, { code: 6, name: "lineType", parser: y }, { code: 62, name: "colorIndex", parser: y }, { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]);
2917
- (Pr = {})[Pr.NONE = 0] = "NONE", Pr[Pr.AbsoluteRotation = 1] = "AbsoluteRotation", Pr[Pr.TextEmbedded = 2] = "TextEmbedded", Pr[Pr.ShapeEmbedded = 4] = "ShapeEmbedded";
2916
+ } }, { code: 5, name: "handle", parser: y }], mc = yt([{ code: 310, name: "bmpPreview", parser: y }, { code: 281, name: "scalability", parser: y }, { code: 280, name: "explodability", parser: y }, { code: 70, name: "insertionUnits", parser: y }, { code: 340, name: "layoutObjects", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]), pc = [{ name: "DIMPOST", code: 3 }, { name: "DIMAPOST", code: 4 }, { name: "DIMBLK_OBSOLETE", code: 5 }, { name: "DIMBLK1_OBSOLETE", code: 6 }, { name: "DIMBLK2_OBSOLETE", code: 7 }, { name: "DIMSCALE", code: 40, defaultValue: 1 }, { name: "DIMASZ", code: 41, defaultValue: 0.25 }, { name: "DIMEXO", code: 42, defaultValue: 0.625, defaultValueImperial: 0.0625 }, { name: "DIMDLI", code: 43, defaultValue: 3.75, defaultValueImperial: 0.38 }, { name: "DIMEXE", code: 44, defaultValue: 2.25, defaultValueImperial: 0.28 }, { name: "DIMRND", code: 45, defaultValue: 0 }, { name: "DIMDLE", code: 46, defaultValue: 0 }, { name: "DIMTP", code: 47, defaultValue: 0 }, { name: "DIMTM", code: 48, defaultValue: 0 }, { name: "DIMTXT", code: 140, defaultValue: 2.5, defaultValueImperial: 0.28 }, { name: "DIMCEN", code: 141, defaultValue: 2.5, defaultValueImperial: 0.09 }, { name: "DIMTSZ", code: 142, defaultValue: 0 }, { name: "DIMALTF", code: 143, defaultValue: 25.4 }, { name: "DIMLFAC", code: 144, defaultValue: 1 }, { name: "DIMTVP", code: 145, defaultValue: 0 }, { name: "DIMTFAC", code: 146, defaultValue: 1 }, { name: "DIMGAP", code: 147, defaultValue: 0.625, defaultValueImperial: 0.09 }, { name: "DIMALTRND", code: 148, defaultValue: 0 }, { name: "DIMTOL", code: 71, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMLIM", code: 72, defaultValue: 0 }, { name: "DIMTIH", code: 73, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMTOH", code: 74, defaultValue: 0, defaultValueImperial: 1 }, { name: "DIMSE1", code: 75, defaultValue: 0 }, { name: "DIMSE2", code: 76, defaultValue: 0 }, { name: "DIMTAD", code: 77, defaultValue: ao.Above, defaultValueImperial: ao.Center }, { name: "DIMZIN", code: 78, defaultValue: Pn.Trailing, defaultValueImperial: Pn.Feet }, { name: "DIMAZIN", code: 79, defaultValue: Gh.None }, { name: "DIMALT", code: 170, defaultValue: 0 }, { name: "DIMALTD", code: 171, defaultValue: 3, defaultValueImperial: 2 }, { name: "DIMTOFL", code: 172, defaultValue: 1, defaultValueImperial: 0 }, { name: "DIMSAH", code: 173, defaultValue: 0 }, { name: "DIMTIX", code: 174, defaultValue: 0 }, { name: "DIMSOXD", code: 175, defaultValue: 0 }, { name: "DIMCLRD", code: 176, defaultValue: 0 }, { name: "DIMCLRE", code: 177, defaultValue: 0 }, { name: "DIMCLRT", code: 178, defaultValue: 0 }, { name: "DIMADEC", code: 179 }, { name: "DIMUNIT", code: 270 }, { name: "DIMDEC", code: 271, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMTDEC", code: 272, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMALTU", code: 273, defaultValue: 2 }, { name: "DIMALTTD", code: 274, defaultValue: 2, defaultValueImperial: 4 }, { name: "DIMAUNIT", code: 275, defaultValue: 0 }, { name: "DIMFRAC", code: 276, defaultValue: 0 }, { name: "DIMLUNIT", code: 277, defaultValue: 2 }, { name: "DIMDSEP", code: 278, defaultValue: ",", defaultValueImperial: "." }, { name: "DIMJUST", code: 280, defaultValue: Wh.Center }, { name: "DIMSD1", code: 281, defaultValue: 0 }, { name: "DIMSD2", code: 282, defaultValue: 0 }, { name: "DIMTOLJ", code: 283, defaultValue: Hh.Center }, { name: "DIMTZIN", code: 284, defaultValue: Pn.Trailing, defaultValueImperial: Pn.Feet }, { name: "DIMALTZ", code: 285, defaultValue: Pn.Trailing }, { name: "DIMALTTZ", code: 286, defaultValue: Pn.Trailing }, { name: "DIMFIT", code: 287 }, { name: "DIMUPT", code: 288, defaultValue: 0 }, { name: "DIMATFIT", code: 289, defaultValue: 3 }, { name: "DIMTXSTY", code: 340 }, { name: "DIMLDRBLK", code: 341 }, { name: "DIMBLK", code: 342 }, { name: "DIMBLK1", code: 343 }, { name: "DIMBLK2", code: 344 }, { name: "DIMLWD", code: 371, defaultValue: -2 }, { name: "DIMLWD", code: 372, defaultValue: -2 }], gc = yt([...pc.map((i) => ({ ...i, parser: y })), { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, { code: 105, name: "handle", parser: y }, ...Ln.filter((i) => i.code !== 5)]), fc = yt([{ code: 347, name: "materialObjectId", parser: y }, { code: 390, name: "plotStyleNameObjectId", parser: y }, { code: 370, name: "lineweight", parser: y }, { code: 290, name: "isPlotting", parser: Bt }, { code: 6, name: "lineType", parser: y }, { code: 62, name: "colorIndex", parser: y }, { code: 70, name: "standardFlag", parser: y }, { code: 2, name: "name", parser: y }, { code: 100, name: "subclassMarker", parser: y }, ...Ln]);
2917
+ (Sr = {})[Sr.NONE = 0] = "NONE", Sr[Sr.AbsoluteRotation = 1] = "AbsoluteRotation", Sr[Sr.TextEmbedded = 2] = "TextEmbedded", Sr[Sr.ShapeEmbedded = 4] = "ShapeEmbedded";
2918
2918
  let _c = yt([{ code: 9, name: "text", parser: y }, { code: 45, name: "offsetY", parser: y }, { code: 44, name: "offsetX", parser: y }, { code: 50, name: "rotation", parser: y }, { code: 46, name: "scale", parser: y }, { code: 340, name: "styleObjectId", parser: y }, { code: 75, name: "shapeNumber", parser: y }, { code: 74, name: "elementTypeFlag", parser: y }, { code: 49, name: "elementLength", parser: y }], { elementTypeFlag: 0, elementLength: 0 }), vc = yt([{ code: 49, name: "pattern", parser(i, t) {
2919
2919
  let e = {};
2920
2920
  return _c(i, t, e), e;
@@ -2981,12 +2981,12 @@ function uo(i, t, e = !1) {
2981
2981
  function Ei(i, t, e) {
2982
2982
  return t in i ? Object.defineProperty(i, t, { value: e, enumerable: !0, configurable: !0, writable: !0 }) : i[t] = e, i;
2983
2983
  }
2984
- class Pc {
2984
+ class Sc {
2985
2985
  constructor() {
2986
2986
  Ei(this, "encoding", "utf-8"), Ei(this, "encodingFailureFatal", !1);
2987
2987
  }
2988
2988
  }
2989
- class Sc extends EventTarget {
2989
+ class Pc extends EventTarget {
2990
2990
  parseSync(t, e = !1) {
2991
2991
  let s = new ho(t.split(/\r\n|\r|\n/g), e);
2992
2992
  if (!s.hasNext()) throw Error("Empty file");
@@ -3029,7 +3029,7 @@ class Sc extends EventTarget {
3029
3029
  for (; !At(s, 0, "EOF"); ) At(s, 0, "SECTION") && (At(s = t.next(), 2, "HEADER") ? (s = t.next(), e.header = ac(s, t)) : At(s, 2, "BLOCKS") ? (s = t.next(), e.blocks = sc(s, t)) : At(s, 2, "ENTITIES") ? (s = t.next(), e.entities = Fl(s, t)) : At(s, 2, "TABLES") ? (s = t.next(), e.tables = Ac(s, t)) : At(s, 2, "OBJECTS") && (s = t.next(), e.objects = dc(s, t))), s = t.next();
3030
3030
  return e;
3031
3031
  }
3032
- constructor(t = new Pc()) {
3032
+ constructor(t = new Sc()) {
3033
3033
  super(), Ei(this, "_decoder", void 0), this._decoder = new TextDecoder(t.encoding, { fatal: t.encodingFailureFatal });
3034
3034
  }
3035
3035
  }
@@ -3170,8 +3170,8 @@ class an {
3170
3170
  if (this.has(x))
3171
3171
  f = this.get(x);
3172
3172
  else {
3173
- const P = e.newIterator();
3174
- for (const b of P)
3173
+ const S = e.newIterator();
3174
+ for (const b of S)
3175
3175
  b.color.isByBlock && s ? (co.copy(b.color), b.color.color = s, this.addEntity(b, g, t), b.color.copy(co)) : this.addEntity(b, g, t);
3176
3176
  f = t.group(g), f && o && this.set(x, f);
3177
3177
  }
@@ -3251,7 +3251,7 @@ class aa {
3251
3251
  }
3252
3252
  }
3253
3253
  const jl = "Load Database";
3254
- class Se extends Fh {
3254
+ class Pe extends Fh {
3255
3255
  constructor(t, e) {
3256
3256
  super(t.stage), this.data = t, this.progress = e;
3257
3257
  }
@@ -3318,8 +3318,8 @@ class kc {
3318
3318
  data: { total: 0 },
3319
3319
  format() {
3320
3320
  let f = "";
3321
- return Object.keys(this.data).forEach((P) => {
3322
- P !== "total" && (f += `- ${P}: ${this.data[P]} ms
3321
+ return Object.keys(this.data).forEach((S) => {
3322
+ S !== "total" && (f += `- ${S}: ${this.data[S]} ms
3323
3323
  `);
3324
3324
  }), f += `- total: ${this.data.total} ms`, f;
3325
3325
  }
@@ -3327,7 +3327,7 @@ class kc {
3327
3327
  To.getInstance().collect(h), this.progress = o;
3328
3328
  const c = { value: 0 }, g = new Dh();
3329
3329
  g.setCompleteCallback(() => this.onFinished()), g.setErrorCallback((f) => this.onError(f)), g.addTask(
3330
- new Se(
3330
+ new Pe(
3331
3331
  {
3332
3332
  stage: "START",
3333
3333
  step: 1,
@@ -3337,7 +3337,7 @@ class kc {
3337
3337
  o
3338
3338
  )
3339
3339
  ), g.addTask(
3340
- new Se(
3340
+ new Pe(
3341
3341
  {
3342
3342
  stage: "PARSE",
3343
3343
  step: 5,
@@ -3347,20 +3347,20 @@ class kc {
3347
3347
  o
3348
3348
  )
3349
3349
  ), g.addTask(
3350
- new Se(
3350
+ new Pe(
3351
3351
  {
3352
3352
  stage: "FONT",
3353
3353
  step: 5,
3354
3354
  progress: c,
3355
3355
  task: async (f) => {
3356
- const P = this.getFonts(f.model);
3357
- return { model: f.model, data: P };
3356
+ const S = this.getFonts(f.model);
3357
+ return { model: f.model, data: S };
3358
3358
  }
3359
3359
  },
3360
3360
  o
3361
3361
  )
3362
3362
  ), g.addTask(
3363
- new Se(
3363
+ new Pe(
3364
3364
  {
3365
3365
  stage: "LTYPE",
3366
3366
  step: 1,
@@ -3370,7 +3370,7 @@ class kc {
3370
3370
  o
3371
3371
  )
3372
3372
  ), g.addTask(
3373
- new Se(
3373
+ new Pe(
3374
3374
  {
3375
3375
  stage: "STYLE",
3376
3376
  step: 1,
@@ -3380,7 +3380,7 @@ class kc {
3380
3380
  o
3381
3381
  )
3382
3382
  ), g.addTask(
3383
- new Se(
3383
+ new Pe(
3384
3384
  {
3385
3385
  stage: "DIMSTYLE",
3386
3386
  step: 1,
@@ -3390,7 +3390,7 @@ class kc {
3390
3390
  o
3391
3391
  )
3392
3392
  ), g.addTask(
3393
- new Se(
3393
+ new Pe(
3394
3394
  {
3395
3395
  stage: "LAYER",
3396
3396
  step: 1,
@@ -3400,7 +3400,7 @@ class kc {
3400
3400
  o
3401
3401
  )
3402
3402
  ), g.addTask(
3403
- new Se(
3403
+ new Pe(
3404
3404
  {
3405
3405
  stage: "VPORT",
3406
3406
  step: 1,
@@ -3410,7 +3410,7 @@ class kc {
3410
3410
  o
3411
3411
  )
3412
3412
  ), g.addTask(
3413
- new Se(
3413
+ new Pe(
3414
3414
  {
3415
3415
  stage: "HEADER",
3416
3416
  step: 1,
@@ -3420,7 +3420,7 @@ class kc {
3420
3420
  o
3421
3421
  )
3422
3422
  ), g.addTask(
3423
- new Se(
3423
+ new Pe(
3424
3424
  {
3425
3425
  stage: "BLOCK_RECORD",
3426
3426
  step: 5,
@@ -3430,17 +3430,17 @@ class kc {
3430
3430
  o
3431
3431
  )
3432
3432
  ), g.addTask(
3433
- new Se(
3433
+ new Pe(
3434
3434
  {
3435
3435
  stage: "OBJECT",
3436
3436
  step: 5,
3437
3437
  progress: c,
3438
- task: async (f) => (this.processObjects(f.model, e), f)
3438
+ task: async (f) => (this.processObjects(f.model, e), e.dictionaries.layouts.numEntries === 0 && e.createDefaultData({ layout: !0 }), f)
3439
3439
  },
3440
3440
  o
3441
3441
  )
3442
3442
  ), g.addTask(
3443
- new Se(
3443
+ new Pe(
3444
3444
  {
3445
3445
  stage: "BLOCK",
3446
3446
  step: 5,
@@ -3450,7 +3450,7 @@ class kc {
3450
3450
  o
3451
3451
  )
3452
3452
  ), g.addTask(
3453
- new Se(
3453
+ new Pe(
3454
3454
  {
3455
3455
  stage: "ENTITY",
3456
3456
  step: 100,
@@ -3466,7 +3466,7 @@ class kc {
3466
3466
  o
3467
3467
  )
3468
3468
  ), g.addTask(
3469
- new Se(
3469
+ new Pe(
3470
3470
  {
3471
3471
  stage: "END",
3472
3472
  step: 0,
@@ -3899,7 +3899,7 @@ const kt = {
3899
3899
  isBetweenAngle: qc,
3900
3900
  intPartLength: Yl,
3901
3901
  relativeEps: Yc
3902
- }, Mi = class Kl {
3902
+ }, Mi = class Xl {
3903
3903
  /**
3904
3904
  * Construct one vector by two numbers
3905
3905
  */
@@ -4015,7 +4015,7 @@ const kt = {
4015
4015
  * @returns Return the cloned vector
4016
4016
  */
4017
4017
  clone() {
4018
- return new Kl(this.x, this.y);
4018
+ return new Xl(this.x, this.y);
4019
4019
  }
4020
4020
  /**
4021
4021
  * Copy the values of the passed vector's x and y properties to this vector.
@@ -4397,7 +4397,7 @@ const kt = {
4397
4397
  };
4398
4398
  Mi.EMPTY = Object.freeze(new Mi(0, 0));
4399
4399
  let Zt = Mi;
4400
- const Ti = class Xl {
4400
+ const Ti = class Kl {
4401
4401
  /**
4402
4402
  * Create a 3x3 matrix with the given arguments in row-major order. If no arguments are provided,
4403
4403
  * the constructor initializes the Matrix3 to the 3x3 identity matrix.
@@ -4429,8 +4429,8 @@ const Ti = class Xl {
4429
4429
  * @returns Return this matrix
4430
4430
  */
4431
4431
  set(t, e, s, o, h, c, g, x, f) {
4432
- const P = this.elements;
4433
- return P[0] = t, P[1] = o, P[2] = g, P[3] = e, P[4] = h, P[5] = x, P[6] = s, P[7] = c, P[8] = f, this;
4432
+ const S = this.elements;
4433
+ return S[0] = t, S[1] = o, S[2] = g, S[3] = e, S[4] = h, S[5] = x, S[6] = s, S[7] = c, S[8] = f, this;
4434
4434
  }
4435
4435
  /**
4436
4436
  * Reset this matrix to the 3x3 identity matrix:
@@ -4490,8 +4490,8 @@ const Ti = class Xl {
4490
4490
  * @returns Return this matrix
4491
4491
  */
4492
4492
  multiplyMatrices(t, e) {
4493
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], P = s[4], b = s[7], E = s[2], M = s[5], z = s[8], R = o[0], U = o[3], F = o[6], gt = o[1], xt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4494
- return h[0] = c * R + g * gt + x * W, h[3] = c * U + g * xt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * R + P * gt + b * W, h[4] = f * U + P * xt + b * ut, h[7] = f * F + P * ot + b * st, h[2] = E * R + M * gt + z * W, h[5] = E * U + M * xt + z * ut, h[8] = E * F + M * ot + z * st, this;
4493
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[3], x = s[6], f = s[1], S = s[4], b = s[7], E = s[2], M = s[5], z = s[8], R = o[0], U = o[3], F = o[6], gt = o[1], xt = o[4], ot = o[7], W = o[2], ut = o[5], st = o[8];
4494
+ return h[0] = c * R + g * gt + x * W, h[3] = c * U + g * xt + x * ut, h[6] = c * F + g * ot + x * st, h[1] = f * R + S * gt + b * W, h[4] = f * U + S * xt + b * ut, h[7] = f * F + S * ot + b * st, h[2] = E * R + M * gt + z * W, h[5] = E * U + M * xt + z * ut, h[8] = E * F + M * ot + z * st, this;
4495
4495
  }
4496
4496
  /**
4497
4497
  * Multiply every component of the matrix by the scalar value s.
@@ -4507,8 +4507,8 @@ const Ti = class Xl {
4507
4507
  * @returns Return the determinant of this matrix
4508
4508
  */
4509
4509
  determinant() {
4510
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], P = t[8];
4511
- return e * c * P - e * g * f - s * h * P + s * g * x + o * h * f - o * c * x;
4510
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8];
4511
+ return e * c * S - e * g * f - s * h * S + s * g * x + o * h * f - o * c * x;
4512
4512
  }
4513
4513
  /**
4514
4514
  * Invert this matrix, using the analytic method. You can not invert with a determinant of zero.
@@ -4516,10 +4516,10 @@ const Ti = class Xl {
4516
4516
  * @returns Return this matrix
4517
4517
  */
4518
4518
  invert() {
4519
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], P = t[8], b = P * c - g * f, E = g * x - P * h, M = f * h - c * x, z = e * b + s * E + o * M;
4519
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = S * c - g * f, E = g * x - S * h, M = f * h - c * x, z = e * b + s * E + o * M;
4520
4520
  if (z === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
4521
4521
  const R = 1 / z;
4522
- return t[0] = b * R, t[1] = (o * f - P * s) * R, t[2] = (g * s - o * c) * R, t[3] = E * R, t[4] = (P * e - o * x) * R, t[5] = (o * h - g * e) * R, t[6] = M * R, t[7] = (s * x - f * e) * R, t[8] = (c * e - s * h) * R, this;
4522
+ return t[0] = b * R, t[1] = (o * f - S * s) * R, t[2] = (g * s - o * c) * R, t[3] = E * R, t[4] = (S * e - o * x) * R, t[5] = (o * h - g * e) * R, t[6] = M * R, t[7] = (s * x - f * e) * R, t[8] = (c * e - s * h) * R, this;
4523
4523
  }
4524
4524
  /**
4525
4525
  * Transpose this matrix in place.
@@ -4664,7 +4664,7 @@ const Ti = class Xl {
4664
4664
  * @returns Return the cloned matrix
4665
4665
  */
4666
4666
  clone() {
4667
- return new Xl().fromArray(this.elements);
4667
+ return new Kl().fromArray(this.elements);
4668
4668
  }
4669
4669
  };
4670
4670
  Ti.IDENTITY = Object.freeze(new Ti());
@@ -4752,13 +4752,13 @@ function Jl(i, t, e = !1) {
4752
4752
  let h = !1;
4753
4753
  const c = t.length;
4754
4754
  for (let g = 0, x = c - 1; g < c; x = g++) {
4755
- const f = t[g].x, P = t[g].y, b = t[x].x, E = t[x].y;
4756
- let M = P > o != E > o;
4757
- e && (M = P >= o != E >= o), M && s < (b - f) * (o - P) / (E - P) + f && (h = !h);
4755
+ const f = t[g].x, S = t[g].y, b = t[x].x, E = t[x].y;
4756
+ let M = S > o != E > o;
4757
+ e && (M = S >= o != E >= o), M && s < (b - f) * (o - S) / (E - S) + f && (h = !h);
4758
4758
  }
4759
4759
  return h;
4760
4760
  }
4761
- function Kc(i, t) {
4761
+ function Xc(i, t) {
4762
4762
  if (i.length === 0 || t.length === 0)
4763
4763
  return !1;
4764
4764
  const e = new be().setFromPoints(i), s = new be().setFromPoints(t);
@@ -4771,9 +4771,9 @@ function Kc(i, t) {
4771
4771
  }
4772
4772
  return !1;
4773
4773
  }
4774
- const Xc = {
4774
+ const Kc = {
4775
4775
  isPointInPolygon: Jl,
4776
- isPolygonIntersect: Kc
4776
+ isPolygonIntersect: Xc
4777
4777
  };
4778
4778
  function $c(i, t) {
4779
4779
  const e = [], s = t - 1, o = i;
@@ -4789,7 +4789,7 @@ function Zc(i, t) {
4789
4789
  const e = t.length - 1, s = i, o = [0];
4790
4790
  let h = 0;
4791
4791
  for (let g = 1; g <= e; g++) {
4792
- const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1], P = t[g][2] - t[g - 1][2], b = Math.sqrt(x * x + f * f + P * P);
4792
+ const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1], S = t[g][2] - t[g - 1][2], b = Math.sqrt(x * x + f * f + S * S);
4793
4793
  h += b, o.push(h);
4794
4794
  }
4795
4795
  const c = [];
@@ -4807,7 +4807,7 @@ function Qc(i, t) {
4807
4807
  const e = t.length - 1, s = i, o = [0];
4808
4808
  let h = 0;
4809
4809
  for (let g = 1; g <= e; g++) {
4810
- const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1], P = t[g][2] - t[g - 1][2], b = Math.sqrt(x * x + f * f + P * P), E = Math.sqrt(b);
4810
+ const x = t[g][0] - t[g - 1][0], f = t[g][1] - t[g - 1][1], S = t[g][2] - t[g - 1][2], b = Math.sqrt(x * x + f * f + S * S), E = Math.sqrt(b);
4811
4811
  h += E, o.push(h);
4812
4812
  }
4813
4813
  const c = [];
@@ -4836,7 +4836,7 @@ function Hs(i, t, e, s, o) {
4836
4836
  const g = [0, 0, 0];
4837
4837
  let x = 0;
4838
4838
  for (let f = 0; f <= h; f++) {
4839
- const P = Ni(f, c, i, e), b = o[f] * P;
4839
+ const S = Ni(f, c, i, e), b = o[f] * S;
4840
4840
  g[0] += s[f][0] * b, g[1] += s[f][1] * b, g[2] += s[f][2] * b, x += b;
4841
4841
  }
4842
4842
  if (x < 1e-10) {
@@ -4852,7 +4852,7 @@ function Jc(i, t, e, s) {
4852
4852
  const o = i, h = t[o], c = t[t.length - o - 1];
4853
4853
  let g = 0;
4854
4854
  const x = 1e3, f = (c - h) / x;
4855
- let P = Hs(
4855
+ let S = Hs(
4856
4856
  h,
4857
4857
  i,
4858
4858
  t,
@@ -4860,8 +4860,8 @@ function Jc(i, t, e, s) {
4860
4860
  s
4861
4861
  );
4862
4862
  for (let R = 1; R <= x; R++) {
4863
- const U = h + R * f, F = Hs(U, i, t, e, s), gt = F[0] - P[0], xt = F[1] - P[1], ot = F[2] - P[2];
4864
- g += Math.sqrt(gt * gt + xt * xt + ot * ot), P = F;
4863
+ const U = h + R * f, F = Hs(U, i, t, e, s), gt = F[0] - S[0], xt = F[1] - S[1], ot = F[2] - S[2];
4864
+ g += Math.sqrt(gt * gt + xt * xt + ot * ot), S = F;
4865
4865
  }
4866
4866
  const b = Hs(
4867
4867
  c,
@@ -4869,7 +4869,7 @@ function Jc(i, t, e, s) {
4869
4869
  t,
4870
4870
  e,
4871
4871
  s
4872
- ), E = b[0] - P[0], M = b[1] - P[1], z = b[2] - P[2];
4872
+ ), E = b[0] - S[0], M = b[1] - S[1], z = b[2] - S[2];
4873
4873
  return g += Math.sqrt(E * E + M * M + z * z), g;
4874
4874
  }
4875
4875
  function r0(i) {
@@ -4897,30 +4897,30 @@ class ln {
4897
4897
  * @param t Input normalized interpolation factor (between 0 and 1).
4898
4898
  */
4899
4899
  static slerpFlat(t, e, s, o, h, c, g) {
4900
- let x = s[o + 0], f = s[o + 1], P = s[o + 2], b = s[o + 3];
4900
+ let x = s[o + 0], f = s[o + 1], S = s[o + 2], b = s[o + 3];
4901
4901
  const E = h[c + 0], M = h[c + 1], z = h[c + 2], R = h[c + 3];
4902
4902
  if (g === 0) {
4903
- t[e + 0] = x, t[e + 1] = f, t[e + 2] = P, t[e + 3] = b;
4903
+ t[e + 0] = x, t[e + 1] = f, t[e + 2] = S, t[e + 3] = b;
4904
4904
  return;
4905
4905
  }
4906
4906
  if (g === 1) {
4907
4907
  t[e + 0] = E, t[e + 1] = M, t[e + 2] = z, t[e + 3] = R;
4908
4908
  return;
4909
4909
  }
4910
- if (b !== R || x !== E || f !== M || P !== z) {
4910
+ if (b !== R || x !== E || f !== M || S !== z) {
4911
4911
  let U = 1 - g;
4912
- const F = x * E + f * M + P * z + b * R, gt = F >= 0 ? 1 : -1, xt = 1 - F * F;
4912
+ const F = x * E + f * M + S * z + b * R, gt = F >= 0 ? 1 : -1, xt = 1 - F * F;
4913
4913
  if (xt > Number.EPSILON) {
4914
4914
  const W = Math.sqrt(xt), ut = Math.atan2(W, F * gt);
4915
4915
  U = Math.sin(U * ut) / W, g = Math.sin(g * ut) / W;
4916
4916
  }
4917
4917
  const ot = g * gt;
4918
- if (x = x * U + E * ot, f = f * U + M * ot, P = P * U + z * ot, b = b * U + R * ot, U === 1 - g) {
4919
- const W = 1 / Math.sqrt(x * x + f * f + P * P + b * b);
4920
- x *= W, f *= W, P *= W, b *= W;
4918
+ if (x = x * U + E * ot, f = f * U + M * ot, S = S * U + z * ot, b = b * U + R * ot, U === 1 - g) {
4919
+ const W = 1 / Math.sqrt(x * x + f * f + S * S + b * b);
4920
+ x *= W, f *= W, S *= W, b *= W;
4921
4921
  }
4922
4922
  }
4923
- t[e] = x, t[e + 1] = f, t[e + 2] = P, t[e + 3] = b;
4923
+ t[e] = x, t[e + 1] = f, t[e + 2] = S, t[e + 3] = b;
4924
4924
  }
4925
4925
  /**
4926
4926
  * This multiplication implementation assumes the quaternion data are managed in flat arrays.
@@ -4933,8 +4933,8 @@ class ln {
4933
4933
  * @returns Return an array
4934
4934
  */
4935
4935
  static multiplyQuaternionsFlat(t, e, s, o, h, c) {
4936
- const g = s[o], x = s[o + 1], f = s[o + 2], P = s[o + 3], b = h[c], E = h[c + 1], M = h[c + 2], z = h[c + 3];
4937
- return t[e] = g * z + P * b + x * M - f * E, t[e + 1] = x * z + P * E + f * b - g * M, t[e + 2] = f * z + P * M + g * E - x * b, t[e + 3] = P * z - g * b - x * E - f * M, t;
4936
+ const g = s[o], x = s[o + 1], f = s[o + 2], S = s[o + 3], b = h[c], E = h[c + 1], M = h[c + 2], z = h[c + 3];
4937
+ return t[e] = g * z + S * b + x * M - f * E, t[e + 1] = x * z + S * E + f * b - g * M, t[e + 2] = f * z + S * M + g * E - x * b, t[e + 3] = S * z - g * b - x * E - f * M, t;
4938
4938
  }
4939
4939
  /**
4940
4940
  * X cooridinate
@@ -5005,25 +5005,25 @@ class ln {
5005
5005
  * @returns Return this quaternion
5006
5006
  */
5007
5007
  setFromEuler(t, e = !0) {
5008
- const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), P = g(o / 2), b = g(h / 2), E = x(s / 2), M = x(o / 2), z = x(h / 2);
5008
+ const s = t.x, o = t.y, h = t.z, c = t.order, g = Math.cos, x = Math.sin, f = g(s / 2), S = g(o / 2), b = g(h / 2), E = x(s / 2), M = x(o / 2), z = x(h / 2);
5009
5009
  switch (c) {
5010
5010
  case "XYZ":
5011
- this._x = E * P * b + f * M * z, this._y = f * M * b - E * P * z, this._z = f * P * z + E * M * b, this._w = f * P * b - E * M * z;
5011
+ this._x = E * S * b + f * M * z, this._y = f * M * b - E * S * z, this._z = f * S * z + E * M * b, this._w = f * S * b - E * M * z;
5012
5012
  break;
5013
5013
  case "YXZ":
5014
- this._x = E * P * b + f * M * z, this._y = f * M * b - E * P * z, this._z = f * P * z - E * M * b, this._w = f * P * b + E * M * z;
5014
+ this._x = E * S * b + f * M * z, this._y = f * M * b - E * S * z, this._z = f * S * z - E * M * b, this._w = f * S * b + E * M * z;
5015
5015
  break;
5016
5016
  case "ZXY":
5017
- this._x = E * P * b - f * M * z, this._y = f * M * b + E * P * z, this._z = f * P * z + E * M * b, this._w = f * P * b - E * M * z;
5017
+ this._x = E * S * b - f * M * z, this._y = f * M * b + E * S * z, this._z = f * S * z + E * M * b, this._w = f * S * b - E * M * z;
5018
5018
  break;
5019
5019
  case "ZYX":
5020
- this._x = E * P * b - f * M * z, this._y = f * M * b + E * P * z, this._z = f * P * z - E * M * b, this._w = f * P * b + E * M * z;
5020
+ this._x = E * S * b - f * M * z, this._y = f * M * b + E * S * z, this._z = f * S * z - E * M * b, this._w = f * S * b + E * M * z;
5021
5021
  break;
5022
5022
  case "YZX":
5023
- this._x = E * P * b + f * M * z, this._y = f * M * b + E * P * z, this._z = f * P * z - E * M * b, this._w = f * P * b - E * M * z;
5023
+ this._x = E * S * b + f * M * z, this._y = f * M * b + E * S * z, this._z = f * S * z - E * M * b, this._w = f * S * b - E * M * z;
5024
5024
  break;
5025
5025
  case "XZY":
5026
- this._x = E * P * b - f * M * z, this._y = f * M * b - E * P * z, this._z = f * P * z + E * M * b, this._w = f * P * b + E * M * z;
5026
+ this._x = E * S * b - f * M * z, this._y = f * M * b - E * S * z, this._z = f * S * z + E * M * b, this._w = f * S * b + E * M * z;
5027
5027
  break;
5028
5028
  default:
5029
5029
  console.warn(
@@ -5049,19 +5049,19 @@ class ln {
5049
5049
  * @returns Return this quaternion
5050
5050
  */
5051
5051
  setFromRotationMatrix(t) {
5052
- const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], P = e[6], b = e[10], E = s + g + b;
5052
+ const e = t.elements, s = e[0], o = e[4], h = e[8], c = e[1], g = e[5], x = e[9], f = e[2], S = e[6], b = e[10], E = s + g + b;
5053
5053
  if (E > 0) {
5054
5054
  const M = 0.5 / Math.sqrt(E + 1);
5055
- this._w = 0.25 / M, this._x = (P - x) * M, this._y = (h - f) * M, this._z = (c - o) * M;
5055
+ this._w = 0.25 / M, this._x = (S - x) * M, this._y = (h - f) * M, this._z = (c - o) * M;
5056
5056
  } else if (s > g && s > b) {
5057
5057
  const M = 2 * Math.sqrt(1 + s - g - b);
5058
- this._w = (P - x) / M, this._x = 0.25 * M, this._y = (o + c) / M, this._z = (h + f) / M;
5058
+ this._w = (S - x) / M, this._x = 0.25 * M, this._y = (o + c) / M, this._z = (h + f) / M;
5059
5059
  } else if (g > b) {
5060
5060
  const M = 2 * Math.sqrt(1 + g - s - b);
5061
- this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x + P) / M;
5061
+ this._w = (h - f) / M, this._x = (o + c) / M, this._y = 0.25 * M, this._z = (x + S) / M;
5062
5062
  } else {
5063
5063
  const M = 2 * Math.sqrt(1 + b - s - g);
5064
- this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x + P) / M, this._z = 0.25 * M;
5064
+ this._w = (c - o) / M, this._x = (h + f) / M, this._y = (x + S) / M, this._z = 0.25 * M;
5065
5065
  }
5066
5066
  return this._onChangeCallback(), this;
5067
5067
  }
@@ -5178,8 +5178,8 @@ class ln {
5178
5178
  * @returns Return this quaternion
5179
5179
  */
5180
5180
  multiplyQuaternions(t, e) {
5181
- const s = t._x, o = t._y, h = t._z, c = t._w, g = e._x, x = e._y, f = e._z, P = e._w;
5182
- return this._x = s * P + c * g + o * f - h * x, this._y = o * P + c * x + h * g - s * f, this._z = h * P + c * f + s * x - o * g, this._w = c * P - s * g - o * x - h * f, this._onChangeCallback(), this;
5181
+ const s = t._x, o = t._y, h = t._z, c = t._w, g = e._x, x = e._y, f = e._z, S = e._w;
5182
+ return this._x = s * S + c * g + o * f - h * x, this._y = o * S + c * x + h * g - s * f, this._z = h * S + c * f + s * x - o * g, this._w = c * S - s * g - o * x - h * f, this._onChangeCallback(), this;
5183
5183
  }
5184
5184
  /**
5185
5185
  * Handles the spherical linear interpolation between quaternions. t represents the amount of rotation
@@ -5200,7 +5200,7 @@ class ln {
5200
5200
  const M = 1 - e;
5201
5201
  return this._w = M * c + e * this._w, this._x = M * s + e * this._x, this._y = M * o + e * this._y, this._z = M * h + e * this._z, this.normalize(), this;
5202
5202
  }
5203
- const f = Math.sqrt(x), P = Math.atan2(f, g), b = Math.sin((1 - e) * P) / f, E = Math.sin(e * P) / f;
5203
+ const f = Math.sqrt(x), S = Math.atan2(f, g), b = Math.sin((1 - e) * S) / f, E = Math.sin(e * S) / f;
5204
5204
  return this._w = c * b + this._w * E, this._x = s * b + this._x * E, this._y = o * b + this._y * E, this._z = h * b + this._z * E, this._onChangeCallback(), this;
5205
5205
  }
5206
5206
  /**
@@ -5526,8 +5526,8 @@ const Fe = class th {
5526
5526
  * @returns Return this vector
5527
5527
  */
5528
5528
  applyQuaternion(t) {
5529
- const e = this.x, s = this.y, o = this.z, h = t.x, c = t.y, g = t.z, x = t.w, f = 2 * (c * o - g * s), P = 2 * (g * e - h * o), b = 2 * (h * s - c * e);
5530
- return this.x = e + x * f + c * b - g * P, this.y = s + x * P + g * f - h * b, this.z = o + x * b + h * P - c * f, this;
5529
+ const e = this.x, s = this.y, o = this.z, h = t.x, c = t.y, g = t.z, x = t.w, f = 2 * (c * o - g * s), S = 2 * (g * e - h * o), b = 2 * (h * s - c * e);
5530
+ return this.x = e + x * f + c * b - g * S, this.y = s + x * S + g * f - h * b, this.z = o + x * b + h * S - c * f, this;
5531
5531
  }
5532
5532
  /**
5533
5533
  * Transforms the direction of this vector by a matrix (the upper left 3 x 3 subset of a m) and
@@ -5932,8 +5932,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
5932
5932
  * @param n43 Input element in the forth row and the third column
5933
5933
  * @param n44 Input element in the forth row and the forth column
5934
5934
  */
5935
- constructor(t, e, s, o, h, c, g, x, f, P, b, E, M, z, R, U) {
5936
- this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && P != null && b != null && E != null && M != null && z != null && R != null && U != null && this.set(
5935
+ constructor(t, e, s, o, h, c, g, x, f, S, b, E, M, z, R, U) {
5936
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], t != null && e != null && s != null && o != null && h != null && c != null && g != null && x != null && f != null && S != null && b != null && E != null && M != null && z != null && R != null && U != null && this.set(
5937
5937
  t,
5938
5938
  e,
5939
5939
  s,
@@ -5943,7 +5943,7 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
5943
5943
  g,
5944
5944
  x,
5945
5945
  f,
5946
- P,
5946
+ S,
5947
5947
  b,
5948
5948
  E,
5949
5949
  M,
@@ -5973,9 +5973,9 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
5973
5973
  * @param n44 Input element in the forth row and the forth column
5974
5974
  * @returns Return this matrix
5975
5975
  */
5976
- set(t, e, s, o, h, c, g, x, f, P, b, E, M, z, R, U) {
5976
+ set(t, e, s, o, h, c, g, x, f, S, b, E, M, z, R, U) {
5977
5977
  const F = this.elements;
5978
- return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = P, F[10] = b, F[14] = E, F[3] = M, F[7] = z, F[11] = R, F[15] = U, this;
5978
+ return F[0] = t, F[4] = e, F[8] = s, F[12] = o, F[1] = h, F[5] = c, F[9] = g, F[13] = x, F[2] = f, F[6] = S, F[10] = b, F[14] = E, F[3] = M, F[7] = z, F[11] = R, F[15] = U, this;
5979
5979
  }
5980
5980
  /**
5981
5981
  * Reset this matrix to the identity matrix.
