@mastra/memory 1.0.0-beta.10 → 1.0.0-beta.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,972 @@
1
+ # Storage API Reference
2
+
3
+ > API reference for storage - 5 entries
4
+
5
+
6
+ ---
7
+
8
+ ## Reference: DynamoDB Storage
9
+
10
+ > Documentation for the DynamoDB storage implementation in Mastra, using a single-table design with ElectroDB.
11
+
12
+ The DynamoDB storage implementation provides a scalable and performant NoSQL database solution for Mastra, leveraging a single-table design pattern with [ElectroDB](https://electrodb.dev/).
13
+
14
+ ## Features
15
+
16
+ - Efficient single-table design for all Mastra storage needs
17
+ - Based on ElectroDB for type-safe DynamoDB access
18
+ - Support for AWS credentials, regions, and endpoints
19
+ - Compatible with AWS DynamoDB Local for development
20
+ - Stores Thread, Message, Trace, Eval, and Workflow data
21
+ - Optimized for serverless environments
22
+
23
+ ## Installation
24
+
25
+ ```bash
26
+ npm install @mastra/dynamodb@beta
27
+ # or
28
+ pnpm add @mastra/dynamodb@beta
29
+ # or
30
+ yarn add @mastra/dynamodb@beta
31
+ ```
32
+
33
+ ## Prerequisites
34
+
35
+ Before using this package, you **must** create a DynamoDB table with a specific structure, including primary keys and Global Secondary Indexes (GSIs). This adapter expects the DynamoDB table and its GSIs to be provisioned externally.
36
+
37
+ Detailed instructions for setting up the table using AWS CloudFormation or AWS CDK are available in [TABLE_SETUP.md](https://github.com/mastra-ai/mastra/blob/main/stores/dynamodb/TABLE_SETUP.md). Please ensure your table is configured according to those instructions before proceeding.
38
+
39
+ ## Usage
40
+
41
+ ### Basic Usage
42
+
43
+ ```typescript
44
+ import { Memory } from "@mastra/memory";
45
+ import { DynamoDBStore } from "@mastra/dynamodb";
46
+
47
+ // Initialize the DynamoDB storage
48
+ const storage = new DynamoDBStore({
49
+ name: "dynamodb", // A name for this storage instance
50
+ config: {
51
+ tableName: "mastra-single-table", // Name of your DynamoDB table
52
+ region: "us-east-1", // Optional: AWS region, defaults to 'us-east-1'
53
+ // endpoint: "http://localhost:8000", // Optional: For local DynamoDB
54
+ // credentials: { accessKeyId: "YOUR_ACCESS_KEY", secretAccessKey: "YOUR_SECRET_KEY" } // Optional
55
+ },
56
+ });
57
+
58
+ // Example: Initialize Memory with DynamoDB storage
59
+ const memory = new Memory({
60
+ storage,
61
+ options: {
62
+ lastMessages: 10,
63
+ },
64
+ });
65
+ ```
66
+
67
+ ### Local Development with DynamoDB Local
68
+
69
+ For local development, you can use [DynamoDB Local](https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html).
70
+
71
+ 1. **Run DynamoDB Local (e.g., using Docker):**
72
+
73
+ ```bash
74
+ docker run -p 8000:8000 amazon/dynamodb-local
75
+ ```
76
+
77
+ 2. **Configure `DynamoDBStore` to use the local endpoint:**
78
+
79
+ ```typescript
80
+ import { DynamoDBStore } from "@mastra/dynamodb";
81
+
82
+ const storage = new DynamoDBStore({
83
+ name: "dynamodb-local",
84
+ config: {
85
+ tableName: "mastra-single-table", // Ensure this table is created in your local DynamoDB
86
+ region: "localhost", // Can be any string for local, 'localhost' is common
87
+ endpoint: "http://localhost:8000",
88
+ // For DynamoDB Local, credentials are not typically required unless configured.
89
+ // If you've configured local credentials:
90
+ // credentials: { accessKeyId: "fakeMyKeyId", secretAccessKey: "fakeSecretAccessKey" }
91
+ },
92
+ });
93
+ ```
94
+
95
+ You will still need to create the table and GSIs in your local DynamoDB instance, for example, using the AWS CLI pointed to your local endpoint.
96
+
97
+ ## Parameters
98
+
99
+ ## AWS IAM Permissions
100
+
101
+ The IAM role or user executing the code needs appropriate permissions to interact with the specified DynamoDB table and its indexes. Below is a sample policy. Replace `${YOUR_TABLE_NAME}` with your actual table name and `${YOUR_AWS_REGION}` and `${YOUR_AWS_ACCOUNT_ID}` with appropriate values.
