@mastra/libsql 1.0.0-beta.11 → 1.0.0-beta.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -1,5 +1,113 @@
1
1
  # @mastra/libsql
2
2
 
3
+ ## 1.0.0-beta.12
4
+
5
+ ### Minor Changes
6
+
7
+ - Changed JSON columns from TEXT to JSONB in `mastra_threads` and `mastra_workflow_snapshot` tables. ([#11853](https://github.com/mastra-ai/mastra/pull/11853))
8
+
9
+ **Why this change?**
10
+
11
+ These were the last remaining columns storing JSON as TEXT. This change aligns them with other tables that already use JSONB, enabling native JSON operators and improved performance. See [#8978](https://github.com/mastra-ai/mastra/issues/8978) for details.
12
+
13
+ **Columns Changed:**
14
+ - `mastra_threads.metadata` - Thread metadata
15
+ - `mastra_workflow_snapshot.snapshot` - Workflow run state
16
+
17
+ **PostgreSQL**
18
+
19
+ Migration Required - PostgreSQL enforces column types, so existing tables must be migrated. Note: Migration will fail if existing column values contain invalid JSON.
20
+
21
+ ```sql
22
+ ALTER TABLE mastra_threads
23
+ ALTER COLUMN metadata TYPE jsonb
24
+ USING metadata::jsonb;
25
+
26
+ ALTER TABLE mastra_workflow_snapshot
27
+ ALTER COLUMN snapshot TYPE jsonb
28
+ USING snapshot::jsonb;
29
+ ```
30
+
31
+ **LibSQL**
32
+
33
+ No Migration Required - LibSQL now uses native SQLite JSONB format (added in SQLite 3.45) for ~3x performance improvement on JSON operations. The changes are fully backwards compatible:
34
+ - Existing TEXT JSON data continues to work
35
+ - New data is stored in binary JSONB format
36
+ - Both formats can coexist in the same table
37
+ - All JSON functions (`json_extract`, etc.) work on both formats
38
+
39
+ New installations automatically use JSONB. Existing applications continue to work without any changes.
40
+
41
+ - Aligned vector store configuration with underlying library APIs, giving you access to all library options directly. ([#11742](https://github.com/mastra-ai/mastra/pull/11742))
42
+
43
+ **Why this change?**
44
+
45
+ Previously, each vector store defined its own configuration types that only exposed a subset of the underlying library's options. This meant users couldn't access advanced features like authentication, SSL, compression, or custom headers without creating their own client instances. Now, the configuration types extend the library types directly, so all options are available.
46
+
47
+ **@mastra/libsql** (Breaking)
48
+
49
+ Renamed `connectionUrl` to `url` to match the `@libsql/client` API and align with LibSQLStorage.
50
+
51
+ ```typescript
52
+ // Before
53
+ new LibSQLVector({ id: 'my-vector', connectionUrl: 'file:./db.sqlite' });
54
+
55
+ // After
56
+ new LibSQLVector({ id: 'my-vector', url: 'file:./db.sqlite' });
57
+ ```
58
+
59
+ **@mastra/opensearch** (Breaking)
60
+
61
+ Renamed `url` to `node` and added support for all OpenSearch `ClientOptions` including authentication, SSL, and compression.
62
+
63
+ ```typescript
64
+ // Before
65
+ new OpenSearchVector({ id: 'my-vector', url: 'http://localhost:9200' });
66
+
67
+ // After
68
+ new OpenSearchVector({ id: 'my-vector', node: 'http://localhost:9200' });
69
+
70
+ // With authentication (now possible)
71
+ new OpenSearchVector({
72
+ id: 'my-vector',
73
+ node: 'https://localhost:9200',
74
+ auth: { username: 'admin', password: 'admin' },
75
+ ssl: { rejectUnauthorized: false },
76
+ });
77
+ ```
78
+
79
+ **@mastra/pinecone** (Breaking)