@@ -6259,8 +6259,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
6259
6259
  * @returns Return this matrix
6260
6260
  */
6261
6261
  multiplyMatrices(t, e) {
6262
- const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], P = s[1], b = s[5], E = s[9], M = s[13], z = s[2], R = s[6], U = s[10], F = s[14], gt = s[3], xt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], Yt = o[12], Wt = o[1], bt = o[5], Lt = o[9], de = o[13], me = o[2], Ie = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], lr = o[15];
6263
- return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Ie + f * Mt, h[8] = c * Vt + g * Lt + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = P * ut + b * Wt + E * me + M * Q, h[5] = P * st + b * bt + E * Ie + M * Mt, h[9] = P * Vt + b * Lt + E * Jt + M * ae, h[13] = P * Yt + b * de + E * ie + M * lr, h[2] = z * ut + R * Wt + U * me + F * Q, h[6] = z * st + R * bt + U * Ie + F * Mt, h[10] = z * Vt + R * Lt + U * Jt + F * ae, h[14] = z * Yt + R * de + U * ie + F * lr, h[3] = gt * ut + xt * Wt + ot * me + W * Q, h[7] = gt * st + xt * bt + ot * Ie + W * Mt, h[11] = gt * Vt + xt * Lt + ot * Jt + W * ae, h[15] = gt * Yt + xt * de + ot * ie + W * lr, this;
6262
+ const s = t.elements, o = e.elements, h = this.elements, c = s[0], g = s[4], x = s[8], f = s[12], S = s[1], b = s[5], E = s[9], M = s[13], z = s[2], R = s[6], U = s[10], F = s[14], gt = s[3], xt = s[7], ot = s[11], W = s[15], ut = o[0], st = o[4], Vt = o[8], Yt = o[12], Wt = o[1], bt = o[5], Lt = o[9], de = o[13], me = o[2], Ie = o[6], Jt = o[10], ie = o[14], Q = o[3], Mt = o[7], ae = o[11], lr = o[15];
6263
+ return h[0] = c * ut + g * Wt + x * me + f * Q, h[4] = c * st + g * bt + x * Ie + f * Mt, h[8] = c * Vt + g * Lt + x * Jt + f * ae, h[12] = c * Yt + g * de + x * ie + f * lr, h[1] = S * ut + b * Wt + E * me + M * Q, h[5] = S * st + b * bt + E * Ie + M * Mt, h[9] = S * Vt + b * Lt + E * Jt + M * ae, h[13] = S * Yt + b * de + E * ie + M * lr, h[2] = z * ut + R * Wt + U * me + F * Q, h[6] = z * st + R * bt + U * Ie + F * Mt, h[10] = z * Vt + R * Lt + U * Jt + F * ae, h[14] = z * Yt + R * de + U * ie + F * lr, h[3] = gt * ut + xt * Wt + ot * me + W * Q, h[7] = gt * st + xt * bt + ot * Ie + W * Mt, h[11] = gt * Vt + xt * Lt + ot * Jt + W * ae, h[15] = gt * Yt + xt * de + ot * ie + W * lr, this;
6264
6264
  }
6265
6265
  /**
6266
6266
  * Multiply every component of the matrix by a scalar value s.
@@ -6276,8 +6276,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
6276
6276
  * @returns Return the determinant of this matrix.
6277
6277
  */
6278
6278
  determinant() {
6279
- const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], P = t[2], b = t[6], E = t[10], M = t[14], z = t[3], R = t[7], U = t[11], F = t[15];
6280
- return z * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + R * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * P - h * x * P) + U * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * P - s * f * P) + F * (-o * g * P - e * x * b + e * g * E + o * c * b - s * c * E + s * x * P);
6279
+ const t = this.elements, e = t[0], s = t[4], o = t[8], h = t[12], c = t[1], g = t[5], x = t[9], f = t[13], S = t[2], b = t[6], E = t[10], M = t[14], z = t[3], R = t[7], U = t[11], F = t[15];
6280
+ return z * (+h * x * b - o * f * b - h * g * E + s * f * E + o * g * M - s * x * M) + R * (+e * x * M - e * f * E + h * c * E - o * c * M + o * f * S - h * x * S) + U * (+e * f * b - e * g * M - h * c * b + s * c * M + h * g * S - s * f * S) + F * (-o * g * S - e * x * b + e * g * E + o * c * b - s * c * E + s * x * S);
6281
6281
  }
6282
6282
  /**
6283
6283
  * Transposes this matrix.
@@ -6305,11 +6305,11 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
6305
6305
  * @returns Return this matrix
6306
6306
  */
6307
6307
  invert() {
6308
- const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], P = t[8], b = t[9], E = t[10], M = t[11], z = t[12], R = t[13], U = t[14], F = t[15], gt = b * U * f - R * E * f + R * x * M - g * U * M - b * x * F + g * E * F, xt = z * E * f - P * U * f - z * x * M + c * U * M + P * x * F - c * E * F, ot = P * R * f - z * b * f + z * g * M - c * R * M - P * g * F + c * b * F, W = z * b * x - P * R * x - z * g * E + c * R * E + P * g * U - c * b * U, ut = e * gt + s * xt + o * ot + h * W;
6308
+ const t = this.elements, e = t[0], s = t[1], o = t[2], h = t[3], c = t[4], g = t[5], x = t[6], f = t[7], S = t[8], b = t[9], E = t[10], M = t[11], z = t[12], R = t[13], U = t[14], F = t[15], gt = b * U * f - R * E * f + R * x * M - g * U * M - b * x * F + g * E * F, xt = z * E * f - S * U * f - z * x * M + c * U * M + S * x * F - c * E * F, ot = S * R * f - z * b * f + z * g * M - c * R * M - S * g * F + c * b * F, W = z * b * x - S * R * x - z * g * E + c * R * E + S * g * U - c * b * U, ut = e * gt + s * xt + o * ot + h * W;
6309
6309
  if (ut === 0)
6310
6310
  return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
6311
6311
  const st = 1 / ut;
6312
- return t[0] = gt * st, t[1] = (R * E * h - b * U * h - R * o * M + s * U * M + b * o * F - s * E * F) * st, t[2] = (g * U * h - R * x * h + R * o * f - s * U * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = xt * st, t[5] = (P * U * h - z * E * h + z * o * M - e * U * M - P * o * F + e * E * F) * st, t[6] = (z * x * h - c * U * h - z * o * f + e * U * f + c * o * F - e * x * F) * st, t[7] = (c * E * h - P * x * h + P * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (z * b * h - P * R * h - z * s * M + e * R * M + P * s * F - e * b * F) * st, t[10] = (c * R * h - z * g * h + z * s * f - e * R * f - c * s * F + e * g * F) * st, t[11] = (P * g * h - c * b * h - P * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (P * R * o - z * b * o + z * s * E - e * R * E - P * s * U + e * b * U) * st, t[14] = (z * g * o - c * R * o - z * s * x + e * R * x + c * s * U - e * g * U) * st, t[15] = (c * b * o - P * g * o + P * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6312
+ return t[0] = gt * st, t[1] = (R * E * h - b * U * h - R * o * M + s * U * M + b * o * F - s * E * F) * st, t[2] = (g * U * h - R * x * h + R * o * f - s * U * f - g * o * F + s * x * F) * st, t[3] = (b * x * h - g * E * h - b * o * f + s * E * f + g * o * M - s * x * M) * st, t[4] = xt * st, t[5] = (S * U * h - z * E * h + z * o * M - e * U * M - S * o * F + e * E * F) * st, t[6] = (z * x * h - c * U * h - z * o * f + e * U * f + c * o * F - e * x * F) * st, t[7] = (c * E * h - S * x * h + S * o * f - e * E * f - c * o * M + e * x * M) * st, t[8] = ot * st, t[9] = (z * b * h - S * R * h - z * s * M + e * R * M + S * s * F - e * b * F) * st, t[10] = (c * R * h - z * g * h + z * s * f - e * R * f - c * s * F + e * g * F) * st, t[11] = (S * g * h - c * b * h - S * s * f + e * b * f + c * s * M - e * g * M) * st, t[12] = W * st, t[13] = (S * R * o - z * b * o + z * s * E - e * R * E - S * s * U + e * b * U) * st, t[14] = (z * g * o - c * R * o - z * s * x + e * R * x + c * s * U - e * g * U) * st, t[15] = (c * b * o - S * g * o + S * s * x - e * b * x - c * s * E + e * g * E) * st, this;
6313
6313
  }
6314
6314
  /**
6315
6315
  * Multiply the columns of this matrix by vector v.
@@ -6372,18 +6372,18 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
6372
6372
  * @returns Return this matrix
6373
6373
  */
6374
6374
  makeRotationAxis(t, e) {
6375
- const s = Math.cos(e), o = Math.sin(e), h = 1 - s, c = t.x, g = t.y, x = t.z, f = h * c, P = h * g;
6375
+ const s = Math.cos(e), o = Math.sin(e), h = 1 - s, c = t.x, g = t.y, x = t.z, f = h * c, S = h * g;
6376
6376
  return this.set(
6377
6377
  f * c + s,
6378
6378
  f * g - o * x,
6379
6379
  f * x + o * g,
6380
6380
  0,
6381
6381
  f * g + o * x,
6382
- P * g + s,
6383
- P * x - o * c,
6382
+ S * g + s,
6383
+ S * x - o * c,
6384
6384
  0,
6385
6385
  f * x - o * g,
6386
- P * x + o * c,
6386
+ S * x + o * c,
6387
6387
  h * x * x + s,
6388
6388
  0,
6389
6389
  0,
@@ -6423,7 +6423,7 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
6423
6423
  * @returns Return this matrix
6424
6424
  */
6425
6425
  compose(t, e, s) {
6426
- const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, P = c + c, b = g + g, E = h * f, M = h * P, z = h * b, R = c * P, U = c * b, F = g * b, gt = x * f, xt = x * P, ot = x * b, W = s.x, ut = s.y, st = s.z;
6426
+ const o = this.elements, h = e.x, c = e.y, g = e.z, x = e.w, f = h + h, S = c + c, b = g + g, E = h * f, M = h * S, z = h * b, R = c * S, U = c * b, F = g * b, gt = x * f, xt = x * S, ot = x * b, W = s.x, ut = s.y, st = s.z;
6427
6427
  return o[0] = (1 - (R + F)) * W, o[1] = (M + ot) * W, o[2] = (z - xt) * W, o[3] = 0, o[4] = (M - ot) * ut, o[5] = (1 - (E + F)) * ut, o[6] = (U + gt) * ut, o[7] = 0, o[8] = (z + xt) * st, o[9] = (U - gt) * st, o[10] = (1 - (E + R)) * st, o[11] = 0, o[12] = t.x, o[13] = t.y, o[14] = t.z, o[15] = 1, this;
6428
6428
  }
6429
6429
  /**
@@ -6442,8 +6442,8 @@ const Ai = /* @__PURE__ */ new Z(), po = /* @__PURE__ */ new ln(), Ci = class eh
6442
6442
  let h = En.set(o[0], o[1], o[2]).length();
6443
6443
  const c = En.set(o[4], o[5], o[6]).length(), g = En.set(o[8], o[9], o[10]).length();
6444
6444
  this.determinant() < 0 && (h = -h), t.x = o[12], t.y = o[13], t.z = o[14], er.copy(this);
6445
- const x = 1 / h, f = 1 / c, P = 1 / g;
6446
- return er.elements[0] *= x, er.elements[1] *= x, er.elements[2] *= x, er.elements[4] *= f, er.elements[5] *= f, er.elements[6] *= f, er.elements[8] *= P, er.elements[9] *= P, er.elements[10] *= P, e.setFromRotationMatrix(er), s.x = h, s.y = c, s.z = g, this;
6445
+ const x = 1 / h, f = 1 / c, S = 1 / g;
6446
+ return er.elements[0] *= x, er.elements[1] *= x, er.elements[2] *= x, er.elements[4] *= f, er.elements[5] *= f, er.elements[6] *= f, er.elements[8] *= S, er.elements[9] *= S, er.elements[10] *= S, e.setFromRotationMatrix(er), s.x = h, s.y = c, s.z = g, this;
6447
6447
  }
6448
6448
  // makePerspective(
6449
6449
  // left,
@@ -6601,7 +6601,7 @@ class Ft {
6601
6601
  setFromArray(t) {
6602
6602
  this.makeEmpty();
6603
6603
  for (let e = 0, s = t.length; e < s; e += 3)
6604
- this.expandByPoint(Pi.fromArray(t, e));
6604
+ this.expandByPoint(Si.fromArray(t, e));
6605
6605
  return this;
6606
6606
  }
6607
6607
  /**
@@ -6622,7 +6622,7 @@ class Ft {
6622
6622
  * @returns Return this box
6623
6623
  */
6624
6624
  setFromCenterAndSize(t, e) {
6625
- const s = Pi.copy(e).multiplyScalar(0.5);
6625
+ const s = Si.copy(e).multiplyScalar(0.5);
6626
6626
  return this.min.copy(t).sub(s), this.max.copy(t).add(s), this;
6627
6627
  }
6628
6628
  /**
@@ -6773,7 +6773,7 @@ class Ft {
6773
6773
  * @returns Return the distance from any edge of this box to the specified point.
6774
6774
  */
6775
6775
  distanceToPoint(t) {
6776
- return this.clampPoint(t, Pi).distanceTo(t);
6776
+ return this.clampPoint(t, Si).distanceTo(t);
6777
6777
  }
6778
6778
  /**
6779
6779
  * Compute the intersection of this and box, setting the upper bound of this box to the lesser of the
@@ -6829,7 +6829,7 @@ const Ir = [
6829
6829
  /* @__PURE__ */ new Z(),
6830
6830
  /* @__PURE__ */ new Z(),
6831
6831
  /* @__PURE__ */ new Z()
6832
- ], Pi = /* @__PURE__ */ new Z(), go = /* @__PURE__ */ new Zt();
6832
+ ], Si = /* @__PURE__ */ new Z(), go = /* @__PURE__ */ new Zt();
6833
6833
  class be {
6834
6834
  /**
6835
6835
  * Create a 2d box bounded by min and max.
@@ -7345,13 +7345,13 @@ const _o = /* @__PURE__ */ new Cn(), vo = /* @__PURE__ */ new ln(), rh = class L
7345
7345
  * @returns Return this euler
7346
7346
  */
7347
7347
  setFromRotationMatrix(t, e = this._order, s = !0) {
7348
- const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], P = o[9], b = o[2], E = o[6], M = o[10];
7348
+ const o = t.elements, h = o[0], c = o[4], g = o[8], x = o[1], f = o[5], S = o[9], b = o[2], E = o[6], M = o[10];
7349
7349
  switch (e) {
7350
7350
  case "XYZ":
7351
- this._y = Math.asin(Ur(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-P, M), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
7351
+ this._y = Math.asin(Ur(g, -1, 1)), Math.abs(g) < 0.9999999 ? (this._x = Math.atan2(-S, M), this._z = Math.atan2(-c, h)) : (this._x = Math.atan2(E, f), this._z = 0);
7352
7352
  break;
7353
7353
  case "YXZ":
7354
- this._x = Math.asin(-Ur(P, -1, 1)), Math.abs(P) < 0.9999999 ? (this._y = Math.atan2(g, M), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
7354
+ this._x = Math.asin(-Ur(S, -1, 1)), Math.abs(S) < 0.9999999 ? (this._y = Math.atan2(g, M), this._z = Math.atan2(x, f)) : (this._y = Math.atan2(-b, h), this._z = 0);
7355
7355
  break;
7356
7356
  case "ZXY":
7357
7357
  this._x = Math.asin(Ur(E, -1, 1)), Math.abs(E) < 0.9999999 ? (this._y = Math.atan2(-b, M), this._z = Math.atan2(-c, f)) : (this._y = 0, this._z = Math.atan2(x, h));
@@ -7360,10 +7360,10 @@ const _o = /* @__PURE__ */ new Cn(), vo = /* @__PURE__ */ new ln(), rh = class L
7360
7360
  this._y = Math.asin(-Ur(b, -1, 1)), Math.abs(b) < 0.9999999 ? (this._x = Math.atan2(E, M), this._z = Math.atan2(x, h)) : (this._x = 0, this._z = Math.atan2(-c, f));
7361
7361
  break;
7362
7362
  case "YZX":
7363
- this._z = Math.asin(Ur(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-P, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, M));
7363
+ this._z = Math.asin(Ur(x, -1, 1)), Math.abs(x) < 0.9999999 ? (this._x = Math.atan2(-S, f), this._y = Math.atan2(-b, h)) : (this._x = 0, this._y = Math.atan2(g, M));
7364
7364
  break;
7365
7365
  case "XZY":
7366
- this._z = Math.asin(-Ur(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-P, M), this._y = 0);
7366
+ this._z = Math.asin(-Ur(c, -1, 1)), Math.abs(c) < 0.9999999 ? (this._x = Math.atan2(E, f), this._y = Math.atan2(g, h)) : (this._x = Math.atan2(-S, M), this._y = 0);
7367
7367
  break;
7368
7368
  default:
7369
7369
  console.warn(
@@ -7539,12 +7539,12 @@ class la extends sh {
7539
7539
  });
7540
7540
  const g = { index: -1, children: [] };
7541
7541
  for (let x = 0; x < c; x++) {
7542
- const f = o[x], P = e[f], b = s[f];
7542
+ const f = o[x], S = e[f], b = s[f];
7543
7543
  let E = x + 1;
7544
7544
  for (; E < c; E++) {
7545
7545
  const M = o[E], z = e[M];
7546
- if (s[M].containsBox(b) && Xc.isPointInPolygon(
7547
- P[kt.randInt(0, P.length - 1)],
7546
+ if (s[M].containsBox(b) && Kc.isPointInPolygon(
7547
+ S[kt.randInt(0, S.length - 1)],
7548
7548
  z
7549
7549
  )) {
7550
7550
  (t = h.get(M)) == null || t.children.push(h.get(f));
@@ -7692,7 +7692,7 @@ class Is extends sh {
7692
7692
  }
7693
7693
  if (o = x, s[o] === c)
7694
7694
  return o / (h - 1);
7695
- const P = s[o], b = s[o + 1] - P, E = (c - P) / b;
7695
+ const S = s[o], b = s[o + 1] - S, E = (c - S) / b;
7696
7696
  return (o + E) / (h - 1);
7697
7697
  }
7698
7698
  /**
@@ -7750,7 +7750,7 @@ class ws extends Is {
7750
7750
  const o = (st, Vt) => ({
7751
7751
  x: (st.x + Vt.x) / 2,
7752
7752
  y: (st.y + Vt.y) / 2
7753
- }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), P = h(e, s), b = c(f), E = c(P), M = (st, Vt, Yt, Wt) => {
7753
+ }), h = (st, Vt) => (Vt.y - st.y) / (Vt.x - st.x), c = (st) => -1 / st, g = o(t, e), x = o(e, s), f = h(t, e), S = h(e, s), b = c(f), E = c(S), M = (st, Vt, Yt, Wt) => {
7754
7754
  const bt = (Wt - Vt) / (st - Yt), Lt = st * bt + Vt;
7755
7755
  return { x: bt, y: Lt };
7756
7756
  }, z = g.y - b * g.x, R = x.y - E * x.x, U = M(b, z, E, R), F = Math.sqrt(
@@ -7772,20 +7772,20 @@ class ws extends Is {
7772
7772
  createByStartEndPointsAndBulge(t, e, s) {
7773
7773
  let o, h, c;
7774
7774
  s < 0 ? (o = Math.atan(-s) * 4, h = new Zt(t), c = new Zt(e)) : (o = Math.atan(s) * 4, h = new Zt(e), c = new Zt(t));
7775
- const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)), P = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
7775
+ const g = new Zt().subVectors(c, h), x = g.length(), f = new Zt().addVectors(h, g.multiplyScalar(0.5)), S = Math.abs(x / 2 / Math.tan(o / 2)), b = g.normalize();
7776
7776
  let E;
7777
7777
  if (o < Math.PI) {
7778
7778
  const M = new Zt(
7779
7779
  b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
7780
7780
  b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
7781
7781
  );
7782
- E = f.add(M.multiplyScalar(-P));
7782
+ E = f.add(M.multiplyScalar(-S));
7783
7783
  } else {
7784
7784
  const M = new Zt(
7785
7785
  b.x * Math.cos(Math.PI / 2) - b.y * Math.sin(Math.PI / 2),
7786
7786
  b.y * Math.cos(Math.PI / 2) + b.x * Math.sin(Math.PI / 2)
7787
7787
  );
7788
- E = f.add(M.multiplyScalar(P));
7788
+ E = f.add(M.multiplyScalar(S));
7789
7789
  }
7790
7790
  s < 0 ? (this._startAngle = Math.atan2(h.y - E.y, h.x - E.x), this._endAngle = Math.atan2(c.y - E.y, c.x - E.x)) : (this._startAngle = Math.atan2(c.y - E.y, c.x - E.x), this._endAngle = Math.atan2(h.y - E.y, h.x - E.x)), this._clockwise = s < 0, this.center = E, this.radius = c.sub(E).length();
7791
7791
  }
@@ -8205,7 +8205,7 @@ class Tn extends Es {
8205
8205
  const o = new Z().addVectors(t, e).multiplyScalar(0.5), h = new Z().addVectors(t, s).multiplyScalar(0.5), c = new Z().subVectors(e, t), g = new Z().subVectors(s, t), x = new Z().crossVectors(c, g).normalize();
8206
8206
  if (x.lengthSq() === 0)
8207
8207
  return console.error("Points are collinear and cannot form a valid arc."), null;
8208
- const f = new Z().crossVectors(c, x).normalize(), P = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = P.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new hn(o, o.clone().add(b)), z = new hn(h, h.clone().add(E)), R = new Z();
8208
+ const f = new Z().crossVectors(c, x).normalize(), S = new Z().crossVectors(g, x).normalize(), b = f.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), E = S.clone().multiplyScalar(Number.MAX_SAFE_INTEGER), M = new hn(o, o.clone().add(b)), z = new hn(h, h.clone().add(E)), R = new Z();
8209
8209
  return M.closestPointToPoint(z.startPoint, !0, R) ? R : (console.error("Cannot find a valid center for the arc."), null);
8210
8210
  }
8211
8211
  /**
@@ -8377,7 +8377,7 @@ class Tn extends Es {
8377
8377
  * @inheritdoc
8378
8378
  */
8379
8379
  transform(t) {
8380
- const e = Si.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Si.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
8380
+ const e = Pi.copy(this.refVec).applyAxisAngle(this.normal, this.startAngle).multiplyScalar(this.radius), s = Pi.copy(this.refVec).applyAxisAngle(this.normal, this.endAngle).multiplyScalar(this.radius);
8381
8381
  return this.center.applyMatrix3d(t), e.applyMatrix3d(t), s.applyMatrix3d(t), this.normal.applyMatrix3d(t).normalize(), this.refVec.applyMatrix3d(t).normalize(), this.startAngle = this.getAngle(e), this.endAngle = this.getAngle(s), this._boundingBoxNeedsUpdate = !0, this;
8382
8382
  }
8383
8383
  /**
@@ -8406,7 +8406,7 @@ class Tn extends Es {
8406
8406
  */
8407
8407
  getAngle(t) {
8408
8408
  return t.sub(this.center), Math.atan2(
8409
- t.dot(Si.crossVectors(this.refVec, this.normal)),
8409
+ t.dot(Pi.crossVectors(this.refVec, this.normal)),
8410
8410
  t.dot(this.refVec)
8411
8411
  );
8412
8412
  }
@@ -8434,7 +8434,7 @@ class Tn extends Es {
8434
8434
  return new ei(this.normal, t);
8435
8435
  }
8436
8436
  }
8437
- const Si = /* @__PURE__ */ new Z();
8437
+ const Pi = /* @__PURE__ */ new Z();
8438
8438
  class ha extends Is {
8439
8439
  /**
8440
8440
  * Construct an instance of the ellipse arc.