102
+
103
+ ```json
104
+ {
105
+ "Version": "2012-10-17",
106
+ "Statement": [
107
+ {
108
+ "Effect": "Allow",
109
+ "Action": [
110
+ "dynamodb:DescribeTable",
111
+ "dynamodb:GetItem",
112
+ "dynamodb:PutItem",
113
+ "dynamodb:UpdateItem",
114
+ "dynamodb:DeleteItem",
115
+ "dynamodb:Query",
116
+ "dynamodb:Scan",
117
+ "dynamodb:BatchGetItem",
118
+ "dynamodb:BatchWriteItem"
119
+ ],
120
+ "Resource": [
121
+ "arn:aws:dynamodb:${YOUR_AWS_REGION}:${YOUR_AWS_ACCOUNT_ID}:table/${YOUR_TABLE_NAME}",
122
+ "arn:aws:dynamodb:${YOUR_AWS_REGION}:${YOUR_AWS_ACCOUNT_ID}:table/${YOUR_TABLE_NAME}/index/*"
123
+ ]
124
+ }
125
+ ]
126
+ }
127
+ ```
128
+
129
+ ## Key Considerations
130
+
131
+ Before diving into the architectural details, keep these key points in mind when working with the DynamoDB storage adapter:
132
+
133
+ - **External Table Provisioning:** This adapter _requires_ you to create and configure the DynamoDB table and its Global Secondary Indexes (GSIs) yourself, prior to using the adapter. Follow the guide in [TABLE_SETUP.md](https://github.com/mastra-ai/mastra/blob/main/stores/dynamodb/TABLE_SETUP.md).
134
+ - **Single-Table Design:** All Mastra data (threads, messages, etc.) is stored in one DynamoDB table. This is a deliberate design choice optimized for DynamoDB, differing from relational database approaches.
135
+ - **Understanding GSIs:** Familiarity with how the GSIs are structured (as per `TABLE_SETUP.md`) is important for understanding data retrieval and potential query patterns.
136
+ - **ElectroDB:** The adapter uses ElectroDB to manage interactions with DynamoDB, providing a layer of abstraction and type safety over raw DynamoDB operations.
137
+
138
+ ## Architectural Approach
139
+
140
+ This storage adapter utilizes a **single-table design pattern** leveraging [ElectroDB](https://electrodb.dev/), a common and recommended approach for DynamoDB. This differs architecturally from relational database adapters (like `@mastra/pg` or `@mastra/libsql`) that typically use multiple tables, each dedicated to a specific entity (threads, messages, etc.).
141
+
142
+ Key aspects of this approach:
143
+
144
+ - **DynamoDB Native:** The single-table design is optimized for DynamoDB's key-value and query capabilities, often leading to better performance and scalability compared to mimicking relational models.
145
+ - **External Table Management:** Unlike some adapters that might offer helper functions to create tables via code, this adapter **expects the DynamoDB table and its associated Global Secondary Indexes (GSIs) to be provisioned externally** before use. Please refer to [TABLE_SETUP.md](https://github.com/mastra-ai/mastra/blob/main/stores/dynamodb/TABLE_SETUP.md) for detailed instructions using tools like AWS CloudFormation or CDK. The adapter focuses solely on interacting with the pre-existing table structure.
146
+ - **Consistency via Interface:** While the underlying storage model differs, this adapter adheres to the same `MastraStorage` interface as other adapters, ensuring it can be used interchangeably within the Mastra `Memory` component.
147
+
148
+ ### Mastra Data in the Single Table
149
+
150
+ Within the single DynamoDB table, different Mastra data entities (such as Threads, Messages, Traces, Evals, and Workflows) are managed and distinguished using ElectroDB. ElectroDB defines specific models for each entity type, which include unique key structures and attributes. This allows the adapter to store and retrieve diverse data types efficiently within the same table.
151
+
152
+ For example, a `Thread` item might have a primary key like `THREAD#<threadId>`, while a `Message` item belonging to that thread might use `THREAD#<threadId>` as a partition key and `MESSAGE#<messageId>` as a sort key. The Global Secondary Indexes (GSIs), detailed in `TABLE_SETUP.md`, are strategically designed to support common access patterns across these different entities, such as fetching all messages for a thread or querying traces associated with a particular workflow.
153
+
154
+ ### Advantages of Single-Table Design
155
+
156
+ This implementation uses a single-table design pattern with ElectroDB, which offers several advantages within the context of DynamoDB:
157
+
158
+ 1. **Lower cost (potentially):** Fewer tables can simplify Read/Write Capacity Unit (RCU/WCU) provisioning and management, especially with on-demand capacity.
159
+ 2. **Better performance:** Related data can be co-located or accessed efficiently through GSIs, enabling fast lookups for common access patterns.
160
+ 3. **Simplified administration:** Fewer distinct tables to monitor, back up, and manage.
161
+ 4. **Reduced complexity in access patterns:** ElectroDB helps manage the complexity of item types and access patterns on a single table.
162
+ 5. **Transaction support:** DynamoDB transactions can be used across different "entity" types stored within the same table if needed.
