@mastra/pg 1.0.0-beta.8 → 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +1638 -0
- package/dist/docs/README.md +36 -0
- package/dist/docs/SKILL.md +37 -0
- package/dist/docs/SOURCE_MAP.json +6 -0
- package/dist/docs/memory/01-storage.md +233 -0
- package/dist/docs/memory/02-working-memory.md +390 -0
- package/dist/docs/memory/03-semantic-recall.md +233 -0
- package/dist/docs/memory/04-reference.md +133 -0
- package/dist/docs/processors/01-reference.md +297 -0
- package/dist/docs/rag/01-overview.md +74 -0
- package/dist/docs/rag/02-vector-databases.md +643 -0
- package/dist/docs/rag/03-retrieval.md +548 -0
- package/dist/docs/rag/04-reference.md +369 -0
- package/dist/docs/storage/01-reference.md +828 -0
- package/dist/docs/tools/01-reference.md +440 -0
- package/dist/docs/vectors/01-reference.md +307 -0
- package/dist/index.cjs +3253 -2225
- package/dist/index.cjs.map +1 -1
- package/dist/index.d.ts +1 -1
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +3250 -2227
- package/dist/index.js.map +1 -1
- package/dist/shared/config.d.ts +102 -32
- package/dist/shared/config.d.ts.map +1 -1
- package/dist/storage/client.d.ts +91 -0
- package/dist/storage/client.d.ts.map +1 -0
- package/dist/storage/db/index.d.ts +216 -0
- package/dist/storage/db/index.d.ts.map +1 -0
- package/dist/storage/domains/agents/index.d.ts +22 -8
- package/dist/storage/domains/agents/index.d.ts.map +1 -1
- package/dist/storage/domains/memory/index.d.ts +32 -12
- package/dist/storage/domains/memory/index.d.ts.map +1 -1
- package/dist/storage/domains/observability/index.d.ts +52 -36
- package/dist/storage/domains/observability/index.d.ts.map +1 -1
- package/dist/storage/domains/scores/index.d.ts +25 -28
- package/dist/storage/domains/scores/index.d.ts.map +1 -1
- package/dist/storage/domains/utils.d.ts +1 -5
- package/dist/storage/domains/utils.d.ts.map +1 -1
- package/dist/storage/domains/workflows/index.d.ts +26 -12
- package/dist/storage/domains/workflows/index.d.ts.map +1 -1
- package/dist/storage/index.d.ts +52 -195
- package/dist/storage/index.d.ts.map +1 -1
- package/dist/storage/performance-indexes/performance-test.d.ts +3 -1
- package/dist/storage/performance-indexes/performance-test.d.ts.map +1 -1
- package/dist/storage/test-utils.d.ts.map +1 -1
- package/dist/vector/index.d.ts.map +1 -1
- package/dist/vector/sql-builder.d.ts.map +1 -1
- package/package.json +11 -11
- package/dist/storage/domains/operations/index.d.ts +0 -119
- package/dist/storage/domains/operations/index.d.ts.map +0 -1
|
@@ -0,0 +1,233 @@
|
|
|
1
|
+
> Learn how to use semantic recall in Mastra to retrieve relevant messages from past conversations using vector search and embeddings.
|
|
2
|
+
|
|
3
|
+
# Semantic Recall
|
|
4
|
+
|
|
5
|
+
If you ask your friend what they did last weekend, they will search in their memory for events associated with "last weekend" and then tell you what they did. That's sort of like how semantic recall works in Mastra.
|
|
6
|
+
|
|
7
|
+
> **Watch 📹**
|
|
8
|
+
|
|
9
|
+
What semantic recall is, how it works, and how to configure it in Mastra → [YouTube (5 minutes)](https://youtu.be/UVZtK8cK8xQ)
|
|
10
|
+
|
|
11
|
+
## How Semantic Recall Works
|
|
12
|
+
|
|
13
|
+
Semantic recall is RAG-based search that helps agents maintain context across longer interactions when messages are no longer within [recent message history](./message-history).
|
|
14
|
+
|
|
15
|
+
It uses vector embeddings of messages for similarity search, integrates with various vector stores, and has configurable context windows around retrieved messages.
|
|
16
|
+
|
|
17
|
+

|
|
18
|
+
|
|
19
|
+
When it's enabled, new messages are used to query a vector DB for semantically similar messages.
|
|
20
|
+
|
|
21
|
+
After getting a response from the LLM, all new messages (user, assistant, and tool calls/results) are inserted into the vector DB to be recalled in later interactions.
