@mastra/mcp-docs-server 0.13.7-alpha.0 → 0.13.7-alpha.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. package/.docs/organized/changelogs/%40mastra%2Fclient-js.md +39 -39
  2. package/.docs/organized/changelogs/%40mastra%2Fcloudflare-d1.md +18 -18
  3. package/.docs/organized/changelogs/%40mastra%2Fcloudflare.md +18 -18
  4. package/.docs/organized/changelogs/%40mastra%2Fcore.md +45 -45
  5. package/.docs/organized/changelogs/%40mastra%2Fdeployer-cloudflare.md +21 -21
  6. package/.docs/organized/changelogs/%40mastra%2Fdeployer.md +44 -44
  7. package/.docs/organized/changelogs/%40mastra%2Fevals.md +11 -11
  8. package/.docs/organized/changelogs/%40mastra%2Flibsql.md +29 -29
  9. package/.docs/organized/changelogs/%40mastra%2Fmcp-docs-server.md +25 -25
  10. package/.docs/organized/changelogs/%40mastra%2Fmemory.md +39 -39
  11. package/.docs/organized/changelogs/%40mastra%2Fmongodb.md +20 -20
  12. package/.docs/organized/changelogs/%40mastra%2Fmssql.md +17 -0
  13. package/.docs/organized/changelogs/%40mastra%2Fpg.md +29 -29
  14. package/.docs/organized/changelogs/%40mastra%2Fplayground-ui.md +12 -12
  15. package/.docs/organized/changelogs/%40mastra%2Fserver.md +38 -38
  16. package/.docs/organized/changelogs/%40mastra%2Fupstash.md +29 -29
  17. package/.docs/organized/changelogs/%40mastra%2Fvectorize.md +18 -18
  18. package/.docs/organized/changelogs/%40mastra%2Fvoice-cloudflare.md +18 -18
  19. package/.docs/organized/changelogs/create-mastra.md +7 -7
  20. package/.docs/organized/changelogs/mastra.md +32 -32
  21. package/.docs/organized/code-examples/agent.md +93 -3
  22. package/.docs/organized/code-examples/ai-sdk-v5.md +4 -4
  23. package/.docs/raw/agents/input-processors.mdx +268 -0
  24. package/.docs/raw/agents/using-tools-and-mcp.mdx +39 -0
  25. package/.docs/raw/community/contributing-templates.mdx +192 -0
  26. package/.docs/raw/getting-started/installation.mdx +16 -0
  27. package/.docs/raw/getting-started/templates.mdx +95 -0
  28. package/.docs/raw/observability/tracing.mdx +44 -0
  29. package/.docs/raw/reference/agents/agent.mdx +7 -0
  30. package/.docs/raw/reference/agents/generate.mdx +18 -1
  31. package/.docs/raw/reference/agents/stream.mdx +18 -1
  32. package/.docs/raw/reference/cli/dev.mdx +6 -0
  33. package/.docs/raw/reference/client-js/memory.mdx +18 -0
  34. package/.docs/raw/reference/core/mastra-class.mdx +1 -1
  35. package/.docs/raw/reference/memory/Memory.mdx +1 -0
  36. package/.docs/raw/reference/memory/deleteMessages.mdx +95 -0
  37. package/.docs/raw/reference/memory/getThreadsByResourceId.mdx +33 -1
  38. package/.docs/raw/reference/rag/upstash.mdx +112 -5
  39. package/.docs/raw/reference/scorers/answer-relevancy.mdx +114 -0
  40. package/.docs/raw/reference/scorers/bias.mdx +127 -0
  41. package/.docs/raw/reference/scorers/completeness.mdx +89 -0
  42. package/.docs/raw/reference/scorers/content-similarity.mdx +96 -0
  43. package/.docs/raw/reference/scorers/custom-code-scorer.mdx +155 -0
  44. package/.docs/raw/reference/scorers/faithfulness.mdx +122 -0
  45. package/.docs/raw/reference/scorers/hallucination.mdx +133 -0
  46. package/.docs/raw/reference/scorers/keyword-coverage.mdx +92 -0
  47. package/.docs/raw/reference/scorers/llm-scorer.mdx +210 -0
  48. package/.docs/raw/reference/scorers/mastra-scorer.mdx +218 -0
  49. package/.docs/raw/reference/scorers/textual-difference.mdx +76 -0
