@mastra/pg 0.14.6-alpha.0 → 0.14.6-alpha.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +18 -0
- package/package.json +19 -6
- package/.turbo/turbo-build.log +0 -4
- package/docker-compose.perf.yaml +0 -21
- package/docker-compose.yaml +0 -14
- package/eslint.config.js +0 -6
- package/src/index.ts +0 -3
- package/src/storage/domains/legacy-evals/index.ts +0 -151
- package/src/storage/domains/memory/index.ts +0 -1028
- package/src/storage/domains/operations/index.ts +0 -370
- package/src/storage/domains/scores/index.ts +0 -297
- package/src/storage/domains/traces/index.ts +0 -160
- package/src/storage/domains/utils.ts +0 -12
- package/src/storage/domains/workflows/index.ts +0 -291
- package/src/storage/index.test.ts +0 -11
- package/src/storage/index.ts +0 -514
- package/src/storage/test-utils.ts +0 -377
- package/src/vector/filter.test.ts +0 -967
- package/src/vector/filter.ts +0 -136
- package/src/vector/index.test.ts +0 -2729
- package/src/vector/index.ts +0 -926
- package/src/vector/performance.helpers.ts +0 -286
- package/src/vector/prompt.ts +0 -101
- package/src/vector/sql-builder.ts +0 -358
- package/src/vector/types.ts +0 -16
- package/src/vector/vector.performance.test.ts +0 -367
- package/tsconfig.build.json +0 -9
- package/tsconfig.json +0 -5
- package/tsup.config.ts +0 -17
- package/vitest.config.ts +0 -12
- package/vitest.perf.config.ts +0 -8
|
@@ -1,286 +0,0 @@
|
|
|
1
|
-
import type { IndexConfig, IndexType } from './types';
|
|
2
|
-
|
|
3
|
-
import type { PgVector } from '.';
|
|
4
|
-
|
|
5
|
-
export interface TestResult {
|
|
6
|
-
distribution: string;
|
|
7
|
-
dimension: number;
|
|
8
|
-
type: IndexType;
|
|
9
|
-
size: number;
|
|
10
|
-
k?: number;
|
|
11
|
-
metrics: {
|
|
12
|
-
recall?: number;
|
|
13
|
-
minRecall?: number;
|
|
14
|
-
maxRecall?: number;
|
|
15
|
-
latency?: {
|
|
16
|
-
p50: number;
|
|
17
|
-
p95: number;
|
|
18
|
-
lists?: number;
|
|
19
|
-
vectorsPerList?: number;
|
|
20
|
-
m?: number;
|
|
21
|
-
ef?: number;
|
|
22
|
-
};
|
|
23
|
-
clustering?: {
|
|
24
|
-
numLists?: number;
|
|
25
|
-
avgVectorsPerList?: number;
|
|
26
|
-
recommendedLists?: number;
|
|
27
|
-
distribution?: string;
|
|
28
|
-
};
|
|
29
|
-
};
|
|
30
|
-
}
|
|
31
|
-
|
|
32
|
-
export const generateRandomVectors = (count: number, dim: number) => {
|
|
33
|
-
return Array.from({ length: count }, () => {
|
|
34
|
-
return Array.from({ length: dim }, () => Math.random() * 2 - 1);
|
|
35
|
-
});
|
|
36
|
-
};
|
|
37
|
-
|
|
38
|
-
export const generateClusteredVectors = (count: number, dim: number, numClusters: number = 10) => {
|
|
39
|
-
// Generate cluster centers
|
|
40
|
-
const centers = Array.from({ length: numClusters }, () => Array.from({ length: dim }, () => Math.random() * 2 - 1));
|
|
41
|
-
|
|
42
|
-
// Generate vectors around centers with varying spread
|
|
43
|
-
return Array.from({ length: count }, () => {
|
|
44
|
-
// Pick a random cluster, with some clusters being more popular
|
|
45
|
-
const centerIdx = Math.floor(Math.pow(Math.random(), 2) * numClusters);
|
|
46
|
-
const center = centers[centerIdx] as number[];
|
|
47
|
-
|
|
48
|
-
// Add noise, with some vectors being further from centers