163
+
164
+ ---
165
+
166
+ ## Reference: libSQL Storage
167
+
168
+ > Documentation for the libSQL storage implementation in Mastra.
169
+
170
+ [libSQL](https://docs.turso.tech/libsql) is an open-source, SQLite-compatible database that supports both local and remote deployments. It can be used to store message history, workflow snapshots, traces, and eval scores.
171
+
172
+ For vectors like semantic recall or traditional RAG, use [libSQL Vector](https://mastra.ai/reference/v1/vectors/libsql) which covers embeddings and vector search.
173
+
174
+ ## Installation
175
+
176
+ Storage providers must be installed as separate packages:
177
+
178
+ ```bash
179
+ npm install @mastra/libsql@beta
180
+ ```
181
+
182
+ ## Usage
183
+
184
+ ```typescript
185
+ import { LibSQLStore } from "@mastra/libsql";
186
+ import { Mastra } from "@mastra/core";
187
+
188
+ const mastra = new Mastra({
189
+ storage: new LibSQLStore({
190
+ id: 'libsql-storage',
191
+ url: "file:./storage.db",
192
+ }),
193
+ });
194
+ ```
195
+
196
+ Agent-level file storage:
197
+
198
+ ```typescript
199
+ import { Memory } from "@mastra/memory";
200
+ import { Agent } from "@mastra/core/agent";
201
+ import { LibSQLStore } from "@mastra/libsql";
202
+
203
+ export const agent = new Agent({
204
+ id: "example-agent",
205
+ memory: new Memory({
206
+ storage: new LibSQLStore({
207
+ id: 'libsql-storage',
208
+ url: "file:./agent.db",
209
+ }),
210
+ }),
211
+ });
212
+ ```
213
+
214
+ > **Note:**
215
+ File storage doesn't work with serverless platforms that have ephemeral file systems. For serverless deployments, use [Turso](https://turso.tech) or a different database engine.
216
+
217
+ Production with remote database:
218
+
219
+ ```typescript
220
+ storage: new LibSQLStore({
221
+ id: 'libsql-storage',
222
+ url: "libsql://your-db-name.aws-ap-northeast-1.turso.io",
223
+ authToken: process.env.TURSO_AUTH_TOKEN,
224
+ })
225
+ ```
226
+
227
+ For local development and testing, you can store data in memory:
228
+
229
+ ```typescript
230
+ storage: new LibSQLStore({
231
+ id: 'libsql-storage',
232
+ url: ":memory:",
233
+ })
234
+ ```
235
+ > **Note:**
236
+ In-memory storage resets when the process changes. Only suitable for development.
237
+
238
+ ## Options
239
+
240
+ ## Initialization
241
+
242
+ When you pass storage to the Mastra class, `init()` is called automatically to create the [core schema](https://mastra.ai/reference/v1/storage/overview#core-schema):
243
+
244
+ ```typescript
245
+ import { Mastra } from "@mastra/core";
246
+ import { LibSQLStore } from "@mastra/libsql";
247
+
248
+ const storage = new LibSQLStore({
249
+ id: 'libsql-storage',
250
+ url: "file:./storage.db",
251
+ });
252
+
253
+ const mastra = new Mastra({
254
+ storage, // init() called automatically
255
+ });
256
+ ```
257
+
258
+ If using storage directly without Mastra, call `init()` explicitly:
259
+
260
+ ```typescript
261
+ import { LibSQLStore } from "@mastra/libsql";
262
+
263
+ const storage = new LibSQLStore({
264
+ id: 'libsql-storage',
265
+ url: "file:./storage.db",
266
+ });
267
+
268
+ await storage.init();
269
+
270
+ // Access domain-specific stores via getStore()
271
+ const memoryStore = await storage.getStore('memory');
272
+ const thread = await memoryStore?.getThreadById({ threadId: "..." });
273
+ ```
274
+
275
+ ---
276
+
277
+ ## Reference: MongoDB Storage
278
+
279
+ > Documentation for the MongoDB storage implementation in Mastra.
280
+
281
+ The MongoDB storage implementation provides a scalable storage solution using MongoDB databases with support for both document storage and vector operations.
282
+
283
+ ## Installation
284
+
285
+ ```bash
286
+ npm install @mastra/mongodb@beta
287
+ ```
288
+
289
+ ## Usage
290
+
291
+ Ensure you have a MongoDB Atlas Local (via Docker) or MongoDB Atlas Cloud instance with Atlas Search enabled. MongoDB 7.0+ is recommended.
