@midscene/core 0.30.5 → 1.0.1-beta-20251021060907.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/es/agent/agent.mjs +41 -33
- package/dist/es/agent/agent.mjs.map +1 -1
- package/dist/es/agent/execution-session.mjs +41 -0
- package/dist/es/agent/execution-session.mjs.map +1 -0
- package/dist/es/agent/task-builder.mjs +303 -0
- package/dist/es/agent/task-builder.mjs.map +1 -0
- package/dist/es/agent/tasks.mjs +68 -391
- package/dist/es/agent/tasks.mjs.map +1 -1
- package/dist/es/agent/ui-utils.mjs.map +1 -1
- package/dist/es/agent/utils.mjs +6 -6
- package/dist/es/agent/utils.mjs.map +1 -1
- package/dist/es/ai-model/common.mjs +1 -15
- package/dist/es/ai-model/common.mjs.map +1 -1
- package/dist/es/ai-model/inspect.mjs +2 -3
- package/dist/es/ai-model/inspect.mjs.map +1 -1
- package/dist/es/ai-model/llm-planning.mjs +6 -24
- package/dist/es/ai-model/llm-planning.mjs.map +1 -1
- package/dist/es/ai-model/prompt/llm-locator.mjs +3 -204
- package/dist/es/ai-model/prompt/llm-locator.mjs.map +1 -1
- package/dist/es/ai-model/service-caller/index.mjs +101 -231
- package/dist/es/ai-model/service-caller/index.mjs.map +1 -1
- package/dist/es/index.mjs +3 -2
- package/dist/es/index.mjs.map +1 -1
- package/dist/es/insight/index.mjs +18 -19
- package/dist/es/insight/index.mjs.map +1 -1
- package/dist/es/insight/utils.mjs +3 -3
- package/dist/es/insight/utils.mjs.map +1 -1
- package/dist/es/report.mjs.map +1 -1
- package/dist/es/{ai-model/action-executor.mjs → task-runner.mjs} +69 -10
- package/dist/es/task-runner.mjs.map +1 -0
- package/dist/es/types.mjs +18 -1
- package/dist/es/types.mjs.map +1 -1
- package/dist/es/utils.mjs +2 -2
- package/dist/es/yaml/player.mjs +18 -14
- package/dist/es/yaml/player.mjs.map +1 -1
- package/dist/lib/agent/agent.js +41 -33
- package/dist/lib/agent/agent.js.map +1 -1
- package/dist/lib/agent/execution-session.js +75 -0
- package/dist/lib/agent/execution-session.js.map +1 -0
- package/dist/lib/agent/task-builder.js +340 -0
- package/dist/lib/agent/task-builder.js.map +1 -0
- package/dist/lib/agent/tasks.js +68 -391
- package/dist/lib/agent/tasks.js.map +1 -1
- package/dist/lib/agent/ui-utils.js.map +1 -1
- package/dist/lib/agent/utils.js +6 -6
- package/dist/lib/agent/utils.js.map +1 -1
- package/dist/lib/ai-model/common.js +2 -19
- package/dist/lib/ai-model/common.js.map +1 -1
- package/dist/lib/ai-model/inspect.js +1 -2
- package/dist/lib/ai-model/inspect.js.map +1 -1
- package/dist/lib/ai-model/llm-planning.js +5 -23
- package/dist/lib/ai-model/llm-planning.js.map +1 -1
- package/dist/lib/ai-model/prompt/llm-locator.js +2 -206
- package/dist/lib/ai-model/prompt/llm-locator.js.map +1 -1
- package/dist/lib/ai-model/service-caller/index.js +236 -384
- package/dist/lib/ai-model/service-caller/index.js.map +1 -1
- package/dist/lib/index.js +9 -5
- package/dist/lib/index.js.map +1 -1
- package/dist/lib/insight/index.js +17 -18
- package/dist/lib/insight/index.js.map +1 -1
- package/dist/lib/insight/utils.js +5 -5
- package/dist/lib/insight/utils.js.map +1 -1
- package/dist/lib/report.js.map +1 -1
- package/dist/lib/{ai-model/action-executor.js → task-runner.js} +71 -12
- package/dist/lib/task-runner.js.map +1 -0
- package/dist/lib/types.js +22 -1
- package/dist/lib/types.js.map +1 -1
- package/dist/lib/utils.js +2 -2
- package/dist/lib/yaml/player.js +18 -14
- package/dist/lib/yaml/player.js.map +1 -1
- package/dist/types/agent/agent.d.ts +16 -0
- package/dist/types/agent/execution-session.d.ts +27 -0
- package/dist/types/agent/task-builder.d.ts +24 -0
- package/dist/types/agent/tasks.d.ts +8 -11
- package/dist/types/agent/ui-utils.d.ts +2 -2
- package/dist/types/agent/utils.d.ts +5 -2
- package/dist/types/ai-model/common.d.ts +0 -1
- package/dist/types/ai-model/prompt/llm-locator.d.ts +0 -2
- package/dist/types/index.d.ts +4 -3
- package/dist/types/insight/index.d.ts +5 -10