  50. package/.docs/raw/reference/scorers/tone-consistency.mdx +75 -0
  51. package/.docs/raw/reference/scorers/toxicity.mdx +109 -0
  52. package/.docs/raw/reference/storage/libsql.mdx +7 -4
  53. package/.docs/raw/reference/storage/mssql.mdx +7 -3
  54. package/.docs/raw/reference/storage/postgresql.mdx +7 -3
  55. package/.docs/raw/reference/templates.mdx +228 -0
  56. package/.docs/raw/scorers/custom-scorers.mdx +319 -0
  57. package/.docs/raw/scorers/off-the-shelf-scorers.mdx +30 -0
  58. package/.docs/raw/scorers/overview.mdx +124 -0
  59. package/package.json +4 -4
@@ -0,0 +1,133 @@
1
+ ---
2
+ title: "Reference: Hallucination | Scorers | Mastra Docs"
3
+ description: Documentation for the Hallucination Scorer in Mastra, which evaluates the factual correctness of LLM outputs by identifying contradictions with provided context.
4
+ ---
5
+
6
+ # Hallucination Scorer
7
+
8
+ The `createHallucinationScorer()` function evaluates whether an LLM generates factually correct information by comparing its output against the provided context. This scorer measures hallucination by identifying direct contradictions between the context and the output.
9
+
10
+ For a usage example, see the [Hallucination Examples](/examples/scorers/hallucination).
11
+
12
+ ## Parameters
13
+
14
+ The `createHallucinationScorer()` function accepts a single options object with the following properties:
15
+
16
+ <PropertiesTable
17
+ content={[
18
+ {
19
+ name: "model",
20
+ type: "LanguageModel",
21
+ required: true,
22
+ description: "Configuration for the model used to evaluate hallucination.",
23
+ },
24
+ {
25
+ name: "scale",
26
+ type: "number",
27
+ required: false,
28
+ defaultValue: "1",
29
+ description: "Maximum score value.",
30
+ },
31
+ ]}
32
+ />
33
+
34
+ This function returns an instance of the MastraScorer class. The `.run()` method accepts the same input as other scorers (see the [MastraScorer reference](./mastra-scorer)), but the return value includes LLM-specific fields as documented below.
35
+
36
+ ## .run() Returns
37
+
38
+ <PropertiesTable
39
+ content={[
40
+ {
41
+ name: "runId",
42
+ type: "string",
43
+ description: "The id of the run (optional).",
44
+ },
45
+ {
46
+ name: "extractStepResult",
47
+ type: "object",
48
+ description: "Object with extracted claims: { claims: string[] }",
49
+ },
50
+ {
51
+ name: "extractPrompt",
52
+ type: "string",
53
+ description: "The prompt sent to the LLM for the extract step (optional).",
54
+ },
55
+ {
56
+ name: "analyzeStepResult",
57
+ type: "object",
58
+ description: "Object with verdicts: { verdicts: Array<{ statement: string, verdict: 'yes' | 'no', reason: string }> }",
59
+ },
60
+ {
61
+ name: "analyzePrompt",
62
+ type: "string",
63
+ description: "The prompt sent to the LLM for the analyze step (optional).",
64
+ },
65
+ {
66
+ name: "score",
67
+ type: "number",
68
+ description: "Hallucination score (0 to scale, default 0-1).",
69
+ },
70
+ {
71
+ name: "reason",
72
+ type: "string",
73
+ description: "Detailed explanation of the score and identified contradictions.",
74
+ },
75
+ {
76
+ name: "reasonPrompt",
77
+ type: "string",
78
+ description: "The prompt sent to the LLM for the reason step (optional).",
79
+ },
80
+ ]}
81
+ />
82
+
83
+ ## Scoring Details
84
+
85
+ The scorer evaluates hallucination through contradiction detection and unsupported claim analysis.