80
+
81
+ Removed `environment` parameter. Use `controllerHostUrl` instead (the actual Pinecone SDK field name). Added support for all `PineconeConfiguration` options.
82
+
83
+ ```typescript
84
+ // Before
85
+ new PineconeVector({ id: 'my-vector', apiKey: '...', environment: '...' });
86
+
87
+ // After
88
+ new PineconeVector({ id: 'my-vector', apiKey: '...' });
89
+
90
+ // With custom controller host (if needed)
91
+ new PineconeVector({ id: 'my-vector', apiKey: '...', controllerHostUrl: '...' });
92
+ ```
93
+
94
+ **@mastra/clickhouse**
95
+
96
+ Added support for all `ClickHouseClientConfigOptions` like `request_timeout`, `compression`, `keep_alive`, and `database`. Existing configurations continue to work unchanged.
97
+
98
+ **@mastra/cloudflare, @mastra/cloudflare-d1, @mastra/lance, @mastra/libsql, @mastra/mongodb, @mastra/pg, @mastra/upstash**
99
+
100
+ Improved logging by replacing `console.warn` with structured logger in workflow storage domains.
101
+
102
+ **@mastra/deployer-cloud**
103
+
104
+ Updated internal LibSQLVector configuration for compatibility with the new API.
105
+
106
+ ### Patch Changes
107
+
108
+ - Updated dependencies [[`ebae12a`](https://github.com/mastra-ai/mastra/commit/ebae12a2dd0212e75478981053b148a2c246962d), [`c61a0a5`](https://github.com/mastra-ai/mastra/commit/c61a0a5de4904c88fd8b3718bc26d1be1c2ec6e7), [`69136e7`](https://github.com/mastra-ai/mastra/commit/69136e748e32f57297728a4e0f9a75988462f1a7), [`449aed2`](https://github.com/mastra-ai/mastra/commit/449aed2ba9d507b75bf93d427646ea94f734dfd1), [`eb648a2`](https://github.com/mastra-ai/mastra/commit/eb648a2cc1728f7678768dd70cd77619b448dab9), [`0131105`](https://github.com/mastra-ai/mastra/commit/0131105532e83bdcbb73352fc7d0879eebf140dc), [`9d5059e`](https://github.com/mastra-ai/mastra/commit/9d5059eae810829935fb08e81a9bb7ecd5b144a7), [`ef756c6`](https://github.com/mastra-ai/mastra/commit/ef756c65f82d16531c43f49a27290a416611e526), [`b00ccd3`](https://github.com/mastra-ai/mastra/commit/b00ccd325ebd5d9e37e34dd0a105caae67eb568f), [`3bdfa75`](https://github.com/mastra-ai/mastra/commit/3bdfa7507a91db66f176ba8221aa28dd546e464a), [`e770de9`](https://github.com/mastra-ai/mastra/commit/e770de941a287a49b1964d44db5a5763d19890a6), [`52e2716`](https://github.com/mastra-ai/mastra/commit/52e2716b42df6eff443de72360ae83e86ec23993), [`27b4040`](https://github.com/mastra-ai/mastra/commit/27b4040bfa1a95d92546f420a02a626b1419a1d6), [`610a70b`](https://github.com/mastra-ai/mastra/commit/610a70bdad282079f0c630e0d7bb284578f20151), [`8dc7f55`](https://github.com/mastra-ai/mastra/commit/8dc7f55900395771da851dc7d78d53ae84fe34ec), [`8379099`](https://github.com/mastra-ai/mastra/commit/8379099fc467af6bef54dd7f80c9bd75bf8bbddf), [`8c0ec25`](https://github.com/mastra-ai/mastra/commit/8c0ec25646c8a7df253ed1e5ff4863a0d3f1316c), [`ff4d9a6`](https://github.com/mastra-ai/mastra/commit/ff4d9a6704fc87b31a380a76ed22736fdedbba5a), [`69821ef`](https://github.com/mastra-ai/mastra/commit/69821ef806482e2c44e2197ac0b050c3fe3a5285), [`1ed5716`](https://github.com/mastra-ai/mastra/commit/1ed5716830867b3774c4a1b43cc0d82935f32b96), [`4186bdd`](https://github.com/mastra-ai/mastra/commit/4186bdd00731305726fa06adba0b076a1d50b49f), [`7aaf973`](https://github.com/mastra-ai/mastra/commit/7aaf973f83fbbe9521f1f9e7a4fd99b8de464617)]:
109
+ - @mastra/core@1.0.0-beta.22
110
+
3
111
  ## 1.0.0-beta.11
4
112
 
