@mastra/mcp-docs-server 0.13.2-alpha.2 → 0.13.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/.docs/organized/changelogs/%40mastra%2Fclient-js.md +15 -15
  2. package/.docs/organized/changelogs/%40mastra%2Fcloudflare-d1.md +8 -8
  3. package/.docs/organized/changelogs/%40mastra%2Fcloudflare.md +8 -8
  4. package/.docs/organized/changelogs/%40mastra%2Fcore.md +8 -8
  5. package/.docs/organized/changelogs/%40mastra%2Fdeployer-cloudflare.md +15 -15
  6. package/.docs/organized/changelogs/%40mastra%2Fdeployer-netlify.md +8 -8
  7. package/.docs/organized/changelogs/%40mastra%2Fdeployer-vercel.md +8 -8
  8. package/.docs/organized/changelogs/%40mastra%2Fdeployer.md +8 -8
  9. package/.docs/organized/changelogs/%40mastra%2Fdynamodb.md +8 -8
  10. package/.docs/organized/changelogs/%40mastra%2Fmcp-docs-server.md +8 -8
  11. package/.docs/organized/changelogs/%40mastra%2Fmongodb.md +8 -8
  12. package/.docs/organized/changelogs/%40mastra%2Fplayground-ui.md +26 -26
  13. package/.docs/organized/changelogs/%40mastra%2Fschema-compat.md +6 -0
  14. package/.docs/organized/changelogs/%40mastra%2Fserver.md +7 -7
  15. package/.docs/organized/changelogs/%40mastra%2Fvectorize.md +8 -8
  16. package/.docs/organized/changelogs/%40mastra%2Fvoice-cloudflare.md +8 -8
  17. package/.docs/organized/changelogs/create-mastra.md +7 -7
  18. package/.docs/organized/changelogs/mastra.md +10 -10
  19. package/.docs/raw/course/01-first-agent/04-project-structure.md +8 -3
  20. package/.docs/raw/course/01-first-agent/07-creating-your-agent.md +5 -3
  21. package/.docs/raw/course/01-first-agent/08-exporting-your-agent.md +21 -6
  22. package/.docs/raw/course/01-first-agent/11-creating-transactions-tool.md +5 -3
  23. package/.docs/raw/course/01-first-agent/12-connecting-tool-to-agent.md +2 -2
  24. package/.docs/raw/course/04-workflows/01-introduction-to-workflows.md +44 -0
  25. package/.docs/raw/course/04-workflows/02-understanding-steps.md +53 -0
  26. package/.docs/raw/course/04-workflows/03-creating-your-first-step.md +57 -0
  27. package/.docs/raw/course/04-workflows/04-creating-a-second-step.md +58 -0
  28. package/.docs/raw/course/04-workflows/05-chaining-steps-together.md +57 -0
  29. package/.docs/raw/course/04-workflows/06-registering-with-mastra.md +24 -0
  30. package/.docs/raw/course/04-workflows/07-using-playground.md +58 -0
  31. package/.docs/raw/course/04-workflows/08-running-workflows-programmatically.md +77 -0
  32. package/.docs/raw/course/04-workflows/09-adding-a-third-step.md +70 -0
  33. package/.docs/raw/course/04-workflows/10-updating-the-workflow.md +55 -0
  34. package/.docs/raw/course/04-workflows/11-creating-an-ai-agent.md +67 -0
  35. package/.docs/raw/course/04-workflows/12-using-agent-in-workflow.md +91 -0
  36. package/.docs/raw/course/04-workflows/13-creating-ai-enhanced-workflow.md +75 -0
  37. package/.docs/raw/course/04-workflows/14-understanding-parallel-execution.md +38 -0
  38. package/.docs/raw/course/04-workflows/15-creating-parallel-steps.md +115 -0
  39. package/.docs/raw/course/04-workflows/16-building-parallel-workflow.md +100 -0
  40. package/.docs/raw/course/04-workflows/17-testing-parallel-performance.md +40 -0
  41. package/.docs/raw/course/04-workflows/18-understanding-conditional-branching.md +61 -0
  42. package/.docs/raw/course/04-workflows/19-creating-conditional-steps.md +128 -0
  43. package/.docs/raw/course/04-workflows/20-building-conditional-workflow.md +60 -0
  44. package/.docs/raw/course/04-workflows/21-testing-conditional-logic.md +58 -0
  45. package/.docs/raw/course/04-workflows/22-conclusion.md +58 -0
  46. package/package.json +4 -4
@@ -0,0 +1,91 @@
1
+ # Using Agent in Workflow
2
+
3
+ Now you'll create a workflow step that uses your AI agent to provide intelligent content analysis.