292
+
293
+ ```typescript
294
+ import { MongoDBStore } from "@mastra/mongodb";
295
+
296
+ const storage = new MongoDBStore({
297
+ url: process.env.MONGODB_URL,
298
+ dbName: process.env.MONGODB_DATABASE,
299
+ });
300
+ ```
301
+
302
+ ## Parameters
303
+
304
+ ## Constructor Examples
305
+
306
+ You can instantiate `MongoDBStore` in the following ways:
307
+
308
+ ```ts
309
+ import { MongoDBStore } from "@mastra/mongodb";
310
+
311
+ // Basic connection without custom options
312
+ const store1 = new MongoDBStore({
313
+ url: "mongodb+srv://user:password@cluster.mongodb.net",
314
+ dbName: "mastra_storage",
315
+ });
316
+
317
+ // Using connection string with options
318
+ const store2 = new MongoDBStore({
319
+ url: "mongodb+srv://user:password@cluster.mongodb.net",
320
+ dbName: "mastra_storage",
321
+ options: {
322
+ retryWrites: true,
323
+ maxPoolSize: 10,
324
+ serverSelectionTimeoutMS: 5000,
325
+ socketTimeoutMS: 45000,
326
+ },
327
+ });
328
+ ```
329
+
330
+ ## Additional Notes
331
+
332
+ ### Collection Management
333
+
334
+ The storage implementation handles collection creation and management automatically. It creates the following collections:
335
+
336
+ - `mastra_workflow_snapshot`: Stores workflow state and execution data
337
+ - `mastra_evals`: Stores evaluation results and metadata
338
+ - `mastra_threads`: Stores conversation threads
339
+ - `mastra_messages`: Stores individual messages
340
+ - `mastra_traces`: Stores telemetry and tracing data
341
+ - `mastra_scorers`: Stores scoring and evaluation data
342
+ - `mastra_resources`: Stores resource working memory data
343
+
344
+ ### Initialization
345
+
346
+ When you pass storage to the Mastra class, `init()` is called automatically before any storage operation:
347
+
348
+ ```typescript
349
+ import { Mastra } from "@mastra/core";
350
+ import { MongoDBStore } from "@mastra/mongodb";
351
+
352
+ const storage = new MongoDBStore({
353
+ url: process.env.MONGODB_URL,
354
+ dbName: process.env.MONGODB_DATABASE,
355
+ });
356
+
357
+ const mastra = new Mastra({
358
+ storage, // init() is called automatically
359
+ });
360
+ ```
361
+
362
+ If you're using storage directly without Mastra, you must call `init()` explicitly to create the collections:
363
+
364
+ ```typescript
365
+ import { MongoDBStore } from "@mastra/mongodb";
366
+
367
+ const storage = new MongoDBStore({
368
+ id: 'mongodb-storage',
369
+ url: process.env.MONGODB_URL,
370
+ dbName: process.env.MONGODB_DATABASE,
371
+ });
372
+
373
+ // Required when using storage directly
374
+ await storage.init();
375
+
376
+ // Access domain-specific stores via getStore()
377
+ const memoryStore = await storage.getStore('memory');
378
+ const thread = await memoryStore?.getThreadById({ threadId: "..." });
379
+ ```
380
+
381
+ > **Note:**
382
+ If `init()` is not called, collections won't be created and storage operations will fail silently or throw errors.
383
+
384
+ ## Vector Search Capabilities
385
+
386
+ MongoDB storage includes built-in vector search capabilities for AI applications:
387
+
388
+ ### Vector Index Creation
389
+
390
+ ```typescript
391
+ import { MongoDBVector } from "@mastra/mongodb";
392
+
393
+ const vectorStore = new MongoDBVector({
394
+ url: process.env.MONGODB_URL,
395
+ dbName: process.env.MONGODB_DATABASE,
396
+ });
397
+
398
+ // Create a vector index for embeddings
399
+ await vectorStore.createIndex({
400
+ indexName: "document_embeddings",
401
+ dimension: 1536,
402
+ });
403
+ ```
404
+
405
+ ### Vector Operations
406
+
407
+ ```typescript
408
+ // Store vectors with metadata
409
+ await vectorStore.upsert({
410
+ indexName: "document_embeddings",
411
+ vectors: [
412
+ {
413
+ id: "doc-1",
414
+ values: [0.1, 0.2, 0.3, ...], // 1536-dimensional vector
415
+ metadata: {
416
+ title: "Document Title",
417
+ category: "technical",
418
+ source: "api-docs",
419
+ },
420
+ },
421
+ ],
422
+ });
423
+
424
+ // Similarity search
425
+ const results = await vectorStore.query({
426
+ indexName: "document_embeddings",
427
+ vector: queryEmbedding,
428
+ topK: 5,
429
+ filter: {
430
+ category: "technical",
431
+ },
432
+ });
433
+ ```
434
+
435
+ ## Usage Example
436
+
437
+ ### Adding memory to an agent
438
+
439
+ To add MongoDB memory to an agent use the `Memory` class and create a new `storage` key using `MongoDBStore`. The configuration supports both local and remote MongoDB instances.