5
113
  ### Patch Changes
@@ -22,7 +22,7 @@ docs/
22
22
  ├── SKILL.md # Entry point
23
23
  ├── README.md # This file
24
24
  ├── SOURCE_MAP.json # Export index
25
- ├── agents/ (3 files)
25
+ ├── agents/ (4 files)
26
26
  ├── core/ (3 files)
27
27
  ├── guides/ (1 files)
28
28
  ├── memory/ (6 files)
@@ -36,4 +36,4 @@ docs/
36
36
  ## Version
37
37
 
38
38
  Package: @mastra/libsql
39
- Version: 1.0.0-beta.11
39
+ Version: 1.0.0-beta.12
@@ -5,7 +5,7 @@ description: Documentation for @mastra/libsql. Includes links to type definition
5
5
 
6
6
  # @mastra/libsql Documentation
7
7
 
8
- > **Version**: 1.0.0-beta.11
8
+ > **Version**: 1.0.0-beta.12
9
9
  > **Package**: @mastra/libsql
10
10
 
11
11
  ## Quick Navigation
@@ -29,7 +29,7 @@ See SOURCE_MAP.json for the complete list.
29
29
 
30
30
  ## Available Topics
31
31
 
32
- - [Agents](agents/) - 3 file(s)
32
+ - [Agents](agents/) - 4 file(s)
33
33
  - [Core](core/) - 3 file(s)
34
34
  - [Guides](guides/) - 1 file(s)
35
35
  - [Memory](memory/) - 6 file(s)
@@ -1,5 +1,5 @@
1
1
  {
2
- "version": "1.0.0-beta.11",
2
+ "version": "1.0.0-beta.12",
3
3
  "package": "@mastra/libsql",
4
4
  "exports": {},
5
5
  "modules": {}
@@ -228,6 +228,62 @@ tool-execution-end
228
228
  network-execution-event-step-finish
229
229
  ```
230
230
 
231
+ ## Structured output
232
+
233
+ When you need typed, validated results from a network, use the `structuredOutput` option. After the network completes its task, it generates a structured response matching your schema.
234
+
235
+ ```typescript
236
+ import { z } from "zod";
237
+
238
+ const resultSchema = z.object({
239
+ summary: z.string().describe("A brief summary of the findings"),
240
+ recommendations: z.array(z.string()).describe("List of recommendations"),
241
+ confidence: z.number().min(0).max(1).describe("Confidence score"),
242
+ });
243
+
244
+ const stream = await routingAgent.network("Research AI trends", {
245
+ structuredOutput: {
246
+ schema: resultSchema,
247
+ },
248
+ });
249
+
250
+ // Consume the stream
251
+ for await (const chunk of stream) {
252
+ if (chunk.type === "network-object") {
253
+ // Partial object during generation
254
+ console.log("Partial:", chunk.payload.object);
255
+ }
256
+ if (chunk.type === "network-object-result") {
257
+ // Final structured object
258
+ console.log("Final:", chunk.payload.object);
259
+ }
260
+ }
261
+
262
+ // Get the typed result
263
+ const result = await stream.object;
264
+ console.log(result?.summary);
265
+ console.log(result?.recommendations);
266
+ console.log(result?.confidence);
267
+ ```
268
+
269
+ ### Streaming partial objects
270
+
271
+ For real-time updates during structured output generation, use `objectStream`:
272
+
273
+ ```typescript
274
+ const stream = await routingAgent.network("Analyze market data", {
275
+ structuredOutput: { schema: resultSchema },
276
+ });
277
+
278
+ // Stream partial objects as they're generated
279
+ for await (const partial of stream.objectStream) {
280
+ console.log("Building result:", partial);
281
+ }
282
+
283
+ // Get the final typed result
284
+ const final = await stream.object;
285
+ ```
286
+
231
287
  ## Related
232
288
 
233
289
  - [Agent Memory](./agent-memory)
@@ -85,8 +85,8 @@ export const testTool = createTool({
85
85
  resumeSchema: z.object({
86
86
  approved: z.boolean()
87
87
  }),
88
- execute: async ({ location }) => {
89
- const response = await fetch(`https://wttr.in/${location}?format=3`);
88
+ execute: async (inputData) => {
89
+ const response = await fetch(`https://wttr.in/${inputData.location}?format=3`);
90
90
  const weather = await response.text();
91
91
 
92
92
  return { weather };
@@ -121,7 +121,6 @@ const handleResume = async () => {
121
121
  With this approach, neither the agent nor the tool uses `requireApproval`. Instead, the tool implementation calls `suspend` to pause execution and return context or confirmation prompts to the user.
122
122
 
123
123
  ```typescript
124
-
125
124
  export const testToolB = createTool({
126
125
  id: "test-tool-b",
127
126
  description: "Fetches weather for a location",
@@ -137,14 +136,14 @@ export const testToolB = createTool({
137
136
  suspendSchema: z.object({
138
137
  reason: z.string()
139
138
  }),
140
- execute: async ({ location }, { agent } = {}) => {
141
- const { resumeData: { approved } = {}, suspend } = agent ?? {};
139
+ execute: async (inputData, context) => {
140
+ const { resumeData: { approved } = {}, suspend } = context?.agent ?? {};
142
141
 
143
142
  if (!approved) {
144
143
  return suspend?.({ reason: "Approval required." });
145
144
  }
146
145
 
147
- const response = await fetch(`https://wttr.in/${location}?format=3`);
146
+ const response = await fetch(`https://wttr.in/${inputData.location}?format=3`);
148
147
  const weather = await response.text();
149
148
 
