@machinespirits/eval 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. package/components/MobileEvalDashboard.tsx +267 -0
  2. package/components/comparison/DeltaAnalysisTable.tsx +137 -0
  3. package/components/comparison/ProfileComparisonCard.tsx +176 -0
  4. package/components/comparison/RecognitionABMode.tsx +385 -0
  5. package/components/comparison/RecognitionMetricsPanel.tsx +135 -0
  6. package/components/comparison/WinnerIndicator.tsx +64 -0
  7. package/components/comparison/index.ts +5 -0
  8. package/components/mobile/BottomSheet.tsx +233 -0
  9. package/components/mobile/DimensionBreakdown.tsx +210 -0
  10. package/components/mobile/DocsView.tsx +363 -0
  11. package/components/mobile/LogsView.tsx +481 -0
  12. package/components/mobile/PsychodynamicQuadrant.tsx +261 -0
  13. package/components/mobile/QuickTestView.tsx +1098 -0
  14. package/components/mobile/RecognitionTypeChart.tsx +124 -0
  15. package/components/mobile/RecognitionView.tsx +809 -0
  16. package/components/mobile/RunDetailView.tsx +261 -0
  17. package/components/mobile/RunHistoryView.tsx +367 -0
  18. package/components/mobile/ScoreRadial.tsx +211 -0
  19. package/components/mobile/StreamingLogPanel.tsx +230 -0
  20. package/components/mobile/SynthesisStrategyChart.tsx +140 -0
  21. package/config/interaction-eval-scenarios.yaml +832 -0
  22. package/config/learner-agents.yaml +248 -0
  23. package/docs/research/ABLATION-DIALOGUE-ROUNDS.md +52 -0
  24. package/docs/research/ABLATION-MODEL-SELECTION.md +53 -0
  25. package/docs/research/ADVANCED-EVAL-ANALYSIS.md +60 -0
  26. package/docs/research/ANOVA-RESULTS-2026-01-14.md +257 -0
  27. package/docs/research/COMPREHENSIVE-EVALUATION-PLAN.md +586 -0
  28. package/docs/research/COST-ANALYSIS.md +56 -0
  29. package/docs/research/CRITICAL-REVIEW-RECOGNITION-TUTORING.md +340 -0
  30. package/docs/research/DYNAMIC-VS-SCRIPTED-ANALYSIS.md +291 -0
  31. package/docs/research/EVAL-SYSTEM-ANALYSIS.md +306 -0
  32. package/docs/research/FACTORIAL-RESULTS-2026-01-14.md +301 -0
  33. package/docs/research/IMPLEMENTATION-PLAN-CRITIQUE-RESPONSE.md +1988 -0
  34. package/docs/research/LONGITUDINAL-DYADIC-EVALUATION.md +282 -0
  35. package/docs/research/MULTI-JUDGE-VALIDATION-2026-01-14.md +147 -0
  36. package/docs/research/PAPER-EXTENSION-DYADIC.md +204 -0
  37. package/docs/research/PAPER-UNIFIED.md +659 -0
  38. package/docs/research/PAPER-UNIFIED.pdf +0 -0
  39. package/docs/research/PROMPT-IMPROVEMENTS-2026-01-14.md +356 -0
  40. package/docs/research/SESSION-NOTES-2026-01-11-RECOGNITION-EVAL.md +419 -0
  41. package/docs/research/apa.csl +2133 -0
  42. package/docs/research/archive/PAPER-DRAFT-RECOGNITION-TUTORING.md +1637 -0
  43. package/docs/research/archive/paper-multiagent-tutor.tex +978 -0
  44. package/docs/research/paper-draft/full-paper.md +136 -0
  45. package/docs/research/paper-draft/images/pasted-image-2026-01-24T03-47-47-846Z-d76a7ae2.png +0 -0
  46. package/docs/research/paper-draft/references.bib +515 -0
  47. package/docs/research/transcript-baseline.md +139 -0
  48. package/docs/research/transcript-recognition-multiagent.md +187 -0
  49. package/hooks/useEvalData.ts +625 -0
  50. package/index.js +27 -0
  51. package/package.json +73 -0
  52. package/routes/evalRoutes.js +3002 -0
  53. package/scripts/advanced-eval-analysis.js +351 -0
  54. package/scripts/analyze-eval-costs.js +378 -0
  55. package/scripts/analyze-eval-results.js +513 -0