|
|
49
|
-
const spread = Math.random() < 0.8 ? 0.1 : 0.5; // 80% close, 20% far
|
|
50
|
-
return center.map(c => c + (Math.random() * spread - spread / 2));
|
|
51
|
-
});
|
|
52
|
-
};
|
|
53
|
-
|
|
54
|
-
// Or even more extreme:
|
|
55
|
-
export const generateSkewedVectors = (count: number, dim: number) => {
|
|
56
|
-
// Create dense clusters with sparse regions
|
|
57
|
-
const vectors: number[][] = [];
|
|
58
|
-
|
|
59
|
-
const denseCount = Math.floor(count * 0.6);
|
|
60
|
-
const sparseCount = count - denseCount;
|
|
61
|
-
|
|
62
|
-
// Dense cluster (60% of vectors)
|
|
63
|
-
const denseCenter = Array.from({ length: dim }, () => Math.random() * 0.2);
|
|
64
|
-
for (let i = 0; i < denseCount; i++) {
|
|
65
|
-
vectors.push(denseCenter.map(c => c + (Math.random() * 0.1 - 0.05)));
|
|
66
|
-
}
|
|
67
|
-
|
|
68
|
-
// Scattered vectors (40%)
|
|
69
|
-
for (let i = 0; i < sparseCount; i++) {
|
|
70
|
-
vectors.push(Array.from({ length: dim }, () => Math.random() * 2 - 1));
|
|
71
|
-
}
|
|
72
|
-
|
|
73
|
-
return vectors.sort(() => Math.random() - 0.5); // Shuffle
|
|
74
|
-
};
|
|
75
|
-
|
|
76
|
-
export const findNearestBruteForce = (query: number[], vectors: number[][], k: number) => {
|
|
77
|
-
const similarities = vectors.map((vector, idx) => {
|
|
78
|
-
const similarity = cosineSimilarity(query, vector);
|
|
79
|
-
return { idx, dist: similarity };
|
|
80
|
-
});
|
|
81
|
-
|
|
82
|
-
const sorted = similarities.sort((a, b) => b.dist - a.dist);
|
|
83
|
-
return sorted.slice(0, k).map(x => x.idx);
|
|
84
|
-
};
|
|
85
|
-
|
|
86
|
-
export const calculateRecall = (actual: number[], expected: number[], k: number): number => {
|
|
87
|
-
let score = 0;
|
|
88
|
-
for (let i = 0; i < k; i++) {
|
|
89
|
-
if (actual[i] === expected[i]) {
|
|
90
|
-
score += 1;
|
|
91
|
-
} else if (expected.includes(actual[i] ?? 0)) {
|
|
92
|
-
score += 0.5;
|
|
93
|
-
}
|
|
94
|
-
}
|
|
95
|
-
return score / k;
|
|
96
|
-
};
|
|
97
|
-
|
|
98
|
-
export function cosineSimilarity(a: number[], b: number[]): number {
|
|
99
|
-
const dotProduct = a.reduce((sum, val, i) => sum + (val ?? 0) * (b[i] ?? 0), 0);
|
|
100
|
-
const normA = Math.sqrt(a.reduce((sum, val) => sum + val * val, 0));
|
|
101
|
-
const normB = Math.sqrt(b.reduce((sum, val) => sum + val * val, 0));
|
|
102
|
-
return dotProduct / (normA * normB);
|
|
103
|
-
}
|
|
104
|
-
|
|
105
|
-
export const formatTable = (data: any[], columns: string[]) => {
|
|
106
|
-
const colWidths = columns.map(col =>
|
|
107
|
-
Math.max(
|
|
108
|
-
col.length,
|
|
109
|
-
...data.map(row => {
|
|
110
|
-
const value = row[col];
|
|
111
|
-
return value === undefined || value === null ? '-'.length : value.toString().length;
|
|
112
|
-
}),
|
|
113
|
-
),
|
|
114
|
-
);
|
|
115
|
-
|
|
116
|
-
const topBorder = '┌' + colWidths.map(w => '─'.repeat(w)).join('┬') + '┐';
|
|
117
|
-
const headerSeparator = '├' + colWidths.map(w => '─'.repeat(w)).join('┼') + '┤';
|
|
118
|
-
const bottomBorder = '└' + colWidths.map(w => '─'.repeat(w)).join('┴') + '┘';
|
|
119
|
-
|
|
120
|
-
const header = '│' + columns.map((col, i) => col.padEnd(colWidths[i] ?? 0)).join('│') + '│';
