@mariozechner/pi-agent-core 0.30.1 → 0.31.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +297 -126
- package/dist/agent-loop.d.ts +21 -0
- package/dist/agent-loop.d.ts.map +1 -0
- package/dist/agent-loop.js +294 -0
- package/dist/agent-loop.js.map +1 -0
- package/dist/agent.d.ts +43 -29
- package/dist/agent.d.ts.map +1 -1
- package/dist/agent.js +83 -148
- package/dist/agent.js.map +1 -1
- package/dist/index.d.ts +4 -3
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +7 -3
- package/dist/index.js.map +1 -1
- package/dist/proxy.d.ts +85 -0
- package/dist/proxy.d.ts.map +1 -0
- package/dist/proxy.js +269 -0
- package/dist/proxy.js.map +1 -0
- package/dist/types.d.ts +88 -29
- package/dist/types.d.ts.map +1 -1
- package/dist/types.js.map +1 -1
- package/package.json +3 -3
- package/dist/transports/AppTransport.d.ts +0 -28
- package/dist/transports/AppTransport.d.ts.map +0 -1
- package/dist/transports/AppTransport.js +0 -330
- package/dist/transports/AppTransport.js.map +0 -1
- package/dist/transports/ProviderTransport.d.ts +0 -29
- package/dist/transports/ProviderTransport.d.ts.map +0 -1
- package/dist/transports/ProviderTransport.js +0 -54
- package/dist/transports/ProviderTransport.js.map +0 -1
- package/dist/transports/index.d.ts +0 -5
- package/dist/transports/index.d.ts.map +0 -1
- package/dist/transports/index.js +0 -3
- package/dist/transports/index.js.map +0 -1
- package/dist/transports/proxy-types.d.ts +0 -53
- package/dist/transports/proxy-types.d.ts.map +0 -1
- package/dist/transports/proxy-types.js +0 -2
- package/dist/transports/proxy-types.js.map +0 -1
- package/dist/transports/types.d.ts +0 -25
- package/dist/transports/types.d.ts.map +0 -1
- package/dist/transports/types.js +0 -2
- package/dist/transports/types.js.map +0 -1
package/README.md
CHANGED
|
@@ -1,194 +1,365 @@
|
|
|
1
|
-
# @mariozechner/pi-agent
|
|
1
|
+
# @mariozechner/pi-agent
|
|
2
2
|
|
|
3
|
-
Stateful agent
|
|
3
|
+
Stateful agent with tool execution and event streaming. Built on `@mariozechner/pi-ai`.
|
|
4
4
|
|
|
5
5
|
## Installation
|
|
6
6
|
|
|
7
7
|
```bash
|
|
8
|
-
npm install @mariozechner/pi-agent
|
|
8
|
+
npm install @mariozechner/pi-agent
|
|
9
9
|
```
|
|
10
10
|
|
|
11
11
|
## Quick Start
|
|
12
12
|
|
|
13
13
|
```typescript
|
|
14
|
-
import { Agent
|
|
15
|
-
import { getModel } from
|
|
14
|
+
import { Agent } from "@mariozechner/pi-agent";
|
|
15
|
+
import { getModel } from "@mariozechner/pi-ai";
|
|
16
16
|
|
|
17
|
-
// Create agent with direct provider transport
|
|
18
17
|
const agent = new Agent({
|
|
19
|
-
transport: new ProviderTransport(),
|
|
20
18
|
initialState: {
|
|
21
|
-
systemPrompt:
|
|
22
|
-
model: getModel(
|
|
23
|
-
|
|
24
|
-
tools: []
|
|
25
|
-
}
|
|
19
|
+
systemPrompt: "You are a helpful assistant.",
|
|
20
|
+
model: getModel("anthropic", "claude-sonnet-4-20250514"),
|
|
21
|
+
},
|
|
26
22
|
});
|
|
27
23
|
|
|
28
|
-
// Subscribe to events for reactive UI updates
|
|
29
24
|
agent.subscribe((event) => {
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
const content = event.message.content;
|
|
34
|
-
for (const block of content) {
|
|
35
|
-
if (block.type === 'text') console.log(block.text);
|
|
36
|
-
}
|
|
37
|
-
break;
|
|
38
|
-
case 'tool_execution_start':
|
|
39
|
-
console.log(`Calling ${event.toolName}...`);
|
|
40
|
-
break;
|
|
41
|
-
case 'tool_execution_update':
|
|
42
|
-
// Stream tool output (e.g., bash stdout)
|
|
43
|
-
console.log('Progress:', event.partialResult.content);
|
|
44
|
-
break;
|
|
45
|
-
case 'tool_execution_end':
|
|
46
|
-
console.log(`Result:`, event.result.content);
|
|
47
|
-
break;
|
|
25
|
+
if (event.type === "message_update" && event.assistantMessageEvent.type === "text_delta") {
|
|
26
|
+
// Stream just the new text chunk
|
|
27
|
+
process.stdout.write(event.assistantMessageEvent.delta);
|
|
48
28
|
}
|
|
49
29
|
});
|
|
50
30
|
|
|
51
|
-
|
|
52
|
-
await agent.prompt('Hello, world!');
|
|
53
|
-
|
|
54
|
-
// Access conversation state
|
|
55
|
-
console.log(agent.state.messages);
|
|
31
|
+
await agent.prompt("Hello!");
|
|
56
32
|
```
|
|
57
33
|
|
|
58
34
|
## Core Concepts
|
|
59
35
|
|
|
60
|
-
###
|
|
36
|
+
### AgentMessage vs LLM Message
|
|
37
|
+
|
|
38
|
+
The agent works with `AgentMessage`, a flexible type that can include:
|
|
39
|
+
- Standard LLM messages (`user`, `assistant`, `toolResult`)
|
|
40
|
+
- Custom app-specific message types via declaration merging
|
|
41
|
+
|
|
42
|
+
LLMs only understand `user`, `assistant`, and `toolResult`. The `convertToLlm` function bridges this gap by filtering and transforming messages before each LLM call.