|
|
22
|
+
|
|
23
|
+
## Quick Start
|
|
24
|
+
|
|
25
|
+
Semantic recall is enabled by default, so if you give your agent memory it will be included:
|
|
26
|
+
|
|
27
|
+
```typescript {9}
|
|
28
|
+
import { Agent } from "@mastra/core/agent";
|
|
29
|
+
import { Memory } from "@mastra/memory";
|
|
30
|
+
|
|
31
|
+
const agent = new Agent({
|
|
32
|
+
id: "support-agent",
|
|
33
|
+
name: "SupportAgent",
|
|
34
|
+
instructions: "You are a helpful support agent.",
|
|
35
|
+
model: "openai/gpt-5.1",
|
|
36
|
+
memory: new Memory(),
|
|
37
|
+
});
|
|
38
|
+
```
|
|
39
|
+
|
|
40
|
+
## Storage configuration
|
|
41
|
+
|
|
42
|
+
Semantic recall relies on a [storage and vector db](https://mastra.ai/reference/v1/memory/memory-class) to store messages and their embeddings.
|
|
43
|
+
|
|
44
|
+
```ts {8-16}
|
|
45
|
+
import { Memory } from "@mastra/memory";
|
|
46
|
+
import { Agent } from "@mastra/core/agent";
|
|
47
|
+
import { LibSQLStore, LibSQLVector } from "@mastra/libsql";
|
|
48
|
+
|
|
49
|
+
const agent = new Agent({
|
|
50
|
+
memory: new Memory({
|
|
51
|
+
// this is the default storage db if omitted
|
|
52
|
+
storage: new LibSQLStore({
|
|
53
|
+
id: 'agent-storage',
|
|
54
|
+
url: "file:./local.db",
|
|
55
|
+
}),
|
|
56
|
+
// this is the default vector db if omitted
|
|
57
|
+
vector: new LibSQLVector({
|
|
58
|
+
id: 'agent-vector',
|
|
59
|
+
url: "file:./local.db",
|
|
60
|
+
}),
|
|
61
|
+
}),
|
|
62
|
+
});
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
Each vector store page below includes installation instructions, configuration parameters, and usage examples:
|
|
66
|
+
|
|
67
|
+
- [Astra](https://mastra.ai/reference/v1/vectors/astra)
|
|
68
|
+
- [Chroma](https://mastra.ai/reference/v1/vectors/chroma)
|
|
69
|
+
- [Cloudflare Vectorize](https://mastra.ai/reference/v1/vectors/vectorize)
|
|
70
|
+
- [Convex](https://mastra.ai/reference/v1/vectors/convex)
|
|
71
|
+
- [Couchbase](https://mastra.ai/reference/v1/vectors/couchbase)
|
|
72
|
+
- [DuckDB](https://mastra.ai/reference/v1/vectors/duckdb)
|
|
73
|
+
- [Elasticsearch](https://mastra.ai/reference/v1/vectors/elasticsearch)
|
|
74
|
+
- [LanceDB](https://mastra.ai/reference/v1/vectors/lance)
|
|
75
|
+
- [libSQL](https://mastra.ai/reference/v1/vectors/libsql)
|
|
76
|
+
- [MongoDB](https://mastra.ai/reference/v1/vectors/mongodb)
|
|
77
|
+
- [OpenSearch](https://mastra.ai/reference/v1/vectors/opensearch)
|
|
78
|
+
- [Pinecone](https://mastra.ai/reference/v1/vectors/pinecone)
|
|
79
|
+
- [PostgreSQL](https://mastra.ai/reference/v1/vectors/pg)
|
|
80
|
+
- [Qdrant](https://mastra.ai/reference/v1/vectors/qdrant)
|
|
81
|
+
- [S3 Vectors](https://mastra.ai/reference/v1/vectors/s3vectors)
|
|
82
|
+
- [Turbopuffer](https://mastra.ai/reference/v1/vectors/turbopuffer)
|
|
83
|
+
- [Upstash](https://mastra.ai/reference/v1/vectors/upstash)
|
|
84
|
+
|
|
85
|
+
## Recall configuration
|
|
86
|
+
|
|
87
|
+
The three main parameters that control semantic recall behavior are:
|
|
88
|
+
|
|
89
|
+
1. **topK**: How many semantically similar messages to retrieve
|
|
90
|
+
2. **messageRange**: How much surrounding context to include with each match
|
|
91
|
+
3. **scope**: Whether to search within the current thread or across all threads owned by a resource (the default is resource scope).
|
|
92
|
+
|
|
93
|
+
```typescript {5-7}
|
|
94
|
+
const agent = new Agent({
|
|
95
|
+
memory: new Memory({
|
|
96
|
+
options: {
|
|
97
|
+
semanticRecall: {
|
|
98
|
+
topK: 3, // Retrieve 3 most similar messages
|
|
99
|
+
messageRange: 2, // Include 2 messages before and after each match
|
|
100
|
+
scope: "resource", // Search across all threads for this user (default setting if omitted)
|
|
101
|
+
},
|
|
102
|
+
},
|
|
103
|
+
}),
|
|
104
|
+
});
|
|
105
|
+
```
|
|
106
|
+
|
|
107
|
+
## Embedder configuration
|
|
108
|
+
|
|
109
|
+
Semantic recall relies on an [embedding model](https://mastra.ai/reference/v1/memory/memory-class) to convert messages into embeddings. Mastra supports embedding models through the model router using `provider/model` strings, or you can use any [embedding model](https://sdk.vercel.ai/docs/ai-sdk-core/embeddings) compatible with the AI SDK.