150
149
  return { weather };
@@ -0,0 +1,274 @@
1
+ > Learn how to require approvals, suspend execution, and resume suspended networks while keeping humans in control of agent network workflows.
2
+
3
+ # Network Approval
4
+
5
+ Agent networks can require the same [human-in-the-loop](https://mastra.ai/docs/v1/workflows/human-in-the-loop) oversight used in individual agents and workflows. When a tool, sub-agent, or workflow within a network requires approval or suspends execution, the network pauses and emits events that allow your application to collect user input before resuming.
6
+
7
+ ## Storage
8
+
9
+ Network approval uses snapshots to capture execution state. Ensure you've enabled a storage provider in your Mastra instance. If storage isn't enabled you'll see an error relating to snapshot not found.
10
+
11
+ ```typescript title="src/mastra/index.ts"
12
+ import { Mastra } from "@mastra/core/mastra";
13
+ import { LibSQLStore } from "@mastra/libsql";
14
+
15
+ export const mastra = new Mastra({
16
+ storage: new LibSQLStore({
17
+ id: "mastra-storage",
18
+ url: ":memory:"
19
+ })
20
+ });
21
+ ```
22
+
23
+ ## Approving network tool calls
24
+
25
+ When a tool within a network has `requireApproval: true`, the network stream emits an `agent-execution-approval` chunk and pauses. To allow the tool to execute, call `approveNetworkToolCall` with the `runId`.
26
+
27
+ ```typescript
28
+ const stream = await routingAgent.network("Process this query", {
29
+ memory: {
30
+ thread: "user-123",
31
+ resource: "my-app"
32
+ }
33
+ });
34
+
35
+ let runId: string;
36
+
37
+ for await (const chunk of stream) {
38
+ runId = stream.runId;
39
+ // if the requirApproval is in a tool inside a subAgent or the subAgent has requireToolApproval set to true
40
+ if (chunk.type === "agent-execution-approval") {
41
+ console.log("Tool requires approval:", chunk.payload);
42
+ }
43
+
44
+ // if the requirApproval is in a tool directly in the network agent
45
+ if (chunk.type === "tool-execution-approval") {
46
+ console.log("Tool requires approval:", chunk.payload);
47
+ }
48
+ }
49
+
50
+ // Approve and resume execution
51
+ const approvedStream = await routingAgent.approveNetworkToolCall({
52
+ runId,
53
+ memory: {
54
+ thread: "user-123",
55
+ resource: "my-app"
56
+ }
57
+ });
58
+
59
+ for await (const chunk of approvedStream) {
60
+ if (chunk.type === "network-execution-event-step-finish") {
61
+ console.log(chunk.payload.result);
62
+ }
63
+ }
64
+ ```
65
+
66
+ ## Declining network tool calls
67
+
68
+ To decline a pending tool call and prevent execution, call `declineNetworkToolCall`. The network continues without executing the tool.
69
+
70
+ ```typescript
71
+ const declinedStream = await routingAgent.declineNetworkToolCall({
72
+ runId,
73
+ memory: {
74
+ thread: "user-123",
75
+ resource: "my-app"
76
+ }
77
+ });
78
+
79
+ for await (const chunk of declinedStream) {
80
+ if (chunk.type === "network-execution-event-step-finish") {
81
+ console.log(chunk.payload.result);
82
+ }
83
+ }
84
+ ```
85
+
86
+ ## Resuming suspended networks
87
+
88