|
|
43
|
+
|
|
44
|
+
### Message Flow
|
|
45
|
+
|
|
46
|
+
```
|
|
47
|
+
AgentMessage[] → transformContext() → AgentMessage[] → convertToLlm() → Message[] → LLM
|
|
48
|
+
(optional) (required)
|
|
49
|
+
```
|
|
50
|
+
|
|
51
|
+
1. **transformContext**: Prune old messages, inject external context
|
|
52
|
+
2. **convertToLlm**: Filter out UI-only messages, convert custom types to LLM format
|
|
53
|
+
|
|
54
|
+
## Event Flow
|
|
55
|
+
|
|
56
|
+
The agent emits events for UI updates. Understanding the event sequence helps build responsive interfaces.
|
|
61
57
|
|
|
62
|
-
|
|
58
|
+
### prompt() Event Sequence
|
|
59
|
+
|
|
60
|
+
When you call `prompt("Hello")`:
|
|
61
|
+
|
|
62
|
+
```
|
|
63
|
+
prompt("Hello")
|
|
64
|
+
├─ agent_start
|
|
65
|
+
├─ turn_start
|
|
66
|
+
├─ message_start { message: userMessage } // Your prompt
|
|
67
|
+
├─ message_end { message: userMessage }
|
|
68
|
+
├─ message_start { message: assistantMessage } // LLM starts responding
|
|
69
|
+
├─ message_update { message: partial... } // Streaming chunks
|
|
70
|
+
├─ message_update { message: partial... }
|
|
71
|
+
├─ message_end { message: assistantMessage } // Complete response
|
|
72
|
+
├─ turn_end { message, toolResults: [] }
|
|
73
|
+
└─ agent_end { messages: [...] }
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
### With Tool Calls
|
|
77
|
+
|
|
78
|
+
If the assistant calls tools, the loop continues:
|
|
79
|
+
|
|
80
|
+
```
|
|
81
|
+
prompt("Read config.json")
|
|
82
|
+
├─ agent_start
|
|
83
|
+
├─ turn_start
|
|
84
|
+
├─ message_start/end { userMessage }
|
|
85
|
+
├─ message_start { assistantMessage with toolCall }
|
|
86
|
+
├─ message_update...
|
|
87
|
+
├─ message_end { assistantMessage }
|
|
88
|
+
├─ tool_execution_start { toolCallId, toolName, args }
|
|
89
|
+
├─ tool_execution_update { partialResult } // If tool streams
|
|
90
|
+
├─ tool_execution_end { toolCallId, result }
|
|
91
|
+
├─ message_start/end { toolResultMessage }
|
|
92
|
+
├─ turn_end { message, toolResults: [toolResult] }
|
|
93
|
+
│
|
|
94
|
+
├─ turn_start // Next turn
|
|
95
|
+
├─ message_start { assistantMessage } // LLM responds to tool result
|
|
96
|
+
├─ message_update...
|
|
97
|
+
├─ message_end
|
|
98
|
+
├─ turn_end
|
|
99
|
+
└─ agent_end
|
|
100
|
+
```
|
|
101
|
+
|
|
102
|
+
### continue() Event Sequence
|
|
103
|
+
|
|
104
|
+
`continue()` resumes from existing context without adding a new message. Use it for retries after errors.
|
|
105
|
+
|
|
106
|
+
```typescript
|
|
107
|
+
// After an error, retry from current state
|
|
108
|
+
await agent.continue();
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
The last message in context must be `user` or `toolResult` (not `assistant`).