  56. package/scripts/analyze-interaction-evals.js +368 -0
  57. package/server-init.js +45 -0
  58. package/server.js +162 -0
  59. package/services/benchmarkService.js +1892 -0
  60. package/services/evaluationRunner.js +739 -0
  61. package/services/evaluationStore.js +1121 -0
  62. package/services/learnerConfigLoader.js +385 -0
  63. package/services/learnerTutorInteractionEngine.js +857 -0
  64. package/services/memory/learnerMemoryService.js +1227 -0
  65. package/services/memory/learnerWritingPad.js +577 -0
  66. package/services/memory/tutorWritingPad.js +674 -0
  67. package/services/promptRecommendationService.js +493 -0
  68. package/services/rubricEvaluator.js +826 -0
@@ -0,0 +1,1988 @@
1
+ # Implementation Plan: Addressing Critical Review
2
+
3
+ **Date:** 2026-01-14
4
+ **Purpose:** Systematic response to each critique in CRITICAL-REVIEW-RECOGNITION-TUTORING.md
5
+ **Scope:** Experimental, architectural, and conceptual refinements
6
+
7
+ ---
8
+
9
+ ## Executive Summary
10
+
11
+ This plan addresses 15 specific critiques across three domains. Each response includes:
12
+ - **The Critique**: What was identified as problematic
13
+ - **The Response**: Concrete implementation or theoretical refinement
14
+ - **Implementation Details**: Code changes, new scenarios, evaluation metrics
15
+ - **Success Criteria**: How we know the critique has been addressed
16
+ - **Priority & Effort**: Relative importance and implementation complexity
17
+
18
+ ---
19
+
20
+ ## Guiding Principles
21
+
22
+ ### Theoretical Positioning
23
+
24
+ The implementation proceeds from a refined theoretical stance:
25
+
26
+ 1. **Hegelian Recognition as Derivative**: The master-slave dialectic is not literally applied to AI tutoring but serves as a *derivative framework*—like Lacan's four discourses, it rethinks the structure through new roles (tutor/learner) while preserving structural insights about one-directional vs. mutual engagement.
27
+
28
+ 2. **Psychodynamic Architecture as Productive Metaphor**: The Ego/Superego configuration is metaphorical scaffolding that names real tensions (warmth vs. rigor) and motivates architectural decisions (internal dialogue before external output) without claiming literal psychodynamics.
29
+
30
+ 3. **Focus on Tutor Adaptive Pedagogy**: The empirical claims concern measurable effects on *tutor behavior*—specifically, how the tutor adapts to learner input. We measure whether the tutor:
31
+ - Engages with specific learner contributions (not generic responses)
32
+ - Adapts suggestions based on learner state signals
33
+ - Repairs after misalignment rather than silently pivoting
34
+ - Honors productive struggle rather than short-circuiting confusion
35
+
36
+ ### The 2×2 Factorial Design
37
+
38
+ The existing experimental infrastructure enables rigorous evaluation:
39
+
40
+ ```
41
+ ┌─────────────────────┬─────────────────────┬─────────────────────┐
42
+ │ │ Standard Prompts │ Recognition Prompts │
43
+ ├─────────────────────┼─────────────────────┼─────────────────────┤
44
+ │ Single Agent │ single_baseline │ single_recognition │
45
+ │ (Ego only) │ │ │
46
+ ├─────────────────────┼─────────────────────┼─────────────────────┤
47
+ │ Multi-Agent │ baseline │ recognition │
48
+ │ (Ego + Superego) │ │ │
49
+ └─────────────────────┴─────────────────────┴─────────────────────┘
50
+ ```
51
+
52
+ This design isolates:
53
+ - **Main effect of architecture**: Does multi-agent dialogue improve tutor adaptiveness?