|
|
121
|
-
const rows = data.map(
|
|
122
|
-
row =>
|
|
123
|
-
'│' +
|
|
124
|
-
columns
|
|
125
|
-
.map((col, i) => {
|
|
126
|
-
const value = row[col];
|
|
127
|
-
const displayValue = value === undefined || value === null ? '-' : value.toString();
|
|
128
|
-
return displayValue.padEnd(colWidths[i]);
|
|
129
|
-
})
|
|
130
|
-
.join('│') +
|
|
131
|
-
'│',
|
|
132
|
-
);
|
|
133
|
-
|
|
134
|
-
return [topBorder, header, headerSeparator, ...rows, bottomBorder].join('\n');
|
|
135
|
-
};
|
|
136
|
-
|
|
137
|
-
export const groupBy = <T, K extends keyof T>(
|
|
138
|
-
array: T[],
|
|
139
|
-
key: K | ((item: T) => string),
|
|
140
|
-
reducer?: (group: T[]) => any,
|
|
141
|
-
): Record<string, any> => {
|
|
142
|
-
const grouped = array.reduce(
|
|
143
|
-
(acc, item) => {
|
|
144
|
-
const value = typeof key === 'function' ? key(item) : item[key];
|
|
145
|
-
if (!acc[value as any]) acc[value as any] = [];
|
|
146
|
-
acc[value as any]?.push(item);
|
|
147
|
-
return acc;
|
|
148
|
-
},
|
|
149
|
-
{} as Record<string, T[]>,
|
|
150
|
-
);
|
|
151
|
-
|
|
152
|
-
if (reducer) {
|
|
153
|
-
return Object.fromEntries(Object.entries(grouped).map(([key, group]) => [key, reducer(group)]));
|
|
154
|
-
}
|
|
155
|
-
|
|
156
|
-
return grouped;
|
|
157
|
-
};
|
|
158
|
-
|
|
159
|
-
export const calculateTimeout = (dimension: number, size: number, k: number) => {
|
|
160
|
-
let timeout = 600000;
|
|
161
|
-
if (dimension >= 1024) timeout *= 3;
|
|
162
|
-
else if (dimension >= 384) timeout *= 1.5;
|
|
163
|
-
if (size >= 10000) timeout *= 2;
|
|
164
|
-
if (k >= 75) timeout *= 1.5;
|
|
165
|
-
return timeout * 5;
|
|
166
|
-
};
|
|
167
|
-
|
|
168
|
-
export const baseTestConfigs = {
|
|
169
|
-
smokeTests: [{ dimension: 384, size: 1_000, k: 10, queryCount: 10 }],
|
|
170
|
-
'64': [
|
|
171
|
-
{ dimension: 64, size: 100, k: 10, queryCount: 30 },
|
|
172
|
-
{ dimension: 64, size: 100, k: 25, queryCount: 30 },
|
|
173
|
-
{ dimension: 64, size: 100, k: 50, queryCount: 30 },
|
|
174
|
-
{ dimension: 64, size: 100, k: 100, queryCount: 30 },
|
|
175
|
-
{ dimension: 64, size: 1_000, k: 10, queryCount: 30 },
|
|
176
|
-
{ dimension: 64, size: 1_000, k: 25, queryCount: 30 },
|
|
177
|
-
{ dimension: 64, size: 1_000, k: 50, queryCount: 30 },
|
|
178
|
-
{ dimension: 64, size: 1_000, k: 100, queryCount: 30 },
|
|
179
|
-
{ dimension: 64, size: 10_000, k: 10, queryCount: 30 },
|
|
180
|
-
{ dimension: 64, size: 100_000, k: 10, queryCount: 30 },
|
|
181
|
-
{ dimension: 64, size: 100_000, k: 25, queryCount: 30 },
|
|
182
|
-
{ dimension: 64, size: 100_000, k: 50, queryCount: 30 },
|
|
183
|
-
{ dimension: 64, size: 100_000, k: 100, queryCount: 30 },
|
|
184
|
-
{ dimension: 64, size: 500_000, k: 10, queryCount: 30 },
|
|
185
|
-
{ dimension: 64, size: 1_000_000, k: 10, queryCount: 30 },
|
|
186
|
-
],
|
|
187
|
-
'384': [
|
|
188
|
-
{ dimension: 384, size: 100, k: 10, queryCount: 30 },
|
|
189
|
-
{ dimension: 384, size: 100, k: 25, queryCount: 30 },
|
|
190
|
-
{ dimension: 384, size: 100, k: 50, queryCount: 30 },
|
|
191
|
-
{ dimension: 384, size: 100, k: 100, queryCount: 30 },
|
|
192
|
-
