@mastra/mcp-docs-server 1.0.0-beta.11 → 1.0.0-beta.13
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.docs/organized/changelogs/%40mastra%2Fagent-builder.md +12 -12
- package/.docs/organized/changelogs/%40mastra%2Fai-sdk.md +24 -24
- package/.docs/organized/changelogs/%40mastra%2Fclickhouse.md +45 -45
- package/.docs/organized/changelogs/%40mastra%2Fclient-js.md +83 -83
- package/.docs/organized/changelogs/%40mastra%2Fcloudflare-d1.md +39 -39
- package/.docs/organized/changelogs/%40mastra%2Fcloudflare.md +39 -39
- package/.docs/organized/changelogs/%40mastra%2Fconvex.md +38 -0
- package/.docs/organized/changelogs/%40mastra%2Fcore.md +174 -174
- package/.docs/organized/changelogs/%40mastra%2Fdeployer-cloud.md +17 -17
- package/.docs/organized/changelogs/%40mastra%2Fdeployer.md +27 -27
- package/.docs/organized/changelogs/%40mastra%2Fdynamodb.md +39 -39
- package/.docs/organized/changelogs/%40mastra%2Ffastembed.md +6 -0
- package/.docs/organized/changelogs/%40mastra%2Flance.md +39 -39
- package/.docs/organized/changelogs/%40mastra%2Flibsql.md +45 -45
- package/.docs/organized/changelogs/%40mastra%2Fmcp-docs-server.md +15 -15
- package/.docs/organized/changelogs/%40mastra%2Fmemory.md +13 -13
- package/.docs/organized/changelogs/%40mastra%2Fmongodb.md +39 -39
- package/.docs/organized/changelogs/%40mastra%2Fmssql.md +39 -39
- package/.docs/organized/changelogs/%40mastra%2Fpg.md +45 -45
- package/.docs/organized/changelogs/%40mastra%2Fplayground-ui.md +75 -75
- package/.docs/organized/changelogs/%40mastra%2Freact.md +40 -0
- package/.docs/organized/changelogs/%40mastra%2Fschema-compat.md +6 -0
- package/.docs/organized/changelogs/%40mastra%2Fserver.md +29 -29
- package/.docs/organized/changelogs/%40mastra%2Fupstash.md +39 -39
- package/.docs/organized/changelogs/create-mastra.md +29 -29
- package/.docs/organized/changelogs/mastra.md +35 -35
- package/.docs/organized/code-examples/quick-start.md +0 -4
- package/.docs/organized/code-examples/stock-price-tool.md +21 -2
- package/.docs/raw/agents/agent-approval.mdx +136 -2
- package/.docs/raw/agents/agent-memory.mdx +4 -4
- package/.docs/raw/agents/guardrails.mdx +1 -1
- package/.docs/raw/agents/networks.mdx +1 -1
- package/.docs/raw/agents/overview.mdx +2 -2
- package/.docs/raw/agents/using-tools.mdx +1 -1
- package/.docs/raw/course/01-first-agent/07-creating-your-agent.md +1 -2
- package/.docs/raw/course/01-first-agent/12-connecting-tool-to-agent.md +1 -1
- package/.docs/raw/course/01-first-agent/16-adding-memory-to-agent.md +1 -2
- package/.docs/raw/course/02-agent-tools-mcp/05-updating-your-agent.md +1 -1
- package/.docs/raw/course/02-agent-tools-mcp/10-updating-agent-instructions-zapier.md +1 -1
- package/.docs/raw/course/02-agent-tools-mcp/16-updating-agent-instructions-github.md +1 -1
- package/.docs/raw/course/02-agent-tools-mcp/21-updating-agent-instructions-hackernews.md +1 -1
- package/.docs/raw/course/02-agent-tools-mcp/27-updating-agent-instructions-filesystem.md +1 -1
- package/.docs/raw/course/02-agent-tools-mcp/31-enhancing-memory-configuration.md +2 -2
- package/.docs/raw/course/03-agent-memory/04-creating-basic-memory-agent.md +1 -2
- package/.docs/raw/course/03-agent-memory/08-configuring-conversation-history.md +1 -2
- package/.docs/raw/course/03-agent-memory/16-configuring-semantic-recall.md +3 -4
- package/.docs/raw/course/03-agent-memory/21-configuring-working-memory.md +2 -3
- package/.docs/raw/course/03-agent-memory/22-custom-working-memory-templates.md +2 -3
- package/.docs/raw/course/03-agent-memory/25-combining-memory-features.md +1 -2
- package/.docs/raw/course/03-agent-memory/27-creating-learning-assistant.md +2 -3
- package/.docs/raw/course/04-workflows/11-creating-an-ai-agent.md +2 -3
- package/.docs/raw/deployment/cloud-providers.mdx +20 -0
- package/.docs/raw/deployment/{building-mastra.mdx → mastra-server.mdx} +2 -2
- package/.docs/raw/deployment/monorepo.mdx +23 -44
- package/.docs/raw/deployment/overview.mdx +28 -53
- package/.docs/raw/deployment/web-framework.mdx +12 -14
- package/.docs/raw/getting-started/start.mdx +10 -1
- package/.docs/raw/getting-started/studio.mdx +1 -1
- package/.docs/raw/guides/build-your-ui/ai-sdk-ui.mdx +1021 -67
- package/.docs/raw/{deployment/cloud-providers → guides/deployment}/aws-lambda.mdx +3 -6
- package/.docs/raw/{deployment/cloud-providers → guides/deployment}/azure-app-services.mdx +4 -6
- package/.docs/raw/{deployment/cloud-providers → guides/deployment}/cloudflare-deployer.mdx +4 -0
- package/.docs/raw/{deployment/cloud-providers → guides/deployment}/digital-ocean.mdx +3 -6
- package/.docs/raw/guides/deployment/index.mdx +32 -0
- package/.docs/raw/{deployment/cloud-providers → guides/deployment}/netlify-deployer.mdx +4 -0
- package/.docs/raw/{deployment/cloud-providers → guides/deployment}/vercel-deployer.mdx +4 -0
- package/.docs/raw/guides/getting-started/express.mdx +71 -152
- package/.docs/raw/guides/getting-started/hono.mdx +227 -0
- package/.docs/raw/guides/getting-started/next-js.mdx +173 -63
- package/.docs/raw/guides/getting-started/vite-react.mdx +307 -137
- package/.docs/raw/guides/guide/research-assistant.mdx +4 -4
- package/.docs/raw/guides/migrations/upgrade-to-v1/client.mdx +17 -0
- package/.docs/raw/guides/migrations/upgrade-to-v1/overview.mdx +6 -0
- package/.docs/raw/index.mdx +1 -1
- package/.docs/raw/{deployment/mastra-cloud → mastra-cloud}/dashboard.mdx +2 -6
- package/.docs/raw/{deployment/mastra-cloud → mastra-cloud}/observability.mdx +1 -5
- package/.docs/raw/{deployment/mastra-cloud → mastra-cloud}/overview.mdx +2 -6
- package/.docs/raw/{deployment/mastra-cloud → mastra-cloud}/setting-up.mdx +3 -6
- package/.docs/raw/memory/overview.mdx +1 -1
- package/.docs/raw/memory/storage/memory-with-libsql.mdx +1 -1
- package/.docs/raw/memory/storage/memory-with-mongodb.mdx +1 -1
- package/.docs/raw/memory/storage/memory-with-pg.mdx +1 -1
- package/.docs/raw/memory/storage/memory-with-upstash.mdx +1 -1
- package/.docs/raw/{server-db/storage.mdx → memory/storage/overview.mdx} +2 -2
- package/.docs/raw/observability/logging.mdx +1 -1
- package/.docs/raw/observability/tracing/exporters/cloud.mdx +1 -1
- package/.docs/raw/observability/tracing/exporters/default.mdx +1 -1
- package/.docs/raw/rag/chunking-and-embedding.mdx +12 -25
- package/.docs/raw/rag/graph-rag.mdx +220 -0
- package/.docs/raw/rag/overview.mdx +1 -2
- package/.docs/raw/rag/retrieval.mdx +13 -29
- package/.docs/raw/rag/vector-databases.mdx +7 -3
- package/.docs/raw/reference/agents/getDefaultGenerateOptions.mdx +1 -1
- package/.docs/raw/reference/agents/getDefaultOptions.mdx +1 -1
- package/.docs/raw/reference/agents/getDefaultStreamOptions.mdx +1 -1
- package/.docs/raw/reference/agents/getInstructions.mdx +1 -1
- package/.docs/raw/reference/agents/getLLM.mdx +1 -1
- package/.docs/raw/reference/agents/getMemory.mdx +1 -1
- package/.docs/raw/reference/agents/getModel.mdx +1 -1
- package/.docs/raw/reference/agents/listScorers.mdx +1 -1
- package/.docs/raw/reference/ai-sdk/chat-route.mdx +1 -1
- package/.docs/raw/reference/ai-sdk/handle-chat-stream.mdx +1 -1
- package/.docs/raw/reference/ai-sdk/handle-network-stream.mdx +1 -1
- package/.docs/raw/reference/ai-sdk/handle-workflow-stream.mdx +1 -1
- package/.docs/raw/reference/ai-sdk/network-route.mdx +1 -1
- package/.docs/raw/reference/ai-sdk/to-ai-sdk-v4-messages.mdx +127 -0
- package/.docs/raw/reference/ai-sdk/to-ai-sdk-v5-messages.mdx +107 -0
- package/.docs/raw/reference/ai-sdk/workflow-route.mdx +1 -1
- package/.docs/raw/reference/auth/auth0.mdx +1 -1
- package/.docs/raw/reference/auth/clerk.mdx +1 -1
- package/.docs/raw/reference/auth/firebase.mdx +1 -1
- package/.docs/raw/reference/auth/jwt.mdx +1 -1
- package/.docs/raw/reference/auth/supabase.mdx +1 -1
- package/.docs/raw/reference/auth/workos.mdx +1 -1
- package/.docs/raw/reference/cli/mastra.mdx +1 -1
- package/.docs/raw/reference/client-js/mastra-client.mdx +1 -1