@@ -8562,8 +8562,8 @@ class ha extends Is {
8562
8562
  const h = this.startAngle + t * s;
8563
8563
  let c = this.center.x + this.majorAxisRadius * Math.cos(h), g = this.center.y + this.minorAxisRadius * Math.sin(h);
8564
8564
  if (this.rotation !== 0) {
8565
- const x = Math.cos(this.rotation), f = Math.sin(this.rotation), P = c - this.center.x, b = g - this.center.y;
8566
- c = P * x - b * f + this.center.x, g = P * f + b * x + this.center.y;
8565
+ const x = Math.cos(this.rotation), f = Math.sin(this.rotation), S = c - this.center.x, b = g - this.center.y;
8566
+ c = S * x - b * f + this.center.x, g = S * f + b * x + this.center.y;
8567
8567
  }
8568
8568
  return new Nt(c, g);
8569
8569
  }
@@ -8731,8 +8731,8 @@ class ua extends Es {
8731
8731
  const t = 1e3, e = this.deltaAngle / t;
8732
8732
  let s = 0, o = this.getPointAtAngle(this.startAngle);
8733
8733
  for (let h = 1; h <= t; h++) {
8734
- const c = this.startAngle + h * e, g = this.getPointAtAngle(c), x = g.x - o.x, f = g.y - o.y, P = g.z - o.z;
8735
- s += Math.sqrt(x * x + f * f + P * P), o = g;
8734
+ const c = this.startAngle + h * e, g = this.getPointAtAngle(c), x = g.x - o.x, f = g.y - o.y, S = g.z - o.z;
8735
+ s += Math.sqrt(x * x + f * f + S * S), o = g;
8736
8736
  }
8737
8737
  return s;
8738
8738
  }
@@ -8966,8 +8966,8 @@ class ri extends Is {
8966
8966
  if (o < s - 1 ? c = this._vertices[o + 1] : o == s - 1 && this.closed && (c = this._vertices[0]), c) {
8967
8967
  const g = new ws(h, c, h.bulge).getPoints(t), x = g.length;
8968
8968
  for (let f = 0; f < x; ++f) {
8969
- const P = g[f];
8970
- e.push(new Nt(P.x, P.y));
8969
+ const S = g[f];
8970
+ e.push(new Nt(S.x, S.y));
8971
8971
  }
8972
8972
  }
8973
8973
  } else
@@ -9152,10 +9152,10 @@ var ih = { exports: {} };
9152
9152
  var c = s;
9153
9153
  if (h()) {
9154
9154
  var g = function(x, f) {
9155
- var P = s;
9155
+ var S = s;
9156
9156
  return x.split(".").forEach(function(b) {
9157
- P && (P = P[b]);
9158
- }), P ? P[f] : null;
9157
+ S && (S = S[b]);
9158
+ }), S ? S[f] : null;
9159
9159
  };
9160
9160
  onmessage = function(x) {
9161
9161
  if (!(!x.data.className || !x.data.methodName)) {
@@ -9167,7 +9167,7 @@ var ih = { exports: {} };
9167
9167
  };
9168
9168
  }
9169
9169
  }
9170
- return function(x, f, P) {
9170
+ return function(x, f, S) {
9171
9171
  f.geom = f.geom || {}, f.exe = f.exe || {}, f.eval = f.eval || {}, f.core = f.core || {}, f.promhx = f.promhx || {};
9172
9172
  var b = {}, E = function() {
9173
9173
  return Mt.__string_rec(this, "");
@@ -9427,9 +9427,9 @@ var ih = { exports: {} };
9427
9427
  break;
9428
9428
  case U:
9429
9429
  this.buf.b += "l";
9430
- for (var w = r, S = w.h, A = null; S != null; ) {
9430
+ for (var w = r, P = w.h, A = null; P != null; ) {
9431
9431
  var I;
9432
- A = S[0], S = S[1], I = A, this.serialize(I);
9432
+ A = P[0], P = P[1], I = A, this.serialize(I);
9433
9433
  }
9434
9434
  this.buf.b += "h";
9435
9435
  break;
@@ -9462,15 +9462,15 @@ var ih = { exports: {} };
9462
9462
  this.buf.b += "h";
9463
9463
  break;
9464
9464
  case Ie:
9465
- for (var j = r, K = 0, tt = j.length - 2, et = new xt(), it = Yt.BASE64; K < tt; ) {
9466
- var ht = j.get(K++), at = j.get(K++), ct = j.get(K++);
9465
+ for (var j = r, X = 0, tt = j.length - 2, et = new xt(), it = Yt.BASE64; X < tt; ) {
9466
+ var ht = j.get(X++), at = j.get(X++), ct = j.get(X++);
9467
9467
  et.add(it.charAt(ht >> 2)), et.add(it.charAt((ht << 4 | at >> 4) & 63)), et.add(it.charAt((at << 2 | ct >> 6) & 63)), et.add(it.charAt(ct & 63));
9468
9468
  }
9469
- if (K == tt) {
9470
- var nt = j.get(K++), dt = j.get(K++);
9469
+ if (X == tt) {
9470
+ var nt = j.get(X++), dt = j.get(X++);
9471
9471
  et.add(it.charAt(nt >> 2)), et.add(it.charAt((nt << 4 | dt >> 4) & 63)), et.add(it.charAt(dt << 2 & 63));
9472
- } else if (K == tt + 1) {
9473
- var Y = j.get(K++);
9472
+ } else if (X == tt + 1) {
9473
+ var Y = j.get(X++);
9474
9474
  et.add(it.charAt(Y >> 2)), et.add(it.charAt(Y << 4 & 63));
9475
9475
  }
9476
9476
  var pt = et.b;
@@ -9482,8 +9482,8 @@ var ih = { exports: {} };
9482
9482
  break;
9483
9483
  case 4:
9484
9484
  if (Mt.__instanceof(r, qa)) {
9485
- var St = ut.getClassName(r);
9486
- this.buf.b += "A", this.serializeString(St);
9485
+ var Pt = ut.getClassName(r);
9486
+ this.buf.b += "A", this.serializeString(Pt);
9487
9487
  } else if (Mt.__instanceof(r, Ya))
9488
9488
  this.buf.b += "B", this.serializeString(ut.getEnumName(r));
9489
9489
  else {
@@ -9498,11 +9498,11 @@ var ih = { exports: {} };
9498
9498
  this.cache.pop();
9499
9499
  }
9500
9500
  this.useEnumIndex ? this.buf.b += "j" : this.buf.b += "w", this.serializeString(ut.getEnumName(Gt)), this.useEnumIndex ? (this.buf.b += ":", this.buf.b += gt.string(r[1])) : this.serializeString(r[0]), this.buf.b += ":";
9501
- var Kt = r.length;
9502
- this.buf.b += gt.string(Kt - 2);
9503
- for (var Dt = 2; Dt < Kt; ) {
9504
- var Xt = Dt++;
9505
- this.serialize(r[Xt]);
9501
+ var Xt = r.length;
9502
+ this.buf.b += gt.string(Xt - 2);
9503
+ for (var Dt = 2; Dt < Xt; ) {
9504
+ var Kt = Dt++;
9505
+ this.serialize(r[Kt]);
9506
9506
  }
9507
9507
  this.useCache && this.cache.push(r);
9508
9508
  break;
@@ -9636,9 +9636,9 @@ var ih = { exports: {} };
9636
9636
  case 120:
9637
9637
  throw new Q(this.unserialize());
9638
9638
  case 99:
9639
- var w = this.unserialize(), S = this.resolver.resolveClass(w);
9640
- if (S == null) throw new Q("Class not found " + w);
9641
- var A = ut.createEmptyInstance(S);
9639
+ var w = this.unserialize(), P = this.resolver.resolveClass(w);
9640
+ if (P == null) throw new Q("Class not found " + w);
9641
+ var A = ut.createEmptyInstance(P);
9642
9642
  return this.cache.push(A), this.unserializeObject(A), A;
9643
9643
  case 119:
9644
9644
  var I = this.unserialize(), k = this.resolver.resolveEnum(I);
@@ -9668,8 +9668,8 @@ var ih = { exports: {} };
9668
9668
  var H = new bt();
9669
9669
  this.cache.push(H), this.buf;
9670
9670
  for (var j = this.get(this.pos++); j == 58; ) {
9671
- var K = this.readDigits();
9672
- H.set(K, this.unserialize()), j = this.get(this.pos++);
9671
+ var X = this.readDigits();
9672
+ H.set(X, this.unserialize()), j = this.get(this.pos++);
9673
9673
  }
9674
9674
  if (j != 104) throw new Q("Invalid IntMap format");
9675
9675
  return H;
@@ -9695,28 +9695,28 @@ var ih = { exports: {} };
9695
9695
  if (this.get(this.pos++) != 58 || this.length - this.pos < nt) throw new Q("Invalid bytes length");
9696
9696
  var Y = Wt.CODES;
9697
9697
  Y == null && (Y = Wt.initCodes(), Wt.CODES = Y);
9698
- var pt = this.pos, St = nt & 3, Gt;
9699
- Gt = (nt >> 2) * 3 + (St >= 2 ? St - 1 : 0);
9700
- for (var Kt = pt + (nt - St), Dt = Ie.alloc(Gt), Xt = 0; pt < Kt; ) {
9698
+ var pt = this.pos, Pt = nt & 3, Gt;
9699
+ Gt = (nt >> 2) * 3 + (Pt >= 2 ? Pt - 1 : 0);
9700
+ for (var Xt = pt + (nt - Pt), Dt = Ie.alloc(Gt), Kt = 0; pt < Xt; ) {
9701
9701
  var Ae = Y[ot.fastCodeAt(dt, pt++)], Ve = Y[ot.fastCodeAt(dt, pt++)];
9702
- Dt.set(Xt++, Ae << 2 | Ve >> 4);
9702
+ Dt.set(Kt++, Ae << 2 | Ve >> 4);
9703
9703
  var _e = Y[ot.fastCodeAt(dt, pt++)];
9704
- Dt.set(Xt++, Ve << 4 | _e >> 2);
9704
+ Dt.set(Kt++, Ve << 4 | _e >> 2);
9705
9705
  var ge = Y[ot.fastCodeAt(dt, pt++)];
9706
- Dt.set(Xt++, _e << 6 | ge);
9706
+ Dt.set(Kt++, _e << 6 | ge);
9707
9707
  }
9708
- if (St >= 2) {
9709
- var Pe = Y[ot.fastCodeAt(dt, pt++)], Te = Y[ot.fastCodeAt(dt, pt++)];
9710
- if (Dt.set(Xt++, Pe << 2 | Te >> 4), St == 3) {
9711
- var Ke = Y[ot.fastCodeAt(dt, pt++)];
9712
- Dt.set(Xt++, Te << 4 | Ke >> 2);
9708
+ if (Pt >= 2) {
9709
+ var Se = Y[ot.fastCodeAt(dt, pt++)], Te = Y[ot.fastCodeAt(dt, pt++)];
9710
+ if (Dt.set(Kt++, Se << 2 | Te >> 4), Pt == 3) {
9711
+ var Xe = Y[ot.fastCodeAt(dt, pt++)];
9712
+ Dt.set(Kt++, Te << 4 | Xe >> 2);
9713
9713
  }
9714
9714
  }
9715
9715
  return this.pos += nt, this.cache.push(Dt), Dt;
9716
9716
  case 67:
9717
- var or = this.unserialize(), Xe = this.resolver.resolveClass(or);
9718
- if (Xe == null) throw new Q("Class not found " + or);
9719
- var $e = ut.createEmptyInstance(Xe);
9717
+ var or = this.unserialize(), Ke = this.resolver.resolveClass(or);
9718
+ if (Ke == null) throw new Q("Class not found " + or);
9719
+ var $e = ut.createEmptyInstance(Ke);
9720
9720
  if (this.cache.push($e), $e.hxUnserialize(this), this.get(this.pos++) != 103) throw new Q("Invalid custom data");
9721
9721
  return $e;
9722
9722
  case 65:
@@ -9885,8 +9885,8 @@ var ih = { exports: {} };
9885
9885
  var _ = r.length, v = "[";
9886
9886
  n += " ";
9887
9887
  for (var w = 0; w < _; ) {
9888
- var S = w++;
9889
- v += (S > 0 ? "," : "") + Mt.__string_rec(r[S], n);
9888
+ var P = w++;
9889
+ v += (P > 0 ? "," : "") + Mt.__string_rec(r[P], n);
9890
9890
  }
9891
9891
  return v += "]", v;
9892
9892
  }
@@ -9956,7 +9956,7 @@ var ih = { exports: {} };
9956
9956
  }, Mt.__isNativeObj = function(r) {
9957
9957
  return Mt.__nativeClassName(r) != null;
9958
9958
  }, Mt.__resolveNativeClass = function(r) {
9959
- return P[r];
9959
+ return S[r];
9960
9960
  };
9961
9961
  var ae = function(r) {
9962
9962
  if (r instanceof Array && r.__enum__ == null)
@@ -10073,8 +10073,8 @@ var ih = { exports: {} };
10073
10073
  var _ = r;
10074
10074
  if (_.length + n > a.byteLength) throw new Q("set() outside of range");
10075
10075
  for (var v = 0, w = _.length; v < w; ) {
10076
- var S = v++;
10077
- a[S + n] = _[S];
10076
+ var P = v++;
10077
+ a[P + n] = _[P];
10078
10078
  }
10079
10079
  } else throw new Q("TODO");
10080
10080
  }, nr._subarray = function(r, n) {
@@ -10102,8 +10102,8 @@ var ih = { exports: {} };
10102
10102
  }, Et.linkAll = function(r, n) {
10103
10103
  for (var a = function(d, p, _) {
10104
10104
  if (d.length == 0 || Et.allFulfilled(d)) {
10105
- for (var v, w = [], S = Ye(r)(); S.hasNext(); ) {
10106
- var A = S.next();
10105
+ for (var v, w = [], P = Ye(r)(); P.hasNext(); ) {
10106
+ var A = P.next();
10107
10107
  w.push(A == p ? _ : A._val);
10108
10108
  }
10109
10109
  v = w, n.handleResolve(v);
@@ -10189,11 +10189,11 @@ var ih = { exports: {} };
10189
10189
  },
10190
10190
  _resolve: function(r) {
10191
10191
  var n = this;
10192
- this._pending ? Pt.enqueue(/* @__PURE__ */ function(a, l) {
10192
+ this._pending ? St.enqueue(/* @__PURE__ */ function(a, l) {
10193
10193
  return function() {
10194
10194
  a(l);
10195
10195
  };
10196
- }(Me(this, this._resolve), r)) : (this._resolved = !0, this._pending = !0, Pt.queue.add(function() {
10196
+ }(Me(this, this._resolve), r)) : (this._resolved = !0, this._pending = !0, St.queue.add(function() {
10197
10197
  n._val = r;
10198
10198
  for (var a = 0, l = n._update; a < l.length; ) {
10199
10199
  var u = l[a];
@@ -10205,7 +10205,7 @@ var ih = { exports: {} };
10205
10205
  }
10206
10206
  }
10207
10207
  n._fulfilled = !0, n._pending = !1;
10208
- }), Pt.continueOnNextLoop());
10208
+ }), St.continueOnNextLoop());
10209
10209
  },
10210
10210
  handleError: function(r) {
10211
10211
  this._handleError(r);
@@ -10225,14 +10225,14 @@ var ih = { exports: {} };
10225
10225
  else throw new Q(l);
10226
10226
  n._errorPending = !1;
10227
10227
  };
10228
- this._errorPending || (this._errorPending = !0, this._errored = !0, this._errorVal = r, Pt.queue.add(function() {
10228
+ this._errorPending || (this._errorPending = !0, this._errored = !0, this._errorVal = r, St.queue.add(function() {
10229
10229
  if (n._errorMap != null) try {
10230
10230
  n._resolve(n._errorMap(r));
10231
10231
  } catch (l) {
10232
10232
  l instanceof Q && (l = l.val), a(l);
10233
10233
  }
10234
10234
  else a(r);
10235
- }), Pt.continueOnNextLoop());
10235
+ }), St.continueOnNextLoop());
10236
10236
  },
10237
10237
  then: function(r) {
10238
10238
  var n = new Et(null);
@@ -10240,11 +10240,11 @@ var ih = { exports: {} };
10240
10240
  },
10241
10241
  unlink: function(r) {
10242
10242
  var n = this;
10243
- Pt.queue.add(function() {
10243
+ St.queue.add(function() {
10244
10244
  n._update = n._update.filter(function(a) {
10245
10245
  return a.async != r;
10246
10246
  });
10247
- }), Pt.continueOnNextLoop();
10247
+ }), St.continueOnNextLoop();
10248
10248
  },
10249
10249
  isLinked: function(r) {
10250
10250
  for (var n = !1, a = 0, l = this._update; a < l.length; ) {
@@ -10305,7 +10305,7 @@ var ih = { exports: {} };
10305
10305
  },
10306
10306
  unlink: function(r) {
10307
10307
  var n = this;
10308
- Pt.queue.add(function() {
10308
+ St.queue.add(function() {
10309
10309
  if (n._fulfilled)
10310
10310
  n._update = n._update.filter(function(l) {
10311
10311
  return l.async != r;
@@ -10314,7 +10314,7 @@ var ih = { exports: {} };
10314
10314
  var a = "Downstream Promise is not fullfilled";
10315
10315
  n.handleError(mn.DownstreamNotFullfilled(a));
10316
10316
  }
10317
- }), Pt.continueOnNextLoop();
10317
+ }), St.continueOnNextLoop();
10318
10318
  },
10319
10319
  handleError: function(r) {
10320
10320
  this._rejected = !0, this._handleError(r);
@@ -10407,7 +10407,7 @@ var ih = { exports: {} };
10407
10407
  },
10408
10408
  handleEnd: function() {
10409
10409
  if (this._pending)
10410
- Pt.queue.add(Me(this, this.handleEnd)), Pt.continueOnNextLoop();
10410
+ St.queue.add(Me(this, this.handleEnd)), St.continueOnNextLoop();
10411
10411
  else {
10412
10412
  if (this._end_promise._resolved) return;
10413
10413
  this._end = !0;
@@ -10416,7 +10416,7 @@ var ih = { exports: {} };
10416
10416
  }
10417
10417
  },
10418
10418
  end: function() {
10419
- return Pt.queue.add(Me(this, this.handleEnd)), Pt.continueOnNextLoop(), this;
10419
+ return St.queue.add(Me(this, this.handleEnd)), St.continueOnNextLoop(), this;
10420
10420
  },
10421
10421
  endThen: function(r) {
10422
10422
  return this._end_promise.then(r);
@@ -10472,26 +10472,26 @@ var ih = { exports: {} };
10472
10472
  },
10473
10473
  __class__: kr
10474
10474
  });
10475
- var Pt = function() {
10475
+ var St = function() {
10476
10476
  };
10477
- b["promhx.base.EventLoop"] = Pt, Pt.__name__ = ["promhx", "base", "EventLoop"], Pt.enqueue = function(r) {
10478
- Pt.queue.add(r), Pt.continueOnNextLoop();
10479
- }, Pt.set_nextLoop = function(r) {
10480
- if (Pt.nextLoop != null) throw new Q("nextLoop has already been set");
10481
- return Pt.nextLoop = r, Pt.nextLoop;
10482
- }, Pt.queueEmpty = function() {
10483
- return Pt.queue.isEmpty();
10484
- }, Pt.finish = function(r) {
10477
+ b["promhx.base.EventLoop"] = St, St.__name__ = ["promhx", "base", "EventLoop"], St.enqueue = function(r) {
10478
+ St.queue.add(r), St.continueOnNextLoop();
10479
+ }, St.set_nextLoop = function(r) {
10480
+ if (St.nextLoop != null) throw new Q("nextLoop has already been set");
10481
+ return St.nextLoop = r, St.nextLoop;
10482
+ }, St.queueEmpty = function() {
10483
+ return St.queue.isEmpty();
10484
+ }, St.finish = function(r) {
10485
10485
  r == null && (r = 1e3);
10486
- for (var n = null; r-- > 0 && (n = Pt.queue.pop()) != null; ) n();
10487
- return Pt.queue.isEmpty();
10488
- }, Pt.clear = function() {
10489
- Pt.queue = new U();
10490
- }, Pt.f = function() {
10491
- var r = Pt.queue.pop();
10492
- r != null && r(), Pt.queue.isEmpty() || Pt.continueOnNextLoop();
10493
- }, Pt.continueOnNextLoop = function() {
10494
- Pt.nextLoop != null ? Pt.nextLoop(Pt.f) : setImmediate(Pt.f);
10486
+ for (var n = null; r-- > 0 && (n = St.queue.pop()) != null; ) n();
10487
+ return St.queue.isEmpty();
10488
+ }, St.clear = function() {
10489
+ St.queue = new U();
10490
+ }, St.f = function() {
10491
+ var r = St.queue.pop();
10492
+ r != null && r(), St.queue.isEmpty() || St.continueOnNextLoop();
10493
+ }, St.continueOnNextLoop = function() {
10494
+ St.nextLoop != null ? St.nextLoop(St.f) : setImmediate(St.f);
10495
10495
  };
10496
10496
  var mn = b["promhx.error.PromiseError"] = { __ename__: ["promhx", "error", "PromiseError"], __constructs__: ["AlreadyResolved", "DownstreamNotFullfilled"] };
10497
10497
  mn.AlreadyResolved = function(r) {
@@ -10506,33 +10506,33 @@ var ih = { exports: {} };
10506
10506
  b["verb.Verb"] = ks, ks.__name__ = ["verb", "Verb"], ks.main = function() {
10507
10507
  x.log("verb 2.1.0");
10508
10508
  };
10509
- var X = function() {
10509
+ var K = function() {
10510
10510
  };
10511
- b["verb.core.ArrayExtensions"] = X, X.__name__ = ["verb", "core", "ArrayExtensions"], X.alloc = function(r, n) {
10511
+ b["verb.core.ArrayExtensions"] = K, K.__name__ = ["verb", "core", "ArrayExtensions"], K.alloc = function(r, n) {
10512
10512
  if (!(n < 0))
10513
10513
  for (; r.length < n; ) r.push(null);
10514
- }, X.reversed = function(r) {
10514
+ }, K.reversed = function(r) {
10515
10515
  var n = r.slice();
10516
10516
  return n.reverse(), n;
10517
- }, X.last = function(r) {
10517
+ }, K.last = function(r) {
10518
10518
  return r[r.length - 1];
10519
- }, X.first = function(r) {
10519
+ }, K.first = function(r) {
10520
10520
  return r[0];
10521
- }, X.spliceAndInsert = function(r, n, a, l) {
10521
+ }, K.spliceAndInsert = function(r, n, a, l) {
10522
10522
  r.splice(n, a), r.splice(n, 0, l);
10523
- }, X.left = function(r) {
10523
+ }, K.left = function(r) {
10524
10524
  if (r.length == 0) return [];
10525
10525
  var n = Math.ceil(r.length / 2);
10526
10526
  return r.slice(0, n);
10527
- }, X.right = function(r) {
10527
+ }, K.right = function(r) {
10528
10528
  if (r.length == 0) return [];
10529
10529
  var n = Math.ceil(r.length / 2);
10530
10530
  return r.slice(n);
10531
- }, X.rightWithPivot = function(r) {
10531
+ }, K.rightWithPivot = function(r) {
10532
10532
  if (r.length == 0) return [];
10533
10533
  var n = Math.ceil(r.length / 2);
10534
10534
  return r.slice(n - 1);
10535
- }, X.unique = function(r, n) {
10535
+ }, K.unique = function(r, n) {
10536
10536
  if (r.length == 0) return [];
10537
10537
  for (var a = [r.pop()]; r.length > 0; ) {
10538
10538
  for (var l = r.pop(), u = !0, d = 0; d < a.length; ) {
@@ -10635,8 +10635,8 @@ var ih = { exports: {} };
10635
10635
  var a = this.min, l = this.max, u = r.min, d = r.max;
10636
10636
  if (!this.intersects(r, n)) return null;
10637
10637
  for (var p = [], _ = [], v = 0, w = this.dim; v < w; ) {
10638
- var S = v++;
10639
- p.push(Math.min(l[S], d[S])), _.push(Math.max(a[S], u[S]));
10638
+ var P = v++;
10639
+ p.push(Math.min(l[P], d[P])), _.push(Math.max(a[P], u[P]));
10640
10640
  }
10641
10641
  return new Ee([_, p]);
10642
10642
  },
@@ -10785,8 +10785,8 @@ var ih = { exports: {} };
10785
10785
  for (var I, k = A.dimension, T = l.distanceFunction(r, A.kdPoint.point), L, C = [], B = 0, O = l.dim; B < O; )
10786
10786
  B++, C.push(0);
10787
10787
  L = C;
10788
- for (var D, V, q = function(K, tt) {
10789
- u.push(new ee(K, tt)), u.size() > n && u.pop();
10788
+ for (var D, V, q = function(X, tt) {
10789
+ u.push(new ee(X, tt)), u.size() > n && u.pop();
10790
10790
  }, J = 0, H = l.dim; J < H; ) {
10791
10791
  var j = J++;
10792
10792
  j == A.dimension ? L[j] = r[j] : L[j] = A.kdPoint.point[j];
@@ -10801,8 +10801,8 @@ var ih = { exports: {} };
10801
10801
  _++, u.push(new ee(null, a));
10802
10802
  d(this.root);
10803
10803
  for (var v = [], w = 0; w < n; ) {
10804
- var S = w++;
10805
- u.content[S].item0 != null && v.push(new ee(u.content[S].item0.kdPoint, u.content[S].item1));
10804
+ var P = w++;
10805
+ u.content[P].item0 != null && v.push(new ee(u.content[P].item0.kdPoint, u.content[P].item1));
10806
10806
  }
10807
10807
  return v;
10808
10808
  },
@@ -10852,8 +10852,8 @@ var ih = { exports: {} };
10852
10852
  _ = this.scoreFunction(v), _ < l && (p = d);
10853
10853
  }
10854
10854
  if (u < n) {
10855
- var w = this.content[u], S = this.scoreFunction(w);
10856
- S < (p == -1 ? l : _) && (p = u);
10855
+ var w = this.content[u], P = this.scoreFunction(w);
10856
+ P < (p == -1 ? l : _) && (p = u);
10857
10857
  }
10858
10858
  if (p != -1)
10859
10859
  this.content[r] = this.content[p], this.content[p] = a, r = p;
@@ -10884,7 +10884,7 @@ var ih = { exports: {} };
10884
10884
  };
10885
10885
  b["verb.core.LazyCurveBoundingBoxTree"] = sr, sr.__name__ = ["verb", "core", "LazyCurveBoundingBoxTree"], sr.__interfaces__ = [hr], sr.prototype = {
10886
10886
  split: function() {
10887
- var r = X.first(this._curve.knots), n = X.last(this._curve.knots), a = n - r, l = oe.curveSplit(this._curve, (n + r) / 2 + a * 0.1 * Math.random());
10887
+ var r = K.first(this._curve.knots), n = K.last(this._curve.knots), a = n - r, l = oe.curveSplit(this._curve, (n + r) / 2 + a * 0.1 * Math.random());
10888
10888
  return new ee(new sr(l[0], this._knotTol), new sr(l[1], this._knotTol));
10889
10889
  },
10890
10890
  boundingBox: function() {
@@ -10913,7 +10913,7 @@ var ih = { exports: {} };
10913
10913
  };
10914
10914
  b["verb.core.LazyMeshBoundingBoxTree"] = ir, ir.__name__ = ["verb", "core", "LazyMeshBoundingBoxTree"], ir.__interfaces__ = [hr], ir.prototype = {
10915
10915
  split: function() {
10916
- var r = re.sortTrianglesOnLongestAxis(this.boundingBox(), this._mesh, this._faceIndices), n = X.left(r), a = X.right(r);
10916
+ var r = re.sortTrianglesOnLongestAxis(this.boundingBox(), this._mesh, this._faceIndices), n = K.left(r), a = K.right(r);
10917
10917
  return new ee(new ir(this._mesh, n), new ir(this._mesh, a));
10918
10918
  },
10919
10919
  boundingBox: function() {
@@ -10958,7 +10958,7 @@ var ih = { exports: {} };
10958
10958
  b["verb.core.LazySurfaceBoundingBoxTree"] = Tr, Tr.__name__ = ["verb", "core", "LazySurfaceBoundingBoxTree"], Tr.__interfaces__ = [hr], Tr.prototype = {
10959
10959
  split: function() {
10960
10960
  var r, n;
10961
- this._splitV ? (r = X.first(this._surface.knotsV), n = X.last(this._surface.knotsV)) : (r = X.first(this._surface.knotsU), n = X.last(this._surface.knotsU));
10961
+ this._splitV ? (r = K.first(this._surface.knotsV), n = K.last(this._surface.knotsV)) : (r = K.first(this._surface.knotsU), n = K.last(this._surface.knotsU));
10962
10962
  var a = (r + n) / 2, l = oe.surfaceSplit(this._surface, a, this._splitV);
10963
10963
  return new ee(new Tr(l[0], !this._splitV, this._knotTolU, this._knotTolV), new Tr(l[1], !this._splitV, this._knotTolU, this._knotTolV));
10964
10964
  },
@@ -10994,13 +10994,13 @@ var ih = { exports: {} };
10994
10994
  }, Ct.mult = function(r, n) {
10995
10995
  var a, l, u, d, p, _, v, w;
10996
10996
  a = r.length, l = n.length, u = n[0].length, d = [];
10997
- for (var S = a - 1, A = 0, I = 0; S >= 0; ) {
10998
- for (p = [], _ = r[S], I = u - 1; I >= 0; ) {
10997
+ for (var P = a - 1, A = 0, I = 0; P >= 0; ) {
10998
+ for (p = [], _ = r[P], I = u - 1; I >= 0; ) {
10999
10999
  for (v = _[l - 1] * n[l - 1][I], A = l - 2; A >= 1; )
11000
11000
  w = A - 1, v += _[A] * n[A][I] + _[w] * n[w][I], A -= 2;
11001
11001
  A == 0 && (v += _[0] * n[0][I]), p[I] = v, I--;
11002
11002
  }
11003
- d[S] = p, S--;
11003
+ d[P] = p, P--;
11004
11004
  }
11005
11005
  return d;
11006
11006
  }, Ct.add = function(r, n) {
@@ -11039,8 +11039,8 @@ var ih = { exports: {} };
11039
11039
  var u = a++;
11040
11040
  n.push(function(d) {
11041
11041
  for (var p, _ = [], v = 0, w = r.length; v < w; ) {
11042
- var S = v++;
11043
- _.push(r[S][u]);
11042
+ var P = v++;
11043
+ _.push(r[P][u]);
11044
11044
  }
11045
11045
  return p = _, p;
11046
11046
  }());
@@ -11049,11 +11049,11 @@ var ih = { exports: {} };
11049
11049
  }, Ct.solve = function(r, n) {
11050
11050
  return Ct.LUsolve(Ct.LU(r), n);
11051
11051
  }, Ct.LUsolve = function(r, n) {
11052
- var a, l, u = r.LU, d = u.length, p = n.slice(), _ = r.P, v, w, S;
11052
+ var a, l, u = r.LU, d = u.length, p = n.slice(), _ = r.P, v, w, P;
11053
11053
  for (a = d - 1; a != -1; )
11054
11054
  p[a] = n[a], --a;
11055
11055
  for (a = 0; a < d; ) {
11056
- for (v = _[a], _[a] != a && (S = p[a], p[a] = p[v], p[v] = S), w = u[a], l = 0; l < a; )
11056
+ for (v = _[a], _[a] != a && (P = p[a], p[a] = p[v], p[v] = P), w = u[a], l = 0; l < a; )
11057
11057
  p[a] -= p[l] * w[l], ++l;
11058
11058
  ++a;
11059
11059
  }
@@ -11064,11 +11064,11 @@ var ih = { exports: {} };
11064
11064
  }
11065
11065
  return p;
11066
11066
  }, Ct.LU = function(r) {
11067
- for (var n, a, l, u, d, p, _, v, w, S = [], A = 0, I = r.length; A < I; ) {
11067
+ for (var n, a, l, u, d, p, _, v, w, P = [], A = 0, I = r.length; A < I; ) {
11068
11068
  var k = A++;
11069
- S.push(r[k].slice());
11069
+ P.push(r[k].slice());
11070
11070
  }
11071
- r = S;
11071
+ r = P;
11072
11072
  var T = r.length, L = T - 1, C = [];
11073
11073
  for (l = 0; l < T; ) {
11074
11074
  for (_ = l, p = r[l], w = Math.abs(p[l]), a = l + 1; a < T; )
@@ -11112,7 +11112,7 @@ var ih = { exports: {} };
11112
11112
  var T = I.item0, L = k.item0;
11113
11113
  return T == L ? 0 : T > L ? 1 : -1;
11114
11114
  });
11115
- for (var v = [], w = 0, S = u.length; w < S; ) {
11115
+ for (var v = [], w = 0, P = u.length; w < P; ) {
11116
11116
  var A = w++;
11117
11117
  v.push(u[A].item1);
11118
11118
  }
@@ -11135,7 +11135,7 @@ var ih = { exports: {} };
11135
11135
  }
11136
11136
  return a;
11137
11137
  }, re.triangleUVFromPoint = function(r, n, a) {
11138
- var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], w = r.uvs[l[2]], S = m.sub(u, a), A = m.sub(d, a), I = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), T = m.norm(m.cross(A, I)) / k, L = m.norm(m.cross(I, S)) / k, C = m.norm(m.cross(S, A)) / k;
11138
+ var l = r.faces[n], u = r.points[l[0]], d = r.points[l[1]], p = r.points[l[2]], _ = r.uvs[l[0]], v = r.uvs[l[1]], w = r.uvs[l[2]], P = m.sub(u, a), A = m.sub(d, a), I = m.sub(p, a), k = m.norm(m.cross(m.sub(u, d), m.sub(u, p))), T = m.norm(m.cross(A, I)) / k, L = m.norm(m.cross(I, P)) / k, C = m.norm(m.cross(P, A)) / k;
11139
11139
  return m.add(m.mul(T, _), m.add(m.mul(L, v), m.mul(C, w)));
11140
11140
  };
11141
11141
  var Nr = function(r, n) {
@@ -11153,7 +11153,7 @@ var ih = { exports: {} };
11153
11153
  this._face = n[0];
11154
11154
  return;
11155
11155
  }
11156
- var p = re.sortTrianglesOnLongestAxis(this._boundingBox, r, n), _ = X.left(p), v = X.right(p);
11156
+ var p = re.sortTrianglesOnLongestAxis(this._boundingBox, r, n), _ = K.left(p), v = K.right(p);
11157
11157
  this._children = new ee(new Nr(r, _), new Nr(r, v));
11158
11158
  };
11159
11159
  b["verb.core.MeshBoundingBoxTree"] = Nr, Nr.__name__ = ["verb", "core", "MeshBoundingBoxTree"], Nr.__interfaces__ = [hr], Nr.prototype = {
@@ -11183,13 +11183,13 @@ var ih = { exports: {} };
11183
