@mastra/deployer 0.24.8 → 0.24.9-alpha.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2312,6 +2312,12 @@ function agentBuilderRouter(bodyLimitOptions) {
2312
2312
  );
2313
2313
  return router;
2314
2314
  }
2315
+ var getUserMessageFromRunInput = (input) => {
2316
+ return input?.inputMessages.find(({ role }) => role === "user")?.content;
2317
+ };
2318
+ var extractAgentResponseMessages = (runOutput) => {
2319
+ return runOutput.filter((msg) => msg.role === "assistant").map((msg) => msg.content);
2320
+ };
2315
2321
  async function generateSystemPromptHandler(c2) {
2316
2322
  try {
2317
2323
  const agentId = c2.req.param("agentId");
@@ -2328,25 +2334,29 @@ async function generateSystemPromptHandler(c2) {
2328
2334
  if (!agent) {
2329
2335
  return c2.json({ error: "Agent not found" }, 404);
2330
2336
  }
2331
- let evalSummary = "";
2337
+ let scoreSummary = "";
2332
2338
  try {
2333
- const testEvals = await mastra.getStorage()?.getEvalsByAgentName?.(agent.name, "test") || [];
2334
- const liveEvals = await mastra.getStorage()?.getEvalsByAgentName?.(agent.name, "live") || [];
2335
- const evalsMapped = [...testEvals, ...liveEvals].filter(
2336
- ({ instructions: evalInstructions }) => evalInstructions === instructions
2337
- );
2338
- evalSummary = evalsMapped.map(
2339
- ({ input, output, result: result2 }) => `
2340
- Input: ${input}
2341
-
2342
- Output: ${output}
2339
+ const scoresResult = await mastra.getStorage()?.getScoresByEntityId?.({
2340
+ entityId: agent.name,
2341
+ entityType: "AGENT",
2342
+ pagination: { page: 0, perPage: 100 }
2343
+ });
2344
+ const scores = scoresResult?.scores || [];
2345
+ scoreSummary = scores.map(({ input, output, score, reason, scorer }) => {
2346
+ const userMessage = getUserMessageFromRunInput(input);
2347
+ const agentResponses = extractAgentResponseMessages(output);
2348
+ return `
2349
+ User: ${userMessage}
2343
2350
 
2344
- Result: ${JSON.stringify(result2)}
2351
+ Agent: ${agentResponses.join("\n")}
2345
2352
 
2346
- `
2347
- ).join("");
2353
+ Score: ${score}${reason ? `
2354
+ Reason: ${reason}` : ""}${scorer?.name ? `
2355
+ Scorer: ${scorer.name}` : ""}
2356
+ `;
2357
+ }).join("");
2348
2358
  } catch (error) {
2349
- mastra.getLogger().error(`Error fetching evals`, { error });
2359
+ mastra.getLogger().error(`Error fetching scores`, { error });
2350
2360
  }
2351
2361
  const ENHANCE_SYSTEM_PROMPT_INSTRUCTIONS = `
2352
2362
  You are an expert system prompt engineer, specialized in analyzing and enhancing instructions to create clear, effective, and comprehensive system prompts. Your goal is to help users transform their basic instructions into well-structured system prompts that will guide AI behavior effectively.
@@ -2405,9 +2415,9 @@ async function generateSystemPromptHandler(c2) {
2405
2415
  We need to improve the system prompt.
2406
2416
  Current: ${instructions}
2407
2417
  ${comment ? `User feedback: ${comment}` : ""}
2408
- ${evalSummary ? `
2409
- Evaluation Results:
2410
- ${evalSummary}` : ""}
2418
+ ${scoreSummary ? `
2419
+ Scoring Results:
2420
+ ${scoreSummary}` : ""}
2411
2421
  `,
2412
2422
  {
2413
2423
  output: z.object({