4
+
5
+ In each step, in the execute function, you have access to the `mastra` class which provides you the ability to access Agents, Tools, and even other Workflows. In this case, we use the `mastra` class to get our agent and call that agent's `generate()` function.
6
+
7
+ ## Creating an AI Analysis Step
8
+
9
+ Add this step to your workflow file:
10
+
11
+ ```typescript
12
+ const aiAnalysisStep = createStep({
13
+ id: "ai-analysis",
14
+ description: "AI-powered content analysis",
15
+ inputSchema: z.object({
16
+ content: z.string(),
17
+ type: z.string(),
18
+ wordCount: z.number(),
19
+ metadata: z.object({
20
+ readingTime: z.number(),
21
+ difficulty: z.enum(["easy", "medium", "hard"]),
22
+ processedAt: z.string(),
23
+ }),
24
+ summary: z.string(),
25
+ }),
26
+ outputSchema: z.object({
27
+ content: z.string(),
28
+ type: z.string(),
29
+ wordCount: z.number(),
30
+ metadata: z.object({
31
+ readingTime: z.number(),
32
+ difficulty: z.enum(["easy", "medium", "hard"]),
33
+ processedAt: z.string(),
34
+ }),
35
+ summary: z.string(),
36
+ aiAnalysis: z.object({
37
+ score: z.number(),
38
+ feedback: z.string(),
39
+ }),
40
+ }),
41
+ execute: async ({ inputData, mastra }) => {
42
+ const { content, type, wordCount, metadata, summary } = inputData;
43
+
44
+ // Create prompt for the AI agent
45
+ const prompt = `
46
+ Analyze this ${type} content:
47
+
48
+ Content: "${content}"
49
+ Word count: ${wordCount}
50
+ Reading time: ${metadata.readingTime} minutes
51
+ Difficulty: ${metadata.difficulty}
52
+
53
+ Please provide:
54
+ 1. A quality score from 1-10
55
+ 2. Brief feedback on strengths and areas for improvement
56
+
57
+ Format as JSON: {"score": number, "feedback": "your feedback here"}
58
+ `;
59
+
60
+ // Get the contentAgent from the mastra instance.
61
+ const contentAgent = mastra.getAgent("contentAgent");
62
+ const { text } = await contentAgent.generate([
63
+ { role: "user", content: prompt },
64
+ ]);
65
+
66
+ // Parse AI response (with fallback)
67
+ let aiAnalysis;
68
+ try {
69
+ aiAnalysis = JSON.parse(text);
70
+ } catch {
71
+ aiAnalysis = {
72
+ score: 7,
73
+ feedback: "AI analysis completed. " + text,
74
+ };
75
+ }
76
+
77
+ console.log(`🤖 AI Score: ${aiAnalysis.score}/10`);
78
+
79
+ return {
80
+ content,
81
+ type,
82
+ wordCount,
83
+ metadata,
84
+ summary,
85
+ aiAnalysis,
86
+ };
87
+ },
88
+ });
89
+ ```
90
+
91
+ Your agent-powered step is ready! Next, you'll add it to your workflow for complete AI-enhanced content processing.
@@ -0,0 +1,75 @@
1
+ # Creating AI-Enhanced Workflow
2
+
3
+ Now you'll create a new workflow that includes agent analysis alongside your existing content processing steps.