|
|
110
|
+
|
|
111
|
+
#### Using the Model Router (Recommended)
|
|
112
|
+
|
|
113
|
+
The simplest way is to use a `provider/model` string with autocomplete support:
|
|
114
|
+
|
|
115
|
+
```ts {7}
|
|
116
|
+
import { Memory } from "@mastra/memory";
|
|
117
|
+
import { Agent } from "@mastra/core/agent";
|
|
118
|
+
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
|
|
119
|
+
|
|
120
|
+
const agent = new Agent({
|
|
121
|
+
memory: new Memory({
|
|
122
|
+
embedder: new ModelRouterEmbeddingModel("openai/text-embedding-3-small"),
|
|
123
|
+
}),
|
|
124
|
+
});
|
|
125
|
+
```
|
|
126
|
+
|
|
127
|
+
Supported embedding models:
|
|
128
|
+
|
|
129
|
+
- **OpenAI**: `text-embedding-3-small`, `text-embedding-3-large`, `text-embedding-ada-002`
|
|
130
|
+
- **Google**: `gemini-embedding-001`, `text-embedding-004`
|
|
131
|
+
|
|
132
|
+
The model router automatically handles API key detection from environment variables (`OPENAI_API_KEY`, `GOOGLE_GENERATIVE_AI_API_KEY`).
|
|
133
|
+
|
|
134
|
+
#### Using AI SDK Packages
|
|
135
|
+
|
|
136
|
+
You can also use AI SDK embedding models directly:
|
|
137
|
+
|
|
138
|
+
```ts {2,7}
|
|
139
|
+
import { Memory } from "@mastra/memory";
|
|
140
|
+
import { Agent } from "@mastra/core/agent";
|
|
141
|
+
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
|
|
142
|
+
|
|
143
|
+
const agent = new Agent({
|
|
144
|
+
memory: new Memory({
|
|
145
|
+
embedder: new ModelRouterEmbeddingModel("openai/text-embedding-3-small"),
|
|
146
|
+
}),
|
|
147
|
+
});
|
|
148
|
+
```
|
|
149
|
+
|
|
150
|
+
#### Using FastEmbed (Local)
|
|
151
|
+
|
|
152
|
+
To use FastEmbed (a local embedding model), install `@mastra/fastembed`:
|
|
153
|
+
|
|
154
|
+
```bash npm2yarn
|
|
155
|
+
npm install @mastra/fastembed@beta
|
|
156
|
+
```
|
|
157
|
+
|
|
158
|
+
Then configure it in your memory:
|
|
159
|
+
|
|
160
|
+
```ts {3,7}
|
|
161
|
+
import { Memory } from "@mastra/memory";
|
|
162
|
+
import { Agent } from "@mastra/core/agent";
|
|
163
|
+
import { fastembed } from "@mastra/fastembed";
|
|
164
|
+
|
|
165
|
+
const agent = new Agent({
|
|
166
|
+
memory: new Memory({
|
|
167
|
+
embedder: fastembed,
|
|
168
|
+
}),
|
|
169
|
+
});
|
|
170
|
+
```
|
|
171
|
+
|
|
172
|
+
## PostgreSQL Index Optimization
|
|
173
|
+
|
|
174
|
+
When using PostgreSQL as your vector store, you can optimize semantic recall performance by configuring the vector index. This is particularly important for large-scale deployments with thousands of messages.
|
|
175
|
+
|
|
176
|
+
PostgreSQL supports both IVFFlat and HNSW indexes. By default, Mastra creates an IVFFlat index, but HNSW indexes typically provide better performance, especially with OpenAI embeddings which use inner product distance.