|
|
112
|
+
|
|
113
|
+
### Event Types
|
|
114
|
+
|
|
115
|
+
| Event | Description |
|
|
116
|
+
|-------|-------------|
|
|
117
|
+
| `agent_start` | Agent begins processing |
|
|
118
|
+
| `agent_end` | Agent completes with all new messages |
|
|
119
|
+
| `turn_start` | New turn begins (one LLM call + tool executions) |
|
|
120
|
+
| `turn_end` | Turn completes with assistant message and tool results |
|
|
121
|
+
| `message_start` | Any message begins (user, assistant, toolResult) |
|
|
122
|
+
| `message_update` | **Assistant only.** Includes `assistantMessageEvent` with delta |
|
|
123
|
+
| `message_end` | Message completes |
|
|
124
|
+
| `tool_execution_start` | Tool begins |
|
|
125
|
+
| `tool_execution_update` | Tool streams progress |
|
|
126
|
+
| `tool_execution_end` | Tool completes |
|
|
127
|
+
|
|
128
|
+
## Agent Options
|
|
129
|
+
|
|
130
|
+
```typescript
|
|
131
|
+
const agent = new Agent({
|
|
132
|
+
// Initial state
|
|
133
|
+
initialState: {
|
|
134
|
+
systemPrompt: string,
|
|
135
|
+
model: Model<any>,
|
|
136
|
+
thinkingLevel: "off" | "minimal" | "low" | "medium" | "high" | "xhigh",
|
|
137
|
+
tools: AgentTool<any>[],
|
|
138
|
+
messages: AgentMessage[],
|
|
139
|
+
},
|
|
140
|
+
|
|
141
|
+
// Convert AgentMessage[] to LLM Message[] (required for custom message types)
|
|
142
|
+
convertToLlm: (messages) => messages.filter(...),
|
|
143
|
+
|
|
144
|
+
// Transform context before convertToLlm (for pruning, compaction)
|
|
145
|
+
transformContext: async (messages, signal) => pruneOldMessages(messages),
|
|
146
|
+
|
|
147
|
+
// How to handle queued messages: "one-at-a-time" (default) or "all"
|
|
148
|
+
queueMode: "one-at-a-time",
|
|
149
|
+
|
|
150
|
+
// Custom stream function (for proxy backends)
|
|
151
|
+
streamFn: streamProxy,
|
|
152
|
+
|
|
153
|
+
// Dynamic API key resolution (for expiring OAuth tokens)
|
|
154
|
+
getApiKey: async (provider) => refreshToken(),
|
|
155
|
+
});
|
|
156
|
+
```
|
|
157
|
+
|
|
158
|
+
## Agent State
|
|
63
159
|
|
|
64
160
|
```typescript
|
|
65
161
|
interface AgentState {
|
|
66
162
|
systemPrompt: string;
|
|
67
163
|
model: Model<any>;
|
|
68
|
-
thinkingLevel: ThinkingLevel;
|
|
164
|
+
thinkingLevel: ThinkingLevel;
|
|
69
165
|
tools: AgentTool<any>[];
|
|
70
|
-
messages:
|
|
166
|
+
messages: AgentMessage[];
|
|
71
167
|
isStreaming: boolean;
|
|
72
|
-
streamMessage:
|
|
168
|
+
streamMessage: AgentMessage | null; // Current partial during streaming
|
|
73
169
|
pendingToolCalls: Set<string>;
|
|
74
170
|
error?: string;
|
|
75
171
|
}
|
|
76
172
|
```
|
|
77
173
|
|
|
78
|
-
|
|
174
|
+
Access via `agent.state`. During streaming, `streamMessage` contains the partial assistant message.
|
|
79
175
|
|
|
80
|
-
|
|
176
|
+
## Methods
|
|
81
177
|
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
| `tool_execution_update` | Tool streams progress (e.g., bash output) |
|
|
93
|
-
| `tool_execution_end` | Tool completes with result |
|
|
178
|
+
### Prompting
|
|
179
|
+
|
|
180
|
+
```typescript
|
|
181
|
+
// Text prompt
|
|
182
|
+
await agent.prompt("Hello");
|
|
183
|
+
|
|
184
|
+
// With images
|
|
185
|
+
await agent.prompt("What's in this image?", [
|
|
186
|
+
{ type: "image", data: base64Data, mimeType: "image/jpeg" }
|
|
187
|
+
]);
|
|
94
188
|
|
|
95
|
-
|
|
189
|
+
// AgentMessage directly
|
|
190
|
+
await agent.prompt({ role: "user", content: "Hello", timestamp: Date.now() });
|
|
96
191
|
|
|
97
|
-
|
|
192
|
+
// Continue from current context (last message must be user or toolResult)
|
|
193
|
+
await agent.continue();
|
|
194
|
+
```
|
|
98
195
|
|
|
99
|
-
|
|
100
|
-
- **`AppTransport`**: Proxy through a backend server (for browser apps)
|
|
196
|
+
### State Management
|
|
101
197
|
|
|
102
198
|
```typescript
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
199
|
+
agent.setSystemPrompt("New prompt");
|
|
200
|
+
agent.setModel(getModel("openai", "gpt-4o"));
|
|
201
|
+
agent.setThinkingLevel("medium");
|
|
202
|
+
agent.setTools([myTool]);
|
|
203
|
+
agent.replaceMessages(newMessages);
|
|
204
|
+
agent.appendMessage(message);
