@mcampa/ai-context-mcp 0.0.1-beta.05e8984

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Zilliz
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
package/README.md ADDED
@@ -0,0 +1,685 @@
1
+ # @mcampa/ai-context-mcp
2
+
3
+ ![](../../assets/claude-context.png)
4
+ Model Context Protocol (MCP) integration for Claude Context - A powerful MCP server that enables AI assistants and agents to index and search codebases using semantic search.
5
+
6
+ [![npm version](https://img.shields.io/npm/v/@mcampa/ai-context-mcp.svg)](https://www.npmjs.com/package/@mcampa/ai-context-mcp)
7
+ [![npm downloads](https://img.shields.io/npm/dm/@mcampa/ai-context-mcp.svg)](https://www.npmjs.com/package/@mcampa/ai-context-mcp)
8
+
9
+ > 📖 **New to Claude Context?** Check out the [main project README](../../README.md) for an overview and setup instructions.
10
+
11
+ ## 🚀 Use Claude Context as MCP in Claude Code and others
12
+
13
+ ![img](https://lh7-rt.googleusercontent.com/docsz/AD_4nXf2uIf2c5zowp-iOMOqsefHbY_EwNGiutkxtNXcZVJ8RI6SN9DsCcsc3amXIhOZx9VcKFJQLSAqM-2pjU9zoGs1r8GCTUL3JIsLpLUGAm1VQd5F2o5vpEajx2qrc77iXhBu1zWj?key=qYdFquJrLcfXCUndY-YRBQ)
14
+
15
+ Model Context Protocol (MCP) allows you to integrate Claude Context with your favorite AI coding assistants, e.g. Claude Code.
16
+
17
+ ## Quick Start
18
+
19
+ ### Prerequisites
20
+
21
+ Before using the MCP server, make sure you have:
22
+
23
+ - API key for your chosen embedding provider (OpenAI, VoyageAI, Gemini, or Ollama setup)
24
+ - Milvus vector database (local or cloud)
25
+
26
+ > 💡 **Setup Help:** See the [main project setup guide](../../README.md#-quick-start) for detailed installation instructions.
27
+
28
+ ### Prepare Environment Variables
29
+
30
+ #### Embedding Provider Configuration
31
+
32
+ Claude Context MCP supports multiple embedding providers. Choose the one that best fits your needs:
33
+
34
+ > 📋 **Quick Reference**: For a complete list of environment variables and their descriptions, see the [Environment Variables Guide](../../docs/getting-started/environment-variables.md).
35
+
36
+ ```bash
37
+ # Supported providers: OpenAI, VoyageAI, Gemini, Ollama
38
+ EMBEDDING_PROVIDER=OpenAI
39
+ ```
40
+
41
+ <details>
42
+ <summary><strong>1. OpenAI Configuration (Default)</strong></summary>
43
+
44
+ OpenAI provides high-quality embeddings with excellent performance for code understanding.
45
+
46
+ ```bash
47
+ # Required: Your OpenAI API key
48
+ OPENAI_API_KEY=sk-your-openai-api-key
49
+
50
+ # Optional: Specify embedding model (default: text-embedding-3-small)
51
+ EMBEDDING_MODEL=text-embedding-3-small
52
+
53
+ # Optional: Custom API base URL (for Azure OpenAI or other compatible services)
54
+ OPENAI_BASE_URL=https://api.openai.com/v1
55
+ ```
56
+
57
+ **Available Models:**
58
+ See `getSupportedModels` in [`openai-embedding.ts`](https://github.com/mcampa/ai-context/blob/master/packages/core/src/embedding/openai-embedding.ts) for the full list of supported models.
59
+
60
+ **Getting API Key:**
61
+
62
+ 1. Visit [OpenAI Platform](https://platform.openai.com/api-keys)
63
+ 2. Sign in or create an account
64
+ 3. Generate a new API key
65
+ 4. Set up billing if needed
66
+
67
+ </details>
68
+
69
+ <details>
70
+ <summary><strong>2. VoyageAI Configuration</strong></summary>
71
+
72
+ VoyageAI offers specialized code embeddings optimized for programming languages.
73
+
74
+ ```bash
75
+ # Required: Your VoyageAI API key
76
+ VOYAGEAI_API_KEY=pa-your-voyageai-api-key
77
+
78
+ # Optional: Specify embedding model (default: voyage-code-3)
79
+ EMBEDDING_MODEL=voyage-code-3
80
+ ```
81
+
82
+ **Available Models:**
83
+ See `getSupportedModels` in [`voyageai-embedding.ts`](https://github.com/mcampa/ai-context/blob/master/packages/core/src/embedding/voyageai-embedding.ts) for the full list of supported models.