440
+
441
+ ```typescript title="src/mastra/agents/example-mongodb-agent.ts"
442
+ import { Memory } from "@mastra/memory";
443
+ import { Agent } from "@mastra/core/agent";
444
+ import { MongoDBStore } from "@mastra/mongodb";
445
+
446
+ export const mongodbAgent = new Agent({
447
+ id: "mongodb-agent",
448
+ name: "mongodb-agent",
449
+ instructions:
450
+ "You are an AI agent with the ability to automatically recall memories from previous interactions.",
451
+ model: "openai/gpt-5.1",
452
+ memory: new Memory({
453
+ storage: new MongoDBStore({
454
+ url: process.env.MONGODB_URI!,
455
+ dbName: process.env.MONGODB_DB_NAME!,
456
+ }),
457
+ options: {
458
+ threads: {
459
+ generateTitle: true,
460
+ },
461
+ },
462
+ }),
463
+ });
464
+ ```
465
+
466
+ ### Using the agent
467
+
468
+ Use `memoryOptions` to scope recall for this request. Set `lastMessages: 5` to limit recency-based recall, and use `semanticRecall` to fetch the `topK: 3` most relevant messages, including `messageRange: 2` neighboring messages for context around each match.
469
+
470
+ ```typescript title="src/test-mongodb-agent.ts"
471
+ import "dotenv/config";
472
+
473
+ import { mastra } from "./mastra";
474
+
475
+ const threadId = "123";
476
+ const resourceId = "user-456";
477
+
478
+ const agent = mastra.getAgent("mongodbAgent");
479
+
480
+ const message = await agent.stream("My name is Mastra", {
481
+ memory: {
482
+ thread: threadId,
483
+ resource: resourceId,
484
+ },
485
+ });
486
+
487
+ await message.textStream.pipeTo(new WritableStream());
488
+
489
+ const stream = await agent.stream("What's my name?", {
490
+ memory: {
491
+ thread: threadId,
492
+ resource: resourceId,
493
+ },
494
+ memoryOptions: {
495
+ lastMessages: 5,
496
+ semanticRecall: {
497
+ topK: 3,
498
+ messageRange: 2,
499
+ },
500
+ },
501
+ });
502
+
503
+ for await (const chunk of stream.textStream) {
504
+ process.stdout.write(chunk);
505
+ }
506
+ ```
507
+
508
+ ---
509
+
510
+ ## Reference: PostgreSQL Storage
511
+
512
+ > Documentation for the PostgreSQL storage implementation in Mastra.
513
+
514
+ The PostgreSQL storage implementation provides a production-ready storage solution using PostgreSQL databases.
515
+
516
+ ## Installation
517
+
518
+ ```bash
519
+ npm install @mastra/pg@beta
520
+ ```
521
+
522
+ ## Usage
523
+
524
+ ```typescript
525
+ import { PostgresStore } from "@mastra/pg";
526
+
527
+ const storage = new PostgresStore({
528
+ id: 'pg-storage',
529
+ connectionString: process.env.DATABASE_URL,
530
+ });
531
+ ```
532
+
533
+ ## Parameters
534
+
535
+ ## Constructor Examples
536
+
537
+ You can instantiate `PostgresStore` in the following ways:
538
+
539
+ ```ts
540
+ import { PostgresStore } from "@mastra/pg";
541
+
542
+ // Using a connection string only
543
+ const store1 = new PostgresStore({
544
+ id: 'pg-storage-1',
545
+ connectionString: "postgresql://user:password@localhost:5432/mydb",
546
+ });
547
+
548
+ // Using a connection string with a custom schema name
549
+ const store2 = new PostgresStore({
550
+ id: 'pg-storage-2',
551
+ connectionString: "postgresql://user:password@localhost:5432/mydb",
552
+ schemaName: "custom_schema", // optional
553
+ });
554
+
555
+ // Using individual connection parameters
556
+ const store4 = new PostgresStore({
557
+ id: 'pg-storage-3',
558
+ host: "localhost",
559
+ port: 5432,
560
+ database: "mydb",
561
+ user: "user",
562
+ password: "password",
563
+ });
564
+
565
+ // Individual parameters with schemaName
566
+ const store5 = new PostgresStore({
567
+ id: 'pg-storage-4',
568
+ host: "localhost",
569
+ port: 5432,
570
+ database: "mydb",
571
+ user: "user",
572
+ password: "password",
573
+ schemaName: "custom_schema", // optional
574
+ });
575
+ ```
576
+
577
+ ## Additional Notes
578
+
579
+ ### Schema Management
580
+
581
+ The storage implementation handles schema creation and updates automatically. It creates the following tables:
582
+
583
+ - `mastra_workflow_snapshot`: Stores workflow state and execution data
584
+ - `mastra_evals`: Stores evaluation results and metadata
585
+ - `mastra_threads`: Stores conversation threads
586
+ - `mastra_messages`: Stores individual messages
587
+ - `mastra_traces`: Stores telemetry and tracing data
588
+ - `mastra_scorers`: Stores scoring and evaluation data
589
+ - `mastra_resources`: Stores resource working memory data
590
+
591
+ ### Initialization
592
+
593
+ When you pass storage to the Mastra class, `init()` is called automatically before any storage operation:
594
+
595
+ ```typescript
596
+ import { Mastra } from "@mastra/core";
597
+ import { PostgresStore } from "@mastra/pg";
598
+
599
+ const storage = new PostgresStore({
600
+ connectionString: process.env.DATABASE_URL,
601
+ });
602
+
603
+ const mastra = new Mastra({
604
+ storage, // init() is called automatically
605
+ });
606
+ ```
607
+
608
+ If you're using storage directly without Mastra, you must call `init()` explicitly to create the tables:
609
+
610
+ ```typescript
611
+ import { PostgresStore } from "@mastra/pg";
612
+
613
+ const storage = new PostgresStore({
614
+ id: 'pg-storage',
615
+ connectionString: process.env.DATABASE_URL,
616
+ });
617
+
618
+ // Required when using storage directly
619
+ await storage.init();
620
+
621
+ // Access domain-specific stores via getStore()
622
+ const memoryStore = await storage.getStore('memory');
623
+ const thread = await memoryStore?.getThreadById({ threadId: "..." });
624
+ ```
625
+
626
+ > **Note:**
627
+ If `init()` is not called, tables won't be created and storage operations will fail silently or throw errors.