- package/.docs/raw/reference/client-js/workflows.mdx +20 -0
- package/.docs/raw/reference/core/getServer.mdx +2 -2
- package/.docs/raw/reference/core/getStorage.mdx +1 -1
- package/.docs/raw/reference/core/getStoredAgentById.mdx +1 -1
- package/.docs/raw/reference/core/listStoredAgents.mdx +1 -1
- package/.docs/raw/reference/core/setStorage.mdx +1 -1
- package/.docs/raw/reference/logging/pino-logger.mdx +1 -1
- package/.docs/raw/reference/rag/database-config.mdx +1 -1
- package/.docs/raw/reference/server/create-route.mdx +1 -1
- package/.docs/raw/reference/server/express-adapter.mdx +4 -4
- package/.docs/raw/reference/server/hono-adapter.mdx +4 -4
- package/.docs/raw/reference/server/mastra-server.mdx +2 -2
- package/.docs/raw/reference/server/routes.mdx +28 -1
- package/.docs/raw/reference/streaming/agents/stream.mdx +22 -0
- package/.docs/raw/reference/streaming/workflows/stream.mdx +33 -20
- package/.docs/raw/reference/tools/create-tool.mdx +23 -1
- package/.docs/raw/reference/tools/graph-rag-tool.mdx +3 -3
- package/.docs/raw/reference/tools/vector-query-tool.mdx +3 -3
- package/.docs/raw/reference/workflows/run-methods/startAsync.mdx +143 -0
- package/.docs/raw/reference/workflows/workflow-methods/create-run.mdx +35 -0
- package/.docs/raw/reference/workflows/workflow.mdx +14 -0
- package/.docs/raw/{auth → server/auth}/auth0.mdx +1 -1
- package/.docs/raw/{auth → server/auth}/clerk.mdx +1 -1
- package/.docs/raw/{auth → server/auth}/firebase.mdx +1 -1
- package/.docs/raw/{auth → server/auth}/index.mdx +6 -6
- package/.docs/raw/{auth → server/auth}/jwt.mdx +1 -1
- package/.docs/raw/{auth → server/auth}/supabase.mdx +1 -1
- package/.docs/raw/{auth → server/auth}/workos.mdx +1 -1
- package/.docs/raw/{server-db → server}/custom-adapters.mdx +3 -3
- package/.docs/raw/{server-db → server}/custom-api-routes.mdx +1 -1
- package/.docs/raw/{server-db → server}/mastra-client.mdx +2 -2
- package/.docs/raw/{server-db → server}/mastra-server.mdx +5 -5
- package/.docs/raw/{server-db → server}/middleware.mdx +2 -2
- package/.docs/raw/{server-db → server}/request-context.mdx +3 -3
- package/.docs/raw/{server-db → server}/server-adapters.mdx +6 -6
- package/.docs/raw/tools-mcp/overview.mdx +2 -2
- package/.docs/raw/workflows/error-handling.mdx +162 -1
- package/.docs/raw/workflows/overview.mdx +2 -2
- package/CHANGELOG.md +14 -0
- package/package.json +3 -3
- package/.docs/organized/changelogs/%40internal%2Fai-sdk-v4.md +0 -1
- package/.docs/raw/deployment/cloud-providers/index.mdx +0 -55
- /package/.docs/raw/{deployment/cloud-providers → guides/deployment}/amazon-ec2.mdx +0 -0
|
@@ -64,7 +64,7 @@ Once you have your API routes set up, you can use them in the [`useChat()`](#use
|
|
|
64
64
|
|
|
65
65
|
### Mastra's server
|
|
66
66
|
|
|
67
|
-
Run Mastra as a standalone server and connect your frontend (e.g. using Vite + React) to its API endpoints. You'll be using Mastra's [custom API routes](/docs/v1/server
|
|
67
|
+
Run Mastra as a standalone server and connect your frontend (e.g. using Vite + React) to its API endpoints. You'll be using Mastra's [custom API routes](/docs/v1/server/custom-api-routes) feature for this.
|
|
68
68
|
|
|
69
69
|
:::info
|
|
70
70
|
|
|
@@ -390,15 +390,582 @@ export async function POST(req: Request) {
|
|
|
390
390
|
|
|
391
391
|
</Tabs>
|
|
392
392
|
|
|
393
|
+
## Custom UI
|
|
394
|
+
|
|
395
|
+
Custom UI (also known as Generative UI) allows you to render custom React components based on data streamed from Mastra. Instead of displaying raw text or JSON, you can create visual components for tool outputs, workflow progress, agent network execution, and custom events.
|
|
396
|
+
|
|
397
|
+
Use Custom UI when you want to:
|
|
398
|
+
|
|
399
|
+
- Render tool outputs as visual components (e.g., a weather card instead of JSON)
|
|
400
|
+
- Display workflow step progress with status indicators
|
|
401
|
+
- Visualize agent network execution with step-by-step updates
|
|
402
|
+
- Show progress indicators or status updates during long-running operations
|
|
403
|
+
|
|
404
|
+
### Data part types
|
|
405
|
+
|
|
406
|
+
Mastra streams data to the frontend as "parts" within messages. Each part has a `type` that determines how to render it. The `@mastra/ai-sdk` package transforms Mastra streams into AI SDK-compatible [UI Message DataParts](https://ai-sdk.dev/docs/reference/ai-sdk-core/ui-message#datauipart).
|
|
407
|
+
|
|
408
|
+
| Data Part Type | Source | Description |
|
|
409
|
+
|----------------|--------|-------------|
|
|
410
|
+
| `tool-{toolKey}` | AI SDK built-in | Tool invocation with states: `input-available`, `output-available`, `output-error` |
|
|
411
|
+
| `data-workflow` | `workflowRoute()` | Workflow execution with step inputs, outputs, and status |
|
|
412
|
+
| `data-network` | `networkRoute()` | Agent network execution with ordered steps and outputs |
|
|
413
|
+
| `data-tool-agent` | Nested agent in tool | Agent output streamed from within a tool's `execute()` |
|
|
414
|
+
| `data-tool-workflow` | Nested workflow in tool | Workflow output streamed from within a tool's `execute()` |
|
|
415
|
+
| `data-tool-network` | Nested network in tool | Network output streamed from within a tool's `execute()` |
|
|
416
|
+
| `data-{custom}` | `writer.custom()` | Custom events for progress indicators, status updates, etc. |
|
|
417
|
+
|
|
418
|
+
### Rendering tool outputs
|
|
419
|
+
|
|
420
|
+
AI SDK automatically creates `tool-{toolKey}` parts when an agent calls a tool. These parts include the tool's state and output, which you can use to render custom components.
|
|
421
|
+
|
|
422
|
+
The tool part cycles through states:
|
|
423
|
+
- `input-streaming`: Tool input is being streamed (when tool call streaming is enabled)
|
|
424
|
+
- `input-available`: Tool has been called with complete input, waiting for execution
|
|
425
|
+
- `output-available`: Tool execution completed with output
|
|
426
|
+
- `output-error`: Tool execution failed
|
|
427
|
+
|
|
428
|
+
Here's an example of rendering a weather tool's output as a custom `WeatherCard` component.
|
|
429
|
+
|
|
430
|
+
<Tabs>
|
|
431
|
+
|
|
432
|
+
<TabItem value="backend" label="Backend">
|
|
433
|
+
|
|
434
|
+
Define a tool with an `outputSchema` so the frontend knows the shape of the data to render.
|
|
435
|
+
|
|
436
|
+
```typescript title="src/mastra/tools/weather-tool.ts" {10-17} copy
|
|
437
|
+
import { createTool } from "@mastra/core/tools";
|
|
438
|
+
import { z } from "zod";
|
|
439
|
+
|
|
440
|
+
export const weatherTool = createTool({
|
|
441
|
+
id: "get-weather",
|
|
442
|
+
description: "Get current weather for a location",
|
|
443
|
+
inputSchema: z.object({
|
|
444
|
+
location: z.string().describe("The location to get the weather for"),
|
|
445
|
+
}),
|
|
446
|
+
outputSchema: z.object({
|
|
447
|
+
temperature: z.number(),
|
|
448
|
+
feelsLike: z.number(),
|
|
449
|
+
humidity: z.number(),
|
|
450
|
+
windSpeed: z.number(),
|
|
451
|
+
conditions: z.string(),
|
|
452
|
+
location: z.string(),
|
|
453
|
+
}),
|
|
454
|
+
execute: async ({ location }) => {
|
|
455
|
+
const response = await fetch(
|
|
456
|
+
`https://api.weatherapi.com/v1/current.json?key=${process.env.WEATHER_API_KEY}&q=${location}`
|
|
457
|
+
);
|
|
458
|
+
const data = await response.json();
|
|
459
|
+
return {
|
|
460
|
+
temperature: data.current.temp_c,
|
|
461
|
+
feelsLike: data.current.feelslike_c,
|
|
462
|
+
humidity: data.current.humidity,
|
|
463
|
+
windSpeed: data.current.wind_kph,
|
|
464
|
+
conditions: data.current.condition.text,
|
|
465
|
+
location: data.location.name,
|
|
466
|
+
};
|
|
467
|
+
},
|
|
468
|
+
});
|
|
469
|
+
```
|
|
470
|
+
|
|
471
|
+
</TabItem>
|
|
472
|
+
|
|
473
|
+
<TabItem value="frontend" label="Frontend">
|
|
474
|
+
|
|
475
|
+
Check for `tool-{toolKey}` parts in the message and render a custom component based on the tool's state and output.