{ dimension: 384, size: 1_000, k: 10, queryCount: 30 },
|
|
193
|
-
{ dimension: 384, size: 1_000, k: 25, queryCount: 30 },
|
|
194
|
-
{ dimension: 384, size: 1_000, k: 50, queryCount: 30 },
|
|
195
|
-
{ dimension: 384, size: 1_000, k: 100, queryCount: 30 },
|
|
196
|
-
{ dimension: 384, size: 10_000, k: 10, queryCount: 30 },
|
|
197
|
-
{ dimension: 384, size: 100_000, k: 10, queryCount: 30 },
|
|
198
|
-
{ dimension: 384, size: 100_000, k: 25, queryCount: 30 },
|
|
199
|
-
{ dimension: 384, size: 100_000, k: 50, queryCount: 30 },
|
|
200
|
-
{ dimension: 384, size: 100_000, k: 100, queryCount: 30 },
|
|
201
|
-
{ dimension: 384, size: 500_000, k: 10, queryCount: 30 },
|
|
202
|
-
],
|
|
203
|
-
'1024': [
|
|
204
|
-
{ dimension: 1024, size: 100, k: 10, queryCount: 30 },
|
|
205
|
-
{ dimension: 1024, size: 100, k: 25, queryCount: 30 },
|
|
206
|
-
{ dimension: 1024, size: 100, k: 50, queryCount: 30 },
|
|
207
|
-
{ dimension: 1024, size: 100, k: 100, queryCount: 30 },
|
|
208
|
-
{ dimension: 1024, size: 1_000, k: 10, queryCount: 30 },
|
|
209
|
-
{ dimension: 1024, size: 1_000, k: 25, queryCount: 30 },
|
|
210
|
-
{ dimension: 1024, size: 1_000, k: 50, queryCount: 30 },
|
|
211
|
-
{ dimension: 1024, size: 1_000, k: 100, queryCount: 30 },
|
|
212
|
-
{ dimension: 1024, size: 10_000, k: 10, queryCount: 30 },
|
|
213
|
-
{ dimension: 1024, size: 10_000, k: 25, queryCount: 30 },
|
|
214
|
-
{ dimension: 1024, size: 10_000, k: 50, queryCount: 30 },
|
|
215
|
-
{ dimension: 1024, size: 10_000, k: 100, queryCount: 30 },
|
|
216
|
-
{ dimension: 1024, size: 50_000, k: 10, queryCount: 30 },
|
|
217
|
-
{ dimension: 1024, size: 50_000, k: 25, queryCount: 30 },
|
|
218
|
-
],
|
|
219
|
-
stressTests: [
|
|
220
|
-
// Maximum load
|
|
221
|
-
{ dimension: 512, size: 1_000_000, k: 50, queryCount: 5 },
|
|
222
|
-
|
|
223
|
-
// Dense search
|
|
224
|
-
{ dimension: 256, size: 1_000_000, k: 100, queryCount: 5 },
|
|
225
|
-
|
|
226
|
-
{ dimension: 1024, size: 500_000, k: 50, queryCount: 5 },
|
|
227
|
-
],
|
|
228
|
-
};
|
|
229
|
-
|
|
230
|
-
export interface TestConfig {
|
|
231
|
-
dimension: number;
|
|
232
|
-
size: number;
|
|
233
|
-
k: number;
|
|
234
|
-
queryCount: number;
|
|
235
|
-
}
|
|
236
|
-
|
|
237
|
-
export async function warmupQuery(vectorDB: PgVector, indexName: string, dimension: number, k: number) {
|
|
238
|
-
const warmupVector = generateRandomVectors(1, dimension)[0] as number[];
|
|
239
|
-
await vectorDB.query({ indexName, queryVector: warmupVector, topK: k });
|
|
240
|
-
}
|
|
241
|
-
|
|
242
|
-
export async function measureLatency<T>(fn: () => Promise<T>): Promise<[number, T]> {
|
|
243
|
-
const start = performance.now();
|
|
244
|
-
const result = await fn();
|
|
245
|
-
const end = performance.now();
|
|
246
|
-
return [end - start, result];
|
|
247
|
-
}
|
|
248
|
-
|
|
249
|
-
export const getListCount = (indexConfig: IndexConfig, size: number): number | undefined => {
|
|
250
|
-
if (indexConfig.type !== 'ivfflat') return undefined;
|
|
251
|
-
if (indexConfig.ivf?.lists) return indexConfig.ivf.lists;
|
|
252
|
-
return Math.max(100, Math.min(4000, Math.floor(Math.sqrt(size) * 2)));
|
|