|
|
177
|
+
|
|
178
|
+
```typescript {18-23}
|
|
179
|
+
import { Memory } from "@mastra/memory";
|
|
180
|
+
import { PgStore, PgVector } from "@mastra/pg";
|
|
181
|
+
|
|
182
|
+
const agent = new Agent({
|
|
183
|
+
memory: new Memory({
|
|
184
|
+
storage: new PgStore({
|
|
185
|
+
id: 'agent-storage',
|
|
186
|
+
connectionString: process.env.DATABASE_URL,
|
|
187
|
+
}),
|
|
188
|
+
vector: new PgVector({
|
|
189
|
+
id: 'agent-vector',
|
|
190
|
+
connectionString: process.env.DATABASE_URL,
|
|
191
|
+
}),
|
|
192
|
+
options: {
|
|
193
|
+
semanticRecall: {
|
|
194
|
+
topK: 5,
|
|
195
|
+
messageRange: 2,
|
|
196
|
+
indexConfig: {
|
|
197
|
+
type: "hnsw", // Use HNSW for better performance
|
|
198
|
+
metric: "dotproduct", // Best for OpenAI embeddings
|
|
199
|
+
m: 16, // Number of bi-directional links (default: 16)
|
|
200
|
+
efConstruction: 64, // Size of candidate list during construction (default: 64)
|
|
201
|
+
},
|
|
202
|
+
},
|
|
203
|
+
},
|
|
204
|
+
}),
|
|
205
|
+
});
|
|
206
|
+
```
|
|
207
|
+
|
|
208
|
+
For detailed information about index configuration options and performance tuning, see the [PgVector configuration guide](https://mastra.ai/reference/v1/vectors/pg#index-configuration-guide).
|
|
209
|
+
|
|
210
|
+
## Disabling
|
|
211
|
+
|
|
212
|
+
There is a performance impact to using semantic recall. New messages are converted into embeddings and used to query a vector database before new messages are sent to the LLM.
|
|
213
|
+
|
|
214
|
+
Semantic recall is enabled by default but can be disabled when not needed:
|
|
215
|
+
|
|
216
|
+
```typescript {4}
|
|
217
|
+
const agent = new Agent({
|
|
218
|
+
memory: new Memory({
|
|
219
|
+
options: {
|
|
220
|
+
semanticRecall: false,
|
|
221
|
+
},
|
|
222
|
+
}),
|
|
223
|
+
});
|
|
224
|
+
```
|
|
225
|
+
|
|
226
|
+
You might want to disable semantic recall in scenarios like:
|
|
227
|
+
|
|
228
|
+
- When message history provides sufficient context for the current conversation.
|
|
229
|
+
- In performance-sensitive applications, like realtime two-way audio, where the added latency of creating embeddings and running vector queries is noticeable.
|
|
230
|
+
|
|
231
|
+
## Viewing Recalled Messages
|
|
232
|
+
|
|
233
|
+
When tracing is enabled, any messages retrieved via semantic recall will appear in the agent's trace output, alongside recent message history (if configured).
|
|
@@ -0,0 +1,133 @@
|
|
|
1
|
+
# Memory API Reference
|
|
2
|
+
|
|
3
|
+
> API reference for memory - 1 entries
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
---
|
|
7
|
+
|
|
8
|
+
## Reference: Memory Class
|
|
9
|
+
|
|
10
|
+
> Documentation for the `Memory` class in Mastra, which provides a robust system for managing conversation history and thread-based message storage.
|
|
11
|
+
|
|
12
|
+
The `Memory` class provides a robust system for managing conversation history and thread-based message storage in Mastra. It enables persistent storage of conversations, semantic search capabilities, and efficient message retrieval. You must configure a storage provider for conversation history, and if you enable semantic recall you will also need to provide a vector store and embedder.
|
|
13
|
+
|
|
14
|
+
## Usage example
|
|
15
|
+
|
|
16
|
+
```typescript title="src/mastra/agents/test-agent.ts"
|
|
17
|
+
import { Memory } from "@mastra/memory";
|
|
18
|
+
import { Agent } from "@mastra/core/agent";
|
|
19
|
+
|
|
20
|
+
export const agent = new Agent({
|
|
21
|
+
name: "test-agent",
|
|
22
|
+
instructions: "You are an agent with memory.",
|
|
23
|
+
model: "openai/gpt-5.1",
|
|
24
|
+
memory: new Memory({
|
|
25
|
+
options: {
|
|
26
|
+
workingMemory: {
|
|
27
|
+
enabled: true,
|
|
28
|
+
},
|
|
29
|
+
},
|
|
30
|
+
}),
|
|
31
|
+
});
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
> To enable `workingMemory` on an agent, you’ll need a storage provider configured on your main Mastra instance. See [Mastra class](../core/mastra-class) for more information.