- package/dist/types/insight/utils.d.ts +2 -2
- package/dist/types/{ai-model/action-executor.d.ts → task-runner.d.ts} +14 -3
- package/dist/types/types.d.ts +47 -4
- package/dist/types/yaml.d.ts +3 -1
- package/package.json +4 -7
- package/dist/es/ai-model/action-executor.mjs.map +0 -1
- package/dist/lib/ai-model/action-executor.js.map +0 -1
|
@@ -1,21 +1,5 @@
|
|
|
1
1
|
"use strict";
|
|
2
|
-
var
|
|
3
|
-
"langsmith/wrappers": function(module) {
|
|
4
|
-
module.exports = import("langsmith/wrappers").then(function(module) {
|
|
5
|
-
return module;
|
|
6
|
-
});
|
|
7
|
-
}
|
|
8
|
-
};
|
|
9
|
-
var __webpack_module_cache__ = {};
|
|
10
|
-
function __webpack_require__(moduleId) {
|
|
11
|
-
var cachedModule = __webpack_module_cache__[moduleId];
|
|
12
|
-
if (void 0 !== cachedModule) return cachedModule.exports;
|
|
13
|
-
var module = __webpack_module_cache__[moduleId] = {
|
|
14
|
-
exports: {}
|
|
15
|
-
};
|
|
16
|
-
__webpack_modules__[moduleId](module, module.exports, __webpack_require__);
|
|
17
|
-
return module.exports;
|
|
18
|
-
}
|
|
2
|
+
var __webpack_require__ = {};
|
|
19
3
|
(()=>{
|
|
20
4
|
__webpack_require__.n = (module)=>{
|
|
21
5
|
var getter = module && module.__esModule ? ()=>module['default'] : ()=>module;
|
|
@@ -47,36 +31,43 @@ function __webpack_require__(moduleId) {
|
|
|
47
31
|
};
|
|
48
32
|
})();
|
|
49
33
|
var __webpack_exports__ = {};
|
|
50
|
-
(
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
34
|
+
__webpack_require__.r(__webpack_exports__);
|
|
35
|
+
__webpack_require__.d(__webpack_exports__, {
|
|
36
|
+
extractJSONFromCodeBlock: ()=>extractJSONFromCodeBlock,
|
|
37
|
+
callAIWithStringResponse: ()=>callAIWithStringResponse,
|
|
38
|
+
preprocessDoubaoBboxJson: ()=>preprocessDoubaoBboxJson,
|
|
39
|
+
callAIWithObjectResponse: ()=>callAIWithObjectResponse,
|
|
40
|
+
getResponseFormat: ()=>getResponseFormat,
|
|
41
|
+
safeParseJson: ()=>safeParseJson,
|
|
42
|
+
callAI: ()=>callAI
|
|
43
|
+
});
|
|
44
|
+
const external_types_js_namespaceObject = require("../../types.js");
|
|
45
|
+
const env_namespaceObject = require("@midscene/shared/env");
|
|
46
|
+
const logger_namespaceObject = require("@midscene/shared/logger");
|
|
47
|
+
const utils_namespaceObject = require("@midscene/shared/utils");
|
|
48
|
+
const external_https_proxy_agent_namespaceObject = require("https-proxy-agent");
|
|
49
|
+
const external_jsonrepair_namespaceObject = require("jsonrepair");
|
|
50
|
+
const external_openai_namespaceObject = require("openai");
|
|
51
|
+
var external_openai_default = /*#__PURE__*/ __webpack_require__.n(external_openai_namespaceObject);
|
|
52
|
+
const external_socks_proxy_agent_namespaceObject = require("socks-proxy-agent");
|
|
53
|
+
const external_common_js_namespaceObject = require("../common.js");
|
|
54
|
+
const assertion_js_namespaceObject = require("../prompt/assertion.js");
|
|
55
|
+
const llm_planning_js_namespaceObject = require("../prompt/llm-planning.js");
|
|
56
|
+
async function createChatClient({ AIActionTypeValue, modelConfig }) {
|
|
57
|
+
const { socksProxy, httpProxy, modelName, openaiBaseURL, openaiApiKey, openaiExtraConfig, modelDescription, uiTarsModelVersion: uiTarsVersion, vlMode, createOpenAIClient } = modelConfig;
|
|
58
|
+
let openai;
|
|
59
|
+
if (createOpenAIClient) openai = createOpenAIClient({
|
|
60
|
+
modelName,
|
|
61
|
+
openaiApiKey,
|
|
62
|
+
openaiBaseURL,
|
|
63
|
+
socksProxy,
|
|
64
|
+
httpProxy,
|
|
65
|
+
openaiExtraConfig,
|
|
66
|
+
vlMode,
|
|
67
|
+
intent: modelConfig.intent,
|
|
68
|
+
modelDescription
|
|
60
69
|
});
|
|
61
|
-
|
|
62
|
-
const sdk_namespaceObject = require("@anthropic-ai/sdk");
|
|
63
|
-
const identity_namespaceObject = require("@azure/identity");
|
|
64
|
-
const env_namespaceObject = require("@midscene/shared/env");
