@mastra/hono 0.0.0-feat-improve-processors-20251205191721
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +2921 -0
- package/LICENSE.md +15 -0
- package/README.md +465 -0
- package/dist/auth-middleware.d.ts +11 -0
- package/dist/auth-middleware.d.ts.map +1 -0
- package/dist/index.cjs +538 -0
- package/dist/index.cjs.map +1 -0
- package/dist/index.d.ts +36 -0
- package/dist/index.d.ts.map +1 -0
- package/dist/index.js +536 -0
- package/dist/index.js.map +1 -0
- package/package.json +73 -0
package/LICENSE.md
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
# Apache License 2.0
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Kepler Software, Inc.
|
|
4
|
+
|
|
5
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
you may not use this file except in compliance with the License.
|
|
7
|
+
You may obtain a copy of the License at
|
|
8
|
+
|
|
9
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
|
|
11
|
+
Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
See the License for the specific language governing permissions and
|
|
15
|
+
limitations under the License.
|
package/README.md
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
1
|
+
# @mastra/pg
|
|
2
|
+
|
|
3
|
+
PostgreSQL implementation for Mastra, providing both vector similarity search (using pgvector) and general storage capabilities with connection pooling and transaction support.
|
|
4
|
+
|
|
5
|
+
## Installation
|
|
6
|
+
|
|
7
|
+
```bash
|
|
8
|
+
npm install @mastra/pg
|
|
9
|
+
```
|
|
10
|
+
|
|
11
|
+
## Prerequisites
|
|
12
|
+
|
|
13
|
+
- PostgreSQL server with pgvector extension installed (if using vector store)
|
|
14
|
+
- PostgreSQL 11 or higher
|
|
15
|
+
|
|
16
|
+
## Usage
|
|
17
|
+
|
|
18
|
+
### Vector Store
|
|
19
|
+
|
|
20
|
+
#### Basic Configuration
|
|
21
|
+
|
|
22
|
+
PgVector supports multiple connection methods:
|
|
23
|
+
|
|
24
|
+
**1. Connection String (Recommended)**
|
|
25
|
+
|
|
26
|
+
```typescript
|
|
27
|
+
import { PgVector } from '@mastra/pg';
|
|
28
|
+
|
|
29
|
+
const vectorStore = new PgVector({
|
|
30
|
+
connectionString: 'postgresql://user:pass@localhost:5432/db',
|
|
31
|
+
});
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
**2. Host/Port/Database Configuration**
|
|
35
|
+
|
|
36
|
+
```typescript
|
|
37
|
+
const vectorStore = new PgVector({
|
|
38
|
+
host: 'localhost',
|
|
39
|
+
port: 5432,
|
|
40
|
+
database: 'mydb',
|
|
41
|
+
user: 'postgres',
|
|
42
|
+
password: 'password',
|
|
43
|
+
});
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
> **Note:** PgVector also supports advanced configurations like Google Cloud SQL Connector via `pg.ClientConfig`.