86
+
87
+ ### Scoring Process
88
+
89
+ 1. Analyzes factual content:
90
+ - Extracts statements from context
91
+ - Identifies numerical values and dates
92
+ - Maps statement relationships
93
+ 2. Analyzes output for hallucinations:
94
+ - Compares against context statements
95
+ - Marks direct conflicts as hallucinations
96
+ - Identifies unsupported claims as hallucinations
97
+ - Evaluates numerical accuracy
98
+ - Considers approximation context
99
+ 3. Calculates hallucination score:
100
+ - Counts hallucinated statements (contradictions and unsupported claims)
101
+ - Divides by total statements
102
+ - Scales to configured range
103
+
104
+ Final score: `(hallucinated_statements / total_statements) * scale`
105
+
106
+ ### Important Considerations
107
+
108
+ - Claims not present in context are treated as hallucinations
109
+ - Subjective claims are hallucinations unless explicitly supported
110
+ - Speculative language ("might", "possibly") about facts IN context is allowed
111
+ - Speculative language about facts NOT in context is treated as hallucination
112
+ - Empty outputs result in zero hallucinations
113
+ - Numerical evaluation considers:
114
+ - Scale-appropriate precision
115
+ - Contextual approximations
116
+ - Explicit precision indicators
117
+
118
+ ### Score interpretation
119
+
120
+ (0 to scale, default 0-1)
121
+
122
+ - 1.0: Complete hallucination - contradicts all context statements
123
+ - 0.75: High hallucination - contradicts 75% of context statements
124
+ - 0.5: Moderate hallucination - contradicts half of context statements
125
+ - 0.25: Low hallucination - contradicts 25% of context statements
126
+ - 0.0: No hallucination - output aligns with all context statements
127
+
128
+ **Note:** The score represents the degree of hallucination - lower scores indicate better factual alignment with the provided context
129
+
130
+ ## Related
131
+
132
+ - [Faithfulness Scorer](./faithfulness)
133
+ - [Answer Relevancy Scorer](./answer-relevancy)
@@ -0,0 +1,92 @@
1
+ ---
2
+ title: "Reference: Keyword Coverage | Scorers | Mastra Docs"
3
+ description: Documentation for the Keyword Coverage Scorer in Mastra, which evaluates how well LLM outputs cover important keywords from the input.
4
+ ---
5
+
6
+ # Keyword Coverage Scorer
7
+
8
+ The `createKeywordCoverageScorer()` function evaluates how well an LLM's output covers the important keywords from the input. It analyzes keyword presence and matches while ignoring common words and stop words.
9
+
10
+ For a usage example, see the [Keyword Coverage Examples](/examples/scorers/keyword-coverage).
11
+
12
+ ## Parameters
13
+
14
+ The `createKeywordCoverageScorer()` function does not take any options.
15
+
16
+ This function returns an instance of the MastraScorer class. See the [MastraScorer reference](./mastra-scorer) for details on the `.run()` method and its input/output.