|
|
65
|
-
const img_namespaceObject = require("@midscene/shared/img");
|
|
66
|
-
const logger_namespaceObject = require("@midscene/shared/logger");
|
|
67
|
-
const utils_namespaceObject = require("@midscene/shared/utils");
|
|
68
|
-
const external_https_proxy_agent_namespaceObject = require("https-proxy-agent");
|
|
69
|
-
const external_jsonrepair_namespaceObject = require("jsonrepair");
|
|
70
|
-
const external_openai_namespaceObject = require("openai");
|
|
71
|
-
var external_openai_default = /*#__PURE__*/ __webpack_require__.n(external_openai_namespaceObject);
|
|
72
|
-
const external_socks_proxy_agent_namespaceObject = require("socks-proxy-agent");
|
|
73
|
-
const external_common_js_namespaceObject = require("../common.js");
|
|
74
|
-
const assertion_js_namespaceObject = require("../prompt/assertion.js");
|
|
75
|
-
const llm_locator_js_namespaceObject = require("../prompt/llm-locator.js");
|
|
76
|
-
const llm_planning_js_namespaceObject = require("../prompt/llm-planning.js");
|
|
77
|
-
async function createChatClient({ AIActionTypeValue, modelConfig }) {
|
|
78
|
-
const { socksProxy, httpProxy, modelName, openaiBaseURL, openaiApiKey, openaiExtraConfig, openaiUseAzureDeprecated, useAzureOpenai, azureOpenaiScope, azureOpenaiKey, azureOpenaiEndpoint, azureOpenaiApiVersion, azureOpenaiDeployment, azureExtraConfig, useAnthropicSdk, anthropicApiKey, modelDescription, uiTarsModelVersion: uiTarsVersion, vlMode } = modelConfig;
|
|
79
|
-
let openai;
|
|
70
|
+
else {
|
|
80
71
|
let proxyAgent;
|
|
81
72
|
const debugProxy = (0, logger_namespaceObject.getDebug)('ai:call:proxy');
|
|
82
73
|
if (httpProxy) {
|
|
@@ -86,365 +77,226 @@ var __webpack_exports__ = {};
|
|
|
86
77
|
debugProxy('using socks proxy', socksProxy);
|
|
87
78
|
proxyAgent = new external_socks_proxy_agent_namespaceObject.SocksProxyAgent(socksProxy);
|
|
88
79
|
}
|
|
89
|
-
|
|
80
|
+
openai = new (external_openai_default())({
|
|
90
81
|
baseURL: openaiBaseURL,
|
|
91
82
|
apiKey: openaiApiKey,
|
|
92
|
-
|
|
83
|
+
...proxyAgent ? {
|
|
84
|
+
httpAgent: proxyAgent
|
|
85
|
+
} : {},
|
|
93
86
|
...openaiExtraConfig,
|
|
94
87
|
dangerouslyAllowBrowser: true
|
|
95
88
|
});
|
|
96
|
-
else if (useAzureOpenai) {
|
|
97
|
-
let tokenProvider;
|
|
98
|
-
if (azureOpenaiScope) {
|
|
99
|
-
(0, utils_namespaceObject.assert)(!utils_namespaceObject.ifInBrowser, 'Azure OpenAI is not supported in browser with Midscene.');
|
|
100
|
-
const credential = new identity_namespaceObject.DefaultAzureCredential();
|
|
101
|
-
tokenProvider = (0, identity_namespaceObject.getBearerTokenProvider)(credential, azureOpenaiScope);
|
|
102
|
-
openai = new external_openai_namespaceObject.AzureOpenAI({
|
|
103
|
-
azureADTokenProvider: tokenProvider,
|
|
104
|
-
endpoint: azureOpenaiEndpoint,
|
|
105
|
-
apiVersion: azureOpenaiApiVersion,
|
|
106
|
-
deployment: azureOpenaiDeployment,
|
|
107
|
-
...openaiExtraConfig,
|
|
108
|
-
...azureExtraConfig
|
|
109
|
-
});
|
|
110
|
-
} else openai = new external_openai_namespaceObject.AzureOpenAI({
|
|
111
|
-
apiKey: azureOpenaiKey,
|
|
112
|
-
endpoint: azureOpenaiEndpoint,
|
|
113
|
-
apiVersion: azureOpenaiApiVersion,
|
|
114
|
-
deployment: azureOpenaiDeployment,
|
|
115
|
-
dangerouslyAllowBrowser: true,
|
|
116
|
-
...openaiExtraConfig,
|
|
117
|
-
...azureExtraConfig
|
|
118
|
-
});
|
|
119
|
-
} else if (!useAnthropicSdk) openai = new (external_openai_default())({
|
|
120
|
-
baseURL: openaiBaseURL,
|
|
121
|
-
apiKey: openaiApiKey,
|
|
122
|
-
httpAgent: proxyAgent,
|
|
123
|
-
...openaiExtraConfig,
|
|
124
|
-
defaultHeaders: {
|
|
125
|
-
...(null == openaiExtraConfig ? void 0 : openaiExtraConfig.defaultHeaders) || {},
|
|
126
|
-
[env_namespaceObject.MIDSCENE_API_TYPE]: AIActionTypeValue.toString()
|
|
127
|
-
},
|
|
128
|
-
dangerouslyAllowBrowser: true
|
