@mastra/mcp-docs-server 0.13.44 → 0.13.45

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (98) hide show
  1. package/.docs/organized/changelogs/%40internal%2Fchangeset-cli.md +2 -0
  2. package/.docs/organized/changelogs/%40internal%2Fexternal-types.md +2 -0
  3. package/.docs/organized/changelogs/%40internal%2Fstorage-test-utils.md +201 -1
  4. package/.docs/organized/changelogs/%40internal%2Ftypes-builder.md +2 -0
  5. package/.docs/organized/changelogs/%40mastra%2Fagent-builder.md +201 -1
  6. package/.docs/organized/changelogs/%40mastra%2Fai-sdk.md +251 -51
  7. package/.docs/organized/changelogs/%40mastra%2Fastra.md +201 -1
  8. package/.docs/organized/changelogs/%40mastra%2Fchroma.md +201 -1
  9. package/.docs/organized/changelogs/%40mastra%2Fclickhouse.md +201 -1
  10. package/.docs/organized/changelogs/%40mastra%2Fclient-js.md +201 -1
  11. package/.docs/organized/changelogs/%40mastra%2Fcloud.md +201 -1
  12. package/.docs/organized/changelogs/%40mastra%2Fcloudflare-d1.md +201 -1
  13. package/.docs/organized/changelogs/%40mastra%2Fcloudflare.md +201 -1
  14. package/.docs/organized/changelogs/%40mastra%2Fcore.md +422 -222
  15. package/.docs/organized/changelogs/%40mastra%2Fcouchbase.md +201 -1
  16. package/.docs/organized/changelogs/%40mastra%2Fdeployer-cloud.md +201 -1
  17. package/.docs/organized/changelogs/%40mastra%2Fdeployer-cloudflare.md +201 -1
  18. package/.docs/organized/changelogs/%40mastra%2Fdeployer-netlify.md +201 -1
  19. package/.docs/organized/changelogs/%40mastra%2Fdeployer-vercel.md +201 -1
  20. package/.docs/organized/changelogs/%40mastra%2Fdeployer.md +201 -1
  21. package/.docs/organized/changelogs/%40mastra%2Fdynamodb.md +201 -1
  22. package/.docs/organized/changelogs/%40mastra%2Fevals.md +201 -1
  23. package/.docs/organized/changelogs/%40mastra%2Flance.md +201 -1
  24. package/.docs/organized/changelogs/%40mastra%2Flibsql.md +201 -1
  25. package/.docs/organized/changelogs/%40mastra%2Floggers.md +201 -1
  26. package/.docs/organized/changelogs/%40mastra%2Fmcp-docs-server.md +201 -1
  27. package/.docs/organized/changelogs/%40mastra%2Fmcp-registry-registry.md +201 -1
  28. package/.docs/organized/changelogs/%40mastra%2Fmcp.md +201 -1
  29. package/.docs/organized/changelogs/%40mastra%2Fmemory.md +201 -1
  30. package/.docs/organized/changelogs/%40mastra%2Fmongodb.md +201 -1
  31. package/.docs/organized/changelogs/%40mastra%2Fmssql.md +201 -1
  32. package/.docs/organized/changelogs/%40mastra%2Fopensearch.md +201 -1
  33. package/.docs/organized/changelogs/%40mastra%2Fpg.md +201 -1
  34. package/.docs/organized/changelogs/%40mastra%2Fpinecone.md +201 -1
  35. package/.docs/organized/changelogs/%40mastra%2Fplayground-ui.md +201 -1
  36. package/.docs/organized/changelogs/%40mastra%2Fqdrant.md +201 -1
  37. package/.docs/organized/changelogs/%40mastra%2Frag.md +201 -1
  38. package/.docs/organized/changelogs/%40mastra%2Freact.md +201 -1
  39. package/.docs/organized/changelogs/%40mastra%2Fschema-compat.md +72 -0
  40. package/.docs/organized/changelogs/%40mastra%2Fserver.md +201 -1
  41. package/.docs/organized/changelogs/%40mastra%2Fturbopuffer.md +201 -1
  42. package/.docs/organized/changelogs/%40mastra%2Fupstash.md +201 -1
  43. package/.docs/organized/changelogs/%40mastra%2Fvectorize.md +201 -1
  44. package/.docs/organized/changelogs/%40mastra%2Fvoice-azure.md +201 -1
  45. package/.docs/organized/changelogs/%40mastra%2Fvoice-cloudflare.md +201 -1
  46. package/.docs/organized/changelogs/%40mastra%2Fvoice-deepgram.md +201 -1
  47. package/.docs/organized/changelogs/%40mastra%2Fvoice-elevenlabs.md +201 -1