54
+ - **Main effect of recognition**: Do recognition-oriented prompts improve tutor adaptiveness?
55
+ - **Interaction effect**: Does recognition benefit more from multi-agent architecture?
56
+
57
+ ### Tutor Adaptive Pedagogy Metrics
58
+
59
+ The evaluation framework measures these dimensions of tutor adaptive behavior:
60
+
61
+ | Metric | Definition | How Measured |
62
+ |--------|------------|--------------|
63
+ | **Content Engagement** | Does tutor engage with *specific* learner contribution? | Relational scoring (Turn N shaped by Turn N-1) |
64
+ | **Signal Responsiveness** | Does tutor adapt to learner state signals? | Compare responses to same content with different signals |
65
+ | **Repair Behavior** | Does tutor acknowledge misalignment before pivoting? | Track repair acknowledgments after failures |
66
+ | **Struggle Honoring** | Does tutor honor productive struggle vs. short-circuit? | Measure premature resolution patterns |
67
+ | **Framework Adoption** | Does tutor adopt learner's language/metaphors? | Track vocabulary overlap with learner contributions |
68
+ | **Pacing Calibration** | Does tutor match difficulty to demonstrated level? | Assess suggestion appropriateness given learner history |
69
+
70
+ ---
71
+
72
+ # Part I: Experimental Critiques
73
+
74
+ ## I.A The Fundamental Evaluation Paradox
75
+
76
+ ### Critique
77
+ Scripted multi-turn scenarios cannot measure recognition because:
78
+ 1. Learner turns are predetermined regardless of tutor response
79
+ 2. Learner cannot reciprocate recognition
80
+ 3. We measure recognition *markers*, not recognition itself
81
+
82
+ ### Response: Contingent Dialogue Evaluation Framework
83
+
84
+ **Implementation**: Create a new evaluation mode where learner-agent responses are *generated* based on tutor quality, not scripted.
85
+
86
+ #### 1. Contingent Learner Agent Architecture
87
+
88
+ ```yaml
89
+ # New file: config/contingent-learner.yaml
90
+ contingent_learner:
91
+ description: "Learner agent that responds dynamically to tutor quality"
92
+
93
+ architecture:
94
+ model: claude-haiku-4-5 # Fast for iteration
95
+
96
+ # Learner has internal state that evolves
97
+ internal_state:
98
+ understanding_level: 0.0-1.0 # Current grasp of concept
99
+ engagement: 0.0-1.0 # Emotional investment
100
+ frustration: 0.0-1.0 # Accumulated frustration
101
+ recognition_received: 0.0-1.0 # Felt sense of being understood
102
+
103
+ # State transitions based on tutor quality
104
+ transition_rules:
105
+ - trigger: "tutor_engages_with_contribution"
106
+ effects:
107
+ recognition_received: +0.2
108
+ engagement: +0.15
109
+ frustration: -0.1
110
+
111
+ - trigger: "tutor_dismisses_or_redirects"
112
+ effects:
113
+ recognition_received: -0.15
114
+ frustration: +0.2
115
+ engagement: -0.1
116
+
117
+ - trigger: "tutor_honors_struggle"
118
+ effects:
119
+ understanding_level: +0.1 # Productive struggle works
120
+ engagement: +0.1
121
+
122
+ - trigger: "tutor_short_circuits_confusion"
123
+ effects:
124
+ understanding_level: -0.05 # Hollow learning
125
+ frustration: +0.1
126
+
127
+ # Learner response generation
128
+ response_generation:
129
+ prompt: |
130
+ You are a learner with the following internal state:
131
+ - Understanding: {{understanding_level}}
132
+ - Engagement: {{engagement}}
133
+ - Frustration: {{frustration}}
134
+ - Feeling recognized: {{recognition_received}}
135
+
136
+ The tutor just said: {{tutor_response}}
137
+
138
+ Generate your next response. Your internal state should influence:
139
+ - If frustration > 0.6: Express frustration or disengage
140
+ - If recognition_received > 0.7: Offer deeper thoughts
141
+ - If engagement < 0.3: Give minimal responses
142
+ - If understanding_level increasing: Show breakthrough signals
143
+
144
+ Respond authentically as this learner would.