|
129
|
-
});
|
|
130
|
-
if (openai && env_namespaceObject.globalConfigManager.getEnvConfigInBoolean(env_namespaceObject.MIDSCENE_LANGSMITH_DEBUG)) {
|
|
131
|
-
if (utils_namespaceObject.ifInBrowser) throw new Error('langsmith is not supported in browser');
|
|
132
|
-
console.log('DEBUGGING MODE: langsmith wrapper enabled');
|
|
133
|
-
const { wrapOpenAI } = await Promise.resolve().then(__webpack_require__.bind(__webpack_require__, "langsmith/wrappers"));
|
|
134
|
-
openai = wrapOpenAI(openai);
|
|
135
|
-
}
|
|
136
|
-
if (void 0 !== openai) return {
|
|
137
|
-
completion: openai.chat.completions,
|
|
138
|
-
style: 'openai',
|
|
139
|
-
modelName,
|
|
140
|
-
modelDescription,
|
|
141
|
-
uiTarsVersion,
|
|
142
|
-
vlMode
|
|
143
|
-
};
|
|
144
|
-
if (useAnthropicSdk) openai = new sdk_namespaceObject.Anthropic({
|
|
145
|
-
apiKey: anthropicApiKey,
|
|
146
|
-
httpAgent: proxyAgent,
|
|
147
|
-
dangerouslyAllowBrowser: true
|
|
148
|
-
});
|
|
149
|
-
if (void 0 !== openai && openai.messages) return {
|
|
150
|
-
completion: openai.messages,
|
|
151
|
-
style: 'anthropic',
|
|
152
|
-
modelName,
|
|
153
|
-
modelDescription,
|
|
154
|
-
uiTarsVersion,
|
|
155
|
-
vlMode
|
|
156
|
-
};
|
|
157
|
-
throw new Error('Openai SDK or Anthropic SDK is not initialized');
|
|
158
89
|
}
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
completion_tokens: estimatedTokens,
|
|
218
|
-
total_tokens: 2 * estimatedTokens
|
|
219
|
-
};
|
|
220
|
-
}
|
|
221
|
-
const finalChunk = {
|
|
222
|
-
content: '',
|
|
223
|
-
accumulated,
|
|
224
|
-
reasoning_content: '',
|
|
225
|
-
isComplete: true,
|
|
226
|
-
usage: {
|
|
227
|
-
prompt_tokens: usage.prompt_tokens ?? 0,
|
|
228
|
-
completion_tokens: usage.completion_tokens ?? 0,
|
|
229
|
-
total_tokens: usage.total_tokens ?? 0,
|
|
230
|
-
time_cost: timeCost ?? 0,
|
|
231
|
-
model_name: modelName,
|
|
232
|
-
model_description: modelDescription,
|
|
233
|
-
intent: modelConfig.intent
|
|
234
|
-
}
|
|
235
|
-
};
|
|
236
|
-
options.onChunk(finalChunk);
|
|
237
|
-
break;
|
|
238
|
-
}
|
|
239
|
-
}
|
|
240
|
-
content = accumulated;
|
|
241
|
-
debugProfileStats(`streaming model, ${modelName}, mode, ${vlMode || 'default'}, cost-ms, ${timeCost}`);
|
|
242
|
-
} else {
|
|
243
|
-
var _result_usage, _result_usage1, _result_usage2;
|
|
244
|
-
const result = await completion.create({
|
|
245
|
-
model: modelName,
|
|
246
|
-
messages,
|
|
247
|
-
response_format: responseFormat,
|
|
248
|
-
...commonConfig
|
|
249
|
-
});
|
|
250
|
-
timeCost = Date.now() - startTime;
|
|
251
|
-
debugProfileStats(`model, ${modelName}, mode, ${vlMode || 'default'}, ui-tars-version, ${uiTarsVersion}, prompt-tokens, ${(null == (_result_usage = result.usage) ? void 0 : _result_usage.prompt_tokens) || ''}, completion-tokens, ${(null == (_result_usage1 = result.usage) ? void 0 : _result_usage1.completion_tokens) || ''}, total-tokens, ${(null == (_result_usage2 = result.usage) ? void 0 : _result_usage2.total_tokens) || ''}, cost-ms, ${timeCost}, requestId, ${result._request_id || ''}`);
|
|
252
|
-
debugProfileDetail(`model usage detail: ${JSON.stringify(result.usage)}`);
|
|
253
|
-
(0, utils_namespaceObject.assert)(result.choices, `invalid response from LLM service: ${JSON.stringify(result)}`);
|
|
254
|
-
content = result.choices[0].message.content;
|
|
255
|
-
usage = result.usage;
|
|
90
|
+
return {
|
|
91
|
+
completion: openai.chat.completions,
|
|
92
|
+
modelName,
|
|
93
|
+
modelDescription,
|
|
94
|
+
uiTarsVersion,
|
|
95
|
+
vlMode
|
|
96
|
+
};
|
|
97
|
+
}
|
|
98
|
+
async function callAI(messages, AIActionTypeValue, modelConfig, options) {
|
|
99
|
+
const { completion, modelName, modelDescription, uiTarsVersion, vlMode } = await createChatClient({
|
|
100
|
+
AIActionTypeValue,
|
|
101
|
+
modelConfig
|
|
102
|
+
});
|
|
103
|
+