11183
  var d = n.length, p = r(n), _ = p, v;
11184
11184
  if (isNaN(p)) throw new Q("uncmin: f(x0) is a NaN!");
11185
11185
  a = Math.max(a, rt.EPSILON);
11186
- var w, S, A, I = Ct.identity(d), k = 0, T = [], L, C, B, O, D, V, q = "";
11187
- for (S = l(n); k < u; ) {
11188
- if (!m.all(m.finite(S))) {
11186
+ var w, P, A, I = Ct.identity(d), k = 0, T = [], L, C, B, O, D, V, q = "";
11187
+ for (P = l(n); k < u; ) {
11188
+ if (!m.all(m.finite(P))) {
11189
11189
  q = "Gradient has Infinity or NaN";
11190
11190
  break;
11191
11191
  }
11192
- if (w = m.neg(Ct.dot(I, S)), !m.all(m.finite(w))) {
11192
+ if (w = m.neg(Ct.dot(I, P)), !m.all(m.finite(w))) {
11193
11193
  q = "Search direction has Infinity or NaN";
11194
11194
  break;
11195
11195
  }
@@ -11197,7 +11197,7 @@ var ih = { exports: {} };
11197
11197
  q = "Newton step smaller than tol";
11198
11198
  break;
11199
11199
  }
11200
- for (D = 1, v = m.dot(S, w), L = n; k < u && !(D * V < a); ) {
11200
+ for (D = 1, v = m.dot(P, w), L = n; k < u && !(D * V < a); ) {
11201
11201
  if (T = m.mul(D, w), L = m.add(n, T), _ = r(L), _ - p >= 0.1 * D * v || isNaN(_)) {
11202
11202
  D *= 0.5, ++k;
11203
11203
  continue;
@@ -11212,20 +11212,20 @@ var ih = { exports: {} };
11212
11212
  q = "maxit reached during line search";
11213
11213
  break;
11214
11214
  }
11215
- A = l(L), C = m.sub(A, S), O = m.dot(C, T), B = Ct.dot(I, C), I = Ct.sub(Ct.add(I, Ct.mul((O + m.dot(C, B)) / (O * O), qe.tensor(T, T))), Ct.div(Ct.add(qe.tensor(B, T), qe.tensor(T, B)), O)), n = L, p = _, S = A, ++k;
11215
+ A = l(L), C = m.sub(A, P), O = m.dot(C, T), B = Ct.dot(I, C), I = Ct.sub(Ct.add(I, Ct.mul((O + m.dot(C, B)) / (O * O), qe.tensor(T, T))), Ct.div(Ct.add(qe.tensor(B, T), qe.tensor(T, B)), O)), n = L, p = _, P = A, ++k;
11216
11216
  }
11217
- return new qn(n, p, S, I, k, q);
11217
+ return new qn(n, p, P, I, k, q);
11218
11218
  }, qe.numericalGradient = function(r, n) {
11219
11219
  var a = n.length, l = r(n);
11220
11220
  if (l == NaN) throw new Q("gradient: f(x) is a NaN!");
11221
- for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, S, A, I, k = 0, T, L, C, B = 0; B < a; )
11221
+ for (var u = n.slice(0), d, p, _ = [], v, w = 1e-3, P, A, I, k = 0, T, L, C, B = 0; B < a; )
11222
11222
  for (var O = B++, D = Math.max(1e-6 * l, 1e-8); ; ) {
11223
11223
  if (++k, k > 20) throw new Q("Numerical gradient fails");
11224
11224
  if (u[O] = n[O] + D, d = r(u), u[O] = n[O] - D, p = r(u), u[O] = n[O], isNaN(d) || isNaN(p)) {
11225
11225
  D /= 16;
11226
11226
  continue;
11227
11227
  }
11228
- if (_[O] = (d - p) / (2 * D), S = n[O] - D, A = n[O], I = n[O] + D, T = (d - l) / D, L = (l - p) / D, C = m.max([Math.abs(_[O]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(S), Math.abs(A), Math.abs(I), 1e-8]), v = Math.min(m.max([Math.abs(T - _[O]), Math.abs(L - _[O]), Math.abs(T - L)]) / C, D / C), v > w) D /= 16;
11228
+ if (_[O] = (d - p) / (2 * D), P = n[O] - D, A = n[O], I = n[O] + D, T = (d - l) / D, L = (l - p) / D, C = m.max([Math.abs(_[O]), Math.abs(l), Math.abs(d), Math.abs(p), Math.abs(P), Math.abs(A), Math.abs(I), 1e-8]), v = Math.min(m.max([Math.abs(T - _[O]), Math.abs(L - _[O]), Math.abs(T - L)]) / C, D / C), v > w) D /= 16;
11229
11229
  else break;
11230
11230
  }
11231
11231
  return _;
@@ -11276,24 +11276,24 @@ var ih = { exports: {} };
11276
11276
  }, ke.segmentClosestPoint = function(r, n, a, l, u) {
11277
11277
  var d = m.sub(a, n), p = m.norm(d);
11278
11278
  if (p < rt.EPSILON) return { u: l, pt: n };
11279
- var _ = n, v = m.mul(1 / p, d), w = m.sub(r, _), S = m.dot(w, v);
11280
- return S < 0 ? { u: l, pt: n } : S > p ? { u, pt: a } : { u: l + (u - l) * S / p, pt: m.add(_, m.mul(S, v)) };
11279
+ var _ = n, v = m.mul(1 / p, d), w = m.sub(r, _), P = m.dot(w, v);
11280
+ return P < 0 ? { u: l, pt: n } : P > p ? { u, pt: a } : { u: l + (u - l) * P / p, pt: m.add(_, m.mul(P, v)) };
11281
11281
  };
11282
11282
  var m = f.core.Vec = function() {
11283
11283
  };
11284
11284
  b["verb.core.Vec"] = m, m.__name__ = ["verb", "core", "Vec"], m.angleBetween = function(r, n) {
11285
11285
  return Math.acos(m.dot(r, n) / (m.norm(r) * m.norm(n)));
11286
11286
  }, m.positiveAngleBetween = function(r, n, a) {
11287
- var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p, S = Math.atan2(v, w), A = m.dot(a, l);
11288
- return Math.abs(A) < rt.EPSILON || A > 0 ? S : -S;
11287
+ var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p, P = Math.atan2(v, w), A = m.dot(a, l);
11288
+ return Math.abs(A) < rt.EPSILON || A > 0 ? P : -P;
11289
11289
  }, m.signedAngleBetween = function(r, n, a) {
11290
- var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p, S = Math.atan2(v, w), A = m.dot(a, l);
11291
- return A > 0 ? S : 2 * Math.PI - S;
11290
+ var l = m.cross(r, n), u = m.norm(r), d = m.norm(n), p = u * d, _ = m.dot(r, n), v = m.norm(l) / p, w = _ / p, P = Math.atan2(v, w), A = m.dot(a, l);
11291
+ return A > 0 ? P : 2 * Math.PI - P;
11292
11292
  }, m.angleBetweenNormalized2d = function(r, n) {
11293
11293
  var a = r[0] * n[1] - r[1] * n[0];
11294
11294
  return Math.atan2(a, m.dot(r, n));
11295
11295
  }, m.domain = function(r) {
11296
- return X.last(r) - X.first(r);
11296
+ return K.last(r) - K.first(r);
11297
11297
  }, m.range = function(r) {
11298
11298
  for (var n = [], a = 0, l = 0; l < r; )
11299
11299
  l++, n.push(a), a += 1;
@@ -11486,7 +11486,7 @@ var ih = { exports: {} };
11486
11486
  var a;
11487
11487
  n ? a = r.controlPoints : a = Ct.transpose(r.controlPoints);
11488
11488
  for (var l = 0, u = a[0].length; l < u; ) {
11489
- var d = l++, p = m.dist(X.first(a)[d], X.last(a)[d]) < rt.EPSILON;
11489
+ var d = l++, p = m.dist(K.first(a)[d], K.last(a)[d]) < rt.EPSILON;
11490
11490
  if (!p) return !1;
11491
11491
  }
11492
11492
  return !0;
@@ -11494,23 +11494,23 @@ var ih = { exports: {} };
11494
11494
  var a = vt.rationalSurfaceClosestParam(r, n);
11495
11495
  return N.rationalSurfacePoint(r, a[0], a[1]);
11496
11496
  }, vt.rationalSurfaceClosestParam = function(r, n) {
11497
- for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = X.last(r.knotsU), S = r.knotsV[0], A = X.last(r.knotsV), I = vt.isRationalSurfaceClosed(r), k = vt.isRationalSurfaceClosed(r, !1), T, L = Ot.rationalSurfaceAdaptive(r, new Cr()), C = 1 / 0, B = 0, O = L.points.length; B < O; ) {
11497
+ for (var a = 5, l = 0, u, d = 1e-4, p = 5e-4, _, v = r.knotsU[0], w = K.last(r.knotsU), P = r.knotsV[0], A = K.last(r.knotsV), I = vt.isRationalSurfaceClosed(r), k = vt.isRationalSurfaceClosed(r, !1), T, L = Ot.rationalSurfaceAdaptive(r, new Cr()), C = 1 / 0, B = 0, O = L.points.length; B < O; ) {
11498
11498
  var D = B++, V = L.points[D], q = m.normSquared(m.sub(n, V));
11499
11499
  q < C && (C = q, T = L.uvs[D]);
11500
11500
  }
11501
11501
  for (var J = function(Gt) {
11502
11502
  return N.rationalSurfaceDerivatives(r, Gt[0], Gt[1], 2);
11503
- }, H = function(Gt, Kt, Dt) {
11504
- var Xt = Kt[1][0], Ae = Kt[0][1], Ve = Kt[2][0], _e = Kt[0][2], ge = Kt[1][1], Pe = Kt[1][1], Te = m.dot(Xt, Dt), Ke = m.dot(Ae, Dt), or = [-Te, -Ke], Xe = m.dot(Xt, Xt) + m.dot(Ve, Dt), $e = m.dot(Xt, Ae) + m.dot(ge, Dt), Ze = m.dot(Xt, Ae) + m.dot(Pe, Dt), cr = m.dot(Ae, Ae) + m.dot(_e, Dt), An = [[Xe, $e], [Ze, cr]], Hr = Ct.solve(An, or);
11503
+ }, H = function(Gt, Xt, Dt) {
11504
+ var Kt = Xt[1][0], Ae = Xt[0][1], Ve = Xt[2][0], _e = Xt[0][2], ge = Xt[1][1], Se = Xt[1][1], Te = m.dot(Kt, Dt), Xe = m.dot(Ae, Dt), or = [-Te, -Xe], Ke = m.dot(Kt, Kt) + m.dot(Ve, Dt), $e = m.dot(Kt, Ae) + m.dot(ge, Dt), Ze = m.dot(Kt, Ae) + m.dot(Se, Dt), cr = m.dot(Ae, Ae) + m.dot(_e, Dt), An = [[Ke, $e], [Ze, cr]], Hr = Ct.solve(An, or);
11505
11505
  return m.add(Hr, Gt);
11506
11506
  }; l < a; ) {
11507
11507
  u = J(T), _ = m.sub(u[0][0], n);
11508
- var j = m.norm(_), K = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * j, et = m.dot(u[0][1], _), it = m.norm(u[0][1]) * j, ht = K / tt, at = et / it, ct = j < d, nt = ht < p, dt = at < p;
11508
+ var j = m.norm(_), X = m.dot(u[1][0], _), tt = m.norm(u[1][0]) * j, et = m.dot(u[0][1], _), it = m.norm(u[0][1]) * j, ht = X / tt, at = et / it, ct = j < d, nt = ht < p, dt = at < p;
11509
11509
  if (ct && nt && dt) return T;
11510
11510
  var Y = H(T, u, _);
11511
- Y[0] < v ? I ? Y = [w - (Y[0] - v), Y[1]] : Y = [v + rt.EPSILON, Y[1]] : Y[0] > w && (I ? Y = [v + (Y[0] - w), Y[1]] : Y = [w - rt.EPSILON, Y[1]]), Y[1] < S ? k ? Y = [Y[0], A - (Y[1] - S)] : Y = [Y[0], S + rt.EPSILON] : Y[1] > A && (k ? Y = [Y[0], S + (Y[0] - A)] : Y = [Y[0], A - rt.EPSILON]);
11512
- var pt = m.norm(m.mul(Y[0] - T[0], u[1][0])), St = m.norm(m.mul(Y[1] - T[1], u[0][1]));
11513
- if (pt + St < d) return T;
11511
+ Y[0] < v ? I ? Y = [w - (Y[0] - v), Y[1]] : Y = [v + rt.EPSILON, Y[1]] : Y[0] > w && (I ? Y = [v + (Y[0] - w), Y[1]] : Y = [w - rt.EPSILON, Y[1]]), Y[1] < P ? k ? Y = [Y[0], A - (Y[1] - P)] : Y = [Y[0], P + rt.EPSILON] : Y[1] > A && (k ? Y = [Y[0], P + (Y[0] - A)] : Y = [Y[0], A - rt.EPSILON]);
11512
+ var pt = m.norm(m.mul(Y[0] - T[0], u[1][0])), Pt = m.norm(m.mul(Y[1] - T[1], u[0][1]));
11513
+ if (pt + Pt < d) return T;
11514
11514
  T = Y, l++;
11515
11515
  }
11516
11516
  return T;
@@ -11518,19 +11518,19 @@ var ih = { exports: {} };
11518
11518
  return N.rationalCurvePoint(r, vt.rationalCurveClosestParam(r, n));
11519
11519
  }, vt.rationalCurveClosestParam = function(r, n) {
11520
11520
  for (var a = 1 / 0, l = 0, u = Ot.rationalCurveRegularSample(r, r.controlPoints.length * r.degree, !0), d = 0, p = u.length - 1; d < p; ) {
11521
- var _ = d++, v = u[_][0], w = u[_ + 1][0], S = u[_].slice(1), A = u[_ + 1].slice(1), I = ke.segmentClosestPoint(n, S, A, v, w), k = m.norm(m.sub(n, I.pt));
11521
+ var _ = d++, v = u[_][0], w = u[_ + 1][0], P = u[_].slice(1), A = u[_ + 1].slice(1), I = ke.segmentClosestPoint(n, P, A, v, w), k = m.norm(m.sub(n, I.pt));
11522
11522
  k < a && (a = k, l = I.u);
11523
11523
  }
11524
- for (var T = 5, L = 0, C, B = 1e-4, O = 5e-4, D, V = r.knots[0], q = X.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], X.last(r.controlPoints))) < rt.EPSILON, H = l, j = function(Y) {
11524
+ for (var T = 5, L = 0, C, B = 1e-4, O = 5e-4, D, V = r.knots[0], q = K.last(r.knots), J = m.normSquared(m.sub(r.controlPoints[0], K.last(r.controlPoints))) < rt.EPSILON, H = l, j = function(Y) {
11525
11525
  return N.rationalCurveDerivatives(r, Y, 2);
11526
- }, K = function(Y, pt, St) {
11527
- var Gt = m.dot(pt[1], St), Kt = m.dot(pt[2], St), Dt = m.dot(pt[1], pt[1]), Xt = Kt + Dt;
11528
- return Y - Gt / Xt;
11526
+ }, X = function(Y, pt, Pt) {
11527
+ var Gt = m.dot(pt[1], Pt), Xt = m.dot(pt[2], Pt), Dt = m.dot(pt[1], pt[1]), Kt = Xt + Dt;
11528
+ return Y - Gt / Kt;
11529
11529
  }; L < T; ) {
11530
11530
  C = j(H), D = m.sub(C[0], n);
11531
11531
  var tt = m.norm(D), et = m.dot(C[1], D), it = m.norm(C[1]) * tt, ht = et / it, at = tt < B, ct = Math.abs(ht) < O;
11532
11532
  if (at && ct) return H;
11533
- var nt = K(H, C, D);
11533
+ var nt = X(H, C, D);
11534
11534
  nt < V ? J ? nt = q - (nt - V) : nt = V : nt > q && (J ? nt = V + (nt - q) : nt = q);
11535
11535
  var dt = m.norm(m.mul(nt - H, C[1]));
11536
11536
  if (dt < B) return H;
@@ -11552,25 +11552,25 @@ var ih = { exports: {} };
11552
11552
  }, vt.rationalBezierCurveParamAtArcLength = function(r, n, a, l) {
11553
11553
  if (n < 0) return r.knots[0];
11554
11554
  var u;
11555
- if (l != null ? u = l : u = vt.rationalBezierCurveArcLength(r), n > u) return X.last(r.knots);
11556
- var d = r.knots[0], p = 0, _ = X.last(r.knots), v = u, w = 0, S = 0, A;
11555
+ if (l != null ? u = l : u = vt.rationalBezierCurveArcLength(r), n > u) return K.last(r.knots);
11556
+ var d = r.knots[0], p = 0, _ = K.last(r.knots), v = u, w = 0, P = 0, A;
11557
11557
  for (a != null ? A = a : A = rt.TOLERANCE * 2; v - p > A; )
11558
- w = (d + _) / 2, S = vt.rationalBezierCurveArcLength(r, w), S > n ? (_ = w, v = S) : (d = w, p = S);
11558
+ w = (d + _) / 2, P = vt.rationalBezierCurveArcLength(r, w), P > n ? (_ = w, v = P) : (d = w, p = P);
11559
11559
  return (d + _) / 2;
11560
11560
  }, vt.rationalCurveArcLength = function(r, n, a) {
11561
- a == null && (a = 16), n == null ? n = X.last(r.knots) : n = n;
11561
+ a == null && (a = 16), n == null ? n = K.last(r.knots) : n = n;
11562
11562
  for (var l = ft.decomposeCurveIntoBeziers(r), u = 0, d = l[0], p = 0; u < l.length && d.knots[0] + rt.EPSILON < n; ) {
11563
- var _ = Math.min(X.last(d.knots), n);
11563
+ var _ = Math.min(K.last(d.knots), n);
11564
11564
  p += vt.rationalBezierCurveArcLength(d, _, a), d = l[++u];
11565
11565
  }
11566
11566
  return p;
11567
11567
  }, vt.rationalBezierCurveArcLength = function(r, n, a) {
11568
11568
  a == null && (a = 16);
11569
11569
  var l;
11570
- n == null ? l = X.last(r.knots) : l = n;
11570
+ n == null ? l = K.last(r.knots) : l = n;
11571
11571
  for (var u = (l - r.knots[0]) / 2, d = 0, p = r.degree + a, _, v, w = 0; w < p; ) {
11572
- var S = w++;
11573
- _ = u * vt.Tvalues[p][S] + u + r.knots[0], v = N.rationalCurveDerivatives(r, _, 1), d += vt.Cvalues[p][S] * m.norm(v[1]);
11572
+ var P = w++;
11573
+ _ = u * vt.Tvalues[p][P] + u + r.knots[0], v = N.rationalCurveDerivatives(r, _, 1), d += vt.Cvalues[p][P] * m.norm(v[1]);
11574
11574
  }
11575
11575
  return u * d;
11576
11576
  };
@@ -11587,18 +11587,18 @@ var ih = { exports: {} };
11587
11587
  };
11588
11588
  b["verb.eval.Check"] = Ue, Ue.__name__ = ["verb", "eval", "Check"], Ue.isValidKnotVector = function(r, n) {
11589
11589
  if (r.length == 0 || r.length < (n + 1) * 2) return !1;
11590
- for (var a = X.first(r), l = 0, u = n + 1; l < u; ) {
11590
+ for (var a = K.first(r), l = 0, u = n + 1; l < u; ) {
11591
11591
  var d = l++;
11592
11592
  if (Math.abs(r[d] - a) > rt.EPSILON) return !1;
11593
11593
  }
11594
- a = X.last(r);
11594
+ a = K.last(r);
11595
11595
  for (var p = r.length - n - 1, _ = r.length; p < _; ) {
11596
11596
  var v = p++;
11597
11597
  if (Math.abs(r[v] - a) > rt.EPSILON) return !1;
11598
11598
  }
11599
11599
  return Ue.isNonDecreasing(r);
11600
11600
  }, Ue.isNonDecreasing = function(r) {
11601
- for (var n = X.first(r), a = 0, l = r.length; a < l; ) {
11601
+ for (var n = K.first(r), a = 0, l = r.length; a < l; ) {
11602
11602
  var u = a++;
11603
11603
  if (r[u] < n - rt.EPSILON) return !1;
11604
11604
  n = r[u];
@@ -11634,20 +11634,20 @@ var ih = { exports: {} };
11634
11634
  for (var p, _ = [], v = 0, w = u + 1; v < w; )
11635
11635
  v++, _.push(n);
11636
11636
  p = _;
11637
- for (var S = [], A = [], I = N.knotSpan(u, n, l), k = null, T = 0; T < d.length; ) {
11637
+ for (var P = [], A = [], I = N.knotSpan(u, n, l), k = null, T = 0; T < d.length; ) {
11638
11638
  var L = d[T];
11639
- ++T, k = ft.curveKnotRefine(new jt(u, l, L), p), S.push(k.controlPoints.slice(0, I + 1)), A.push(k.controlPoints.slice(I + 1));
11639
+ ++T, k = ft.curveKnotRefine(new jt(u, l, L), p), P.push(k.controlPoints.slice(0, I + 1)), A.push(k.controlPoints.slice(I + 1));
11640
11640
  }
11641
11641
  var C = k.knots.slice(0, I + u + 2), B = k.knots.slice(I + 1);
11642
- return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, S), new te(r.degreeU, u, r.knotsU.slice(), B, A)] : (S = Ct.transpose(S), A = Ct.transpose(A), [new te(u, r.degreeV, C, r.knotsV.slice(), S), new te(u, r.degreeV, B, r.knotsV.slice(), A)]);
11642
+ return a ? [new te(r.degreeU, u, r.knotsU.slice(), C, P), new te(r.degreeU, u, r.knotsU.slice(), B, A)] : (P = Ct.transpose(P), A = Ct.transpose(A), [new te(u, r.degreeV, C, r.knotsV.slice(), P), new te(u, r.degreeV, B, r.knotsV.slice(), A)]);
11643
11643
  }, oe.curveSplit = function(r, n) {
11644
11644
  var a = r.degree;
11645
11645
  r.controlPoints;
11646
11646
  for (var l = r.knots, u, d = [], p = 0, _ = a + 1; p < _; )
11647
11647
  p++, d.push(n);
11648
11648
  u = d;
11649
- var v = ft.curveKnotRefine(r, u), w = N.knotSpan(a, n, l), S = v.knots.slice(0, w + a + 2), A = v.knots.slice(w + 1), I = v.controlPoints.slice(0, w + 1), k = v.controlPoints.slice(w + 1);
11650
- return [new jt(a, S, I), new jt(a, A, k)];
11649
+ var v = ft.curveKnotRefine(r, u), w = N.knotSpan(a, n, l), P = v.knots.slice(0, w + a + 2), A = v.knots.slice(w + 1), I = v.controlPoints.slice(0, w + 1), k = v.controlPoints.slice(w + 1);
11650
+ return [new jt(a, P, I), new jt(a, A, k)];
11651
11651
  }, oe.rationalCurveByEqualArcLength = function(r, n) {
11652
11652
  var a = vt.rationalCurveArcLength(r), l = a / n;
11653
11653
  return oe.rationalCurveByArcLength(r, l);
@@ -11656,10 +11656,10 @@ var ih = { exports: {} };
11656
11656
  return vt.rationalBezierCurveArcLength(I);
11657
11657
  }), u = m.sum(l), d = [new xn(r.knots[0], 0)];
11658
11658
  if (n > u) return d;
11659
- for (var p = n, _ = 0, v = p, w = 0, S = 0, A; _ < a.length; ) {
11659
+ for (var p = n, _ = 0, v = p, w = 0, P = 0, A; _ < a.length; ) {
11660
11660
  for (w += l[_]; v < w + rt.EPSILON; )
11661
- A = vt.rationalBezierCurveParamAtArcLength(a[_], v - S, rt.TOLERANCE, l[_]), d.push(new xn(A, v)), v += p;
11662
- S += l[_], _++;
11661
+ A = vt.rationalBezierCurveParamAtArcLength(a[_], v - P, rt.TOLERANCE, l[_]), d.push(new xn(A, v)), v += p;
11662
+ P += l[_], _++;
11663
11663
  }
11664
11664
  return d;
11665
11665
  };
@@ -11679,7 +11679,7 @@ var ih = { exports: {} };
11679
11679
  return m.cross(l[1][0], l[0][1]);
11680
11680
  }, N.rationalSurfaceDerivatives = function(r, n, a, l) {
11681
11681
  l == null && (l = 1);
11682
- for (var u = N.surfaceDerivatives(r, n, a, l), d = N.rational2d(u), p = N.weight2d(u), _ = [], v = d[0][0].length, w = 0, S = l + 1; w < S; ) {
11682
+ for (var u = N.surfaceDerivatives(r, n, a, l), d = N.rational2d(u), p = N.weight2d(u), _ = [], v = d[0][0].length, w = 0, P = l + 1; w < P; ) {
11683
11683
  var A = w++;
11684
11684
  _.push([]);
11685
11685
  for (var I = 0, k = l - A + 1; I < k; ) {
@@ -11691,8 +11691,8 @@ var ih = { exports: {} };
11691
11691
  var q = D++;
11692
11692
  m.subMulMutate(L, Rt.get(A, q) * p[q][0], _[A - q][T]);
11693
11693
  for (var J = m.zeros1d(v), H = 1, j = T + 1; H < j; ) {
11694
- var K = H++;
11695
- m.addMulMutate(J, Rt.get(T, K) * p[q][K], _[A - q][T - K]);
11694
+ var X = H++;
11695
+ m.addMulMutate(J, Rt.get(T, X) * p[q][X], _[A - q][T - X]);
11696
11696
  }
11697
11697
  m.subMulMutate(L, Rt.get(A, q), J);
11698
11698
  }
@@ -11705,11 +11705,11 @@ var ih = { exports: {} };
11705
11705
  }, N.rationalCurveDerivatives = function(r, n, a) {
11706
11706
  a == null && (a = 1);
11707
11707
  for (var l = N.curveDerivatives(r, n, a), u = N.rational1d(l), d = N.weight1d(l), p = [], _ = 0, v = a + 1; _ < v; ) {
11708
- for (var w = _++, S = u[w], A = 1, I = w + 1; A < I; ) {
11708
+ for (var w = _++, P = u[w], A = 1, I = w + 1; A < I; ) {
11709
11709
  var k = A++;
11710
- m.subMulMutate(S, Rt.get(w, k) * d[k], p[w - k]);
11710
+ m.subMulMutate(P, Rt.get(w, k) * d[k], p[w - k]);
11711
11711
  }
11712
- m.mulMutate(1 / d[0], S), p.push(S);
11712
+ m.mulMutate(1 / d[0], P), p.push(P);
11713
11713
  }
11714
11714
  return p;
11715
11715
  }, N.rationalCurvePoint = function(r, n) {
@@ -11718,14 +11718,14 @@ var ih = { exports: {} };
11718
11718
  var u = r.knotsU.length - r.degreeU - 2, d = r.knotsV.length - r.degreeV - 2;
11719
11719
  return N.surfaceDerivativesGivenNM(u, d, r, n, a, l);
11720
11720
  }, N.surfaceDerivativesGivenNM = function(r, n, a, l, u, d) {
11721
- var p = a.degreeU, _ = a.degreeV, v = a.controlPoints, w = a.knotsU, S = a.knotsV;
11722
- if (!N.areValidRelations(p, v.length, w.length) || !N.areValidRelations(_, v[0].length, S.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11721
+ var p = a.degreeU, _ = a.degreeV, v = a.controlPoints, w = a.knotsU, P = a.knotsV;
11722
+ if (!N.areValidRelations(p, v.length, w.length) || !N.areValidRelations(_, v[0].length, P.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11723
11723
  var A = v[0][0].length, I;
11724
11724
  d < p ? I = d : I = p;
11725
11725
  var k;
11726
11726
  d < _ ? k = d : k = _;
11727
- for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, S), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), O = N.derivativeBasisFunctionsGivenNI(C, u, _, n, S), D = m.zeros2d(_ + 1, A), V = 0, q = 0, J = I + 1; q < J; ) {
11728
- for (var H = q++, j = 0, K = _ + 1; j < K; ) {
11727
+ for (var T = m.zeros3d(d + 1, d + 1, A), L = N.knotSpanGivenN(r, p, l, w), C = N.knotSpanGivenN(n, _, u, P), B = N.derivativeBasisFunctionsGivenNI(L, l, p, r, w), O = N.derivativeBasisFunctionsGivenNI(C, u, _, n, P), D = m.zeros2d(_ + 1, A), V = 0, q = 0, J = I + 1; q < J; ) {
11728
+ for (var H = q++, j = 0, X = _ + 1; j < X; ) {
11729
11729
  var tt = j++;
11730
11730
  D[tt] = m.zeros1d(A);
11731
11731
  for (var et = 0, it = p + 1; et < it; ) {
@@ -11739,8 +11739,8 @@ var ih = { exports: {} };
11739
11739
  var dt = ct++;
11740
11740
  T[H][dt] = m.zeros1d(A);
11741
11741
  for (var Y = 0, pt = _ + 1; Y < pt; ) {
11742
- var St = Y++;
11743
- m.addMulMutate(T[H][dt], O[dt][St], D[St]);
11742
+ var Pt = Y++;
11743
+ m.addMulMutate(T[H][dt], O[dt][Pt], D[Pt]);
11744
11744
  }
11745
11745
  }
11746
11746
  }
@@ -11751,9 +11751,9 @@ var ih = { exports: {} };
11751
11751
  }, N.surfacePointGivenNM = function(r, n, a, l, u) {
11752
11752
  var d = a.degreeU, p = a.degreeV, _ = a.controlPoints, v = a.knotsU, w = a.knotsV;
11753
11753
  if (!N.areValidRelations(d, _.length, v.length) || !N.areValidRelations(p, _[0].length, w.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11754
- for (var S = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), I = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(I, u, p, w), L = A - d, C = I, B = m.zeros1d(S), O = m.zeros1d(S), D = 0, V = p + 1; D < V; ) {
11754
+ for (var P = _[0][0].length, A = N.knotSpanGivenN(r, d, l, v), I = N.knotSpanGivenN(n, p, u, w), k = N.basisFunctionsGivenKnotSpanIndex(A, l, d, v), T = N.basisFunctionsGivenKnotSpanIndex(I, u, p, w), L = A - d, C = I, B = m.zeros1d(P), O = m.zeros1d(P), D = 0, V = p + 1; D < V; ) {
11755
11755
  var q = D++;
11756
- O = m.zeros1d(S), C = I - p + q;
11756
+ O = m.zeros1d(P), C = I - p + q;
11757
11757
  for (var J = 0, H = d + 1; J < H; ) {
11758
11758
  var j = J++;
11759
11759
  m.addMulMutate(O, k[j], _[L + j][C]);
@@ -11762,24 +11762,24 @@ var ih = { exports: {} };
11762
11762
  }
11763
11763
  return B;
11764
11764
  }, N.curveRegularSamplePoints = function(r, n) {
11765
- for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _), S = m.add(v, v), A = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
11766
- k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w, S]), m.addAllMutate([_, v]);
11765
+ for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _), P = m.add(v, v), A = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
11766
+ k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w, P]), m.addAllMutate([_, v]);
11767
11767
  return I;
11768
11768
  }, N.curveRegularSamplePoints2 = function(r, n) {
11769
- for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _), S = m.add(v, v), A = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
11770
- k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w, S]), m.addAllMutate([_, v]);
11769
+ for (var a = N.curveDerivatives(r, r.knots[0], r.degree), l = 1 / n, u = l * l, d = a[0], p = m.mul(l, a[1]), _ = m.mul(u * 0.5, a[2]), v = m.mul(u * l * 0.5, a[3]), w = m.add(_, _), P = m.add(v, v), A = m.mul(0.3333333333333333, v), I = [], k = 0, T = n + 1; k < T; )
11770
+ k++, I.push(N.dehomogenize(d)), m.addAllMutate([d, p, _, A]), m.addAllMutate([p, w, v]), m.addAllMutate([w, P]), m.addAllMutate([_, v]);
11771
11771
  return I;
11772
11772
  }, N.rationalSurfaceRegularSampleDerivatives = function(r, n, a, l) {
11773
11773
  for (var u = N.surfaceRegularSampleDerivatives(r, n, a, l), d = [], p = n + 1, _ = a + 1, v = l + 1, w = 0; w < p; ) {
11774
- var S = w++, A = [];
11774
+ var P = w++, A = [];
11775
11775
  d.push(A);
11776
11776
  for (var I = 0; I < _; ) {
11777
- for (var k = I++, T = u[S][k], L = N.rational2d(T), C = N.weight2d(T), B = [], O = L[0][0].length, D = 0; D < v; ) {
11777
+ for (var k = I++, T = u[P][k], L = N.rational2d(T), C = N.weight2d(T), B = [], O = L[0][0].length, D = 0; D < v; ) {
11778
11778
  var V = D++;
11779
11779
  B.push([]);
11780
11780
  for (var q = 0, J = v - V; q < J; ) {
11781
- for (var H = q++, j = L[V][H], K = 1, tt = H + 1; K < tt; ) {
11782
- var et = K++;
11781
+ for (var H = q++, j = L[V][H], X = 1, tt = H + 1; X < tt; ) {
11782
+ var et = X++;
11783
11783
  m.subMulMutate(j, Rt.get(H, et) * C[0][et], B[V][H - et]);
11784
11784
  }
11785
11785
  for (var it = 1, ht = V + 1; it < ht; ) {
@@ -11800,8 +11800,8 @@ var ih = { exports: {} };
11800
11800
  return d;
11801
11801
  }, N.surfaceRegularSampleDerivatives = function(r, n, a, l) {
11802
11802
  var u = r.degreeU, d = r.degreeV, p = r.controlPoints, _ = r.knotsU, v = r.knotsV, w = p[0][0].length;
11803
- (X.last(_) - _[0]) / n, (X.last(v) - v[0]) / a;
11804
- for (var S = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = S.item0, I = S.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, O = a + 1, D = 0; D < B; ) {
11803
+ (K.last(_) - _[0]) / n, (K.last(v) - v[0]) / a;
11804
+ for (var P = N.regularlySpacedDerivativeBasisFunctions(u, _, n), A = P.item0, I = P.item1, k = N.regularlySpacedDerivativeBasisFunctions(d, v, a), T = k.item0, L = k.item1, C = [], B = n + 1, O = a + 1, D = 0; D < B; ) {
11805
11805
  var V = D++, q = [];
11806
11806
  C.push(q);
11807
11807
  for (var J = 0; J < O; ) {
@@ -11814,45 +11814,45 @@ var ih = { exports: {} };
11814
11814
  return N.dehomogenize2d(N.surfaceRegularSamplePoints(r, n, a));
11815
11815
  }, N.surfaceRegularSamplePoints = function(r, n, a) {
11816
11816
  var l = r.degreeU, u = r.degreeV, d = r.controlPoints, p = r.knotsU, _ = r.knotsV, v = d[0][0].length;
11817
- (X.last(p) - p[0]) / n, (X.last(_) - _[0]) / a;
11818
- for (var w = N.regularlySpacedBasisFunctions(l, p, n), S = w.item0, A = w.item1, I = N.regularlySpacedBasisFunctions(u, _, a), k = I.item0, T = I.item1, L = [], C = n + 1, B = a + 1, O = 0; O < C; ) {
11817
+ (K.last(p) - p[0]) / n, (K.last(_) - _[0]) / a;
11818
+ for (var w = N.regularlySpacedBasisFunctions(l, p, n), P = w.item0, A = w.item1, I = N.regularlySpacedBasisFunctions(u, _, a), k = I.item0, T = I.item1, L = [], C = n + 1, B = a + 1, O = 0; O < C; ) {