|
|
205
|
+
agent.clearMessages();
|
|
206
|
+
agent.reset(); // Clear everything
|
|
207
|
+
```
|
|
109
208
|
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
209
|
+
### Control
|
|
210
|
+
|
|
211
|
+
```typescript
|
|
212
|
+
agent.abort(); // Cancel current operation
|
|
213
|
+
await agent.waitForIdle(); // Wait for completion
|
|
214
|
+
```
|
|
215
|
+
|
|
216
|
+
### Events
|
|
217
|
+
|
|
218
|
+
```typescript
|
|
219
|
+
const unsubscribe = agent.subscribe((event) => {
|
|
220
|
+
console.log(event.type);
|
|
116
221
|
});
|
|
222
|
+
unsubscribe();
|
|
117
223
|
```
|
|
118
224
|
|
|
119
225
|
## Message Queue
|
|
120
226
|
|
|
121
|
-
Queue messages to inject
|
|
227
|
+
Queue messages to inject during tool execution (for user interruptions):
|
|
122
228
|
|
|
123
229
|
```typescript
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
timestamp: Date.now()
|
|
230
|
+
agent.setQueueMode("one-at-a-time");
|
|
231
|
+
|
|
232
|
+
// While agent is running tools
|
|
233
|
+
agent.queueMessage({
|
|
234
|
+
role: "user",
|
|
235
|
+
content: "Stop! Do this instead.",
|
|
236
|
+
timestamp: Date.now(),
|
|
132
237
|
});
|
|
133
238
|
```
|
|
134
239
|
|
|
135
|
-
|
|
240
|
+
When queued messages are detected after a tool completes:
|
|
241
|
+
1. Remaining tools are skipped with error results
|
|
242
|
+
2. Queued message is injected
|
|
243
|
+
3. LLM responds to the interruption
|
|
244
|
+
|
|
245
|
+
## Custom Message Types
|
|
136
246
|
|
|
137
|
-
|
|
247
|
+
Extend `AgentMessage` via declaration merging:
|
|
138
248
|
|
|
139
249
|
```typescript
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
}
|
|
250
|
+
declare module "@mariozechner/pi-agent" {
|
|
251
|
+
interface CustomAgentMessages {
|
|
252
|
+
notification: { role: "notification"; text: string; timestamp: number };
|
|
253
|
+
}
|
|
254
|
+
}
|
|
255
|
+
|
|
256
|
+
// Now valid
|
|
257
|
+
const msg: AgentMessage = { role: "notification", text: "Info", timestamp: Date.now() };
|
|
148
258
|
```
|
|
149
259
|
|
|
150
|
-
|
|
260
|
+
Handle custom types in `convertToLlm`:
|
|
261
|
+
|
|
262
|
+
```typescript
|
|
263
|
+
const agent = new Agent({
|
|
264
|
+
convertToLlm: (messages) => messages.flatMap(m => {
|
|
265
|
+
if (m.role === "notification") return []; // Filter out
|
|
266
|
+
return [m];
|
|
267
|
+
}),
|
|
268
|
+
});
|
|
269
|
+
```
|
|
270
|
+
|
|
271
|
+
## Tools
|
|
151
272
|
|
|
152
|
-
|
|
273
|
+
Define tools using `AgentTool`:
|
|
153
274
|
|
|
154
275
|
```typescript
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
276
|
+
import { Type } from "@sinclair/typebox";
|
|
277
|
+
|
|
278
|
+
const readFileTool: AgentTool = {
|
|
279
|
+
name: "read_file",
|
|
280
|
+
label: "Read File", // For UI display
|
|
281
|
+
description: "Read a file's contents",
|
|
282
|
+
parameters: Type.Object({
|
|
283
|
+
path: Type.String({ description: "File path" }),
|
|
284
|
+
}),
|
|
285
|
+
execute: async (toolCallId, params, signal, onUpdate) => {
|
|
286
|
+
const content = await fs.readFile(params.path, "utf-8");
|
|
287
|
+
|
|
288
|
+
// Optional: stream progress
|
|
289
|
+
onUpdate?.({ content: [{ type: "text", text: "Reading..." }], details: {} });
|
|
290
|
+
|
|
291
|
+
return {
|
|
292
|
+
content: [{ type: "text", text: content }],
|
|
293
|
+
details: { path: params.path, size: content.length },
|
|
294
|
+
};
|
|
295
|
+
},
|
|
296
|
+
};
|
|
297
|
+
|
|
298
|
+
agent.setTools([readFileTool]);
|
|
299
|
+
```
|
|
300
|
+
|
|
301
|
+
### Error Handling
|
|
302
|
+
|
|
303
|
+
**Throw an error** when a tool fails. Do not return error messages as content.
|
|
304
|
+
|
|
305
|
+
```typescript
|
|
306
|
+
execute: async (toolCallId, params, signal, onUpdate) => {
|
|
307
|
+
if (!fs.existsSync(params.path)) {
|
|
308
|
+
throw new Error(`File not found: ${params.path}`);
|
|
158
309
|
}
|
|
310
|
+
// Return content only on success
|
|
311
|
+
return { content: [{ type: "text", text: "..." }] };
|
|
312
|
+
}
|
|
313
|
+
```
|
|
314
|
+
|
|
315
|
+
Thrown errors are caught by the agent and reported to the LLM as tool errors with `isError: true`.