|
|
476
|
+
|
|
477
|
+
```typescript title="src/components/chat.tsx" {24-35} copy
|
|
478
|
+
import { useChat } from "@ai-sdk/react";
|
|
479
|
+
import { DefaultChatTransport } from "ai";
|
|
480
|
+
import { WeatherCard } from "./weather-card";
|
|
481
|
+
import { Loader } from "./loader";
|
|
482
|
+
|
|
483
|
+
export function Chat() {
|
|
484
|
+
const { messages, sendMessage } = useChat({
|
|
485
|
+
transport: new DefaultChatTransport({
|
|
486
|
+
api: "http://localhost:4111/chat/weatherAgent",
|
|
487
|
+
}),
|
|
488
|
+
});
|
|
489
|
+
|
|
490
|
+
return (
|
|
491
|
+
<div>
|
|
492
|
+
{messages.map((message) => (
|
|
493
|
+
<div key={message.id}>
|
|
494
|
+
{message.parts.map((part, index) => {
|
|
495
|
+
// Handle user text messages
|
|
496
|
+
if (part.type === "text" && message.role === "user") {
|
|
497
|
+
return <p key={index}>{part.text}</p>;
|
|
498
|
+
}
|
|
499
|
+
|
|
500
|
+
// Handle weather tool output
|
|
501
|
+
if (part.type === "tool-weatherTool") {
|
|
502
|
+
switch (part.state) {
|
|
503
|
+
case "input-available":
|
|
504
|
+
return <Loader key={index} />;
|
|
505
|
+
case "output-available":
|
|
506
|
+
return <WeatherCard key={index} {...part.output} />;
|
|
507
|
+
case "output-error":
|
|
508
|
+
return <div key={index}>Error: {part.errorText}</div>;
|
|
509
|
+
default:
|
|
510
|
+
return null;
|
|
511
|
+
}
|
|
512
|
+
}
|
|
513
|
+
|
|
514
|
+
return null;
|
|
515
|
+
})}
|
|
516
|
+
</div>
|
|
517
|
+
))}
|
|
518
|
+
</div>
|
|
519
|
+
);
|
|
520
|
+
}
|
|
521
|
+
```
|
|
522
|
+
|
|
523
|
+
</TabItem>
|
|
524
|
+
|
|
525
|
+
</Tabs>
|
|
526
|
+
|
|
527
|
+
:::tip
|
|
528
|
+
|
|
529
|
+
The tool part type follows the pattern `tool-{toolKey}`, where `toolKey` is the key used when registering the tool with the agent. For example, if you register tools as `tools: { weatherTool }`, the part type will be `tool-weatherTool`.
|
|
530
|
+
|
|
531
|
+
:::
|
|
532
|
+
|
|
533
|
+
### Rendering workflow data
|
|
534
|
+
|
|
535
|
+
When using `workflowRoute()` or `handleWorkflowStream()`, Mastra emits `data-workflow` parts that contain the workflow's execution state, including step statuses and outputs.
|
|
536
|
+
|
|
537
|
+
<Tabs>
|
|
538
|
+
|
|
539
|
+
<TabItem value="backend" label="Backend">
|
|
540
|
+
|
|
541
|
+
Define a workflow with multiple steps that will emit `data-workflow` parts as it executes.
|
|
542
|
+
|
|
543
|
+
```typescript title="src/mastra/workflows/activities-workflow.ts" copy
|
|
544
|
+
import { createStep, createWorkflow } from "@mastra/core/workflows";
|
|
545
|
+
import { z } from "zod";
|
|
546
|
+
|
|
547
|
+
const fetchWeather = createStep({
|
|
548
|
+
id: "fetch-weather",
|
|
549
|
+
inputSchema: z.object({
|
|
550
|
+
location: z.string(),
|
|
551
|
+
}),
|
|
552
|
+
outputSchema: z.object({
|
|
553
|
+
temperature: z.number(),
|
|
554
|
+
conditions: z.string(),
|
|
555
|
+
}),
|
|
556
|
+
execute: async ({ inputData }) => {
|
|
557
|
+
// Fetch weather data...
|
|
558
|
+
return { temperature: 22, conditions: "Sunny" };
|
|
559
|
+
},
|
|
560
|
+
});
|
|
561
|
+
|
|
562
|
+
const planActivities = createStep({
|
|
563
|
+
id: "plan-activities",
|
|
564
|
+
inputSchema: z.object({
|
|
565
|
+
temperature: z.number(),
|
|
566
|
+
conditions: z.string(),
|
|
567
|
+
}),
|
|
568
|
+
outputSchema: z.object({
|
|
569
|
+
activities: z.string(),
|
|
570
|
+
}),
|
|
571
|
+
execute: async ({ inputData, mastra }) => {
|
|
572
|
+
const agent = mastra?.getAgent("activityAgent");
|
|
573
|
+
const response = await agent?.generate(
|
|
574
|
+
`Suggest activities for ${inputData.conditions} weather at ${inputData.temperature}°C`
|
|
575
|
+
);
|
|
576
|
+
return { activities: response?.text || "" };
|
|
577
|
+
},
|
|
578
|
+
});
|
|
579
|
+
|
|
580
|
+
export const activitiesWorkflow = createWorkflow({
|
|
581
|
+
id: "activities-workflow",
|
|
582
|
+
inputSchema: z.object({
|
|
583
|
+
location: z.string(),
|
|
584
|
+
}),
|
|
585
|
+
outputSchema: z.object({
|
|
586
|
+
activities: z.string(),
|
|
587
|
+
}),
|
|
588
|
+
})
|
|
589
|
+
.then(fetchWeather)
|
|
590
|
+
.then(planActivities);
|
|
591
|
+
|
|
592
|
+
activitiesWorkflow.commit();
|
|
593
|
+
```
|
|
594
|
+
|
|
595
|
+
Register the workflow with Mastra and expose it via `workflowRoute()` to stream workflow events to the frontend.
|
|
596
|
+
|
|
597
|
+
```typescript title="src/mastra/index.ts" copy
|
|
598
|
+
import { Mastra } from "@mastra/core";
|
|
599
|
+
import { workflowRoute } from "@mastra/ai-sdk";
|
|
600
|
+
|
|
601
|
+
export const mastra = new Mastra({
|
|
602
|
+
workflows: { activitiesWorkflow },
|
|
603
|
+
server: {
|
|
604
|
+
apiRoutes: [
|
|
605
|
+
workflowRoute({
|
|
606
|
+
path: "/workflow/activitiesWorkflow",
|
|
607
|
+
workflow: "activitiesWorkflow",
|
|
608
|
+
}),
|
|
609
|
+
],
|
|
610
|
+
},
|
|
611
|
+
});
|
|
612
|
+
```
|
|
613
|
+
|
|
614
|
+
</TabItem>
|
|
615
|
+
|
|
616
|
+
<TabItem value="frontend" label="Frontend">
|
|
617
|
+
|
|
618
|
+
Check for `data-workflow` parts and render each step's status and output using the `WorkflowDataPart` type for type safety.
|
|
619
|
+
|
|
620
|
+
```typescript title="src/components/workflow-chat.tsx" {3,5,45-47} copy
|
|
621
|
+
import { useChat } from "@ai-sdk/react";
|
|
622
|
+
import { DefaultChatTransport } from "ai";
|
|
623
|
+
import type { WorkflowDataPart } from "@mastra/ai-sdk";
|
|
624
|
+
|
|
625
|
+
type WorkflowData = WorkflowDataPart["data"];
|
|
626
|
+
type StepStatus = "running" | "success" | "failed" | "suspended" | "waiting";
|
|
627
|
+
|
|
628
|
+
function StepIndicator({ name, status, output }: {
|
|
629
|
+
name: string;
|
|
630
|
+
status: StepStatus;
|
|
631
|
+
output: unknown;
|
|
632
|
+
}) {
|
|
633
|
+
return (
|
|
634
|
+
<div className="step">
|
|
635
|
+
<div className="step-header">
|
|
636
|
+
<span>{name}</span>
|
|
637
|
+
<span className={`status status-${status}`}>{status}</span>
|
|
638
|
+
</div>
|
|
639
|
+
{status === "success" && output && (
|
|
640
|
+
<pre>{JSON.stringify(output, null, 2)}</pre>
|
|
641
|
+
)}
|
|
642
|
+
</div>
|
|
643
|
+
);
|
|
644
|
+
}
|
|
645
|
+
|
|
646
|
+
export function WorkflowChat() {
|
|
647
|
+
const { messages, sendMessage, status } = useChat({
|
|
648
|
+
transport: new DefaultChatTransport({
|
|
649
|
+
api: "http://localhost:4111/workflow/activitiesWorkflow",
|
|
650
|
+
prepareSendMessagesRequest: ({ messages }) => ({
|
|
651
|
+
body: {
|
|
652
|
+
inputData: {
|
|
653
|
+
location: messages[messages.length - 1]?.parts[0]?.text,
|
|
654
|
+
},
|
|
655
|
+
},
|
|
656
|
+
}),
|
|
657
|
+
}),
|
|
658
|
+
});
|
|
659
|
+
|
|
660
|
+
return (
|
|
661
|
+
<div>
|
|
662
|
+
{messages.map((message) => (
|
|
663
|
+
<div key={message.id}>
|
|
664
|
+
{message.parts.map((part, index) => {
|
|
665
|
+
if (part.type === "data-workflow") {
|
|
666
|
+
const workflowData = part.data as WorkflowData;
|
|
667
|
+
const steps = Object.values(workflowData.steps);
|
|
668
|
+
|
|
669
|
+
return (
|
|
670
|
+
<div key={index} className="workflow-progress">
|
|
671
|
+
<h3>Workflow: {workflowData.name}</h3>
|
|
672
|
+
<p>Status: {workflowData.status}</p>
|
|
673
|
+
{steps.map((step) => (
|
|
674
|
+
<StepIndicator
|
|
675
|
+
key={step.name}
|
|
676
|
+
name={step.name}
|
|
677
|
+
status={step.status}
|
|
678
|
+
output={step.output}
|
|
679
|
+
/>
|
|
680
|
+
))}
|
|
681
|
+
</div>
|
|
682
|
+
);
|
|
683
|
+
}
|
|
684
|
+
return null;
|
|
685
|
+
})}
|
|
686
|
+
</div>
|
|
687
|
+
))}
|
|
688
|
+
</div>
|
|
689
|
+
);
|
|
690
|
+
}
|
|
691
|
+
```
|
|
692
|
+
|
|
693
|
+
</TabItem>
|
|
694
|
+
|
|
695
|
+
</Tabs>
|
|
696
|
+
|
|
697
|
+
For more details on workflow streaming, see [Workflow Streaming](/docs/v1/streaming/workflow-streaming).