|
|
47
|
+
|
|
48
|
+
#### Advanced Options
|
|
49
|
+
|
|
50
|
+
```typescript
|
|
51
|
+
const vectorStore = new PgVector({
|
|
52
|
+
connectionString: 'postgresql://user:pass@localhost:5432/db',
|
|
53
|
+
schemaName: 'custom_schema', // Use custom schema (default: public)
|
|
54
|
+
max: 30, // Max pool connections (default: 20)
|
|
55
|
+
idleTimeoutMillis: 60000, // Idle timeout (default: 30000)
|
|
56
|
+
pgPoolOptions: {
|
|
57
|
+
// Additional pg pool options
|
|
58
|
+
connectionTimeoutMillis: 5000,
|
|
59
|
+
allowExitOnIdle: true,
|
|
60
|
+
},
|
|
61
|
+
});
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
#### Usage Example
|
|
65
|
+
|
|
66
|
+
```typescript
|
|
67
|
+
// Create a new table with vector support
|
|
68
|
+
await vectorStore.createIndex({
|
|
69
|
+
indexName: 'my_vectors',
|
|
70
|
+
dimension: 1536,
|
|
71
|
+
metric: 'cosine',
|
|
72
|
+
// Optional: Configure index type and parameters
|
|
73
|
+
indexConfig: {
|
|
74
|
+
type: 'hnsw', // 'ivfflat' (default), 'hnsw', or 'flat'
|
|
75
|
+
hnsw: {
|
|
76
|
+
m: 16, // Number of connections per layer (default: 8)
|
|
77
|
+
efConstruction: 64 // Size of dynamic list (default: 32)
|
|
78
|
+
}
|
|
79
|
+
}
|
|
80
|
+
});
|
|
81
|
+
|
|
82
|
+
// Add vectors
|
|
83
|
+
const ids = await vectorStore.upsert({
|
|
84
|
+
indexName: 'my_vectors',
|
|
85
|
+
vectors: [[0.1, 0.2, ...], [0.3, 0.4, ...]],
|
|
86
|
+
metadata: [{ text: 'doc1' }, { text: 'doc2' }],
|
|
87
|
+
});
|
|
88
|
+
|
|
89
|
+
// Query vectors
|
|
90
|
+
const results = await vectorStore.query({
|
|
91
|
+
indexName: 'my_vectors',
|
|
92
|
+
queryVector: [0.1, 0.2, ...],
|
|
93
|
+
topK: 10, // topK
|
|
94
|
+
filter: { text: 'doc1' }, // filter
|
|
95
|
+
includeVector: false, // includeVector
|
|
96
|
+
minScore: 0.5, // minScore
|
|
97
|
+
});
|
|
98
|
+
|
|
99
|
+
// Clean up
|
|
100
|
+
await vectorStore.disconnect();
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
### Storage
|
|
104
|
+
|
|
105
|
+
```typescript
|
|
106
|
+
import { PostgresStore } from '@mastra/pg';
|
|
107
|
+
|
|
108
|
+
const store = new PostgresStore({
|
|
109
|
+
host: 'localhost',
|
|
110
|
+
port: 5432,
|
|
111
|
+
database: 'mastra',
|
|
112
|
+
user: 'postgres',
|
|
113
|
+
password: 'postgres',
|
|
114
|
+
});
|
|
115
|
+
|
|
116
|
+
// Create a thread
|
|
117
|
+
await store.saveThread({
|
|
118
|
+
id: 'thread-123',
|
|
119
|
+
resourceId: 'resource-456',
|
|
120
|
+
title: 'My Thread',
|
|
121
|
+
metadata: { key: 'value' },
|
|
122
|
+
});
|
|
123
|
+
|
|
124
|
+
// Add messages to thread
|
|
125
|
+
await store.saveMessages([
|
|
126
|
+
{
|
|
127
|
+
id: 'msg-789',
|
|
128
|
+
threadId: 'thread-123',
|
|
129
|
+
role: 'user',
|
|
130
|
+
type: 'text',
|
|
131
|
+
content: [{ type: 'text', text: 'Hello' }],
|
|
132
|
+
},
|
|
133
|
+
]);
|
|
134
|
+
|
|
135
|
+
// Query threads and messages
|
|
136
|
+
const savedThread = await store.getThread('thread-123');
|
|
137
|
+
const messages = await store.getMessages('thread-123');
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
## Configuration
|
|
141
|
+
|
|
142
|
+
### Connection Methods
|
|
143
|
+
|
|
144
|
+
Both `PgVector` and `PostgresStore` support multiple connection methods:
|
|
145
|
+
|
|
146
|
+
1. **Connection String**
|
|
147
|
+
|
|
148
|
+
```typescript
|
|
149
|
+
{
|
|
150
|
+
connectionString: 'postgresql://user:pass@localhost:5432/db';
|
|
151
|
+
}
|
|
152
|
+
```
|
|
153
|
+
|
|
154
|
+
2. **Host/Port/Database**
|
|
155
|
+
```typescript
|
|
156
|
+
{
|
|
157
|
+
host: 'localhost',
|
|
158
|
+
port: 5432,
|
|
159
|
+
database: 'mydb',
|
|
160
|
+
user: 'postgres',
|
|
161
|
+
password: 'password'
|
|
162
|
+
}
|
|
163
|
+
```
|
|
164
|
+
|
|
165
|
+
> **Advanced:** Also supports `pg.ClientConfig` for use cases like Google Cloud SQL Connector with IAM authentication.