84
+
85
+ **Getting API Key:**
86
+
87
+ 1. Visit [VoyageAI Console](https://dash.voyageai.com/)
88
+ 2. Sign up for an account
89
+ 3. Navigate to API Keys section
90
+ 4. Create a new API key
91
+
92
+ </details>
93
+
94
+ <details>
95
+ <summary><strong>3. Gemini Configuration</strong></summary>
96
+
97
+ Google's Gemini provides competitive embeddings with good multilingual support.
98
+
99
+ ```bash
100
+ # Required: Your Gemini API key
101
+ GEMINI_API_KEY=your-gemini-api-key
102
+
103
+ # Optional: Specify embedding model (default: gemini-embedding-001)
104
+ EMBEDDING_MODEL=gemini-embedding-001
105
+
106
+ # Optional: Custom API base URL (for custom endpoints)
107
+ GEMINI_BASE_URL=https://generativelanguage.googleapis.com/v1beta
108
+ ```
109
+
110
+ **Available Models:**
111
+ See `getSupportedModels` in [`gemini-embedding.ts`](https://github.com/mcampa/ai-context/blob/master/packages/core/src/embedding/gemini-embedding.ts) for the full list of supported models.
112
+
113
+ **Getting API Key:**
114
+
115
+ 1. Visit [Google AI Studio](https://aistudio.google.com/)
116
+ 2. Sign in with your Google account
117
+ 3. Go to "Get API key" section
118
+ 4. Create a new API key
119
+
120
+ </details>
121
+
122
+ <details>
123
+ <summary><strong>4. Ollama Configuration (Local/Self-hosted)</strong></summary>
124
+
125
+ Ollama allows you to run embeddings locally without sending data to external services.
126
+
127
+ ```bash
128
+ # Required: Specify which Ollama model to use
129
+ EMBEDDING_MODEL=nomic-embed-text
130
+
131
+ # Optional: Specify Ollama host (default: http://127.0.0.1:11434)
132
+ OLLAMA_HOST=http://127.0.0.1:11434
133
+ ```
134
+
135
+ **Setup Instructions:**
136
+
137
+ 1. Install Ollama from [ollama.ai](https://ollama.ai/)
138
+ 2. Pull the embedding model:
139
+
140
+ ```bash
141
+ ollama pull nomic-embed-text
142
+ ```
143
+
144
+ 3. Ensure Ollama is running:
145
+
146
+ ```bash
147
+ ollama serve
148
+ ```
149
+
150
+ </details>
151
+
152
+ #### Get a free vector database on Zilliz Cloud
153
+
154
+ Claude Context needs a vector database. You can [sign up](https://cloud.zilliz.com/signup?utm_source=github&utm_medium=referral&utm_campaign=2507-codecontext-readme) on Zilliz Cloud to get an API key.
155
+
156
+ ![](../../assets/signup_and_get_apikey.png)
157
+
158
+ Copy your Personal Key to replace `your-zilliz-cloud-api-key` in the configuration examples.
159
+
160
+ ```bash
161
+ MILVUS_TOKEN=your-zilliz-cloud-api-key
162
+ ```
163
+
164
+ #### Embedding Batch Size
165
+
166
+ You can set the embedding batch size to optimize the performance of the MCP server, depending on your embedding model throughput. The default value is 100.
167
+
168
+ ```bash
169
+ EMBEDDING_BATCH_SIZE=512
170
+ ```
171
+
172
+ #### Custom File Processing (Optional)
173
+
174
+ You can configure custom file extensions and ignore patterns globally via environment variables:
175
+
176
+ ```bash
177
+ # Additional file extensions to include beyond defaults
178
+ CUSTOM_EXTENSIONS=.vue,.svelte,.astro,.twig
179
+
180
+ # Additional ignore patterns to exclude files/directories
181
+ CUSTOM_IGNORE_PATTERNS=temp/**,*.backup,private/**,uploads/**
182
+ ```
183
+
184
+ These settings work in combination with tool parameters - patterns from both sources will be merged together.