253
|
-
};
|
|
254
|
-
|
|
255
|
-
export const getHNSWConfig = (indexConfig: IndexConfig): { m: number; efConstruction: number } => {
|
|
256
|
-
return {
|
|
257
|
-
m: indexConfig.hnsw?.m ?? 8,
|
|
258
|
-
efConstruction: indexConfig.hnsw?.efConstruction ?? 32,
|
|
259
|
-
};
|
|
260
|
-
};
|
|
261
|
-
|
|
262
|
-
export function getSearchEf(k: number, m: number) {
|
|
263
|
-
return {
|
|
264
|
-
default: Math.max(k, m * k), // Default calculation
|
|
265
|
-
lower: Math.max(k, (m * k) / 2), // Lower quality, faster
|
|
266
|
-
higher: Math.max(k, m * k * 2), // Higher quality, slower
|
|
267
|
-
};
|
|
268
|
-
}
|
|
269
|
-
|
|
270
|
-
export function getIndexDescription({
|
|
271
|
-
type,
|
|
272
|
-
hnsw,
|
|
273
|
-
}: {
|
|
274
|
-
type: IndexType;
|
|
275
|
-
hnsw: { m: number; efConstruction: number };
|
|
276
|
-
}): string {
|
|
277
|
-
if (type === 'hnsw') {
|
|
278
|
-
return `HNSW(m=${hnsw.m},ef=${hnsw.efConstruction})`;
|
|
279
|
-
}
|
|
280
|
-
|
|
281
|
-
if (type === 'ivfflat') {
|
|
282
|
-
return `IVF`;
|
|
283
|
-
}
|
|
284
|
-
|
|
285
|
-
return 'Flat';
|
|
286
|
-
}
|
package/src/vector/prompt.ts
DELETED
|
@@ -1,101 +0,0 @@
|
|
|
1
|
-
/**
|
|
2
|
-
* Vector store specific prompt that details supported operators and examples.
|
|
3
|
-
* This prompt helps users construct valid filters for PG Vector.
|
|
4
|
-
*/
|
|
5
|
-
export const PGVECTOR_PROMPT = `When querying PG Vector, you can ONLY use the operators listed below. Any other operators will be rejected.
|
|
6
|
-
Important: Don't explain how to construct the filter - use the specified operators and fields to search the content and return relevant results.
|
|
7
|
-
If a user tries to give an explicit operator that is not supported, reject the filter entirely and let them know that the operator is not supported.
|
|
8
|
-
|
|
9
|
-
Basic Comparison Operators:
|
|
10
|
-
- $eq: Exact match (default when using field: value)
|
|
11
|
-
Example: { "category": "electronics" }
|
|
12
|
-
- $ne: Not equal
|
|
13
|
-
Example: { "category": { "$ne": "electronics" } }
|
|
14
|
-
- $gt: Greater than
|
|
15
|
-
Example: { "price": { "$gt": 100 } }
|
|
16
|
-
- $gte: Greater than or equal
|
|
17
|
-
Example: { "price": { "$gte": 100 } }
|
|
18
|
-
- $lt: Less than
|
|
19
|
-
Example: { "price": { "$lt": 100 } }
|
|
20
|
-
- $lte: Less than or equal
|
|
21
|
-
Example: { "price": { "$lte": 100 } }
|
|
22
|
-
|
|
23
|
-
Array Operators:
|
|
24
|
-
- $in: Match any value in array
|
|
25
|
-
Example: { "category": { "$in": ["electronics", "books"] } }
|
|
26
|
-
- $nin: Does not match any value in array
|
|
27
|
-
Example: { "category": { "$nin": ["electronics", "books"] } }
|
|
28
|
-
- $all: Match all values in array
|
|
29
|
-
Example: { "tags": { "$all": ["premium", "sale"] } }
|
|
30
|
-
- $elemMatch: Match array elements that meet all specified conditions
|
|
31
|
-
Example: { "items": { "$elemMatch": { "price": { "$gt": 100 } } } }
|
|
32
|
-
- $contains: Check if array contains value
|
|
33
|
-
Example: { "tags": { "$contains": "premium" } }
|
|
34
|
-
|
|
35
|
-
Logical Operators:
|
|
36
|
-
- $and: Logical AND (implicit when using multiple conditions)