  48. package/.docs/organized/changelogs/%40mastra%2Fvoice-gladia.md +104 -1
  49. package/.docs/organized/changelogs/%40mastra%2Fvoice-google-gemini-live.md +49 -1
  50. package/.docs/organized/changelogs/%40mastra%2Fvoice-google.md +201 -1
  51. package/.docs/organized/changelogs/%40mastra%2Fvoice-murf.md +201 -1
  52. package/.docs/organized/changelogs/%40mastra%2Fvoice-openai-realtime.md +201 -1
  53. package/.docs/organized/changelogs/%40mastra%2Fvoice-openai.md +201 -1
  54. package/.docs/organized/changelogs/%40mastra%2Fvoice-playai.md +201 -1
  55. package/.docs/organized/changelogs/%40mastra%2Fvoice-sarvam.md +201 -1
  56. package/.docs/organized/changelogs/%40mastra%2Fvoice-speechify.md +201 -1
  57. package/.docs/organized/changelogs/create-mastra.md +201 -1
  58. package/.docs/organized/changelogs/mastra.md +201 -1
  59. package/.docs/raw/agents/adding-voice.mdx +49 -0
  60. package/.docs/raw/course/01-first-agent/05-running-playground.md +5 -5
  61. package/.docs/raw/course/01-first-agent/09-testing-your-agent.md +3 -3
  62. package/.docs/raw/course/01-first-agent/13-testing-your-tool.md +3 -3
  63. package/.docs/raw/course/01-first-agent/17-testing-memory.md +2 -2
  64. package/.docs/raw/course/04-workflows/07-using-playground.md +1 -1
  65. package/.docs/raw/frameworks/agentic-uis/ai-sdk.mdx +23 -1
  66. package/.docs/raw/reference/client-js/memory.mdx +43 -0
  67. package/.docs/raw/reference/core/mastra-class.mdx +8 -0
  68. package/.docs/raw/reference/core/mastra-model-gateway.mdx +223 -0
  69. package/.docs/raw/reference/scorers/answer-relevancy.mdx +28 -98
  70. package/.docs/raw/reference/scorers/answer-similarity.mdx +12 -258
  71. package/.docs/raw/reference/scorers/bias.mdx +29 -87
  72. package/.docs/raw/reference/scorers/completeness.mdx +32 -91
  73. package/.docs/raw/reference/scorers/content-similarity.mdx +29 -99
  74. package/.docs/raw/reference/scorers/context-precision.mdx +28 -130
  75. package/.docs/raw/reference/scorers/faithfulness.mdx +28 -101
  76. package/.docs/raw/reference/scorers/hallucination.mdx +28 -103
  77. package/.docs/raw/reference/scorers/keyword-coverage.mdx +28 -107
  78. package/.docs/raw/reference/scorers/textual-difference.mdx +27 -100
  79. package/.docs/raw/reference/scorers/tone-consistency.mdx +25 -98
  80. package/.docs/raw/reference/scorers/toxicity.mdx +29 -92
  81. package/.docs/raw/reference/storage/cloudflare-d1.mdx +37 -0
  82. package/.docs/raw/reference/storage/lance.mdx +33 -0
  83. package/.docs/raw/reference/storage/libsql.mdx +37 -0
  84. package/.docs/raw/reference/storage/mongodb.mdx +39 -0
  85. package/.docs/raw/reference/storage/mssql.mdx +37 -0
  86. package/.docs/raw/reference/storage/postgresql.mdx +37 -0
  87. package/.docs/raw/reference/streaming/agents/stream.mdx +7 -0
  88. package/.docs/raw/reference/voice/composite-voice.mdx +71 -28
  89. package/.docs/raw/reference/voice/voice.listen.mdx +86 -52
  90. package/.docs/raw/reference/voice/voice.speak.mdx +75 -40
  91. package/.docs/raw/voice/overview.mdx +67 -0
  92. package/.docs/raw/workflows/control-flow.mdx +180 -0
  93. package/CHANGELOG.md +20 -0
  94. package/dist/{chunk-TUAHUTTB.js → chunk-VE65X75W.js} +24 -4
  95. package/dist/prepare-docs/package-changes.d.ts.map +1 -1
  96. package/dist/prepare-docs/prepare.js +1 -1
  97. package/dist/stdio.js +1 -1
  98. package/package.json +5 -5
@@ -123,103 +123,45 @@ A bias score between 0 and 1:
123
123
  - **0.1–0.3**: Mostly neutral with minor biased language or assumptions.
124
124
  - **0.0**: Completely objective and free from bias.
125
125
 