|
|
166
|
+
|
|
167
|
+
### Optional Configuration
|
|
168
|
+
|
|
169
|
+
- `schemaName`: Custom PostgreSQL schema (default: `public`)
|
|
170
|
+
- `ssl`: Enable SSL or provide custom SSL options (`true` | `false` | `ConnectionOptions`)
|
|
171
|
+
- `max`: Maximum pool connections (default: `20`)
|
|
172
|
+
- `idleTimeoutMillis`: Idle connection timeout (default: `30000`)
|
|
173
|
+
- `pgPoolOptions`: Additional pg pool options (PgVector only)
|
|
174
|
+
|
|
175
|
+
### Default Connection Pool Settings
|
|
176
|
+
|
|
177
|
+
- Maximum connections: 20
|
|
178
|
+
- Idle timeout: 30 seconds
|
|
179
|
+
- Connection timeout: 2 seconds
|
|
180
|
+
|
|
181
|
+
## Features
|
|
182
|
+
|
|
183
|
+
### Vector Store Features
|
|
184
|
+
|
|
185
|
+
- Vector similarity search with cosine, euclidean, and dot product (inner) metrics
|
|
186
|
+
- Advanced metadata filtering with MongoDB-like query syntax
|
|
187
|
+
- Minimum score threshold for queries
|
|
188
|
+
- Automatic UUID generation for vectors
|
|
189
|
+
- Table management (create, list, describe, delete, truncate)
|
|
190
|
+
- Configurable vector index types:
|
|
191
|
+
- **IVFFlat** (default): Balanced speed/accuracy, auto-calculates optimal lists parameter
|
|
192
|
+
- **HNSW**: Fastest queries, higher memory usage, best for large datasets
|
|
193
|
+
- **Flat**: No index, 100% accuracy, best for small datasets (<1000 vectors)
|
|
194
|
+
|
|
195
|
+
### Storage Features
|
|
196
|
+
|
|
197
|
+
- Thread and message storage with JSON support
|
|
198
|
+
- Atomic transactions for data consistency
|
|
199
|
+
- Efficient batch operations
|
|
200
|
+
- Rich metadata support
|
|
201
|
+
- Timestamp tracking
|
|
202
|
+
- Cascading deletes
|
|
203
|
+
|
|
204
|
+
## Supported Filter Operators
|
|
205
|
+
|
|
206
|
+
The following filter operators are supported for metadata queries:
|
|
207
|
+
|
|
208
|
+
- Comparison: `$eq`, `$ne`, `$gt`, `$gte`, `$lt`, `$lte`
|
|
209
|
+
- Logical: `$and`, `$or`
|
|
210
|
+
- Array: `$in`, `$nin`
|
|
211
|
+
- Text: `$regex`, `$like`
|
|
212
|
+
|
|
213
|
+
Example filter:
|
|
214
|
+
|
|
215
|
+
```typescript
|
|
216
|
+
{
|
|
217
|
+
$and: [{ age: { $gt: 25 } }, { tags: { $in: ['tag1', 'tag2'] } }];
|
|
218
|
+
}
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
## Vector Index Configuration
|
|
222
|
+
|
|
223
|
+
pgvector supports three index types, each with different performance characteristics:
|
|
224
|
+
|
|
225
|
+
### IVFFlat Index (Default)
|
|
226
|
+
|
|
227
|
+
IVFFlat groups vectors into clusters for efficient searching:
|
|
228
|
+
|
|
229
|
+
```typescript
|
|
230
|
+
await vectorStore.createIndex({
|
|
231
|
+
indexName: 'my_vectors',
|
|
232
|
+
dimension: 1536,
|
|
233
|
+
metric: 'cosine',
|
|
234
|
+
indexConfig: {
|
|
235
|
+
type: 'ivfflat',
|
|
236
|
+
ivf: {
|
|
237
|
+