|
|
316
|
+
|
|
317
|
+
## Proxy Usage
|
|
318
|
+
|
|
319
|
+
For browser apps that proxy through a backend:
|
|
320
|
+
|
|
321
|
+
```typescript
|
|
322
|
+
import { Agent, streamProxy } from "@mariozechner/pi-agent";
|
|
323
|
+
|
|
324
|
+
const agent = new Agent({
|
|
325
|
+
streamFn: (model, context, options) =>
|
|
326
|
+
streamProxy(model, context, {
|
|
327
|
+
...options,
|
|
328
|
+
authToken: "...",
|
|
329
|
+
proxyUrl: "https://your-server.com",
|
|
330
|
+
}),
|
|
331
|
+
});
|
|
332
|
+
```
|
|
333
|
+
|
|
334
|
+
## Low-Level API
|
|
335
|
+
|
|
336
|
+
For direct control without the Agent class:
|
|
337
|
+
|
|
338
|
+
```typescript
|
|
339
|
+
import { agentLoop, agentLoopContinue } from "@mariozechner/pi-agent";
|
|
340
|
+
|
|
341
|
+
const context: AgentContext = {
|
|
342
|
+
systemPrompt: "You are helpful.",
|
|
343
|
+
messages: [],
|
|
344
|
+
tools: [],
|
|
345
|
+
};
|
|
346
|
+
|
|
347
|
+
const config: AgentLoopConfig = {
|
|
348
|
+
model: getModel("openai", "gpt-4o"),
|
|
349
|
+
convertToLlm: (msgs) => msgs.filter(m => ["user", "assistant", "toolResult"].includes(m.role)),
|
|
350
|
+
};
|
|
351
|
+
|
|
352
|
+
const userMessage = { role: "user", content: "Hello", timestamp: Date.now() };
|
|
353
|
+
|
|
354
|
+
for await (const event of agentLoop([userMessage], context, config)) {
|
|
355
|
+
console.log(event.type);
|
|
159
356
|
}
|
|
160
357
|
|
|
161
|
-
//
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
### Agent Methods
|
|
168
|
-
|
|
169
|
-
| Method | Description |
|
|
170
|
-
|--------|-------------|
|
|
171
|
-
| `prompt(text, attachments?)` | Send a user prompt |
|
|
172
|
-
| `continue()` | Continue from current context (for retry after overflow) |
|
|
173
|
-
| `abort()` | Abort current operation |
|
|
174
|
-
| `waitForIdle()` | Returns promise that resolves when agent is idle |
|
|
175
|
-
| `reset()` | Clear all messages and state |
|
|
176
|
-
| `subscribe(fn)` | Subscribe to events, returns unsubscribe function |
|
|
177
|
-
| `queueMessage(msg)` | Queue message for next turn |
|
|
178
|
-
| `clearMessageQueue()` | Clear queued messages |
|
|
179
|
-
|
|
180
|
-
### State Mutators
|
|
181
|
-
|
|
182
|
-
| Method | Description |
|
|
183
|
-
|--------|-------------|
|
|
184
|
-
| `setSystemPrompt(v)` | Update system prompt |
|
|
185
|
-
| `setModel(m)` | Switch model |
|
|
186
|
-
| `setThinkingLevel(l)` | Set reasoning level |
|
|
187
|
-
| `setQueueMode(m)` | Set queue mode ('all' or 'one-at-a-time') |
|
|
188
|
-
| `setTools(t)` | Update available tools |
|
|
189
|
-
| `replaceMessages(ms)` | Replace all messages |
|
|
190
|
-
| `appendMessage(m)` | Append a message |
|
|
191
|
-
| `clearMessages()` | Clear all messages |
|
|
358
|
+
// Continue from existing context
|
|
359
|
+
for await (const event of agentLoopContinue(context, config)) {
|
|
360
|
+
console.log(event.type);
|
|
361
|
+
}
|
|
362
|
+
```
|
|
192
363
|
|
|
193
364
|
## License
|
|
194
365
|
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
/**
|
|
2
|
+
* Agent loop that works with AgentMessage throughout.
|
|
3
|
+
* Transforms to Message[] only at the LLM call boundary.
|
|
4
|
+
*/
|
|
5
|
+
import { EventStream } from "@mariozechner/pi-ai";
|
|
6
|
+
import type { AgentContext, AgentEvent, AgentLoopConfig, AgentMessage, StreamFn } from "./types.js";
|
|
7
|
+
/**
|
|
8
|
+
* Start an agent loop with a new prompt message.
|
|
9
|
+
* The prompt is added to the context and events are emitted for it.
|
|
10
|
+
*/
|
|
11
|
+
export declare function agentLoop(prompts: AgentMessage[], context: AgentContext, config: AgentLoopConfig, signal?: AbortSignal, streamFn?: StreamFn): EventStream<AgentEvent, AgentMessage[]>;
|
|
12
|
+
/**
|
|
13
|
+
* Continue an agent loop from the current context without adding a new message.
|
|
14
|
+
* Used for retries - context already has user message or tool results.
|
|
15
|
+
*
|
|
16
|
+
* **Important:** The last message in context must convert to a `user` or `toolResult` message
|
|
17
|
+
* via `convertToLlm`. If it doesn't, the LLM provider will reject the request.
|
|
18
|
+
* This cannot be validated here since `convertToLlm` is only called once per turn.