628
+
629
+ ### Direct Database and Pool Access
630
+
631
+ `PostgresStore` exposes both the underlying database object and the pg-promise instance as public fields:
632
+
633
+ ```typescript
634
+ store.db; // pg-promise database instance
635
+ store.pgp; // pg-promise main instance
636
+ ```
637
+
638
+ This enables direct queries and custom transaction management. When using these fields:
639
+
640
+ - You are responsible for proper connection and transaction handling.
641
+ - Closing the store (`store.close()`) will destroy the associated connection pool.
642
+ - Direct access bypasses any additional logic or validation provided by PostgresStore methods.
643
+
644
+ This approach is intended for advanced scenarios where low-level access is required.
645
+
646
+ ## Usage Example
647
+
648
+ ### Adding memory to an agent
649
+
650
+ To add PostgreSQL memory to an agent use the `Memory` class and create a new `storage` key using `PostgresStore`. The `connectionString` can either be a remote location, or a local database connection.
651
+
652
+ ```typescript title="src/mastra/agents/example-pg-agent.ts"
653
+ import { Memory } from "@mastra/memory";
654
+ import { Agent } from "@mastra/core/agent";
655
+ import { PostgresStore } from "@mastra/pg";
656
+
657
+ export const pgAgent = new Agent({
658
+ id: "pg-agent",
659
+ name: "PG Agent",
660
+ instructions:
661
+ "You are an AI agent with the ability to automatically recall memories from previous interactions.",
662
+ model: "openai/gpt-5.1",
663
+ memory: new Memory({
664
+ storage: new PostgresStore({
665
+ id: 'pg-agent-storage',
666
+ connectionString: process.env.DATABASE_URL!,
667
+ }),
668
+ options: {
669
+ generateTitle: true, // Explicitly enable automatic title generation
670
+ },
671
+ }),
672
+ });
673
+ ```
674
+
675
+ ### Using the agent
676
+
677
+ Use `memoryOptions` to scope recall for this request. Set `lastMessages: 5` to limit recency-based recall, and use `semanticRecall` to fetch the `topK: 3` most relevant messages, including `messageRange: 2` neighboring messages for context around each match.
678
+
679
+ ```typescript title="src/test-pg-agent.ts"
680
+ import "dotenv/config";
681
+
682
+ import { mastra } from "./mastra";
683
+
684
+ const threadId = "123";
685
+ const resourceId = "user-456";
686
+
687
+ const agent = mastra.getAgent("pg-agent");
688
+
689
+ const message = await agent.stream("My name is Mastra", {
690
+ memory: {
691
+ thread: threadId,
692
+ resource: resourceId,
693
+ },
694
+ });
695
+
696
+ await message.textStream.pipeTo(new WritableStream());
697
+
698
+ const stream = await agent.stream("What's my name?", {
699
+ memory: {
700
+ thread: threadId,
701
+ resource: resourceId,
702
+ },
703
+ memoryOptions: {
704
+ lastMessages: 5,
705
+ semanticRecall: {
706
+ topK: 3,
707
+ messageRange: 2,
708
+ },
709
+ },
710
+ });
711
+
712
+ for await (const chunk of stream.textStream) {
713
+ process.stdout.write(chunk);
714
+ }
715
+ ```
716
+
717
+ ## Index Management
718
+
719
+ PostgreSQL storage provides index management to optimize query performance.