+ When a primitive in the network calls `suspend()`, the stream emits an `agent-execution-suspended`/`tool-execution-suspended`/`workflow-execution-suspended` chunk with a `suspendPayload` containing context from the primitive. Use `resumeNetwork` to provide the data requested by the primitive and continue execution.
89
+
90
+ ```typescript
91
+ import { createTool } from "@mastra/core/tools";
92
+ import { z } from "zod";
93
+
94
+ const confirmationTool = createTool({
95
+ id: "confirmation-tool",
96
+ description: "Requests user confirmation before proceeding",
97
+ inputSchema: z.object({
98
+ action: z.string()
99
+ }),
100
+ outputSchema: z.object({
101
+ confirmed: z.boolean(),
102
+ action: z.string()
103
+ }),
104
+ suspendSchema: z.object({
105
+ message: z.string(),
106
+ action: z.string()
107
+ }),
108
+ resumeSchema: z.object({
109
+ confirmed: z.boolean()
110
+ }),
111
+ execute: async (inputData, context) => {
112
+ const { resumeData, suspend } = context?.agent ?? {};
113
+
114
+ if (!resumeData?.confirmed) {
115
+ return suspend?.({
116
+ message: `Please confirm: ${inputData.action}`,
117
+ action: inputData.action
118
+ });
119
+ }
120
+
121
+ return { confirmed: true, action: inputData.action };
122
+ }
123
+ });
124
+ ```
125
+
126
+ Handle the suspension and resume with user-provided data:
127
+
128
+ ```typescript
129
+ const stream = await routingAgent.network("Delete the old records", {
130
+ memory: {
131
+ thread: "user-123",
132
+ resource: "my-app"
133
+ }
134
+ });
135
+
136
+ for await (const chunk of stream) {
137
+ if (chunk.type === "workflow-execution-suspended") {
138
+ console.log(chunk.payload.suspendPayload);
139
+ // { message: "Please confirm: delete old records", action: "delete old records" }
140
+ }
141
+ }
142
+
143
+ // Resume with user confirmation
144
+ const resumedStream = await routingAgent.resumeNetwork(
145
+ { confirmed: true },
146
+ {
147
+ runId: stream.runId,
148
+ memory: {
149
+ thread: "user-123",
150
+ resource: "my-app"
151
+ }
152
+ }
153
+ );
154
+
155
+ for await (const chunk of resumedStream) {
156
+ if (chunk.type === "network-execution-event-step-finish") {
157
+ console.log(chunk.payload.result);
158
+ }
159
+ }
160
+ ```
161
+
162
+ ## Automatic primitive resumption
163
+
164
+ When using primitives that call `suspend()`, you can enable automatic resumption so the network resumes suspended primitives based on the user's next message. This creates a conversational flow where users provide the required information naturally.
165
+
166
+ ### Enabling auto-resume
167
+
168
+ Set `autoResumeSuspendedTools` to `true` in the agent's `defaultNetworkOptions` or when calling `network()`:
169
+
170
+ ```typescript
171
+ import { Agent } from "@mastra/core/agent";
172
+ import { Memory } from "@mastra/memory";
173
+
174
+ // Option 1: In agent configuration
175
+ const routingAgent = new Agent({
176
+ id: "routing-agent",
177
+ name: "Routing Agent",
178
+ instructions: "You coordinate tasks across multiple agents",
179
+ model: "openai/gpt-4o-mini",
180
+ tools: { confirmationTool },
181
+ memory: new Memory(),
182
+ defaultNetworkOptions: {
183
+ autoResumeSuspendedTools: true,
184
+ },
185
+ });
186
+
187
+ // Option 2: Per-request
188
+ const stream = await routingAgent.network("Process this request", {