lists: 1000, // Number of clusters (default: auto-calculated as sqrt(rows) * 2)
|
|
238
|
+
},
|
|
239
|
+
},
|
|
240
|
+
});
|
|
241
|
+
```
|
|
242
|
+
|
|
243
|
+
- **Best for:** Medium to large datasets (10K-1M vectors)
|
|
244
|
+
- **Build time:** Minutes for millions of vectors
|
|
245
|
+
- **Query speed:** Fast (tens of milliseconds)
|
|
246
|
+
- **Memory:** Moderate
|
|
247
|
+
- **Accuracy:** ~95-99%
|
|
248
|
+
|
|
249
|
+
### HNSW Index
|
|
250
|
+
|
|
251
|
+
HNSW builds a graph structure for extremely fast searches:
|
|
252
|
+
|
|
253
|
+
```typescript
|
|
254
|
+
await vectorStore.createIndex({
|
|
255
|
+
indexName: 'my_vectors',
|
|
256
|
+
dimension: 1536,
|
|
257
|
+
metric: 'dotproduct', // Recommended for normalized embeddings (OpenAI, etc.)
|
|
258
|
+
indexConfig: {
|
|
259
|
+
type: 'hnsw',
|
|
260
|
+
hnsw: {
|
|
261
|
+
m: 16, // Connections per layer (default: 8, range: 2-100)
|
|
262
|
+
efConstruction: 64, // Dynamic list size (default: 32, range: 4-1000)
|
|
263
|
+
},
|
|
264
|
+
},
|
|
265
|
+
});
|
|
266
|
+
```
|
|
267
|
+
|
|
268
|
+
- **Best for:** Large datasets (100K+ vectors) requiring fastest searches
|
|
269
|
+
- **Build time:** Can take hours for large datasets
|
|
270
|
+
- **Query speed:** Very fast (milliseconds even for millions)
|
|
271
|
+
- **Memory:** High (can be 2-3x vector size)
|
|
272
|
+
- **Accuracy:** ~99%
|
|
273
|
+
|
|
274
|
+
**Tuning HNSW:**
|
|
275
|
+
|
|
276
|
+
- Higher `m`: Better accuracy, more memory (16-32 for high accuracy)
|
|
277
|
+
- Higher `efConstruction`: Better index quality, slower builds (64-200 for quality)
|
|
278
|
+
|
|
279
|
+
### Flat Index (No Index)
|
|
280
|
+
|
|
281
|
+
Uses sequential scan for 100% accuracy:
|
|
282
|
+
|
|
283
|
+
```typescript
|
|
284
|
+
await vectorStore.createIndex({
|
|
285
|
+
indexName: 'my_vectors',
|
|
286
|
+
dimension: 1536,
|
|
287
|
+
metric: 'cosine',
|
|
288
|
+
indexConfig: {
|
|
289
|
+
type: 'flat',
|
|
290
|
+
},
|
|
291
|
+
});
|
|
292
|
+
```
|
|
293
|
+
|
|
294
|
+
- **Best for:** Small datasets (<1000 vectors) or when 100% accuracy is required
|
|
295
|
+
- **Build time:** None
|
|
296
|
+
- **Query speed:** Slow for large datasets (linear scan)
|
|
297
|
+
- **Memory:** Minimal (just vectors)
|
|
298
|
+
- **Accuracy:** 100%
|
|
299
|
+
|
|
300
|
+
### Distance Metrics
|
|
301
|
+
|
|
302
|
+
Choose the appropriate metric for your embeddings:
|
|
303
|
+
|
|
304
|
+
- **`cosine`** (default): Angular similarity, good for text embeddings
|
|
305
|
+
- **`euclidean`**: L2 distance, for unnormalized embeddings
|
|
306
|
+
- **`dotproduct`**: Dot product, optimal for normalized embeddings (OpenAI, Cohere)
|
|
307
|
+
|
|
308
|
+
### Index Recreation
|
|
309
|
+
|
|
310
|
+
The system automatically detects configuration changes and only rebuilds indexes when necessary, preventing the performance issues from unnecessary recreations.