|
|
698
|
+
|
|
699
|
+
### Rendering network data
|
|
700
|
+
|
|
701
|
+
When using `networkRoute()` or `handleNetworkStream()`, Mastra emits `data-network` parts that contain the agent network's execution state, including which agents were called and their outputs.
|
|
702
|
+
|
|
703
|
+
<Tabs>
|
|
704
|
+
|
|
705
|
+
<TabItem value="backend" label="Backend">
|
|
706
|
+
|
|
707
|
+
Register agents with Mastra and expose the routing agent via `networkRoute()` to stream network execution events to the frontend.
|
|
708
|
+
|
|
709
|
+
```typescript title="src/mastra/index.ts" copy
|
|
710
|
+
import { Mastra } from "@mastra/core";
|
|
711
|
+
import { networkRoute } from "@mastra/ai-sdk";
|
|
712
|
+
|
|
713
|
+
export const mastra = new Mastra({
|
|
714
|
+
agents: { routingAgent, researchAgent, weatherAgent },
|
|
715
|
+
server: {
|
|
716
|
+
apiRoutes: [
|
|
717
|
+
networkRoute({
|
|
718
|
+
path: "/network",
|
|
719
|
+
agent: "routingAgent",
|
|
720
|
+
}),
|
|
721
|
+
],
|
|
722
|
+
},
|
|
723
|
+
});
|
|
724
|
+
```
|
|
725
|
+
|
|
726
|
+
</TabItem>
|
|
727
|
+
|
|
728
|
+
<TabItem value="frontend" label="Frontend">
|
|
729
|
+
|
|
730
|
+
Check for `data-network` parts and render each agent's execution step using the `NetworkDataPart` type for type safety.
|
|
731
|
+
|
|
732
|
+
```typescript title="src/components/network-chat.tsx" {3,5,42-44} copy
|
|
733
|
+
import { useChat } from "@ai-sdk/react";
|
|
734
|
+
import { DefaultChatTransport } from "ai";
|
|
735
|
+
import type { NetworkDataPart } from "@mastra/ai-sdk";
|
|
736
|
+
|
|
737
|
+
type NetworkData = NetworkDataPart["data"];
|
|
738
|
+
|
|
739
|
+
function AgentStep({ step }: { step: NetworkData["steps"][number] }) {
|
|
740
|
+
return (
|
|
741
|
+
<div className="agent-step">
|
|
742
|
+
<div className="step-header">
|
|
743
|
+
<span className="agent-name">{step.name}</span>
|
|
744
|
+
<span className={`status status-${step.status}`}>{step.status}</span>
|
|
745
|
+
</div>
|
|
746
|
+
{step.input && (
|
|
747
|
+
<div className="step-input">
|
|
748
|
+
<strong>Input:</strong>
|
|
749
|
+
<pre>{JSON.stringify(step.input, null, 2)}</pre>
|
|
750
|
+
</div>
|
|
751
|
+
)}
|
|
752
|
+
{step.output && (
|
|
753
|
+
<div className="step-output">
|
|
754
|
+
<strong>Output:</strong>
|
|
755
|
+
<pre>{typeof step.output === "string" ? step.output : JSON.stringify(step.output, null, 2)}</pre>
|
|
756
|
+
</div>
|
|
757
|
+
)}
|
|
758
|
+
</div>
|
|
759
|
+
);
|
|
760
|
+
}
|
|
761
|
+
|
|
762
|
+
export function NetworkChat() {
|
|
763
|
+
const { messages, sendMessage, status } = useChat({
|
|
764
|
+
transport: new DefaultChatTransport({
|
|
765
|
+
api: "http://localhost:4111/network",
|
|
766
|
+
}),
|
|
767
|
+
});
|
|
768
|
+
|
|
769
|
+
return (
|
|
770
|
+
<div>
|
|
771
|
+
{messages.map((message) => (
|
|
772
|
+
<div key={message.id}>
|
|
773
|
+
{message.parts.map((part, index) => {
|
|
774
|
+
if (part.type === "data-network") {
|
|
775
|
+
const networkData = part.data as NetworkData;
|
|
776
|
+
|
|
777
|
+
return (
|
|
778
|
+
<div key={index} className="network-execution">
|
|
779
|
+
<div className="network-header">
|
|
780
|
+
<h3>Agent Network: {networkData.name}</h3>
|
|
781
|
+
<span className={`status status-${networkData.status}`}>
|
|
782
|
+
{networkData.status}
|
|
783
|
+
</span>
|
|
784
|
+
</div>
|
|
785
|
+
<div className="network-steps">
|
|
786
|
+
{networkData.steps.map((step, stepIndex) => (
|
|
787
|
+
<AgentStep key={stepIndex} step={step} />
|
|
788
|
+
))}
|
|
789
|
+
</div>
|
|
790
|
+
</div>
|
|
791
|
+
);
|
|
792
|
+
}
|
|
793
|
+
return null;
|
|
794
|
+
})}
|
|
795
|
+
</div>
|
|
796
|
+
))}
|
|
797
|
+
</div>
|
|
798
|
+
);
|
|
799
|
+
}
|
|
800
|
+
```
|
|
801
|
+
|
|
802
|
+
</TabItem>
|
|
803
|
+
|
|
804
|
+
</Tabs>
|
|
805
|
+
|
|
806
|
+
For more details on agent networks, see [Agent Networks](/docs/v1/agents/networks).
|
|
807
|
+
|
|
808
|
+
### Custom events
|
|
809
|
+
|
|
810
|
+
Use `writer.custom()` within a tool's `execute()` function to emit custom data parts. This is useful for progress indicators, status updates, or any custom UI updates during tool execution.
|
|
811
|
+
|
|
812
|
+
Custom event types must start with `data-` to be recognized as data parts.
|
|
813
|
+
|
|
814
|
+
:::warning
|
|
815
|
+
|
|
816
|
+
You must `await` the `writer.custom()` call, otherwise you may encounter a `WritableStream is locked` error.
|
|
817
|
+
|
|
818
|
+
:::
|
|
819
|
+
|
|
820
|
+
<Tabs>
|
|
821
|
+
|
|
822
|
+
<TabItem value="backend" label="Backend">
|
|
823
|
+
|
|
824
|
+
Use `writer.custom()` inside the tool's `execute()` function to emit custom `data-` prefixed events at different stages of execution.
|
|
825
|
+
|
|
826
|
+
```typescript title="src/mastra/tools/task-tool.ts" {18-24,30-36} copy
|
|
827
|
+
import { createTool } from "@mastra/core/tools";
|
|
828
|
+
import { z } from "zod";
|
|
829
|
+
|
|
830
|
+
export const taskTool = createTool({
|
|
831
|
+
id: "process-task",
|
|
832
|
+
description: "Process a task with progress updates",
|
|
833
|
+
inputSchema: z.object({
|
|
834
|
+
task: z.string().describe("The task to process"),
|
|
835
|
+
}),
|
|
836
|
+
outputSchema: z.object({
|
|
837
|
+
result: z.string(),
|
|
838
|
+
status: z.string(),
|
|
839
|
+
}),
|
|
840
|
+
execute: async (inputData, context) => {
|
|
841
|
+
const { task } = inputData;
|
|
842
|
+
|
|
843
|
+
// Emit "in progress" custom event
|
|
844
|
+
await context?.writer?.custom({
|
|
845
|
+
type: "data-tool-progress",
|
|
846
|
+
data: {
|
|
847
|
+
status: "in-progress",
|
|
848
|
+
message: "Gathering information...",
|
|
849
|
+
},
|
|
850
|
+
});
|
|
851
|
+
|
|
852
|
+
// Simulate work
|
|
853
|
+
await new Promise((resolve) => setTimeout(resolve, 3000));
|
|
854
|
+
|
|
855
|
+
// Emit "done" custom event
|
|
856
|
+
await context?.writer?.custom({
|
|
857
|
+
type: "data-tool-progress",
|
|
858
|
+
data: {
|
|
859
|
+
status: "done",
|
|
860
|
+
message: `Successfully processed "${task}"`,
|
|
861
|
+
},
|
|
862
|
+
});
|
|
863
|
+
|
|
864
|
+
return {
|
|
865
|
+
result: `Task "${task}" has been completed successfully!`,
|
|
866
|
+
status: "completed",
|
|
867
|
+
};
|
|
868
|
+
},
|
|
869
|
+
});
|
|
870
|
+
```
|
|
871
|
+
|
|
872
|
+
</TabItem>
|
|
873
|
+
|
|
874
|
+
<TabItem value="frontend" label="Frontend">
|
|
875
|
+
|
|
876
|
+
Filter message parts for your custom event type and render a progress indicator that updates as new events arrive.