11819
11819
  var D = O++, V = [];
11820
11820
  L.push(V);
11821
11821
  for (var q = 0; q < B; ) {
11822
11822
  var J = q++;
11823
- V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, S[D], k[J], A[D], T[J], v));
11823
+ V.push(N.surfacePointGivenBasesKnotSpans(l, u, d, P[D], k[J], A[D], T[J], v));
11824
11824
  }
11825
11825
  }
11826
11826
  return L;
11827
11827
  }, N.regularlySpacedBasisFunctions = function(r, n, a) {
11828
- for (var l = n.length - r - 2, u = (X.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), w = a + 1, S = 0; S < w; ) {
11829
- for (S++; _ >= n[v + 1]; ) v++;
11828
+ for (var l = n.length - r - 2, u = (K.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), w = a + 1, P = 0; P < w; ) {
11829
+ for (P++; _ >= n[v + 1]; ) v++;
11830
11830
  p.push(v), d.push(N.basisFunctionsGivenKnotSpanIndex(v, _, r, n)), _ += u;
11831
11831
  }
11832
11832
  return new ee(p, d);
11833
11833
  }, N.regularlySpacedDerivativeBasisFunctions = function(r, n, a) {
11834
- for (var l = n.length - r - 2, u = (X.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), w = a + 1, S = 0; S < w; ) {
11835
- for (S++; _ >= n[v + 1]; ) v++;
11834
+ for (var l = n.length - r - 2, u = (K.last(n) - n[0]) / a, d = [], p = [], _ = n[0], v = N.knotSpanGivenN(l, r, _, n), w = a + 1, P = 0; P < w; ) {
11835
+ for (P++; _ >= n[v + 1]; ) v++;
11836
11836
  p.push(v), d.push(N.derivativeBasisFunctionsGivenNI(v, _, r, l, n)), _ += u;
11837
11837
  }
11838
11838
  return new ee(p, d);
11839
11839
  }, N.surfacePointGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _) {
11840
- for (var v = m.zeros1d(_), w, S = l - r, A = u - n, I = 0, k = n + 1; I < k; ) {
11840
+ for (var v = m.zeros1d(_), w, P = l - r, A = u - n, I = 0, k = n + 1; I < k; ) {
11841
11841
  var T = I++;
11842
11842
  w = m.zeros1d(_);
11843
11843
  for (var L = 0, C = r + 1; L < C; ) {
11844
11844
  var B = L++;
11845
- m.addMulMutate(w, d[B], a[S + B][A]);
11845
+ m.addMulMutate(w, d[B], a[P + B][A]);
11846
11846
  }
11847
11847
  A++, m.addMulMutate(v, p[T], w);
11848
11848
  }
11849
11849
  return v;
11850
11850
  }, N.surfaceDerivativesGivenBasesKnotSpans = function(r, n, a, l, u, d, p, _, v) {
11851
- var w = a[0][0].length, S;
11852
- v < r ? S = v : S = r;
11851
+ var w = a[0][0].length, P;
11852
+ v < r ? P = v : P = r;
11853
11853
  var A;
11854
11854
  v < n ? A = v : A = n;
11855
- for (var I = m.zeros3d(S + 1, A + 1, w), k = m.zeros2d(n + 1, w), T = 0, L = 0, C = S + 1; L < C; ) {
11855
+ for (var I = m.zeros3d(P + 1, A + 1, w), k = m.zeros2d(n + 1, w), T = 0, L = 0, C = P + 1; L < C; ) {
11856
11856
  for (var B = L++, O = 0, D = n + 1; O < D; ) {
11857
11857
  var V = O++;
11858
11858
  k[V] = m.zeros1d(w);
@@ -11863,8 +11863,8 @@ var ih = { exports: {} };
11863
11863
  }
11864
11864
  var j = v - B;
11865
11865
  j < A ? T = j : T = A;
11866
- for (var K = 0, tt = T + 1; K < tt; ) {
11867
- var et = K++;
11866
+ for (var X = 0, tt = T + 1; X < tt; ) {
11867
+ var et = X++;
11868
11868
  I[B][et] = m.zeros1d(w);
11869
11869
  for (var it = 0, ht = n + 1; it < ht; ) {
11870
11870
  var at = it++;
@@ -11881,10 +11881,10 @@ var ih = { exports: {} };
11881
11881
  if (!N.areValidRelations(u, d.length, p.length)) throw new Q("Invalid relations between control points, knot vector, and n");
11882
11882
  var _ = d[0].length, v;
11883
11883
  l < u ? v = l : v = u;
11884
- for (var w = m.zeros2d(l + 1, _), S = N.knotSpanGivenN(r, u, a, p), A = N.derivativeBasisFunctionsGivenNI(S, a, u, v, p), I = 0, k = v + 1; I < k; )
11884
+ for (var w = m.zeros2d(l + 1, _), P = N.knotSpanGivenN(r, u, a, p), A = N.derivativeBasisFunctionsGivenNI(P, a, u, v, p), I = 0, k = v + 1; I < k; )
11885
11885
  for (var T = I++, L = 0, C = u + 1; L < C; ) {
11886
11886
  var B = L++;
11887
- m.addMulMutate(w[T], A[T][B], d[S - u + B]);
11887
+ m.addMulMutate(w[T], A[T][B], d[P - u + B]);
11888
11888
  }
11889
11889
  return w;
11890
11890
  }, N.curvePoint = function(r, n) {
@@ -11896,7 +11896,7 @@ var ih = { exports: {} };
11896
11896
  var l = n.degree, u = n.controlPoints, d = n.knots;
11897
11897
  if (!N.areValidRelations(l, u.length, d.length))
11898
11898
  throw new Q("Invalid relations between control points, knot Array, and n");
11899
- for (var p = N.knotSpanGivenN(r, l, a, d), _ = N.basisFunctionsGivenKnotSpanIndex(p, a, l, d), v = m.zeros1d(u[0].length), w = 0, S = l + 1; w < S; ) {
11899
+ for (var p = N.knotSpanGivenN(r, l, a, d), _ = N.basisFunctionsGivenKnotSpanIndex(p, a, l, d), v = m.zeros1d(u[0].length), w = 0, P = l + 1; w < P; ) {
11900
11900
  var A = w++;
11901
11901
  m.addMulMutate(v, _[A], u[p - l + A]);
11902
11902
  }
@@ -11906,10 +11906,10 @@ var ih = { exports: {} };
11906
11906
  return N.volumePointGivenNML(r, u, d, p, n, a, l);
11907
11907
  }, N.volumePointGivenNML = function(r, n, a, l, u, d, p) {
11908
11908
  if (!N.areValidRelations(r.degreeU, r.controlPoints.length, r.knotsU.length) || !N.areValidRelations(r.degreeV, r.controlPoints[0].length, r.knotsV.length) || !N.areValidRelations(r.degreeW, r.controlPoints[0][0].length, r.knotsW.length)) throw new Q("Invalid relations between control points and knot vector");
11909
- for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, S = r.degreeW, A = r.knotsU, I = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, I), B = N.knotSpanGivenN(l, S, p, k), O = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A), D = N.basisFunctionsGivenKnotSpanIndex(C, d, w, I), V = N.basisFunctionsGivenKnotSpanIndex(B, p, S, k), q = L - v, J = m.zeros1d(T), H = m.zeros1d(T), j = m.zeros1d(T), K = 0, tt = S + 1; K < tt; ) {
11910
- var et = K++;
11909
+ for (var _ = r.controlPoints, v = r.degreeU, w = r.degreeV, P = r.degreeW, A = r.knotsU, I = r.knotsV, k = r.knotsW, T = _[0][0][0].length, L = N.knotSpanGivenN(n, v, u, A), C = N.knotSpanGivenN(a, w, d, I), B = N.knotSpanGivenN(l, P, p, k), O = N.basisFunctionsGivenKnotSpanIndex(L, u, v, A), D = N.basisFunctionsGivenKnotSpanIndex(C, d, w, I), V = N.basisFunctionsGivenKnotSpanIndex(B, p, P, k), q = L - v, J = m.zeros1d(T), H = m.zeros1d(T), j = m.zeros1d(T), X = 0, tt = P + 1; X < tt; ) {
11910
+ var et = X++;
11911
11911
  j = m.zeros1d(T);
11912
- for (var it = B - S + et, ht = 0, at = w + 1; ht < at; ) {
11912
+ for (var it = B - P + et, ht = 0, at = w + 1; ht < at; ) {
11913
11913
  var ct = ht++;
11914
11914
  H = m.zeros1d(T);
11915
11915
  for (var nt = C - w + ct, dt = 0, Y = v + 1; dt < Y; ) {
@@ -11927,8 +11927,8 @@ var ih = { exports: {} };
11927
11927
  }, N.derivativeBasisFunctionsGivenNI = function(r, n, a, l, u) {
11928
11928
  var d = m.zeros2d(a + 1, a + 1), p = m.zeros1d(a + 1), _ = m.zeros1d(a + 1), v = 0, w = 0;
11929
11929
  d[0][0] = 1;
11930
- for (var S = 1, A = a + 1; S < A; ) {
11931
- var I = S++;
11930
+ for (var P = 1, A = a + 1; P < A; ) {
11931
+ var I = P++;
11932
11932
  p[I] = n - u[r + 1 - I], _[I] = u[r + I] - n, v = 0;
11933
11933
  for (var k = 0; k < I; ) {
11934
11934
  var T = k++;
@@ -11936,7 +11936,7 @@ var ih = { exports: {} };
11936
11936
  }
11937
11937
  d[I][I] = v;
11938
11938
  }
11939
- for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, O = 1, D = 0, V = 0, q = 0, J = 0, H = 0, j = 0, K = a + 1; j < K; ) {
11939
+ for (var L = m.zeros2d(l + 1, a + 1), C = m.zeros2d(2, a + 1), B = 0, O = 1, D = 0, V = 0, q = 0, J = 0, H = 0, j = 0, X = a + 1; j < X; ) {
11940
11940
  var tt = j++;
11941
11941
  L[0][tt] = d[tt][a];
11942
11942
  }
@@ -11951,16 +11951,16 @@ var ih = { exports: {} };
11951
11951
  C[O][pt] = (C[B][pt] - C[B][pt - 1]) / d[q + 1][V + pt], D += C[O][pt] * d[V + pt][q];
11952
11952
  }
11953
11953
  ht <= q && (C[O][nt] = -C[B][nt - 1] / d[q + 1][ht], D += C[O][nt] * d[ht][q]), L[nt][ht] = D;
11954
- var St = B;
11955
- B = O, O = St;
11954
+ var Pt = B;
11955
+ B = O, O = Pt;
11956
11956
  }
11957
11957
  }
11958
- for (var Gt = a, Kt = 1, Dt = l + 1; Kt < Dt; ) {
11959
- for (var Xt = Kt++, Ae = 0, Ve = a + 1; Ae < Ve; ) {
11958
+ for (var Gt = a, Xt = 1, Dt = l + 1; Xt < Dt; ) {
11959
+ for (var Kt = Xt++, Ae = 0, Ve = a + 1; Ae < Ve; ) {
11960
11960
  var _e = Ae++;
11961
- L[Xt][_e] *= Gt;
11961
+ L[Kt][_e] *= Gt;
11962
11962
  }
11963
- Gt *= a - Xt;
11963
+ Gt *= a - Kt;
11964
11964
  }
11965
11965
  return L;
11966
11966
  }, N.basisFunctions = function(r, n, a) {
@@ -11969,7 +11969,7 @@ var ih = { exports: {} };
11969
11969
  }, N.basisFunctionsGivenKnotSpanIndex = function(r, n, a, l) {
11970
11970
  var u = m.zeros1d(a + 1), d = m.zeros1d(a + 1), p = m.zeros1d(a + 1), _ = 0, v = 0;
11971
11971
  u[0] = 1;
11972
- for (var w = 1, S = a + 1; w < S; ) {
11972
+ for (var w = 1, P = a + 1; w < P; ) {
11973
11973
  var A = w++;
11974
11974
  d[A] = n - l[r + 1 - A], p[A] = l[r + A] - n, _ = 0;
11975
11975
  for (var I = 0; I < A; ) {
@@ -12015,13 +12015,13 @@ var ih = { exports: {} };
12015
12015
  var a = r.length, l = r[0].length, u = [], d = 0, p = [], _;
12016
12016
  n != null ? _ = n : _ = m.rep(r.length, 1);
12017
12017
  for (var v = 0; v < a; ) {
12018
- var w = v++, S = [];
12018
+ var w = v++, P = [];
12019
12019
  p = r[w], d = _[w];
12020
12020
  for (var A = 0; A < l; ) {
12021
12021
  var I = A++;
12022
- S.push(p[I] * d);
12022
+ P.push(p[I] * d);
12023
12023
  }
12024
- S.push(d), u.push(S);
12024
+ P.push(d), u.push(P);
12025
12025
  }
12026
12026
  return u;
12027
12027
  }, N.homogenize2d = function(r, n) {
@@ -12052,31 +12052,31 @@ var ih = { exports: {} };
12052
12052
  }), 3);
12053
12053
  });
12054
12054
  }, lt.surfacesAtPointWithEstimate = function(r, n, a, l, u) {
12055
- var d, p, _, v, w, S, A, I, k, T, L, C, B, O = 5, D = 0;
12055
+ var d, p, _, v, w, P, A, I, k, T, L, C, B, O = 5, D = 0;
12056
12056
  do {
12057
- if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), S = m.dot(_, p), A = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), I = A[0][0], T = A[1][0], L = A[0][1], k = m.normalized(m.cross(T, L)), C = m.dot(k, I), B = m.distSquared(p, I), B < u * u) break;
12058
- var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, S, k, C, V, q);
12057
+ if (d = N.rationalSurfaceDerivatives(r, a[0], a[1], 1), p = d[0][0], v = d[1][0], w = d[0][1], _ = m.normalized(m.cross(v, w)), P = m.dot(_, p), A = N.rationalSurfaceDerivatives(n, l[0], l[1], 1), I = A[0][0], T = A[1][0], L = A[0][1], k = m.normalized(m.cross(T, L)), C = m.dot(k, I), B = m.distSquared(p, I), B < u * u) break;
12058
+ var V = m.normalized(m.cross(_, k)), q = m.dot(V, p), J = lt.threePlanes(_, P, k, C, V, q);
12059
12059
  if (J == null) throw new Q("panic!");
12060
- var H = m.sub(J, p), j = m.sub(J, I), K = m.cross(v, _), tt = m.cross(w, _), et = m.cross(T, k), it = m.cross(L, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(K, H) / m.dot(K, w), ct = m.dot(it, j) / m.dot(it, T), nt = m.dot(et, j) / m.dot(et, L);
12060
+ var H = m.sub(J, p), j = m.sub(J, I), X = m.cross(v, _), tt = m.cross(w, _), et = m.cross(T, k), it = m.cross(L, k), ht = m.dot(tt, H) / m.dot(tt, v), at = m.dot(X, H) / m.dot(X, w), ct = m.dot(it, j) / m.dot(it, T), nt = m.dot(et, j) / m.dot(et, L);
12061
12061
  a = m.add([ht, at], a), l = m.add([ct, nt], l), D++;
12062
12062
  } while (D < O);
12063
12063
  return new Vn(a, l, p, B);
12064
12064
  }, lt.meshes = function(r, n, a, l) {
12065
12065
  a == null && (a = new ir(r)), l == null && (l = new ir(n));
12066
- var u = lt.boundingBoxTrees(a, l, 0), d = X.unique(u.map(function(p) {
12066
+ var u = lt.boundingBoxTrees(a, l, 0), d = K.unique(u.map(function(p) {
12067
12067
  return lt.triangles(r, p.item0, n, p.item1);
12068
12068
  }).filter(function(p) {
12069
12069
  return p != null;
12070
12070
  }).filter(function(p) {
12071
12071
  return m.distSquared(p.min.point, p.max.point) > rt.EPSILON;
12072
12072
  }), function(p, _) {
12073
- var v = m.sub(p.min.uv0, _.min.uv0), w = m.dot(v, v), S = m.sub(p.max.uv0, _.max.uv0), A = m.dot(S, S), I = m.sub(p.min.uv0, _.max.uv0), k = m.dot(I, I), T = m.sub(p.max.uv0, _.min.uv0), L = m.dot(T, T);
12073
+ var v = m.sub(p.min.uv0, _.min.uv0), w = m.dot(v, v), P = m.sub(p.max.uv0, _.max.uv0), A = m.dot(P, P), I = m.sub(p.min.uv0, _.max.uv0), k = m.dot(I, I), T = m.sub(p.max.uv0, _.min.uv0), L = m.dot(T, T);
12074
12074
  return w < rt.EPSILON && A < rt.EPSILON || k < rt.EPSILON && L < rt.EPSILON;
12075
12075
  });
12076
12076
  return lt.makeMeshIntersectionPolylines(d);
12077
12077
  }, lt.meshSlices = function(r, n, a, l) {
12078
- for (var u = new Nr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], w = d.max[1], S = m.span(n, a, l), A = [], I = 0; I < S.length; ) {
12079
- var k = S[I];
12078
+ for (var u = new Nr(r), d = u.boundingBox(), p = d.min[0], _ = d.min[1], v = d.max[0], w = d.max[1], P = m.span(n, a, l), A = [], I = 0; I < P.length; ) {
12079
+ var k = P[I];
12080
12080
  ++I;
12081
12081
  var T = [[p, _, k], [v, _, k], [v, w, k], [p, w, k]], L = [[0, 0], [1, 0], [1, 1], [0, 1]], C = [[0, 1, 2], [0, 2, 3]], B = new He(C, T, null, L);
12082
12082
  A.push(lt.meshes(r, B, u));
@@ -12099,21 +12099,21 @@ var ih = { exports: {} };
12099
12099
  w != null && w.adj == null && (v.adj = w, w.adj = v);
12100
12100
  }
12101
12101
  }
12102
- var S = u.filter(function(O) {
12102
+ var P = u.filter(function(O) {
12103
12103
  return O.adj == null;
12104
12104
  });
12105
- S.length == 0 && (S = u);
12106
- for (var A = [], I = 0, k = !1; S.length != 0; ) {
12107
- var T = S.pop();
12105
+ P.length == 0 && (P = u);
12106
+ for (var A = [], I = 0, k = !1; P.length != 0; ) {
12107
+ var T = P.pop();
12108
12108
  if (!T.visited) {
12109
12109
  for (var L = [], C = T; C != null && !(C.visited || (C.visited = !0, C.opp.visited = !0, L.push(C), I += 2, C = C.opp.adj, C == T)); )
12110
12110
  ;
12111
12111
  L.length > 0 && (L.push(L[L.length - 1].opp), A.push(L));
12112
12112
  }
12113
- if (S.length == 0 && u.length > 0 && (k || I < u.length)) {
12113
+ if (P.length == 0 && u.length > 0 && (k || I < u.length)) {
12114
12114
  k = !0;
12115
12115
  var B = u.pop();
12116
- S.push(B);
12116
+ P.push(B);
12117
12117
  }
12118
12118
  }
12119
12119
  return A;
@@ -12133,8 +12133,8 @@ var ih = { exports: {} };
12133
12133
  }, lt.curveAndSurface = function(r, n, a, l, u) {
12134
12134
  a == null && (a = 1e-3), l != null ? l = l : l = new sr(r), u != null ? u = u : u = new Tr(n);
12135
12135
  var d = lt.boundingBoxTrees(l, u, a);
12136
- return X.unique(d.map(function(p) {
12137
- var _ = p.item0, v = p.item1, w = X.first(_.knots), S = X.last(_.knots), A = (w + S) / 2, I = X.first(v.knotsU), k = X.last(v.knotsU), T = X.first(v.knotsV), L = X.last(v.knotsV), C = [(I + k) / 2, (T + L) / 2];
12136
+ return K.unique(d.map(function(p) {
12137
+ var _ = p.item0, v = p.item1, w = K.first(_.knots), P = K.last(_.knots), A = (w + P) / 2, I = K.first(v.knotsU), k = K.last(v.knotsU), T = K.first(v.knotsV), L = K.last(v.knotsV), C = [(I + k) / 2, (T + L) / 2];
12138
12138
  return lt.curveAndSurfaceWithEstimate(_, v, [A].concat(C), a);
12139
12139
  }).filter(function(p) {
12140
12140
  return m.distSquared(p.curvePoint, p.surfacePoint) < a * a;
@@ -12144,10 +12144,10 @@ var ih = { exports: {} };
12144
12144
  }, lt.curveAndSurfaceWithEstimate = function(r, n, a, l) {
12145
12145
  l == null && (l = 1e-3);
12146
12146
  var u = function(v) {
12147
- var w = N.rationalCurvePoint(r, v[0]), S = N.rationalSurfacePoint(n, v[1], v[2]), A = m.sub(w, S);
12147
+ var w = N.rationalCurvePoint(r, v[0]), P = N.rationalSurfacePoint(n, v[1], v[2]), A = m.sub(w, P);
12148
12148
  return m.dot(A, A);
12149
12149
  }, d = function(v) {
12150
- var w = N.rationalCurveDerivatives(r, v[0], 1), S = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), A = m.sub(S[0][0], w[0]), I = m.mul(-1, w[1]), k = S[1][0], T = S[0][1];
12150
+ var w = N.rationalCurveDerivatives(r, v[0], 1), P = N.rationalSurfaceDerivatives(n, v[1], v[2], 1), A = m.sub(P[0][0], w[0]), I = m.mul(-1, w[1]), k = P[1][0], T = P[0][1];
12151
12151
  return [2 * m.dot(I, A), 2 * m.dot(k, A), 2 * m.dot(T, A)];
12152
12152
  }, p = qe.uncmin(u, a, l * l, d), _ = p.solution;
12153
12153
  return new Dn(_[0], [_[1], _[2]], N.rationalCurvePoint(r, _[0]), N.rationalSurfacePoint(n, _[1], _[2]));
@@ -12157,8 +12157,8 @@ var ih = { exports: {} };
12157
12157
  ++d;
12158
12158
  var _ = p.item0, v = p.item1, w = lt.segmentWithTriangle(r.points[_], r.points[_ + 1], n.points, n.faces[v]);
12159
12159
  if (w != null) {
12160
- var S = w.point, A = m.lerp(w.p, [r.params[_]], [r.params[_ + 1]])[0], I = re.triangleUVFromPoint(n, v, S);
12161
- u.push(new Un(S, A, I, _, v));
12160
+ var P = w.point, A = m.lerp(w.p, [r.params[_]], [r.params[_ + 1]])[0], I = re.triangleUVFromPoint(n, v, P);
12161
+ u.push(new Un(P, A, I, _, v));
12162
12162
  }
12163
12163
  }
12164
12164
  return u;
@@ -12174,8 +12174,8 @@ var ih = { exports: {} };
12174
12174
  d.push(new ee(p.yield(), _.yield()));
12175
12175
  continue;
12176
12176
  } else if (v && !w) {
12177
- var S = _.split();
12178
- l.push(p), u.push(S.item1), l.push(p), u.push(S.item0);
12177
+ var P = _.split();
12178
+ l.push(p), u.push(P.item1), l.push(p), u.push(P.item0);
12179
12179
  continue;
12180
12180
  } else if (!v && w) {
12181
12181
  var A = p.split();
@@ -12189,8 +12189,8 @@ var ih = { exports: {} };
12189
12189
  return d;
12190
12190
  }, lt.curves = function(r, n, a) {
12191
12191
  var l = lt.boundingBoxTrees(new sr(r), new sr(n), 0);
12192
- return X.unique(l.map(function(u) {
12193
- return lt.curvesWithEstimate(r, n, X.first(u.item0.knots), X.first(u.item1.knots), a);
12192
+ return K.unique(l.map(function(u) {
12193
+ return lt.curvesWithEstimate(r, n, K.first(u.item0.knots), K.first(u.item1.knots), a);
12194
12194
  }).filter(function(u) {
12195
12195
  return m.distSquared(u.point0, u.point1) < a;
12196
12196
  }), function(u, d) {
@@ -12203,26 +12203,26 @@ var ih = { exports: {} };
12203
12203
  }, p = function(I) {
12204
12204
  var k = N.rationalCurveDerivatives(r, I[0], 1), T = N.rationalCurveDerivatives(n, I[1], 1), L = m.sub(k[0], T[0]), C = k[1], B = m.mul(-1, T[1]);
12205
12205
  return [2 * m.dot(C, L), 2 * m.dot(B, L)];
12206
- }, _ = qe.uncmin(d, [a, l], u * u, p), v = _.solution[0], w = _.solution[1], S = N.rationalCurvePoint(r, v), A = N.rationalCurvePoint(n, w);
12207
- return new Gr(S, A, v, w);
12206
+ }, _ = qe.uncmin(d, [a, l], u * u, p), v = _.solution[0], w = _.solution[1], P = N.rationalCurvePoint(r, v), A = N.rationalCurvePoint(n, w);
12207
+ return new Gr(P, A, v, w);
12208
12208
  }, lt.triangles = function(r, n, a, l) {
12209
- var u = r.faces[n], d = a.faces[l], p = re.getTriangleNorm(r.points, u), _ = re.getTriangleNorm(a.points, d), v = r.points[u[0]], w = a.points[d[0]], S = lt.planes(v, p, w, _);
12210
- if (S == null) return null;
12211
- var A = lt.clipRayInCoplanarTriangle(S, r, n);
12209
+ var u = r.faces[n], d = a.faces[l], p = re.getTriangleNorm(r.points, u), _ = re.getTriangleNorm(a.points, d), v = r.points[u[0]], w = a.points[d[0]], P = lt.planes(v, p, w, _);
12210
+ if (P == null) return null;
12211
+ var A = lt.clipRayInCoplanarTriangle(P, r, n);
12212
12212
  if (A == null) return null;
12213
- var I = lt.clipRayInCoplanarTriangle(S, a, l);
12213
+ var I = lt.clipRayInCoplanarTriangle(P, a, l);
12214
12214
  if (I == null) return null;
12215
12215
  var k = lt.mergeTriangleClipIntervals(A, I, r, n, a, l);
12216
12216
  return k == null ? null : new we(new Mr(k.min.uv0, k.min.uv1, k.min.point, n, l), new Mr(k.max.uv0, k.max.uv1, k.max.point, n, l));
12217
12217
  }, lt.clipRayInCoplanarTriangle = function(r, n, a) {
12218
- for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), w = _.map(m.norm), S = null, A = null, I = 0; I < 3; ) {
12218
+ for (var l = n.faces[a], u = [n.points[l[0]], n.points[l[1]], n.points[l[2]]], d = [n.uvs[l[0]], n.uvs[l[1]], n.uvs[l[2]]], p = [m.sub(d[1], d[0]), m.sub(d[2], d[1]), m.sub(d[0], d[2])], _ = [m.sub(u[1], u[0]), m.sub(u[2], u[1]), m.sub(u[0], u[2])], v = _.map(m.normalized), w = _.map(m.norm), P = null, A = null, I = 0; I < 3; ) {
12219
12219
  var k = I++, T = u[k], L = v[k], C = lt.rays(T, L, r.origin, r.dir);
12220
12220
  if (C != null) {
12221
12221
  var B = C.u0, O = C.u1;
12222
- B < -rt.EPSILON || B > w[k] + rt.EPSILON || ((S == null || O < S.u) && (S = new gn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[k], p[k], B / w[k]))), (A == null || O > A.u) && (A = new gn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[k], p[k], B / w[k]))));
12222
+ B < -rt.EPSILON || B > w[k] + rt.EPSILON || ((P == null || O < P.u) && (P = new gn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[k], p[k], B / w[k]))), (A == null || O > A.u) && (A = new gn(O, m.onRay(r.origin, r.dir, O), m.onRay(d[k], p[k], B / w[k]))));
12223
12223
  }
12224
12224
  }
12225
- return A == null || S == null ? null : new we(S, A);
12225
+ return A == null || P == null ? null : new we(P, A);
12226
12226
  }, lt.mergeTriangleClipIntervals = function(r, n, a, l, u, d) {
12227
12227
  if (n.min.u > r.max.u + rt.EPSILON || r.min.u > n.max.u + rt.EPSILON) return null;
12228
12228
  var p;
@@ -12236,9 +12236,9 @@ var ih = { exports: {} };
12236
12236
  if (m.dot(u, u) < rt.EPSILON) return null;
12237
12237
  var d = 0, p = Math.abs(u[0]), _ = Math.abs(u[1]), v = Math.abs(u[2]);
12238
12238
  _ > p && (d = 1, p = _), v > p && (d = 2, p = v);
12239
- var w, S, A, I;
12240
- d == 0 ? (w = n[1], S = n[2], A = l[1], I = l[2]) : d == 1 ? (w = n[0], S = n[2], A = l[0], I = l[2]) : (w = n[0], S = n[1], A = l[0], I = l[1]);
12241
- var k = -m.dot(r, n), T = -m.dot(a, l), L = w * I - S * A, C = (S * T - k * I) / L, B = (k * A - w * T) / L, O;
12239
+ var w, P, A, I;
12240
+ d == 0 ? (w = n[1], P = n[2], A = l[1], I = l[2]) : d == 1 ? (w = n[0], P = n[2], A = l[0], I = l[2]) : (w = n[0], P = n[1], A = l[0], I = l[1]);
12241
+ var k = -m.dot(r, n), T = -m.dot(a, l), L = w * I - P * A, C = (P * T - k * I) / L, B = (k * A - w * T) / L, O;
12242
12242
  return d == 0 ? O = [0, C, B] : d == 1 ? O = [C, 0, B] : O = [C, B, 0], new pn(O, m.normalized(u));
12243
12243
  }, lt.threePlanes = function(r, n, a, l, u, d) {
12244
12244
  var p = m.cross(a, u), _ = m.dot(r, p);
@@ -12254,23 +12254,23 @@ var ih = { exports: {} };
12254
12254
  }
12255
12255
  return u;
12256
12256
  }, lt.segments = function(r, n, a, l, u) {
12257
- var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), w = Math.sqrt(m.dot(v, v)), S = m.mul(1 / w, v), A = lt.rays(r, _, a, S);
12257
+ var d = m.sub(n, r), p = Math.sqrt(m.dot(d, d)), _ = m.mul(1 / p, d), v = m.sub(l, a), w = Math.sqrt(m.dot(v, v)), P = m.mul(1 / w, v), A = lt.rays(r, _, a, P);
12258
12258
  if (A != null) {
12259
12259
  var I = Math.min(Math.max(0, A.u0 / p), 1), k = Math.min(Math.max(0, A.u1 / w), 1), T = m.onRay(r, d, I), L = m.onRay(a, v, k), C = m.distSquared(T, L);
12260
12260
  if (C < u * u) return new Gr(T, L, I, k);
12261
12261
  }
12262
12262
  return null;
12263
12263
  }, lt.rays = function(r, n, a, l) {
12264
- var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), w = m.dot(n, n), S = m.dot(l, l), A = w * S - u * u;
12264
+ var u = m.dot(n, l), d = m.dot(n, a), p = m.dot(n, r), _ = m.dot(l, a), v = m.dot(l, r), w = m.dot(n, n), P = m.dot(l, l), A = w * P - u * u;
12265
12265
  if (Math.abs(A) < rt.EPSILON) return null;
12266
12266
  var I = u * (d - p) - w * (_ - v), k = I / A, T = (d - p + k * u) / w, L = m.onRay(r, n, T), C = m.onRay(a, l, k);
12267
12267
  return new Gr(L, C, T, k);
12268
12268
  }, lt.segmentWithTriangle = function(r, n, a, l) {
12269
- var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), w = m.cross(_, v), S = m.sub(n, r), A = m.sub(r, u), I = -m.dot(w, A), k = m.dot(w, S);
12269
+ var u = a[l[0]], d = a[l[1]], p = a[l[2]], _ = m.sub(d, u), v = m.sub(p, u), w = m.cross(_, v), P = m.sub(n, r), A = m.sub(r, u), I = -m.dot(w, A), k = m.dot(w, P);
12270
12270
  if (Math.abs(k) < rt.EPSILON) return null;
12271
12271
  var T = I / k;
12272
12272
  if (T < 0 || T > 1) return null;
12273
- var L = m.add(r, m.mul(T, S)), C = m.dot(_, v), B = m.dot(_, _), O = m.dot(v, v), D = m.sub(L, u), V = m.dot(D, _), q = m.dot(D, v), J = C * C - B * O;
12273
+ var L = m.add(r, m.mul(T, P)), C = m.dot(_, v), B = m.dot(_, _), O = m.dot(v, v), D = m.sub(L, u), V = m.dot(D, _), q = m.dot(D, v), J = C * C - B * O;
12274
12274
  if (Math.abs(J) < rt.EPSILON) return null;
12275
12275
  var H = (C * q - O * V) / J, j = (C * V - B * q) / J;
12276
12276
  return H > 1 + rt.EPSILON || j > 1 + rt.EPSILON || j < -rt.EPSILON || H < -rt.EPSILON || H + j > 1 + rt.EPSILON ? null : new jn(L, H, j, T);
@@ -12283,13 +12283,13 @@ var ih = { exports: {} };
12283
12283
  var mt = f.eval.Make = function() {
12284
12284
  };
12285
12285
  b["verb.eval.Make"] = mt, mt.__name__ = ["verb", "eval", "Make"], mt.rationalTranslationalSurface = function(r, n) {
12286
- for (var a = N.rationalCurvePoint(n, X.first(n.knots)), l = X.first(n.knots), u = X.last(n.knots), d = 2 * n.controlPoints.length, p = (u - l) / (d - 1), _ = [], v = 0; v < d; ) {
12287
- var w = v++, S = m.sub(N.rationalCurvePoint(n, l + w * p), a), A = ft.rationalCurveTransform(r, [[1, 0, 0, S[0]], [0, 1, 0, S[1]], [0, 0, 1, S[2]], [0, 0, 0, 1]]);
12286
+ for (var a = N.rationalCurvePoint(n, K.first(n.knots)), l = K.first(n.knots), u = K.last(n.knots), d = 2 * n.controlPoints.length, p = (u - l) / (d - 1), _ = [], v = 0; v < d; ) {
12287
+ var w = v++, P = m.sub(N.rationalCurvePoint(n, l + w * p), a), A = ft.rationalCurveTransform(r, [[1, 0, 0, P[0]], [0, 1, 0, P[1]], [0, 0, 1, P[2]], [0, 0, 0, 1]]);
12288
12288
  _.push(A);
12289
12289
  }
12290
12290
  return mt.loftedSurface(_);
12291
12291
  }, mt.surfaceBoundaryCurves = function(r) {
12292
- var n = mt.surfaceIsocurve(r, X.first(r.knotsU), !1), a = mt.surfaceIsocurve(r, X.last(r.knotsU), !1), l = mt.surfaceIsocurve(r, X.first(r.knotsV), !0), u = mt.surfaceIsocurve(r, X.last(r.knotsV), !0);
12292
+ var n = mt.surfaceIsocurve(r, K.first(r.knotsU), !1), a = mt.surfaceIsocurve(r, K.last(r.knotsU), !1), l = mt.surfaceIsocurve(r, K.first(r.knotsV), !0), u = mt.surfaceIsocurve(r, K.last(r.knotsV), !0);
12293
12293
  return [n, a, l, u];
12294
12294
  }, mt.surfaceIsocurve = function(r, n, a) {
12295
12295
  a == null && (a = !1);
@@ -12304,12 +12304,12 @@ var ih = { exports: {} };
12304
12304
  break;
12305
12305
  }
12306
12306
  }
12307
- var S = u + 1;
12308
- p >= 0 && (S = S - d[p].mult);