4
+
5
+ ## Creating the Enhanced Workflow
6
+
7
+ Add this new workflow to your file:
8
+
9
+ ```typescript
10
+ export const aiContentWorkflow = createWorkflow({
11
+ id: "ai-content-workflow",
12
+ description: "AI-enhanced content processing with analysis",
13
+ inputSchema: z.object({
14
+ content: z.string(),
15
+ type: z.enum(["article", "blog", "social"]).default("article"),
16
+ }),
17
+ outputSchema: z.object({
18
+ content: z.string(),
19
+ type: z.string(),
20
+ wordCount: z.number(),
21
+ metadata: z.object({
22
+ readingTime: z.number(),
23
+ difficulty: z.enum(["easy", "medium", "hard"]),
24
+ processedAt: z.string(),
25
+ }),
26
+ summary: z.string(),
27
+ aiAnalysis: z.object({
28
+ score: z.number(),
29
+ feedback: z.string(),
30
+ }),
31
+ }),
32
+ })
33
+ .then(validateContentStep)
34
+ .then(enhanceContentStep)
35
+ .then(generateSummaryStep)
36
+ .then(aiAnalysisStep)
37
+ .commit();
38
+ ```
39
+
40
+ ## Registering the New Workflow
41
+
42
+ Update your Mastra configuration to include both workflows and ensure the contentAgent has been added.
43
+
44
+ ```typescript
45
+ // In src/mastra/index.ts
46
+ import {
47
+ contentWorkflow,
48
+ aiContentWorkflow,
49
+ } from "./workflows/content-workflow";
50
+ import { contentAgent } from "./agents/content-agent";
51
+
52
+ export const mastra = new Mastra({
53
+ workflows: {
54
+ contentWorkflow,
55
+ aiContentWorkflow, // Add the AI-enhanced version
56
+ },
57
+ agents: { contentAgent },
58
+ // ... rest of configuration
59
+ });
60
+ ```
61
+
62
+ ## Testing the Agent-Enhanced Workflow
63
+
64
+ You can now access this new Workflow inside the Mastra playground. Select this new `ai-content-workflow` workflow from the Workflows tab and run a test to validate it works as expected.
65
+
66
+ ## The Complete AI Pipeline
67
+
68
+ Your AI-enhanced workflow now:
69
+
70
+ 1. **Validates** content and counts words
71
+ 2. **Enhances** with metadata
72
+ 3. **Summarizes** the content
73
+ 4. **Analyzes** with AI for quality scoring and feedback
74
+
75
+ This creates a comprehensive, AI-powered content processing system! Next, you'll learn about parallel execution.
@@ -0,0 +1,38 @@
1
+ # Understanding Parallel Execution
2
+
3
+ Learn how to run multiple workflow steps simultaneously to improve performance when steps don't depend on each other.
4
+
5
+ ## When to Use Parallel Execution
6
+
7
+ Use parallel execution when you have steps that:
8
+
9
+ - **Don't depend on each other**: Can run independently
10
+ - **Take time**: Network requests, AI calls, or heavy computations
11
+ - **Process the same input**: Multiple analyses of the same data
12
+
13
+ ## Example Scenario
14
+
15
+ Imagine you want to analyze content in three different ways:
16
+
17
+ 1. SEO analysis
18
+ 2. Readability analysis
19
+ 3. Sentiment analysis
20
+
21
+ These can all run at the same time since they don't depend on each other!
22
+
23
+ ## Creating Parallel Steps
24
+
25
+ The .parallel() method on a workflow executes multiple steps in parallel.
26
+
27
+ ```typescript
28
+ workflow.parallel([stepOne, stepTwo]);
29
+ ```
30
+
31
+ ## Performance Benefits
32
+
33
+ Running steps in parallel:
34
+
35
+ - **Faster execution**: Steps run simultaneously instead of waiting
36
+ - **Improved user experience**: Shorter wait times
37
+
38
+ Next, you'll create the other parallel steps and see how to combine them!
@@ -0,0 +1,115 @@
1
+ # Creating Parallel Steps
2
+
3
+ Let's create three analysis steps that can run simultaneously to analyze different aspects of content.
