@mastra/lance 1.0.0-beta.10 → 1.0.0-beta.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -1,5 +1,134 @@
1
1
  # @mastra/lance
2
2
 
3
+ ## 1.0.0-beta.12
4
+
5
+ ### Patch Changes
6
+
7
+ - Added new `listThreads` method for flexible thread filtering across all storage adapters. ([#11832](https://github.com/mastra-ai/mastra/pull/11832))
8
+
9
+ **New Features**
10
+ - Filter threads by `resourceId`, `metadata`, or both (with AND logic for metadata key-value pairs)
11
+ - All filter parameters are optional, allowing you to list all threads or filter as needed
12
+ - Full pagination and sorting support
13
+
14
+ **Example Usage**
15
+
16
+ ```typescript
17
+ // List all threads
18
+ const allThreads = await memory.listThreads({});
19
+
20
+ // Filter by resourceId only
21
+ const userThreads = await memory.listThreads({
22
+ filter: { resourceId: 'user-123' },
23
+ });
24
+
25
+ // Filter by metadata only
26
+ const supportThreads = await memory.listThreads({
27
+ filter: { metadata: { category: 'support' } },
28
+ });
29
+
30
+ // Filter by both with pagination
31
+ const filteredThreads = await memory.listThreads({
32
+ filter: {
33
+ resourceId: 'user-123',
34
+ metadata: { priority: 'high', status: 'open' },
35
+ },
36
+ orderBy: { field: 'updatedAt', direction: 'DESC' },
37
+ page: 0,
38
+ perPage: 20,
39
+ });
40
+ ```
41
+
42
+ **Security Improvements**
43
+ - Added validation to prevent SQL injection via malicious metadata keys
44
+ - Added pagination parameter validation to prevent integer overflow attacks
45
+
46
+ - Updated dependencies [[`ed3e3dd`](https://github.com/mastra-ai/mastra/commit/ed3e3ddec69d564fe2b125e083437f76331f1283), [`6833c69`](https://github.com/mastra-ai/mastra/commit/6833c69607418d257750bbcdd84638993d343539), [`47b1c16`](https://github.com/mastra-ai/mastra/commit/47b1c16a01c7ffb6765fe1e499b49092f8b7eba3), [`3a76a80`](https://github.com/mastra-ai/mastra/commit/3a76a80284cb71a0faa975abb3d4b2a9631e60cd), [`8538a0d`](https://github.com/mastra-ai/mastra/commit/8538a0d232619bf55dad7ddc2a8b0ca77c679a87), [`9312dcd`](https://github.com/mastra-ai/mastra/commit/9312dcd1c6f5b321929e7d382e763d95fdc030f5)]:
47
+ - @mastra/core@1.0.0-beta.25
48
+
49
+ ## 1.0.0-beta.11
50
+
51
+ ### Patch Changes
52
+
53
+ - Aligned vector store configuration with underlying library APIs, giving you access to all library options directly. ([#11742](https://github.com/mastra-ai/mastra/pull/11742))
54
+
55
+ **Why this change?**
56
+
57
+ Previously, each vector store defined its own configuration types that only exposed a subset of the underlying library's options. This meant users couldn't access advanced features like authentication, SSL, compression, or custom headers without creating their own client instances. Now, the configuration types extend the library types directly, so all options are available.
58
+
59
+ **@mastra/libsql** (Breaking)
60
+
61
+ Renamed `connectionUrl` to `url` to match the `@libsql/client` API and align with LibSQLStorage.
62
+
63
+ ```typescript
64
+ // Before
65
+ new LibSQLVector({ id: 'my-vector', connectionUrl: 'file:./db.sqlite' });
66
+
67
+ // After
68
+ new LibSQLVector({ id: 'my-vector', url: 'file:./db.sqlite' });
69
+ ```
70
+
71
+ **@mastra/opensearch** (Breaking)
72
+
73
+ Renamed `url` to `node` and added support for all OpenSearch `ClientOptions` including authentication, SSL, and compression.
74
+
75
+ ```typescript
76
+ // Before
77
+ new OpenSearchVector({ id: 'my-vector', url: 'http://localhost:9200' });
78
+
79
+ // After
80
+ new OpenSearchVector({ id: 'my-vector', node: 'http://localhost:9200' });
81
+
82
+ // With authentication (now possible)
83
+ new OpenSearchVector({
84
+ id: 'my-vector',
85
+ node: 'https://localhost:9200',
86
+ auth: { username: 'admin', password: 'admin' },
87
+ ssl: { rejectUnauthorized: false },
88
+ });
89
+ ```
90
+
91
+ **@mastra/pinecone** (Breaking)
92
+
93
+ Removed `environment` parameter. Use `controllerHostUrl` instead (the actual Pinecone SDK field name). Added support for all `PineconeConfiguration` options.
94
+
95
+ ```typescript
96
+ // Before
97
+ new PineconeVector({ id: 'my-vector', apiKey: '...', environment: '...' });
98
+
99
+ // After
100
+ new PineconeVector({ id: 'my-vector', apiKey: '...' });
101
+
102
