@mariozechner/pi-ai 0.49.2 → 0.50.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +32 -22
- package/dist/api-registry.d.ts +20 -0
- package/dist/api-registry.d.ts.map +1 -0
- package/dist/api-registry.js +44 -0
- package/dist/api-registry.js.map +1 -0
- package/dist/cli.d.ts.map +1 -1
- package/dist/cli.js +22 -67
- package/dist/cli.js.map +1 -1
- package/dist/env-api-keys.d.ts +9 -0
- package/dist/env-api-keys.d.ts.map +1 -0
- package/dist/env-api-keys.js +91 -0
- package/dist/env-api-keys.js.map +1 -0
- package/dist/index.d.ts +4 -0
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +4 -0
- package/dist/index.js.map +1 -1
- package/dist/models.generated.d.ts +649 -126
- package/dist/models.generated.d.ts.map +1 -1
- package/dist/models.generated.js +679 -151
- package/dist/models.generated.js.map +1 -1
- package/dist/providers/amazon-bedrock.d.ts +3 -2
- package/dist/providers/amazon-bedrock.d.ts.map +1 -1
- package/dist/providers/amazon-bedrock.js +52 -5
- package/dist/providers/amazon-bedrock.js.map +1 -1
- package/dist/providers/anthropic.d.ts +3 -2
- package/dist/providers/anthropic.d.ts.map +1 -1
- package/dist/providers/anthropic.js +35 -10
- package/dist/providers/anthropic.js.map +1 -1
- package/dist/providers/azure-openai-responses.d.ts +15 -0
- package/dist/providers/azure-openai-responses.d.ts.map +1 -0
- package/dist/providers/azure-openai-responses.js +184 -0
- package/dist/providers/azure-openai-responses.js.map +1 -0
- package/dist/providers/google-gemini-cli.d.ts +3 -2
- package/dist/providers/google-gemini-cli.d.ts.map +1 -1
- package/dist/providers/google-gemini-cli.js +69 -1
- package/dist/providers/google-gemini-cli.js.map +1 -1
- package/dist/providers/google-vertex.d.ts +3 -2
- package/dist/providers/google-vertex.d.ts.map +1 -1
- package/dist/providers/google-vertex.js +85 -5
- package/dist/providers/google-vertex.js.map +1 -1
- package/dist/providers/google.d.ts +3 -2
- package/dist/providers/google.d.ts.map +1 -1
- package/dist/providers/google.js +88 -7
- package/dist/providers/google.js.map +1 -1
- package/dist/providers/openai-codex-responses.d.ts +3 -2
- package/dist/providers/openai-codex-responses.d.ts.map +1 -1
- package/dist/providers/openai-codex-responses.js +71 -311
- package/dist/providers/openai-codex-responses.js.map +1 -1
- package/dist/providers/openai-completions.d.ts +5 -2
- package/dist/providers/openai-completions.d.ts.map +1 -1
- package/dist/providers/openai-completions.js +84 -43
- package/dist/providers/openai-completions.js.map +1 -1
- package/dist/providers/openai-responses-shared.d.ts +17 -0
- package/dist/providers/openai-responses-shared.d.ts.map +1 -0
- package/dist/providers/openai-responses-shared.js +424 -0
- package/dist/providers/openai-responses-shared.js.map +1 -0
- package/dist/providers/openai-responses.d.ts +3 -2
- package/dist/providers/openai-responses.d.ts.map +1 -1
- package/dist/providers/openai-responses.js +31 -402
- package/dist/providers/openai-responses.js.map +1 -1
- package/dist/providers/register-builtins.d.ts +3 -0
- package/dist/providers/register-builtins.d.ts.map +1 -0
- package/dist/providers/register-builtins.js +63 -0
- package/dist/providers/register-builtins.js.map +1 -0
- package/dist/providers/simple-options.d.ts +8 -0
- package/dist/providers/simple-options.d.ts.map +1 -0
- package/dist/providers/simple-options.js +32 -0
- package/dist/providers/simple-options.js.map +1 -0
- package/dist/stream.d.ts +5 -10
- package/dist/stream.d.ts.map +1 -1
- package/dist/stream.js +21 -404
- package/dist/stream.js.map +1 -1
- package/dist/types.d.ts +24 -22
- package/dist/types.d.ts.map +1 -1
- package/dist/types.js +0 -1
- package/dist/types.js.map +1 -1
- package/dist/utils/event-stream.d.ts +2 -0
- package/dist/utils/event-stream.d.ts.map +1 -1
- package/dist/utils/event-stream.js +4 -0
- package/dist/utils/event-stream.js.map +1 -1
- package/dist/utils/oauth/anthropic.d.ts +2 -1
- package/dist/utils/oauth/anthropic.d.ts.map +1 -1
- package/dist/utils/oauth/anthropic.js +13 -0
- package/dist/utils/oauth/anthropic.js.map +1 -1
- package/dist/utils/oauth/github-copilot.d.ts +2 -1
- package/dist/utils/oauth/github-copilot.d.ts.map +1 -1
- package/dist/utils/oauth/github-copilot.js +25 -0
- package/dist/utils/oauth/github-copilot.js.map +1 -1
- package/dist/utils/oauth/google-antigravity.d.ts +2 -1
- package/dist/utils/oauth/google-antigravity.d.ts.map +1 -1
- package/dist/utils/oauth/google-antigravity.js +19 -0
- package/dist/utils/oauth/google-antigravity.js.map +1 -1
- package/dist/utils/oauth/google-gemini-cli.d.ts +2 -1
- package/dist/utils/oauth/google-gemini-cli.d.ts.map +1 -1
- package/dist/utils/oauth/google-gemini-cli.js +19 -0
- package/dist/utils/oauth/google-gemini-cli.js.map +1 -1
- package/dist/utils/oauth/index.d.ts +26 -16
- package/dist/utils/oauth/index.d.ts.map +1 -1
- package/dist/utils/oauth/index.js +65 -84
- package/dist/utils/oauth/index.js.map +1 -1
- package/dist/utils/oauth/openai-codex.d.ts +7 -1
- package/dist/utils/oauth/openai-codex.d.ts.map +1 -1
- package/dist/utils/oauth/openai-codex.js +46 -8
- package/dist/utils/oauth/openai-codex.js.map +1 -1
- package/dist/utils/oauth/types.d.ts +28 -6
- package/dist/utils/oauth/types.d.ts.map +1 -1
- package/dist/utils/oauth/types.js.map +1 -1
- package/package.json +3 -1
|
@@ -1,4 +1,5 @@
|
|
|
1
|
-
import type {
|
|
1
|
+
import type { ChatCompletionMessageParam } from "openai/resources/chat/completions.js";
|
|
2
|
+
import type { Context, Model, OpenAICompletionsCompat, SimpleStreamOptions, StreamFunction, StreamOptions } from "../types.js";
|
|
2
3
|
export interface OpenAICompletionsOptions extends StreamOptions {
|
|
3
4
|
toolChoice?: "auto" | "none" | "required" | {
|
|
4
5
|
type: "function";
|
|
@@ -8,5 +9,7 @@ export interface OpenAICompletionsOptions extends StreamOptions {
|
|
|
8
9
|
};
|
|
9
10
|
reasoningEffort?: "minimal" | "low" | "medium" | "high" | "xhigh";
|
|
10
11
|
}
|
|
11
|
-
export declare const streamOpenAICompletions: StreamFunction<"openai-completions">;
|
|
12
|
+
export declare const streamOpenAICompletions: StreamFunction<"openai-completions", OpenAICompletionsOptions>;
|
|
13
|
+
export declare const streamSimpleOpenAICompletions: StreamFunction<"openai-completions", SimpleStreamOptions>;
|
|
14
|
+
export declare function convertMessages(model: Model<"openai-completions">, context: Context, compat: Required<OpenAICompletionsCompat>): ChatCompletionMessageParam[];
|
|
12
15
|
//# sourceMappingURL=openai-completions.d.ts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"openai-completions.d.ts","sourceRoot":"","sources":["../../src/providers/openai-completions.ts"],"names":[],"mappings":"AAYA,OAAO,KAAK,EAOX,cAAc,EACd,aAAa,EAKb,MAAM,aAAa,CAAC;AA2CrB,MAAM,WAAW,wBAAyB,SAAQ,aAAa;IAC9D,UAAU,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,UAAU,GAAG;QAAE,IAAI,EAAE,UAAU,CAAC;QAAC,QAAQ,EAAE;YAAE,IAAI,EAAE,MAAM,CAAA;SAAE,CAAA;KAAE,CAAC;IAC7F,eAAe,CAAC,EAAE,SAAS,GAAG,KAAK,GAAG,QAAQ,GAAG,MAAM,GAAG,OAAO,CAAC;CAClE;AAED,eAAO,MAAM,uBAAuB,EAAE,cAAc,CAAC,oBAAoB,CAqPxE,CAAC","sourcesContent":["import OpenAI from \"openai\";\nimport type {\n\tChatCompletionAssistantMessageParam,\n\tChatCompletionChunk,\n\tChatCompletionContentPart,\n\tChatCompletionContentPartImage,\n\tChatCompletionContentPartText,\n\tChatCompletionMessageParam,\n\tChatCompletionToolMessageParam,\n} from \"openai/resources/chat/completions.js\";\nimport { calculateCost } from \"../models.js\";\nimport { getEnvApiKey } from \"../stream.js\";\nimport type {\n\tAssistantMessage,\n\tContext,\n\tMessage,\n\tModel,\n\tOpenAICompletionsCompat,\n\tStopReason,\n\tStreamFunction,\n\tStreamOptions,\n\tTextContent,\n\tThinkingContent,\n\tTool,\n\tToolCall,\n} from \"../types.js\";\nimport { AssistantMessageEventStream } from \"../utils/event-stream.js\";\nimport { parseStreamingJson } from \"../utils/json-parse.js\";\nimport { sanitizeSurrogates } from \"../utils/sanitize-unicode.js\";\nimport { transformMessages } from \"./transform-messages.js\";\n\n/**\n * Normalize tool call ID for Mistral.\n * Mistral requires tool IDs to be exactly 9 alphanumeric characters (a-z, A-Z, 0-9).\n */\nfunction normalizeMistralToolId(id: string): string {\n\t// Remove non-alphanumeric characters\n\tlet normalized = id.replace(/[^a-zA-Z0-9]/g, \"\");\n\t// Mistral requires exactly 9 characters\n\tif (normalized.length < 9) {\n\t\t// Pad with deterministic characters based on original ID to ensure matching\n\t\tconst padding = \"ABCDEFGHI\";\n\t\tnormalized = normalized + padding.slice(0, 9 - normalized.length);\n\t} else if (normalized.length > 9) {\n\t\tnormalized = normalized.slice(0, 9);\n\t}\n\treturn normalized;\n}\n\n/**\n * Check if conversation messages contain tool calls or tool results.\n * This is needed because Anthropic (via proxy) requires the tools param\n * to be present when messages include tool_calls or tool role messages.\n */\nfunction hasToolHistory(messages: Message[]): boolean {\n\tfor (const msg of messages) {\n\t\tif (msg.role === \"toolResult\") {\n\t\t\treturn true;\n\t\t}\n\t\tif (msg.role === \"assistant\") {\n\t\t\tif (msg.content.some((block) => block.type === \"toolCall\")) {\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t}\n\treturn false;\n}\n\nexport interface OpenAICompletionsOptions extends StreamOptions {\n\ttoolChoice?: \"auto\" | \"none\" | \"required\" | { type: \"function\"; function: { name: string } };\n\treasoningEffort?: \"minimal\" | \"low\" | \"medium\" | \"high\" | \"xhigh\";\n}\n\nexport const streamOpenAICompletions: StreamFunction<\"openai-completions\"> = (\n\tmodel: Model<\"openai-completions\">,\n\tcontext: Context,\n\toptions?: OpenAICompletionsOptions,\n): AssistantMessageEventStream => {\n\tconst stream = new AssistantMessageEventStream();\n\n\t(async () => {\n\t\tconst output: AssistantMessage = {\n\t\t\trole: \"assistant\",\n\t\t\tcontent: [],\n\t\t\tapi: model.api,\n\t\t\tprovider: model.provider,\n\t\t\tmodel: model.id,\n\t\t\tusage: {\n\t\t\t\tinput: 0,\n\t\t\t\toutput: 0,\n\t\t\t\tcacheRead: 0,\n\t\t\t\tcacheWrite: 0,\n\t\t\t\ttotalTokens: 0,\n\t\t\t\tcost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0, total: 0 },\n\t\t\t},\n\t\t\tstopReason: \"stop\",\n\t\t\ttimestamp: Date.now(),\n\t\t};\n\n\t\ttry {\n\t\t\tconst apiKey = options?.apiKey || getEnvApiKey(model.provider) || \"\";\n\t\t\tconst client = createClient(model, context, apiKey);\n\t\t\tconst params = buildParams(model, context, options);\n\t\t\toptions?.onPayload?.