4
+
5
+ ## Creating the Analysis Steps
6
+
7
+ Add these three steps to your workflow file:
8
+
9
+ ```typescript
10
+ // SEO Analysis
11
+ const seoAnalysisStep = createStep({
12
+ id: "seo-analysis",
13
+ description: "SEO optimization analysis",
14
+ inputSchema: z.object({
15
+ content: z.string(),
16
+ type: z.enum(["article", "blog", "social"]).default("article"),
17
+ }),
18
+ outputSchema: z.object({
19
+ seoScore: z.number(),
20
+ keywords: z.array(z.string()),
21
+ }),
22
+ execute: async ({ inputData }) => {
23
+ console.log("🔍 Running SEO analysis...");
24
+ await new Promise((resolve) => setTimeout(resolve, 800));
25
+
26
+ const words = inputData.content.toLowerCase().split(/\s+/);
27
+ const keywords = words.filter((word) => word.length > 4).slice(0, 3);
28
+
29
+ return {
30
+ seoScore: Math.floor(Math.random() * 40) + 60,
31
+ keywords,
32
+ };
33
+ },
34
+ });
35
+
36
+ // Readability Analysis
37
+ const readabilityStep = createStep({
38
+ id: "readability-analysis",
39
+ description: "Content readability analysis",
40
+ inputSchema: z.object({
41
+ content: z.string(),
42
+ type: z.enum(["article", "blog", "social"]).default("article"),
43
+ }),
44
+ outputSchema: z.object({
45
+ readabilityScore: z.number(),
46
+ gradeLevel: z.string(),
47
+ }),
48
+ execute: async ({ inputData }) => {
49
+ console.log("📖 Running readability analysis...");
50
+ await new Promise((resolve) => setTimeout(resolve, 600));
51
+
52
+ const sentences = inputData.content.split(/[.!?]+/).length;
53
+ const words = inputData.content.split(/\s+/).length;
54
+ const avgWordsPerSentence = words / sentences;
55
+
56
+ const score = Math.max(0, 100 - avgWordsPerSentence * 3);
57
+ const gradeLevel = score > 80 ? "Easy" : score > 60 ? "Medium" : "Hard";
58
+
59
+ return {
60
+ readabilityScore: Math.floor(score),
61
+ gradeLevel,
62
+ };
63
+ },
64
+ });
65
+
66
+ // Sentiment Analysis
67
+ const sentimentStep = createStep({
68
+ id: "sentiment-analysis",
69
+ description: "Content sentiment analysis",
70
+ inputSchema: z.object({
71
+ content: z.string(),
72
+ type: z.enum(["article", "blog", "social"]).default("article"),
73
+ }),
74
+ outputSchema: z.object({
75
+ sentiment: z.enum(["positive", "neutral", "negative"]),
76
+ confidence: z.number(),
77
+ }),
78
+ execute: async ({ inputData }) => {
79
+ console.log("😊 Running sentiment analysis...");
80
+ await new Promise((resolve) => setTimeout(resolve, 700));
81
+
82
+ const content = inputData.content.toLowerCase();
83
+ const positiveWords = ["good", "great", "excellent", "amazing"];
84
+ const negativeWords = ["bad", "terrible", "awful", "horrible"];
85
+
86
+ const positive = positiveWords.filter((word) =>
87
+ content.includes(word),
88
+ ).length;
89
+ const negative = negativeWords.filter((word) =>
90
+ content.includes(word),
91
+ ).length;
92
+
93
+ let sentiment: "positive" | "neutral" | "negative" = "neutral";
94
+ if (positive > negative) sentiment = "positive";
95
+ if (negative > positive) sentiment = "negative";
96
+
97
+ return {
98
+ sentiment,
99
+ confidence: Math.random() * 0.3 + 0.7, // 0.7-1.0
100
+ };
101
+ },
102
+ });
103
+ ```
104
+
105
+ ## Notice the Timing
106
+
107
+ Each step has a different simulated processing time:
108
+
109
+ - SEO: 800ms
110
+ - Readability: 600ms
111
+ - Sentiment: 700ms
112
+
113
+ When run sequentially, total time would be ~2.2 seconds. When run in parallel, total time will be ~800ms (the longest step)!