|
|
19
|
+
*/
|
|
20
|
+
export declare function agentLoopContinue(context: AgentContext, config: AgentLoopConfig, signal?: AbortSignal, streamFn?: StreamFn): EventStream<AgentEvent, AgentMessage[]>;
|
|
21
|
+
//# sourceMappingURL=agent-loop.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"agent-loop.d.ts","sourceRoot":"","sources":["../src/agent-loop.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,EAGN,WAAW,EAIX,MAAM,qBAAqB,CAAC;AAC7B,OAAO,KAAK,EACX,YAAY,EACZ,UAAU,EACV,eAAe,EACf,YAAY,EAGZ,QAAQ,EACR,MAAM,YAAY,CAAC;AAEpB;;;GAGG;AACH,wBAAgB,SAAS,CACxB,OAAO,EAAE,YAAY,EAAE,EACvB,OAAO,EAAE,YAAY,EACrB,MAAM,EAAE,eAAe,EACvB,MAAM,CAAC,EAAE,WAAW,EACpB,QAAQ,CAAC,EAAE,QAAQ,GACjB,WAAW,CAAC,UAAU,EAAE,YAAY,EAAE,CAAC,CAqBzC;AAED;;;;;;;GAOG;AACH,wBAAgB,iBAAiB,CAChC,OAAO,EAAE,YAAY,EACrB,MAAM,EAAE,eAAe,EACvB,MAAM,CAAC,EAAE,WAAW,EACpB,QAAQ,CAAC,EAAE,QAAQ,GACjB,WAAW,CAAC,UAAU,EAAE,YAAY,EAAE,CAAC,CAsBzC","sourcesContent":["/**\n * Agent loop that works with AgentMessage throughout.\n * Transforms to Message[] only at the LLM call boundary.\n */\n\nimport {\n\ttype AssistantMessage,\n\ttype Context,\n\tEventStream,\n\tstreamSimple,\n\ttype ToolResultMessage,\n\tvalidateToolArguments,\n} from \"@mariozechner/pi-ai\";\nimport type {\n\tAgentContext,\n\tAgentEvent,\n\tAgentLoopConfig,\n\tAgentMessage,\n\tAgentTool,\n\tAgentToolResult,\n\tStreamFn,\n} from \"./types.js\";\n\n/**\n * Start an agent loop with a new prompt message.\n * The prompt is added to the context and events are emitted for it.\n */\nexport function agentLoop(\n\tprompts: AgentMessage[],\n\tcontext: AgentContext,\n\tconfig: AgentLoopConfig,\n\tsignal?: AbortSignal,\n\tstreamFn?: StreamFn,\n): EventStream<AgentEvent, AgentMessage[]> {\n\tconst stream = createAgentStream();\n\n\t(async () => {\n\t\tconst newMessages: AgentMessage[] = [...prompts];\n\t\tconst currentContext: AgentContext = {\n\t\t\t...context,\n\t\t\tmessages: [...context.messages, ...prompts],\n\t\t};\n\n\t\tstream.push({ type: \"agent_start\" });\n\t\tstream.push({ type: \"turn_start\" });\n\t\tfor (const prompt of prompts) {\n\t\t\tstream.push({ type: \"message_start\", message: prompt });\n\t\t\tstream.push({ type: \"message_end\", message: prompt });\n\t\t}\n\n\t\tawait runLoop(currentContext, newMessages, config, signal, stream, streamFn);\n\t})();\n\n\treturn stream;\n}\n\n/**\n * Continue an agent loop from the current context without adding a new message.\n * Used for retries - context already has user message or tool results.\n *\n * **Important:** The last message in context must convert to a `user` or `toolResult` message\n * via `convertToLlm`. If it doesn't, the LLM provider will reject the request.\n * This cannot be validated here since `convertToLlm` is only called once per turn.\n */\nexport function agentLoopContinue(\n\tcontext: AgentContext,\n\tconfig: AgentLoopConfig,\n\tsignal?: AbortSignal,\n\tstreamFn?: StreamFn,\n): EventStream<AgentEvent, AgentMessage[]> {\n\tif (context.messages.length === 0) {\n\t\tthrow new Error(\"Cannot continue: no messages in context\");\n\t}\n\n\tif (context.messages[context.messages.length - 1].role === \"assistant\") {\n\t\tthrow new Error(\"Cannot continue from message role: assistant\");\n\t}\n\n\tconst stream = createAgentStream();\n\n\t(async () => {\n\t\tconst newMessages: AgentMessage[] = [];\n\t\tconst currentContext: AgentContext = { ...context };\n\n\t\tstream.push({ type: \"agent_start\" });\n\t\tstream.push({ type: \"turn_start\" });\n\n\t\tawait runLoop(currentContext, newMessages, config, signal, stream, streamFn);\n\t})();\n\n\treturn stream;\n}\n\nfunction createAgentStream(): EventStream<AgentEvent, AgentMessage[]> {\n\treturn new EventStream<AgentEvent, AgentMessage[]>(\n\t\t(event: AgentEvent) => event.type === \"agent_end\",\n\t\t(event: AgentEvent) => (event.type === \"agent_end\" ? event.messages : []),\n\t);\n}\n\n/**\n * Main loop logic shared by agentLoop and agentLoopContinue.\n */\nasync function runLoop(\n\tcurrentContext: AgentContext,\n\tnewMessages: AgentMessage[],\n\tconfig: AgentLoopConfig,\n\tsignal: AbortSignal | undefined,\n\tstream: EventStream<AgentEvent, AgentMessage[]>,\n\tstreamFn?: StreamFn,\n): Promise<void> {\n\tlet hasMoreToolCalls = true;\n\tlet firstTurn = true;\n\tlet queuedMessages: AgentMessage[] = (await config.getQueuedMessages?.