|
|
877
|
+
|
|
878
|
+
```typescript title="src/components/task-chat.tsx" {31-41,45} copy
|
|
879
|
+
import { useChat } from "@ai-sdk/react";
|
|
880
|
+
import { DefaultChatTransport } from "ai";
|
|
881
|
+
import { useMemo } from "react";
|
|
882
|
+
|
|
883
|
+
type ProgressData = {
|
|
884
|
+
status: "in-progress" | "done";
|
|
885
|
+
message: string;
|
|
886
|
+
};
|
|
887
|
+
|
|
888
|
+
function ProgressIndicator({ progress }: { progress: ProgressData }) {
|
|
889
|
+
return (
|
|
890
|
+
<div className="progress-indicator">
|
|
891
|
+
{progress.status === "in-progress" ? (
|
|
892
|
+
<span className="spinner" />
|
|
893
|
+
) : (
|
|
894
|
+
<span className="check-icon" />
|
|
895
|
+
)}
|
|
896
|
+
<span className={`status-${progress.status}`}>{progress.message}</span>
|
|
897
|
+
</div>
|
|
898
|
+
);
|
|
899
|
+
}
|
|
900
|
+
|
|
901
|
+
export function TaskChat() {
|
|
902
|
+
const { messages, sendMessage } = useChat({
|
|
903
|
+
transport: new DefaultChatTransport({
|
|
904
|
+
api: "http://localhost:4111/chat/taskAgent",
|
|
905
|
+
}),
|
|
906
|
+
});
|
|
907
|
+
|
|
908
|
+
// Extract the latest progress event from messages
|
|
909
|
+
const latestProgress = useMemo(() => {
|
|
910
|
+
const allProgressParts: ProgressData[] = [];
|
|
911
|
+
messages.forEach((message) => {
|
|
912
|
+
message.parts.forEach((part) => {
|
|
913
|
+
if (part.type === "data-tool-progress") {
|
|
914
|
+
allProgressParts.push(part.data as ProgressData);
|
|
915
|
+
}
|
|
916
|
+
});
|
|
917
|
+
});
|
|
918
|
+
return allProgressParts[allProgressParts.length - 1];
|
|
919
|
+
}, [messages]);
|
|
920
|
+
|
|
921
|
+
return (
|
|
922
|
+
<div>
|
|
923
|
+
{latestProgress && <ProgressIndicator progress={latestProgress} />}
|
|
924
|
+
{messages.map((message) => (
|
|
925
|
+
<div key={message.id}>
|
|
926
|
+
{message.parts.map((part, index) => {
|
|
927
|
+
if (part.type === "text") {
|
|
928
|
+
return <p key={index}>{part.text}</p>;
|
|
929
|
+
}
|
|
930
|
+
return null;
|
|
931
|
+
})}
|
|
932
|
+
</div>
|
|
933
|
+
))}
|
|
934
|
+
</div>
|
|
935
|
+
);
|
|
936
|
+
}
|
|
937
|
+
```
|
|
938
|
+
|
|
939
|
+
</TabItem>
|
|
940
|
+
|
|
941
|
+
</Tabs>
|
|
942
|
+
|
|
943
|
+
### Tool streaming
|
|
944
|
+
|
|
945
|
+
Tools can also stream data using `context.writer.write()` for lower-level control, or pipe an agent's stream directly to the tool's writer. For more details, see [Tool Streaming](/docs/v1/streaming/tool-streaming).
|
|
946
|
+
|
|
947
|
+
### Examples
|
|
948
|
+
|
|
949
|
+
For live examples of Custom UI patterns, visit [Mastra's UI Dojo](https://ui-dojo.mastra.ai/). The repository includes implementations for:
|
|
950
|
+
|
|
951
|
+
- [Generative UIs](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/generative-user-interfaces.tsx) - Custom components for tool outputs
|
|
952
|
+
- [Workflows](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/workflow.tsx) - Workflow step visualization
|
|
953
|
+
- [Agent Networks](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/network.tsx) - Network execution display
|
|
954
|
+
- [Custom Events](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/generative-user-interfaces-with-custom-events.tsx) - Progress indicators with custom events
|
|
955
|
+
|
|
393
956
|
## Recipes
|
|
394
957
|
|
|
395
958
|
### Stream transformations
|
|
396
959
|
|
|
397
960
|
To manually transform Mastra's streams to AI SDK-compatible format, use the [`toAISdkStream()`](/reference/v1/ai-sdk/to-ai-sdk-stream) utility. See the [examples](/reference/v1/ai-sdk/to-ai-sdk-stream#examples) for concrete usage patterns.
|
|
398
961
|
|
|
962
|
+
### Loading historical messages
|
|
963
|
+
|
|
964
|
+
When loading messages from Mastra's memory to display in a chat UI, use [`toAISdkV5Messages()`](/reference/v1/ai-sdk/to-ai-sdk-v5-messages) or [`toAISdkV4Messages()`](/reference/v1/ai-sdk/to-ai-sdk-v4-messages) to convert them to the appropriate AI SDK format for `useChat()`'s `initialMessages`.
|
|
965
|
+
|
|
399
966
|
### Passing additional data
|
|
400
967
|
|
|
401
|
-
[`sendMessage()`](https://ai-sdk.dev/docs/reference/ai-sdk-ui/use-chat#send-message) allows you to pass additional data from the frontend to Mastra. This data can then be used on the server as [`RequestContext`](/docs/v1/server
|
|
968
|
+
[`sendMessage()`](https://ai-sdk.dev/docs/reference/ai-sdk-ui/use-chat#send-message) allows you to pass additional data from the frontend to Mastra. This data can then be used on the server as [`RequestContext`](/docs/v1/server/request-context).
|
|
402
969
|
|
|
403
970
|
Here's an example of the frontend code:
|
|
404
971
|
|
|
@@ -477,7 +1044,7 @@ export const mastra = new Mastra({
|
|
|
477
1044
|
|
|
478
1045
|
:::info
|
|
479
1046
|
|
|
480
|
-
You can access this data in your tools via the `requestContext` parameter. See the [Request Context documentation](/docs/v1/server
|
|
1047
|
+
You can access this data in your tools via the `requestContext` parameter. See the [Request Context documentation](/docs/v1/server/request-context) for more details.
|
|
481
1048
|
|
|
482
1049
|
:::
|
|
483
1050
|
|
|
@@ -518,49 +1085,305 @@ export async function POST(req: Request) {
|
|
|
518
1085
|
|
|
519
1086
|
</Tabs>
|
|
520
1087
|
|
|
521
|
-
###
|
|
1088
|
+
### Workflow suspend/resume with user approval
|
|
522
1089
|
|
|
523
|
-
|
|
1090
|
+
Workflows can suspend execution and wait for user input before continuing. This is useful for approval flows, confirmations, or any human-in-the-loop scenario.
|
|
524
1091
|
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
1092
|
+
The workflow uses:
|
|
1093
|
+
- `suspendSchema` / `resumeSchema` - Define the data structure for suspend payload and resume input
|
|
1094
|
+
- `suspend()` - Pauses the workflow and sends the suspend payload to the UI
|
|
1095
|
+
- `resumeData` - Contains the user's response when the workflow resumes
|
|
1096
|
+
- `bail()` - Exits the workflow early (e.g., when user rejects)
|
|
528
1097
|
|
|
529
|
-
|
|
530
|
-
- `data-tool-workflow`: Nested workflow emitted from within a tool stream.
|
|
531
|
-
- `data-tool-network`: Nested network emitted from within an tool stream.
|
|
532
|
-
- `data-tool-agent`: Nested agent emitted from within an tool stream.
|
|
1098
|
+
<Tabs>
|
|
533
1099
|
|
|
534
|
-
|
|
1100
|
+
<TabItem value="backend" label="Backend">
|
|
1101
|
+
|
|
1102
|
+
Create a workflow step that suspends for approval. The step checks `resumeData` to determine if it's resuming, and calls `suspend()` on first execution.