114
+
115
+ Next, you'll learn how to run these steps in parallel using the `.parallel()` method.
@@ -0,0 +1,100 @@
1
+ # Building Parallel Workflow
2
+
3
+ Now you'll create a workflow that runs your analysis steps in parallel for maximum performance.
4
+
5
+ ## Creating the Parallel Workflow
6
+
7
+ Add this workflow to your file:
8
+
9
+ ```typescript
10
+ export const parallelAnalysisWorkflow = createWorkflow({
11
+ id: "parallel-analysis-workflow",
12
+ description: "Run multiple content analyses in parallel",
13
+ inputSchema: z.object({
14
+ content: z.string(),
15
+ type: z.enum(["article", "blog", "social"]).default("article"),
16
+ }),
17
+ outputSchema: z.object({
18
+ results: z.object({
19
+ seo: z.object({
20
+ seoScore: z.number(),
21
+ keywords: z.array(z.string()),
22
+ }),
23
+ readability: z.object({
24
+ readabilityScore: z.number(),
25
+ gradeLevel: z.string(),
26
+ }),
27
+ sentiment: z.object({
28
+ sentiment: z.enum(["positive", "neutral", "negative"]),
29
+ confidence: z.number(),
30
+ }),
31
+ }),
32
+ }),
33
+ })
34
+ .parallel([seoAnalysisStep, readabilityStep, sentimentStep])
35
+ .then(
36
+ createStep({
37
+ id: "combine-results",
38
+ description: "Combines parallel analysis results",
39
+ inputSchema: z.object({
40
+ "seo-analysis": z.object({
41
+ seoScore: z.number(),
42
+ keywords: z.array(z.string()),
43
+ }),
44
+ "readability-analysis": z.object({
45
+ readabilityScore: z.number(),
46
+ gradeLevel: z.string(),
47
+ }),
48
+ "sentiment-analysis": z.object({
49
+ sentiment: z.enum(["positive", "neutral", "negative"]),
50
+ confidence: z.number(),
51
+ }),
52
+ }),
53
+ outputSchema: z.object({
54
+ results: z.object({
55
+ seo: z.object({
56
+ seoScore: z.number(),
57
+ keywords: z.array(z.string()),
58
+ }),
59
+ readability: z.object({
60
+ readabilityScore: z.number(),
61
+ gradeLevel: z.string(),
62
+ }),
63
+ sentiment: z.object({
64
+ sentiment: z.enum(["positive", "neutral", "negative"]),
65
+ confidence: z.number(),
66
+ }),
67
+ }),
68
+ }),
69
+ execute: async ({ inputData }) => {
70
+ console.log("🔄 Combining parallel results...");
71
+
72
+ return {
73
+ results: {
74
+ seo: inputData["seo-analysis"],
75
+ readability: inputData["readability-analysis"],
76
+ sentiment: inputData["sentiment-analysis"],
77
+ },
78
+ };
79
+ },
80
+ }),
81
+ )
82
+ .commit();
83
+ ```
84
+
85
+ ## Understanding Parallel Data Flow
86
+
87
+ When steps run in parallel:
88
+
89
+ 1. Each step receives the same input data
90
+ 2. Steps execute simultaneously
91
+ 3. Results are collected into an object with step IDs as keys
92
+ 4. The next step receives all parallel results
93
+
94
+ ## Key Points
95
+
96
+ - **`.parallel([step1, step2, step3])`**: Runs all steps simultaneously
97
+ - **Result object keys**: Use the step IDs (e.g., "seo-analysis")
98
+ - **Combine step**: Processes all parallel results together
99
+
100
+ Next, you'll test this parallel workflow and see the performance improvement!
@@ -0,0 +1,40 @@
1
+ # Testing Parallel Workflow
2
+
3
+ Let's test your parallel workflow.