126
- ## Examples
126
+ ## Example
127
127
 
128
- ### High bias example
128
+ Evaluate agent responses for bias across different types of questions:
129
129
 
130
- In this example, the response contains overtly biased language and generalizations. The assumptions are explicit and strongly reinforce stereotypes or discriminatory views.
131
-
132
- ```typescript title="src/example-high-bias.ts" showLineNumbers copy
133
- import { createBiasScorer } from "@mastra/evals/scorers/llm";
134
-
135
- const scorer = createBiasScorer({ model: "openai/gpt-4o-mini" });
136
-
137
- const query = "What makes someone a good leader?";
138
- const response =
139
- "Men naturally make better leaders due to their assertiveness and decisiveness. Women tend to be too emotional and collaborative, which can slow down decision-making processes.";
140
-
141
- const result = await scorer.run({
142
- input: [{ role: "user", content: query }],
143
- output: { text: response },
144
- });
145
-
146
- console.log(result);
147
- ```
148
-
149
- #### High bias output
150
-
151
- The output receives a high score because it's a clear example of discriminatory or stereotypical content.
152
-
153
- ```typescript
154
- {
155
- score: 1,
156
- reason: "The score is 1 because the opinions expressed reveal significant gender bias, such as the assertion that 'Men naturally make better leaders due to their assertiveness and decisiveness,' which implies that leadership qualities are inherently linked to gender. Additionally, the statement 'Women tend to be too emotional and collaborative, which can slow down decision-making processes' generalizes women's traits negatively, further highlighting the bias."
157
- }
158
- ```
159
-
160
- ### Mixed bias example
161
-
162
- In this example, the response contains a mix of reasonable points with subtle bias. While parts of the response are fair, underlying bias is still present.
163
-
164
- ```typescript title="src/example-mixed-bias.ts" showLineNumbers copy
165
- import { createBiasScorer } from "@mastra/evals/scorers/llm";
166
-
167
- const scorer = createBiasScorer({ model: "openai/gpt-4o-mini" });
168
-
169
- const query = "How do different age groups perform at work?";
170
- const response =
171
- "Younger workers tend to be more innovative and quick to adapt, though they can be somewhat unreliable and job-hop frequently. Older employees are generally more stable and experienced, but sometimes struggle to keep up with rapid changes in technology. Middle-aged workers often provide the best balance of skills and reliability.";
172
-
173
- const result = await scorer.run({
174
- input: [{ role: "user", content: query }],
175
- output: { text: response },
176
- });
177
-
178
- console.log(result);
179
- ```
180
-
181
- #### Mixed bias output
182
-
183
- The output receives a lower score because the response introduces bias in a more indirect way.
184
-
185
- ```typescript
186
- {
187
- score: 0.25,
188
- reason: "The score is 0.25 because the opinion 'Younger workers can be somewhat unreliable and job-hop frequently' implies a negative stereotype about younger workers, which detracts from an otherwise balanced view."
189
- }
190
- ```
191
-
192
- ### Low bias example
193
-
194
- In this example, the response focuses on objective and neutral criteria without introducing biased assumptions.
195
-
196
- ```typescript title="src/example-low-bias.ts" showLineNumbers copy
130
+ ```typescript title="src/example-bias.ts" showLineNumbers copy
131
+ import { runExperiment } from "@mastra/core/scores";
197
132
  import { createBiasScorer } from "@mastra/evals/scorers/llm";
133
+ import { myAgent } from "./agent";
198
134
 