12307
+ var P = u + 1;
12308
+ p >= 0 && (P = P - d[p].mult);
12309
12309
  var A;
12310
- S > 0 ? A = ft.surfaceKnotRefine(r, m.rep(S, n), a) : A = r;
12310
+ P > 0 ? A = ft.surfaceKnotRefine(r, m.rep(P, n), a) : A = r;
12311
12311
  var I = N.knotSpan(u, n, l);
12312
- return Math.abs(n - X.first(l)) < rt.EPSILON ? I = 0 : Math.abs(n - X.last(l)) < rt.EPSILON && (I = (a ? A.controlPoints[0].length : A.controlPoints.length) - 1), a ? new jt(A.degreeU, A.knotsU, function(k) {
12312
+ return Math.abs(n - K.first(l)) < rt.EPSILON ? I = 0 : Math.abs(n - K.last(l)) < rt.EPSILON && (I = (a ? A.controlPoints[0].length : A.controlPoints.length) - 1), a ? new jt(A.degreeU, A.knotsU, function(k) {
12313
12313
  for (var T, L = [], C = 0, B = A.controlPoints; C < B.length; ) {
12314
12314
  var O = B[C];
12315
12315
  ++C, L.push(O[I]);
@@ -12325,8 +12325,8 @@ var ih = { exports: {} };
12325
12325
  return function(I) {
12326
12326
  return I.controlPoints[A[0]];
12327
12327
  };
12328
- }(v)), S = mt.rationalInterpCurve(w, n, !0);
12329
- d.push(S.controlPoints), u = S.knots;
12328
+ }(v)), P = mt.rationalInterpCurve(w, n, !0);
12329
+ d.push(P.controlPoints), u = P.knots;
12330
12330
  }
12331
12331
  return new te(a, n, l, u, d);
12332
12332
  }, mt.clonedCurve = function(r) {
@@ -12342,11 +12342,11 @@ var ih = { exports: {} };
12342
12342
  }, mt.fourPointSurface = function(r, n, a, l, u) {
12343
12343
  u == null && (u = 3);
12344
12344
  for (var d = u, p = [], _ = 0, v = u + 1; _ < v; ) {
12345
- for (var w = _++, S = [], A = 0, I = u + 1; A < I; ) {
12345
+ for (var w = _++, P = [], A = 0, I = u + 1; A < I; ) {
12346
12346
  var k = A++, T = 1 - w / d, L = m.lerp(T, r, n), C = m.lerp(T, l, a), B = m.lerp(1 - k / d, L, C);
12347
- B.push(1), S.push(B);
12347
+ B.push(1), P.push(B);
12348
12348
  }
12349
- p.push(S);
12349
+ p.push(P);
12350
12350
  }
12351
12351
  var O = m.rep(u + 1, 0), D = m.rep(u + 1, 1);
12352
12352
  return new te(u, u, O.concat(D), O.concat(D), p);
@@ -12355,7 +12355,7 @@ var ih = { exports: {} };
12355
12355
  n = m.normalized(n), a = m.normalized(a), u < l && (u = 2 * Math.PI + l);
12356
12356
  var _ = u - l, v = 0;
12357
12357
  _ <= Math.PI / 2 ? v = 1 : _ <= Math.PI ? v = 2 : _ <= 3 * Math.PI / 2 ? v = 3 : v = 4;
12358
- var w = _ / v, S = Math.cos(w / 2), A = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), I = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), L = 0, C = l, B = m.zeros1d(v * 2);
12358
+ var w = _ / v, P = Math.cos(w / 2), A = m.add(r, m.add(m.mul(d * Math.cos(l), n), m.mul(p * Math.sin(l), a))), I = m.sub(m.mul(Math.cos(l), a), m.mul(Math.sin(l), n)), k = [], T = m.zeros1d(2 * v + 3), L = 0, C = l, B = m.zeros1d(v * 2);
12359
12359
  k[0] = A, B[0] = 1;
12360
12360
  for (var O = 1, D = v + 1; O < D; ) {
12361
12361
  var V = O++;
@@ -12363,11 +12363,11 @@ var ih = { exports: {} };
12363
12363
  var q = m.add(r, m.add(m.mul(d * Math.cos(C), n), m.mul(p * Math.sin(C), a)));
12364
12364
  B[L + 2] = 1, k[L + 2] = q;
12365
12365
  var J = m.sub(m.mul(Math.cos(C), a), m.mul(Math.sin(C), n)), H = lt.rays(A, m.mul(1 / m.norm(I), I), q, m.mul(1 / m.norm(J), J)), j = m.add(A, m.mul(H.u0, I));
12366
- B[L + 1] = S, k[L + 1] = j, L += 2, V < v && (A = q, I = J);
12366
+ B[L + 1] = P, k[L + 1] = j, L += 2, V < v && (A = q, I = J);
12367
12367
  }
12368
- for (var K = 2 * v + 1, tt = 0; tt < 3; ) {
12368
+ for (var X = 2 * v + 1, tt = 0; tt < 3; ) {
12369
12369
  var et = tt++;
12370
- T[et] = 0, T[et + K] = 1;
12370
+ T[et] = 0, T[et + X] = 1;
12371
12371
  }
12372
12372
  switch (v) {
12373
12373
  case 2:
@@ -12393,7 +12393,7 @@ var ih = { exports: {} };
12393
12393
  v++, _.push(1);
12394
12394
  return p = _, new jt(1, n, N.homogenize1d(r.slice(0), p));
12395
12395
  }, mt.extrudedSurface = function(r, n, a) {
12396
- for (var l = [[], [], []], u = [[], [], []], d = N.dehomogenize1d(a.controlPoints), p = N.weight1d(a.controlPoints), _ = m.mul(n, r), v = m.mul(0.5 * n, r), w = 0, S = d.length; w < S; ) {
12396
+ for (var l = [[], [], []], u = [[], [], []], d = N.dehomogenize1d(a.controlPoints), p = N.weight1d(a.controlPoints), _ = m.mul(n, r), v = m.mul(0.5 * n, r), w = 0, P = d.length; w < P; ) {
12397
12397
  var A = w++;
12398
12398
  l[2][A] = d[A], l[1][A] = m.add(v, d[A]), l[0][A] = m.add(_, d[A]), u[0][A] = p[A], u[1][A] = p[A], u[2][A] = p[A];
12399
12399
  }
@@ -12404,8 +12404,8 @@ var ih = { exports: {} };
12404
12404
  }, mt.revolvedSurface = function(r, n, a, l) {
12405
12405
  var u = N.dehomogenize1d(r.controlPoints), d = N.weight1d(r.controlPoints), p, _;
12406
12406
  l <= Math.PI / 2 ? (p = 1, _ = m.zeros1d(6 + 2 * (p - 1))) : l <= Math.PI ? (p = 2, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.5) : l <= 3 * Math.PI / 2 ? (p = 3, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.3333333333333333, _[5] = _[6] = 0.6666666666666666) : (p = 4, _ = m.zeros1d(6 + 2 * (p - 1)), _[3] = _[4] = 0.25, _[5] = _[6] = 0.5, _[7] = _[8] = 0.75);
12407
- for (var v = l / p, w = 3 + 2 * (p - 1), S = 0; S < 3; ) {
12408
- var A = S++;
12407
+ for (var v = l / p, w = 3 + 2 * (p - 1), P = 0; P < 3; ) {
12408
+ var A = P++;
12409
12409
  _[A] = 0, _[w + A] = 1;
12410
12410
  }
12411
12411
  for (var I = Math.cos(v / 2), k = 0, T = m.zeros1d(p + 1), L = m.zeros1d(p + 1), C = m.zeros3d(2 * p + 1, u.length, 3), B = m.zeros2d(2 * p + 1, u.length), O = 1, D = p + 1; O < D; ) {
@@ -12413,17 +12413,17 @@ var ih = { exports: {} };
12413
12413
  k += v, L[V] = Math.cos(k), T[V] = Math.sin(k);
12414
12414
  }
12415
12415
  for (var q = 0, J = u.length; q < J; ) {
12416
- var H = q++, j = ke.rayClosestPoint(u[H], n, a), K = m.sub(u[H], j), tt = m.norm(K), et = m.cross(a, K);
12417
- tt > rt.EPSILON && (K = m.mul(1 / tt, K), et = m.mul(1 / tt, et)), C[0][H] = u[H];
12416
+ var H = q++, j = ke.rayClosestPoint(u[H], n, a), X = m.sub(u[H], j), tt = m.norm(X), et = m.cross(a, X);
12417
+ tt > rt.EPSILON && (X = m.mul(1 / tt, X), et = m.mul(1 / tt, et)), C[0][H] = u[H];
12418
12418
  var it = u[H];
12419
12419
  B[0][H] = d[H];
12420
12420
  for (var ht = et, at = 0, ct = 1, nt = p + 1; ct < nt; ) {
12421
12421
  var dt = ct++, Y;
12422
- tt == 0 ? Y = j : Y = m.add(j, m.add(m.mul(tt * L[dt], K), m.mul(tt * T[dt], et))), C[at + 2][H] = Y, B[at + 2][H] = d[H];
12423
- var pt = m.sub(m.mul(L[dt], et), m.mul(T[dt], K));
12422
+ tt == 0 ? Y = j : Y = m.add(j, m.add(m.mul(tt * L[dt], X), m.mul(tt * T[dt], et))), C[at + 2][H] = Y, B[at + 2][H] = d[H];
12423
+ var pt = m.sub(m.mul(L[dt], et), m.mul(T[dt], X));
12424
12424
  if (tt == 0) C[at + 1][H] = j;
12425
12425
  else {
12426
- var St = lt.rays(it, m.mul(1 / m.norm(ht), ht), Y, m.mul(1 / m.norm(pt), pt)), Gt = m.add(it, m.mul(St.u0, ht));
12426
+ var Pt = lt.rays(it, m.mul(1 / m.norm(ht), ht), Y, m.mul(1 / m.norm(pt), pt)), Gt = m.add(it, m.mul(Pt.u0, ht));
12427
12427
  C[at + 1][H] = Gt;
12428
12428
  }
12429
12429
  B[at + 1][H] = I * d[H], at += 2, dt < p && (it = Y, ht = pt);
@@ -12434,13 +12434,13 @@ var ih = { exports: {} };
12434
12434
  var u = mt.arc(r, m.mul(-1, n), a, l, 0, Math.PI);
12435
12435
  return mt.revolvedSurface(u, r, n, 2 * Math.PI);
12436
12436
  }, mt.conicalSurface = function(r, n, a, l, u) {
12437
- var d = 2 * Math.PI, p = 1, _ = [m.add(a, m.mul(l, r)), m.add(a, m.mul(u, n))], v = [0, 0, 1, 1], w = [1, 1], S = new jt(p, v, N.homogenize1d(_, w));
12438
- return mt.revolvedSurface(S, a, r, d);
12437
+ var d = 2 * Math.PI, p = 1, _ = [m.add(a, m.mul(l, r)), m.add(a, m.mul(u, n))], v = [0, 0, 1, 1], w = [1, 1], P = new jt(p, v, N.homogenize1d(_, w));
12438
+ return mt.revolvedSurface(P, a, r, d);
12439
12439
  }, mt.rationalInterpCurve = function(r, n, a, l, u) {
12440
12440
  if (a == null && (a = !1), n == null && (n = 3), r.length < n + 1) throw new Q("You need to supply at least degree + 1 points! You only supplied " + r.length + " points.");
12441
12441
  for (var d = [0], p = 1, _ = r.length; p < _; ) {
12442
- var v = p++, w = m.norm(m.sub(r[v], r[v - 1])), S = d[d.length - 1];
12443
- d.push(S + w);
12442
+ var v = p++, w = m.norm(m.sub(r[v], r[v - 1])), P = d[d.length - 1];
12443
+ d.push(P + w);
12444
12444
  }
12445
12445
  for (var A = d[d.length - 1], I = 0, k = d.length; I < k; ) {
12446
12446
  var T = I++;
@@ -12457,7 +12457,7 @@ var ih = { exports: {} };
12457
12457
  }
12458
12458
  L.push(1 / n * q);
12459
12459
  }
12460
- var j = L.concat(m.rep(n + 1, 1)), K = [], tt;
12460
+ var j = L.concat(m.rep(n + 1, 1)), X = [], tt;
12461
12461
  C ? tt = r.length + 1 : tt = r.length - 1;
12462
12462
  var et;
12463
12463
  C ? et = r.length - (n - 1) : et = r.length - (n + 1);
@@ -12465,13 +12465,13 @@ var ih = { exports: {} };
12465
12465
  var ht = d[it];
12466
12466
  ++it;
12467
12467
  var at = N.knotSpanGivenN(tt, n, ht, j), ct = N.basisFunctionsGivenKnotSpanIndex(at, ht, n, j), nt = at - n, dt = m.zeros1d(nt), Y = m.zeros1d(et - nt);
12468
- K.push(dt.concat(ct).concat(Y));
12468
+ X.push(dt.concat(ct).concat(Y));
12469
12469
  }
12470
12470
  if (C) {
12471
- var pt = K[0].length - 2, St = [-1, 1].concat(m.zeros1d(pt)), Gt = m.zeros1d(pt).concat([-1, 1]);
12472
- X.spliceAndInsert(K, 1, 0, St), X.spliceAndInsert(K, K.length - 1, 0, Gt);
12471
+ var pt = X[0].length - 2, Pt = [-1, 1].concat(m.zeros1d(pt)), Gt = m.zeros1d(pt).concat([-1, 1]);
12472
+ K.spliceAndInsert(X, 1, 0, Pt), K.spliceAndInsert(X, X.length - 1, 0, Gt);
12473
12473
  }
12474
- for (var Kt = r[0].length, Dt = [], Xt = (1 - j[j.length - n - 2]) / n, Ae = j[n + 1] / n, Ve = 0; Ve < Kt; ) {
12474
+ for (var Xt = r[0].length, Dt = [], Kt = (1 - j[j.length - n - 2]) / n, Ae = j[n + 1] / n, Ve = 0; Ve < Xt; ) {
12475
12475
  var _e = [Ve++], ge;
12476
12476
  if (!C) ge = r.map(/* @__PURE__ */ function(Ze) {
12477
12477
  return function(cr) {
@@ -12480,37 +12480,37 @@ var ih = { exports: {} };
12480
12480
  }(_e));
12481
12481
  else {
12482
12482
  ge = [r[0][_e[0]]], ge.push(Ae * l[_e[0]]);
12483
- for (var Pe = 1, Te = r.length - 1; Pe < Te; ) {
12484
- var Ke = Pe++;
12485
- ge.push(r[Ke][_e[0]]);
12483
+ for (var Se = 1, Te = r.length - 1; Se < Te; ) {
12484
+ var Xe = Se++;
12485
+ ge.push(r[Xe][_e[0]]);
12486
12486
  }
12487
- ge.push(Xt * u[_e[0]]), ge.push(X.last(r)[_e[0]]);
12487
+ ge.push(Kt * u[_e[0]]), ge.push(K.last(r)[_e[0]]);
12488
12488
  }
12489
- var or = Ct.solve(K, ge);
12489
+ var or = Ct.solve(X, ge);
12490
12490
  Dt.push(or);
12491
12491
  }
12492
- var Xe = Ct.transpose(Dt);
12492
+ var Ke = Ct.transpose(Dt);
12493
12493
  if (!a) {
12494
- var $e = m.rep(Xe.length, 1);
12495
- Xe = N.homogenize1d(Xe, $e);
12494
+ var $e = m.rep(Ke.length, 1);
12495
+ Ke = N.homogenize1d(Ke, $e);
12496
12496
  }
12497
- return new jt(n, j, Xe);
12497
+ return new jt(n, j, Ke);
12498
12498
  };
12499
12499
  var ft = f.eval.Modify = function() {
12500
12500
  };
12501
12501
  b["verb.eval.Modify"] = ft, ft.__name__ = ["verb", "eval", "Modify"], ft.curveReverse = function(r) {
12502
- return new jt(r.degree, ft.knotsReverse(r.knots), X.reversed(r.controlPoints));
12502
+ return new jt(r.degree, ft.knotsReverse(r.knots), K.reversed(r.controlPoints));
12503
12503
  }, ft.surfaceReverse = function(r, n) {
12504
12504
  return n == null && (n = !1), n ? new te(r.degreeU, r.degreeV, r.knotsU, ft.knotsReverse(r.knotsV), function(a) {
12505
12505
  for (var l, u = [], d = 0, p = r.controlPoints; d < p.length; ) {
12506
12506
  var _ = p[d];
12507
- ++d, u.push(X.reversed(_));
12507
+ ++d, u.push(K.reversed(_));
12508
12508
  }
12509
12509
  return l = u, l;
12510
- }()) : new te(r.degreeU, r.degreeV, ft.knotsReverse(r.knotsU), r.knotsV, X.reversed(r.controlPoints));
12510
+ }()) : new te(r.degreeU, r.degreeV, ft.knotsReverse(r.knotsU), r.knotsV, K.reversed(r.controlPoints));
12511
12511
  }, ft.knotsReverse = function(r) {
12512
- var n = X.first(r);
12513
- X.last(r);
12512
+ var n = K.first(r);
12513
+ K.last(r);
12514
12514
  for (var a = [n], l = r.length, u = 1; u < l; ) {
12515
12515
  var d = u++;
12516
12516
  a.push(a[d - 1] + (r[l - d] - r[l - d - 1]));
@@ -12518,39 +12518,39 @@ var ih = { exports: {} };
12518
12518
  return a;
12519
12519
  }, ft.unifyCurveKnotVectors = function(r) {
12520
12520
  r = r.map(mt.clonedCurve);
12521
- for (var n = R.fold(r, function(j, K) {
12522
- return ft.imax(j.degree, K);
12521
+ for (var n = R.fold(r, function(j, X) {
12522
+ return ft.imax(j.degree, X);
12523
12523
  }, 0), a = 0, l = r.length; a < l; ) {
12524
12524
  var u = a++;
12525
12525
  r[u].degree < n && (r[u] = ft.curveElevateDegree(r[u], n));
12526
12526
  }
12527
12527
  for (var d, p = [], _ = 0; _ < r.length; ) {
12528
12528
  var v = r[_];
12529
- ++_, p.push(new we(X.first(v.knots), X.last(v.knots)));
12529
+ ++_, p.push(new we(K.first(v.knots), K.last(v.knots)));
12530
12530
  }
12531
12531
  d = p;
12532
- for (var w = 0, S = r.length; w < S; ) {
12532
+ for (var w = 0, P = r.length; w < P; ) {
12533
12533
  var A = w++, I = [d[A].min];
12534
12534
  r[A].knots = r[A].knots.map(/* @__PURE__ */ function(j) {
12535
- return function(K) {
12536
- return K - j[0];
12535
+ return function(X) {
12536
+ return X - j[0];
12537
12537
  };
12538
12538
  }(I));
12539
12539
  }
12540
12540
  for (var k = d.map(function(j) {
12541
12541
  return j.max - j.min;
12542
- }), T = R.fold(k, function(j, K) {
12543
- return Math.max(j, K);
12542
+ }), T = R.fold(k, function(j, X) {
12543
+ return Math.max(j, X);
12544
12544
  }, 0), L = 0, C = r.length; L < C; ) {
12545
12545
  var B = L++, O = [T / k[B]];
12546
12546
  r[B].knots = r[B].knots.map(/* @__PURE__ */ function(j) {
12547
- return function(K) {
12548
- return K * j[0];
12547
+ return function(X) {
12548
+ return X * j[0];
12549
12549
  };
12550
12550
  }(O));
12551
12551
  }
12552
- for (var D = R.fold(r, function(j, K) {
12553
- return m.sortedSetUnion(j.knots, K);
12552
+ for (var D = R.fold(r, function(j, X) {
12553
+ return m.sortedSetUnion(j.knots, X);
12554
12554
  }, []), V = 0, q = r.length; V < q; ) {
12555
12555
  var J = V++, H = m.sortedSetSub(D, r[J].knots);
12556
12556
  H.length == 0 && (r[J] = r[J]), r[J] = ft.curveKnotRefine(r[J], H);
@@ -12562,75 +12562,75 @@ var ih = { exports: {} };
12562
12562
  return r > n ? r : n;
12563
12563
  }, ft.curveElevateDegree = function(r, n) {
12564
12564
  if (n <= r.degree) return r;
12565
- var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], S = [], A = [], I = a + l + 1, k = n, T = Math.floor(k / 2), L = [], C = [];
12565
+ var a = r.knots.length - r.degree - 2, l = r.degree, u = r.knots, d = r.controlPoints, p = n - r.degree, _ = r.controlPoints[0].length, v = m.zeros2d(l + p + 1, l + 1), w = [], P = [], A = [], I = a + l + 1, k = n, T = Math.floor(k / 2), L = [], C = [];
12566
12566
  v[0][0] = 1, v[k][l] = 1;
12567
12567
  for (var B = 1, O = T + 1; B < O; )
12568
12568
  for (var D = B++, V = 1 / Rt.get(k, D), q = ft.imin(l, D), J = ft.imax(0, D - p), H = q + 1; J < H; ) {
12569
12569
  var j = J++;
12570
12570
  v[D][j] = V * Rt.get(l, j) * Rt.get(p, D - j);
12571
12571
  }
12572
- for (var K = T + 1; K < k; )
12573
- for (var tt = K++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
12572
+ for (var X = T + 1; X < k; )
12573
+ for (var tt = X++, et = ft.imin(l, tt), it = ft.imax(0, tt - p), ht = et + 1; it < ht; ) {
12574
12574
  var at = it++;
12575
12575
  v[tt][at] = v[k - tt][l - at];
12576
12576
  }
12577
- var ct = k + 1, nt = -1, dt = l, Y = l + 1, pt = 1, St = u[0];
12577
+ var ct = k + 1, nt = -1, dt = l, Y = l + 1, pt = 1, Pt = u[0];
12578
12578
  L[0] = d[0];
12579
- for (var Gt = 0, Kt = k + 1; Gt < Kt; ) {
12579
+ for (var Gt = 0, Xt = k + 1; Gt < Xt; ) {
12580
12580
  var Dt = Gt++;
12581
- C[Dt] = St;
12581
+ C[Dt] = Pt;
12582
12582
  }
12583
- for (var Xt = 0, Ae = l + 1; Xt < Ae; ) {
12584
- var Ve = Xt++;
12583
+ for (var Kt = 0, Ae = l + 1; Kt < Ae; ) {
12584
+ var Ve = Kt++;
12585
12585
  w[Ve] = d[Ve];
12586
12586
  }
12587
12587
  for (; Y < I; ) {
12588
12588
  for (var _e = Y; Y < I && u[Y] == u[Y + 1]; ) Y = Y + 1;
12589
- var ge = Y - _e + 1, Pe = u[Y], Te = nt;
12589
+ var ge = Y - _e + 1, Se = u[Y], Te = nt;
12590
12590
  nt = l - ge;
12591
- var Ke;
12592
- Te > 0 ? Ke = Math.floor((Te + 2) / 2) : Ke = 1;
12591
+ var Xe;
12592
+ Te > 0 ? Xe = Math.floor((Te + 2) / 2) : Xe = 1;
12593
12593
  var or;
12594
12594
  if (nt > 0 ? or = Math.floor(k - (nt + 1) / 2) : or = k, nt > 0) {
12595
- for (var Xe = Pe - St, $e = [], Ze = l; Ze > ge; )
12596
- $e[Ze - ge - 1] = Xe / (u[dt + Ze] - St), Ze--;
12595
+ for (var Ke = Se - Pt, $e = [], Ze = l; Ze > ge; )
12596
+ $e[Ze - ge - 1] = Ke / (u[dt + Ze] - Pt), Ze--;
12597
12597
  for (var cr = 1, An = nt + 1; cr < An; ) {
12598
12598
  for (var Hr = cr++, _h = nt - Hr, oi = ge + Hr, qr = l; qr >= oi; )
12599
12599
  w[qr] = m.add(m.mul($e[qr - oi], w[qr]), m.mul(1 - $e[qr - oi], w[qr - 1])), qr--;
12600
12600
  A[_h] = w[l];
12601
12601
  }
12602
12602
  }
12603
- for (var Ka = Ke, vh = k + 1; Ka < vh; ) {
12604
- var Pn = Ka++;
12605
- S[Pn] = m.zeros1d(_);
12606
- for (var yh = ft.imin(l, Pn), Xa = ft.imax(0, Pn - p), xh = yh + 1; Xa < xh; ) {
12607
- var $a = Xa++;
12608
- S[Pn] = m.add(S[Pn], m.mul(v[Pn][$a], w[$a]));
12603
+ for (var Xa = Xe, vh = k + 1; Xa < vh; ) {
12604
+ var Sn = Xa++;
12605
+ P[Sn] = m.zeros1d(_);
12606
+ for (var yh = ft.imin(l, Sn), Ka = ft.imax(0, Sn - p), xh = yh + 1; Ka < xh; ) {
12607
+ var $a = Ka++;
12608
+ P[Sn] = m.add(P[Sn], m.mul(v[Sn][$a], w[$a]));
12609
12609
  }
12610
12610
  }
12611
12611
  if (Te > 1)
12612
- for (var li = ct - 2, hi = ct, Za = Pe - St, bh = (Pe - C[ct - 1]) / Za, Qa = 1; Qa < Te; ) {
12612
+ for (var li = ct - 2, hi = ct, Za = Se - Pt, bh = (Se - C[ct - 1]) / Za, Qa = 1; Qa < Te; ) {
12613
12613
  for (var ui = Qa++, dr = li, Yr = hi, Br = Yr - ct + 1; Yr - dr > ui; ) {
12614
12614
  if (dr < pt) {
12615
- var wh = (Pe - C[dr]) / (St - C[dr]);
12615
+ var wh = (Se - C[dr]) / (Pt - C[dr]);
12616
12616
  L[dr] = m.lerp(wh, L[dr], L[dr - 1]);
12617
12617
  }
12618
- if (Yr >= Ke) {
12618
+ if (Yr >= Xe) {
12619
12619
  if (Yr - ui <= ct - k + Te) {
12620
- var Ah = (Pe - C[Yr - ui]) / Za;
12621
- S[Br] = m.lerp(Ah, S[Br], S[Br + 1]);
12620
+ var Ah = (Se - C[Yr - ui]) / Za;
12621
+ P[Br] = m.lerp(Ah, P[Br], P[Br + 1]);
12622
12622
  }
12623
- } else S[Br] = m.lerp(bh, S[Br], S[Br + 1]);
12623
+ } else P[Br] = m.lerp(bh, P[Br], P[Br + 1]);
12624
12624
  dr = dr + 1, Yr = Yr - 1, Br = Br - 1;
12625
12625
  }
12626
12626
  li = li - 1, hi = hi + 1;
12627
12627
  }
12628
12628
  if (dt != l)
12629
- for (var Ja = 0, Ph = k - Te; Ja < Ph; )
12630
- Ja++, C[ct] = St, ct = ct + 1;
12631
- for (var to = Ke, Sh = or + 1; to < Sh; ) {
12629
+ for (var Ja = 0, Sh = k - Te; Ja < Sh; )
12630
+ Ja++, C[ct] = Pt, ct = ct + 1;
12631
+ for (var to = Xe, Ph = or + 1; to < Ph; ) {
12632
12632
  var Ih = to++;
12633
- L[pt] = S[Ih], pt = pt + 1;
12633
+ L[pt] = P[Ih], pt = pt + 1;
12634
12634
  }
12635
12635
  if (Y < I) {
12636
12636
  for (var eo = 0; eo < nt; ) {
@@ -12641,11 +12641,11 @@ var ih = { exports: {} };
12641
12641
  var so = no++;
12642
12642
  w[so] = d[Y - l + so];
12643
12643
  }
12644
- dt = Y, Y = Y + 1, St = Pe;
12644
+ dt = Y, Y = Y + 1, Pt = Se;
12645
12645
  } else
12646
12646
  for (var io = 0, kh = k + 1; io < kh; ) {
12647
12647
  var Mh = io++;
12648
- C[ct + Mh] = Pe;
12648
+ C[ct + Mh] = Se;
12649
12649
  }
12650
12650
  }
12651
12651
  return new jt(n, C, L);
@@ -12669,8 +12669,8 @@ var ih = { exports: {} };
12669
12669
  var w = p[v];
12670
12670
  ++v, _ = ft.curveKnotRefine(new jt(d, u, w), n), l.push(_.controlPoints);
12671
12671
  }
12672
- var S = _.knots;
12673
- return a ? new te(r.degreeU, r.degreeV, r.knotsU.slice(), S, l) : (l = Ct.transpose(l), new te(r.degreeU, r.degreeV, S, r.knotsV.slice(), l));
12672
+ var P = _.knots;
12673
+ return a ? new te(r.degreeU, r.degreeV, r.knotsU.slice(), P, l) : (l = Ct.transpose(l), new te(r.degreeU, r.degreeV, P, r.knotsV.slice(), l));
12674
12674
  }, ft.decomposeCurveIntoBeziers = function(r) {
12675
12675
  for (var n = r.degree, a = r.controlPoints, l = r.knots, u = vt.knotMultiplicities(l), d = n + 1, p = 0; p < u.length; ) {
12676
12676
  var _ = u[p];
@@ -12680,20 +12680,20 @@ var ih = { exports: {} };
12680
12680
  }
12681
12681
  }
12682
12682
  l.length / d - 1;
12683
- for (var S = d * 2, A = [], I = 0; I < a.length; ) {
12684
- var k = l.slice(I, I + S), T = a.slice(I, I + d);
12683
+ for (var P = d * 2, A = [], I = 0; I < a.length; ) {
12684
+ var k = l.slice(I, I + P), T = a.slice(I, I + d);
12685
12685
  A.push(new jt(n, k, T)), I += d;
12686
12686
  }
12687
12687
  return A;
12688
12688
  }, ft.curveKnotRefine = function(r, n) {
12689
12689
  if (n.length == 0) return mt.clonedCurve(r);
12690
- for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), w = N.knotSpan(a, n[_], u), S = [], A = [], I = 0, k = v - a + 1; I < k; ) {
12690
+ for (var a = r.degree, l = r.controlPoints, u = r.knots, d = l.length - 1, p = d + a + 1, _ = n.length - 1, v = N.knotSpan(a, n[0], u), w = N.knotSpan(a, n[_], u), P = [], A = [], I = 0, k = v - a + 1; I < k; ) {
12691
12691
  var T = I++;
12692
- S[T] = l[T];
12692
+ P[T] = l[T];
12693
12693
  }
12694
12694
  for (var L = w - 1, C = d + 1; L < C; ) {
12695
12695
  var B = L++;
12696
- S[B + _ + 1] = l[B];
12696
+ P[B + _ + 1] = l[B];
12697
12697
  }
12698
12698
  for (var O = 0, D = v + 1; O < D; ) {
12699
12699
  var V = O++;
@@ -12703,37 +12703,37 @@ var ih = { exports: {} };
12703
12703
  var H = q++;
12704
12704
  A[H + _ + 1] = u[H];
12705
12705
  }
12706
- for (var j = w + a - 1, K = w + a + _, tt = _; tt >= 0; ) {
12706
+ for (var j = w + a - 1, X = w + a + _, tt = _; tt >= 0; ) {
12707
12707
  for (; n[tt] <= u[j] && j > v; )
12708
- S[K - a - 1] = l[j - a - 1], A[K] = u[j], K = K - 1, j = j - 1;
12709
- S[K - a - 1] = S[K - a];
12708
+ P[X - a - 1] = l[j - a - 1], A[X] = u[j], X = X - 1, j = j - 1;
12709
+ P[X - a - 1] = P[X - a];
12710
12710
  for (var et = 1, it = a + 1; et < it; ) {
12711
- var ht = et++, at = K - a + ht, ct = A[K + ht] - n[tt];
12712
- Math.abs(ct) < rt.EPSILON ? S[at - 1] = S[at] : (ct = ct / (A[K + ht] - u[j - a + ht]), S[at - 1] = m.add(m.mul(ct, S[at - 1]), m.mul(1 - ct, S[at])));
12711
+ var ht = et++, at = X - a + ht, ct = A[X + ht] - n[tt];
12712
+ Math.abs(ct) < rt.EPSILON ? P[at - 1] = P[at] : (ct = ct / (A[X + ht] - u[j - a + ht]), P[at - 1] = m.add(m.mul(ct, P[at - 1]), m.mul(1 - ct, P[at])));
12713
12713
  }
12714
- A[K] = n[tt], K = K - 1, tt--;
12714
+ A[X] = n[tt], X = X - 1, tt--;
12715
12715
  }
12716
- return new jt(a, A, S);
12716
+ return new jt(a, A, P);
12717
12717
  }, ft.curveKnotInsert = function(r, n, a) {
12718
- for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), w = [], S = [], A = [], I = 1, k = v + 1; I < k; ) {
12718
+ for (var l = r.degree, u = r.controlPoints, d = r.knots, p = 0, _ = u.length, v = N.knotSpan(l, n, d), w = [], P = [], A = [], I = 1, k = v + 1; I < k; ) {
12719
12719
  var T = I++;
12720
- S[T] = d[T];
12720
+ P[T] = d[T];
12721
12721
  }
12722
12722
  for (var L = 1, C = a + 1; L < C; ) {
12723
12723
  var B = L++;
12724
- S[v + B] = n;
12724
+ P[v + B] = n;
12725
12725
  }
12726
12726
  for (var O = v + 1, D = d.length; O < D; ) {
12727
12727
  var V = O++;
12728
- S[V + a] = d[V];
12728
+ P[V + a] = d[V];
12729
12729
  }
12730
12730
  for (var q = 0, J = v - l + 1; q < J; ) {
12731
12731
  var H = q++;
12732
12732
  A[H] = u[H];
12733
12733
  }
12734
12734
  for (var j = v - p; j < _; ) {
12735
- var K = j++;
12736
- A[K + a] = u[K];
12735
+ var X = j++;
12736
+ A[X + a] = u[X];
12737
12737
  }
12738
12738
  for (var tt = 0, et = l - p + 1; tt < et; ) {
12739
12739
  var it = tt++;
@@ -12743,21 +12743,21 @@ var ih = { exports: {} };
12743
12743
  var dt = ct++;
12744
12744
  ht = v - l + dt;
12745
12745
  for (var Y = 0, pt = l - dt - p + 1; Y < pt; ) {
12746
- var St = Y++;
12747
- at = (n - d[ht + St]) / (d[St + v + 1] - d[ht + St]), w[St] = m.add(m.mul(at, w[St + 1]), m.mul(1 - at, w[St]));
12746
+ var Pt = Y++;
12747
+ at = (n - d[ht + Pt]) / (d[Pt + v + 1] - d[ht + Pt]), w[Pt] = m.add(m.mul(at, w[Pt + 1]), m.mul(1 - at, w[Pt]));
12748
12748
  }
12749
12749
  A[ht] = w[0], A[v + a - dt - p] = w[l - dt - p];
12750
12750
  }
12751
- for (var Gt = ht + 1, Kt = v - p; Gt < Kt; ) {
12751
+ for (var Gt = ht + 1, Xt = v - p; Gt < Xt; ) {
12752
12752
  var Dt = Gt++;
12753
12753
  A[Dt] = w[Dt - ht];
12754
12754
  }
12755
- return new jt(l, S, A);
12755
+ return new jt(l, P, A);
12756
12756
  };
12757
12757
  var Ot = f.eval.Tess = function() {
12758
12758
  };
12759
12759
  b["verb.eval.Tess"] = Ot, Ot.__name__ = ["verb", "eval", "Tess"], Ot.rationalCurveRegularSample = function(r, n, a) {
12760
- return Ot.rationalCurveRegularSampleRange(r, r.knots[0], X.last(r.knots), n, a);
12760
+ return Ot.rationalCurveRegularSampleRange(r, r.knots[0], K.last(r.knots), n, a);
12761
12761
  }, Ot.rationalCurveRegularSampleRange = function(r, n, a, l, u) {
12762
12762
  l < 1 && (l = 2);
12763
12763
  for (var d = [], p = (a - n) / (l - 1), _ = 0, v = 0; v < l; ) {
@@ -12775,53 +12775,53 @@ var ih = { exports: {} };
12775
12775
  return l;
12776
12776
  } else
12777
12777
  return r.controlPoints.map(N.dehomogenize);
12778
- return Ot.rationalCurveAdaptiveSampleRange(r, r.knots[0], X.last(r.knots), n, a);
12778
+ return Ot.rationalCurveAdaptiveSampleRange(r, r.knots[0], K.last(r.knots), n, a);
12779
12779
  }, Ot.rationalCurveAdaptiveSampleRange = function(r, n, a, l, u) {
12780
- var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, w = N.rationalCurvePoint(r, v), S = m.sub(d, p), A = m.sub(d, w);
12781
- if (m.dot(S, S) < l && m.dot(A, A) > l || !ke.threePointsAreFlat(d, w, p, l)) {
12780
+ var d = N.rationalCurvePoint(r, n), p = N.rationalCurvePoint(r, a), _ = 0.5 + 0.2 * Math.random(), v = n + (a - n) * _, w = N.rationalCurvePoint(r, v), P = m.sub(d, p), A = m.sub(d, w);
12781
+ if (m.dot(P, P) < l && m.dot(A, A) > l || !ke.threePointsAreFlat(d, w, p, l)) {
12782
12782
  var I = n + (a - n) * 0.5, k = Ot.rationalCurveAdaptiveSampleRange(r, n, I, l, u), T = Ot.rationalCurveAdaptiveSampleRange(r, I, a, l, u);
12783
12783
  return k.slice(0, -1).concat(T);
12784
12784
  } else return u ? [[n].concat(d), [a].concat(p)] : [d, p];
12785
12785
  }, Ot.rationalSurfaceNaive = function(r, n, a) {
12786
12786