(params);\n\t\t\tconst openaiStream = await client.chat.completions.create(params, { signal: options?.signal });\n\t\t\tstream.push({ type: \"start\", partial: output });\n\n\t\t\tlet currentBlock: TextContent | ThinkingContent | (ToolCall & { partialArgs?: string }) | null = null;\n\t\t\tconst blocks = output.content;\n\t\t\tconst blockIndex = () => blocks.length - 1;\n\t\t\tconst finishCurrentBlock = (block?: typeof currentBlock) => {\n\t\t\t\tif (block) {\n\t\t\t\t\tif (block.type === \"text\") {\n\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\ttype: \"text_end\",\n\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\tcontent: block.text,\n\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t});\n\t\t\t\t\t} else if (block.type === \"thinking\") {\n\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\ttype: \"thinking_end\",\n\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\tcontent: block.thinking,\n\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t});\n\t\t\t\t\t} else if (block.type === \"toolCall\") {\n\t\t\t\t\t\tblock.arguments = JSON.parse(block.partialArgs || \"{}\");\n\t\t\t\t\t\tdelete block.partialArgs;\n\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\ttype: \"toolcall_end\",\n\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\ttoolCall: block,\n\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t});\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t};\n\n\t\t\tfor await (const chunk of openaiStream) {\n\t\t\t\tif (chunk.usage) {\n\t\t\t\t\tconst cachedTokens = chunk.usage.prompt_tokens_details?.cached_tokens || 0;\n\t\t\t\t\tconst reasoningTokens = chunk.usage.completion_tokens_details?.reasoning_tokens || 0;\n\t\t\t\t\tconst input = (chunk.usage.prompt_tokens || 0) - cachedTokens;\n\t\t\t\t\tconst outputTokens = (chunk.usage.completion_tokens || 0) + reasoningTokens;\n\t\t\t\t\toutput.usage = {\n\t\t\t\t\t\t// OpenAI includes cached tokens in prompt_tokens, so subtract to get non-cached input\n\t\t\t\t\t\tinput,\n\t\t\t\t\t\toutput: outputTokens,\n\t\t\t\t\t\tcacheRead: cachedTokens,\n\t\t\t\t\t\tcacheWrite: 0,\n\t\t\t\t\t\t// Compute totalTokens ourselves since we add reasoning_tokens to output\n\t\t\t\t\t\t// and some providers (e.g., Groq) don't include them in total_tokens\n\t\t\t\t\t\ttotalTokens: input + outputTokens + cachedTokens,\n\t\t\t\t\t\tcost: {\n\t\t\t\t\t\t\tinput: 0,\n\t\t\t\t\t\t\toutput: 0,\n\t\t\t\t\t\t\tcacheRead: 0,\n\t\t\t\t\t\t\tcacheWrite: 0,\n\t\t\t\t\t\t\ttotal: 0,\n\t\t\t\t\t\t},\n\t\t\t\t\t};\n\t\t\t\t\tcalculateCost(model, output.usage);\n\t\t\t\t}\n\n\t\t\t\tconst choice = chunk.choices[0];\n\t\t\t\tif (!choice) continue;\n\n\t\t\t\tif (choice.finish_reason) {\n\t\t\t\t\toutput.stopReason = mapStopReason(choice.finish_reason);\n\t\t\t\t}\n\n\t\t\t\tif (choice.delta) {\n\t\t\t\t\tif (\n\t\t\t\t\t\tchoice.delta.content !== null &&\n\t\t\t\t\t\tchoice.delta.content !== undefined &&\n\t\t\t\t\t\tchoice.delta.content.length > 0\n\t\t\t\t\t) {\n\t\t\t\t\t\tif (!currentBlock || currentBlock.type !== \"text\") {\n\t\t\t\t\t\t\tfinishCurrentBlock(currentBlock);\n\t\t\t\t\t\t\tcurrentBlock = { type: \"text\", text: \"\" };\n\t\t\t\t\t\t\toutput.content.push(currentBlock);\n\t\t\t\t\t\t\tstream.push({ type: \"text_start\", contentIndex: blockIndex(), partial: output });\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif (currentBlock.type === \"text\") {\n\t\t\t\t\t\t\tcurrentBlock.text += choice.delta.content;\n\t\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\t\ttype: \"text_delta\",\n\t\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\t\tdelta: choice.delta.content,\n\t\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\t// Some endpoints return reasoning in reasoning_content (llama.cpp),\n\t\t\t\t\t// or reasoning (other openai compatible endpoints)\n\t\t\t\t\t// Use the first non-empty reasoning field to avoid duplication\n\t\t\t\t\t// (e.g., chutes.ai returns both reasoning_content and reasoning with same content)\n\t\t\t\t\tconst reasoningFields = [\"reasoning_content\", \"reasoning\", \"reasoning_text\"];\n\t\t\t\t\tlet foundReasoningField: string | null = null;\n\t\t\t\t\tfor (const field of reasoningFields) {\n\t\t\t\t\t\tif (\n\t\t\t\t\t\t\t(choice.delta as any)[field] !== null &&\n\t\t\t\t\t\t\t(choice.delta as any)[field] !== undefined &&\n\t\t\t\t\t\t\t(choice.delta as any)[field].length > 0\n\t\t\t\t\t\t) {\n\t\t\t\t\t\t\tif (!foundReasoningField) {\n\t\t\t\t\t\t\t\tfoundReasoningField = field;\n\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tif (foundReasoningField) {\n\t\t\t\t\t\tif (!currentBlock || currentBlock.type !== \"thinking\") {\n\t\t\t\t\t\t\tfinishCurrentBlock(currentBlock);\n\t\t\t\t\t\t\tcurrentBlock = {\n\t\t\t\t\t\t\t\ttype: \"thinking\",\n\t\t\t\t\t\t\t\tthinking: \"\",\n\t\t\t\t\t\t\t\tthinkingSignature: foundReasoningField,\n\t\t\t\t\t\t\t};\n\t\t\t\t\t\t\toutput.content.push(currentBlock);\n\t\t\t\t\t\t\tstream.push({ type: \"thinking_start\", contentIndex: blockIndex(), partial: output });\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif (currentBlock.type === \"thinking\") {\n\t\t\t\t\t\t\tconst delta = (choice.delta as any)[foundReasoningField];\n\t\t\t\t\t\t\tcurrentBlock.thinking += delta;\n\t\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\t\ttype: \"thinking_delta\",\n\t\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\t\tdelta,\n\t\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tif (choice?.delta?.tool_calls) {\n\t\t\t\t\t\tfor (const toolCall of choice.delta.tool_calls) {\n\t\t\t\t\t\t\tif (\n\t\t\t\t\t\t\t\t!currentBlock ||\n\t\t\t\t\t\t\t\tcurrentBlock.type !== \"toolCall\" ||\n\t\t\t\t\t\t\t\t(toolCall.id && currentBlock.id !== toolCall.id)\n\t\t\t\t\t\t\t) {\n\t\t\t\t\t\t\t\tfinishCurrentBlock(currentBlock);\n\t\t\t\t\t\t\t\tcurrentBlock = {\n\t\t\t\t\t\t\t\t\ttype: \"toolCall\",\n\t\t\t\t\t\t\t\t\tid: toolCall.id || \"\",\n\t\t\t\t\t\t\t\t\tname: toolCall.function?.name || \"\",\n\t\t\t\t\t\t\t\t\targuments: {},\n\t\t\t\t\t\t\t\t\tpartialArgs: \"\",\n\t\t\t\t\t\t\t\t};\n\t\t\t\t\t\t\t\toutput.content.push(currentBlock);\n\t\t\t\t\t\t\t\tstream.push({ type: \"toolcall_start\", contentIndex: blockIndex(), partial: output });\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t\tif (currentBlock.type === \"toolCall\") {\n\t\t\t\t\t\t\t\tif (toolCall.id) currentBlock.id = toolCall.id;\n\t\t\t\t\t\t\t\tif (toolCall.function?.name) currentBlock.name = toolCall.function.name;\n\t\t\t\t\t\t\t\tlet delta = \"\";\n\t\t\t\t\t\t\t\tif (toolCall.function?.arguments) {\n\t\t\t\t\t\t\t\t\tdelta = toolCall.function.arguments;\n\t\t\t\t\t\t\t\t\tcurrentBlock.partialArgs += toolCall.function.arguments;\n\t\t\t\t\t\t\t\t\tcurrentBlock.arguments = parseStreamingJson(currentBlock.partialArgs);\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\t\t\ttype: \"toolcall_delta\",\n\t\t\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\t\t\tdelta,\n\t\t\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tconst reasoningDetails = (choice.delta as any).reasoning_details;\n\t\t\t\t\tif (reasoningDetails && Array.isArray(reasoningDetails)) {\n\t\t\t\t\t\tfor (const detail of reasoningDetails) {\n\t\t\t\t\t\t\tif (detail.type === \"reasoning.encrypted\" && detail.id && detail.data) {\n\t\t\t\t\t\t\t\tconst matchingToolCall = output.content.find(\n\t\t\t\t\t\t\t\t\t(b) => b.type === \"toolCall\" && b.id === detail.id,\n\t\t\t\t\t\t\t\t) as ToolCall | undefined;\n\t\t\t\t\t\t\t\tif (matchingToolCall) {\n\t\t\t\t\t\t\t\t\tmatchingToolCall.thoughtSignature = JSON.stringify(detail);\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tfinishCurrentBlock(currentBlock);\n\n\t\t\tif (options?.signal?.aborted) {\n\t\t\t\tthrow new Error(\"Request was aborted\");\n\t\t\t}\n\n\t\t\tif (output.stopReason === \"aborted\" || output.stopReason === \"error\") {\n\t\t\t\tthrow new Error(\"An unkown error ocurred\");\n\t\t\t}\n\n\t\t\tstream.push({ type: \"done\", reason: output.stopReason, message: output });\n\t\t\tstream.end();\n\t\t} catch (error) {\n\t\t\tfor (const block of output.content) delete (block as any).index;\n\t\t\toutput.stopReason = options?.signal?.aborted ? \"aborted\" : \"error\";\n\t\t\toutput.errorMessage = error instanceof Error ? error.message : JSON.stringify(error);\n\t\t\t// Some providers via OpenRouter give additional information in this field.\n\t\t\tconst rawMetadata = (error as any)?.error?.metadata?.raw;\n\t\t\tif (rawMetadata) output.errorMessage += `\\n${rawMetadata}`;\n\t\t\tstream.push({ type: \"error\", reason: output.stopReason, error: output });\n\t\t\tstream.end();\n\t\t}\n\t})();\n\n\treturn stream;\n};\n\nfunction createClient(model: Model<\"openai-completions\">, context: Context, apiKey?: string) {\n\tif (!apiKey) {\n\t\tif (!process.env.OPENAI_API_KEY) {\n\t\t\tthrow new Error(\n\t\t\t\t\"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass it as an argument.\",\n\t\t\t);\n\t\t}\n\t\tapiKey = process.env.OPENAI_API_KEY;\n\t}\n\n\tconst headers = { ...model.headers };\n\tif (model.provider === \"github-copilot\") {\n\t\t// Copilot expects X-Initiator to indicate whether the request is user-initiated\n\t\t// or agent-initiated (e.g. follow-up after assistant/tool messages). If there is\n\t\t// no prior message, default to user-initiated.