17
+
18
+ ## .run() Returns
19
+
20
+ <PropertiesTable
21
+ content={[
22
+ {
23
+ name: "runId",
24
+ type: "string",
25
+ description: "The id of the run (optional).",
26
+ },
27
+ {
28
+ name: "extractStepResult",
29
+ type: "object",
30
+ description: "Object with extracted keywords: { referenceKeywords: Set<string>, responseKeywords: Set<string> }",
31
+ },
32
+ {
33
+ name: "analyzeStepResult",
34
+ type: "object",
35
+ description: "Object with keyword coverage: { totalKeywords: number, matchedKeywords: number }",
36
+ },
37
+ {
38
+ name: "score",
39
+ type: "number",
40
+ description: "Coverage score (0-1) representing the proportion of matched keywords.",
41
+ },
42
+ ]}
43
+ />
44
+
45
+ ## Scoring Details
46
+
47
+ The scorer evaluates keyword coverage by matching keywords with the following features:
48
+
49
+ - Common word and stop word filtering (e.g., "the", "a", "and")
50
+ - Case-insensitive matching
51
+ - Word form variation handling
52
+ - Special handling of technical terms and compound words
53
+
54
+ ### Scoring Process
55
+
56
+ 1. Processes keywords from input and output:
57
+ - Filters out common words and stop words
58
+ - Normalizes case and word forms
59
+ - Handles special terms and compounds
60
+ 2. Calculates keyword coverage:
61
+ - Matches keywords between texts
62
+ - Counts successful matches
63
+ - Computes coverage ratio
64
+
65
+ Final score: `(matched_keywords / total_keywords) * scale`
66
+
67
+ ### Score interpretation
68
+
69
+ (0 to scale, default 0-1)
70
+
71
+ - 1.0: Perfect keyword coverage
72
+ - 0.7-0.9: Good coverage with most keywords present
73
+ - 0.4-0.6: Moderate coverage with some keywords missing
74
+ - 0.1-0.3: Poor coverage with many keywords missing
75
+ - 0.0: No keyword matches
76
+
77
+ ## Special Cases
78
+
79
+ The scorer handles several special cases:
80
+
81
+ - Empty input/output: Returns score of 1.0 if both empty, 0.0 if only one is empty
82
+ - Single word: Treated as a single keyword
83
+ - Technical terms: Preserves compound technical terms (e.g., "React.js", "machine learning")
84
+ - Case differences: "JavaScript" matches "javascript"
85
+ - Common words: Ignored in scoring to focus on meaningful keywords
86
+
87
+ ## Related
88
+
89
+ - [Completeness Scorer](./completeness)
90
+ - [Content Similarity Scorer](./content-similarity)
91
+ - [Answer Relevancy Scorer](./answer-relevancy)
92
+ - [Textual Difference Scorer](./textual-difference)
@@ -0,0 +1,210 @@
1
+ ---
2
+ title: "Reference: createLLMScorer | Scorers | Mastra Docs"
3
+ description: Documentation for creating LLM-based scorers in Mastra, allowing users to define evaluation logic using language models.
4
+ ---
5
+
6
+ # createLLMScorer
7
+
8
+ The `createLLMScorer()` function lets you define custom scorers that use a language model (LLM) as a judge for evaluation. LLM scorers are ideal for tasks where you want to use prompt-based evaluation, such as answer relevancy, faithfulness, or custom prompt-based metrics. LLM scorers integrate seamlessly with the Mastra scoring framework and can be used anywhere built-in scorers are used.
9
+
10
+ For a usage example, see the [Custom LLM Judge Examples](/examples/scorers/custom-llm-judge-eval).
11
+
12
+ ## createLLMScorer Options
13
+
14
+ <PropertiesTable
15
+ content={[
16
+ {
17
+ name: "name",
18
+ type: "string",
19
+ required: true,
20
+ description: "Name of the scorer.",
21
+ },
22
+ {
23
+ name: "description",
24
+ type: "string",
25
+ required: true,
26
+ description: "Description of what the scorer does.",
27
+ },
28
+ {
29
+ name: "judge",
30
+ type: "object",
31
+ required: true,
32
+ description: "Judge configuration object. Must include a model and instructions (system prompt). See Judge Object section below.",
33
+ },
34
+ {
35
+ name: "extract",
36
+ type: "object",
37
+ required: false,
38
+ description: "(Optional) Extraction step configuration object. See Extract Object section below.",
39
+ },
40
+ {
41
+ name: "analyze",
42
+ type: "object",
43
+ required: true,
44
+ description: "Analysis step configuration object. See Analyze Object section below.",
45
+ },
46
+ {
47
+ name: "reason",
48
+ type: "object",
49
+ required: false,
50
+ description: "(Optional) Reason step configuration object. See Reason Object section below.",
51
+ },
52
+ {
53
+ name: "calculateScore",
54
+ type: "function",
55
+ required: true,
56
+ description: "Function: ({ run }) => number. Computes the final score from the analyze step result.",
57
+ },
58
+ ]}
59
+ />
60
+
61
+ This function returns an instance of the MastraScorer class. See the [MastraScorer reference](./mastra-scorer) for details on the `.run()` method and its input/output.