const responseFormat = getResponseFormat(modelName, AIActionTypeValue);
|
|
104
|
+
const maxTokens = env_namespaceObject.globalConfigManager.getEnvConfigValue(env_namespaceObject.OPENAI_MAX_TOKENS);
|
|
105
|
+
const debugCall = (0, logger_namespaceObject.getDebug)('ai:call');
|
|
106
|
+
const debugProfileStats = (0, logger_namespaceObject.getDebug)('ai:profile:stats');
|
|
107
|
+
const debugProfileDetail = (0, logger_namespaceObject.getDebug)('ai:profile:detail');
|
|
108
|
+
const startTime = Date.now();
|
|
109
|
+
const isStreaming = (null == options ? void 0 : options.stream) && (null == options ? void 0 : options.onChunk);
|
|
110
|
+
let content;
|
|
111
|
+
let accumulated = '';
|
|
112
|
+
let usage;
|
|
113
|
+
let timeCost;
|
|
114
|
+
const commonConfig = {
|
|
115
|
+
temperature: 'vlm-ui-tars' === vlMode ? 0.0 : 0.1,
|
|
116
|
+
stream: !!isStreaming,
|
|
117
|
+
max_tokens: 'number' == typeof maxTokens ? maxTokens : Number.parseInt(maxTokens || '2048', 10),
|
|
118
|
+
...'qwen-vl' === vlMode ? {
|
|
119
|
+
vl_high_resolution_images: true
|
|
120
|
+
} : {}
|
|
121
|
+
};
|
|
122
|
+
try {
|
|
123
|
+
debugCall(`sending ${isStreaming ? 'streaming ' : ''}request to ${modelName}`);
|
|
124
|
+
if (isStreaming) {
|
|
125
|
+
const stream = await completion.create({
|
|
126
|
+
model: modelName,
|
|
127
|
+
messages,
|
|
128
|
+
response_format: responseFormat,
|
|
129
|
+
...commonConfig
|
|
130
|
+
}, {
|
|
131
|
+
stream: true
|
|
132
|
+
});
|
|
133
|
+
for await (const chunk of stream){
|
|
134
|
+
var _chunk_choices__delta, _chunk_choices_, _chunk_choices, _chunk_choices__delta1, _chunk_choices_1, _chunk_choices1, _chunk_choices_2, _chunk_choices2;
|
|
135
|
+
const content = (null == (_chunk_choices = chunk.choices) ? void 0 : null == (_chunk_choices_ = _chunk_choices[0]) ? void 0 : null == (_chunk_choices__delta = _chunk_choices_.delta) ? void 0 : _chunk_choices__delta.content) || '';
|
|
136
|
+
const reasoning_content = (null == (_chunk_choices1 = chunk.choices) ? void 0 : null == (_chunk_choices_1 = _chunk_choices1[0]) ? void 0 : null == (_chunk_choices__delta1 = _chunk_choices_1.delta) ? void 0 : _chunk_choices__delta1.reasoning_content) || '';
|
|
137
|
+
if (chunk.usage) usage = chunk.usage;
|
|
138
|
+
if (content || reasoning_content) {
|
|
139
|
+
accumulated += content;
|
|
140
|
+
const chunkData = {
|
|
141
|
+
content,
|
|
142
|
+
reasoning_content,
|
|
143
|
+
accumulated,
|
|
144
|
+
isComplete: false,
|
|
145
|
+
usage: void 0
|
|
146
|
+
};
|
|
147
|
+
options.onChunk(chunkData);
|
|
256
148
|
}
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
return {
|
|
266
|
-
source: {
|
|
267
|
-
type: 'base64',
|
|
268
|
-
media_type: mimeType,
|
|
269
|
-
data: body
|
|
270
|
-
},
|
|
271
|
-
type: 'image'
|
|
149
|
+
if (null == (_chunk_choices2 = chunk.choices) ? void 0 : null == (_chunk_choices_2 = _chunk_choices2[0]) ? void 0 : _chunk_choices_2.finish_reason) {
|
|
150
|
+
timeCost = Date.now() - startTime;
|
|
151
|
+
if (!usage) {
|
|
152
|
+
const estimatedTokens = Math.max(1, Math.floor(accumulated.length / 4));
|
|
153
|
+
usage = {
|
|
154
|
+
prompt_tokens: estimatedTokens,
|
|
155
|
+
completion_tokens: estimatedTokens,
|
|
156
|
+
total_tokens: 2 * estimatedTokens
|
|
272
157
|
};
|
|
273
158
|
}
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
for await (const chunk of stream){
|
|
288
|
-
var _chunk_delta;
|
|
289
|
-
const content = (null == (_chunk_delta = chunk.delta) ? void 0 : _chunk_delta.text) || '';
|
|
290
|
-
if (content) {
|
|
291
|
-
accumulated += content;
|
|
292
|
-
const chunkData = {
|
|
293
|
-
content,
|
|
294
|
-
accumulated,
|
|
295
|
-
reasoning_content: '',
|
|
296
|
-
isComplete: false,
|
|
297
|
-
usage: void 0
|
|
298
|
-
};
|
|
299
|
-
options.onChunk(chunkData);
|
|
300
|
-
}
|
|
301
|
-