145
+ ```
146
+
147
+ #### 2. Bilateral Recognition Measurement
148
+
149
+ ```javascript
150
+ // New file: services/bilateralRecognitionEvaluator.js
151
+
152
+ /**
153
+ * Measures recognition from BOTH sides of the dialogue
154
+ */
155
+ export class BilateralRecognitionEvaluator {
156
+
157
+ /**
158
+ * Evaluate tutor-side recognition (existing)
159
+ * - Does tutor engage with learner's specific contribution?
160
+ * - Does tutor's response show evidence of being shaped by learner input?
161
+ */
162
+ evaluateTutorRecognition(tutorResponse, learnerPreviousTurn) {
163
+ return {
164
+ contentEngagement: this.measureContentEngagement(tutorResponse, learnerPreviousTurn),
165
+ frameworkAdoption: this.measureFrameworkAdoption(tutorResponse, learnerPreviousTurn),
166
+ transformativeShaping: this.measureTransformativeShaping(tutorResponse, learnerPreviousTurn)
167
+ };
168
+ }
169
+
170
+ /**
171
+ * Evaluate learner-side recognition (NEW)
172
+ * - Does learner's internal state transform in response to tutor?
173
+ * - Does learner show increased engagement/understanding?
174
+ * - Does learner reciprocate by offering more of themselves?
175
+ */
176
+ evaluateLearnerRecognition(learnerState, learnerResponse, tutorPreviousTurn) {
177
+ return {
178
+ stateTransformation: this.measureStateTransformation(learnerState),
179
+ reciprocalOffering: this.measureReciprocalOffering(learnerResponse),
180
+ authenticEngagement: this.measureAuthenticEngagement(learnerResponse, learnerState)
181
+ };
182
+ }
183
+
184
+ /**
185
+ * NEW: Relational recognition scoring
186
+ * Does Turn N show specific evidence of being shaped by Turn N-1?
187
+ */
188
+ measureContentEngagement(response, previousTurn) {
189
+ // Extract specific content from previous turn
190
+ const learnerConcepts = this.extractConcepts(previousTurn);
191
+ const learnerMetaphors = this.extractMetaphors(previousTurn);
192
+ const learnerQuestions = this.extractQuestions(previousTurn);
193
+
194
+ // Check if tutor response engages with SPECIFIC content
195
+ const conceptEngagement = this.checkConceptEngagement(response, learnerConcepts);
196
+ const metaphorExtension = this.checkMetaphorExtension(response, learnerMetaphors);
197
+ const questionAddressing = this.checkQuestionAddressing(response, learnerQuestions);
198
+
199
+ return {
200
+ score: (conceptEngagement + metaphorExtension + questionAddressing) / 3,
201
+ evidence: {
202
+ conceptsEngaged: conceptEngagement,
203
+ metaphorsExtended: metaphorExtension,
204
+ questionsAddressed: questionAddressing
205
+ }
206
+ };
207
+ }
208
+ }
209
+ ```
210
+
211
+ #### 3. Free-Form Dialogue Evaluation Protocol
212
+
213
+ ```yaml
214
+ # New scenario type in evaluation-rubric.yaml
215
+ free_form_dialogues:
216
+ description: "Unscripted dialogues for genuine recognition measurement"
217
+
218
+ protocol:
219
+ 1_setup:
220
+ - Initialize learner agent with starting state
221
+ - Provide topic/context but NO scripted turns
222
+ - Set termination conditions (max turns, convergence, breakdown)
223
+
224
+ 2_execution:
225
+ - Tutor generates response
226
+ - Evaluate tutor response for recognition quality
227
+ - Update learner internal state based on tutor quality
228
+ - Learner agent generates response based on state
229
+ - Repeat until termination
230
+
231
+ 3_measurement:
232
+ - Track bilateral state trajectories
233
+ - Measure mutual transformation over dialogue
234
+ - Code recognition moments post-hoc
235
+
236
+ termination_conditions:
237
+ - max_turns: 12
238
+ - learner_frustration_threshold: 0.8 # Learner disengages
239
+ - learner_understanding_threshold: 0.9 # Breakthrough achieved
240
+ - mutual_recognition_convergence: true # Both parties in flow