|
|
37
|
-
Example: { "$and": [{ "price": { "$gt": 100 } }, { "category": "electronics" }] }
|
|
38
|
-
- $or: Logical OR
|
|
39
|
-
Example: { "$or": [{ "price": { "$lt": 50 } }, { "category": "books" }] }
|
|
40
|
-
- $not: Logical NOT
|
|
41
|
-
Example: { "$not": { "category": "electronics" } }
|
|
42
|
-
- $nor: Logical NOR
|
|
43
|
-
Example: { "$nor": [{ "price": { "$lt": 50 } }, { "category": "books" }] }
|
|
44
|
-
|
|
45
|
-
Element Operators:
|
|
46
|
-
- $exists: Check if field exists
|
|
47
|
-
Example: { "rating": { "$exists": true } }
|
|
48
|
-
|
|
49
|
-
Special Operators:
|
|
50
|
-
- $size: Array length check
|
|
51
|
-
Example: { "tags": { "$size": 2 } }
|
|
52
|
-
|
|
53
|
-
Restrictions:
|
|
54
|
-
- Regex patterns are not supported
|
|
55
|
-
- Direct RegExp patterns will throw an error
|
|
56
|
-
- Nested fields are supported using dot notation
|
|
57
|
-
- Multiple conditions on the same field are supported with both implicit and explicit $and
|
|
58
|
-
- Array operations work on array fields only
|
|
59
|
-
- Basic operators handle array values as JSON strings
|
|
60
|
-
- Empty arrays in conditions are handled gracefully
|
|
61
|
-
- Only logical operators ($and, $or, $not, $nor) can be used at the top level
|
|
62
|
-
- All other operators must be used within a field condition
|
|
63
|
-
Valid: { "field": { "$gt": 100 } }
|
|
64
|
-
Valid: { "$and": [...] }
|
|
65
|
-
Invalid: { "$gt": 100 }
|
|
66
|
-
Invalid: { "$contains": "value" }
|
|
67
|
-
- Logical operators must contain field conditions, not direct operators
|
|
68
|
-
Valid: { "$and": [{ "field": { "$gt": 100 } }] }
|
|
69
|
-
Invalid: { "$and": [{ "$gt": 100 }] }
|
|
70
|
-
- $not operator:
|
|
71
|
-
- Must be an object
|
|
72
|
-
- Cannot be empty
|
|
73
|
-
- Can be used at field level or top level
|
|
74
|
-
- Valid: { "$not": { "field": "value" } }
|
|
75
|
-
- Valid: { "field": { "$not": { "$eq": "value" } } }
|
|
76
|
-
- Other logical operators ($and, $or, $nor):
|
|
77
|
-
- Can only be used at top level or nested within other logical operators
|
|
78
|
-
- Can not be used on a field level, or be nested inside a field
|
|
79
|
-
- Can not be used inside an operator
|
|
80
|
-
- Valid: { "$and": [{ "field": { "$gt": 100 } }] }
|
|
81
|
-
- Valid: { "$or": [{ "$and": [{ "field": { "$gt": 100 } }] }] }
|
|
82
|
-
- Invalid: { "field": { "$and": [{ "$gt": 100 }] } }
|
|
83
|
-
- Invalid: { "field": { "$or": [{ "$gt": 100 }] } }
|
|
84
|
-
- Invalid: { "field": { "$gt": { "$and": [{...}] } } }
|
|
85
|
-
- $elemMatch requires an object with conditions
|
|
86
|
-
Valid: { "array": { "$elemMatch": { "field": "value" } } }
|
|
87
|
-
Invalid: { "array": { "$elemMatch": "value" } }
|
|
88
|
-
|
|
89
|
-
Example Complex Query:
|
|
90
|
-
{
|
|
91
|
-
"$and": [
|
|
92
|
-
{ "category": { "$in": ["electronics", "computers"] } },
|
|
93
|
-
{ "price": { "$gte": 100, "$lte": 1000 } },
|
|
94
|
-
{ "tags": { "$all": ["premium"] } },
|
|
95
|
-
{ "rating": { "$exists": true, "$gt": 4 } },
|
|
96
|
-
{ "$or": [
|
|
97
|
-
{ "stock": { "$gt": 0 } },
|
|
98
|
-
{ "preorder": true }
|
|
99
|
-
]}
|
|
100
|
-
]
|
|
101
|
-
}`;
|