if ('message_stop' === chunk.type) {
|
|
302
|
-
timeCost = Date.now() - startTime;
|
|
303
|
-
const anthropicUsage = chunk.usage;
|
|
304
|
-
const finalChunk = {
|
|
305
|
-
content: '',
|
|
306
|
-
accumulated,
|
|
307
|
-
reasoning_content: '',
|
|
308
|
-
isComplete: true,
|
|
309
|
-
usage: anthropicUsage ? {
|
|
310
|
-
prompt_tokens: anthropicUsage.input_tokens ?? 0,
|
|
311
|
-
completion_tokens: anthropicUsage.output_tokens ?? 0,
|
|
312
|
-
total_tokens: (anthropicUsage.input_tokens ?? 0) + (anthropicUsage.output_tokens ?? 0),
|
|
313
|
-
time_cost: timeCost ?? 0,
|
|
314
|
-
model_name: modelName,
|
|
315
|
-
model_description: modelDescription,
|
|
316
|
-
intent: modelConfig.intent
|
|
317
|
-
} : void 0
|
|
318
|
-
};
|
|
319
|
-
options.onChunk(finalChunk);
|
|
320
|
-
break;
|
|
159
|
+
const finalChunk = {
|
|
160
|
+
content: '',
|
|
161
|
+
accumulated,
|
|
162
|
+
reasoning_content: '',
|
|
163
|
+
isComplete: true,
|
|
164
|
+
usage: {
|
|
165
|
+
prompt_tokens: usage.prompt_tokens ?? 0,
|
|
166
|
+
completion_tokens: usage.completion_tokens ?? 0,
|
|
167
|
+
total_tokens: usage.total_tokens ?? 0,
|
|
168
|
+
time_cost: timeCost ?? 0,
|
|
169
|
+
model_name: modelName,
|
|
170
|
+
model_description: modelDescription,
|
|
171
|
+
intent: modelConfig.intent
|
|
321
172
|
}
|
|
322
|
-
}
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
const result = await completion.create({
|
|
326
|
-
model: modelName,
|
|
327
|
-
system: 'You are a versatile professional in software UI automation',
|
|
328
|
-
messages: messages.map((m)=>({
|
|
329
|
-
role: 'user',
|
|
330
|
-
content: Array.isArray(m.content) ? m.content.map(convertImageContent) : m.content
|
|
331
|
-
})),
|
|
332
|
-
response_format: responseFormat,
|
|
333
|
-
...commonConfig
|
|
334
|
-
});
|
|
335
|
-
timeCost = Date.now() - startTime;
|
|
336
|
-
content = result.content[0].text;
|
|
337
|
-
usage = result.usage;
|
|
173
|
+
};
|
|
174
|
+
options.onChunk(finalChunk);
|
|
175
|
+
break;
|
|
338
176
|
}
|
|
339
|
-
(0, utils_namespaceObject.assert)(content, 'empty content');
|
|
340
177
|
}
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
content: content || '',
|
|
351
|
-
usage: usage ? {
|
|
352
|
-
prompt_tokens: usage.prompt_tokens ?? 0,
|
|
353
|
-
completion_tokens: usage.completion_tokens ?? 0,
|
|
354
|
-
total_tokens: usage.total_tokens ?? 0,
|
|
355
|
-
time_cost: timeCost ?? 0,
|
|
356
|
-
model_name: modelName,
|
|
357
|
-
model_description: modelDescription,
|
|
358
|
-
intent: modelConfig.intent
|
|
359
|
-
} : void 0,
|
|
360
|
-
isStreamed: !!isStreaming
|
|
361
|
-
};
|
|
362
|
-
} catch (e) {
|
|
363
|
-
console.error(' call AI error', e);
|
|
364
|
-
const newError = new Error(`failed to call ${isStreaming ? 'streaming ' : ''}AI model service: ${e.message}. Trouble shooting: https://midscenejs.com/model-provider.html`, {
|
|
365
|
-
cause: e
|
|
178
|
+
content = accumulated;
|
|
179
|
+
debugProfileStats(`streaming model, ${modelName}, mode, ${vlMode || 'default'}, cost-ms, ${timeCost}`);
|
|
180
|
+
} else {
|
|
181
|
+
var _result_usage, _result_usage1, _result_usage2;
|
|
182
|
+
const result = await completion.create({
|
|
183
|
+
model: modelName,
|
|
184
|
+
messages,
|
|
185
|
+
response_format: responseFormat,
|
|
186
|
+
...commonConfig
|
|
366
187
|
});
|
|
367
|
-
|
|
188
|
+
timeCost = Date.now() - startTime;
|
|
189
|
+
debugProfileStats(`model, ${modelName}, mode, ${vlMode || 'default'}, ui-tars-version, ${uiTarsVersion}, prompt-tokens, ${(null == (_result_usage = result.usage) ? void 0 : _result_usage.prompt_tokens) || ''}, completion-tokens, ${(null == (_result_usage1 = result.usage) ? void 0 : _result_usage1.completion_tokens) || ''}, total-tokens, ${(null == (_result_usage2 = result.usage) ? void 0 : _result_usage2.total_tokens) || ''}, cost-ms, ${timeCost}, requestId, ${result._request_id || ''}`);