|
|
1103
|
+
|
|
1104
|
+
```typescript title="src/mastra/workflows/approval-workflow.ts" copy
|
|
1105
|
+
import { createStep, createWorkflow } from "@mastra/core/workflows";
|
|
1106
|
+
import { z } from "zod";
|
|
1107
|
+
|
|
1108
|
+
const requestApproval = createStep({
|
|
1109
|
+
id: "request-approval",
|
|
1110
|
+
inputSchema: z.object({ requestId: z.string(), summary: z.string() }),
|
|
1111
|
+
outputSchema: z.object({
|
|
1112
|
+
approved: z.boolean(),
|
|
1113
|
+
requestId: z.string(),
|
|
1114
|
+
approvedBy: z.string().optional(),
|
|
1115
|
+
}),
|
|
1116
|
+
resumeSchema: z.object({
|
|
1117
|
+
approved: z.boolean(),
|
|
1118
|
+
approverName: z.string().optional(),
|
|
1119
|
+
}),
|
|
1120
|
+
suspendSchema: z.object({
|
|
1121
|
+
message: z.string(),
|
|
1122
|
+
requestId: z.string(),
|
|
1123
|
+
}),
|
|
1124
|
+
execute: async ({ inputData, resumeData, suspend, bail }) => {
|
|
1125
|
+
// User rejected - bail out
|
|
1126
|
+
if (resumeData?.approved === false) {
|
|
1127
|
+
return bail({ message: "Request rejected" });
|
|
1128
|
+
}
|
|
1129
|
+
// User approved - continue
|
|
1130
|
+
if (resumeData?.approved) {
|
|
1131
|
+
return {
|
|
1132
|
+
approved: true,
|
|
1133
|
+
requestId: inputData.requestId,
|
|
1134
|
+
approvedBy: resumeData.approverName || "User",
|
|
1135
|
+
};
|
|
1136
|
+
}
|
|
1137
|
+
// First execution - suspend and wait
|
|
1138
|
+
return await suspend({
|
|
1139
|
+
message: `Please approve: ${inputData.summary}`,
|
|
1140
|
+
requestId: inputData.requestId,
|
|
1141
|
+
});
|
|
1142
|
+
},
|
|
1143
|
+
});
|
|
535
1144
|
|
|
536
|
-
|
|
537
|
-
|
|
1145
|
+
export const approvalWorkflow = createWorkflow({
|
|
1146
|
+
id: "approval-workflow",
|
|
1147
|
+
inputSchema: z.object({ requestId: z.string(), summary: z.string() }),
|
|
1148
|
+
outputSchema: z.object({
|
|
1149
|
+
approved: z.boolean(),
|
|
1150
|
+
requestId: z.string(),
|
|
1151
|
+
approvedBy: z.string().optional(),
|
|
1152
|
+
}),
|
|
1153
|
+
})
|
|
1154
|
+
.then(requestApproval);
|
|
1155
|
+
|
|
1156
|
+
approvalWorkflow.commit();
|
|
1157
|
+
```
|
|
1158
|
+
|
|
1159
|
+
Register the workflow. Storage is required for suspend/resume to persist state.
|
|
1160
|
+
|
|
1161
|
+
```typescript title="src/mastra/index.ts" copy
|
|
1162
|
+
import { Mastra } from "@mastra/core";
|
|
1163
|
+
import { workflowRoute } from "@mastra/ai-sdk";
|
|
1164
|
+
import { LibSQLStore } from "@mastra/libsql";
|
|
538
1165
|
|
|
1166
|
+
export const mastra = new Mastra({
|
|
1167
|
+
workflows: { approvalWorkflow },
|
|
1168
|
+
storage: new LibSQLStore({
|
|
1169
|
+
url: "file:../mastra.db",
|
|
1170
|
+
}),
|
|
1171
|
+
server: {
|
|
1172
|
+
apiRoutes: [
|
|
1173
|
+
workflowRoute({ path: "/workflow/approvalWorkflow", workflow: "approvalWorkflow" }),
|
|
1174
|
+
],
|
|
1175
|
+
},
|
|
1176
|
+
});
|
|
1177
|
+
```
|
|
1178
|
+
|
|
1179
|
+
</TabItem>
|
|
1180
|
+
|
|
1181
|
+
<TabItem value="frontend" label="Frontend">
|
|
1182
|
+
|
|
1183
|
+
Detect when the workflow is suspended and send resume data with `runId`, `step`, and `resumeData`.
|
|
1184
|
+
|
|
1185
|
+
```typescript title="src/components/approval-workflow.tsx" copy
|
|
539
1186
|
import { useChat } from "@ai-sdk/react";
|
|
540
|
-
import {
|
|
541
|
-
import {
|
|
1187
|
+
import { DefaultChatTransport } from "ai";
|
|
1188
|
+
import { useMemo, useState } from "react";
|
|
1189
|
+
import type { WorkflowDataPart } from "@mastra/ai-sdk";
|
|
1190
|
+
|
|
1191
|
+
type WorkflowData = WorkflowDataPart["data"];
|
|
1192
|
+
|
|
1193
|
+
export function ApprovalWorkflow() {
|
|
1194
|
+
const [requestId, setRequestId] = useState("");
|
|
1195
|
+
const [summary, setSummary] = useState("");
|
|
1196
|
+
|
|
1197
|
+
const { messages, sendMessage, setMessages, status } = useChat({
|
|
1198
|
+
transport: new DefaultChatTransport({
|
|
1199
|
+
api: "http://localhost:4111/workflow/approvalWorkflow",
|
|
1200
|
+
prepareSendMessagesRequest: ({ messages }) => {
|
|
1201
|
+
const lastMessage = messages[messages.length - 1];
|
|
1202
|
+
const text = lastMessage.parts.find((p) => p.type === "text")?.text;
|
|
1203
|
+
const metadata = lastMessage.metadata as Record<string, string>;
|
|
1204
|
+
|
|
1205
|
+
// Resuming: send runId, step, and resumeData
|
|
1206
|
+
if (text === "Approve" || text === "Reject") {
|
|
1207
|
+
return {
|
|
1208
|
+
body: {
|
|
1209
|
+
runId: metadata.runId,
|
|
1210
|
+
step: "request-approval",
|
|
1211
|
+
resumeData: { approved: text === "Approve" },
|
|
1212
|
+
},
|
|
1213
|
+
};
|
|
1214
|
+
}
|
|
1215
|
+
// Starting: send inputData
|
|
1216
|
+
return {
|
|
1217
|
+
body: { inputData: { requestId: metadata.requestId, summary: metadata.summary } },
|
|
1218
|
+
};
|
|
1219
|
+
},
|
|
1220
|
+
}),
|
|
1221
|
+
});
|
|
1222
|
+
|
|
1223
|
+
// Find suspended workflow
|
|
1224
|
+
const suspended = useMemo(() => {
|
|
1225
|
+
for (const m of messages) {
|
|
1226
|
+
for (const p of m.parts) {
|
|
1227
|
+
if (p.type === "data-workflow" && (p.data as WorkflowData).status === "suspended") {
|
|
1228
|
+
return { data: p.data as WorkflowData, runId: p.id };
|
|
1229
|
+
}
|
|
1230
|
+
}
|
|
1231
|
+
}
|
|
1232
|
+
return null;
|
|
1233
|
+
}, [messages]);
|
|
1234
|
+
|
|
1235
|
+
const handleApprove = () => {
|
|
1236
|
+
setMessages([]);
|
|
1237
|
+
sendMessage({ text: "Approve", metadata: { runId: suspended?.runId } });
|
|
1238
|
+
};
|
|
1239
|
+
|
|
1240
|
+
const handleReject = () => {
|
|
1241
|
+
setMessages([]);
|
|
1242
|
+
sendMessage({ text: "Reject", metadata: { runId: suspended?.runId } });
|
|
1243
|
+
};
|
|
1244
|
+
|
|
1245
|
+
return (
|
|
1246
|
+
<div>
|
|
1247
|
+
{!suspended ? (
|
|
1248
|
+
<form onSubmit={(e) => {
|
|
1249
|
+
e.preventDefault();
|
|
1250
|
+
setMessages([]);
|
|
1251
|
+
sendMessage({ text: "Start", metadata: { requestId, summary } });
|
|
1252
|
+
}}>
|
|
1253
|
+
<input value={requestId} onChange={(e) => setRequestId(e.target.value)} placeholder="Request ID" />
|
|
1254
|
+
<input value={summary} onChange={(e) => setSummary(e.target.value)} placeholder="Summary" />
|
|
1255
|
+
<button type="submit" disabled={status !== "ready"}>Submit</button>
|
|
1256
|
+
</form>
|
|
1257
|
+
) : (
|
|
1258
|
+
<div>
|
|
1259
|
+
<p>{(suspended.data.steps["request-approval"]?.suspendPayload as { message: string })?.message}</p>
|
|
1260
|
+
<button onClick={handleApprove}>Approve</button>
|
|
1261
|
+
<button onClick={handleReject}>Reject</button>
|
|
1262
|
+
</div>
|
|
1263
|
+
)}
|
|
1264
|
+
</div>
|
|
1265
|
+
);
|
|
1266
|
+
}
|
|
1267
|
+
```
|
|
1268
|
+
|
|
1269
|
+
</TabItem>
|
|
1270
|
+
|
|
1271
|
+
</Tabs>
|
|
1272
|
+
|
|
1273
|
+
Key points:
|
|
1274
|
+
- The suspend payload is accessible via `step.suspendPayload`
|
|
1275
|
+
- To resume, send `runId`, `step` (the step ID), and `resumeData` in the request body
|
|
1276
|
+
- Storage must be configured for suspend/resume to persist workflow state
|
|
1277
|
+
|
|
1278
|
+
For a complete implementation, see the [workflow-suspend-resume example](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/workflow-suspend-resume.tsx) in UI Dojo.
|
|
1279
|
+
|
|
1280
|
+
### Nested agent streams in tools
|
|
1281
|
+
|
|
1282
|
+
Tools can call agents internally and stream the agent's output back to the UI. This creates `data-tool-agent` parts that can be rendered alongside the tool's final output.