241
+
242
+ post_hoc_coding:
243
+ recognition_moments:
244
+ - tutor_adopts_learner_framework
245
+ - learner_offers_deeper_insight
246
+ - mutual_framework_emerges
247
+ - repair_successfully_acknowledged
248
+
249
+ anti_recognition_moments:
250
+ - tutor_redirects_without_engaging
251
+ - learner_withdraws_investment
252
+ - silent_pivot_after_misalignment
253
+ ```
254
+
255
+ ### Success Criteria
256
+
257
+ | Metric | Target | Measurement |
258
+ |--------|--------|-------------|
259
+ | Learner state variance | Correlated with tutor quality | r > 0.5 between tutor recognition score and learner engagement trajectory |
260
+ | Bilateral transformation | Both parties change | Mutual state change > 0.2 in successful dialogues |
261
+ | Post-hoc coding reliability | Independent coders agree | Cohen's κ > 0.7 for recognition moment identification |
262
+
263
+ ### Priority & Effort
264
+ - **Priority**: Critical (addresses fundamental validity threat)
265
+ - **Effort**: High (new architecture, new evaluation protocol)
266
+ - **Timeline**: 2-3 weeks for initial implementation
267
+
268
+ ---
269
+
270
+ ## I.B LLM-as-Judge Validity
271
+
272
+ ### Critique
273
+ 1. Circularity: Judge shares assumptions with system being judged
274
+ 2. Dimension inflation: 10 dimensions reduce to 2-3 factors
275
+ 3. Calibration unknowns: Vocabulary bias, length bias, profile leakage
276
+
277
+ ### Response: Multi-Faceted Judge Validation
278
+
279
+ #### 1. Multi-Judge Comparison with ICC Analysis
280
+
281
+ ```javascript
282
+ // New file: scripts/judge-comparison.js
283
+
284
+ /**
285
+ * Run identical evaluations across multiple judge models
286
+ * Compute inter-rater reliability metrics
287
+ */
288
+ async function runJudgeComparison(options) {
289
+ const judges = [
290
+ { provider: 'anthropic', model: 'claude-sonnet-4-5' },
291
+ { provider: 'openai', model: 'gpt-5.2' },
292
+ { provider: 'google', model: 'gemini-3-pro-preview' }
293
+ ];
294
+
295
+ const sample = await selectStratifiedSample({
296
+ n: 100,
297
+ stratifyBy: ['profile', 'scenario', 'score_quartile']
298
+ });
299
+
300
+ const results = {};
301
+
302
+ for (const response of sample) {
303
+ results[response.id] = {};
304
+
305
+ for (const judge of judges) {
306
+ const evaluation = await evaluateWithJudge(response, judge);
307
+ results[response.id][judge.model] = evaluation;
308
+ }
309
+ }
310
+
311
+ // Compute reliability metrics
312
+ const reliability = {
313
+ icc: computeICC(results), // Intraclass correlation
314
+ cohensKappa: computeKappa(results), // Per-dimension agreement
315
+ systematicBias: detectBias(results) // Judge-specific patterns
316
+ };
317
+
318
+ return { results, reliability };
319
+ }
320
+
321
+ /**
322
+ * Intraclass Correlation Coefficient (ICC)
323
+ * Two-way random effects, absolute agreement
324
+ */
325
+ function computeICC(results) {
326
+ // ICC(2,k) for average of k raters
327
+ // Returns per-dimension ICC values
328
+ }
329
+ ```
330
+
331
+ #### 2. Adversarial Scenario Design
332
+
333
+ ```yaml
334
+ # New scenarios in evaluation-rubric.yaml
335
+ adversarial_validation:
336
+ description: "Scenarios designed to detect judge biases"
337
+
338
+ scenarios:
339
+ # Uses recognition vocabulary but fails structurally
340
+ false_positive_recognition:
341
+ name: "Surface Recognition Markers"
342
+ description: "Response uses recognition language but doesn't engage"
343
+
344
+ tutor_response: |
345
+ I really want to engage with your understanding here. Your perspective
346
+ as an autonomous subject matters to me. Let's explore this together
347
+ through mutual inquiry. What you've said creates conditions for
348
+ transformation.