720
+
721
+ ### Default Indexes
722
+
723
+ PostgreSQL storage creates composite indexes during initialization for common query patterns:
724
+
725
+ - `mastra_threads_resourceid_createdat_idx`: (resourceId, createdAt DESC)
726
+ - `mastra_messages_thread_id_createdat_idx`: (thread_id, createdAt DESC)
727
+ - `mastra_ai_spans_traceid_startedat_idx`: (traceId, startedAt DESC)
728
+ - `mastra_ai_spans_parentspanid_startedat_idx`: (parentSpanId, startedAt DESC)
729
+ - `mastra_ai_spans_name_startedat_idx`: (name, startedAt DESC)
730
+ - `mastra_ai_spans_scope_startedat_idx`: (scope, startedAt DESC)
731
+ - `mastra_scores_trace_id_span_id_created_at_idx`: (traceId, spanId, createdAt DESC)
732
+
733
+ These indexes improve performance for filtered queries with sorting, including `dateRange` filters on message queries.
734
+
735
+ ### Configuring Indexes
736
+
737
+ You can control index creation via constructor options:
738
+
739
+ ```typescript
740
+ import { PostgresStore } from "@mastra/pg";
741
+
742
+ // Skip default indexes (manage indexes separately)
743
+ const store = new PostgresStore({
744
+ id: 'pg-storage',
745
+ connectionString: process.env.DATABASE_URL,
746
+ skipDefaultIndexes: true,
747
+ });
748
+
749
+ // Add custom indexes during initialization
750
+ const storeWithCustomIndexes = new PostgresStore({
751
+ id: 'pg-storage',
752
+ connectionString: process.env.DATABASE_URL,
753
+ indexes: [
754
+ {
755
+ name: "idx_threads_metadata_type",
756
+ table: "mastra_threads",
757
+ columns: ["metadata->>'type'"],
758
+ },
759
+ {
760
+ name: "idx_messages_status",
761
+ table: "mastra_messages",
762
+ columns: ["metadata->>'status'"],
763
+ },
764
+ ],
765
+ });
766
+ ```
767
+
768
+ For advanced index types, you can specify additional options:
769
+
770
+ - `unique: true` for unique constraints
771
+ - `where: 'condition'` for partial indexes
772
+ - `method: 'brin'` for time-series data
773
+ - `storage: { fillfactor: 90 }` for update-heavy tables
774
+ - `concurrent: true` for non-blocking creation (default)
775
+
776
+ ### Index Options
777
+
778
+ ### Schema-Specific Indexes
779
+
780
+ When using custom schemas, index names are prefixed with the schema name:
781
+
782
+ ```typescript
783
+ const storage = new PostgresStore({
784
+ id: 'pg-storage',
785
+ connectionString: process.env.DATABASE_URL,
786
+ schemaName: "custom_schema",
787
+ indexes: [
788
+ {
789
+ name: "idx_threads_status",
790
+ table: "mastra_threads",
791
+ columns: ["status"],
792
+ },
793
+ ],
794
+ });
795
+
796
+ // Creates index as: custom_schema_idx_threads_status
797
+ ```
798
+
799
+ ### Managing Indexes via SQL
800
+
801
+ For advanced index management (listing, dropping, analyzing), use direct SQL queries via the `db` accessor:
802
+
803
+ ```typescript
804
+ // List indexes for a table
805
+ const indexes = await storage.db.any(`
806
+ SELECT indexname, indexdef
807
+ FROM pg_indexes
808
+ WHERE tablename = 'mastra_messages'
809
+ `);
810
+
811
+ // Drop an index
812
+ await storage.db.none('DROP INDEX IF EXISTS idx_my_custom_index');
813
+
814
+ // Analyze index usage
815
+ const stats = await storage.db.one(`
816
+ SELECT idx_scan, idx_tup_read
817
+ FROM pg_stat_user_indexes
818
+ WHERE indexrelname = 'mastra_messages_thread_id_createdat_idx'
819
+ `);
820
+ ```
821
+
822
+ ### Index Types and Use Cases
823
+
824
+ PostgreSQL offers different index types optimized for specific scenarios:
825
+
826
+ | Index Type | Best For | Storage | Speed |
827
+ | ------------------- | --------------------------------------- | ---------- | -------------------------- |
828
+ | **btree** (default) | Range queries, sorting, general purpose | Moderate | Fast |
829
+ | **hash** | Equality comparisons only | Small | Very fast for `=` |
830
+ | **gin** | JSONB, arrays, full-text search | Large | Fast for contains |
831
+ | **gist** | Geometric data, full-text search | Moderate | Fast for nearest-neighbor |
832
+ | **spgist** | Non-balanced data, text patterns | Small | Fast for specific patterns |
833
+ | **brin** | Large tables with natural ordering | Very small | Fast for ranges |
834
+
835
+ ---
836
+
837
+ ## Reference: Upstash Storage
838
+
839
+ > Documentation for the Upstash storage implementation in Mastra.