|
|
1283
|
+
|
|
1284
|
+
The pattern uses:
|
|
1285
|
+
- `context.mastra.getAgent()` - Get an agent instance from within a tool
|
|
1286
|
+
- `agent.stream()` - Stream the agent's response
|
|
1287
|
+
- `stream.fullStream.pipeTo(context.writer)` - Pipe the agent's stream to the tool's writer
|
|
1288
|
+
|
|
1289
|
+
<Tabs>
|
|
1290
|
+
|
|
1291
|
+
<TabItem value="backend" label="Backend">
|
|
1292
|
+
|
|
1293
|
+
Create a tool that calls an agent and pipes its stream to the tool's writer.
|
|
1294
|
+
|
|
1295
|
+
```typescript title="src/mastra/tools/nested-agent-tool.ts" copy
|
|
1296
|
+
import { createTool } from "@mastra/core/tools";
|
|
1297
|
+
import { z } from "zod";
|
|
1298
|
+
|
|
1299
|
+
export const nestedAgentTool = createTool({
|
|
1300
|
+
id: "nested-agent-stream",
|
|
1301
|
+
description: "Analyze weather using a nested agent",
|
|
1302
|
+
inputSchema: z.object({
|
|
1303
|
+
city: z.string().describe("The city to analyze"),
|
|
1304
|
+
}),
|
|
1305
|
+
outputSchema: z.object({
|
|
1306
|
+
summary: z.string(),
|
|
1307
|
+
}),
|
|
1308
|
+
execute: async (inputData, context) => {
|
|
1309
|
+
const agent = context?.mastra?.getAgent("weatherAgent");
|
|
1310
|
+
if (!agent) {
|
|
1311
|
+
return { summary: "Weather agent not available" };
|
|
1312
|
+
}
|
|
1313
|
+
|
|
1314
|
+
const stream = await agent.stream(
|
|
1315
|
+
`Analyze the weather in ${inputData.city} and provide a summary.`
|
|
1316
|
+
);
|
|
1317
|
+
|
|
1318
|
+
// Pipe the agent's stream to emit data-tool-agent parts
|
|
1319
|
+
await stream.fullStream.pipeTo(context!.writer!);
|
|
1320
|
+
|
|
1321
|
+
return { summary: (await stream.text) ?? "No summary available" };
|
|
1322
|
+
},
|
|
1323
|
+
});
|
|
1324
|
+
```
|
|
1325
|
+
|
|
1326
|
+
Create an agent that uses this tool.
|
|
1327
|
+
|
|
1328
|
+
```typescript title="src/mastra/agents/forecast-agent.ts" copy
|
|
1329
|
+
import { Agent } from "@mastra/core/agent";
|
|
1330
|
+
import { nestedAgentTool } from "../tools/nested-agent-tool";
|
|
1331
|
+
|
|
1332
|
+
export const forecastAgent = new Agent({
|
|
1333
|
+
id: "forecast-agent",
|
|
1334
|
+
instructions: "Use the nested-agent-stream tool when asked about weather.",
|
|
1335
|
+
model: "openai/gpt-4o-mini",
|
|
1336
|
+
tools: { nestedAgentTool },
|
|
1337
|
+
});
|
|
1338
|
+
```
|
|
1339
|
+
|
|
1340
|
+
</TabItem>
|
|
1341
|
+
|
|
1342
|
+
<TabItem value="frontend" label="Frontend">
|
|
1343
|
+
|
|
1344
|
+
Handle `data-tool-agent` parts to display the nested agent's streamed output.
|
|
1345
|
+
|
|
1346
|
+
```typescript title="src/components/nested-agent-chat.tsx" copy
|
|
1347
|
+
import { useChat } from "@ai-sdk/react";
|
|
1348
|
+
import { DefaultChatTransport } from "ai";
|
|
1349
|
+
import { useState } from "react";
|
|
542
1350
|
import type { AgentDataPart } from "@mastra/ai-sdk";
|
|
543
1351
|
|
|
544
|
-
export
|
|
545
|
-
const
|
|
1352
|
+
export function NestedAgentChat() {
|
|
1353
|
+
const [input, setInput] = useState("");
|
|
1354
|
+
const { messages, sendMessage, status } = useChat({
|
|
546
1355
|
transport: new DefaultChatTransport({
|
|
547
|
-
api:
|
|
1356
|
+
api: "http://localhost:4111/chat/forecastAgent",
|
|
548
1357
|
}),
|
|
549
1358
|
});
|
|
550
1359
|
|
|
551
1360
|
return (
|
|
552
1361
|
<div>
|
|
1362
|
+
<form onSubmit={(e) => {
|
|
1363
|
+
e.preventDefault();
|
|
1364
|
+
sendMessage({ text: input });
|
|
1365
|
+
setInput("");
|
|
1366
|
+
}}>
|
|
1367
|
+
<input value={input} onChange={(e) => setInput(e.target.value)} placeholder="Enter a city" />
|
|
1368
|
+
<button type="submit" disabled={status !== "ready"}>Get Forecast</button>
|
|
1369
|
+
</form>
|
|
1370
|
+
|
|
553
1371
|
{messages.map((message) => (
|
|
554
1372
|
<div key={message.id}>
|
|
555
|
-
{message.parts.map((part,
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
1373
|
+
{message.parts.map((part, index) => {
|
|
1374
|
+
if (part.type === "text") {
|
|
1375
|
+
return <p key={index}>{part.text}</p>;
|
|
1376
|
+
}
|
|
1377
|
+
if (part.type === "data-tool-agent") {
|
|
1378
|
+
const { id, data } = part as AgentDataPart;
|
|
1379
|
+
return (
|
|
1380
|
+
<div key={index} className="nested-agent">
|
|
1381
|
+
<strong>Nested Agent: {id}</strong>
|
|
1382
|
+
{data.text && <p>{data.text}</p>}
|
|
1383
|
+
</div>
|
|
1384
|
+
);
|
|
563
1385
|
}
|
|
1386
|
+
return null;
|
|
564
1387
|
})}
|
|
565
1388
|
</div>
|
|
566
1389
|
))}
|
|
@@ -569,59 +1392,190 @@ export default function Page() {
|
|
|
569
1392
|
}
|
|
570
1393
|
```
|
|
571
1394
|
|
|
572
|
-
|
|
573
|
-
import { Tool, ToolContent, ToolHeader, ToolOutput } from "../ai-elements/tool";
|
|
574
|
-
import type { AgentDataPart } from "@mastra/ai-sdk";
|
|
1395
|
+
</TabItem>
|
|
575
1396
|
|
|
576
|
-
|
|
577
|
-
return (
|
|
578
|
-
<Tool>
|
|
579
|
-
<ToolHeader
|
|
580
|
-
type={`${id}`}
|
|
581
|
-
state={status === 'finished' ? 'output-available' : 'input-available'}
|
|
582
|
-
/>
|
|
583
|
-
<ToolContent>
|
|
584
|
-
<ToolOutput output={text} />
|
|
585
|
-
</ToolContent>
|
|
586
|
-
</Tool>
|
|
587
|
-
);
|
|
588
|
-
};
|
|
589
|
-
```
|
|
1397
|
+
</Tabs>
|
|
590
1398
|
|
|
591
|
-
|
|
1399
|
+
Key points:
|
|
1400
|
+
- Piping `fullStream` to `context.writer` creates `data-tool-agent` parts
|
|
1401
|
+
- The `AgentDataPart` has `id` (on the part) and `data.text` (the agent's streamed text)
|
|
1402
|
+
- The tool still returns its own output after the stream completes
|
|
592
1403
|
|
|
593
|
-
|
|
1404
|
+
For a complete implementation, see the [tool-nested-streams example](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/tool-nested-streams.tsx) in UI Dojo.
|
|
594
1405
|
|
|
595
|
-
|
|
1406
|
+
### Streaming agent text from workflow steps
|
|
596
1407
|
|
|
597
|
-
|
|
1408
|
+
Workflow steps can stream an agent's text output in real-time by piping the agent's stream to the step's `writer`. This lets users see the agent "thinking" while the workflow executes, rather than waiting for the step to complete.
|
|
598
1409
|
|
|
599
|
-
|
|
1410
|
+
The pattern uses:
|
|
1411
|
+
- `writer` in workflow step - Pipe the agent's `fullStream` to the step's writer
|
|
1412
|
+
- `text` and `data-workflow` parts - The frontend receives streaming text alongside step progress
|
|
600
1413
|
|
|
601
|
-
|
|
602
|
-
import { createTool } from "@mastra/core/tools";
|
|
1414
|
+
<Tabs>
|
|
603
1415
|
|
|
604
|
-
|
|
605
|
-
execute: async (inputData, context) => {
|
|
606
|
-
const { value } = inputData;
|
|
1416
|
+
<TabItem value="backend" label="Backend">
|
|
607
1417
|
|
|
608
|
-
|
|
609
|
-
type: "data-tool-progress",
|
|
610
|
-
status: "pending"
|
|
611
|
-
});
|
|
1418
|
+
Create a workflow step that streams an agent's response by piping to the step's `writer`.