|
|
190
|
+
debugProfileDetail(`model usage detail: ${JSON.stringify(result.usage)}`);
|
|
191
|
+
(0, utils_namespaceObject.assert)(result.choices, `invalid response from LLM service: ${JSON.stringify(result)}`);
|
|
192
|
+
content = result.choices[0].message.content;
|
|
193
|
+
usage = result.usage;
|
|
368
194
|
}
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
break;
|
|
379
|
-
case external_common_js_namespaceObject.AIActionType.PLAN:
|
|
380
|
-
responseFormat = llm_planning_js_namespaceObject.planSchema;
|
|
381
|
-
break;
|
|
382
|
-
case external_common_js_namespaceObject.AIActionType.EXTRACT_DATA:
|
|
383
|
-
case external_common_js_namespaceObject.AIActionType.DESCRIBE_ELEMENT:
|
|
384
|
-
responseFormat = {
|
|
385
|
-
type: external_types_js_namespaceObject.AIResponseFormat.JSON
|
|
386
|
-
};
|
|
387
|
-
break;
|
|
388
|
-
case external_common_js_namespaceObject.AIActionType.TEXT:
|
|
389
|
-
responseFormat = void 0;
|
|
390
|
-
break;
|
|
195
|
+
debugCall(`response: ${content}`);
|
|
196
|
+
(0, utils_namespaceObject.assert)(content, 'empty content');
|
|
197
|
+
if (isStreaming && !usage) {
|
|
198
|
+
const estimatedTokens = Math.max(1, Math.floor((content || '').length / 4));
|
|
199
|
+
usage = {
|
|
200
|
+
prompt_tokens: estimatedTokens,
|
|
201
|
+
completion_tokens: estimatedTokens,
|
|
202
|
+
total_tokens: 2 * estimatedTokens
|
|
203
|
+
};
|
|
391
204
|
}
|
|
392
|
-
if ('gpt-4o-2024-05-13' === modelName && AIActionTypeValue !== external_common_js_namespaceObject.AIActionType.TEXT) responseFormat = {
|
|
393
|
-
type: external_types_js_namespaceObject.AIResponseFormat.JSON
|
|
394
|
-
};
|
|
395
|
-
return responseFormat;
|
|
396
|
-
};
|
|
397
|
-
async function callAIWithObjectResponse(messages, AIActionTypeValue, modelConfig) {
|
|
398
|
-
const response = await callAI(messages, AIActionTypeValue, modelConfig);
|
|
399
|
-
(0, utils_namespaceObject.assert)(response, 'empty response');
|
|
400
|
-
const vlMode = modelConfig.vlMode;
|
|
401
|
-
const jsonContent = safeParseJson(response.content, vlMode);
|
|
402
205
|
return {
|
|
403
|
-
content:
|
|
404
|
-
usage:
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
206
|
+
content: content || '',
|
|
207
|
+
usage: usage ? {
|
|
208
|
+
prompt_tokens: usage.prompt_tokens ?? 0,
|
|
209
|
+
completion_tokens: usage.completion_tokens ?? 0,
|
|
210
|
+
total_tokens: usage.total_tokens ?? 0,
|
|
211
|
+
time_cost: timeCost ?? 0,
|
|
212
|
+
model_name: modelName,
|
|
213
|
+
model_description: modelDescription,
|
|
214
|
+
intent: modelConfig.intent
|
|
215
|
+
} : void 0,
|
|
216
|
+
isStreamed: !!isStreaming
|
|
412
217
|
};
|
|
218
|
+
} catch (e) {
|
|
219
|
+
console.error(' call AI error', e);
|
|
220
|
+
const newError = new Error(`failed to call ${isStreaming ? 'streaming ' : ''}AI model service: ${e.message}. Trouble shooting: https://midscenejs.com/model-provider.html`, {
|
|
221
|
+
cause: e
|
|
222
|
+
});
|
|
223
|
+
throw newError;
|
|
413
224
|
}
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
225
|
+
}
|
|
226
|
+
const getResponseFormat = (modelName, AIActionTypeValue)=>{
|
|
227
|
+
let responseFormat;
|
|
228
|
+
if (modelName.includes('gpt-4')) switch(AIActionTypeValue){
|
|
229
|
+
case external_common_js_namespaceObject.AIActionType.ASSERT:
|
|
230
|
+
responseFormat = assertion_js_namespaceObject.assertSchema;
|
|
231
|
+
break;
|
|
232
|
+
case external_common_js_namespaceObject.AIActionType.PLAN:
|
|
233
|
+
responseFormat = llm_planning_js_namespaceObject.planSchema;
|
|
234
|
+
break;
|
|
235
|
+
case external_common_js_namespaceObject.AIActionType.EXTRACT_DATA:
|
|
236
|
+
case external_common_js_namespaceObject.AIActionType.DESCRIBE_ELEMENT:
|
|
237
|
+
responseFormat = {
|
|
238
|
+