+ // With custom controller host (if needed)
103
+ new PineconeVector({ id: 'my-vector', apiKey: '...', controllerHostUrl: '...' });
104
+ ```
105
+
106
+ **@mastra/clickhouse**
107
+
108
+ Added support for all `ClickHouseClientConfigOptions` like `request_timeout`, `compression`, `keep_alive`, and `database`. Existing configurations continue to work unchanged.
109
+
110
+ **@mastra/cloudflare, @mastra/cloudflare-d1, @mastra/lance, @mastra/libsql, @mastra/mongodb, @mastra/pg, @mastra/upstash**
111
+
112
+ Improved logging by replacing `console.warn` with structured logger in workflow storage domains.
113
+
114
+ **@mastra/deployer-cloud**
115
+
116
+ Updated internal LibSQLVector configuration for compatibility with the new API.
117
+
118
+ - Fixed `LanceVectorStore` failing when used with Memory. ([#11828](https://github.com/mastra-ai/mastra/pull/11828))
119
+
120
+ When using `LanceVectorStore` with `@mastra/memory`, operations would fail because Memory calls methods without a `tableName` parameter. The `tableName` parameter now defaults to `indexName` when not provided in `createIndex`, `query`, and `upsert` methods, matching the behavior of other vector stores like PgVector.
121
+
122
+ Additionally fixed three critical bugs:
123
+ 1. **Upsert replacing entire table**: The `upsert` method was using `mode: 'overwrite'` which replaced all rows in the table instead of updating only the specified rows. Now uses LanceDB's `mergeInsert` for proper upsert semantics (update existing rows, insert new ones).
124
+ 2. **UpdateVector replacing entire table**: The `updateVector` method had the same issue - using `mode: 'overwrite'` caused all other rows to be deleted. Now uses `mergeInsert` to only update the targeted rows.
125
+ 3. **Query not returning metadata by default**: When querying without specifying `columns`, only the `id` field was returned, causing metadata to be empty even though filters worked on metadata fields. Now returns all columns by default.
126
+
127
+ Fixes #11716
128
+
129
+ - Updated dependencies [[`ebae12a`](https://github.com/mastra-ai/mastra/commit/ebae12a2dd0212e75478981053b148a2c246962d), [`c61a0a5`](https://github.com/mastra-ai/mastra/commit/c61a0a5de4904c88fd8b3718bc26d1be1c2ec6e7), [`69136e7`](https://github.com/mastra-ai/mastra/commit/69136e748e32f57297728a4e0f9a75988462f1a7), [`449aed2`](https://github.com/mastra-ai/mastra/commit/449aed2ba9d507b75bf93d427646ea94f734dfd1), [`eb648a2`](https://github.com/mastra-ai/mastra/commit/eb648a2cc1728f7678768dd70cd77619b448dab9), [`0131105`](https://github.com/mastra-ai/mastra/commit/0131105532e83bdcbb73352fc7d0879eebf140dc), [`9d5059e`](https://github.com/mastra-ai/mastra/commit/9d5059eae810829935fb08e81a9bb7ecd5b144a7), [`ef756c6`](https://github.com/mastra-ai/mastra/commit/ef756c65f82d16531c43f49a27290a416611e526), [`b00ccd3`](https://github.com/mastra-ai/mastra/commit/b00ccd325ebd5d9e37e34dd0a105caae67eb568f), [`3bdfa75`](https://github.com/mastra-ai/mastra/commit/3bdfa7507a91db66f176ba8221aa28dd546e464a), [`e770de9`](https://github.com/mastra-ai/mastra/commit/e770de941a287a49b1964d44db5a5763d19890a6), [`52e2716`](https://github.com/mastra-ai/mastra/commit/52e2716b42df6eff443de72360ae83e86ec23993), [`27b4040`](https://github.com/mastra-ai/mastra/commit/27b4040bfa1a95d92546f420a02a626b1419a1d6), [`610a70b`](https://github.com/mastra-ai/mastra/commit/610a70bdad282079f0c630e0d7bb284578f20151), [`8dc7f55`](https://github.com/mastra-ai/mastra/commit/8dc7f55900395771da851dc7d78d53ae84fe34ec), [`8379099`](https://github.com/mastra-ai/mastra/commit/8379099fc467af6bef54dd7f80c9bd75bf8bbddf), [`8c0ec25`](https://github.com/mastra-ai/mastra/commit/8c0ec25646c8a7df253ed1e5ff4863a0d3f1316c), [`ff4d9a6`](https://github.com/mastra-ai/mastra/commit/ff4d9a6704fc87b31a380a76ed22736fdedbba5a), [`69821ef`](https://github.com/mastra-ai/mastra/commit/69821ef806482e2c44e2197ac0b050c3fe3a5285), [`1ed5716`](https://github.com/mastra-ai/mastra/commit/1ed5716830867b3774c4a1b43cc0d82935f32b96), [`4186bdd`](https://github.com/mastra-ai/mastra/commit/4186bdd00731305726fa06adba0b076a1d50b49f), [`7aaf973`](https://github.com/mastra-ai/mastra/commit/7aaf973f83fbbe9521f1f9e7a4fd99b8de464617)]:
130
+ - @mastra/core@1.0.0-beta.22
131
+
3
132
  ## 1.0.0-beta.10
4
133
 