()) || [];\n\tlet queuedAfterTools: AgentMessage[] | null = null;\n\n\twhile (hasMoreToolCalls || queuedMessages.length > 0) {\n\t\tif (!firstTurn) {\n\t\t\tstream.push({ type: \"turn_start\" });\n\t\t} else {\n\t\t\tfirstTurn = false;\n\t\t}\n\n\t\t// Process queued messages (inject before next assistant response)\n\t\tif (queuedMessages.length > 0) {\n\t\t\tfor (const message of queuedMessages) {\n\t\t\t\tstream.push({ type: \"message_start\", message });\n\t\t\t\tstream.push({ type: \"message_end\", message });\n\t\t\t\tcurrentContext.messages.push(message);\n\t\t\t\tnewMessages.push(message);\n\t\t\t}\n\t\t\tqueuedMessages = [];\n\t\t}\n\n\t\t// Stream assistant response\n\t\tconst message = await streamAssistantResponse(currentContext, config, signal, stream, streamFn);\n\t\tnewMessages.push(message);\n\n\t\tif (message.stopReason === \"error\" || message.stopReason === \"aborted\") {\n\t\t\tstream.push({ type: \"turn_end\", message, toolResults: [] });\n\t\t\tstream.push({ type: \"agent_end\", messages: newMessages });\n\t\t\tstream.end(newMessages);\n\t\t\treturn;\n\t\t}\n\n\t\t// Check for tool calls\n\t\tconst toolCalls = message.content.filter((c) => c.type === \"toolCall\");\n\t\thasMoreToolCalls = toolCalls.length > 0;\n\n\t\tconst toolResults: ToolResultMessage[] = [];\n\t\tif (hasMoreToolCalls) {\n\t\t\tconst toolExecution = await executeToolCalls(\n\t\t\t\tcurrentContext.tools,\n\t\t\t\tmessage,\n\t\t\t\tsignal,\n\t\t\t\tstream,\n\t\t\t\tconfig.getQueuedMessages,\n\t\t\t);\n\t\t\ttoolResults.push(...toolExecution.toolResults);\n\t\t\tqueuedAfterTools = toolExecution.queuedMessages ?? null;\n\n\t\t\tfor (const result of toolResults) {\n\t\t\t\tcurrentContext.messages.push(result);\n\t\t\t\tnewMessages.push(result);\n\t\t\t}\n\t\t}\n\n\t\tstream.push({ type: \"turn_end\", message, toolResults });\n\n\t\t// Get queued messages after turn completes\n\t\tif (queuedAfterTools && queuedAfterTools.length > 0) {\n\t\t\tqueuedMessages = queuedAfterTools;\n\t\t\tqueuedAfterTools = null;\n\t\t} else {\n\t\t\tqueuedMessages = (await config.getQueuedMessages?.()) || [];\n\t\t}\n\t}\n\n\tstream.push({ type: \"agent_end\", messages: newMessages });\n\tstream.end(newMessages);\n}\n\n/**\n * Stream an assistant response from the LLM.\n * This is where AgentMessage[] gets transformed to Message[] for the LLM.\n */\nasync function streamAssistantResponse(\n\tcontext: AgentContext,\n\tconfig: AgentLoopConfig,\n\tsignal: AbortSignal | undefined,\n\tstream: EventStream<AgentEvent, AgentMessage[]>,\n\tstreamFn?: StreamFn,\n): Promise<AssistantMessage> {\n\t// Apply context transform if configured (AgentMessage[] → AgentMessage[])\n\tlet messages = context.messages;\n\tif (config.transformContext) {\n\t\tmessages = await config.transformContext(messages, signal);\n\t}\n\n\t// Convert to LLM-compatible messages (AgentMessage[] → Message[])\n\tconst llmMessages = await config.convertToLlm(messages);\n\n\t// Build LLM context\n\tconst llmContext: Context = {\n\t\tsystemPrompt: context.systemPrompt,\n\t\tmessages: llmMessages,\n\t\ttools: context.tools,\n\t};\n\n\tconst streamFunction = streamFn || streamSimple;\n\n\t// Resolve API key (important for expiring tokens)\n\tconst resolvedApiKey =\n\t\t(config.getApiKey ? await config.getApiKey(config.model.provider) : undefined) || config.apiKey;\n\n\tconst response = await streamFunction(config.model, llmContext, {\n\t\t...config,\n\t\tapiKey: resolvedApiKey,\n\t\tsignal,\n\t});\n\n\tlet partialMessage: AssistantMessage | null = null;\n\tlet addedPartial = false;\n\n\tfor await (const event of response) {\n\t\tswitch (event.type) {\n\t\t\tcase \"start\":\n\t\t\t\tpartialMessage = event.partial;\n\t\t\t\tcontext.messages.push(partialMessage);\n\t\t\t\taddedPartial = true;\n\t\t\t\tstream.push({ type: \"message_start\", message: { ...partialMessage } });\n\t\t\t\tbreak;\n\n\t\t\tcase \"text_start\":\n\t\t\tcase \"text_delta\":\n\t\t\tcase \"text_end\":\n\t\t\tcase \"thinking_start\":\n\t\t\tcase \"thinking_delta\":\n\t\t\tcase \"thinking_end\":\n\t\t\tcase \"toolcall_start\":\n\t\t\tcase \"toolcall_delta\":\n\t\t\tcase \"toolcall_end\":\n\t\t\t\tif (partialMessage) {\n\t\t\t\t\tpartialMessage = event.partial;\n\t\t\t\t\tcontext.messages[context.messages.length - 1] = partialMessage;\n\t\t\t\t\tstream.push({\n\t\t\t\t\t\ttype: \"message_update\",\n\t\t\t\t\t\tassistantMessageEvent: event,\n\t\t\t\t\t\tmessage: { ...partialMessage },\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t\tbreak;\n\n\t\t\tcase \"done\":\n\t\t\tcase \"error\": {\n\t\t\t\tconst finalMessage = await response.result();\n\t\t\t\tif (addedPartial) {\n\t\t\t\t\tcontext.messages[context.messages.length - 1] = finalMessage;\n\t\t\t\t} else {\n\t\t\t\t\tcontext.messages.push(finalMessage);\n\t\t\t\t}\n\t\t\t\tif (!addedPartial) {\n\t\t\t\t\tstream.push({ type: \"message_start\", message: { ...finalMessage } });\n\t\t\t\t}\n\t\t\t\tstream.push({ type: \"message_end\", message: finalMessage });\n\t\t\t\treturn finalMessage;\n\t\t\t}\n\t\t}\n\t}\n\n\treturn await response.result();\n}\n\n/**\n * Execute tool calls from an assistant message.