type: external_types_js_namespaceObject.AIResponseFormat.JSON
|
|
239
|
+
};
|
|
240
|
+
break;
|
|
241
|
+
case external_common_js_namespaceObject.AIActionType.TEXT:
|
|
242
|
+
responseFormat = void 0;
|
|
243
|
+
break;
|
|
424
244
|
}
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
245
|
+
if ('gpt-4o-2024-05-13' === modelName && AIActionTypeValue !== external_common_js_namespaceObject.AIActionType.TEXT) responseFormat = {
|
|
246
|
+
type: external_types_js_namespaceObject.AIResponseFormat.JSON
|
|
247
|
+
};
|
|
248
|
+
return responseFormat;
|
|
249
|
+
};
|
|
250
|
+
async function callAIWithObjectResponse(messages, AIActionTypeValue, modelConfig) {
|
|
251
|
+
const response = await callAI(messages, AIActionTypeValue, modelConfig);
|
|
252
|
+
(0, utils_namespaceObject.assert)(response, 'empty response');
|
|
253
|
+
const vlMode = modelConfig.vlMode;
|
|
254
|
+
const jsonContent = safeParseJson(response.content, vlMode);
|
|
255
|
+
return {
|
|
256
|
+
content: jsonContent,
|
|
257
|
+
usage: response.usage
|
|
258
|
+
};
|
|
259
|
+
}
|
|
260
|
+
async function callAIWithStringResponse(msgs, AIActionTypeValue, modelConfig) {
|
|
261
|
+
const { content, usage } = await callAI(msgs, AIActionTypeValue, modelConfig);
|
|
262
|
+
return {
|
|
263
|
+
content,
|
|
264
|
+
usage
|
|
265
|
+
};
|
|
266
|
+
}
|
|
267
|
+
function extractJSONFromCodeBlock(response) {
|
|
268
|
+
try {
|
|
269
|
+
const jsonMatch = response.match(/^\s*(\{[\s\S]*\})\s*$/);
|
|
270
|
+
if (jsonMatch) return jsonMatch[1];
|
|
271
|
+
const codeBlockMatch = response.match(/```(?:json)?\s*(\{[\s\S]*?\})\s*```/);
|
|
272
|
+
if (codeBlockMatch) return codeBlockMatch[1];
|
|
273
|
+
const jsonLikeMatch = response.match(/\{[\s\S]*\}/);
|
|
274
|
+
if (jsonLikeMatch) return jsonLikeMatch[0];
|
|
275
|
+
} catch {}
|
|
276
|
+
return response;
|
|
277
|
+
}
|
|
278
|
+
function preprocessDoubaoBboxJson(input) {
|
|
279
|
+
if (input.includes('bbox')) while(/\d+\s+\d+/.test(input))input = input.replace(/(\d+)\s+(\d+)/g, '$1,$2');
|
|
280
|
+
return input;
|
|
281
|
+
}
|
|
282
|
+
function safeParseJson(input, vlMode) {
|
|
283
|
+
const cleanJsonString = extractJSONFromCodeBlock(input);
|
|
284
|
+
if (null == cleanJsonString ? void 0 : cleanJsonString.match(/\((\d+),(\d+)\)/)) {
|
|
285
|
+
var _cleanJsonString_match;
|
|
286
|
+
return null == (_cleanJsonString_match = cleanJsonString.match(/\((\d+),(\d+)\)/)) ? void 0 : _cleanJsonString_match.slice(1).map(Number);
|
|
428
287
|
}
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
try {
|
|
439
|
-
return JSON.parse((0, external_jsonrepair_namespaceObject.jsonrepair)(cleanJsonString));
|
|
440
|
-
} catch (e) {}
|
|
441
|
-
if ('doubao-vision' === vlMode || 'vlm-ui-tars' === vlMode) {
|
|
442
|
-
const jsonString = preprocessDoubaoBboxJson(cleanJsonString);
|
|
443
|
-
return JSON.parse((0, external_jsonrepair_namespaceObject.jsonrepair)(jsonString));
|
|
444
|
-
}
|
|
445
|
-
throw Error(`failed to parse json response: ${input}`);
|
|
288
|
+
try {
|
|
289
|
+
return JSON.parse(cleanJsonString);
|
|
290
|
+
} catch {}
|
|
291
|
+
try {
|
|
292
|
+
return JSON.parse((0, external_jsonrepair_namespaceObject.jsonrepair)(cleanJsonString));
|
|
293
|
+
} catch (e) {}
|
|
294
|
+
if ('doubao-vision' === vlMode || 'vlm-ui-tars' === vlMode) {
|
|
295
|
+
const jsonString = preprocessDoubaoBboxJson(cleanJsonString);
|
|
296
|
+
return JSON.parse((0, external_jsonrepair_namespaceObject.jsonrepair)(jsonString));
|
|
446
297
|
}
|
|
447
|
-
})
|
|
298
|
+
throw Error(`failed to parse json response: ${input}`);
|
|
299
|
+
}
|
|
448
300
|
exports.callAI = __webpack_exports__.callAI;
|
|
449
301
|
exports.callAIWithObjectResponse = __webpack_exports__.callAIWithObjectResponse;
|
|
450
302
|
exports.callAIWithStringResponse = __webpack_exports__.callAIWithStringResponse;
|