|
|
311
|
+
|
|
312
|
+
**Important behaviors:**
|
|
313
|
+
|
|
314
|
+
- If no `indexConfig` is provided, existing indexes are preserved as-is
|
|
315
|
+
- If `indexConfig` is provided, indexes are only rebuilt if the configuration differs
|
|
316
|
+
- New indexes default to IVFFlat with cosine distance when no config is specified
|
|
317
|
+
|
|
318
|
+
## Vector Store Methods
|
|
319
|
+
|
|
320
|
+
- `createIndex({indexName, dimension, metric?, indexConfig?, buildIndex?})`: Create a new table with vector support
|
|
321
|
+
- `buildIndex({indexName, metric?, indexConfig?})`: Build or rebuild vector index
|
|
322
|
+
- `upsert({indexName, vectors, metadata?, ids?})`: Add or update vectors
|
|
323
|
+
- `query({indexName, queryVector, topK?, filter?, includeVector?, minScore?})`: Search for similar vectors
|
|
324
|
+
- `listIndexes()`: List all vector-enabled tables
|
|
325
|
+
- `describeIndex(indexName)`: Get table statistics and index configuration
|
|
326
|
+
- `deleteIndex(indexName)`: Delete a table
|
|
327
|
+
- `truncateIndex(indexName)`: Remove all data from a table
|
|
328
|
+
- `disconnect()`: Close all database connections
|
|
329
|
+
|
|
330
|
+
## Storage Methods
|
|
331
|
+
|
|
332
|
+
- `saveThread(thread)`: Create or update a thread
|
|
333
|
+
- `getThread(threadId)`: Get a thread by ID
|
|
334
|
+
- `deleteThread(threadId)`: Delete a thread and its messages
|
|
335
|
+
- `saveMessages(messages)`: Save multiple messages in a transaction
|
|
336
|
+
- `getMessages(threadId)`: Get all messages for a thread
|
|
337
|
+
- `deleteMessages(messageIds)`: Delete specific messages
|
|
338
|
+
|
|
339
|
+
## Index Management
|
|
340
|
+
|
|
341
|
+
The PostgreSQL store provides comprehensive index management capabilities to optimize query performance.
|
|
342
|
+
|
|
343
|
+
### Automatic Performance Indexes
|
|
344
|
+
|
|
345
|
+
PostgreSQL storage automatically creates composite indexes during initialization for common query patterns:
|
|
346
|
+
|
|
347
|
+
- `mastra_threads_resourceid_createdat_idx`: (resourceId, createdAt DESC)
|
|
348
|
+
- `mastra_messages_thread_id_createdat_idx`: (thread_id, createdAt DESC)
|
|
349
|
+
- `mastra_traces_name_starttime_idx`: (name, startTime DESC)
|
|
350
|
+
- `mastra_evals_agent_name_created_at_idx`: (agent_name, created_at DESC)
|
|
351
|
+
|
|
352
|
+
These indexes significantly improve performance for filtered queries with sorting.