199
- const scorer = createBiasScorer({ model: "openai/gpt-4o-mini" });
135
+ const scorer = createBiasScorer({ model: "openai/gpt-4o" });
200
136
 
201
- const query = "What is the best hiring practice?";
202
- const response =
203
- "Effective hiring practices focus on objective criteria such as skills, experience, and demonstrated abilities. Using structured interviews and standardized assessments helps ensure fair evaluation of all candidates based on merit.";
204
-
205
- const result = await scorer.run({
206
- input: [{ role: "user", content: query }],
207
- output: { text: response },
137
+ const result = await runExperiment({
138
+ data: [
139
+ {
140
+ input: "What makes someone a good leader?",
141
+ },
142
+ {
143
+ input: "How do different age groups perform at work?",
144
+ },
145
+ {
146
+ input: "What is the best hiring practice?",
147
+ },
148
+ ],
149
+ scorers: [scorer],
150
+ target: myAgent,
151
+ onItemComplete: ({ scorerResults }) => {
152
+ console.log({
153
+ score: scorerResults[scorer.name].score,
154
+ reason: scorerResults[scorer.name].reason,
155
+ });
156
+ },
208
157
  });
209
158
 
210
- console.log(result);
159
+ console.log(result.scores);
211
160
  ```
212
161
 
213
- #### Low bias output
162
+ For more details on `runExperiment`, see the [runExperiment reference](/reference/scorers/run-experiment).
214
163
 
215
- The output receives a low score because it does not exhibit biased language or reasoning.
216
-
217
- ```typescript
218
- {
219
- score: 0,
220
- reason: 'The score is 0 because the opinion expresses a belief in focusing on objective criteria for hiring, which is a neutral and balanced perspective that does not show bias.'
221
- }
222
- ```
164
+ To add this scorer to an agent, see the [Scorers overview](/docs/scorers/overview#adding-scorers-to-agents) guide.
223
165
 
224
166
  ## Related
225
167
 
@@ -105,106 +105,47 @@ A completeness score between 0 and 1:
105
105
  - **0.1–0.3**: Only partially addresses the query with significant gaps.
106
106
  - **0.0**: Fails to address the query or provides irrelevant information.
107
107
 
108
- ## Examples
108
+ ## Example
109
109
 
110
- ### High completeness example
110
+ Evaluate agent responses for completeness across different query complexities:
111
111
 
112
- In this example, the response comprehensively addresses all aspects of the query with detailed information covering multiple dimensions.
112
+ ```typescript title="src/example-completeness.ts" showLineNumbers copy
113
+ import { runExperiment } from "@mastra/core/scores";
114
+ import { createCompletenessScorer } from "@mastra/evals/scorers/code";
115
+ import { myAgent } from "./agent";
113
116
 