\n\t\tconst messages = context.messages || [];\n\t\tconst lastMessage = messages[messages.length - 1];\n\t\tconst isAgentCall = lastMessage ? lastMessage.role !== \"user\" : false;\n\t\theaders[\"X-Initiator\"] = isAgentCall ? \"agent\" : \"user\";\n\t\theaders[\"Openai-Intent\"] = \"conversation-edits\";\n\n\t\t// Copilot requires this header when sending images\n\t\tconst hasImages = messages.some((msg) => {\n\t\t\tif (msg.role === \"user\" && Array.isArray(msg.content)) {\n\t\t\t\treturn msg.content.some((c) => c.type === \"image\");\n\t\t\t}\n\t\t\tif (msg.role === \"toolResult\" && Array.isArray(msg.content)) {\n\t\t\t\treturn msg.content.some((c) => c.type === \"image\");\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t\tif (hasImages) {\n\t\t\theaders[\"Copilot-Vision-Request\"] = \"true\";\n\t\t}\n\t}\n\n\treturn new OpenAI({\n\t\tapiKey,\n\t\tbaseURL: model.baseUrl,\n\t\tdangerouslyAllowBrowser: true,\n\t\tdefaultHeaders: headers,\n\t});\n}\n\nfunction buildParams(model: Model<\"openai-completions\">, context: Context, options?: OpenAICompletionsOptions) {\n\tconst compat = getCompat(model);\n\tconst messages = convertMessages(model, context, compat);\n\tmaybeAddOpenRouterAnthropicCacheControl(model, messages);\n\n\tconst params: OpenAI.Chat.Completions.ChatCompletionCreateParamsStreaming = {\n\t\tmodel: model.id,\n\t\tmessages,\n\t\tstream: true,\n\t};\n\n\tif (compat.supportsUsageInStreaming !== false) {\n\t\t(params as any).stream_options = { include_usage: true };\n\t}\n\n\tif (compat.supportsStore) {\n\t\tparams.store = false;\n\t}\n\n\tif (options?.maxTokens) {\n\t\tif (compat.maxTokensField === \"max_tokens\") {\n\t\t\t(params as any).max_tokens = options.maxTokens;\n\t\t} else {\n\t\t\tparams.max_completion_tokens = options.maxTokens;\n\t\t}\n\t}\n\n\tif (options?.temperature !== undefined) {\n\t\tparams.temperature = options.temperature;\n\t}\n\n\tif (context.tools) {\n\t\tparams.tools = convertTools(context.tools);\n\t} else if (hasToolHistory(context.messages)) {\n\t\t// Anthropic (via LiteLLM/proxy) requires tools param when conversation has tool_calls/tool_results\n\t\tparams.tools = [];\n\t}\n\n\tif (options?.toolChoice) {\n\t\tparams.tool_choice = options.toolChoice;\n\t}\n\n\tif (compat.thinkingFormat === \"zai\" && model.reasoning) {\n\t\t// Z.ai uses binary thinking: { type: \"enabled\" | \"disabled\" }\n\t\t// Must explicitly disable since z.ai defaults to thinking enabled\n\t\t(params as any).thinking = { type: options?.reasoningEffort ? \"enabled\" : \"disabled\" };\n\t} else if (options?.reasoningEffort && model.reasoning && compat.supportsReasoningEffort) {\n\t\t// OpenAI-style reasoning_effort\n\t\tparams.reasoning_effort = options.reasoningEffort;\n\t}\n\n\treturn params;\n}\n\nfunction maybeAddOpenRouterAnthropicCacheControl(\n\tmodel: Model<\"openai-completions\">,\n\tmessages: ChatCompletionMessageParam[],\n): void {\n\tif (model.provider !== \"openrouter\" || !model.id.startsWith(\"anthropic/\")) return;\n\n\t// Anthropic-style caching requires cache_control on a text part. Add a breakpoint\n\t// on the last user/assistant message (walking backwards until we find text content).\n\tfor (let i = messages.length - 1; i >= 0; i--) {\n\t\tconst msg = messages[i];\n\t\tif (msg.role !== \"user\" && msg.role !== \"assistant\") continue;\n\n\t\tconst content = msg.content;\n\t\tif (typeof content === \"string\") {\n\t\t\tmsg.content = [\n\t\t\t\tObject.assign({ type: \"text\" as const, text: content }, { cache_control: { type: \"ephemeral\" } }),\n\t\t\t];\n\t\t\treturn;\n\t\t}\n\n\t\tif (!Array.isArray(content)) continue;\n\n\t\t// Find last text part and add cache_control\n\t\tfor (let j = content.length - 1; j >= 0; j--) {\n\t\t\tconst part = content[j];\n\t\t\tif (part?.type === \"text\") {\n\t\t\t\tObject.assign(part, { cache_control: { type: \"ephemeral\" } });\n\t\t\t\treturn;\n\t\t\t}\n\t\t}\n\t}\n}\n\nfunction convertMessages(\n\tmodel: Model<\"openai-completions\">,\n\tcontext: Context,\n\tcompat: Required<OpenAICompletionsCompat>,\n): ChatCompletionMessageParam[] {\n\tconst params: ChatCompletionMessageParam[] = [];\n\n\tconst normalizeToolCallId = (id: string): string => {\n\t\tif (compat.requiresMistralToolIds) return normalizeMistralToolId(id);\n\t\tif (model.provider === \"openai\") return id.length > 40 ? id.slice(0, 40) : id;\n\t\t// Copilot Claude models route to Claude backend which requires Anthropic ID format\n\t\tif (model.provider === \"github-copilot\" && model.id.toLowerCase().includes(\"claude\")) {\n\t\t\treturn id.replace(/[^a-zA-Z0-9_-]/g, \"_\").slice(0, 64);\n\t\t}\n\t\treturn id;\n\t};\n\n\tconst transformedMessages = transformMessages(context.messages, model, (id) => normalizeToolCallId(id));\n\n\tif (context.systemPrompt) {\n\t\tconst useDeveloperRole = model.reasoning && compat.supportsDeveloperRole;\n\t\tconst role = useDeveloperRole ? \"developer\" : \"system\";\n\t\tparams.push({ role: role, content: sanitizeSurrogates(context.systemPrompt) });\n\t}\n\n\tlet lastRole: string | null = null;\n\n\tfor (const msg of transformedMessages) {\n\t\t// Some providers (e.g. Mistral/Devstral) don't allow user messages directly after tool results\n\t\t// Insert a synthetic assistant message to bridge the gap\n\t\tif (compat.requiresAssistantAfterToolResult && lastRole === \"toolResult\" && msg.role === \"user\") {\n\t\t\tparams.push({\n\t\t\t\trole: \"assistant\",\n\t\t\t\tcontent: \"I have processed the tool results.\",\n\t\t\t});\n\t\t}\n\n\t\tif (msg.role === \"user\") {\n\t\t\tif (typeof msg.content === \"string\") {\n\t\t\t\tparams.push({\n\t\t\t\t\trole: \"user\",\n\t\t\t\t\tcontent: sanitizeSurrogates(msg.content),\n\t\t\t\t});\n\t\t\t} else {\n\t\t\t\tconst content: ChatCompletionContentPart[] = msg.content.map((item): ChatCompletionContentPart => {\n\t\t\t\t\tif (item.type === \"text\") {\n\t\t\t\t\t\treturn {\n\t\t\t\t\t\t\ttype: \"text\",\n\t\t\t\t\t\t\ttext: sanitizeSurrogates(item.text),\n\t\t\t\t\t\t} satisfies ChatCompletionContentPartText;\n\t\t\t\t\t} else {\n\t\t\t\t\t\treturn {\n\t\t\t\t\t\t\ttype: \"image_url\",\n\t\t\t\t\t\t\timage_url: {\n\t\t\t\t\t\t\t\turl: `data:${item.mimeType};base64,${item.data}`,\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t} satisfies ChatCompletionContentPartImage;\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\tconst filteredContent = !model.input.includes(\"image\")\n\t\t\t\t\t? content.filter((c) => c.type !== \"image_url\")\n\t\t\t\t\t: content;\n\t\t\t\tif (filteredContent.length === 0) continue;\n\t\t\t\tparams.push({\n\t\t\t\t\trole: \"user\",\n\t\t\t\t\tcontent: filteredContent,\n\t\t\t\t});\n\t\t\t}\n\t\t} else if (msg.role === \"assistant\") {\n\t\t\t// Some providers (e.g. Mistral) don't accept null content, use empty string instead\n\t\t\tconst assistantMsg: ChatCompletionAssistantMessageParam = {\n\t\t\t\trole: \"assistant\",\n\t\t\t\tcontent: compat.requiresAssistantAfterToolResult ? \"\" : null,\n\t\t\t};\n\n\t\t\tconst textBlocks = msg.content.filter((b) => b.type === \"text\") as TextContent[];\n\t\t\t// Filter out empty text blocks to avoid API validation errors\n\t\t\tconst nonEmptyTextBlocks = textBlocks.filter((b) => b.text && b.text.trim().length > 0);\n\t\t\tif (nonEmptyTextBlocks.length > 0) {\n\t\t\t\t// GitHub Copilot requires assistant content as a string, not an array.\n\t\t\t\t// Sending as array causes Claude models to re-answer all previous prompts.\n\t\t\t\tif (model.provider === \"github-copilot\") {\n\t\t\t\t\tassistantMsg.content = nonEmptyTextBlocks.map((b) => sanitizeSurrogates(b.text)).join(\"\");\n\t\t\t\t} else {\n\t\t\t\t\tassistantMsg.content = nonEmptyTextBlocks.map((b) => {\n\t\t\t\t\t\treturn { type: \"text\", text: sanitizeSurrogates(b.text) };\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t// Handle thinking blocks\n\t\t\tconst thinkingBlocks = msg.content.filter((b) => b.type === \"thinking\") as ThinkingContent[];\n\t\t\t// Filter out empty thinking blocks to avoid API validation errors\n\t\t\tconst nonEmptyThinkingBlocks = thinkingBlocks.filter((b) => b.thinking && b.thinking.trim().length > 0);\n\t\t\tif (nonEmptyThinkingBlocks.length > 0) {\n\t\t\t\tif (compat.requiresThinkingAsText) {\n\t\t\t\t\t// Convert thinking blocks to plain text (no tags to avoid model mimicking them)\n\t\t\t\t\tconst thinkingText = nonEmptyThinkingBlocks.map((b) => b.thinking).join(\"\\n\\n\");\n\t\t\t\t\tconst textContent = assistantMsg.content as Array<{ type: \"text\"; text: string }> | null;\n\t\t\t\t\tif (textContent) {\n\t\t\t\t\t\ttextContent.unshift({ type: \"text\", text: thinkingText });\n\t\t\t\t\t} else {\n\t\t\t\t\t\tassistantMsg.content = [{ type: \"text\", text: thinkingText }];\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\t// Use the signature from the first thinking block if available (for llama.cpp server + gpt-oss)\n\t\t\t\t\tconst signature = nonEmptyThinkingBlocks[0].thinkingSignature;\n\t\t\t\t\tif (signature && signature.length > 0) {\n\t\t\t\t\t\t(assistantMsg as any)[signature] = nonEmptyThinkingBlocks.map((b) => b.thinking).join(\"\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tconst toolCalls = msg.content.filter((b) => b.type === \"toolCall\") as ToolCall[];\n\t\t\tif (toolCalls.length > 0) {\n\t\t\t\tassistantMsg.tool_calls = toolCalls.map((tc) => ({\n\t\t\t\t\tid: tc.id,\n\t\t\t\t\ttype: \"function\" as const,\n\t\t\t\t\tfunction: {\n\t\t\t\t\t\tname: tc.name,\n\t\t\t\t\t\targuments: JSON.stringify(tc.arguments),\n\t\t\t\t\t},\n\t\t\t\t}));\n\t\t\t\tconst reasoningDetails = toolCalls\n\t\t\t\t\t.filter((tc) => tc.thoughtSignature)\n\t\t\t\t\t.map((tc) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\treturn JSON.parse(tc.thoughtSignature!);\n\t\t\t\t\t\t} catch {\n\t\t\t\t\t\t\treturn null;\n\t\t\t\t\t\t}\n\t\t\t\t\t})\n\t\t\t\t\t.filter(Boolean);\n\t\t\t\tif (reasoningDetails.length > 0) {\n\t\t\t\t\t(assistantMsg as any).reasoning_details = reasoningDetails;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Skip assistant messages that have no content and no tool calls.