62
+
63
+ ## Judge Object
64
+ <PropertiesTable
65
+ content={[
66
+ {
67
+ name: "model",
68
+ type: "LanguageModel",
69
+ required: true,
70
+ description: "The LLM model instance to use for evaluation.",
71
+ },
72
+ {
73
+ name: "instructions",
74
+ type: "string",
75
+ required: true,
76
+ description: "System prompt/instructions for the LLM.",
77
+ },
78
+ ]}
79
+ />
80
+
81
+ ## Extract Object
82
+ <PropertiesTable
83
+ content={[
84
+ {
85
+ name: "description",
86
+ type: "string",
87
+ required: true,
88
+ description: "Description of the extract step.",
89
+ },
90
+ {
91
+ name: "judge",
92
+ type: "object",
93
+ required: false,
94
+ description: "(Optional) LLM judge for this step (can override main judge/model). See Judge Object section.",
95
+ },
96
+ {
97
+ name: "outputSchema",
98
+ type: "ZodSchema",
99
+ required: true,
100
+ description: "Zod schema for the expected output of the extract step.",
101
+ },
102
+ {
103
+ name: "createPrompt",
104
+ type: "function",
105
+ required: true,
106
+ description: "Function: ({ run: ScoringInput }) => string. Returns the prompt for the LLM.",
107
+ },
108
+ ]}
109
+ />
110
+
111
+ ## Analyze Object
112
+ <PropertiesTable
113
+ content={[
114
+ {
115
+ name: "description",
116
+ type: "string",
117
+ required: true,
118
+ description: "Description of the analyze step.",
119
+ },
120
+ {
121
+ name: "judge",
122
+ type: "object",
123
+ required: false,
124
+ description: "(Optional) LLM judge for this step (can override main judge/model). See Judge Object section.",
125
+ },
126
+ {
127
+ name: "outputSchema",
128
+ type: "ZodSchema",
129
+ required: true,
130
+ description: "Zod schema for the expected output of the analyze step.",
131
+ },
132
+ {
133
+ name: "createPrompt",
134
+ type: "function",
135
+ required: true,
136
+ description: "Function: ({ run: ScoringInput & { extractStepResult } }) => string. Returns the LLM prompt.",
137
+ },
138
+ ]}
139
+ />
140
+
141
+ ## Calculate Score Function
142
+
143
+ The `calculateScore` function converts the LLM's structured analysis into a numerical score. This function receives the results from previous steps but not the score itself (since that's what it calculates).
144
+
145
+ <PropertiesTable
146
+ content={[
147
+ {
148
+ name: "input",
149
+ type: "Record<string, any>[]",
150
+ required: true,
151
+ description:
152
+ "Input records provided to the scorer. If the scorer is added to an agent, this will be an array of user messages, e.g. `[{ role: 'user', content: 'hello world' }]`. If the scorer is used in a workflow, this will be the input of the workflow.",
153
+ },
154
+ {
155
+ name: "output",
156
+ type: "Record<string, any>",
157
+ required: true,
158
+ description:
159
+ "Output record provided to the scorer. For agents, this is usually the agent's response. For workflows, this is the workflow's output.",
160
+ },
161
+ {
162
+ name: "runtimeContext",
163
+ type: "object",
164
+ required: false,
165
+ description: "Runtime context from the agent or workflow step being evaluated (optional).",
166
+ },
167
+ {
168
+ name: "extractStepResult",
169
+ type: "object",
170
+ required: false,
171
+ description: "Result of the extract step, if defined (optional).",
172
+ },
173
+ {
174
+ name: "analyzeStepResult",
175
+ type: "object",
176
+ required: true,
177
+ description: "Structured result from the analyze step, conforming to the outputSchema defined in the analyze step.",
178
+ },
179
+ ]}
180
+ />
181
+
182
+ Returns: `number`
183
+ The function must return a numerical score, typically in the 0-1 range where 1 represents the best possible score.