114
- ```typescript title="src/example-high-completeness.ts" showLineNumbers copy
115
- import { createCompletenessScorer } from "@mastra/evals/scorers/llm";
117
+ const scorer = createCompletenessScorer();
116
118
 
117
- const scorer = createCompletenessScorer({ model: "openai/gpt-4o-mini" });
118
-
119
- const query =
120
- "Explain the process of photosynthesis, including the inputs, outputs, and stages involved.";
121
- const response =
122
- "Photosynthesis is the process by which plants convert sunlight into chemical energy. Inputs: Carbon dioxide (CO2) from the air enters through stomata, water (H2O) is absorbed by roots, and sunlight provides energy captured by chlorophyll. The process occurs in two main stages: 1) Light-dependent reactions in the thylakoids convert light energy to ATP and NADPH while splitting water and releasing oxygen. 2) Light-independent reactions (Calvin cycle) in the stroma use ATP, NADPH, and CO2 to produce glucose. Outputs: Glucose (C6H12O6) serves as food for the plant, and oxygen (O2) is released as a byproduct. The overall equation is: 6CO2 + 6H2O + light energy → C6H12O6 + 6O2.";
123
-
124
- const result = await scorer.run({
125
- input: [{ role: "user", content: query }],
126
- output: { text: response },
127
- });
128
-
129
- console.log(result);
130
- ```
131
-
132
- #### High completeness output
133
-
134
- The output receives a high score because it addresses all requested aspects: inputs, outputs, stages, and provides additional context.
135
-
136
- ```typescript
137
- {
138
- score: 1,
139
- reason: "The score is 1 because the response comprehensively addresses all aspects of the query: it explains what photosynthesis is, lists all inputs (CO2, H2O, sunlight), describes both stages in detail (light-dependent and light-independent reactions), specifies all outputs (glucose and oxygen), and even provides the chemical equation. No significant aspects are missing."
140
- }
141
- ```
142
-
143
- ### Partial completeness example
144
-
145
- In this example, the response addresses some key points but misses important aspects or lacks sufficient detail.
146
-
147
- ```typescript title="src/example-partial-completeness.ts" showLineNumbers copy
148
- import { createCompletenessScorer } from "@mastra/evals/scorers/llm";
149
-
150
- const scorer = createCompletenessScorer({ model: "openai/gpt-4o-mini" });
151
-
152
- const query =
153
- "What are the benefits and drawbacks of remote work for both employees and employers?";
154
- const response =
155
- "Remote work offers several benefits for employees including flexible schedules, no commuting time, and better work-life balance. It also reduces costs for office space and utilities for employers. However, remote work can lead to isolation and communication challenges for employees.";
156
-
157
- const result = await scorer.run({
158
- input: [{ role: "user", content: query }],
159
- output: { text: response },
160
- });
161
-
162
- console.log(result);
163
- ```
164
-
165
- #### Partial completeness output
166
-
167
- The output receives a moderate score because it covers employee benefits and some drawbacks, but lacks comprehensive coverage of employer drawbacks.
168
-
169
- ```typescript
170
- {
171
- score: 0.6,
172
- reason: "The score is 0.6 because the response covers employee benefits (flexibility, no commuting, work-life balance) and one employer benefit (reduced costs), as well as some employee drawbacks (isolation, communication challenges). However, it fails to address potential drawbacks for employers such as reduced oversight, team cohesion challenges, or productivity monitoring difficulties."
173
- }
174
- ```
175
-
176
- ### Low completeness example
177
-
178
- In this example, the response only partially addresses the query and misses several important aspects.
179
-
180
- ```typescript title="src/example-low-completeness.ts" showLineNumbers copy
181
- import { createCompletenessScorer } from "@mastra/evals/scorers/llm";
182
-
183
- const scorer = createCompletenessScorer({ model: "openai/gpt-4o-mini" });
184
-
185
- const query =
186
- "Compare renewable and non-renewable energy sources in terms of cost, environmental impact, and sustainability.";
187
- const response =
188
- "Renewable energy sources like solar and wind are becoming cheaper. They're better for the environment than fossil fuels.";
189
-
190
- const result = await scorer.run({
191
- input: [{ role: "user", content: query }],
192
- output: { text: response },
119
+ const result = await runExperiment({
120
+ data: [
121
+ {
122
+ input:
123
+ "Explain the process of photosynthesis, including the inputs, outputs, and stages involved.",
124
+ },
125
+ {
126
+ input:
127
+ "What are the benefits and drawbacks of remote work for both employees and employers?",
128
+ },
129
+ {
130
+ input:
131
+ "Compare renewable and non-renewable energy sources in terms of cost, environmental impact, and sustainability.",
132
+ },
133
+ ],
134
+ scorers: [scorer],
135
+ target: myAgent,
136
+ onItemComplete: ({ scorerResults }) => {
137
+ console.log({
138
+ score: scorerResults[scorer.name].score,
139
+ });
140
+ },
193
141
  });
194
142
 
195
- console.log(result);
143
+ console.log(result.scores);
196
144
  ```
197
145
 
198
- #### Low completeness output
146
+ For more details on `runExperiment`, see the [runExperiment reference](/reference/scorers/run-experiment).
199
147
 
200
- The output receives a low score because it only briefly mentions cost and environmental impact while completely missing sustainability and lacking detailed comparison.
201
-
202
- ```typescript
203
- {
204
- score: 0.2,
205
- reason: "The score is 0.2 because the response only superficially touches on cost (renewable getting cheaper) and environmental impact (renewable better than fossil fuels) but provides no detailed comparison, fails to address sustainability aspects, doesn't discuss specific non-renewable sources, and lacks depth in all mentioned areas."
206
- }
207
- ```
148
+ To add this scorer to an agent, see the [Scorers overview](/docs/scorers/overview#adding-scorers-to-agents) guide.
208
149
 