\n */\nasync function executeToolCalls(\n\ttools: AgentTool<any>[] | undefined,\n\tassistantMessage: AssistantMessage,\n\tsignal: AbortSignal | undefined,\n\tstream: EventStream<AgentEvent, AgentMessage[]>,\n\tgetQueuedMessages?: AgentLoopConfig[\"getQueuedMessages\"],\n): Promise<{ toolResults: ToolResultMessage[]; queuedMessages?: AgentMessage[] }> {\n\tconst toolCalls = assistantMessage.content.filter((c) => c.type === \"toolCall\");\n\tconst results: ToolResultMessage[] = [];\n\tlet queuedMessages: AgentMessage[] | undefined;\n\n\tfor (let index = 0; index < toolCalls.length; index++) {\n\t\tconst toolCall = toolCalls[index];\n\t\tconst tool = tools?.find((t) => t.name === toolCall.name);\n\n\t\tstream.push({\n\t\t\ttype: \"tool_execution_start\",\n\t\t\ttoolCallId: toolCall.id,\n\t\t\ttoolName: toolCall.name,\n\t\t\targs: toolCall.arguments,\n\t\t});\n\n\t\tlet result: AgentToolResult<any>;\n\t\tlet isError = false;\n\n\t\ttry {\n\t\t\tif (!tool) throw new Error(`Tool ${toolCall.name} not found`);\n\n\t\t\tconst validatedArgs = validateToolArguments(tool, toolCall);\n\n\t\t\tresult = await tool.execute(toolCall.id, validatedArgs, signal, (partialResult) => {\n\t\t\t\tstream.push({\n\t\t\t\t\ttype: \"tool_execution_update\",\n\t\t\t\t\ttoolCallId: toolCall.id,\n\t\t\t\t\ttoolName: toolCall.name,\n\t\t\t\t\targs: toolCall.arguments,\n\t\t\t\t\tpartialResult,\n\t\t\t\t});\n\t\t\t});\n\t\t} catch (e) {\n\t\t\tresult = {\n\t\t\t\tcontent: [{ type: \"text\", text: e instanceof Error ? e.message : String(e) }],\n\t\t\t\tdetails: {},\n\t\t\t};\n\t\t\tisError = true;\n\t\t}\n\n\t\tstream.push({\n\t\t\ttype: \"tool_execution_end\",\n\t\t\ttoolCallId: toolCall.id,\n\t\t\ttoolName: toolCall.name,\n\t\t\tresult,\n\t\t\tisError,\n\t\t});\n\n\t\tconst toolResultMessage: ToolResultMessage = {\n\t\t\trole: \"toolResult\",\n\t\t\ttoolCallId: toolCall.id,\n\t\t\ttoolName: toolCall.name,\n\t\t\tcontent: result.content,\n\t\t\tdetails: result.details,\n\t\t\tisError,\n\t\t\ttimestamp: Date.now(),\n\t\t};\n\n\t\tresults.push(toolResultMessage);\n\t\tstream.push({ type: \"message_start\", message: toolResultMessage });\n\t\tstream.push({ type: \"message_end\", message: toolResultMessage });\n\n\t\t// Check for queued messages - skip remaining tools if user interrupted\n\t\tif (getQueuedMessages) {\n\t\t\tconst queued = await getQueuedMessages();\n\t\t\tif (queued.length > 0) {\n\t\t\t\tqueuedMessages = queued;\n\t\t\t\tconst remainingCalls = toolCalls.slice(index + 1);\n\t\t\t\tfor (const skipped of remainingCalls) {\n\t\t\t\t\tresults.push(skipToolCall(skipped, stream));\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\treturn { toolResults: results, queuedMessages };\n}\n\nfunction skipToolCall(\n\ttoolCall: Extract<AssistantMessage[\"content\"][number], { type: \"toolCall\" }>,\n\tstream: EventStream<AgentEvent, AgentMessage[]>,\n): ToolResultMessage {\n\tconst result: AgentToolResult<any> = {\n\t\tcontent: [{ type: \"text\", text: \"Skipped due to queued user message.\" }],\n\t\tdetails: {},\n\t};\n\n\tstream.push({\n\t\ttype: \"tool_execution_start\",\n\t\ttoolCallId: toolCall.id,\n\t\ttoolName: toolCall.name,\n\t\targs: toolCall.arguments,\n\t});\n\tstream.push({\n\t\ttype: \"tool_execution_end\",\n\t\ttoolCallId: toolCall.id,\n\t\ttoolName: toolCall.name,\n\t\tresult,\n\t\tisError: true,\n\t});\n\n\tconst toolResultMessage: ToolResultMessage = {\n\t\trole: \"toolResult\",\n\t\ttoolCallId: toolCall.id,\n\t\ttoolName: toolCall.name,\n\t\tcontent: result.content,\n\t\tdetails: {},\n\t\tisError: true,\n\t\ttimestamp: Date.now(),\n\t};\n\n\tstream.push({ type: \"message_start\", message: toolResultMessage });\n\tstream.push({ type: \"message_end\", message: toolResultMessage });\n\n\treturn toolResultMessage;\n}\n"]}
|