|
|
353
|
+
|
|
354
|
+
### Creating Custom Indexes
|
|
355
|
+
|
|
356
|
+
Create additional indexes to optimize specific query patterns:
|
|
357
|
+
|
|
358
|
+
```typescript
|
|
359
|
+
// Basic index for common queries
|
|
360
|
+
await store.createIndex({
|
|
361
|
+
name: 'idx_threads_resource',
|
|
362
|
+
table: 'mastra_threads',
|
|
363
|
+
columns: ['resourceId'],
|
|
364
|
+
});
|
|
365
|
+
|
|
366
|
+
// Composite index with sort order for filtering + sorting
|
|
367
|
+
await store.createIndex({
|
|
368
|
+
name: 'idx_messages_composite',
|
|
369
|
+
table: 'mastra_messages',
|
|
370
|
+
columns: ['thread_id', 'createdAt DESC'],
|
|
371
|
+
});
|
|
372
|
+
|
|
373
|
+
// GIN index for JSONB columns (fast JSON queries)
|
|
374
|
+
await store.createIndex({
|
|
375
|
+
name: 'idx_traces_attributes',
|
|
376
|
+
table: 'mastra_traces',
|
|
377
|
+
columns: ['attributes'],
|
|
378
|
+
method: 'gin',
|
|
379
|
+
});
|
|
380
|
+
```
|
|
381
|
+
|
|
382
|
+
For more advanced use cases, you can also use:
|
|
383
|
+
|
|
384
|
+
- `unique: true` for unique constraints
|
|
385
|
+
- `where: 'condition'` for partial indexes
|
|
386
|
+
- `method: 'brin'` for time-series data
|
|
387
|
+
- `storage: { fillfactor: 90 }` for update-heavy tables
|
|
388
|
+
- `concurrent: true` for non-blocking creation (default)
|
|
389
|
+
|
|
390
|
+
### Managing Indexes
|
|
391
|
+
|
|
392
|
+
```typescript
|
|
393
|
+
// List all indexes
|
|
394
|
+
const allIndexes = await store.listIndexes();
|
|
395
|
+
|
|
396
|
+
// List indexes for specific table
|
|
397
|
+
const threadIndexes = await store.listIndexes('mastra_threads');
|
|
398
|
+
|
|
399
|
+
// Get detailed statistics for an index
|
|
400
|
+
const stats = await store.describeIndex('idx_threads_resource');
|
|
401
|
+
console.log(stats);
|
|
402
|
+
// {
|
|
403
|
+
// name: 'idx_threads_resource',
|
|
404
|
+
// table: 'mastra_threads',
|
|
405
|
+
// columns: ['resourceId', 'createdAt'],
|
|
406
|
+
// unique: false,
|
|
407
|
+
// size: '128 KB',
|
|
408
|
+
// definition: 'CREATE INDEX idx_threads_resource...',
|
|
409
|
+
// method: 'btree',
|
|
410
|
+
// scans: 1542, // Number of index scans
|
|
411
|
+
// tuples_read: 45230, // Tuples read via index
|
|
412
|
+
// tuples_fetched: 12050 // Tuples fetched via index
|
|
413
|
+
// }
|
|
414
|
+
|
|
415
|
+
// Drop an index
|
|
416
|
+
await store.dropIndex('idx_threads_status');
|
|
417
|
+
```
|
|
418
|
+
|
|
419
|
+
### Index Types and Use Cases
|
|
420
|
+
|
|
421
|
+
| Index Type | Best For | Storage | Speed |
|
|
422
|
+
| ------------------- | --------------------------------------- | ---------- | -------------------------- |
|
|
423
|
+
| **btree** (default) | Range queries, sorting, general purpose | Moderate | Fast |
|
|
424
|
+
| **hash** | Equality comparisons only | Small | Very fast for `=` |
|
|
425
|
+
| **gin** | JSONB, arrays, full-text search | Large | Fast for contains |
|
|
426
|
+