840
+
841
+ The Upstash storage implementation provides a serverless-friendly storage solution using Upstash's Redis-compatible key-value store.
842
+
843
+ > **Note:**
844
+
845
+ **Important:** When using Mastra with Upstash, the pay-as-you-go model can result in unexpectedly high costs due to the high volume of Redis commands generated during agent conversations. We strongly recommend using a **fixed pricing plan** for predictable costs. See [Upstash pricing](https://upstash.com/pricing/redis) for details and [GitHub issue #5850](https://github.com/mastra-ai/mastra/issues/5850) for context.
846
+
847
+ ## Installation
848
+
849
+ ```bash
850
+ npm install @mastra/upstash@beta
851
+ ```
852
+
853
+ ## Usage
854
+
855
+ ```typescript
856
+ import { UpstashStore } from "@mastra/upstash";
857
+
858
+ const storage = new UpstashStore({
859
+ id: 'upstash-storage',
860
+ url: process.env.UPSTASH_URL,
861
+ token: process.env.UPSTASH_TOKEN,
862
+ });
863
+ ```
864
+
865
+ ## Parameters
866
+
867
+ ## Additional Notes
868
+
869
+ ### Key Structure
870
+
871
+ The Upstash storage implementation uses a key-value structure:
872
+
873
+ - Thread keys: `{prefix}thread:{threadId}`
874
+ - Message keys: `{prefix}message:{messageId}`
875
+ - Metadata keys: `{prefix}metadata:{entityId}`
876
+
877
+ ### Serverless Benefits
878
+
879
+ Upstash storage is particularly well-suited for serverless deployments:
880
+
881
+ - No connection management needed
882
+ - Pay-per-request pricing
883
+ - Global replication options
884
+ - Edge-compatible
885
+
886
+ ### Data Persistence
887
+
888
+ Upstash provides:
889
+
890
+ - Automatic data persistence
891
+ - Point-in-time recovery
892
+ - Cross-region replication options
893
+
894
+ ### Performance Considerations
895
+
896
+ For optimal performance:
897
+
898
+ - Use appropriate key prefixes to organize data
899
+ - Monitor Redis memory usage
900
+ - Consider data expiration policies if needed
901
+
902
+ ## Usage Example
903
+
904
+ ### Adding memory to an agent
905
+
906
+ To add Upstash memory to an agent use the `Memory` class and create a new `storage` key using `UpstashStore` and a new `vector` key using `UpstashVector`. The configuration can point to either a remote service or a local setup.
907
+
908
+ ```typescript title="src/mastra/agents/example-upstash-agent.ts"
909
+ import { Memory } from "@mastra/memory";
910
+ import { Agent } from "@mastra/core/agent";
911
+ import { UpstashStore } from "@mastra/upstash";
912
+
913
+ export const upstashAgent = new Agent({
914
+ id: "upstash-agent",
915
+ name: "Upstash Agent",
916
+ instructions:
917
+ "You are an AI agent with the ability to automatically recall memories from previous interactions.",
918
+ model: "openai/gpt-5.1",
919
+ memory: new Memory({
920
+ storage: new UpstashStore({
921
+ id: 'upstash-agent-storage',
922
+ url: process.env.UPSTASH_REDIS_REST_URL!,
923
+ token: process.env.UPSTASH_REDIS_REST_TOKEN!,
924
+ }),
925
+ options: {
926
+ generateTitle: true, // Explicitly enable automatic title generation
927
+ },
928
+ }),
929
+ });
930
+ ```
931
+
932
+ ### Using the agent
933
+
934
+ Use `memoryOptions` to scope recall for this request. Set `lastMessages: 5` to limit recency-based recall, and use `semanticRecall` to fetch the `topK: 3` most relevant messages, including `messageRange: 2` neighboring messages for context around each match.
935
+
936
+ ```typescript title="src/test-upstash-agent.ts"
937
+ import "dotenv/config";
938
+
939
+ import { mastra } from "./mastra";
940
+
941
+ const threadId = "123";
942
+ const resourceId = "user-456";
943
+
944
+ const agent = mastra.getAgent("upstashAgent");
945
+
946
+ const message = await agent.stream("My name is Mastra", {
947
+ memory: {
948
+ thread: threadId,
949
+ resource: resourceId,
950
+ },
951
+ });
952
+
953
+ await message.textStream.pipeTo(new WritableStream());
954
+
955
+ const stream = await agent.stream("What's my name?", {
956
+ memory: {
957
+ thread: threadId,
958
+ resource: resourceId,
959
+ },
960
+ memoryOptions: {
961
+ lastMessages: 5,
962
+ semanticRecall: {
963
+ topK: 3,
964
+ messageRange: 2,
965
+ },
966
+ },
967
+ });
968
+
969
+ for await (const chunk of stream.textStream) {
970
+ process.stdout.write(chunk);
971
+ }
972
+ ```