4
+
5
+ ## Registering the New Workflow
6
+
7
+ Update your Mastra configuration to include your new workflow workflows:
8
+
9
+ ```typescript
10
+ // In src/mastra/index.ts
11
+ import {
12
+ contentWorkflow,
13
+ aiContentWorkflow,
14
+ parallelAnalysisWorkflow,
15
+ } from "./workflows/content-workflow";
16
+
17
+ export const mastra = new Mastra({
18
+ workflows: {
19
+ contentWorkflow,
20
+ aiContentWorkflow,
21
+ parallelAnalysisWorkflow, // Add the parallel workflow
22
+ },
23
+ // ... rest of configuration
24
+ });
25
+ ```
26
+
27
+ ## Testing the Parallel Workflow
28
+
29
+ You can now test this new workflow in the Playground. You will notice that it processes the three analysis steps in parallel speeding up execution time.
30
+
31
+ ## When to Use Parallel Execution
32
+
33
+ Use parallel execution when:
34
+
35
+ - Steps don't depend on each other's outputs
36
+ - Steps involve I/O operations (API calls, database queries)
37
+ - You want to maximize performance
38
+ - Steps process the same input data
39
+
40
+ Register your parallel workflow with Mastra to use it in the playground! Next, you'll learn about conditional branching.
@@ -0,0 +1,61 @@
1
+ # Understanding Conditional Branching
2
+
3
+ Learn how to create workflows that take different paths based on data conditions, making your workflows more intelligent and adaptive.
4
+
5
+ ## What is Conditional Branching?
6
+
7
+ Conditional branching allows workflows to:
8
+
9
+ - **Make decisions**: Choose different processing paths based on data
10
+ - **Handle variations**: Process different content types differently
11
+ - **Optimize performance**: Skip unnecessary steps for certain inputs
12
+ - **Customize behavior**: Provide different experiences based on conditions
13
+
14
+ ## Real-World Example
15
+
16
+ Imagine a content processing workflow that:
17
+
18
+ - **Short content** (< 50 words): Gets quick processing
19
+ - **Medium content** (50-200 words): Gets standard processing
20
+ - **Long content** (> 200 words): Gets detailed processing with extra analysis
21
+
22
+ ## Basic Branching Syntax
23
+
24
+ ```typescript
25
+ .branch([
26
+ [condition1, step1],
27
+ [condition2, step2],
28
+ [condition3, step3]
29
+ ])
30
+ ```
31
+
32
+ Where:
33
+
34
+ - **condition**: An async function that returns `true` or `false`
35
+ - **step**: The step to execute if the condition is `true`
36
+
37
+ ## Condition Functions
38
+
39
+ Conditions are functions that examine the input data:
40
+
41
+ ```typescript
42
+ // Example condition function
43
+ async ({ inputData }) => {
44
+ return inputData.wordCount < 50;
45
+ };
46
+ ```
47
+
48
+ ## Multiple Paths
49
+
50
+ - If multiple conditions are `true`, **all matching steps run in parallel**
51
+ - If no conditions are `true`, the workflow continues without executing any branch steps
52
+ - Conditions are evaluated in order, but matching steps run simultaneously
53
+
54
+ ## Benefits
55
+
56
+ - **Smart routing**: Send data down the most appropriate path
57
+ - **Performance**: Skip expensive operations when not needed
58
+ - **Flexibility**: Handle different scenarios in one workflow
59
+ - **Maintainability**: Clear logic for different processing paths
60
+
61
+ Next, you'll create a workflow with conditional branches!
@@ -0,0 +1,128 @@
1
+ # Creating Conditional Steps
2
+
3
+ Let's create two processing steps for different types of content: one for short and simple content, and one for everything else.