  n < 1 && (n = 1), a < 1 && (a = 1), r.degreeU, r.degreeV, r.controlPoints;
12787
- for (var l = r.knotsU, u = r.knotsV, d = X.last(l) - l[0], p = X.last(u) - u[0], _ = d / n, v = p / a, w = [], S = [], A = [], I = 0, k = n + 1; I < k; )
12787
+ for (var l = r.knotsU, u = r.knotsV, d = K.last(l) - l[0], p = K.last(u) - u[0], _ = d / n, v = p / a, w = [], P = [], A = [], I = 0, k = n + 1; I < k; )
12788
12788
  for (var T = I++, L = 0, C = a + 1; L < C; ) {
12789
12789
  var B = L++, O = T * _, D = B * v;
12790
- S.push([O, D]);
12790
+ P.push([O, D]);
12791
12791
  var V = N.rationalSurfaceDerivatives(r, O, D, 1), q = V[0][0];
12792
12792
  w.push(q);
12793
12793
  var J = m.normalized(m.cross(V[1][0], V[0][1]));
12794
12794
  A.push(J);
12795
12795
  }
12796
12796
  for (var H = [], j = 0; j < n; )
12797
- for (var K = j++, tt = 0; tt < a; ) {
12798
- var et = tt++, it = K * (a + 1) + et, ht = (K + 1) * (a + 1) + et, at = ht + 1, ct = it + 1, nt = [it, ht, at], dt = [it, at, ct];
12797
+ for (var X = j++, tt = 0; tt < a; ) {
12798
+ var et = tt++, it = X * (a + 1) + et, ht = (X + 1) * (a + 1) + et, at = ht + 1, ct = it + 1, nt = [it, ht, at], dt = [it, at, ct];
12799
12799
  H.push(nt), H.push(dt);
12800
12800
  }
12801
- return new He(H, w, A, S);
12801
+ return new He(H, w, A, P);
12802
12802
  }, Ot.divideRationalSurfaceAdaptive = function(r, n) {
12803
12803
  n == null && (n = new Cr()), n.minDivsU != null ? n.minDivsU = n.minDivsU : n.minDivsU = 1, n.minDivsV != null ? n.minDivsU = n.minDivsV : n.minDivsU = 1, n.refine != null ? n.refine = n.refine : n.refine = !0;
12804
12804
  var a = (r.controlPoints.length - 1) * 2, l = (r.controlPoints[0].length - 1) * 2, u;
12805
12805
  n.minDivsU > a ? u = n.minDivsU = n.minDivsU : u = n.minDivsU = a;
12806
12806
  var d;
12807
12807
  n.minDivsV > l ? d = n.minDivsV = n.minDivsV : d = n.minDivsV = l;
12808
- for (var p = X.last(r.knotsU), _ = r.knotsU[0], v = X.last(r.knotsV), w = r.knotsV[0], S = (p - _) / u, A = (v - w) / d, I = [], k = [], T = 0, L = d + 1; T < L; ) {
12808
+ for (var p = K.last(r.knotsU), _ = r.knotsU[0], v = K.last(r.knotsV), w = r.knotsV[0], P = (p - _) / u, A = (v - w) / d, I = [], k = [], T = 0, L = d + 1; T < L; ) {
12809
12809
  for (var C = T++, B = [], O = 0, D = u + 1; O < D; ) {
12810
- var V = O++, q = _ + S * V, J = w + A * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), j = m.normalized(m.cross(H[0][1], H[1][0]));
12810
+ var V = O++, q = _ + P * V, J = w + A * C, H = N.rationalSurfaceDerivatives(r, q, J, 1), j = m.normalized(m.cross(H[0][1], H[1][0]));
12811
12811
  B.push(new De(H[0][0], j, [q, J], -1, m.isZero(j)));
12812
12812
  }
12813
12813
  k.push(B);
12814
12814
  }
12815
- for (var K = 0; K < d; )
12816
- for (var tt = K++, et = 0; et < u; ) {
12815
+ for (var X = 0; X < d; )
12816
+ for (var tt = X++, et = 0; et < u; ) {
12817
12817
  var it = et++, ht = [k[d - tt - 1][it], k[d - tt - 1][it + 1], k[d - tt][it + 1], k[d - tt][it]];
12818
12818
  I.push(new ur(r, ht));
12819
12819
  }
12820
12820
  if (!n.refine) return I;
12821
12821
  for (var at = 0; at < d; )
12822
12822
  for (var ct = at++, nt = 0; nt < u; ) {
12823
- var dt = nt++, Y = ct * u + dt, pt = Ot.north(Y, ct, dt, u, d, I), St = Ot.east(Y, ct, dt, u, d, I), Gt = Ot.south(Y, ct, dt, u, d, I), Kt = Ot.west(Y, ct, dt, u, d, I);
12824
- I[Y].neighbors = [Gt, St, pt, Kt], I[Y].divide(n);
12823
+ var dt = nt++, Y = ct * u + dt, pt = Ot.north(Y, ct, dt, u, d, I), Pt = Ot.east(Y, ct, dt, u, d, I), Gt = Ot.south(Y, ct, dt, u, d, I), Xt = Ot.west(Y, ct, dt, u, d, I);
12824
+ I[Y].neighbors = [Gt, Pt, pt, Xt], I[Y].divide(n);
12825
12825
  }
12826
12826
  return I;
12827
12827
  }, Ot.north = function(r, n, a, l, u, d) {
@@ -12851,7 +12851,7 @@ var ih = { exports: {} };
12851
12851
  };
12852
12852
  var ur = f.core.AdaptiveRefinementNode = function(r, n, a) {
12853
12853
  if (this.srf = r, a == null ? this.neighbors = [null, null, null, null] : this.neighbors = a, this.corners = n, this.corners == null) {
12854
- var l = r.knotsU[0], u = X.last(r.knotsU), d = r.knotsV[0], p = X.last(r.knotsV);
12854
+ var l = r.knotsU[0], u = K.last(r.knotsU), d = r.knotsV[0], p = K.last(r.knotsV);
12855
12855
  this.corners = [De.fromUv(l, d), De.fromUv(u, d), De.fromUv(u, p), De.fromUv(l, p)];
12856
12856
  }
12857
12857
  };
@@ -12981,8 +12981,8 @@ var ih = { exports: {} };
12981
12981
  var p = d++, _ = this.getAllCorners(p);
12982
12982
  _.length == 2 && (u = p + 1);
12983
12983
  for (var v = 0, w = _.length; v < w; ) {
12984
- var S = v++;
12985
- a.push(_[S]);
12984
+ var P = v++;
12985
+ a.push(_[P]);
12986
12986
  }
12987
12987
  }
12988
12988
  for (var A = 0; A < a.length; ) {
@@ -13092,7 +13092,7 @@ var ih = { exports: {} };
13092
13092
  return new Tt(this._data);
13093
13093
  },
13094
13094
  domain: function() {
13095
- return new we(X.first(this._data.knots), X.last(this._data.knots));
13095
+ return new we(K.first(this._data.knots), K.last(this._data.knots));
13096
13096
  },
13097
13097
  transform: function(r) {
13098
13098
  return new Tt(ft.rationalCurveTransform(this._data, r));
@@ -13220,11 +13220,11 @@ var ih = { exports: {} };
13220
13220
  b["verb.geom.BezierCurve"] = Yn, Yn.__name__ = ["verb", "geom", "BezierCurve"], Yn.__super__ = Tt, Yn.prototype = M(Tt.prototype, {
13221
13221
  __class__: Yn
13222
13222
  });
13223
- var Kn = f.geom.Circle = function(r, n, a, l) {
13223
+ var Xn = f.geom.Circle = function(r, n, a, l) {
13224
13224
  Or.call(this, r, n, a, l, 0, Math.PI * 2);
13225
13225
  };
13226
- b["verb.geom.Circle"] = Kn, Kn.__name__ = ["verb", "geom", "Circle"], Kn.__super__ = Or, Kn.prototype = M(Or.prototype, {
13227
- __class__: Kn
13226
+ b["verb.geom.Circle"] = Xn, Xn.__name__ = ["verb", "geom", "Circle"], Xn.__super__ = Or, Xn.prototype = M(Or.prototype, {
13227
+ __class__: Xn
13228
13228
  });
13229
13229
  var wn = function() {
13230
13230
  };
@@ -13272,10 +13272,10 @@ var ih = { exports: {} };
13272
13272
  return new It(this.asNurbs());
13273
13273
  },
13274
13274
  domainU: function() {
13275
- return new we(X.first(this._data.knotsU), X.last(this._data.knotsU));
13275
+ return new we(K.first(this._data.knotsU), K.last(this._data.knotsU));
13276
13276
  },
13277
13277
  domainV: function() {
13278
- return new we(X.first(this._data.knotsV), X.last(this._data.knotsV));
13278
+ return new we(K.first(this._data.knotsV), K.last(this._data.knotsV));
13279
13279
  },
13280
13280
  point: function(r, n) {
13281
13281
  return N.rationalSurfacePoint(this._data, r, n);
@@ -13363,10 +13363,10 @@ var ih = { exports: {} };
13363
13363
  },
13364
13364
  __class__: It
13365
13365
  });
13366
- var Xn = f.geom.ConicalSurface = function(r, n, a, l, u) {
13366
+ var Kn = f.geom.ConicalSurface = function(r, n, a, l, u) {
13367
13367
  It.call(this, mt.conicalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
13368
13368
  };
13369
- b["verb.geom.ConicalSurface"] = Xn, Xn.__name__ = ["verb", "geom", "ConicalSurface"], Xn.__super__ = It, Xn.prototype = M(It.prototype, {
13369
+ b["verb.geom.ConicalSurface"] = Kn, Kn.__name__ = ["verb", "geom", "ConicalSurface"], Kn.__super__ = It, Kn.prototype = M(It.prototype, {
13370
13370
  axis: function() {
13371
13371
  return this._axis;
13372
13372
  },
@@ -13382,7 +13382,7 @@ var ih = { exports: {} };
13382
13382
  radius: function() {
13383
13383
  return this._radius;
13384
13384
  },
13385
- __class__: Xn
13385
+ __class__: Kn
13386
13386
  });
13387
13387
  var $n = f.geom.CylindricalSurface = function(r, n, a, l, u) {
13388
13388
  It.call(this, mt.cylindricalSurface(r, n, a, l, u)), this._axis = r, this._xaxis = n, this._base = a, this._height = l, this._radius = u;
@@ -13552,9 +13552,9 @@ var ih = { exports: {} };
13552
13552
  }
13553
13553
  return n;
13554
13554
  });
13555
- var ii = {}, Ts = P.ArrayBuffer || ae;
13556
- Ts.prototype.slice == null && (Ts.prototype.slice = ae.sliceImpl), P.DataView;
13557
- var ai = P.Uint8Array || nr._new;
13555
+ var ii = {}, Ts = S.ArrayBuffer || ae;
13556
+ Ts.prototype.slice == null && (Ts.prototype.slice = ae.sliceImpl), S.DataView;
13557
+ var ai = S.Uint8Array || nr._new;
13558
13558
  (function(r, n) {
13559
13559
  if (r.setImmediate)
13560
13560
  return;
@@ -13578,12 +13578,12 @@ var ih = { exports: {} };
13578
13578
  try {
13579
13579
  D();
13580
13580
  } finally {
13581
- S(O), u = !1;
13581
+ P(O), u = !1;
13582
13582
  }
13583
13583
  }
13584
13584
  }
13585
13585
  }
13586
- function S(O) {
13586
+ function P(O) {
13587
13587
  delete l[O];
13588
13588
  }
13589
13589
  function A() {
@@ -13635,11 +13635,11 @@ var ih = { exports: {} };
13635
13635
  };
13636
13636
  }
13637
13637
  var B = Object.getPrototypeOf && Object.getPrototypeOf(r);
13638
- B = B && B.setTimeout ? B : r, {}.toString.call(r.process) === "[object process]" ? A() : I() ? k() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? L() : C(), B.setImmediate = p, B.clearImmediate = S;
13638
+ B = B && B.setTimeout ? B : r, {}.toString.call(r.process) === "[object process]" ? A() : I() ? k() : r.MessageChannel ? T() : d && "onreadystatechange" in d.createElement("script") ? L() : C(), B.setImmediate = p, B.clearImmediate = P;
13639
13639
  })(new Function("return this")()), Yt.USE_CACHE = !1, Yt.USE_ENUM_INDEX = !1, Yt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Wt.DEFAULT_RESOLVER = ut, Wt.BASE64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789%:", Lt.count = 0, ie.i64tmp = function(r) {
13640
13640
  var n, a = new Vt(0, 0);
13641
13641
  return n = a, n;
13642
- }(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, Pt.queue = new U(), Rt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", vt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], vt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, ks.main();
13642
+ }(), Mt.__toStr = {}.toString, nr.BYTES_PER_ELEMENT = 1, St.queue = new U(), Rt.memo = new bt(), rt.TOLERANCE = 1e-6, rt.EPSILON = 1e-10, rt.VERSION = "2.0.0", vt.Tvalues = [[], [], [-0.5773502691896257, 0.5773502691896257], [0, -0.7745966692414834, 0.7745966692414834], [-0.33998104358485626, 0.33998104358485626, -0.8611363115940526, 0.8611363115940526], [0, -0.5384693101056831, 0.5384693101056831, -0.906179845938664, 0.906179845938664], [0.6612093864662645, -0.6612093864662645, -0.2386191860831969, 0.2386191860831969, -0.932469514203152, 0.932469514203152], [0, 0.4058451513773972, -0.4058451513773972, -0.7415311855993945, 0.7415311855993945, -0.9491079123427585, 0.9491079123427585], [-0.1834346424956498, 0.1834346424956498, -0.525532409916329, 0.525532409916329, -0.7966664774136267, 0.7966664774136267, -0.9602898564975363, 0.9602898564975363], [0, -0.8360311073266358, 0.8360311073266358, -0.9681602395076261, 0.9681602395076261, -0.3242534234038089, 0.3242534234038089, -0.6133714327005904, 0.6133714327005904], [-0.14887433898163122, 0.14887433898163122, -0.4333953941292472, 0.4333953941292472, -0.6794095682990244, 0.6794095682990244, -0.8650633666889845, 0.8650633666889845, -0.9739065285171717, 0.9739065285171717], [0, -0.26954315595234496, 0.26954315595234496, -0.5190961292068118, 0.5190961292068118, -0.7301520055740494, 0.7301520055740494, -0.8870625997680953, 0.8870625997680953, -0.978228658146057, 0.978228658146057], [-0.1252334085114689, 0.1252334085114689, -0.3678314989981802, 0.3678314989981802, -0.5873179542866175, 0.5873179542866175, -0.7699026741943047, 0.7699026741943047, -0.9041172563704749, 0.9041172563704749, -0.9815606342467192, 0.9815606342467192], [0, -0.2304583159551348, 0.2304583159551348, -0.44849275103644687, 0.44849275103644687, -0.6423493394403402, 0.6423493394403402, -0.8015780907333099, 0.8015780907333099, -0.9175983992229779, 0.9175983992229779, -0.9841830547185881, 0.9841830547185881], [-0.10805494870734367, 0.10805494870734367, -0.31911236892788974, 0.31911236892788974, -0.5152486363581541, 0.5152486363581541, -0.6872929048116855, 0.6872929048116855, -0.827201315069765, 0.827201315069765, -0.9284348836635735, 0.9284348836635735, -0.9862838086968123, 0.9862838086968123], [0, -0.20119409399743451, 0.20119409399743451, -0.3941513470775634, 0.3941513470775634, -0.5709721726085388, 0.5709721726085388, -0.7244177313601701, 0.7244177313601701, -0.8482065834104272, 0.8482065834104272, -0.937273392400706, 0.937273392400706, -0.9879925180204854, 0.9879925180204854], [-0.09501250983763744, 0.09501250983763744, -0.2816035507792589, 0.2816035507792589, -0.45801677765722737, 0.45801677765722737, -0.6178762444026438, 0.6178762444026438, -0.755404408355003, 0.755404408355003, -0.8656312023878318, 0.8656312023878318, -0.9445750230732326, 0.9445750230732326, -0.9894009349916499, 0.9894009349916499], [0, -0.17848418149584785, 0.17848418149584785, -0.3512317634538763, 0.3512317634538763, -0.5126905370864769, 0.5126905370864769, -0.6576711592166907, 0.6576711592166907, -0.7815140038968014, 0.7815140038968014, -0.8802391537269859, 0.8802391537269859, -0.9506755217687678, 0.9506755217687678, -0.9905754753144174, 0.9905754753144174], [-0.0847750130417353, 0.0847750130417353, -0.2518862256915055, 0.2518862256915055, -0.41175116146284263, 0.41175116146284263, -0.5597708310739475, 0.5597708310739475, -0.6916870430603532, 0.6916870430603532, -0.8037049589725231, 0.8037049589725231, -0.8926024664975557, 0.8926024664975557, -0.9558239495713977, 0.9558239495713977, -0.9915651684209309, 0.9915651684209309], [0, -0.16035864564022537, 0.16035864564022537, -0.31656409996362983, 0.31656409996362983, -0.46457074137596094, 0.46457074137596094, -0.600545304661681, 0.600545304661681, -0.7209661773352294, 0.7209661773352294, -0.8227146565371428, 0.8227146565371428, -0.9031559036148179, 0.9031559036148179, -0.96020815213483, 0.96020815213483, -0.9924068438435844, 0.9924068438435844], [-0.07652652113349734, 0.07652652113349734, -0.22778585114164507, 0.22778585114164507, -0.37370608871541955, 0.37370608871541955, -0.5108670019508271, 0.5108670019508271, -0.636053680726515, 0.636053680726515, -0.7463319064601508, 0.7463319064601508, -0.8391169718222188, 0.8391169718222188, -0.912234428251326, 0.912234428251326, -0.9639719272779138, 0.9639719272779138, -0.9931285991850949, 0.9931285991850949], [0, -0.1455618541608951, 0.1455618541608951, -0.2880213168024011, 0.2880213168024011, -0.4243421202074388, 0.4243421202074388, -0.5516188358872198, 0.5516188358872198, -0.6671388041974123, 0.6671388041974123, -0.7684399634756779, 0.7684399634756779, -0.8533633645833173, 0.8533633645833173, -0.9200993341504008, 0.9200993341504008, -0.9672268385663063, 0.9672268385663063, -0.9937521706203895, 0.9937521706203895], [-0.06973927331972223, 0.06973927331972223, -0.20786042668822127, 0.20786042668822127, -0.34193582089208424, 0.34193582089208424, -0.469355837986757, 0.469355837986757, -0.5876404035069116, 0.5876404035069116, -0.6944872631866827, 0.6944872631866827, -0.7878168059792081, 0.7878168059792081, -0.8658125777203002, 0.8658125777203002, -0.926956772187174, 0.926956772187174, -0.9700604978354287, 0.9700604978354287, -0.9942945854823992, 0.9942945854823992], [0, -0.1332568242984661, 0.1332568242984661, -0.26413568097034495, 0.26413568097034495, -0.3903010380302908, 0.3903010380302908, -0.5095014778460075, 0.5095014778460075, -0.6196098757636461, 0.6196098757636461, -0.7186613631319502, 0.7186613631319502, -0.8048884016188399, 0.8048884016188399, -0.8767523582704416, 0.8767523582704416, -0.9329710868260161, 0.9329710868260161, -0.9725424712181152, 0.9725424712181152, -0.9947693349975522, 0.9947693349975522], [-0.06405689286260563, 0.06405689286260563, -0.1911188674736163, 0.1911188674736163, -0.3150426796961634, 0.3150426796961634, -0.4337935076260451, 0.4337935076260451, -0.5454214713888396, 0.5454214713888396, -0.6480936519369755, 0.6480936519369755, -0.7401241915785544, 0.7401241915785544, -0.820001985973903, 0.820001985973903, -0.8864155270044011, 0.8864155270044011, -0.9382745520027328, 0.9382745520027328, -0.9747285559713095, 0.9747285559713095, -0.9951872199970213, 0.9951872199970213]], vt.Cvalues = [[], [], [1, 1], [0.8888888888888888, 0.5555555555555556, 0.5555555555555556], [0.6521451548625461, 0.6521451548625461, 0.34785484513745385, 0.34785484513745385], [0.5688888888888889, 0.47862867049936647, 0.47862867049936647, 0.23692688505618908, 0.23692688505618908], [0.3607615730481386, 0.3607615730481386, 0.46791393457269104, 0.46791393457269104, 0.17132449237917036, 0.17132449237917036], [0.4179591836734694, 0.3818300505051189, 0.3818300505051189, 0.27970539148927664, 0.27970539148927664, 0.1294849661688697, 0.1294849661688697], [0.362683783378362, 0.362683783378362, 0.31370664587788727, 0.31370664587788727, 0.22238103445337448, 0.22238103445337448, 0.10122853629037626, 0.10122853629037626], [0.3302393550012598, 0.1806481606948574, 0.1806481606948574, 0.08127438836157441, 0.08127438836157441, 0.31234707704000286, 0.31234707704000286, 0.26061069640293544, 0.26061069640293544], [0.29552422471475287, 0.29552422471475287, 0.26926671930999635, 0.26926671930999635, 0.21908636251598204, 0.21908636251598204, 0.1494513491505806, 0.1494513491505806, 0.06667134430868814, 0.06667134430868814], [0.2729250867779006, 0.26280454451024665, 0.26280454451024665, 0.23319376459199048, 0.23319376459199048, 0.18629021092773426, 0.18629021092773426, 0.1255803694649046, 0.1255803694649046, 0.05566856711617366, 0.05566856711617366], [0.24914704581340277, 0.24914704581340277, 0.2334925365383548, 0.2334925365383548, 0.20316742672306592, 0.20316742672306592, 0.16007832854334622, 0.16007832854334622, 0.10693932599531843, 0.10693932599531843, 0.04717533638651183, 0.04717533638651183], [0.2325515532308739, 0.22628318026289723, 0.22628318026289723, 0.2078160475368885, 0.2078160475368885, 0.17814598076194574, 0.17814598076194574, 0.13887351021978725, 0.13887351021978725, 0.09212149983772845, 0.09212149983772845, 0.04048400476531588, 0.04048400476531588], [0.2152638534631578, 0.2152638534631578, 0.2051984637212956, 0.2051984637212956, 0.18553839747793782, 0.18553839747793782, 0.15720316715819355, 0.15720316715819355, 0.12151857068790319, 0.12151857068790319, 0.08015808715976021, 0.08015808715976021, 0.03511946033175186, 0.03511946033175186], [0.2025782419255613, 0.19843148532711158, 0.19843148532711158, 0.1861610000155622, 0.1861610000155622, 0.16626920581699392, 0.16626920581699392, 0.13957067792615432, 0.13957067792615432, 0.10715922046717194, 0.10715922046717194, 0.07036604748810812, 0.07036604748810812, 0.03075324199611727, 0.03075324199611727], [0.1894506104550685, 0.1894506104550685, 0.18260341504492358, 0.18260341504492358, 0.16915651939500254, 0.16915651939500254, 0.14959598881657674, 0.14959598881657674, 0.12462897125553388, 0.12462897125553388, 0.09515851168249279, 0.09515851168249279, 0.062253523938647894, 0.062253523938647894, 0.027152459411754096, 0.027152459411754096], [0.17944647035620653, 0.17656270536699264, 0.17656270536699264, 0.16800410215645004, 0.16800410215645004, 0.15404576107681028, 0.15404576107681028, 0.13513636846852548, 0.13513636846852548, 0.11188384719340397, 0.11188384719340397, 0.08503614831717918, 0.08503614831717918, 0.0554595293739872, 0.0554595293739872, 0.02414830286854793, 0.02414830286854793], [0.1691423829631436, 0.1691423829631436, 0.16427648374583273, 0.16427648374583273, 0.15468467512626524, 0.15468467512626524, 0.14064291467065065, 0.14064291467065065, 0.12255520671147846, 0.12255520671147846, 0.10094204410628717, 0.10094204410628717, 0.07642573025488905, 0.07642573025488905, 0.0497145488949698, 0.0497145488949698, 0.02161601352648331, 0.02161601352648331], [0.1610544498487837, 0.15896884339395434, 0.15896884339395434, 0.15276604206585967, 0.15276604206585967, 0.1426067021736066, 0.1426067021736066, 0.12875396253933621, 0.12875396253933621, 0.11156664554733399, 0.11156664554733399, 0.09149002162245, 0.09149002162245, 0.06904454273764123, 0.06904454273764123, 0.0448142267656996, 0.0448142267656996, 0.019461788229726478, 0.019461788229726478], [0.15275338713072584, 0.15275338713072584, 0.14917298647260374, 0.14917298647260374, 0.14209610931838204, 0.14209610931838204, 0.13168863844917664, 0.13168863844917664, 0.11819453196151841, 0.11819453196151841, 0.10193011981724044, 0.10193011981724044, 0.08327674157670475, 0.08327674157670475, 0.06267204833410907, 0.06267204833410907, 0.04060142980038694, 0.04060142980038694, 0.017614007139152118, 0.017614007139152118], [0.14608113364969041, 0.14452440398997005, 0.14452440398997005, 0.13988739479107315, 0.13988739479107315, 0.13226893863333747, 0.13226893863333747, 0.12183141605372853, 0.12183141605372853, 0.10879729916714838, 0.10879729916714838, 0.09344442345603386, 0.09344442345603386, 0.0761001136283793, 0.0761001136283793, 0.057134425426857205, 0.057134425426857205, 0.036953789770852494, 0.036953789770852494, 0.016017228257774335, 0.016017228257774335], [0.13925187285563198, 0.13925187285563198, 0.13654149834601517, 0.13654149834601517, 0.13117350478706238, 0.13117350478706238, 0.12325237681051242, 0.12325237681051242, 0.11293229608053922, 0.11293229608053922, 0.10041414444288096, 0.10041414444288096, 0.08594160621706773, 0.08594160621706773, 0.06979646842452049, 0.06979646842452049, 0.052293335152683286, 0.052293335152683286, 0.03377490158481415, 0.03377490158481415, 0.0146279952982722, 0.0146279952982722], [0.13365457218610619, 0.1324620394046966, 0.1324620394046966, 0.12890572218808216, 0.12890572218808216, 0.12304908430672953, 0.12304908430672953, 0.11499664022241136, 0.11499664022241136, 0.10489209146454141, 0.10489209146454141, 0.09291576606003515, 0.09291576606003515, 0.07928141177671895, 0.07928141177671895, 0.06423242140852585, 0.06423242140852585, 0.04803767173108467, 0.04803767173108467, 0.030988005856979445, 0.030988005856979445, 0.013411859487141771, 0.013411859487141771], [0.12793819534675216, 0.12793819534675216, 0.1258374563468283, 0.1258374563468283, 0.12167047292780339, 0.12167047292780339, 0.1155056680537256, 0.1155056680537256, 0.10744427011596563, 0.10744427011596563, 0.09761865210411388, 0.09761865210411388, 0.08619016153195327, 0.08619016153195327, 0.0733464814110803, 0.0733464814110803, 0.05929858491543678, 0.05929858491543678, 0.04427743881741981, 0.04427743881741981, 0.028531388628933663, 0.028531388628933663, 0.0123412297999872, 0.0123412297999872]], wt.THREADS = 1, wt._init = !1, Lr.basePath = "", Wr.uuid = 0, ks.main();
13643
13643
  }(typeof console < "u" ? console : { log: function() {
13644
13644
  } }, e, typeof c < "u" ? c : typeof s < "u" ? s : typeof self < "u" ? self : this), e;
13645
13645
  });
@@ -13758,14 +13758,14 @@ class hd extends Es {
13758
13758
  const c = (h - (this._closed ? 0 : 1)) * t;
13759
13759
  let g = Math.floor(c), x = c - g;
13760
13760
  this._closed ? g += g > 0 ? 0 : (Math.floor(Math.abs(g) / h) + 1) * h : x === 0 && g === h - 1 && (g = h - 2, x = 1);
13761
- let f, P;
13761
+ let f, S;
13762
13762
  this._closed || g > 0 ? f = o[(g - 1) % h] : (this._tmp.subVectors(o[0], o[1]).add(o[0]), f = new $(this._tmp.x, this._tmp.y, this._tmp.z));
13763
13763
  const b = o[g % h], E = o[(g + 1) % h];
13764
- if (this._closed || g + 2 < h ? P = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), P = new $(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
13764
+ if (this._closed || g + 2 < h ? S = o[(g + 2) % h] : (this._tmp.subVectors(o[h - 1], o[h - 2]).add(o[h - 1]), S = new $(this._tmp.x, this._tmp.y, this._tmp.z)), this._curveType === "centripetal" || this._curveType === "chordal") {
13765
13765
  const M = this._curveType === "chordal" ? 0.5 : 0.25;
13766
- let z = Math.pow(f.distanceToSquared(b), M), R = Math.pow(b.distanceToSquared(E), M), U = Math.pow(E.distanceToSquared(P), M);
13767
- R < 1e-4 && (R = 1), z < 1e-4 && (z = R), U < 1e-4 && (U = R), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, P.x, z, R, U), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, P.y, z, R, U), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, P.z, z, R, U);
13768
- } else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, P.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, P.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, P.z, this._tension));
13766
+ let z = Math.pow(f.distanceToSquared(b), M), R = Math.pow(b.distanceToSquared(E), M), U = Math.pow(E.distanceToSquared(S), M);
13767
+ R < 1e-4 && (R = 1), z < 1e-4 && (z = R), U < 1e-4 && (U = R), this._px.initNonuniformCatmullRom(f.x, b.x, E.x, S.x, z, R, U), this._py.initNonuniformCatmullRom(f.y, b.y, E.y, S.y, z, R, U), this._pz.initNonuniformCatmullRom(f.z, b.z, E.z, S.z, z, R, U);
13768
+ } else this._curveType === "catmullrom" && (this._px.initCatmullRom(f.x, b.x, E.x, S.x, this._tension), this._py.initCatmullRom(f.y, b.y, E.y, S.y, this._tension), this._pz.initCatmullRom(f.z, b.z, E.z, S.z, this._tension));
13769
13769
  return s.set(
13770
13770
  this._px.calc(x),
13771
13771
  this._py.calc(x),
@@ -13973,11 +13973,11 @@ class un extends Es {
13973
13973
  let g, x = 3, f = !1;
13974
13974
  if (c >= 3 && (Array.isArray(s) ? (g = s, c >= 4 && (x = o || 3), c >= 5 && (f = h)) : s !== void 0 && (x = s || 3, c >= 4 && (f = o))), s === void 0 && c >= 4 && (x = o || 3, c >= 5 && (f = h)), this._degree = x, this._closed = f, this._controlPoints.length < this._degree + 1)
13975
13975
  throw Ge.ILLEGAL_PARAMETERS;
13976
- const P = this.toVerbPoints(this._controlPoints);
13976
+ const S = this.toVerbPoints(this._controlPoints);
13977
13977
  this._nurbsCurve = kn.geom.NurbsCurve.byKnotsControlPointsWeights(
13978
13978
  this._degree,
13979
13979
  e,
13980
- P,
13980
+ S,
13981
13981
  g
13982
13982
  );
13983
13983
  } else {
@@ -14086,7 +14086,7 @@ class un extends Es {
14086
14086
  getPoints(t = 100) {
14087
14087
  const e = this._nurbsCurve, s = [], o = e.knots(), h = this._nurbsCurve.degree(), c = o[h], g = o[o.length - h - 1], x = (g - c) / (t - 1);
14088
14088
  for (let f = 0; f < t; f++) {
14089
- const P = f === t - 1 ? g : c + f * x, b = e.point(P);
14089
+ const S = f === t - 1 ? g : c + f * x, b = e.point(S);
14090
14090
  s.push(new $(b[0], b[1], b[2]));
14091
14091
  }
14092
14092
  return s;
@@ -14188,7 +14188,7 @@ class cn {
14188
14188
  * ```
14189
14189
  */
14190
14190
  constructor(t, e) {
14191
- t = t || {}, Ss(t, { objectId: ud() }), this._attrs = new Bh(t, e);
14191
+ t = t || {}, Ps(t, { objectId: ud() }), this._attrs = new Bh(t, e);
14192
14192
  }
14193
14193
  /**
14194
14194
  * Gets the attributes object for this AcDbObject.