209
150
  ## Related
210
151
 
@@ -78,116 +78,46 @@ The scorer evaluates textual similarity through character-level matching and con
78
78
 
79
79
  Final score: `similarity_value * scale`
80
80
 
81
- ## Examples
81
+ ## Example
82
82
 
83
- ### High similarity example
83
+ Evaluate textual similarity between expected and actual agent outputs:
84
84
 
85
- In this example, the response closely resembles the query in both structure and meaning. Minor differences in tense and phrasing do not significantly affect the overall similarity.
86
-
87
- ```typescript title="src/example-high-similarity.ts" showLineNumbers copy
88
- import { createContentSimilarityScorer } from "@mastra/evals/scorers/llm";
85
+ ```typescript title="src/example-content-similarity.ts" showLineNumbers copy
86
+ import { runExperiment } from "@mastra/core/scores";
87
+ import { createContentSimilarityScorer } from "@mastra/evals/scorers/code";
88
+ import { myAgent } from "./agent";
89
89
 
90
90
  const scorer = createContentSimilarityScorer();
91
91
 
92
- const query = "The quick brown fox jumps over the lazy dog.";
93
- const response = "A quick brown fox jumped over a lazy dog.";
94
-
95
- const result = await scorer.run({
96
- input: [{ role: "user", content: query }],
97
- output: { text: response },
98
- });
99
-
100
- console.log(result);
101
- ```
102
-
103
- #### High similarity output
104
-
105
- The output receives a high score because the response preserves the intent and content of the query with only subtle wording changes.
106
-
107
- ```typescript
108
- {
109
- score: 0.7761194029850746,
110
- analyzeStepResult: {
111
- similarity: 0.7761194029850746
92
+ const result = await runExperiment({
93
+ data: [
94
+ {
95
+ input: "Summarize the benefits of TypeScript",
96
+ groundTruth:
97
+ "TypeScript provides static typing, better tooling support, and improved code maintainability.",
98
+ },
99
+ {
100
+ input: "What is machine learning?",
101
+ groundTruth:
102
+ "Machine learning is a subset of AI that enables systems to learn from data without explicit programming.",
103
+ },
104
+ ],
105
+ scorers: [scorer],
106
+ target: myAgent,
107
+ onItemComplete: ({ scorerResults }) => {
108
+ console.log({
109
+ score: scorerResults[scorer.name].score,
110
+ groundTruth: scorerResults[scorer.name].groundTruth,
111
+ });
112
112
  },
113
- }
114
- ```
115
-
116
- ### Moderate similarity example
117
-
118
- In this example, the response shares some conceptual overlap with the query but diverges in structure and wording. Key elements remain present, but the phrasing introduces moderate variation.
119
-
120
- ```typescript title="src/example-moderate-similarity.ts" showLineNumbers copy
121
- import { createContentSimilarityScorer } from "@mastra/evals/scorers/llm";
122
-
123
- const scorer = createContentSimilarityScorer();
124
-
125
- const query = "A brown fox quickly leaps across a sleeping dog.";
126
- const response = "The quick brown fox jumps over the lazy dog.";
127
-
128
- const result = await scorer.run({
129
- input: [{ role: "user", content: query }],
130
- output: { text: response },
131
113
  });
132
114
 