\n\t\t\t// Mistral explicitly requires \"either content or tool_calls, but not none\".\n\t\t\t// Other providers also don't accept empty assistant messages.\n\t\t\t// This handles aborted assistant responses that got no content.\n\t\t\tconst content = assistantMsg.content;\n\t\t\tconst hasContent =\n\t\t\t\tcontent !== null &&\n\t\t\t\tcontent !== undefined &&\n\t\t\t\t(typeof content === \"string\" ? content.length > 0 : content.length > 0);\n\t\t\tif (!hasContent && !assistantMsg.tool_calls) {\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tparams.push(assistantMsg);\n\t\t} else if (msg.role === \"toolResult\") {\n\t\t\t// Extract text and image content\n\t\t\tconst textResult = msg.content\n\t\t\t\t.filter((c) => c.type === \"text\")\n\t\t\t\t.map((c) => (c as any).text)\n\t\t\t\t.join(\"\\n\");\n\t\t\tconst hasImages = msg.content.some((c) => c.type === \"image\");\n\n\t\t\t// Always send tool result with text (or placeholder if only images)\n\t\t\tconst hasText = textResult.length > 0;\n\t\t\t// Some providers (e.g. Mistral) require the 'name' field in tool results\n\t\t\tconst toolResultMsg: ChatCompletionToolMessageParam = {\n\t\t\t\trole: \"tool\",\n\t\t\t\tcontent: sanitizeSurrogates(hasText ? textResult : \"(see attached image)\"),\n\t\t\t\ttool_call_id: msg.toolCallId,\n\t\t\t};\n\t\t\tif (compat.requiresToolResultName && msg.toolName) {\n\t\t\t\t(toolResultMsg as any).name = msg.toolName;\n\t\t\t}\n\t\t\tparams.push(toolResultMsg);\n\n\t\t\t// If there are images and model supports them, send a follow-up user message with images\n\t\t\tif (hasImages && model.input.includes(\"image\")) {\n\t\t\t\tconst contentBlocks: Array<\n\t\t\t\t\t{ type: \"text\"; text: string } | { type: \"image_url\"; image_url: { url: string } }\n\t\t\t\t> = [];\n\n\t\t\t\t// Add text prefix\n\t\t\t\tcontentBlocks.push({\n\t\t\t\t\ttype: \"text\",\n\t\t\t\t\ttext: \"Attached image(s) from tool result:\",\n\t\t\t\t});\n\n\t\t\t\t// Add images\n\t\t\t\tfor (const block of msg.content) {\n\t\t\t\t\tif (block.type === \"image\") {\n\t\t\t\t\t\tcontentBlocks.push({\n\t\t\t\t\t\t\ttype: \"image_url\",\n\t\t\t\t\t\t\timage_url: {\n\t\t\t\t\t\t\t\turl: `data:${(block as any).mimeType};base64,${(block as any).data}`,\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t});\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tparams.push({\n\t\t\t\t\trole: \"user\",\n\t\t\t\t\tcontent: contentBlocks,\n\t\t\t\t});\n\t\t\t}\n\t\t}\n\n\t\tlastRole = msg.role;\n\t}\n\n\treturn params;\n}\n\nfunction convertTools(tools: Tool[]): OpenAI.Chat.Completions.ChatCompletionTool[] {\n\treturn tools.map((tool) => ({\n\t\ttype: \"function\",\n\t\tfunction: {\n\t\t\tname: tool.name,\n\t\t\tdescription: tool.description,\n\t\t\tparameters: tool.parameters as any, // TypeBox already generates JSON Schema\n\t\t\tstrict: false, // Disable strict mode to allow optional parameters without null unions\n\t\t},\n\t}));\n}\n\nfunction mapStopReason(reason: ChatCompletionChunk.Choice[\"finish_reason\"]): StopReason {\n\tif (reason === null) return \"stop\";\n\tswitch (reason) {\n\t\tcase \"stop\":\n\t\t\treturn \"stop\";\n\t\tcase \"length\":\n\t\t\treturn \"length\";\n\t\tcase \"function_call\":\n\t\tcase \"tool_calls\":\n\t\t\treturn \"toolUse\";\n\t\tcase \"content_filter\":\n\t\t\treturn \"error\";\n\t\tdefault: {\n\t\t\tconst _exhaustive: never = reason;\n\t\t\tthrow new Error(`Unhandled stop reason: ${_exhaustive}`);\n\t\t}\n\t}\n}\n\n/**\n * Detect compatibility settings from provider and baseUrl for known providers.\n * Provider takes precedence over URL-based detection since it's explicitly configured.\n * Returns a fully resolved OpenAICompletionsCompat object with all fields set.\n */\nfunction detectCompat(model: Model<\"openai-completions\">): Required<OpenAICompletionsCompat> {\n\tconst provider = model.provider;\n\tconst baseUrl = model.baseUrl;\n\n\tconst isZai = provider === \"zai\" || baseUrl.includes(\"api.z.ai\");\n\n\tconst isNonStandard =\n\t\tprovider === \"cerebras\" ||\n\t\tbaseUrl.includes(\"cerebras.ai\") ||\n\t\tprovider === \"xai\" ||\n\t\tbaseUrl.includes(\"api.x.ai\") ||\n\t\tprovider === \"mistral\" ||\n\t\tbaseUrl.includes(\"mistral.ai\") ||\n\t\tbaseUrl.includes(\"chutes.ai\") ||\n\t\tisZai ||\n\t\tprovider === \"opencode\" ||\n\t\tbaseUrl.includes(\"opencode.ai\");\n\n\tconst useMaxTokens = provider === \"mistral\" || baseUrl.includes(\"mistral.ai\") || baseUrl.includes(\"chutes.ai\");\n\n\tconst isGrok = provider === \"xai\" || baseUrl.includes(\"api.x.ai\");\n\n\tconst isMistral = provider === \"mistral\" || baseUrl.includes(\"mistral.ai\");\n\n\treturn {\n\t\tsupportsStore: !isNonStandard,\n\t\tsupportsDeveloperRole: !isNonStandard,\n\t\tsupportsReasoningEffort: !isGrok && !isZai,\n\t\tsupportsUsageInStreaming: true,\n\t\tmaxTokensField: useMaxTokens ? \"max_tokens\" : \"max_completion_tokens\",\n\t\trequiresToolResultName: isMistral,\n\t\trequiresAssistantAfterToolResult: false, // Mistral no longer requires this as of Dec 2024\n\t\trequiresThinkingAsText: isMistral,\n\t\trequiresMistralToolIds: isMistral,\n\t\tthinkingFormat: isZai ? \"zai\" : \"openai\",\n\t};\n}\n\n/**\n * Get resolved compatibility settings for a model.\n * Uses explicit model.compat if provided, otherwise auto-detects from provider/URL.\n */\nfunction getCompat(model: Model<\"openai-completions\">): Required<OpenAICompletionsCompat> {\n\tconst detected = detectCompat(model);\n\tif (!model.compat) return detected;\n\n\treturn {\n\t\tsupportsStore: model.compat.supportsStore ?? detected.supportsStore,\n\t\tsupportsDeveloperRole: model.compat.supportsDeveloperRole ?? detected.supportsDeveloperRole,\n\t\tsupportsReasoningEffort: model.compat.supportsReasoningEffort ?? detected.supportsReasoningEffort,\n\t\tsupportsUsageInStreaming: model.compat.supportsUsageInStreaming ?? detected.supportsUsageInStreaming,\n\t\tmaxTokensField: model.compat.maxTokensField ?? detected.maxTokensField,\n\t\trequiresToolResultName: model.compat.requiresToolResultName ?? detected.requiresToolResultName,\n\t\trequiresAssistantAfterToolResult:\n\t\t\tmodel.compat.requiresAssistantAfterToolResult ?? detected.requiresAssistantAfterToolResult,\n\t\trequiresThinkingAsText: model.compat.requiresThinkingAsText ?? detected.requiresThinkingAsText,\n\t\trequiresMistralToolIds: model.compat.requiresMistralToolIds ?? detected.requiresMistralToolIds,\n\t\tthinkingFormat: model.compat.thinkingFormat ?? detected.thinkingFormat,\n\t};\n}\n"]}
|
|
1
|
+
{"version":3,"file":"openai-completions.d.ts","sourceRoot":"","sources":["../../src/providers/openai-completions.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAMX,0BAA0B,EAE1B,MAAM,sCAAsC,CAAC;AAG9C,OAAO,KAAK,EAEX,OAAO,EAEP,KAAK,EACL,uBAAuB,EACvB,mBAAmB,EAEnB,cAAc,EACd,aAAa,EAMb,MAAM,aAAa,CAAC;AA4CrB,MAAM,WAAW,wBAAyB,SAAQ,aAAa;IAC9D,UAAU,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,UAAU,GAAG;QAAE,IAAI,EAAE,UAAU,CAAC;QAAC,QAAQ,EAAE;YAAE,IAAI,EAAE,MAAM,CAAA;SAAE,CAAA;KAAE,CAAC;IAC7F,eAAe,CAAC,EAAE,SAAS,GAAG,KAAK,GAAG,QAAQ,GAAG,MAAM,GAAG,OAAO,CAAC;CAClE;AAED,eAAO,MAAM,uBAAuB,EAAE,cAAc,CAAC,oBAAoB,EAAE,wBAAwB,CAqPlG,CAAC;AAEF,eAAO,MAAM,6BAA6B,EAAE,cAAc,CAAC,oBAAoB,EAAE,mBAAmB,CAiBnG,CAAC;AAoJF,wBAAgB,eAAe,CAC9B,KAAK,EAAE,KAAK,CAAC,oBAAoB,CAAC,EAClC,OAAO,EAAE,OAAO,EAChB,MAAM,EAAE,QAAQ,CAAC,uBAAuB,CAAC,GACvC,0BAA0B,EAAE,CA2N9B","sourcesContent":["import OpenAI from \"openai\";\nimport type {\n\tChatCompletionAssistantMessageParam,\n\tChatCompletionChunk,\n\tChatCompletionContentPart,\n\tChatCompletionContentPartImage,\n\tChatCompletionContentPartText,\n\tChatCompletionMessageParam,\n\tChatCompletionToolMessageParam,\n} from \"openai/resources/chat/completions.js\";\nimport { getEnvApiKey } from \"../env-api-keys.js\";\nimport { calculateCost, supportsXhigh } from \"../models.js\";\nimport type {\n\tAssistantMessage,\n\tContext,\n\tMessage,\n\tModel,\n\tOpenAICompletionsCompat,\n\tSimpleStreamOptions,\n\tStopReason,\n\tStreamFunction,\n\tStreamOptions,\n\tTextContent,\n\tThinkingContent,\n\tTool,\n\tToolCall,\n\tToolResultMessage,\n} from \"../types.js\";\nimport { AssistantMessageEventStream } from \"../utils/event-stream.js\";\nimport { parseStreamingJson } from \"../utils/json-parse.js\";\nimport { sanitizeSurrogates } from \"../utils/sanitize-unicode.js\";\nimport { buildBaseOptions, clampReasoning } from \"./simple-options.js\";\nimport { transformMessages } from \"./transform-messages.js\";\n\n/**\n * Normalize tool call ID for Mistral.\n * Mistral requires tool IDs to be exactly 9 alphanumeric characters (a-z, A-Z, 0-9).\n */\nfunction normalizeMistralToolId(id: string): string {\n\t// Remove non-alphanumeric characters\n\tlet normalized = id.replace(/[^a-zA-Z0-9]/g, \"\");\n\t// Mistral requires exactly 9 characters\n\tif (normalized.length < 9) {\n\t\t// Pad with deterministic characters based on original ID to ensure matching\n\t\tconst padding = \"ABCDEFGHI\";\n\t\tnormalized = normalized + padding.slice(0, 9 - normalized.length);\n\t} else if (normalized.length > 9) {\n\t\tnormalized = normalized.slice(0, 9);\n\t}\n\treturn normalized;\n}\n\n/**\n * Check if conversation messages contain tool calls or tool results.\n * This is needed because Anthropic (via proxy) requires the tools param\n * to be present when messages include tool_calls or tool role messages.