184
+
185
+ ## Reason Object
186
+ <PropertiesTable
187
+ content={[
188
+ {
189
+ name: "description",
190
+ type: "string",
191
+ required: true,
192
+ description: "Description of the reason step.",
193
+ },
194
+ {
195
+ name: "judge",
196
+ type: "object",
197
+ required: false,
198
+ description: "(Optional) LLM judge for this step (can override main judge/model). See Judge Object section.",
199
+ },
200
+ {
201
+ name: "createPrompt",
202
+ type: "function",
203
+ required: true,
204
+ description: "Function: ({ run }) => string. `run` includes input, output, extractStepResult, analyzeStepResult, and score. Returns the prompt for the LLM.",
205
+ },
206
+ ]}
207
+ />
208
+
209
+ LLM scorers may also include step-specific prompt fields in the return value, such as `extractPrompt`, `analyzePrompt`, and `reasonPrompt`.
210
+
@@ -0,0 +1,218 @@
1
+ ---
2
+ title: "Reference: MastraScorer | Scorers | Mastra Docs"
3
+ description: Documentation for the MastraScorer base class in Mastra, which provides the foundation for all custom and built-in scorers.
4
+ ---
5
+
6
+ # MastraScorer
7
+
8
+ The `MastraScorer` class is the base class for all scorers in Mastra. It provides a standard `.run()` method for evaluating input/output pairs and supports multi-step scoring workflows. Most users will use `createScorer` or `createLLMScorer`, but advanced users can subclass or instantiate `MastraScorer` directly for full control.
9
+
10
+ ## Constructor Options
11
+
12
+ <PropertiesTable
13
+ content={[
14
+ {
15
+ name: "name",
16
+ type: "string",
17
+ required: true,
18
+ description: "Name of the scorer.",
19
+ },
20
+ {
21
+ name: "description",
22
+ type: "string",
23
+ required: true,
24
+ description: "Description of what the scorer does.",
25
+ },
26
+ {
27
+ name: "extract",
28
+ type: "function",
29
+ required: false,
30
+ description: "Optional extraction step. See extract step signature below.",
31
+ },
32
+ {
33
+ name: "analyze",
34
+ type: "function",
35
+ required: true,
36
+ description: "Main scoring logic. See analyze step signature below.",
37
+ },
38
+ {
39
+ name: "reason",
40
+ type: "function",
41
+ required: false,
42
+ description: "Optional reason/explanation step. See reason step signature below.",
43
+ },
44
+ {
45
+ name: "metadata",
46
+ type: "object",
47
+ required: false,
48
+ description: "Optional metadata for the scorer.",
49
+ },
50
+ {
51
+ name: "isLLMScorer",
52
+ type: "boolean",
53
+ required: false,
54
+ description: "(Internal) Used to distinguish LLM scorers.",
55
+ },
56
+ ]}
57
+ />
58
+
59
+ ## Step Function Signatures
60
+
61
+ ### extract
62
+ <PropertiesTable
63
+ content={[
64
+ {
65
+ name: "input",
66
+ type: "Record<string, any>[]",
67
+ required: false,
68
+ description: "Input records provided to the scorer. If the scorer is added to an agent, this will be an array of user messages, e.g. `[{ role: 'user', content: 'hello world' }]`. If the scorer is used in a workflow, this will be the input of the workflow.",
69
+ },
70
+ {
71
+ name: "output",
72
+ type: "Record<string, any>",
73
+ required: true,
74
+ description: "Output record provided to the scorer. For agents, this is usually the agent's response. For workflows, this is the workflow's output.",
75
+ },
76
+ ]}
77
+ />
78
+ Returns: `{ results: any }`
79
+ The method must return an object with a `results` property. The value of `results` will be passed to the analyze function as `extractStepResult`.