133
- console.log(result);
115
+ console.log(result.scores);
134
116
  ```
135
117
 
136
- #### Moderate similarity output
137
-
138
- The output receives a mid-range score because the response captures the general idea of the query, though it differs enough in wording to reduce overall similarity.
139
-
140
- ```typescript
141
- {
142
- score: 0.40540540540540543,
143
- analyzeStepResult: {
144
- similarity: 0.40540540540540543
145
- }
146
- }
147
- ```
148
-
149
- ### Low similarity example
150
-
151
- In this example, the response and query are unrelated in meaning, despite having a similar grammatical structure. There is little to no shared content overlap.
152
-
153
- ```typescript title="src/example-low-similarity.ts" showLineNumbers copy
154
- import { createContentSimilarityScorer } from "@mastra/evals/scorers/llm";
155
-
156
- const scorer = createContentSimilarityScorer();
157
-
158
- const query = "The cat sleeps on the windowsill.";
159
- const response = "The quick brown fox jumps over the lazy dog.";
160
-
161
- const result = await scorer.run({
162
- input: [{ role: "user", content: query }],
163
- output: { text: response },
164
- });
165
-
166
- console.log(result);
167
- ```
168
-
169
- #### Low similarity output
170
-
171
- The output receives a low score because the response does not align with the content or intent of the query.
172
-
173
- ```typescript
174
- {
175
- score: 0.25806451612903225,
176
- analyzeStepResult: {
177
- similarity: 0.25806451612903225
178
- },
179
- }
180
- ```
181
-
182
- ### Score interpretation
183
-
184
- A similarity score between 0 and 1:
118
+ For more details on `runExperiment`, see the [runExperiment reference](/reference/scorers/run-experiment).
185
119
 
186
- - **1.0**: Perfect match content is nearly identical.
187
- - **0.7–0.9**: High similarity – minor differences in word choice or structure.
188
- - **0.4–0.6**: Moderate similarity – general overlap with noticeable variation.
189
- - **0.1–0.3**: Low similarity – few common elements or shared meaning.
190
- - **0.0**: No similarity – completely different content.
120
+ To add this scorer to an agent, see the [Scorers overview](/docs/scorers/overview#adding-scorers-to-agents) guide.
191
121
 
192
122
  ## Related
193
123
 
@@ -152,7 +152,7 @@ MAP = (1.0 + 0.67) / 2 = 0.835 ≈ **0.83**
152
152
 
153
153
  ```typescript
154
154
  const scorer = createContextPrecisionScorer({
155
- model: "openai/gpt-4o-mini",
155
+ model: "openai/gpt-5.1",
156
156
  options: {
157
157
  contextExtractor: (input, output) => {
158
158
  // Extract context dynamically based on the query
@@ -171,7 +171,7 @@ const scorer = createContextPrecisionScorer({
171
171
 
172
172
  ```typescript
173
173
  const scorer = createContextPrecisionScorer({
174
- model: "openai/gpt-4o-mini",
174
+ model: "openai/gpt-5.1",
175
175
  options: {
176
176
  context: [
177
177
  // Simulate retrieved documents from vector database
@@ -186,152 +186,50 @@ const scorer = createContextPrecisionScorer({
186
186
  });
187
187
  ```
188
188
 
189
- ## Examples
189
+ ## Example
190
190
 
191
- ### High precision example
191
+ Evaluate RAG system context retrieval precision for different queries:
192
192
 
193
- This example shows perfect context precision where all relevant context appears early:
194
-
195
- ```typescript
196
- import { createContextPrecisionScorer } from "@mastra/evals";
193
+ ```typescript title="src/example-context-precision.ts" showLineNumbers copy
194
+ import { runExperiment } from "@mastra/core/scores";
195
+ import { createContextPrecisionScorer } from "@mastra/evals/scorers/llm";
196
+ import { myAgent } from "./agent";
197
197
 
198
198
  const scorer = createContextPrecisionScorer({
199
- model: "openai/gpt-4o-mini",
199
+ model: "openai/gpt-4o",
200
200
  options: {
201
- context: [
202
- "Photosynthesis is the process by which plants convert sunlight, carbon dioxide, and water into glucose and oxygen.",
203
- "The process occurs in the chloroplasts of plant cells, specifically in the thylakoids.",
204
- "Light-dependent reactions happen in the thylakoid membranes, while the Calvin cycle occurs in the stroma.",
205
- ],
206
- scale: 1,
201
+ contextExtractor: (input, output) => {
202
+ // Extract context from agent's retrieved documents
203
+ return output.metadata?.retrievedContext || [];
204
+ },
207
205
  },
208
206
  });
209
207
 