\n */\nfunction hasToolHistory(messages: Message[]): boolean {\n\tfor (const msg of messages) {\n\t\tif (msg.role === \"toolResult\") {\n\t\t\treturn true;\n\t\t}\n\t\tif (msg.role === \"assistant\") {\n\t\t\tif (msg.content.some((block) => block.type === \"toolCall\")) {\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t}\n\treturn false;\n}\n\nexport interface OpenAICompletionsOptions extends StreamOptions {\n\ttoolChoice?: \"auto\" | \"none\" | \"required\" | { type: \"function\"; function: { name: string } };\n\treasoningEffort?: \"minimal\" | \"low\" | \"medium\" | \"high\" | \"xhigh\";\n}\n\nexport const streamOpenAICompletions: StreamFunction<\"openai-completions\", OpenAICompletionsOptions> = (\n\tmodel: Model<\"openai-completions\">,\n\tcontext: Context,\n\toptions?: OpenAICompletionsOptions,\n): AssistantMessageEventStream => {\n\tconst stream = new AssistantMessageEventStream();\n\n\t(async () => {\n\t\tconst output: AssistantMessage = {\n\t\t\trole: \"assistant\",\n\t\t\tcontent: [],\n\t\t\tapi: model.api,\n\t\t\tprovider: model.provider,\n\t\t\tmodel: model.id,\n\t\t\tusage: {\n\t\t\t\tinput: 0,\n\t\t\t\toutput: 0,\n\t\t\t\tcacheRead: 0,\n\t\t\t\tcacheWrite: 0,\n\t\t\t\ttotalTokens: 0,\n\t\t\t\tcost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0, total: 0 },\n\t\t\t},\n\t\t\tstopReason: \"stop\",\n\t\t\ttimestamp: Date.now(),\n\t\t};\n\n\t\ttry {\n\t\t\tconst apiKey = options?.apiKey || getEnvApiKey(model.provider) || \"\";\n\t\t\tconst client = createClient(model, context, apiKey, options?.headers);\n\t\t\tconst params = buildParams(model, context, options);\n\t\t\toptions?.onPayload?.(params);\n\t\t\tconst openaiStream = await client.chat.completions.create(params, { signal: options?.signal });\n\t\t\tstream.push({ type: \"start\", partial: output });\n\n\t\t\tlet currentBlock: TextContent | ThinkingContent | (ToolCall & { partialArgs?: string }) | null = null;\n\t\t\tconst blocks = output.content;\n\t\t\tconst blockIndex = () => blocks.length - 1;\n\t\t\tconst finishCurrentBlock = (block?: typeof currentBlock) => {\n\t\t\t\tif (block) {\n\t\t\t\t\tif (block.type === \"text\") {\n\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\ttype: \"text_end\",\n\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\tcontent: block.text,\n\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t});\n\t\t\t\t\t} else if (block.type === \"thinking\") {\n\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\ttype: \"thinking_end\",\n\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\tcontent: block.thinking,\n\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t});\n\t\t\t\t\t} else if (block.type === \"toolCall\") {\n\t\t\t\t\t\tblock.arguments = JSON.parse(block.partialArgs || \"{}\");\n\t\t\t\t\t\tdelete block.partialArgs;\n\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\ttype: \"toolcall_end\",\n\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\ttoolCall: block,\n\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t});\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t};\n\n\t\t\tfor await (const chunk of openaiStream) {\n\t\t\t\tif (chunk.usage) {\n\t\t\t\t\tconst cachedTokens = chunk.usage.prompt_tokens_details?.cached_tokens || 0;\n\t\t\t\t\tconst reasoningTokens = chunk.usage.completion_tokens_details?.reasoning_tokens || 0;\n\t\t\t\t\tconst input = (chunk.usage.prompt_tokens || 0) - cachedTokens;\n\t\t\t\t\tconst outputTokens = (chunk.usage.completion_tokens || 0) + reasoningTokens;\n\t\t\t\t\toutput.usage = {\n\t\t\t\t\t\t// OpenAI includes cached tokens in prompt_tokens, so subtract to get non-cached input\n\t\t\t\t\t\tinput,\n\t\t\t\t\t\toutput: outputTokens,\n\t\t\t\t\t\tcacheRead: cachedTokens,\n\t\t\t\t\t\tcacheWrite: 0,\n\t\t\t\t\t\t// Compute totalTokens ourselves since we add reasoning_tokens to output\n\t\t\t\t\t\t// and some providers (e.g., Groq) don't include them in total_tokens\n\t\t\t\t\t\ttotalTokens: input + outputTokens + cachedTokens,\n\t\t\t\t\t\tcost: {\n\t\t\t\t\t\t\tinput: 0,\n\t\t\t\t\t\t\toutput: 0,\n\t\t\t\t\t\t\tcacheRead: 0,\n\t\t\t\t\t\t\tcacheWrite: 0,\n\t\t\t\t\t\t\ttotal: 0,\n\t\t\t\t\t\t},\n\t\t\t\t\t};\n\t\t\t\t\tcalculateCost(model, output.usage);\n\t\t\t\t}\n\n\t\t\t\tconst choice = chunk.choices[0];\n\t\t\t\tif (!choice) continue;\n\n\t\t\t\tif (choice.finish_reason) {\n\t\t\t\t\toutput.stopReason = mapStopReason(choice.finish_reason);\n\t\t\t\t}\n\n\t\t\t\tif (choice.delta) {\n\t\t\t\t\tif (\n\t\t\t\t\t\tchoice.delta.content !== null &&\n\t\t\t\t\t\tchoice.delta.content !== undefined &&\n\t\t\t\t\t\tchoice.delta.content.length > 0\n\t\t\t\t\t) {\n\t\t\t\t\t\tif (!currentBlock || currentBlock.type !== \"text\") {\n\t\t\t\t\t\t\tfinishCurrentBlock(currentBlock);\n\t\t\t\t\t\t\tcurrentBlock = { type: \"text\", text: \"\" };\n\t\t\t\t\t\t\toutput.content.push(currentBlock);\n\t\t\t\t\t\t\tstream.push({ type: \"text_start\", contentIndex: blockIndex(), partial: output });\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif (currentBlock.type === \"text\") {\n\t\t\t\t\t\t\tcurrentBlock.text += choice.delta.content;\n\t\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\t\ttype: \"text_delta\",\n\t\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\t\tdelta: choice.delta.content,\n\t\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\t// Some endpoints return reasoning in reasoning_content (llama.cpp),\n\t\t\t\t\t// or reasoning (other openai compatible endpoints)\n\t\t\t\t\t// Use the first non-empty reasoning field to avoid duplication\n\t\t\t\t\t// (e.g., chutes.ai returns both reasoning_content and reasoning with same content)\n\t\t\t\t\tconst reasoningFields = [\"reasoning_content\", \"reasoning\", \"reasoning_text\"];\n\t\t\t\t\tlet foundReasoningField: string | null = null;\n\t\t\t\t\tfor (const field of reasoningFields) {\n\t\t\t\t\t\tif (\n\t\t\t\t\t\t\t(choice.delta as any)[field] !== null &&\n\t\t\t\t\t\t\t(choice.delta as any)[field] !== undefined &&\n\t\t\t\t\t\t\t(choice.delta as any)[field].length > 0\n\t\t\t\t\t\t) {\n\t\t\t\t\t\t\tif (!foundReasoningField) {\n\t\t\t\t\t\t\t\tfoundReasoningField = field;\n\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tif (foundReasoningField) {\n\t\t\t\t\t\tif (!currentBlock || currentBlock.type !== \"thinking\") {\n\t\t\t\t\t\t\tfinishCurrentBlock(currentBlock);\n\t\t\t\t\t\t\tcurrentBlock = {\n\t\t\t\t\t\t\t\ttype: \"thinking\",\n\t\t\t\t\t\t\t\tthinking: \"\",\n\t\t\t\t\t\t\t\tthinkingSignature: foundReasoningField,\n\t\t\t\t\t\t\t};\n\t\t\t\t\t\t\toutput.content.push(currentBlock);\n\t\t\t\t\t\t\tstream.push({ type: \"thinking_start\", contentIndex: blockIndex(), partial: output });\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif (currentBlock.type === \"thinking\") {\n\t\t\t\t\t\t\tconst delta = (choice.delta as any)[foundReasoningField];\n\t\t\t\t\t\t\tcurrentBlock.thinking += delta;\n\t\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\t\ttype: \"thinking_delta\",\n\t\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\t\tdelta,\n\t\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tif (choice?.delta?.tool_calls) {\n\t\t\t\t\t\tfor (const toolCall of choice.delta.tool_calls) {\n\t\t\t\t\t\t\tif (\n\t\t\t\t\t\t\t\t!currentBlock ||\n\t\t\t\t\t\t\t\tcurrentBlock.type !== \"toolCall\" ||\n\t\t\t\t\t\t\t\t(toolCall.id && currentBlock.id !== toolCall.id)\n\t\t\t\t\t\t\t) {\n\t\t\t\t\t\t\t\tfinishCurrentBlock(currentBlock);\n\t\t\t\t\t\t\t\tcurrentBlock = {\n\t\t\t\t\t\t\t\t\ttype: \"toolCall\",\n\t\t\t\t\t\t\t\t\tid: toolCall.id || \"\",\n\t\t\t\t\t\t\t\t\tname: toolCall.function?.name || \"\",\n\t\t\t\t\t\t\t\t\targuments: {},\n\t\t\t\t\t\t\t\t\tpartialArgs: \"\",\n\t\t\t\t\t\t\t\t};\n\t\t\t\t\t\t\t\toutput.content.push(currentBlock);\n\t\t\t\t\t\t\t\tstream.push({ type: \"toolcall_start\", contentIndex: blockIndex(), partial: output });\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t\tif (currentBlock.type === \"toolCall\") {\n\t\t\t\t\t\t\t\tif (toolCall.id) currentBlock.id = toolCall.id;\n\t\t\t\t\t\t\t\tif (toolCall.function?.name) currentBlock.name = toolCall.function.name;\n\t\t\t\t\t\t\t\tlet delta = \"\";\n\t\t\t\t\t\t\t\tif (toolCall.function?.arguments) {\n\t\t\t\t\t\t\t\t\tdelta = toolCall.function.arguments;\n\t\t\t\t\t\t\t\t\tcurrentBlock.partialArgs += toolCall.function.arguments;\n\t\t\t\t\t\t\t\t\tcurrentBlock.arguments = parseStreamingJson(currentBlock.partialArgs);\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t\tstream.push({\n\t\t\t\t\t\t\t\t\ttype: \"toolcall_delta\",\n\t\t\t\t\t\t\t\t\tcontentIndex: blockIndex(),\n\t\t\t\t\t\t\t\t\tdelta,\n\t\t\t\t\t\t\t\t\tpartial: output,\n\t\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tconst reasoningDetails = (choice.delta as any).reasoning_details;\n\t\t\t\t\tif (reasoningDetails && Array.isArray(reasoningDetails)) {\n\t\t\t\t\t\tfor (const detail of reasoningDetails) {\n\t\t\t\t\t\t\tif (detail.type === \"reasoning.encrypted\" && detail.id && detail.data) {\n\t\t\t\t\t\t\t\tconst matchingToolCall = output.content.find(\n\t\t\t\t\t\t\t\t\t(b) => b.type === \"toolCall\" && b.id === detail.id,\n\t\t\t\t\t\t\t\t) as ToolCall | undefined;\n\t\t\t\t\t\t\t\tif (matchingToolCall) {\n\t\t\t\t\t\t\t\t\tmatchingToolCall.thoughtSignature = JSON.stringify(detail);\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tfinishCurrentBlock(currentBlock);\n\n\t\t\tif (options?.signal?.aborted) {\n\t\t\t\tthrow new Error(\"Request was aborted\");\n\t\t\t}\n\n\t\t\tif (output.stopReason === \"aborted\" || output.stopReason === \"error\") {\n\t\t\t\tthrow new Error(\"An unknown error occurred\");\n\t\t\t}\n\n\t\t\tstream.push({ type: \"done\", reason: output.stopReason, message: output });\n\t\t\tstream.end();\n\t\t} catch (error) {\n\t\t\tfor (const block of output.content) delete (block as any).index;\n\t\t\toutput.stopReason = options?.signal?.aborted ? \"aborted\" : \"error\";\n\t\t\toutput.errorMessage = error instanceof Error ? error.message : JSON.stringify(error);\n\t\t\t// Some providers via OpenRouter give additional information in this field.