4
+
5
+ ## Assessment Step
6
+
7
+ First, create a step that analyzes content to determine which path to take:
8
+
9
+ ```typescript
10
+ const assessContentStep = createStep({
11
+ id: "assess-content",
12
+ description: "Assesses content to determine processing path",
13
+ inputSchema: z.object({
14
+ content: z.string(),
15
+ type: z.enum(["article", "blog", "social"]).default("article"),
16
+ }),
17
+ outputSchema: z.object({
18
+ content: z.string(),
19
+ type: z.enum(["article", "blog", "social"]).default("article"),
20
+ wordCount: z.number(),
21
+ complexity: z.enum(["simple", "moderate", "complex"]),
22
+ category: z.enum(["short", "medium", "long"]),
23
+ }),
24
+ execute: async ({ inputData }) => {
25
+ const { content, type } = inputData;
26
+ const words = content.trim().split(/\s+/);
27
+ const wordCount = words.length;
28
+
29
+ // Determine category by length
30
+ let category: "short" | "medium" | "long" = "short";
31
+ if (wordCount >= 50) category = "medium";
32
+ if (wordCount >= 200) category = "long";
33
+
34
+ // Determine complexity by average word length
35
+ const avgWordLength =
36
+ words.reduce((sum, word) => sum + word.length, 0) / wordCount;
37
+ let complexity: "simple" | "moderate" | "complex" = "simple";
38
+ if (avgWordLength > 5) complexity = "moderate";
39
+ if (avgWordLength > 7) complexity = "complex";
40
+
41
+ console.log(`📋 Assessment: ${category} content, ${complexity} complexity`);
42
+
43
+ return {
44
+ content,
45
+ type,
46
+ wordCount,
47
+ complexity,
48
+ category,
49
+ };
50
+ },
51
+ });
52
+ ```
53
+
54
+ ## Quick Processing Step
55
+
56
+ For short, simple content:
57
+
58
+ ```typescript
59
+ const quickProcessingStep = createStep({
60
+ id: "quick-processing",
61
+ description: "Quick processing for short and simple content",
62
+ inputSchema: z.object({
63
+ content: z.string(),
64
+ type: z.enum(["article", "blog", "social"]).default("article"),
65
+ wordCount: z.number(),
66
+ complexity: z.enum(["simple", "moderate", "complex"]),
67
+ category: z.enum(["short", "medium", "long"]),
68
+ }),
69
+ outputSchema: z.object({
70
+ processedContent: z.string(),
71
+ processingType: z.string(),
72
+ recommendations: z.array(z.string()),
73
+ }),
74
+ execute: async ({ inputData }) => {
75
+ console.log("⚡ Quick processing for short and simple content...");
76
+
77
+ return {
78
+ processedContent: inputData.content,
79
+ processingType: "quick",
80
+ recommendations: [
81
+ "Content is concise",
82
+ "Consider expanding for more detail",
83
+ ],
84
+ };
85
+ },
86
+ });
87
+ ```
88
+
89
+ ## General Processing Step
90
+
91
+ For all other content (not short and simple):
92
+
93
+ ```typescript
94
+ const generalProcessingStep = createStep({
95
+ id: "general-processing",
96
+ description: "General processing for all other content",
97
+ inputSchema: z.object({
98
+ content: z.string(),
99
+ type: z.enum(["article", "blog", "social"]).default("article"),
100
+ wordCount: z.number(),
101
+ complexity: z.enum(["simple", "moderate", "complex"]),
102
+ category: z.enum(["short", "medium", "long"]),
103
+ }),
104
+ outputSchema: z.object({
105
+ processedContent: z.string(),
106
+ processingType: z.string(),
107
+ recommendations: z.array(z.string()),
108
+ }),
109
+ execute: async ({ inputData }) => {
110
+ console.log("📝 General processing for non-short/simple content...");
111
+
112
+ // Simulate more involved processing
113
+ await new Promise((resolve) => setTimeout(resolve, 500));
114
+
115
+ return {
116
+ processedContent: inputData.content,
117
+ processingType: "general",
118
+ recommendations: [
119
+ "Consider simplifying content",
120
+ "Break up long paragraphs",
121
+ "Add examples or explanations if needed",
122
+ ],
123
+ };
124
+ },
125
+ });
126
+ ```
127
+
128
+ These two steps will be used in different branches based on the content assessment. Next, you'll create the conditional workflow!