185
+
186
+ ## Usage with MCP Clients
187
+
188
+ <details>
189
+ <summary><strong>Claude Code</strong></summary>
190
+
191
+ Use the command line interface to add the Claude Context MCP server:
192
+
193
+ ```bash
194
+ # Add the Claude Context MCP server
195
+ claude mcp add claude-context -e OPENAI_API_KEY=your-openai-api-key -e MILVUS_TOKEN=your-zilliz-cloud-api-key -- npx @mcampa/ai-context-mcp@latest
196
+
197
+ ```
198
+
199
+ See the [Claude Code MCP documentation](https://docs.anthropic.com/en/docs/claude-code/mcp) for more details about MCP server management.
200
+
201
+ </details>
202
+
203
+ <details>
204
+ <summary><strong>OpenAI Codex CLI</strong></summary>
205
+
206
+ Codex CLI uses TOML configuration files:
207
+
208
+ 1. Create or edit the `~/.codex/config.toml` file.
209
+
210
+ 2. Add the following configuration:
211
+
212
+ ```toml
213
+ # IMPORTANT: the top-level key is `mcp_servers` rather than `mcpServers`.
214
+ [mcp_servers.claude-context]
215
+ command = "npx"
216
+ args = ["@mcampa/ai-context-mcp@latest"]
217
+ env = { "OPENAI_API_KEY" = "your-openai-api-key", "MILVUS_TOKEN" = "your-zilliz-cloud-api-key" }
218
+ # Optional: override the default 10s startup timeout
219
+ startup_timeout_ms = 20000
220
+ ```
221
+
222
+ 3. Save the file and restart Codex CLI to apply the changes.
223
+
224
+ </details>
225
+
226
+ <details>
227
+ <summary><strong>Gemini CLI</strong></summary>
228
+
229
+ Gemini CLI requires manual configuration through a JSON file:
230
+
231
+ 1. Create or edit the `~/.gemini/settings.json` file.
232
+
233
+ 2. Add the following configuration:
234
+
235
+ ```json
236
+ {
237
+ "mcpServers": {
238
+ "claude-context": {
239
+ "command": "npx",
240
+ "args": ["@mcampa/ai-context-mcp@latest"],
241
+ "env": {
242
+ "OPENAI_API_KEY": "your-openai-api-key",
243
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
244
+ }
245
+ }
246
+ }
247
+ }
248
+ ```
249
+
250
+ 3. Save the file and restart Gemini CLI to apply the changes.
251
+
252
+ </details>
253
+
254
+ <details>
255
+ <summary><strong>Qwen Code</strong></summary>
256
+
257
+ Create or edit the `~/.qwen/settings.json` file and add the following configuration:
258
+
259
+ ```json
260
+ {
261
+ "mcpServers": {
262
+ "claude-context": {
263
+ "command": "npx",
264
+ "args": ["@mcampa/ai-context-mcp@latest"],
265
+ "env": {
266
+ "OPENAI_API_KEY": "your-openai-api-key",
267
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
268
+ }
269
+ }
270
+ }
271
+ }
272
+ ```
273
+
274
+ </details>
275
+
276
+ <details>
277
+ <summary><strong>Cursor</strong></summary>
278
+
279
+ Go to: `Settings` -> `Cursor Settings` -> `MCP` -> `Add new global MCP server`
280
+
281
+ Pasting the following configuration into your Cursor `~/.cursor/mcp.json` file is the recommended approach. You may also install in a specific project by creating `.cursor/mcp.json` in your project folder. See [Cursor MCP docs](https://docs.cursor.com/context/model-context-protocol) for more info.