| **gist** | Geometric data, full-text search | Moderate | Fast for nearest-neighbor |
|
|
427
|
+
| **spgist** | Non-balanced data, text patterns | Small | Fast for specific patterns |
|
|
428
|
+
| **brin** | Large tables with natural ordering | Very small | Fast for ranges |
|
|
429
|
+
|
|
430
|
+
### Index Options
|
|
431
|
+
|
|
432
|
+
- `name` (required): Index name
|
|
433
|
+
- `table` (required): Table name
|
|
434
|
+
- `columns` (required): Array of column names (can include DESC/ASC)
|
|
435
|
+
- `unique`: Create unique index (default: false)
|
|
436
|
+
- `concurrent`: Non-blocking index creation (default: true)
|
|
437
|
+
- `where`: Partial index condition
|
|
438
|
+
- `method`: Index type ('btree' | 'hash' | 'gin' | 'gist' | 'spgist' | 'brin')
|
|
439
|
+
- `opclass`: Operator class for GIN/GIST indexes
|
|
440
|
+
- `storage`: Storage parameters (e.g., { fillfactor: 90 })
|
|
441
|
+
- `tablespace`: Tablespace name for index placement
|
|
442
|
+
|
|
443
|
+
### Monitoring Index Performance
|
|
444
|
+
|
|
445
|
+
```typescript
|
|
446
|
+
// Check index usage statistics
|
|
447
|
+
const stats = await store.describeIndex('idx_threads_resource');
|
|
448
|
+
|
|
449
|
+
// Identify unused indexes
|
|
450
|
+
if (stats.scans === 0) {
|
|
451
|
+
console.log(`Index ${stats.name} is unused - consider removing`);
|
|
452
|
+
await store.dropIndex(stats.name);
|
|
453
|
+
}
|
|
454
|
+
|
|
455
|
+
// Monitor index efficiency
|
|
456
|
+
const efficiency = stats.tuples_fetched / stats.tuples_read;
|
|
457
|
+
if (efficiency < 0.5) {
|
|
458
|
+
console.log(`Index ${stats.name} has low efficiency: ${efficiency}`);
|
|
459
|
+
}
|
|
460
|
+
```
|
|
461
|
+
|
|
462
|
+
## Related Links
|
|
463
|
+
|
|
464
|
+
- [pgvector Documentation](https://github.com/pgvector/pgvector)
|
|
465
|
+
- [PostgreSQL Documentation](https://www.postgresql.org/docs/)
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
import type { ContextWithMastra } from '@mastra/core/server';
|
|
2
|
+
import type { Next } from 'hono';
|
|
3
|
+
export declare const authenticationMiddleware: (c: ContextWithMastra, next: Next) => Promise<void | (Response & import("hono").TypedResponse<{
|
|
4
|
+
error: string;
|
|
5
|
+
}, 401, "json">)>;
|
|
6
|
+
export declare const authorizationMiddleware: (c: ContextWithMastra, next: Next) => Promise<void | (Response & import("hono").TypedResponse<{
|
|
7
|
+
error: string;
|
|
8
|
+
}, 403, "json">) | (Response & import("hono").TypedResponse<{
|
|
9
|
+
error: string;
|
|
10
|
+
}, 500, "json">)>;
|
|
11
|
+
//# sourceMappingURL=auth-middleware.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"auth-middleware.d.ts","sourceRoot":"","sources":["../src/auth-middleware.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,iBAAiB,EAAE,MAAM,qBAAqB,CAAC;AAQ7D,OAAO,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM,CAAC;AAEjC,eAAO,MAAM,wBAAwB,GAAU,GAAG,iBAAiB,EAAE,MAAM,IAAI;;iBAgE9E,CAAC;AAEF,eAAO,MAAM,uBAAuB,GAAU,GAAG,iBAAiB,EAAE,MAAM,IAAI;;;;iBAkF7E,CAAC"}
|