\n\t\t\tconst rawMetadata = (error as any)?.error?.metadata?.raw;\n\t\t\tif (rawMetadata) output.errorMessage += `\\n${rawMetadata}`;\n\t\t\tstream.push({ type: \"error\", reason: output.stopReason, error: output });\n\t\t\tstream.end();\n\t\t}\n\t})();\n\n\treturn stream;\n};\n\nexport const streamSimpleOpenAICompletions: StreamFunction<\"openai-completions\", SimpleStreamOptions> = (\n\tmodel: Model<\"openai-completions\">,\n\tcontext: Context,\n\toptions?: SimpleStreamOptions,\n): AssistantMessageEventStream => {\n\tconst apiKey = options?.apiKey || getEnvApiKey(model.provider);\n\tif (!apiKey) {\n\t\tthrow new Error(`No API key for provider: ${model.provider}`);\n\t}\n\n\tconst base = buildBaseOptions(model, options, apiKey);\n\tconst reasoningEffort = supportsXhigh(model) ? options?.reasoning : clampReasoning(options?.reasoning);\n\n\treturn streamOpenAICompletions(model, context, {\n\t\t...base,\n\t\treasoningEffort,\n\t} satisfies OpenAICompletionsOptions);\n};\n\nfunction createClient(\n\tmodel: Model<\"openai-completions\">,\n\tcontext: Context,\n\tapiKey?: string,\n\toptionsHeaders?: Record<string, string>,\n) {\n\tif (!apiKey) {\n\t\tif (!process.env.OPENAI_API_KEY) {\n\t\t\tthrow new Error(\n\t\t\t\t\"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass it as an argument.\",\n\t\t\t);\n\t\t}\n\t\tapiKey = process.env.OPENAI_API_KEY;\n\t}\n\n\tconst headers = { ...model.headers };\n\tif (model.provider === \"github-copilot\") {\n\t\t// Copilot expects X-Initiator to indicate whether the request is user-initiated\n\t\t// or agent-initiated (e.g. follow-up after assistant/tool messages). If there is\n\t\t// no prior message, default to user-initiated.\n\t\tconst messages = context.messages || [];\n\t\tconst lastMessage = messages[messages.length - 1];\n\t\tconst isAgentCall = lastMessage ? lastMessage.role !== \"user\" : false;\n\t\theaders[\"X-Initiator\"] = isAgentCall ? \"agent\" : \"user\";\n\t\theaders[\"Openai-Intent\"] = \"conversation-edits\";\n\n\t\t// Copilot requires this header when sending images\n\t\tconst hasImages = messages.some((msg) => {\n\t\t\tif (msg.role === \"user\" && Array.isArray(msg.content)) {\n\t\t\t\treturn msg.content.some((c) => c.type === \"image\");\n\t\t\t}\n\t\t\tif (msg.role === \"toolResult\" && Array.isArray(msg.content)) {\n\t\t\t\treturn msg.content.some((c) => c.type === \"image\");\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t\tif (hasImages) {\n\t\t\theaders[\"Copilot-Vision-Request\"] = \"true\";\n\t\t}\n\t}\n\n\t// Merge options headers last so they can override defaults\n\tif (optionsHeaders) {\n\t\tObject.assign(headers, optionsHeaders);\n\t}\n\n\treturn new OpenAI({\n\t\tapiKey,\n\t\tbaseURL: model.baseUrl,\n\t\tdangerouslyAllowBrowser: true,\n\t\tdefaultHeaders: headers,\n\t});\n}\n\nfunction buildParams(model: Model<\"openai-completions\">, context: Context, options?: OpenAICompletionsOptions) {\n\tconst compat = getCompat(model);\n\tconst messages = convertMessages(model, context, compat);\n\tmaybeAddOpenRouterAnthropicCacheControl(model, messages);\n\n\tconst params: OpenAI.Chat.Completions.ChatCompletionCreateParamsStreaming = {\n\t\tmodel: model.id,\n\t\tmessages,\n\t\tstream: true,\n\t};\n\n\tif (compat.supportsUsageInStreaming !== false) {\n\t\t(params as any).stream_options = { include_usage: true };\n\t}\n\n\tif (compat.supportsStore) {\n\t\tparams.store = false;\n\t}\n\n\tif (options?.maxTokens) {\n\t\tif (compat.maxTokensField === \"max_tokens\") {\n\t\t\t(params as any).max_tokens = options.maxTokens;\n\t\t} else {\n\t\t\tparams.max_completion_tokens = options.maxTokens;\n\t\t}\n\t}\n\n\tif (options?.temperature !== undefined) {\n\t\tparams.temperature = options.temperature;\n\t}\n\n\tif (context.tools) {\n\t\tparams.tools = convertTools(context.tools);\n\t} else if (hasToolHistory(context.messages)) {\n\t\t// Anthropic (via LiteLLM/proxy) requires tools param when conversation has tool_calls/tool_results\n\t\tparams.tools = [];\n\t}\n\n\tif (options?.toolChoice) {\n\t\tparams.tool_choice = options.toolChoice;\n\t}\n\n\tif (compat.thinkingFormat === \"zai\" && model.reasoning) {\n\t\t// Z.ai uses binary thinking: { type: \"enabled\" | \"disabled\" }\n\t\t// Must explicitly disable since z.ai defaults to thinking enabled\n\t\t(params as any).thinking = { type: options?.reasoningEffort ? \"enabled\" : \"disabled\" };\n\t} else if (options?.reasoningEffort && model.reasoning && compat.supportsReasoningEffort) {\n\t\t// OpenAI-style reasoning_effort\n\t\tparams.reasoning_effort = options.reasoningEffort;\n\t}\n\n\t// OpenRouter provider routing preferences\n\tif (model.baseUrl.includes(\"openrouter.ai\") && model.compat?.openRouterRouting) {\n\t\t(params as any).provider = model.compat.openRouterRouting;\n\t}\n\n\treturn params;\n}\n\nfunction maybeAddOpenRouterAnthropicCacheControl(\n\tmodel: Model<\"openai-completions\">,\n\tmessages: ChatCompletionMessageParam[],\n): void {\n\tif (model.provider !== \"openrouter\" || !model.id.startsWith(\"anthropic/\")) return;\n\n\t// Anthropic-style caching requires cache_control on a text part. Add a breakpoint\n\t// on the last user/assistant message (walking backwards until we find text content).\n\tfor (let i = messages.length - 1; i >= 0; i--) {\n\t\tconst msg = messages[i];\n\t\tif (msg.role !== \"user\" && msg.role !== \"assistant\") continue;\n\n\t\tconst content = msg.content;\n\t\tif (typeof content === \"string\") {\n\t\t\tmsg.content = [\n\t\t\t\tObject.assign({ type: \"text\" as const, text: content }, { cache_control: { type: \"ephemeral\" } }),\n\t\t\t];\n\t\t\treturn;\n\t\t}\n\n\t\tif (!Array.isArray(content)) continue;\n\n\t\t// Find last text part and add cache_control\n\t\tfor (let j = content.length - 1; j >= 0; j--) {\n\t\t\tconst part = content[j];\n\t\t\tif (part?.type === \"text\") {\n\t\t\t\tObject.assign(part, { cache_control: { type: \"ephemeral\" } });\n\t\t\t\treturn;\n\t\t\t}\n\t\t}\n\t}\n}\n\nexport function convertMessages(\n\tmodel: Model<\"openai-completions\">,\n\tcontext: Context,\n\tcompat: Required<OpenAICompletionsCompat>,\n): ChatCompletionMessageParam[] {\n\tconst params: ChatCompletionMessageParam[] = [];\n\n\tconst normalizeToolCallId = (id: string): string => {\n\t\tif (compat.requiresMistralToolIds) return normalizeMistralToolId(id);\n\t\tif (model.provider === \"openai\") return id.length > 40 ? id.slice(0, 40) : id;\n\t\t// Copilot Claude models route to Claude backend which requires Anthropic ID format\n\t\tif (model.provider === \"github-copilot\" && model.id.toLowerCase().includes(\"claude\")) {\n\t\t\treturn id.replace(/[^a-zA-Z0-9_-]/g, \"_\").slice(0, 64);\n\t\t}\n\t\treturn id;\n\t};\n\n\tconst transformedMessages = transformMessages(context.messages, model, (id) => normalizeToolCallId(id));\n\n\tif (context.systemPrompt) {\n\t\tconst useDeveloperRole = model.reasoning && compat.supportsDeveloperRole;\n\t\tconst role = useDeveloperRole ? \"developer\" : \"system\";\n\t\tparams.push({ role: role, content: sanitizeSurrogates(context.systemPrompt) });\n\t}\n\n\tlet lastRole: string | null = null;\n\n\tfor (let i = 0; i < transformedMessages.length; i++) {\n\t\tconst msg = transformedMessages[i];\n\t\t// Some providers (e.g. Mistral/Devstral) don't allow user messages directly after tool results\n\t\t// Insert a synthetic assistant message to bridge the gap\n\t\tif (compat.requiresAssistantAfterToolResult && lastRole === \"toolResult\" && msg.role === \"user\") {\n\t\t\tparams.push({\n\t\t\t\trole: \"assistant\",\n\t\t\t\tcontent: \"I have processed the tool results.\",\n\t\t\t});\n\t\t}\n\n\t\tif (msg.role === \"user\") {\n\t\t\tif (typeof msg.content === \"string\") {\n\t\t\t\tparams.push({\n\t\t\t\t\trole: \"user\",\n\t\t\t\t\tcontent: sanitizeSurrogates(msg.content),\n\t\t\t\t});\n\t\t\t} else {\n\t\t\t\tconst content: ChatCompletionContentPart[] = msg.content.map((item): ChatCompletionContentPart => {\n\t\t\t\t\tif (item.type === \"text\") {\n\t\t\t\t\t\treturn {\n\t\t\t\t\t\t\ttype: \"text\",\n\t\t\t\t\t\t\ttext: sanitizeSurrogates(item.text),\n\t\t\t\t\t\t} satisfies ChatCompletionContentPartText;\n\t\t\t\t\t} else {\n\t\t\t\t\t\treturn {\n\t\t\t\t\t\t\ttype: \"image_url\",\n\t\t\t\t\t\t\timage_url: {\n\t\t\t\t\t\t\t\turl: `data:${item.mimeType};base64,${item.data}`,\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t} satisfies ChatCompletionContentPartImage;\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\tconst filteredContent = !model.input.includes(\"image\")\n\t\t\t\t\t? content.filter((c) => c.type !== \"image_url\")\n\t\t\t\t\t: content;\n\t\t\t\tif (filteredContent.length === 0) continue;\n\t\t\t\tparams.push({\n\t\t\t\t\trole: \"user\",\n\t\t\t\t\tcontent: filteredContent,\n\t\t\t\t});\n\t\t\t}\n\t\t} else if (msg.role === \"assistant\") {\n\t\t\t// Some providers (e.g. Mistral) don't accept null content, use empty string instead\n\t\t\tconst assistantMsg: ChatCompletionAssistantMessageParam = {\n\t\t\t\trole: \"assistant\",\n\t\t\t\tcontent: compat.requiresAssistantAfterToolResult ? \"\" : null,\n\t\t\t};\n\n\t\t\tconst textBlocks = msg.content.filter((b) => b.type === \"text\") as TextContent[];\n\t\t\t// Filter out empty text blocks to avoid API validation errors\n\t\t\tconst nonEmptyTextBlocks = textBlocks.filter((b) => b.text && b.text.trim().length > 0);\n\t\t\tif (nonEmptyTextBlocks.length > 0) {\n\t\t\t\t// GitHub Copilot requires assistant content as a string, not an array.\n\t\t\t\t// Sending as array causes Claude models to re-answer all previous prompts.