282
+
283
+ **OpenAI Configuration (Default):**
284
+
285
+ ```json
286
+ {
287
+ "mcpServers": {
288
+ "claude-context": {
289
+ "command": "npx",
290
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
291
+ "env": {
292
+ "EMBEDDING_PROVIDER": "OpenAI",
293
+ "OPENAI_API_KEY": "your-openai-api-key",
294
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
295
+ }
296
+ }
297
+ }
298
+ }
299
+ ```
300
+
301
+ **VoyageAI Configuration:**
302
+
303
+ ```json
304
+ {
305
+ "mcpServers": {
306
+ "claude-context": {
307
+ "command": "npx",
308
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
309
+ "env": {
310
+ "EMBEDDING_PROVIDER": "VoyageAI",
311
+ "VOYAGEAI_API_KEY": "your-voyageai-api-key",
312
+ "EMBEDDING_MODEL": "voyage-code-3",
313
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
314
+ }
315
+ }
316
+ }
317
+ }
318
+ ```
319
+
320
+ **Gemini Configuration:**
321
+
322
+ ```json
323
+ {
324
+ "mcpServers": {
325
+ "claude-context": {
326
+ "command": "npx",
327
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
328
+ "env": {
329
+ "EMBEDDING_PROVIDER": "Gemini",
330
+ "GEMINI_API_KEY": "your-gemini-api-key",
331
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
332
+ }
333
+ }
334
+ }
335
+ }
336
+ ```
337
+
338
+ **Ollama Configuration:**
339
+
340
+ ```json
341
+ {
342
+ "mcpServers": {
343
+ "claude-context": {
344
+ "command": "npx",
345
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
346
+ "env": {
347
+ "EMBEDDING_PROVIDER": "Ollama",
348
+ "EMBEDDING_MODEL": "nomic-embed-text",
349
+ "OLLAMA_HOST": "http://127.0.0.1:11434",
350
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
351
+ }
352
+ }
353
+ }
354
+ }
355
+ ```
356
+
357
+ </details>
358
+
359
+ <details>
360
+ <summary><strong>Void</strong></summary>
361
+
362
+ Go to: `Settings` -> `MCP` -> `Add MCP Server`
363
+
364
+ Add the following configuration to your Void MCP settings:
365
+
366
+ ```json
367
+ {
368
+ "mcpServers": {
369
+ "code-context": {
370
+ "command": "npx",
371
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
372
+ "env": {
373
+ "OPENAI_API_KEY": "your-openai-api-key",
374
+ "MILVUS_ADDRESS": "your-zilliz-cloud-public-endpoint",
375
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
376
+ }
377
+ }
378
+ }
379
+ }
380
+ ```
381
+
382
+ </details>
383
+
384
+ <details>
385
+ <summary><strong>Claude Desktop</strong></summary>
386
+
387
+ Add to your Claude Desktop configuration:
388
+
389
+ ```json
390
+ {
391
+ "mcpServers": {
392
+ "claude-context": {
393
+ "command": "npx",
394
+ "args": ["@mcampa/ai-context-mcp@latest"],
395
+ "env": {
396
+ "OPENAI_API_KEY": "your-openai-api-key",
397
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
398
+ }
399
+ }
400
+ }
401
+ }
402
+ ```
403
+
404
+ </details>
405
+
406
+ <details>
407
+ <summary><strong>Windsurf</strong></summary>
408
+
409
+ Windsurf supports MCP configuration through a JSON file. Add the following configuration to your Windsurf MCP settings:
410
+
411
+ ```json
412
+ {
413
+ "mcpServers": {
414
+ "claude-context": {
415
+ "command": "npx",
416
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
417
+ "env": {
418
+ "OPENAI_API_KEY": "your-openai-api-key",
419
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
420
+ }
421
+ }
422
+ }
423
+ }
424
+ ```
425
+
426
+ </details>
427
+
428
+ <details>
429
+ <summary><strong>VS Code</strong></summary>
430
+
431
+ The Claude Context MCP server can be used with VS Code through MCP-compatible extensions. Add the following configuration to your VS Code MCP settings:
432
+
433
+ ```json
434
+ {
435
+ "mcpServers": {
436
+ "claude-context": {
437
+ "command": "npx",
438
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"],
439
+ "env": {
440
+ "OPENAI_API_KEY": "your-openai-api-key",
441
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
442
+ }
443
+ }
444
+ }
445
+ }
446
+ ```
447
+
448
+ </details>
449
+
450
+ <details>
451
+ <summary><strong>Cherry Studio</strong></summary>
452
+
453
+ Cherry Studio allows for visual MCP server configuration through its settings interface. While it doesn't directly support manual JSON configuration, you can add a new server via the GUI:
454
+
455
+ 1. Navigate to **Settings → MCP Servers → Add Server**.
456
+ 2. Fill in the server details:
457
+ - **Name**: `claude-context`
458
+ - **Type**: `STDIO`
459
+ - **Command**: `npx`
460
+ - **Arguments**: `["@mcampa/ai-context-mcp@latest"]`
461
+ - **Environment Variables**:
462
+ - `OPENAI_API_KEY`: `your-openai-api-key`
463
+ - `MILVUS_TOKEN`: `your-zilliz-cloud-api-key`
464
+ 3. Save the configuration to activate the server.