|
|
35
|
+
|
|
36
|
+
## Constructor parameters
|
|
37
|
+
|
|
38
|
+
### Options parameters
|
|
39
|
+
|
|
40
|
+
## Returns
|
|
41
|
+
|
|
42
|
+
## Extended usage example
|
|
43
|
+
|
|
44
|
+
```typescript title="src/mastra/agents/test-agent.ts"
|
|
45
|
+
import { Memory } from "@mastra/memory";
|
|
46
|
+
import { Agent } from "@mastra/core/agent";
|
|
47
|
+
import { LibSQLStore, LibSQLVector } from "@mastra/libsql";
|
|
48
|
+
|
|
49
|
+
export const agent = new Agent({
|
|
50
|
+
name: "test-agent",
|
|
51
|
+
instructions: "You are an agent with memory.",
|
|
52
|
+
model: "openai/gpt-5.1",
|
|
53
|
+
memory: new Memory({
|
|
54
|
+
storage: new LibSQLStore({
|
|
55
|
+
id: 'test-agent-storage',
|
|
56
|
+
url: "file:./working-memory.db",
|
|
57
|
+
}),
|
|
58
|
+
vector: new LibSQLVector({
|
|
59
|
+
id: 'test-agent-vector',
|
|
60
|
+
url: "file:./vector-memory.db",
|
|
61
|
+
}),
|
|
62
|
+
options: {
|
|
63
|
+
lastMessages: 10,
|
|
64
|
+
semanticRecall: {
|
|
65
|
+
topK: 3,
|
|
66
|
+
messageRange: 2,
|
|
67
|
+
scope: "resource",
|
|
68
|
+
},
|
|
69
|
+
workingMemory: {
|
|
70
|
+
enabled: true,
|
|
71
|
+
},
|
|
72
|
+
generateTitle: true,
|
|
73
|
+
},
|
|
74
|
+
}),
|
|
75
|
+
});
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
## PostgreSQL with index configuration
|
|
79
|
+
|
|
80
|
+
```typescript title="src/mastra/agents/pg-agent.ts"
|
|
81
|
+
import { Memory } from "@mastra/memory";
|
|
82
|
+
import { Agent } from "@mastra/core/agent";
|
|
83
|
+
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
|
|
84
|
+
import { PgStore, PgVector } from "@mastra/pg";
|
|
85
|
+
|
|
86
|
+
export const agent = new Agent({
|
|
87
|
+
name: "pg-agent",
|
|
88
|
+
instructions: "You are an agent with optimized PostgreSQL memory.",
|
|
89
|
+
model: "openai/gpt-5.1",
|
|
90
|
+
memory: new Memory({
|
|
91
|
+
storage: new PgStore({
|
|
92
|
+
id: 'pg-agent-storage',
|
|
93
|
+
connectionString: process.env.DATABASE_URL,
|
|
94
|
+
}),
|
|
95
|
+
vector: new PgVector({
|
|
96
|
+
id: 'pg-agent-vector',
|
|
97
|
+
connectionString: process.env.DATABASE_URL,
|
|
98
|
+
}),
|
|
99
|
+
embedder: new ModelRouterEmbeddingModel("openai/text-embedding-3-small"),
|
|
100
|
+
options: {
|
|
101
|
+
lastMessages: 20,
|
|
102
|
+
semanticRecall: {
|
|
103
|
+
topK: 5,
|
|
104
|
+
messageRange: 3,
|
|
105
|
+
scope: "resource",
|
|
106
|
+
indexConfig: {
|
|
107
|
+
type: "hnsw", // Use HNSW for better performance
|
|
108
|
+
metric: "dotproduct", // Optimal for OpenAI embeddings
|
|
109
|
+
m: 16, // Number of bi-directional links
|
|
110
|
+
efConstruction: 64, // Construction-time candidate list size
|
|
111
|
+
},
|
|
112
|
+
},
|
|
113
|
+
workingMemory: {
|
|
114
|
+
enabled: true,
|
|
115
|
+
},
|
|
116
|
+
},
|
|
117
|
+
}),
|
|
118
|
+
});
|
|
119
|
+
```
|
|
120
|
+
|
|
121
|
+
### Related
|
|
122
|
+
|
|
123
|
+
- [Getting Started with Memory](https://mastra.ai/docs/v1/memory/overview)
|
|
124
|
+
- [Semantic Recall](https://mastra.ai/docs/v1/memory/semantic-recall)
|
|
125
|
+
- [Working Memory](https://mastra.ai/docs/v1/memory/working-memory)
|
|
126
|
+
- [Memory Processors](https://mastra.ai/docs/v1/memory/memory-processors)
|
|
127
|
+
- [createThread](https://mastra.ai/reference/v1/memory/createThread)
|
|
128
|
+
- [recall](https://mastra.ai/reference/v1/memory/recall)
|
|
129
|
+
- [getThreadById](https://mastra.ai/reference/v1/memory/getThreadById)
|
|
130
|
+
- [listThreads](https://mastra.ai/reference/v1/memory/listThreads)
|
|
131
|
+
- [deleteMessages](https://mastra.ai/reference/v1/memory/deleteMessages)
|
|
132
|
+
- [cloneThread](https://mastra.ai/reference/v1/memory/cloneThread)
|
|
133
|
+
- [Clone Utility Methods](https://mastra.ai/reference/v1/memory/clone-utilities)
|
|
@@ -0,0 +1,297 @@
|
|
|
1
|
+
# Processors API Reference
|
|
2
|
+
|
|
3
|
+
> API reference for processors - 3 entries
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
---
|
|
7
|
+
|
|
8
|
+
## Reference: Message History Processor
|
|
9
|
+
|
|
10
|
+
> Documentation for the MessageHistory processor in Mastra, which handles retrieval and persistence of conversation history.