\n\t\t\t\tif (model.provider === \"github-copilot\") {\n\t\t\t\t\tassistantMsg.content = nonEmptyTextBlocks.map((b) => sanitizeSurrogates(b.text)).join(\"\");\n\t\t\t\t} else {\n\t\t\t\t\tassistantMsg.content = nonEmptyTextBlocks.map((b) => {\n\t\t\t\t\t\treturn { type: \"text\", text: sanitizeSurrogates(b.text) };\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t// Handle thinking blocks\n\t\t\tconst thinkingBlocks = msg.content.filter((b) => b.type === \"thinking\") as ThinkingContent[];\n\t\t\t// Filter out empty thinking blocks to avoid API validation errors\n\t\t\tconst nonEmptyThinkingBlocks = thinkingBlocks.filter((b) => b.thinking && b.thinking.trim().length > 0);\n\t\t\tif (nonEmptyThinkingBlocks.length > 0) {\n\t\t\t\tif (compat.requiresThinkingAsText) {\n\t\t\t\t\t// Convert thinking blocks to plain text (no tags to avoid model mimicking them)\n\t\t\t\t\tconst thinkingText = nonEmptyThinkingBlocks.map((b) => b.thinking).join(\"\\n\\n\");\n\t\t\t\t\tconst textContent = assistantMsg.content as Array<{ type: \"text\"; text: string }> | null;\n\t\t\t\t\tif (textContent) {\n\t\t\t\t\t\ttextContent.unshift({ type: \"text\", text: thinkingText });\n\t\t\t\t\t} else {\n\t\t\t\t\t\tassistantMsg.content = [{ type: \"text\", text: thinkingText }];\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\t// Use the signature from the first thinking block if available (for llama.cpp server + gpt-oss)\n\t\t\t\t\tconst signature = nonEmptyThinkingBlocks[0].thinkingSignature;\n\t\t\t\t\tif (signature && signature.length > 0) {\n\t\t\t\t\t\t(assistantMsg as any)[signature] = nonEmptyThinkingBlocks.map((b) => b.thinking).join(\"\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tconst toolCalls = msg.content.filter((b) => b.type === \"toolCall\") as ToolCall[];\n\t\t\tif (toolCalls.length > 0) {\n\t\t\t\tassistantMsg.tool_calls = toolCalls.map((tc) => ({\n\t\t\t\t\tid: tc.id,\n\t\t\t\t\ttype: \"function\" as const,\n\t\t\t\t\tfunction: {\n\t\t\t\t\t\tname: tc.name,\n\t\t\t\t\t\targuments: JSON.stringify(tc.arguments),\n\t\t\t\t\t},\n\t\t\t\t}));\n\t\t\t\tconst reasoningDetails = toolCalls\n\t\t\t\t\t.filter((tc) => tc.thoughtSignature)\n\t\t\t\t\t.map((tc) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\treturn JSON.parse(tc.thoughtSignature!);\n\t\t\t\t\t\t} catch {\n\t\t\t\t\t\t\treturn null;\n\t\t\t\t\t\t}\n\t\t\t\t\t})\n\t\t\t\t\t.filter(Boolean);\n\t\t\t\tif (reasoningDetails.length > 0) {\n\t\t\t\t\t(assistantMsg as any).reasoning_details = reasoningDetails;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Skip assistant messages that have no content and no tool calls.\n\t\t\t// Mistral explicitly requires \"either content or tool_calls, but not none\".\n\t\t\t// Other providers also don't accept empty assistant messages.\n\t\t\t// This handles aborted assistant responses that got no content.\n\t\t\tconst content = assistantMsg.content;\n\t\t\tconst hasContent =\n\t\t\t\tcontent !== null &&\n\t\t\t\tcontent !== undefined &&\n\t\t\t\t(typeof content === \"string\" ? content.length > 0 : content.length > 0);\n\t\t\tif (!hasContent && !assistantMsg.tool_calls) {\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tparams.push(assistantMsg);\n\t\t} else if (msg.role === \"toolResult\") {\n\t\t\tconst imageBlocks: Array<{ type: \"image_url\"; image_url: { url: string } }> = [];\n\t\t\tlet j = i;\n\n\t\t\tfor (; j < transformedMessages.length && transformedMessages[j].role === \"toolResult\"; j++) {\n\t\t\t\tconst toolMsg = transformedMessages[j] as ToolResultMessage;\n\n\t\t\t\t// Extract text and image content\n\t\t\t\tconst textResult = toolMsg.content\n\t\t\t\t\t.filter((c) => c.type === \"text\")\n\t\t\t\t\t.map((c) => (c as any).text)\n\t\t\t\t\t.join(\"\\n\");\n\t\t\t\tconst hasImages = toolMsg.content.some((c) => c.type === \"image\");\n\n\t\t\t\t// Always send tool result with text (or placeholder if only images)\n\t\t\t\tconst hasText = textResult.length > 0;\n\t\t\t\t// Some providers (e.g. Mistral) require the 'name' field in tool results\n\t\t\t\tconst toolResultMsg: ChatCompletionToolMessageParam = {\n\t\t\t\t\trole: \"tool\",\n\t\t\t\t\tcontent: sanitizeSurrogates(hasText ? textResult : \"(see attached image)\"),\n\t\t\t\t\ttool_call_id: toolMsg.toolCallId,\n\t\t\t\t};\n\t\t\t\tif (compat.requiresToolResultName && toolMsg.toolName) {\n\t\t\t\t\t(toolResultMsg as any).name = toolMsg.toolName;\n\t\t\t\t}\n\t\t\t\tparams.push(toolResultMsg);\n\n\t\t\t\tif (hasImages && model.input.includes(\"image\")) {\n\t\t\t\t\tfor (const block of toolMsg.content) {\n\t\t\t\t\t\tif (block.type === \"image\") {\n\t\t\t\t\t\t\timageBlocks.push({\n\t\t\t\t\t\t\t\ttype: \"image_url\",\n\t\t\t\t\t\t\t\timage_url: {\n\t\t\t\t\t\t\t\t\turl: `data:${(block as any).mimeType};base64,${(block as any).data}`,\n\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\ti = j - 1;\n\n\t\t\tif (imageBlocks.length > 0) {\n\t\t\t\tif (compat.requiresAssistantAfterToolResult) {\n\t\t\t\t\tparams.push({\n\t\t\t\t\t\trole: \"assistant\",\n\t\t\t\t\t\tcontent: \"I have processed the tool results.\",\n\t\t\t\t\t});\n\t\t\t\t}\n\n\t\t\t\tparams.push({\n\t\t\t\t\trole: \"user\",\n\t\t\t\t\tcontent: [\n\t\t\t\t\t\t{\n\t\t\t\t\t\t\ttype: \"text\",\n\t\t\t\t\t\t\ttext: \"Attached image(s) from tool result:\",\n\t\t\t\t\t\t},\n\t\t\t\t\t\t...imageBlocks,\n\t\t\t\t\t],\n\t\t\t\t});\n\t\t\t\tlastRole = \"user\";\n\t\t\t} else {\n\t\t\t\tlastRole = \"toolResult\";\n\t\t\t}\n\t\t\tcontinue;\n\t\t}\n\n\t\tlastRole = msg.role;\n\t}\n\n\treturn params;\n}\n\nfunction convertTools(tools: Tool[]): OpenAI.Chat.Completions.ChatCompletionTool[] {\n\treturn tools.map((tool) => ({\n\t\ttype: \"function\",\n\t\tfunction: {\n\t\t\tname: tool.name,\n\t\t\tdescription: tool.description,\n\t\t\tparameters: tool.parameters as any, // TypeBox already generates JSON Schema\n\t\t\tstrict: false, // Disable strict mode to allow optional parameters without null unions\n\t\t},\n\t}));\n}\n\nfunction mapStopReason(reason: ChatCompletionChunk.Choice[\"finish_reason\"]): StopReason {\n\tif (reason === null) return \"stop\";\n\tswitch (reason) {\n\t\tcase \"stop\":\n\t\t\treturn \"stop\";\n\t\tcase \"length\":\n\t\t\treturn \"length\";\n\t\tcase \"function_call\":\n\t\tcase \"tool_calls\":\n\t\t\treturn \"toolUse\";\n\t\tcase \"content_filter\":\n\t\t\treturn \"error\";\n\t\tdefault: {\n\t\t\tconst _exhaustive: never = reason;\n\t\t\tthrow new Error(`Unhandled stop reason: ${_exhaustive}`);\n\t\t}\n\t}\n}\n\n/**\n * Detect compatibility settings from provider and baseUrl for known providers.\n * Provider takes precedence over URL-based detection since it's explicitly configured.\n * Returns a fully resolved OpenAICompletionsCompat object with all fields set.\n */\nfunction detectCompat(model: Model<\"openai-completions\">): Required<OpenAICompletionsCompat> {\n\tconst provider = model.provider;\n\tconst baseUrl = model.baseUrl;\n\n\tconst isZai = provider === \"zai\" || baseUrl.includes(\"api.z.ai\");\n\n\tconst isNonStandard =\n\t\tprovider === \"cerebras\" ||\n\t\tbaseUrl.includes(\"cerebras.ai\") ||\n\t\tprovider === \"xai\" ||\n\t\tbaseUrl.includes(\"api.x.ai\") ||\n\t\tprovider === \"mistral\" ||\n\t\tbaseUrl.includes(\"mistral.ai\") ||\n\t\tbaseUrl.includes(\"chutes.ai\") ||\n\t\tisZai ||\n\t\tprovider === \"opencode\" ||\n\t\tbaseUrl.includes(\"opencode.ai\");\n\n\tconst useMaxTokens = provider === \"mistral\" || baseUrl.includes(\"mistral.ai\") || baseUrl.includes(\"chutes.ai\");\n\n\tconst isGrok = provider === \"xai\" || baseUrl.includes(\"api.x.ai\");\n\n\tconst isMistral = provider === \"mistral\" || baseUrl.includes(\"mistral.ai\");\n\n\treturn {\n\t\tsupportsStore: !isNonStandard,\n\t\tsupportsDeveloperRole: !isNonStandard,\n\t\tsupportsReasoningEffort: !isGrok && !isZai,\n\t\tsupportsUsageInStreaming: true,\n\t\tmaxTokensField: useMaxTokens ? \"max_tokens\" : \"max_completion_tokens\",\n\t\trequiresToolResultName: isMistral,\n\t\trequiresAssistantAfterToolResult: false, // Mistral no longer requires this as of Dec 2024\n\t\trequiresThinkingAsText: isMistral,\n\t\trequiresMistralToolIds: isMistral,\n\t\tthinkingFormat: isZai ? \"zai\" : \"openai\",\n\t\topenRouterRouting: {},\n\t};\n}\n\n/**\n * Get resolved compatibility settings for a model.\n * Uses explicit model.compat if provided, otherwise auto-detects from provider/URL.\n */\nfunction getCompat(model: Model<\"openai-completions\">): Required<OpenAICompletionsCompat> {\n\tconst detected = detectCompat(model);\n\tif (!model.compat) return detected;\n\n\treturn {\n\t\tsupportsStore: model.compat.supportsStore ?? detected.supportsStore,\n\t\tsupportsDeveloperRole: model.compat.supportsDeveloperRole ?? detected.supportsDeveloperRole,\n\t\tsupportsReasoningEffort: model.compat.supportsReasoningEffort ?? detected.supportsReasoningEffort,\n\t\tsupportsUsageInStreaming: model.compat.supportsUsageInStreaming ?? detected.supportsUsageInStreaming,\n\t\tmaxTokensField: model.compat.maxTokensField ?? detected.maxTokensField,\n\t\trequiresToolResultName: model.compat.requiresToolResultName ?? detected.requiresToolResultName,\n\t\trequiresAssistantAfterToolResult:\n\t\t\tmodel.compat.requiresAssistantAfterToolResult ?? detected.requiresAssistantAfterToolResult,\n\t\trequiresThinkingAsText: model.compat.requiresThinkingAsText ?? detected.requiresThinkingAsText,\n\t\trequiresMistralToolIds: model.compat.requiresMistralToolIds ?? detected.requiresMistralToolIds,\n\t\tthinkingFormat: model.compat.thinkingFormat ?? detected.thinkingFormat,\n\t\topenRouterRouting: model.compat.openRouterRouting ?? {},\n\t};\n}\n"]}
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
import OpenAI from "openai";
|
|
2
|
-
import {
|
|
3
|
-
import {
|
|
2
|
+
import { getEnvApiKey } from "../env-api-keys.js";
|
|
3
|
+
import { calculateCost, supportsXhigh } from "../models.js";
|
|
4
4
|
import { AssistantMessageEventStream } from "../utils/event-stream.js";
|
|
5
5
|
import { parseStreamingJson } from "../utils/json-parse.js";
|
|
6
6
|
import { sanitizeSurrogates } from "../utils/sanitize-unicode.js";
|
|
7
|
+
import { buildBaseOptions, clampReasoning } from "./simple-options.js";
|
|
7
8
|
import { transformMessages } from "./transform-messages.js";
|
|
8
9
|
/**
|
|
9
10
|
* Normalize tool call ID for Mistral.