189
+ autoResumeSuspendedTools: true,
190
+ memory: {
191
+ thread: "user-123",
192
+ resource: "my-app"
193
+ }
194
+ });
195
+ ```
196
+
197
+ ### How it works
198
+
199
+ When `autoResumeSuspendedTools` is enabled:
200
+
201
+ 1. A primitive suspends execution by calling `suspend()` with a payload
202
+ 2. The suspension is persisted to memory along with the conversation
203
+ 3. When the user sends their next message on the same thread, the network:
204
+ - Detects the suspended primitive from message history
205
+ - Extracts `resumeData` from the user's message based on the tool's `resumeSchema`
206
+ - Automatically resumes the primitive with the extracted data
207
+
208
+ ### Example
209
+
210
+ ```typescript
211
+ const stream = await routingAgent.network("Delete the old records", {
212
+ autoResumeSuspendedTools: true,
213
+ memory: {
214
+ thread: "user-123",
215
+ resource: "my-app"
216
+ }
217
+ });
218
+
219
+ for await (const chunk of stream) {
220
+ if (chunk.type === "workflow-execution-suspended") {
221
+ console.log(chunk.payload.suspendPayload);
222
+ // { message: "Please confirm: delete old records", action: "delete old records" }
223
+ }
224
+ }
225
+
226
+ // User provides confirmation in their next message
227
+ const resumedStream = await routingAgent.network("Yes, confirmed", {
228
+ autoResumeSuspendedTools: true,
229
+ memory: {
230
+ thread: "user-123",
231
+ resource: "my-app"
232
+ }
233
+ });
234
+
235
+ for await (const chunk of resumedStream) {
236
+ if (chunk.type === "network-execution-event-step-finish") {
237
+ console.log(chunk.payload.result);
238
+ }
239
+ }
240
+ ```
241
+
242
+ **Conversation flow:**
243
+
244
+ ```
245
+ User: "Delete the old records"
246
+ Agent: "Please confirm: delete old records"
247
+
248
+ User: "Yes, confirmed"
249
+ Agent: "Records deleted successfully"
250
+ ```
251
+
252
+ ### Requirements
253
+
254
+ For automatic tool resumption to work:
255
+
256
+ - **Memory configured**: The agent needs memory to track suspended tools across messages
257
+ - **Same thread**: The follow-up message must use the same memory thread and resource identifiers
258
+ - **`resumeSchema` defined**: The tool (either directly in the network agent or in a subAgent) / workflow (step that gets suspended) must define a `resumeSchema` so the agent knows what data to extract from the user's message
259
+
260
+ ### Manual vs automatic resumption
261
+
262
+ | Approach | Use case |
263
+ |----------|----------|
264
+ | Manual (`resumeNetwork()`) | Programmatic control, webhooks, button clicks, external triggers |
265
+ | Automatic (`autoResumeSuspendedTools`) | Conversational flows where users provide resume data in natural language |
266
+
267
+ Both approaches work with the same tool definitions. Automatic resumption triggers only when suspended tools exist in the message history and the user sends a new message on the same thread.
268
+
269
+ ## Related
270
+
271
+ - [Agent Networks](./networks)
272
+ - [Agent Approval](./agent-approval)
273
+ - [Human-in-the-Loop](https://mastra.ai/docs/v1/workflows/human-in-the-loop)
274
+ - [Agent Memory](./agent-memory)
@@ -9,12 +9,9 @@
9
9
 