5
134
  ### Patch Changes
@@ -30,4 +30,4 @@ docs/
30
30
  ## Version
31
31
 
32
32
  Package: @mastra/lance
33
- Version: 1.0.0-beta.10
33
+ Version: 1.0.0-beta.12
@@ -5,7 +5,7 @@ description: Documentation for @mastra/lance. Includes links to type definitions
5
5
 
6
6
  # @mastra/lance Documentation
7
7
 
8
- > **Version**: 1.0.0-beta.10
8
+ > **Version**: 1.0.0-beta.12
9
9
  > **Package**: @mastra/lance
10
10
 
11
11
  ## Quick Navigation
@@ -1,5 +1,5 @@
1
1
  {
2
- "version": "1.0.0-beta.10",
2
+ "version": "1.0.0-beta.12",
3
3
  "package": "@mastra/lance",
4
4
  "exports": {},
5
5
  "modules": {}
@@ -12,6 +12,7 @@ After generating embeddings, you need to store them in a database that supports
12
12
  import { MongoDBVector } from "@mastra/mongodb";
13
13
 
14
14
  const store = new MongoDBVector({
15
+ id: 'mongodb-vector',
15
16
  uri: process.env.MONGODB_URI,
16
17
  dbName: process.env.MONGODB_DATABASE,
17
18
  });
@@ -26,7 +27,7 @@ await store.upsert({
26
27
  });
27
28
  ```
28
29
 
29
- ### Using MongoDB Atlas Vector search
30
+ <h3>Using MongoDB Atlas Vector search</h3>
30
31
 
31
32
  For detailed setup instructions and best practices, see the [official MongoDB Atlas Vector Search documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/?utm_campaign=devrel&utm_source=third-party-content&utm_medium=cta&utm_content=mastra-docs).
32
33
 
@@ -54,7 +55,7 @@ await store.upsert({
54
55
  });
55
56
  ```
56
57
 
57
- ### Using PostgreSQL with pgvector
58
+ <h3>Using PostgreSQL with pgvector</h3>
58
59
 
59
60
  PostgreSQL with the pgvector extension is a good solution for teams already using PostgreSQL who want to minimize infrastructure complexity.
60
61
  For detailed setup instructions and best practices, see the [official pgvector repository](https://github.com/pgvector/pgvector).
@@ -144,6 +145,7 @@ await store.upsert({
144
145
  import { AstraVector } from "@mastra/astra";
145
146
 