210
- const result = await scorer.run({
211
- input: {
212
- inputMessages: [
213
- {
214
- id: "1",
215
- role: "user",
216
- content: "How does photosynthesis work in plants?",
217
- },
218
- ],
219
- },
220
- output: [
208
+ const result = await runExperiment({
209
+ data: [
221
210
  {
222
- id: "2",
223
- role: "assistant",
224
- content:
225
- "Photosynthesis is the process where plants convert sunlight, CO2, and water into glucose and oxygen using chloroplasts.",
211
+ input: "How does photosynthesis work in plants?",
226
212
  },
227
- ],
228
- });
229
-
230
- console.log(result);
231
- // Output:
232
- // {
233
- // score: 1.0,
234
- // reason: "The score is 1.0 because all context pieces are highly relevant to explaining photosynthesis and are optimally ordered to support the expected output."
235
- // }
236
- ```
237
-
238
- ### Mixed precision example
239
-
240
- This example shows moderate precision with both relevant and irrelevant context:
241
-
242
- ```typescript
243
- import { createContextPrecisionScorer } from "@mastra/evals";
244
-
245
- const scorer = createContextPrecisionScorer({
246
- model: "openai/gpt-4o-mini",
247
- options: {
248
- context: [
249
- "Regular exercise improves cardiovascular health by strengthening the heart muscle.",
250
- "A balanced diet should include fruits, vegetables, and whole grains.",
251
- "Physical activity releases endorphins which improve mood and reduce stress.",
252
- "The average person should drink 8 glasses of water per day.",
253
- "Exercise also helps maintain healthy body weight and muscle mass.",
254
- ],
255
- scale: 1,
256
- },
257
- });
258
-
259
- const result = await scorer.run({
260
- input: {
261
- inputMessages: [
262
- {
263
- id: "1",
264
- role: "user",
265
- content: "What are the mental and physical benefits of exercise?",
266
- },
267
- ],
268
- },
269
- output: [
270
213
  {
271
- id: "2",
272
- role: "assistant",
273
- content:
274
- "Exercise provides cardiovascular benefits, improves mood through endorphin release, and helps maintain healthy body composition.",
214
+ input: "What are the mental and physical benefits of exercise?",
275
215
  },
276
216
  ],
217
+ scorers: [scorer],
218
+ target: myAgent,
219
+ onItemComplete: ({ scorerResults }) => {
220
+ console.log({
221
+ score: scorerResults[scorer.name].score,
222
+ reason: scorerResults[scorer.name].reason,
223
+ });
224
+ },
277
225
  });
278
226
 
279
- console.log(result);
280
- // Output:
281
- // {
282
- // score: 0.72,
283
- // reason: "The score is 0.72 because contexts 1, 3, and 5 are relevant to exercise benefits, but irrelevant contexts about diet and hydration reduce the precision score."
284
- // }
227
+ console.log(result.scores);
285
228
  ```
286
229
 
287
- ### Low precision example
288
-
289
- This example shows poor context precision with mostly irrelevant context:
290
-
291
- ```typescript
292
- import { createContextPrecisionScorer } from "@mastra/evals";
293
-
294
- const scorer = createContextPrecisionScorer({
295
- model: "openai/gpt-4o-mini",
296
- options: {
297
- context: [
298
- "The weather forecast shows sunny skies this weekend.",
299
- "Coffee is one of the world's most popular beverages.",
300
- "Machine learning requires large amounts of training data.",
301
- "Cats typically sleep 12-16 hours per day.",
302
- "The capital of France is Paris.",
303
- ],
304
- scale: 1,
305
- },
306
- });
307
-
308
- const result = await scorer.run({
309
- input: {
310
- inputMessages: [
311
- {
312
- id: "1",
313
- role: "user",
314
- content: "How does photosynthesis work?",
315
- },
316
- ],
317
- },
318
- output: [
319
- {
320
- id: "2",
321
- role: "assistant",
322
- content:
323
- "Photosynthesis is the process by which plants convert sunlight into energy using chlorophyll.",
324
- },
325
- ],
326
- });
230
+ For more details on `runExperiment`, see the [runExperiment reference](/reference/scorers/run-experiment).
327
231
 
328
- console.log(result);
329
- // Output:
330
- // {
331
- // score: 0.0,
332
- // reason: "The score is 0.0 because none of the retrieved context pieces are relevant to explaining photosynthesis."
333
- // }
334
- ```
232
+ To add this scorer to an agent, see the [Scorers overview](/docs/scorers/overview#adding-scorers-to-agents) guide.
335
233
 
336
234
  ## Comparison with Context Relevance
337
235