|
|
11
|
+
|
|
12
|
+
The `MessageHistory` is a **hybrid processor** that handles both retrieval and persistence of message history. On input, it fetches historical messages from storage and prepends them to the conversation. On output, it persists new messages to storage.
|
|
13
|
+
|
|
14
|
+
## Usage example
|
|
15
|
+
|
|
16
|
+
```typescript
|
|
17
|
+
import { MessageHistory } from "@mastra/core/processors";
|
|
18
|
+
|
|
19
|
+
const processor = new MessageHistory({
|
|
20
|
+
storage: memoryStorage,
|
|
21
|
+
lastMessages: 50,
|
|
22
|
+
});
|
|
23
|
+
```
|
|
24
|
+
|
|
25
|
+
## Constructor parameters
|
|
26
|
+
|
|
27
|
+
### Options
|
|
28
|
+
|
|
29
|
+
## Returns
|
|
30
|
+
|
|
31
|
+
## Extended usage example
|
|
32
|
+
|
|
33
|
+
```typescript title="src/mastra/agents/memory-agent.ts"
|
|
34
|
+
import { Agent } from "@mastra/core/agent";
|
|
35
|
+
import { MessageHistory } from "@mastra/core/processors";
|
|
36
|
+
import { PostgresStorage } from "@mastra/pg";
|
|
37
|
+
|
|
38
|
+
const storage = new PostgresStorage({
|
|
39
|
+
connectionString: process.env.DATABASE_URL,
|
|
40
|
+
});
|
|
41
|
+
|
|
42
|
+
export const agent = new Agent({
|
|
43
|
+
name: "memory-agent",
|
|
44
|
+
instructions: "You are a helpful assistant with conversation memory",
|
|
45
|
+
model: "openai:gpt-4o",
|
|
46
|
+
inputProcessors: [
|
|
47
|
+
new MessageHistory({
|
|
48
|
+
storage,
|
|
49
|
+
lastMessages: 100,
|
|
50
|
+
}),
|
|
51
|
+
],
|
|
52
|
+
outputProcessors: [
|
|
53
|
+
new MessageHistory({
|
|
54
|
+
storage,
|
|
55
|
+
}),
|
|
56
|
+
],
|
|
57
|
+
});
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
## Behavior
|
|
61
|
+
|
|
62
|
+
### Input processing
|
|
63
|
+
1. Retrieves `threadId` from the request context
|
|
64
|
+
2. Fetches historical messages from storage (ordered by creation date, descending)
|
|
65
|
+
3. Filters out system messages (they should not be stored in the database)
|
|
66
|
+
4. Merges historical messages with incoming messages, avoiding duplicates by ID
|
|
67
|
+
5. Adds historical messages with `source: 'memory'` tag
|
|
68
|
+
|
|
69
|
+
### Output processing
|
|
70
|
+
1. Retrieves `threadId` from the request context
|
|
71
|
+
2. Skips persistence if `readOnly` is set in memory config
|
|
72
|
+
3. Filters out incomplete tool calls from messages
|
|
73
|
+
4. Persists new user input and assistant response messages to storage
|
|
74
|
+
5. Updates the thread's `updatedAt` timestamp
|
|
75
|
+
|
|
76
|
+
## Related
|
|
77
|
+
|
|
78
|
+
- [Guardrails](https://mastra.ai/docs/v1/agents/guardrails)
|
|
79
|
+
|
|
80
|
+
---
|
|
81
|
+
|
|
82
|
+
## Reference: Semantic Recall Processor
|
|
83
|
+
|
|
84
|
+
> Documentation for the SemanticRecall processor in Mastra, which enables semantic search over conversation history using vector embeddings.
|
|
85
|
+
|
|
86
|
+
The `SemanticRecall` is a **hybrid processor** that enables semantic search over conversation history using vector embeddings. On input, it performs semantic search to find relevant historical messages. On output, it creates embeddings for new messages to enable future semantic retrieval.