146
147
  const store = new AstraVector({
148
+ id: 'astra-vector',
147
149
  token: process.env.ASTRA_DB_TOKEN,
148
150
  endpoint: process.env.ASTRA_DB_ENDPOINT,
149
151
  keyspace: process.env.ASTRA_DB_KEYSPACE,
@@ -170,7 +172,7 @@ import { LibSQLVector } from "@mastra/core/vector/libsql";
170
172
 
171
173
  const store = new LibSQLVector({
172
174
  id: 'libsql-vector',
173
- connectionUrl: process.env.DATABASE_URL,
175
+ url: process.env.DATABASE_URL,
174
176
  authToken: process.env.DATABASE_AUTH_TOKEN, // Optional: for Turso cloud databases
175
177
  });
176
178
 
@@ -217,6 +219,7 @@ await store.upsert({
217
219
  import { CloudflareVector } from "@mastra/vectorize";
218
220
 
219
221
  const store = new CloudflareVector({
222
+ id: 'cloudflare-vector',
220
223
  accountId: process.env.CF_ACCOUNT_ID,
221
224
  apiToken: process.env.CF_API_TOKEN,
222
225
  });
@@ -238,7 +241,7 @@ await store.upsert({
238
241
  ```ts title="vector-store.ts"
239
242
  import { OpenSearchVector } from "@mastra/opensearch";
240
243
 
241
- const store = new OpenSearchVector({ url: process.env.OPENSEARCH_URL });
244
+ const store = new OpenSearchVector({ id: "opensearch", node: process.env.OPENSEARCH_URL });
242
245
 
243
246
  await store.createIndex({
244
247
  indexName: "my-collection",
@@ -259,7 +262,7 @@ await store.upsert({
259
262
  ```ts title="vector-store.ts"
260
263
  import { ElasticSearchVector } from "@mastra/elasticsearch";
261
264
 
262
- const store = new ElasticSearchVector({ url: process.env.ELASTICSEARCH_URL });
265
+ const store = new ElasticSearchVector({ id: 'elasticsearch-vector', url: process.env.ELASTICSEARCH_URL });
263
266
 
264
267
  await store.createIndex({
265
268
  indexName: "my-collection",
@@ -280,6 +283,7 @@ await store.upsert({
280
283
  import { CouchbaseVector } from "@mastra/couchbase";
281
284
 
282
285
  const store = new CouchbaseVector({
286
+ id: 'couchbase-vector',
283
287
  connectionString: process.env.COUCHBASE_CONNECTION_STRING,
284
288
  username: process.env.COUCHBASE_USERNAME,
285
289
  password: process.env.COUCHBASE_PASSWORD,
@@ -319,7 +323,7 @@ await store.upsert({
319
323
  });
320
324
  ```
321
325
 
322
- ### Using LanceDB
326
+ <h3>Using LanceDB</h3>
323
327
 
324
328
  LanceDB is an embedded vector database built on the Lance columnar format, suitable for local development or cloud deployment.
325
329
  For detailed setup instructions and best practices, see the [official LanceDB documentation](https://lancedb.github.io/lancedb/).
@@ -331,6 +335,7 @@ For detailed setup instructions and best practices, see the [official LanceDB do
331
335
  import { S3Vectors } from "@mastra/s3vectors";
332
336
 
333
337
  const store = new S3Vectors({
338
+ id: 's3-vectors',
334
339
  vectorBucketName: "my-vector-bucket",
335
340
  clientConfig: {
336
341
  region: "us-east-1",
@@ -373,7 +378,7 @@ The dimension size must match the output dimension of your chosen embedding mode
373
378
  - Cohere embed-multilingual-v3: 1024 dimensions
374
379
  - Google text-embedding-004: 768 dimensions (or custom)
375
380
 
376
- important
381
+ > **Note:**
377
382
  Index dimensions cannot be changed after creation. To use a different model, delete and recreate the index with the new dimension size.
378
383
 
379
384
  ### Naming Rules for Databases
@@ -537,7 +542,7 @@ The upsert operation:
537
542
 
538
543
  Vector stores support rich metadata (any JSON-serializable fields) for filtering and organization. Since metadata is stored with no fixed schema, use consistent field naming to avoid unexpected query results.
539
544
 
540
- important
545
+ > **Note:**
541
546
  Metadata is crucial for vector storage - without it, you'd only have numerical embeddings with no way to return the original text or filter results. Always store at least the source text as metadata.
542
547
 
543
548
  ```ts