80
+
81
+ ### analyze
82
+ <PropertiesTable
83
+ content={[
84
+ {
85
+ name: "input",
86
+ type: "Record<string, any>[]",
87
+ required: true,
88
+ description: "Input records provided to the scorer. If the scorer is added to an agent, this will be an array of user messages, e.g. `[{ role: 'user', content: 'hello world' }]`. If the scorer is used in a workflow, this will be the input of the workflow.",
89
+ },
90
+ {
91
+ name: "output",
92
+ type: "Record<string, any>",
93
+ required: true,
94
+ description: "Output record provided to the scorer. For agents, this is usually the agent's response. For workflows, this is the workflow's output.",
95
+ },
96
+ {
97
+ name: "extractStepResult",
98
+ type: "object",
99
+ required: false,
100
+ description: "Result of the extract step, if defined (optional).",
101
+ },
102
+ ]}
103
+ />
104
+ Returns: `{ score: number, results?: any }`
105
+ The method must return an object with a `score` property (required). Optionally, it may return a `results` property. The value of `results` will be passed to the reason function as `analyzeStepResult`.
106
+
107
+ ### reason
108
+ <PropertiesTable
109
+ content={[
110
+ {
111
+ name: "input",
112
+ type: "Record<string, any>[]",
113
+ required: true,
114
+ description: "Input records provided to the scorer. If the scorer is added to an agent, this will be an array of user messages, e.g. `[{ role: 'user', content: 'hello world' }]`. If the scorer is used in a workflow, this will be the input of the workflow.",
115
+ },
116
+ {
117
+ name: "output",
118
+ type: "Record<string, any>",
119
+ required: true,
120
+ description: "Output record provided to the scorer. For agents, this is usually the agent's response. For workflows, this is the workflow's output.",
121
+ },
122
+ {
123
+ name: "score",
124
+ type: "number",
125
+ required: true,
126
+ description: "Score computed by the analyze step.",
127
+ },
128
+ {
129
+ name: "analyzeStepResult",
130
+ type: "object",
131
+ required: true,
132
+ description: "Result of the analyze step.",
133
+ },
134
+ {
135
+ name: "extractStepResult",
136
+ type: "object",
137
+ required: false,
138
+ description: "Result of the extract step, if defined (optional).",
139
+ },
140
+ ]}
141
+ />
142
+ Returns: `{ reason: string }`
143
+ The method must return an object with a `reason` property, which should be a string explaining the score.
144
+
145
+ All step functions can be async.
146
+
147
+ ## .run() Input
148
+
149
+ <PropertiesTable
150
+ content={[
151
+ {
152
+ name: "runId",
153
+ type: "string",
154
+ required: false,
155
+ description: "The id of the run (optional).",
156
+ },
157
+ {
158
+ name: "input",
159
+ type: "Record<string, any>[]",
160
+ required: true,
161
+ description: "An array of records. This should contain user messages or the data to be evaluated.",
162
+ },
163
+ {
164
+ name: "output",
165
+ type: "Record<string, any>",
166
+ required: true,
167
+ description: "A record. This should contain the output to be evaluated.",
168
+ },
169
+ {
170
+ name: "additionalContext",
171
+ type: "Record<string, any>",
172
+ required: false,
173
+ description: "Additional context for the run (optional).",
174
+ },
175
+ {
176
+ name: "runtimeContext",
177
+ type: "Record<string, any>",
178
+ required: false,
179
+ description: "Runtime context for the run (optional).",
180
+ },
181
+ ]}
182
+ />
183
+
184
+ ## .run() Returns
185
+
186
+ <PropertiesTable
187
+ content={[
188
+ {
189
+ name: "runId",
190
+ type: "string",
191
+ description: "The id of the run (optional).",
192
+ },
193
+ {
194
+ name: "extractStepResult",
195
+ type: "object",
196
+ description: "Result of the extract step, if defined (optional).",
197
+ },
198
+ {
199
+ name: "analyzeStepResult",
200
+ type: "object",
201
+ description: "Result of the analyze step (custom structure defined by your scorer).",
202
+ },
203
+ {
204
+ name: "score",
205
+ type: "number",
206
+ description: "Score computed by your analyze function.",
207
+ },
208
+ {
209
+ name: "reason",
210
+ type: "string",
211
+ description: "Reason/explanation for the score, if defined (optional).",
212
+ },
213
+ ]}
214
+ />
215
+
216
+ ## Integration
217
+
218
+ MastraScorer instances can be used for agents and workflow steps