|
|
87
|
+
|
|
88
|
+
## Usage example
|
|
89
|
+
|
|
90
|
+
```typescript
|
|
91
|
+
import { SemanticRecall } from "@mastra/core/processors";
|
|
92
|
+
import { openai } from "@ai-sdk/openai";
|
|
93
|
+
|
|
94
|
+
const processor = new SemanticRecall({
|
|
95
|
+
storage: memoryStorage,
|
|
96
|
+
vector: vectorStore,
|
|
97
|
+
embedder: openai.embedding("text-embedding-3-small"),
|
|
98
|
+
topK: 5,
|
|
99
|
+
messageRange: 2,
|
|
100
|
+
scope: "resource",
|
|
101
|
+
});
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
## Constructor parameters
|
|
105
|
+
|
|
106
|
+
### Options
|
|
107
|
+
|
|
108
|
+
## Returns
|
|
109
|
+
|
|
110
|
+
## Extended usage example
|
|
111
|
+
|
|
112
|
+
```typescript title="src/mastra/agents/semantic-memory-agent.ts"
|
|
113
|
+
import { Agent } from "@mastra/core/agent";
|
|
114
|
+
import { SemanticRecall, MessageHistory } from "@mastra/core/processors";
|
|
115
|
+
import { PostgresStorage } from "@mastra/pg";
|
|
116
|
+
import { PgVector } from "@mastra/pg";
|
|
117
|
+
import { openai } from "@ai-sdk/openai";
|
|
118
|
+
|
|
119
|
+
const storage = new PostgresStorage({
|
|
120
|
+
id: 'pg-storage',
|
|
121
|
+
connectionString: process.env.DATABASE_URL,
|
|
122
|
+
});
|
|
123
|
+
|
|
124
|
+
const vector = new PgVector({
|
|
125
|
+
id: 'pg-vector',
|
|
126
|
+
connectionString: process.env.DATABASE_URL,
|
|
127
|
+
});
|
|
128
|
+
|
|
129
|
+
const semanticRecall = new SemanticRecall({
|
|
130
|
+
storage,
|
|
131
|
+
vector,
|
|
132
|
+
embedder: openai.embedding("text-embedding-3-small"),
|
|
133
|
+
topK: 5,
|
|
134
|
+
messageRange: { before: 2, after: 1 },
|
|
135
|
+
scope: "resource",
|
|
136
|
+
threshold: 0.7,
|
|
137
|
+
});
|
|
138
|
+
|
|
139
|
+
export const agent = new Agent({
|
|
140
|
+
name: "semantic-memory-agent",
|
|
141
|
+
instructions: "You are a helpful assistant with semantic memory recall",
|
|
142
|
+
model: "openai:gpt-4o",
|
|
143
|
+
inputProcessors: [
|
|
144
|
+
semanticRecall,
|
|
145
|
+
new MessageHistory({ storage, lastMessages: 50 }),
|
|
146
|
+
],
|
|
147
|
+
outputProcessors: [
|
|
148
|
+
semanticRecall,
|
|
149
|
+
new MessageHistory({ storage }),
|
|
150
|
+
],
|
|
151
|
+
});
|
|
152
|
+
```
|
|
153
|
+
|
|
154
|
+
## Behavior
|
|
155
|
+
|
|
156
|
+
### Input processing
|
|
157
|
+
1. Extracts the user query from the last user message
|
|
158
|
+
2. Generates embeddings for the query
|
|
159
|
+
3. Performs vector search to find semantically similar messages
|
|
160
|
+
4. Retrieves matched messages along with surrounding context (based on `messageRange`)
|
|
161
|
+
5. For `scope: 'resource'`, formats cross-thread messages as a system message with timestamps
|
|
162
|
+
6. Adds recalled messages with `source: 'memory'` tag
|
|
163
|
+
|
|
164
|
+
### Output processing
|
|
165
|
+
1. Extracts text content from new user and assistant messages
|
|
166
|
+
2. Generates embeddings for each message
|
|
167
|
+
3. Stores embeddings in the vector store with metadata (message ID, thread ID, resource ID, role, content, timestamp)
|
|
168
|
+
4. Uses LRU caching for embeddings to avoid redundant API calls
|
|
169
|
+
|
|
170
|
+
### Cross-thread recall
|
|
171
|
+
When `scope` is set to `'resource'`, the processor can recall messages from other threads. These cross-thread messages are formatted as a system message with timestamps and conversation labels to provide context about when and where the conversation occurred.
|
|
172
|
+
|
|
173
|
+
## Related
|
|
174
|
+
|
|
175
|
+
- [Guardrails](https://mastra.ai/docs/v1/agents/guardrails)
|
|
176
|
+
|
|
177
|
+
---
|
|
178
|
+
|
|
179
|
+
## Reference: Working Memory Processor
|
|
180
|
+
|
|
181
|
+
> Documentation for the WorkingMemory processor in Mastra, which injects persistent user/context data as system instructions.
|
|
182
|
+
|
|
183
|
+
The `WorkingMemory` is an **input processor** that injects working memory data as a system message. It retrieves persistent information from storage and formats it as instructions for the LLM, enabling the agent to maintain context about users across conversations.