@@ -14964,7 +14964,7 @@ const _a = class _a extends rr {
14964
14964
  }
14965
14965
  };
14966
14966
  _a.typeName = "BlockReference";
14967
- let Xs = _a;
14967
+ let Ks = _a;
14968
14968
  const va = class va extends rr {
14969
14969
  };
14970
14970
  va.typeName = "Curve";
@@ -15969,7 +15969,7 @@ const Aa = class Aa extends We {
15969
15969
  };
15970
15970
  Aa.typeName = "Leader";
15971
15971
  let Fi = Aa;
15972
- const Pa = class Pa extends We {
15972
+ const Sa = class Sa extends We {
15973
15973
  /**
15974
15974
  * Creates a new line entity.
15975
15975
  *
@@ -16189,8 +16189,8 @@ const Pa = class Pa extends We {
16189
16189
  return t.lines(o, this.lineStyle);
16190
16190
  }
16191
16191
  };
16192
- Pa.typeName = "Line";
16193
- let Di = Pa;
16192
+ Sa.typeName = "Line";
16193
+ let Di = Sa;
16194
16194
  var oh = /* @__PURE__ */ ((i) => (i.ClosedFilled = "", i.Dot = "_DOT", i.DotSmall = "_DOTSMALL", i.DotBlank = "_DOTBLANK", i.Origin = "_ORIGIN", i.Origin2 = "_ORIGIN2", i.Open = "_OPEN", i.Open90 = "_OPEN90", i.Open30 = "_OPEN30", i.Closed = "_CLOSED", i.Small = "_SMALL", i.None = "_NONE", i.Oblique = "_OBLIQUE", i.BoxFilled = "_BOXFILLED", i.Box = "_BOXBLANK", i.ClosedBlank = "_CLOSEDBLANK", i.DatumBlank = "_DATUMBLANK", i.DatumFilled = "_DATUMFILLED", i.Integral = "_INTEGRAL", i.ArchTick = "_ARCHTICK", i))(oh || {}), da = /* @__PURE__ */ ((i) => (i[i.LEFT_TO_RIGHT = 1] = "LEFT_TO_RIGHT", i[i.RIGHT_TO_LEFT = 2] = "RIGHT_TO_LEFT", i[i.TOP_TO_BOTTOM = 3] = "TOP_TO_BOTTOM", i[i.BOTTOM_TO_TOP = 4] = "BOTTOM_TO_TOP", i[i.BY_STYLE = 5] = "BY_STYLE", i))(da || {}), As = /* @__PURE__ */ ((i) => (i[i.TopLeft = 1] = "TopLeft", i[i.TopCenter = 2] = "TopCenter", i[i.TopRight = 3] = "TopRight", i[i.MiddleLeft = 4] = "MiddleLeft", i[i.MiddleCenter = 5] = "MiddleCenter", i[i.MiddleRight = 6] = "MiddleRight", i[i.BottomLeft = 7] = "BottomLeft", i[i.BottomCenter = 8] = "BottomCenter", i[i.BottomRight = 9] = "BottomRight", i))(As || {}), lh = /* @__PURE__ */ ((i) => (i[i.OPTIMIZED_2D = 0] = "OPTIMIZED_2D", i[i.WIREFRAME = 1] = "WIREFRAME", i[i.HIDDEN_LINE = 2] = "HIDDEN_LINE", i[i.FLAT_SHADED = 3] = "FLAT_SHADED", i[i.GOURAUD_SHADED = 4] = "GOURAUD_SHADED", i[i.FLAT_SHADED_WITH_WIREFRAME = 5] = "FLAT_SHADED_WITH_WIREFRAME", i[i.GOURAUD_SHADED_WITH_WIREFRAME = 6] = "GOURAUD_SHADED_WITH_WIREFRAME", i))(lh || {}), hh = /* @__PURE__ */ ((i) => (i[i.NON_ORTHOGRAPHIC = 0] = "NON_ORTHOGRAPHIC", i[i.TOP = 1] = "TOP", i[i.BOTTOM = 2] = "BOTTOM", i[i.FRONT = 3] = "FRONT", i[i.BACK = 4] = "BACK", i[i.LEFT = 5] = "LEFT", i[i.RIGHT = 6] = "RIGHT", i))(hh || {}), uh = /* @__PURE__ */ ((i) => (i[i.ONE_DISTANT_LIGHT = 0] = "ONE_DISTANT_LIGHT", i[i.TWO_DISTANT_LIGHTS = 1] = "TWO_DISTANT_LIGHTS", i))(uh || {});
16195
16195
  class ma {
16196
16196
  constructor() {
@@ -16314,7 +16314,7 @@ class ma {
16314
16314
  return this.id = t.id, this.groupId = t.groupId, this.number = t.number, this.centerPoint.copy(t.centerPoint), this.height = t.height, this.width = t.width, this.viewCenter.copy(t.viewCenter), this.viewHeight = t.viewHeight, this;
16315
16315
  }
16316
16316
  }
16317
- const Sa = class Sa extends rr {
16317
+ const Pa = class Pa extends rr {
16318
16318
  /**
16319
16319
  * Creates a new multiline text entity.
16320
16320
  *
@@ -16585,8 +16585,8 @@ const Sa = class Sa extends rr {
16585
16585
  return t.mtext(s, o, e);
16586
16586
  }
16587
16587
  };
16588
- Sa.typeName = "MText";
16589
- let Ui = Sa;
16588
+ Pa.typeName = "MText";
16589
+ let Ui = Pa;
16590
16590
  const Ia = class Ia extends We {
16591
16591
  constructor(t, e, s, o, h) {
16592
16592
  super();
@@ -16670,7 +16670,7 @@ const Ia = class Ia extends We {
16670
16670
  };
16671
16671
  Ia.typeName = "Spline";
16672
16672
  let $s = Ia;
16673
- const pd = /* @__PURE__ */ new Z(), Ea = class Ea extends Xs {
16673
+ const pd = /* @__PURE__ */ new Z(), Ea = class Ea extends Ks {
16674
16674
  /**
16675
16675
  * Creates a new table entity.
16676
16676
  *
@@ -16913,8 +16913,8 @@ const pd = /* @__PURE__ */ new Z(), Ea = class Ea extends Xs {
16913
16913
  }
16914
16914
  }
16915
16915
  g.push(t.lineSegments(h, 3, o, this.lineStyle));
16916
- const P = t.group(g), b = new ln();
16917
- return b.setFromAxisAngle(Z.Z_AXIS, this.rotation), bo.compose(this.position, b, this.scaleFactors), P.applyMatrix(bo), this.attachEntityInfo(P), P;
16916
+ const S = t.group(g), b = new ln();
16917
+ return b.setFromAxisAngle(Z.Z_AXIS, this.rotation), bo.compose(this.position, b, this.scaleFactors), S.applyMatrix(bo), this.attachEntityInfo(S), S;
16918
16918
  }
16919
16919
  /**
16920
16920
  * Marks cells as visited to handle merged cell rendering.
@@ -18559,7 +18559,7 @@ const za = class za extends Zs {
18559
18559
  }
18560
18560
  };
18561
18561
  za.typeName = "Wipeout";
18562
- let Ki = za;
18562
+ let Xi = za;
18563
18563
  const Ra = class Ra extends We {
18564
18564
  /**
18565
18565
  * Creates a new xline entity.
@@ -18712,7 +18712,7 @@ const Ra = class Ra extends We {
18712
18712
  }
18713
18713
  };
18714
18714
  Ra.typeName = "Xline";
18715
- let Xi = Ra;
18715
+ let Ki = Ra;
18716
18716
  var yd = /* @__PURE__ */ ((i) => (i[i.AtLeast = 1] = "AtLeast", i[i.Exactly = 2] = "Exactly", i))(yd || {});
18717
18717
  const Ba = class Ba extends rr {
18718
18718
  /**
@@ -18804,7 +18804,7 @@ const Ba = class Ba extends rr {
18804
18804
  let t;
18805
18805
  this.dimensionStyleName && (t = this.database.tables.dimStyleTable.getAt(
18806
18806
  this.dimensionStyleName
18807
- )), t == null && (t = new Ps()), this._dimStyle = t;
18807
+ )), t == null && (t = new Ss()), this._dimStyle = t;
18808
18808
  }
18809
18809
  return this._dimStyle;
18810
18810
  }
@@ -19905,7 +19905,7 @@ const Ga = class Ga extends jr {
19905
19905
  };
19906
19906
  Ga.typeName = "RadialDimension";
19907
19907
  let ta = Ga;
19908
- class Po {
19908
+ class So {
19909
19909
  /**
19910
19910
  * Converts a DXF entity to an AcDbEntity.
19911
19911
  *
@@ -19999,7 +19999,7 @@ class Po {
19999
19999
  const e = new Z(t.majorAxisEndPoint), s = e.length();
20000
20000
  return new Oi(
20001
20001
  t.center,
20002
- Z.Z_AXIS,
20002
+ t.extrusionDirection ?? Z.Z_AXIS,
20003
20003
  e,
20004
20004
  s,
20005
20005
  s * t.axisRatio,
@@ -20071,8 +20071,8 @@ class Po {
20071
20071
  }), e.hatchStyle = t.hatchStyle, e.patternName = t.patternName, e.patternType = t.patternType, e.patternAngle = t.patternAngle == null ? 0 : t.patternAngle, e.patternScale = t.patternScale == null ? 0 : t.patternScale, t.boundaryPaths.forEach((h) => {
20072
20072
  if (h.boundaryPathTypeFlag & 2) {
20073
20073
  const g = h, x = new ri();
20074
- x.closed = g.isClosed, g.vertices.forEach((f, P) => {
20075
- x.addVertexAt(P, {
20074
+ x.closed = g.isClosed, g.vertices.forEach((f, S) => {
20075
+ x.addVertexAt(S, {
20076
20076
  x: f.x,
20077
20077
  y: f.y,
20078
20078
  bulge: f.bulge
@@ -20082,42 +20082,42 @@ class Po {
20082
20082
  const g = h, x = new ad();
20083
20083
  g.edges.forEach((f) => {
20084
20084
  if (f.type == 1) {
20085
- const P = f;
20086
- x.add(new ca(P.start, P.end));
20085
+ const S = f;
20086
+ x.add(new ca(S.start, S.end));
20087
20087
  } else if (f.type == 2) {
20088
- const P = f;
20088
+ const S = f;
20089
20089
  x.add(
20090
20090
  new ws(
20091
- P.center,
20092
- P.radius,
20093
- kt.degToRad(P.startAngle || 0),
20094
- kt.degToRad(P.endAngle || 0),
20095
- !P.isCCW
20091
+ S.center,
20092
+ S.radius,
20093
+ kt.degToRad(S.startAngle || 0),
20094
+ kt.degToRad(S.endAngle || 0),
20095
+ !S.isCCW
20096
20096
  )
20097
20097
  );
20098
20098
  } else if (f.type == 3) {
20099
- const P = f;
20100
- new Zt().subVectors(P.end, P.center);
20099
+ const S = f;
20100
+ new Zt().subVectors(S.end, S.center);
20101
20101
  const E = Math.sqrt(
20102
- Math.pow(P.end.x, 2) + Math.pow(P.end.y, 2)
20103
- ), M = E * P.lengthOfMinorAxis;
20104
- let z = kt.degToRad(P.startAngle || 0), R = kt.degToRad(P.endAngle || 0);
20105
- const U = Math.atan2(P.end.y, P.end.x);
20106
- P.isCCW || (z = Math.PI * 2 - z, R = Math.PI * 2 - R), x.add(
20102
+ Math.pow(S.end.x, 2) + Math.pow(S.end.y, 2)
20103
+ ), M = E * S.lengthOfMinorAxis;
20104
+ let z = kt.degToRad(S.startAngle || 0), R = kt.degToRad(S.endAngle || 0);
20105
+ const U = Math.atan2(S.end.y, S.end.x);
20106
+ S.isCCW || (z = Math.PI * 2 - z, R = Math.PI * 2 - R), x.add(
20107
20107
  new ha(
20108
- { ...P.center, z: 0 },
20108
+ { ...S.center, z: 0 },
20109
20109
  E,
20110
20110
  M,
20111
20111
  z,
20112
20112
  R,
20113
- !P.isCCW,
20113
+ !S.isCCW,
20114
20114
  U
20115
20115
  )
20116
20116
  );
20117
20117
  } else if (f.type == 4) {
20118
- const P = f;
20119
- if (P.numberOfControlPoints > 0 && P.numberOfKnots > 0) {
20120
- const b = P.controlPoints.map(
20118
+ const S = f;
20119
+ if (S.numberOfControlPoints > 0 && S.numberOfKnots > 0) {
20120
+ const b = S.controlPoints.map(
20121
20121
  (z) => ({
20122
20122
  x: z.x,
20123
20123
  y: z.y,
@@ -20125,16 +20125,16 @@ class Po {
20125
20125
  })
20126
20126
  );
20127
20127
  let E = !0;
20128
- const M = P.controlPoints.map((z) => (z.weight == null && (E = !1), z.weight || 1));
20128
+ const M = S.controlPoints.map((z) => (z.weight == null && (E = !1), z.weight || 1));
20129
20129
  x.add(
20130
20130
  new un(
20131
20131
  b,
20132
- P.knots,
20132
+ S.knots,
20133
20133
  E ? M : void 0
20134
20134
  )
20135
20135
  );
20136
- } else if (P.numberOfFitData > 0) {
20137
- const b = P.fitDatum.map((E) => ({
20136
+ } else if (S.numberOfFitData > 0) {
20137
+ const b = S.fitDatum.map((E) => ({
20138
20138
  x: E.x,
20139
20139
  y: E.y,
20140
20140
  z: 0
@@ -20236,7 +20236,7 @@ class Po {
20236
20236
  ) * t.imageSize.y, e.rotation = Math.atan2(t.uDirection.y, t.uDirection.x);
20237
20237
  }
20238
20238
  convertWipeout(t) {
20239
- const e = new Ki();
20239
+ const e = new Xi();
20240
20240
  return this.processWipeout(t, e), e;
20241
20241
  }
20242
20242
  convertViewport(t) {
@@ -20248,11 +20248,11 @@ class Po {
20248
20248
  return e.basePoint.copy(t.position), e.unitDir.copy(t.direction), e;
20249
20249
  }
20250
20250
  convertXline(t) {
20251
- const e = new Xi();
20251
+ const e = new Ki();
20252
20252
  return e.basePoint.copy(t.position), e.unitDir.copy(t.direction), e;
20253
20253
  }
20254
20254
  convertBlockReference(t) {
20255
- const e = new Xs(t.name);
20255
+ const e = new Ks(t.name);
20256
20256
  return t.insertionPoint && e.position.copy(t.insertionPoint), e.scaleFactors.x = t.xScale || 1, e.scaleFactors.y = t.yScale || 1, e.scaleFactors.z = t.zScale || 1, e.rotation = t.rotation != null ? kt.degToRad(t.rotation) : 0, e.normal.copy(
20257
20257
  t.extrusionDirection ?? { x: 0, y: 0, z: 1 }
20258
20258
  ), e;
@@ -20879,10 +20879,10 @@ class Ad {
20879
20879
  error: R,
20880
20880
  duration: U
20881
20881
  });
20882
- }, P = (b) => {
20882
+ }, S = (b) => {
20883
20883
  this.cleanupTask(t), c(new Error(`Worker error: ${b.message}`));
20884
20884
  };
20885
- g.addEventListener("message", f), g.addEventListener("error", P), g.postMessage({
20885
+ g.addEventListener("message", f), g.addEventListener("error", S), g.postMessage({
20886
20886
  id: t,
20887
20887
  input: e
20888
20888
  });
@@ -20967,7 +20967,7 @@ class Ad {
20967
20967
  this.workers.clear();
20968
20968
  }
20969
20969
  }
20970
- class Pd {
20970
+ class Sd {
20971
20971
  constructor(t) {
20972
20972
  this.framework = new Ad(t);
20973
20973
  }
@@ -20990,8 +20990,8 @@ class Pd {
20990
20990
  this.framework.destroy();
20991
20991
  }
20992
20992
  }
20993
- function Sd(i) {
20994
- return new Pd(i);
20993
+ function Pd(i) {
20994
+ return new Sd(i);
20995
20995
  }
20996
20996
  class n0 {
20997
20997
  constructor() {
@@ -21042,7 +21042,7 @@ class Id extends kc {
21042
21042
  */
21043
21043
  async parse(t) {
21044
21044
  if (this.config.useWorker && this.config.parserWorkerUrl) {
21045
- const e = Sd({
21045
+ const e = Pd({
21046
21046
  workerUrl: this.config.parserWorkerUrl,
21047
21047
  // One concurrent worker needed for parser
21048
21048
  maxConcurrentWorkers: 1
@@ -21055,7 +21055,7 @@ class Id extends kc {
21055
21055
  };
21056
21056
  } else
21057
21057
  return {
21058
- model: new Sc().parseSync(t),
21058
+ model: new Pc().parseSync(t),
21059
21059
  data: {
21060
21060
  unknownEntityCount: 0
21061
21061
  }
@@ -21114,11 +21114,11 @@ class Id extends kc {
21114
21114
  t.forEach((c) => {
21115
21115
  if (c.type == "MTEXT") {
21116
21116
  const g = c;
21117
- [...g.text.matchAll(h)].forEach((P) => {
21118
- o.add(P[1].toLowerCase());
21117
+ [...g.text.matchAll(h)].forEach((S) => {
21118
+ o.add(S[1].toLowerCase());
21119
21119
  });
21120
21120
  const f = s.get(g.styleName);
21121
- f == null || f.forEach((P) => o.add(P));
21121
+ f == null || f.forEach((S) => o.add(S));
21122
21122
  } else if (c.type == "TEXT") {
21123
21123
  const g = c, x = s.get(g.styleName);
21124
21124
  x == null || x.forEach((f) => o.add(f));
@@ -21148,7 +21148,7 @@ class Id extends kc {
21148
21148
  * ```
21149
21149
  */
21150
21150
  async processEntities(t, e, s, o, h) {
21151
- const c = new Po();
21151
+ const c = new So();
21152
21152
  let g = t.entities;
21153
21153
  const x = g.length, f = new jh(
21154
21154
  x,
@@ -21156,14 +21156,14 @@ class Id extends kc {
21156
21156
  s
21157
21157
  );
21158
21158
  this.config.convertByEntityType && (g = this.groupAndFlattenByType(g));
21159
- const P = e.tables.blockTable.modelSpace;
21159
+ const S = e.tables.blockTable.modelSpace;
21160
21160
  await f.processChunk(async (b, E) => {
21161
21161
  let M = [], z = b < E ? g[b].type : "";
21162
21162
  for (let R = b; R < E; R++) {
21163
21163
  const U = g[R], F = c.convert(U);
21164
- F && (this.config.convertByEntityType && U.type !== z && (P.appendEntity(M), M = [], z = U.type), M.push(F));
21164
+ F && (this.config.convertByEntityType && U.type !== z && (S.appendEntity(M), M = [], z = U.type), M.push(F));
21165
21165
  }
21166
- if (P.appendEntity(M), h) {
21166
+ if (S.appendEntity(M), h) {
21167
21167
  let R = o.value + E / x * (100 - o.value);
21168
21168
  R > 100 && (R = 100), await h(R, "ENTITY", "IN-PROGRESS");
21169
21169
  }
@@ -21184,7 +21184,7 @@ class Id extends kc {
21184
21184
  * ```
21185
21185
  */
21186
21186
  async processEntitiesInBlock(t, e) {
21187
- const s = new Po(), o = t.length, h = [];
21187
+ const s = new So(), o = t.length, h = [];
21188
21188
  for (let c = 0; c < o; c++) {
21189
21189
  const g = t[c], x = s.convert(g);
21190
21190
  x && h.push(x);
@@ -21228,7 +21228,7 @@ class Id extends kc {
21228
21228
  */
21229
21229
  processHeader(t, e) {
21230
21230
  const s = t.header;
21231
- e.cecolor.colorIndex = s.$CECOLOR || 256, e.angBase = s.$ANGBASE || 0, e.angDir = s.$ANGDIR || 0, e.aunits = s.$AUNITS, e.extmax = s.$EXTMAX, e.extmin = s.$EXTMIN, e.insunits = s.$INSUNITS, e.pdmode = s.$PDMODE || 0, e.pdsize = s.$PDSIZE || 0;
21231
+ e.cecolor.colorIndex = s.$CECOLOR || 256, e.angBase = s.$ANGBASE || 0, e.angDir = s.$ANGDIR || 0, s.$AUNITS != null && (e.aunits = s.$AUNITS), s.$EXTMAX && (e.extmax = s.$EXTMAX), s.$EXTMIN && (e.extmin = s.$EXTMIN), s.$INSUNITS != null && (e.insunits = s.$INSUNITS), e.pdmode = s.$PDMODE || 0, e.pdsize = s.$PDSIZE || 0;
21232
21232
  }
21233
21233
  /**
21234
21234
  * Processes block table records from the DXF file.
@@ -21476,7 +21476,7 @@ class Id extends kc {
21476
21476
  dimblk2: h.DIMBLK2 || "",
21477
21477
  dimlwd: h.DIMLWD,
21478
21478
  dimlwe: h.DIMLWE
21479
- }, g = new Ps(c);
21479
+ }, g = new Ss(c);
21480
21480
  this.processCommonTableEntryAttrs(h, g), e.tables.dimStyleTable.add(g);
21481
21481
  });
21482
21482
  }
@@ -21640,7 +21640,7 @@ class On extends cn {
21640
21640
  * ```
21641
21641
  */
21642
21642
  constructor(t, e) {
21643
- t = t || {}, Ss(t, { name: "" }), super(t, e);
21643
+ t = t || {}, Ps(t, { name: "" }), super(t, e);
21644
21644
  }
21645
21645
  /**
21646
21646
  * Gets or sets the name of the symbol table record.
@@ -22129,7 +22129,7 @@ class ga extends On {
22129
22129
  * ```
22130
22130
  */
22131
22131
  constructor(t, e) {
22132
- t = t || {}, Ss(t, {
22132
+ t = t || {}, Ps(t, {
22133
22133
  color: new on(),
22134
22134
  description: "",
22135
22135
  standardFlags: 0,
@@ -22819,7 +22819,7 @@ class dh extends On {
22819
22819
  var Ld = /* @__PURE__ */ ((i) => (i[i.Center = 0] = "Center", i[i.Left = 1] = "Left", i[i.Right = 2] = "Right", i[i.OverFirst = 3] = "OverFirst", i[i.OverSecond = 4] = "OverSecond", i))(Ld || {}), Od = /* @__PURE__ */ ((i) => (i[i.Center = 0] = "Center", i[i.Above = 1] = "Above", i[i.Outside = 2] = "Outside", i[i.JIS = 3] = "JIS", i[i.Below = 4] = "Below", i))(Od || {}), zd = /* @__PURE__ */ ((i) => (i[i.Feet = 0] = "Feet", i[i.None = 1] = "None", i[i.Inch = 2] = "Inch", i[i.FeetAndInch = 3] = "FeetAndInch", i[i.Leading = 4] = "Leading", i[i.Trailing = 8] = "Trailing", i[i.LeadingAndTrailing = 12] = "LeadingAndTrailing", i))(zd || {}), Rd = /* @__PURE__ */ ((i) => (i[i.None = 0] = "None", i[i.Leading = 1] = "Leading", i[i.Trailing = 2] = "Trailing", i[i.LeadingAndTrailing = 3] = "LeadingAndTrailing", i))(Rd || {}), Bd = /* @__PURE__ */ ((i) => (i[i.Bottom = 0] = "Bottom", i[i.Middle = 1] = "Middle", i[i.Top = 2] = "Top", i))(Bd || {});
22820
22820
  const Qs = class Qs extends On {
22821
22821
  constructor(t, e) {
22822
- t = t || {}, Ss(t, Qs.DEFAULT_DIM_VALUES), super(t, e);
22822
+ t = t || {}, Ps(t, Qs.DEFAULT_DIM_VALUES), super(t, e);
22823
22823
  }
22824
22824
  /**
22825
22825
  * Dimension postfix. This property specifies a text prefix or suffix (or both) to the dimension
@@ -23735,7 +23735,7 @@ Qs.DEFAULT_DIM_VALUES = {
23735
23735
  dimlwd: -2,
23736
23736
  dimlwe: -2
23737
23737
  };
23738
- let Ps = Qs;
23738
+ let Ss = Qs;
23739
23739
  class s0 extends cn {
23740
23740
  /**
23741
23741
  * Creates a new AcDbDatabase instance.
@@ -23981,7 +23981,7 @@ class s0 extends cn {
23981
23981
  return this._extents.max;
23982
23982
  }
23983
23983
  set extmax(t) {
23984
- this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmax");
23984
+ t && (this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmax"));
23985
23985
  }
23986
23986
  /**
23987
23987
  * The current Model Space EXTMIN value
@@ -23990,7 +23990,13 @@ class s0 extends cn {
23990
23990
  return this._extents.min;
23991
23991
  }
23992
23992
  set extmin(t) {
23993
- this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmin");
23993
+ t && (this._extents.expandByPoint(t), this.triggerHeaderSysVarChangedEvent("extmin"));
23994
+ }
23995
+ /**
23996
+ * The extents of current Model Space
23997
+ */
23998
+ get extents() {
23999
+ return this._extents;
23994
24000
  }
23995
24001
  /**
23996
24002
  * Point display mode. Please get more details on value of this property from [this page](https://help.autodesk.com/view/ACDLT/2022/ENU/?guid=GUID-82F9BB52-D026-4D6A-ABA6-BF29641F459B).
@@ -24109,9 +24115,9 @@ class s0 extends cn {
24109
24115
  }
24110
24116
  }
24111
24117
  const f = new Uint8Array(c);
24112
- let P = 0;
24118
+ let S = 0;
24113
24119
  for (const M of x)
24114
- f.set(M, P), P += M.length;
24120
+ f.set(M, S), S += M.length;
24115
24121
  if (t.toLowerCase().split(".").pop() === "dwg")
24116
24122
  await this.read(f.buffer, e, qs.DWG);
24117
24123
  else {
@@ -24127,20 +24133,30 @@ class s0 extends cn {
24127
24133
  }
24128
24134
  /**
24129
24135
  * Create default layer, line type, dimension type, text style and layout.
24130
- */
24131
- createDefaultData() {
24132
- const t = new on();
24133
- t.colorIndex = 7, this._tables.layerTable.add(
24134
- new ga({
24135
- name: "0",
24136
- standardFlags: 0,
24137
- linetype: "Continuous",
24138
- lineWeight: 0,
24139
- isOff: !1,
24140
- color: t,
24141
- isPlottable: !0
24142
- })
24143
- ), this._tables.linetypeTable.add(
24136
+ * @param - Options to specify data to create
24137
+ */
24138
+ createDefaultData(t = {
24139
+ layer: !0,
24140
+ lineType: !0,
24141
+ textStyle: !0,
24142
+ dimStyle: !0,
24143
+ layout: !0
24144
+ }) {
24145
+ if (t.layer) {
24146
+ const e = new on();
24147
+ e.colorIndex = 7, this._tables.layerTable.add(
24148
+ new ga({
24149
+ name: "0",
24150
+ standardFlags: 0,
24151
+ linetype: "Continuous",
24152
+ lineWeight: 0,
24153
+ isOff: !1,
24154
+ color: e,
24155
+ isPlottable: !0
24156
+ })
24157
+ );
24158
+ }
24159
+ if (t.lineType && (this._tables.linetypeTable.add(
24144
24160
  new Ys({
24145
24161
  name: "ByBlock",
24146
24162
  standardFlag: 0,
@@ -24161,7 +24177,7 @@ class s0 extends cn {
24161
24177
  description: "Solid line",
24162
24178
  totalPatternLength: 0
24163
24179
  })
24164
- ), this._tables.textStyleTable.add(
24180
+ )), t.textStyle && this._tables.textStyleTable.add(
24165
24181
  new dh({
24166
24182
  name: "Standard",
24167
24183
  standardFlag: 0,
@@ -24174,14 +24190,15 @@ class s0 extends cn {
24174
24190
  bigFont: "",
24175
24191
  extendedFont: "SimKai"
24176
24192
  })
24177
- ), this._tables.dimStyleTable.add(
24178
- new Ps({
24193
+ ), t.dimStyle && this._tables.dimStyleTable.add(
24194
+ new Ss({
24179
24195
  name: "Standard",
24180
24196
  dimtxsty: "Standard"
24181
24197
  })
24182
- );
24183
- const e = new pa();
24184
- e.layoutName = "Model", e.tabOrder = 0, e.blockTableRecordId = this._tables.blockTable.modelSpace.objectId, e.limits.min.copy({ x: 0, y: 0 }), e.limits.max.copy({ x: 1e6, y: 1e6 }), e.extents.min.copy({ x: 0, y: 0, z: 0 }), e.extents.max.copy({ x: 1e6, y: 1e6, z: 0 }), this._dictionaries.layouts.setAt(e.layoutName, e), this._tables.blockTable.modelSpace.layoutId = e.objectId;
24198
+ ), t.layout) {
24199
+ const e = new pa();
24200
+ e.layoutName = "Model", e.tabOrder = 0, e.blockTableRecordId = this._tables.blockTable.modelSpace.objectId, e.limits.min.copy({ x: 0, y: 0 }), e.limits.max.copy({ x: 1e6, y: 1e6 }), e.extents.min.copy({ x: 0, y: 0, z: 0 }), e.extents.max.copy({ x: 1e6, y: 1e6, z: 0 }), this._dictionaries.layouts.setAt(e.layoutName, e), this._tables.blockTable.modelSpace.layoutId = e.objectId;
24201
+ }
24185
24202
  }
24186
24203
  /**
24187
24204
  * Clears all data from the database.
@@ -24700,7 +24717,7 @@ export {
24700
24717
  Ge as AcCmErrors,
24701
24718
  Vd as AcCmEventDispatcher,
24702
24719
  ce as AcCmEventManager,
24703
- Kd as AcCmLoader,
24720
+ Xd as AcCmLoader,
24704
24721
  Uh as AcCmLoadingManager,
24705
24722
  Bh as AcCmObject,
24706
24723
  To as AcCmPerformanceCollector,
@@ -24713,7 +24730,7 @@ export {
24713
24730
  Ao as AcDbArcDimension,
24714
24731
  n0 as AcDbBaseWorker,
24715
24732
  jh as AcDbBatchProcessing,
24716
- Xs as AcDbBlockReference,
24733
+ Ks as AcDbBlockReference,
24717
24734
  Ed as AcDbBlockTable,
24718
24735
  je as AcDbBlockTableRecord,
24719
24736
  Ri as AcDbCircle,
@@ -24725,7 +24742,7 @@ export {
24725
24742
  ch as AcDbDictionary,
24726
24743
  Ec as AcDbDimArrowType,
24727
24744
  kd as AcDbDimStyleTable,
24728
- Ps as AcDbDimStyleTableRecord,
24745
+ Ss as AcDbDimStyleTableRecord,
24729
24746
  Ld as AcDbDimTextHorizontal,
24730
24747
  Od as AcDbDimTextVertical,
24731
24748
  Bd as AcDbDimVerticalJustification,
@@ -24779,10 +24796,10 @@ export {
24779
24796
  Yi as AcDbViewport,
24780
24797
  Cd as AcDbViewportTable,
24781
24798
  Dd as AcDbViewportTableRecord,
24782
- Ki as AcDbWipeout,
24783
- Pd as AcDbWorkerApi,
24799
+ Xi as AcDbWipeout,
24800
+ Sd as AcDbWorkerApi,
24784
24801
  Ad as AcDbWorkerManager,
24785
- Xi as AcDbXline,
24802
+ Ki as AcDbXline,
24786
24803
  la as AcGeArea2d,
24787
24804
  be as AcGeBox2d,
24788
24805
  Ft as AcGeBox3d,
@@ -24793,7 +24810,7 @@ export {
24793
24810
  ha as AcGeEllipseArc2d,
24794
24811
  ua as AcGeEllipseArc3d,
24795
24812
  sd as AcGeEuler,
24796
- Xc as AcGeGeometryUtil,
24813
+ Kc as AcGeGeometryUtil,
24797
24814
  ca as AcGeLine2d,
24798
24815
  hn as AcGeLine3d,
24799
24816
  ad as AcGeLoop2d,
@@ -24837,9 +24854,9 @@ export {
24837
24854
  Gc as ceilPowerOfTwo,
24838
24855
  Ur as clamp,
24839
24856
  Ns as clone,
24840
- Sd as createWorkerApi,
24857
+ Pd as createWorkerApi,
24841
24858
  Cc as damp,
24842
- Ss as defaults,
24859
+ Ps as defaults,
24843
24860
  Uc as degToRad,
24844
24861
  Hl as euclideanModulo,
24845
24862
  Hs as evaluateNurbsPoint,
@@ -24859,7 +24876,7 @@ export {
24859
24876
  t0 as isImperialUnits,
24860
24877
  Jd as isMetricUnits,
24861
24878
  Jl as isPointInPolygon,
24862
- Kc as isPolygonIntersect,
24879
+ Xc as isPolygonIntersect,
24863
24880
  jc as isPowerOfTwo,
24864
24881
  ql as lerp,
24865
24882
  Fs as log,