465
+
466
+ </details>
467
+
468
+ <details>
469
+ <summary><strong>Cline</strong></summary>
470
+
471
+ Cline uses a JSON configuration file to manage MCP servers. To integrate the provided MCP server configuration:
472
+
473
+ 1. Open Cline and click on the **MCP Servers** icon in the top navigation bar.
474
+
475
+ 2. Select the **Installed** tab, then click **Advanced MCP Settings**.
476
+
477
+ 3. In the `cline_mcp_settings.json` file, add the following configuration:
478
+
479
+ ```json
480
+ {
481
+ "mcpServers": {
482
+ "claude-context": {
483
+ "command": "npx",
484
+ "args": ["@mcampa/ai-context-mcp@latest"],
485
+ "env": {
486
+ "OPENAI_API_KEY": "your-openai-api-key",
487
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
488
+ }
489
+ }
490
+ }
491
+ }
492
+ ```
493
+
494
+ 4. Save the file.
495
+
496
+ </details>
497
+
498
+ <details>
499
+ <summary><strong>Augment</strong></summary>
500
+
501
+ To configure Claude Context MCP in Augment Code, you can use either the graphical interface or manual configuration.
502
+
503
+ #### **A. Using the Augment Code UI**
504
+
505
+ 1. Click the hamburger menu.
506
+
507
+ 2. Select **Settings**.
508
+
509
+ 3. Navigate to the **Tools** section.
510
+
511
+ 4. Click the **+ Add MCP** button.
512
+
513
+ 5. Enter the following command:
514
+
515
+ ```
516
+ npx @mcampa/ai-context-mcp@latest
517
+ ```
518
+
519
+ 6. Name the MCP: **Claude Context**.
520
+
521
+ 7. Click the **Add** button.
522
+
523
+ ---
524
+
525
+ #### **B. Manual Configuration**
526
+
527
+ 1. Press Cmd/Ctrl Shift P or go to the hamburger menu in the Augment panel
528
+ 2. Select Edit Settings
529
+ 3. Under Advanced, click Edit in settings.json
530
+ 4. Add the server configuration to the `mcpServers` array in the `augment.advanced` object
531
+
532
+ ```json
533
+ "augment.advanced": {
534
+ "mcpServers": [
535
+ {
536
+ "name": "claude-context",
537
+ "command": "npx",
538
+ "args": ["-y", "@mcampa/ai-context-mcp@latest"]
539
+ }
540
+ ]
541
+ }
542
+ ```
543
+
544
+ </details>
545
+
546
+ <details>
547
+ <summary><strong>Roo Code</strong></summary>
548
+
549
+ Roo Code utilizes a JSON configuration file for MCP servers:
550
+
551
+ 1. Open Roo Code and navigate to **Settings → MCP Servers → Edit Global Config**.
552
+
553
+ 2. In the `mcp_settings.json` file, add the following configuration:
554
+
555
+ ```json
556
+ {
557
+ "mcpServers": {
558
+ "claude-context": {
559
+ "command": "npx",
560
+ "args": ["@mcampa/ai-context-mcp@latest"],
561
+ "env": {
562
+ "OPENAI_API_KEY": "your-openai-api-key",
563
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
564
+ }
565
+ }
566
+ }
567
+ }
568
+ ```
569
+
570
+ 3. Save the file to activate the server.
571
+
572
+ </details>
573
+
574
+ <details>
575
+ <summary><strong>Zencoder</strong></summary>
576
+
577
+ Zencoder offers support for MCP tools and servers in both its JetBrains and VS Code plugin versions.
578
+
579
+ 1. Go to the Zencoder menu (...)
580
+ 2. From the dropdown menu, select `Tools`
581
+ 3. Click on the `Add Custom MCP`
582
+ 4. Add the name (i.e. `Claude Context` and server configuration from below, and make sure to hit the `Install` button
583
+
584
+ ```json
585
+ {
586
+ "command": "npx",
587
+ "args": ["@mcampa/ai-context-mcp@latest"],
588
+ "env": {
589
+ "OPENAI_API_KEY": "your-openai-api-key",
590
+ "MILVUS_ADDRESS": "your-zilliz-cloud-public-endpoint",
591
+ "MILVUS_TOKEN": "your-zilliz-cloud-api-key"
592
+ }
593
+ }
594
+ ```
595
+
596
+ 5. Save the server by hitting the `Install` button.