|
|
184
|
+
|
|
185
|
+
## Usage example
|
|
186
|
+
|
|
187
|
+
```typescript
|
|
188
|
+
import { WorkingMemory } from "@mastra/core/processors";
|
|
189
|
+
|
|
190
|
+
const processor = new WorkingMemory({
|
|
191
|
+
storage: memoryStorage,
|
|
192
|
+
scope: "resource",
|
|
193
|
+
template: {
|
|
194
|
+
format: "markdown",
|
|
195
|
+
content: `# User Profile
|
|
196
|
+
- **Name**:
|
|
197
|
+
- **Preferences**:
|
|
198
|
+
- **Goals**:
|
|
199
|
+
`,
|
|
200
|
+
},
|
|
201
|
+
});
|
|
202
|
+
```
|
|
203
|
+
|
|
204
|
+
## Constructor parameters
|
|
205
|
+
|
|
206
|
+
### Options
|
|
207
|
+
|
|
208
|
+
### WorkingMemoryTemplate
|
|
209
|
+
|
|
210
|
+
## Returns
|
|
211
|
+
|
|
212
|
+
## Extended usage example
|
|
213
|
+
|
|
214
|
+
```typescript title="src/mastra/agents/personalized-agent.ts"
|
|
215
|
+
import { Agent } from "@mastra/core/agent";
|
|
216
|
+
import { WorkingMemory, MessageHistory } from "@mastra/core/processors";
|
|
217
|
+
import { PostgresStorage } from "@mastra/pg";
|
|
218
|
+
|
|
219
|
+
const storage = new PostgresStorage({
|
|
220
|
+
connectionString: process.env.DATABASE_URL,
|
|
221
|
+
});
|
|
222
|
+
|
|
223
|
+
export const agent = new Agent({
|
|
224
|
+
name: "personalized-agent",
|
|
225
|
+
instructions: "You are a helpful assistant that remembers user preferences",
|
|
226
|
+
model: "openai:gpt-4o",
|
|
227
|
+
inputProcessors: [
|
|
228
|
+
new WorkingMemory({
|
|
229
|
+
storage,
|
|
230
|
+
scope: "resource",
|
|
231
|
+
template: {
|
|
232
|
+
format: "markdown",
|
|
233
|
+
content: `# User Information
|
|
234
|
+
- **Name**:
|
|
235
|
+
- **Location**:
|
|
236
|
+
- **Preferences**:
|
|
237
|
+
- **Communication Style**:
|
|
238
|
+
- **Current Projects**:
|
|
239
|
+
`,
|
|
240
|
+
},
|
|
241
|
+
}),
|
|
242
|
+
new MessageHistory({ storage, lastMessages: 50 }),
|
|
243
|
+
],
|
|
244
|
+
outputProcessors: [
|
|
245
|
+
new MessageHistory({ storage }),
|
|
246
|
+
],
|
|
247
|
+
});
|
|
248
|
+
```
|
|
249
|
+
|
|
250
|
+
## JSON format example
|
|
251
|
+
|
|
252
|
+
```typescript
|
|
253
|
+
import { WorkingMemory } from "@mastra/core/processors";
|
|
254
|
+
|
|
255
|
+
const processor = new WorkingMemory({
|
|
256
|
+
storage: memoryStorage,
|
|
257
|
+
scope: "resource",
|
|
258
|
+
template: {
|
|
259
|
+
format: "json",
|
|
260
|
+
content: JSON.stringify({
|
|
261
|
+
user: {
|
|
262
|
+
name: { type: "string" },
|
|
263
|
+
preferences: { type: "object" },
|
|
264
|
+
goals: { type: "array" },
|
|
265
|
+
},
|
|
266
|
+
}),
|
|
267
|
+
},
|
|
268
|
+
});
|
|
269
|
+
```
|
|
270
|
+
|
|
271
|
+
## Behavior
|
|
272
|
+
|
|
273
|
+
### Input processing
|
|
274
|
+
1. Retrieves `threadId` and `resourceId` from the request context
|
|
275
|
+
2. Based on scope, fetches working memory from either:
|
|
276
|
+
- Thread metadata (`scope: 'thread'`)
|
|
277
|
+
- Resource record (`scope: 'resource'`)
|
|
278
|
+
3. Resolves the template (from provider, options, or default)
|
|
279
|
+
4. Generates system instructions that include:
|
|
280
|
+
- Guidelines for the LLM on storing and updating information
|
|
281
|
+
- The template structure
|
|
282
|
+
- Current working memory data
|
|
283
|
+
5. Adds the instruction as a system message with `source: 'memory'` tag
|
|
284
|
+
|
|
285
|
+
### Working memory updates
|
|
286
|
+
Working memory updates happen through the `updateWorkingMemory` tool provided by the Memory class, not through this processor. The processor only handles injecting the current working memory state into conversations.
|
|
287
|
+
|
|
288
|
+
### Default template
|
|
289
|
+
If no template is provided, the processor uses a default markdown template with fields for:
|
|
290
|
+
- First Name, Last Name
|
|
291
|
+
- Location, Occupation
|
|
292
|
+
- Interests, Goals
|
|
293
|
+
- Events, Facts, Projects
|
|
294
|
+
|
|
295
|
+
## Related
|
|
296
|
+
|
|
297
|
+
- [Guardrails](https://mastra.ai/docs/v1/agents/guardrails)
|