|
|
@@ -63,7 +64,7 @@ export const streamOpenAICompletions = (model, context, options) => {
|
|
|
63
64
|
};
|
|
64
65
|
try {
|
|
65
66
|
const apiKey = options?.apiKey || getEnvApiKey(model.provider) || "";
|
|
66
|
-
const client = createClient(model, context, apiKey);
|
|
67
|
+
const client = createClient(model, context, apiKey, options?.headers);
|
|
67
68
|
const params = buildParams(model, context, options);
|
|
68
69
|
options?.onPayload?.(params);
|
|
69
70
|
const openaiStream = await client.chat.completions.create(params, { signal: options?.signal });
|
|
@@ -244,7 +245,7 @@ export const streamOpenAICompletions = (model, context, options) => {
|
|
|
244
245
|
throw new Error("Request was aborted");
|
|
245
246
|
}
|
|
246
247
|
if (output.stopReason === "aborted" || output.stopReason === "error") {
|
|
247
|
-
throw new Error("An
|
|
248
|
+
throw new Error("An unknown error occurred");
|
|
248
249
|
}
|
|
249
250
|
stream.push({ type: "done", reason: output.stopReason, message: output });
|
|
250
251
|
stream.end();
|
|
@@ -264,7 +265,19 @@ export const streamOpenAICompletions = (model, context, options) => {
|
|
|
264
265
|
})();
|
|
265
266
|
return stream;
|
|
266
267
|
};
|
|
267
|
-
|
|
268
|
+
export const streamSimpleOpenAICompletions = (model, context, options) => {
|
|
269
|
+
const apiKey = options?.apiKey || getEnvApiKey(model.provider);
|
|
270
|
+
if (!apiKey) {
|
|
271
|
+
throw new Error(`No API key for provider: ${model.provider}`);
|
|
272
|
+
}
|
|
273
|
+
const base = buildBaseOptions(model, options, apiKey);
|
|
274
|
+
const reasoningEffort = supportsXhigh(model) ? options?.reasoning : clampReasoning(options?.reasoning);
|
|
275
|
+
return streamOpenAICompletions(model, context, {
|
|
276
|
+
...base,
|
|
277
|
+
reasoningEffort,
|
|
278
|
+
});
|
|
279
|
+
};
|
|
280
|
+
function createClient(model, context, apiKey, optionsHeaders) {
|
|
268
281
|
if (!apiKey) {
|
|
269
282
|
if (!process.env.OPENAI_API_KEY) {
|
|
270
283
|
throw new Error("OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass it as an argument.");
|
|
@@ -295,6 +308,10 @@ function createClient(model, context, apiKey) {
|
|
|
295
308
|
headers["Copilot-Vision-Request"] = "true";
|
|
296
309
|
}
|
|
297
310
|
}
|
|
311
|
+
// Merge options headers last so they can override defaults
|
|
312
|
+
if (optionsHeaders) {
|
|
313
|
+
Object.assign(headers, optionsHeaders);
|
|
314
|
+
}
|
|
298
315
|
return new OpenAI({
|
|
299
316
|
apiKey,
|
|
300
317
|
baseURL: model.baseUrl,
|
|
@@ -347,6 +364,10 @@ function buildParams(model, context, options) {
|
|
|
347
364
|
// OpenAI-style reasoning_effort
|
|
348
365
|
params.reasoning_effort = options.reasoningEffort;
|
|
349
366
|
}
|
|
367
|
+
// OpenRouter provider routing preferences
|
|
368
|
+
if (model.baseUrl.includes("openrouter.ai") && model.compat?.openRouterRouting) {
|
|
369
|
+
params.provider = model.compat.openRouterRouting;
|
|
370
|
+
}
|
|
350
371
|
return params;
|
|
351
372
|
}
|
|
352
373
|
function maybeAddOpenRouterAnthropicCacheControl(model, messages) {
|
|
@@ -377,7 +398,7 @@ function maybeAddOpenRouterAnthropicCacheControl(model, messages) {
|
|
|
377
398
|
}
|
|
378
399
|
}
|
|
379
400
|
}
|
|
380
|
-
function convertMessages(model, context, compat) {
|
|
401
|
+
export function convertMessages(model, context, compat) {
|
|
381
402
|
const params = [];
|
|
382
403
|
const normalizeToolCallId = (id) => {
|
|
383
404
|
if (compat.requiresMistralToolIds)
|
|
@@ -397,7 +418,8 @@ function convertMessages(model, context, compat) {
|
|
|
397
418
|
params.push({ role: role, content: sanitizeSurrogates(context.systemPrompt) });
|
|
398
419
|
}
|
|
399
420
|
let lastRole = null;
|
|
400
|
-
for (
|
|
421
|
+
for (let i = 0; i < transformedMessages.length; i++) {
|
|
422
|
+
const msg = transformedMessages[i];
|
|
401
423
|
// Some providers (e.g. Mistral/Devstral) don't allow user messages directly after tool results
|
|
402
424
|
// Insert a synthetic assistant message to bridge the gap
|
|
403
425
|
if (compat.requiresAssistantAfterToolResult && lastRole === "toolResult" && msg.role === "user") {
|
|
@@ -525,48 +547,65 @@ function convertMessages(model, context, compat) {
|
|
|
525
547
|
params.push(assistantMsg);
|
|
526
548
|
}
|
|
527
549
|
else if (msg.role === "toolResult") {
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
url: `data:${block.mimeType};base64,${block.data}`,
|
|
561
|
-
},
|
|
562
|
-
});
|
|
550
|
+
const imageBlocks = [];
|
|
551
|
+
let j = i;
|
|
552
|
+
for (; j < transformedMessages.length && transformedMessages[j].role === "toolResult"; j++) {
|
|
553
|
+
const toolMsg = transformedMessages[j];
|
|
554
|
+
// Extract text and image content
|
|
555
|
+
const textResult = toolMsg.content
|
|
556
|
+
.filter((c) => c.type === "text")
|
|
557
|
+
.map((c) => c.text)
|
|
558
|
+
.join("\n");
|
|
559
|
+
const hasImages = toolMsg.content.some((c) => c.type === "image");
|
|
560
|
+
// Always send tool result with text (or placeholder if only images)
|
|
561
|
+
const hasText = textResult.length > 0;
|
|
562
|
+
// Some providers (e.g. Mistral) require the 'name' field in tool results
|
|
563
|
+
const toolResultMsg = {
|
|
564
|
+
role: "tool",
|
|
565
|
+
content: sanitizeSurrogates(hasText ? textResult : "(see attached image)"),
|
|
566
|
+
tool_call_id: toolMsg.toolCallId,
|
|
567
|
+
};
|
|
568
|
+
if (compat.requiresToolResultName && toolMsg.toolName) {
|
|
569
|
+
toolResultMsg.name = toolMsg.toolName;
|
|
570
|
+
}
|
|
571
|
+
params.push(toolResultMsg);
|
|
572
|
+
if (hasImages && model.input.includes("image")) {
|
|
573
|
+
for (const block of toolMsg.content) {
|
|
574
|
+
if (block.type === "image") {
|
|
575
|
+
imageBlocks.push({
|
|
576
|
+
type: "image_url",
|
|
577
|
+
image_url: {
|
|
578
|
+
url: `data:${block.mimeType};base64,${block.data}`,
|
|
579
|
+
},
|
|
580
|
+
});
|
|
581
|
+
}
|
|
563
582
|
}
|
|
564
583
|
}
|
|
584
|
+
}
|
|
585
|
+
i = j - 1;
|
|
586
|
+
if (imageBlocks.length > 0) {
|
|
587
|
+
if (compat.requiresAssistantAfterToolResult) {
|
|
588
|
+
params.push({
|
|
589
|
+
role: "assistant",
|
|
590
|
+
content: "I have processed the tool results.",
|
|
591
|
+
});
|
|
592
|
+
}
|
|
565
593
|
params.push({
|
|
566
594
|
role: "user",
|
|
567
|
-
content:
|
|
595
|
+
content: [
|
|
596
|
+
{
|
|
597
|
+
type: "text",
|
|
598
|
+
text: "Attached image(s) from tool result:",
|
|
599
|
+
},
|
|
600
|
+
...imageBlocks,
|
|
601
|
+
],
|
|
568
602
|
});
|
|
603
|
+
lastRole = "user";
|
|
569
604
|
}
|
|
605
|
+
else {
|
|
606
|
+
lastRole = "toolResult";
|
|
607
|
+
}
|
|
608
|
+
continue;
|
|
570
609
|
}
|
|
571
610
|
lastRole = msg.role;
|
|
572
611
|
}
|
|
@@ -635,6 +674,7 @@ function detectCompat(model) {
|
|
|
635
674
|
requiresThinkingAsText: isMistral,
|
|
636
675
|
requiresMistralToolIds: isMistral,
|
|
637
676
|
thinkingFormat: isZai ? "zai" : "openai",
|
|
677
|
+
openRouterRouting: {},
|
|
638
678
|
};
|
|
639
679
|
}
|
|
640
680
|
/**
|
|
@@ -656,6 +696,7 @@ function getCompat(model) {
|
|
|
656
696
|
requiresThinkingAsText: model.compat.requiresThinkingAsText ?? detected.requiresThinkingAsText,
|
|
657
697
|
requiresMistralToolIds: model.compat.requiresMistralToolIds ?? detected.requiresMistralToolIds,
|
|
658
698
|
thinkingFormat: model.compat.thinkingFormat ?? detected.thinkingFormat,
|
|
699
|
+
openRouterRouting: model.compat.openRouterRouting ?? {},
|
|
659
700
|
};
|
|
660
701
|
}
|
|
661
702
|
//# sourceMappingURL=openai-completions.js.map
|