597
+
598
+ </details>
599
+
600
+ <details>
601
+ <summary><strong>LangChain/LangGraph</strong></summary>
602
+
603
+ For LangChain/LangGraph integration examples, see [this example](https://github.com/mcampa/ai-context/blob/643796a0d30e706a2a0dff3d55621c9b5d831807/evaluation/retrieval/custom.py#L88).
604
+
605
+ </details>
606
+
607
+ <details>
608
+ <summary><strong>Other MCP Clients</strong></summary>
609
+
610
+ The server uses stdio transport and follows the standard MCP protocol. It can be integrated with any MCP-compatible client by running:
611
+
612
+ ```bash
613
+ npx @mcampa/ai-context-mcp@latest
614
+ ```
615
+
616
+ </details>
617
+
618
+ ## Features
619
+
620
+ - 🔌 **MCP Protocol Compliance**: Full compatibility with MCP-enabled AI assistants and agents
621
+ - 🔍 **Hybrid Code Search**: Natural language queries using advanced hybrid search (BM25 + dense vector) to find relevant code snippets
622
+ - 📁 **Codebase Indexing**: Index entire codebases for fast hybrid search across millions of lines of code
623
+ - 🔄 **Incremental Indexing**: Efficiently re-index only changed files using Merkle trees for auto-sync
624
+ - 🧩 **Intelligent Code Chunking**: AST-based code analysis for syntax-aware chunking with automatic fallback
625
+ - 🗄️ **Scalable**: Integrates with Zilliz Cloud for scalable vector search, no matter how large your codebase is
626
+ - 🛠️ **Customizable**: Configure file extensions, ignore patterns, and embedding models
627
+ - ⚡ **Real-time**: Interactive indexing and searching with progress feedback
628
+
629
+ ## Available Tools
630
+
631
+ ### 1. `index_codebase`
632
+
633
+ Index a codebase directory for hybrid search (BM25 + dense vector).
634
+
635
+ **Parameters:**
636
+
637
+ - `path` (required): Absolute path to the codebase directory to index
638
+ - `force` (optional): Force re-indexing even if already indexed (default: false)
639
+ - `splitter` (optional): Code splitter to use - 'ast' for syntax-aware splitting with automatic fallback, 'langchain' for character-based splitting (default: "ast")
640
+ - `customExtensions` (optional): Additional file extensions to include beyond defaults (e.g., ['.vue', '.svelte', '.astro']). Extensions should include the dot prefix or will be automatically added (default: [])
641
+ - `ignorePatterns` (optional): Additional ignore patterns to exclude specific files/directories beyond defaults (e.g., ['static/**', '*.tmp', 'private/**']) (default: [])
642
+
643
+ ### 2. `search_code`
644
+
645
+ Search the indexed codebase using natural language queries with hybrid search (BM25 + dense vector).
646
+
647
+ **Parameters:**
648
+
649
+ - `path` (required): Absolute path to the codebase directory to search in
650
+ - `query` (required): Natural language query to search for in the codebase
651
+ - `limit` (optional): Maximum number of results to return (default: 10, max: 50)
652
+ - `extensionFilter` (optional): List of file extensions to filter results (e.g., ['.ts', '.py']) (default: [])
653
+
654
+ ### 3. `clear_index`
655
+
656
+ Clear the search index for a specific codebase.
657
+
658
+ **Parameters:**
659
+
660
+ - `path` (required): Absolute path to the codebase directory to clear index for
661
+
662
+ ### 4. `get_indexing_status`
663
+
664
+ Get the current indexing status of a codebase. Shows progress percentage for actively indexing codebases and completion status for indexed codebases.
665
+
666
+ **Parameters:**
667
+
668
+ - `path` (required): Absolute path to the codebase directory to check status for
669
+
670
+ ## Contributing
671
+
672
+ This package is part of the Claude Context monorepo. Please see:
673
+
674
+ - [Main Contributing Guide](../../CONTRIBUTING.md) - General contribution guidelines
675
+ - [MCP Package Contributing](CONTRIBUTING.md) - Specific development guide for this package
676
+
677
+ ## Related Projects
678
+
679
+ - **[@mcampa/ai-context-core](../core)** - Core indexing engine used by this MCP server
680
+ - **[VSCode Extension](../vscode-extension)** - Alternative VSCode integration
681
+ - [Model Context Protocol](https://modelcontextprotocol.io/) - Official MCP documentation
682
+
683
+ ## License
684
+
685
+ MIT - See [LICENSE](../../LICENSE) for details