10
10
  > Documentation for the `Mastra` class in Mastra, the core entry point for managing agents, workflows, MCP servers, and server endpoints.
11
11
 
12
- The `Mastra` class is the central orchestrator in any Mastra application, managing agents, workflows, storage, logging, telemetry, and more. Typically, you create a single instance of `Mastra` to coordinate your application.
12
+ The `Mastra` class is the central orchestrator in any Mastra application, managing agents, workflows, storage, logging, observability, and more. Typically, you create a single instance of `Mastra` to coordinate your application.
13
13
 
14
- Think of `Mastra` as a top-level registry:
15
-
16
- - Registering **integrations** makes them accessible to **agents**, **workflows**, and **tools** alike.
17
- - **tools** aren’t registered on `Mastra` directly but are associated with agents and discovered automatically.
14
+ Think of `Mastra` as a top-level registry where you register agents, workflows, tools, and other components that need to be accessible throughout your application.
18
15
 
19
16
  ## Usage example
20
17
 
@@ -41,6 +38,8 @@ export const mastra = new Mastra({
41
38
 
42
39
  ## Constructor parameters
43
40
 
41
+ Visit the [Configuration reference](https://mastra.ai/reference/v1/configuration) for detailed documentation on all available configuration options.
42
+
44
43
  ---
45
44
 
46
45
  ## Reference: Mastra.getMemory()
@@ -73,7 +72,7 @@ import { Memory } from "@mastra/memory";
73
72
  import { LibSQLStore } from "@mastra/libsql";
74
73
 
75
74
  const conversationMemory = new Memory({
76
- storage: new LibSQLStore({ url: ":memory:" }),
75
+ storage: new LibSQLStore({ id: 'conversation-store', url: ":memory:" }),
77
76
  });
78
77
 
79
78
  const mastra = new Mastra({
@@ -125,12 +124,12 @@ import { LibSQLStore } from "@mastra/libsql";
125
124
 
126
125
  const conversationMemory = new Memory({
127
126
  id: "conversation-memory",
128
- storage: new LibSQLStore({ url: ":memory:" }),
127
+ storage: new LibSQLStore({ id: 'conversation-store', url: ":memory:" }),
129
128
  });
130
129
 
131
130
  const analyticsMemory = new Memory({
132
131
  id: "analytics-memory",
133
- storage: new LibSQLStore({ url: ":memory:" }),
132
+ storage: new LibSQLStore({ id: 'analytics-store', url: ":memory:" }),
134
133
  });
135
134
 
136
135
  const mastra = new Mastra({