|
|
612
1419
|
|
|
613
|
-
|
|
1420
|
+
```typescript title="src/mastra/workflows/weather-workflow.ts" copy
|
|
1421
|
+
import { createStep, createWorkflow } from "@mastra/core/workflows";
|
|
1422
|
+
import { z } from "zod";
|
|
1423
|
+
import { weatherAgent } from "../agents/weather-agent";
|
|
614
1424
|
|
|
615
|
-
|
|
616
|
-
|
|
617
|
-
|
|
618
|
-
|
|
1425
|
+
const analyzeWeather = createStep({
|
|
1426
|
+
id: "analyze-weather",
|
|
1427
|
+
inputSchema: z.object({ location: z.string() }),
|
|
1428
|
+
outputSchema: z.object({ analysis: z.string(), location: z.string() }),
|
|
1429
|
+
execute: async ({ inputData, writer }) => {
|
|
1430
|
+
const response = await weatherAgent.stream(
|
|
1431
|
+
`Analyze the weather in ${inputData.location} and provide insights.`
|
|
1432
|
+
);
|
|
1433
|
+
|
|
1434
|
+
// Pipe agent stream to step writer for real-time text streaming
|
|
1435
|
+
await response.fullStream.pipeTo(writer);
|
|
619
1436
|
|
|
620
1437
|
return {
|
|
621
|
-
|
|
1438
|
+
analysis: await response.text,
|
|
1439
|
+
location: inputData.location,
|
|
622
1440
|
};
|
|
623
|
-
}
|
|
1441
|
+
},
|
|
624
1442
|
});
|
|
1443
|
+
|
|
1444
|
+
const calculateScore = createStep({
|
|
1445
|
+
id: "calculate-score",
|
|
1446
|
+
inputSchema: z.object({ analysis: z.string(), location: z.string() }),
|
|
1447
|
+
outputSchema: z.object({ score: z.number(), summary: z.string() }),
|
|
1448
|
+
execute: async ({ inputData }) => {
|
|
1449
|
+
const score = inputData.analysis.includes("sunny") ? 85 : 50;
|
|
1450
|
+
return { score, summary: `Comfort score for ${inputData.location}: ${score}/100` };
|
|
1451
|
+
},
|
|
1452
|
+
});
|
|
1453
|
+
|
|
1454
|
+
export const weatherWorkflow = createWorkflow({
|
|
1455
|
+
id: "weather-workflow",
|
|
1456
|
+
inputSchema: z.object({ location: z.string() }),
|
|
1457
|
+
outputSchema: z.object({ score: z.number(), summary: z.string() }),
|
|
1458
|
+
})
|
|
1459
|
+
.then(analyzeWeather)
|
|
1460
|
+
.then(calculateScore);
|
|
1461
|
+
|
|
1462
|
+
weatherWorkflow.commit();
|
|
625
1463
|
```
|
|
626
1464
|
|
|
627
|
-
|
|
1465
|
+
Register the workflow with a `workflowRoute()`. Text streaming is enabled by default.
|
|
1466
|
+
|
|
1467
|
+
```typescript title="src/mastra/index.ts" copy
|
|
1468
|
+
import { Mastra } from "@mastra/core";
|
|
1469
|
+
import { workflowRoute } from "@mastra/ai-sdk";
|
|
1470
|
+
|
|
1471
|
+
export const mastra = new Mastra({
|
|
1472
|
+
agents: { weatherAgent },
|
|
1473
|
+
workflows: { weatherWorkflow },
|
|
1474
|
+
server: {
|
|
1475
|
+
apiRoutes: [
|
|
1476
|
+
workflowRoute({ path: "/workflow/weather", workflow: "weatherWorkflow" }),
|
|
1477
|
+
],
|
|
1478
|
+
},
|
|
1479
|
+
});
|
|
1480
|
+
```
|
|
1481
|
+
|
|
1482
|
+
</TabItem>
|
|
1483
|
+
|
|
1484
|
+
<TabItem value="frontend" label="Frontend">
|
|
1485
|
+
|
|
1486
|
+
Render both `text` parts (streaming agent output) and `data-workflow` parts (step progress).
|
|
1487
|
+
|
|
1488
|
+
```typescript title="src/components/weather-workflow.tsx" copy
|
|
1489
|
+
import { useChat } from "@ai-sdk/react";
|
|
1490
|
+
import { DefaultChatTransport } from "ai";
|
|
1491
|
+
import { useState } from "react";
|
|
1492
|
+
import type { WorkflowDataPart } from "@mastra/ai-sdk";
|
|
1493
|
+
|
|
1494
|
+
type WorkflowData = WorkflowDataPart["data"];
|
|
1495
|
+
|
|
1496
|
+
export function WeatherWorkflow() {
|
|
1497
|
+
const [location, setLocation] = useState("");
|
|
1498
|
+
const { messages, sendMessage, status } = useChat({
|
|
1499
|
+
transport: new DefaultChatTransport({
|
|
1500
|
+
api: "http://localhost:4111/workflow/weather",
|
|
1501
|
+
prepareSendMessagesRequest: ({ messages }) => ({
|
|
1502
|
+
body: {
|
|
1503
|
+
inputData: {
|
|
1504
|
+
location: messages[messages.length - 1].parts.find((p) => p.type === "text")?.text,
|
|
1505
|
+
},
|
|
1506
|
+
},
|
|
1507
|
+
}),
|
|
1508
|
+
}),
|
|
1509
|
+
});
|
|
1510
|
+
|
|
1511
|
+
return (
|
|
1512
|
+
<div>
|
|
1513
|
+
<form onSubmit={(e) => {
|
|
1514
|
+
e.preventDefault();
|
|
1515
|
+
sendMessage({ text: location });
|
|
1516
|
+
setLocation("");
|
|
1517
|
+
}}>
|
|
1518
|
+
<input value={location} onChange={(e) => setLocation(e.target.value)} placeholder="Enter city" />
|
|
1519
|
+
<button type="submit" disabled={status !== "ready"}>Analyze</button>
|
|
1520
|
+
</form>
|
|
1521
|
+
|
|
1522
|
+
{messages.map((message) => (
|
|
1523
|
+
<div key={message.id}>
|
|
1524
|
+
{message.parts.map((part, index) => {
|
|
1525
|
+
// Streaming agent text
|
|
1526
|
+
if (part.type === "text" && message.role === "assistant") {
|
|
1527
|
+
return (
|
|
1528
|
+
<div key={index}>
|
|
1529
|
+
{status === "streaming" && <p><em>Agent analyzing...</em></p>}
|
|
1530
|
+
<p>{part.text}</p>
|
|
1531
|
+
</div>
|
|
1532
|
+
);
|
|
1533
|
+
}
|
|
1534
|
+
// Workflow step progress
|
|
1535
|
+
if (part.type === "data-workflow") {
|
|
1536
|
+
const workflow = part.data as WorkflowData;
|
|
1537
|
+
return (
|
|
1538
|
+
<div key={index}>
|
|
1539
|
+
{Object.entries(workflow.steps).map(([stepId, step]) => (
|
|
1540
|
+
<div key={stepId}>
|
|
1541
|
+
<strong>{stepId}</strong>: {step.status}
|
|
1542
|
+
</div>
|
|
1543
|
+
))}
|
|
1544
|
+
</div>
|
|
1545
|
+
);
|
|
1546
|
+
}
|
|
1547
|
+
return null;
|
|
1548
|
+
})}
|
|
1549
|
+
</div>
|
|
1550
|
+
))}
|
|
1551
|
+
</div>
|
|
1552
|
+
);
|
|
1553
|
+
}
|
|
1554
|
+
```
|
|
1555
|
+
|
|
1556
|
+
</TabItem>
|
|
1557
|
+
|
|
1558
|
+
</Tabs>
|
|
1559
|
+
|
|
1560
|
+
Key points:
|
|
1561
|
+
- The step's `writer` is available in the `execute` function (not via `context`)
|
|
1562
|
+
- `includeTextStreamParts` defaults to `true` on `workflowRoute()`, so text streams by default
|
|
1563
|
+
- Text parts stream in real-time while `data-workflow` parts update with step status
|
|
1564
|
+
|
|
1565
|
+
For a complete implementation, see the [workflow-agent-text-stream example](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/workflow-agent-text-stream.tsx) in UI Dojo.
|
|
1566
|
+
|
|
1567
|
+
### Multi-stage progress with branching workflows
|
|
1568
|
+
|
|
1569
|
+
For workflows with conditional branching (e.g., express vs standard shipping), you can track progress across different branches by including a identifier in your custom events.
|
|
1570
|
+
|
|
1571
|
+
The UI Dojo example uses a `stage` field in the event data to identify which branch is executing (e.g., `"validation"`, `"standard-processing"`, `"express-processing"`). The frontend groups events by this field to show a pipeline-style progress UI.
|
|
1572
|
+
|
|
1573
|
+
See the [branching-workflow.ts](https://github.com/mastra-ai/ui-dojo/blob/main/src/mastra/workflows/branching-workflow.ts) (backend) and [workflow-custom-events.tsx](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/workflow-custom-events.tsx) (frontend) in UI Dojo.
|
|
1574
|
+
|
|
1575
|
+
### Progress indicators in agent networks
|
|
1576
|
+
|
|
1577
|
+
When using agent networks, you can emit custom progress events from tools used by sub-agents to show which agent is currently active.
|
|
1578
|
+
|
|
1579
|
+
The UI Dojo example includes a `stage` field in the event data to identify which sub-agent is running (e.g., `"report-generation"`, `"report-review"`). The frontend groups events by this field and displays the latest status for each.
|
|
1580
|
+
|
|
1581
|
+
See the [report-generation-tool.ts](https://github.com/mastra-ai/ui-dojo/blob/main/src/mastra/tools/report-generation-tool.ts) (backend) and [agent-network-custom-events.tsx](https://github.com/mastra-ai/ui-dojo/blob/main/src/pages/ai-sdk/agent-network-custom-events.tsx) (frontend) in UI Dojo.
|