349
+
350
+ [Actual response: generic redirect that ignores learner's specific point]
351
+
352
+ Anyway, the key concept you need to understand is thesis-antithesis-synthesis.
353
+
354
+ expected_judge_behavior:
355
+ - Should score LOW on mutual_recognition despite vocabulary
356
+ - Should detect the redirect pattern
357
+ - Should not be fooled by surface markers
358
+
359
+ validation_criterion: "Score < 3.0 on recognition dimensions"
360
+
361
+ # No recognition vocabulary but engages structurally
362
+ false_negative_recognition:
363
+ name: "Genuine Engagement Without Markers"
364
+ description: "Response engages deeply but uses plain language"
365
+
366
+ learner_turn: "I keep thinking of dialectics like a spiral going up"
367
+
368
+ tutor_response: |
369
+ A spiral - that's interesting. What happens when you reach a point
370
+ you've been at before? Is it the same, or different somehow?
371
+
372
+ expected_judge_behavior:
373
+ - Should score HIGH on dialectical_responsiveness
374
+ - Should recognize structural engagement
375
+ - Should not penalize lack of buzzwords
376
+
377
+ validation_criterion: "Score > 4.0 on recognition dimensions"
378
+
379
+ # Long response with poor quality
380
+ length_bias_test:
381
+ name: "Verbose Non-Recognition"
382
+ description: "Long response that doesn't actually engage"
383
+
384
+ tutor_response: "[500 words of generic explanation ignoring learner]"
385
+
386
+ validation_criterion: "Score not correlated with length"
387
+
388
+ # Short response with high quality
389
+ brevity_test:
390
+ name: "Concise Recognition"
391
+ description: "Short response that genuinely engages"
392
+
393
+ tutor_response: "Your spiral - does it double back or always go forward?"
394
+
395
+ validation_criterion: "Score not penalized for brevity"
396
+ ```
397
+
398
+ #### 3. Dimension Factor Analysis
399
+
400
+ ```javascript
401
+ // New file: scripts/dimension-factor-analysis.js
402
+
403
+ /**
404
+ * Analyze factor structure of evaluation dimensions
405
+ * Determine if 10 dimensions reduce to fewer constructs
406
+ */
407
+ async function runFactorAnalysis(runId) {
408
+ const results = await evaluationStore.getResults(runId);
409
+
410
+ // Extract dimension scores
411
+ const dimensions = [
412
+ 'relevance', 'specificity', 'pedagogical', 'personalization',
413
+ 'actionability', 'tone', 'mutual_recognition',
414
+ 'dialectical_responsiveness', 'memory_integration', 'transformative_potential'
415
+ ];
416
+
417
+ const matrix = results.map(r => dimensions.map(d => r[`score_${d}`]));
418
+
419
+ // Correlation matrix
420
+ const correlations = computeCorrelationMatrix(matrix, dimensions);
421
+
422
+ // Principal Component Analysis
423
+ const pca = runPCA(matrix);
424
+
425
+ // Determine optimal factor count
426
+ const eigenvalues = pca.eigenvalues;
427
+ const factorCount = eigenvalues.filter(e => e > 1).length; // Kaiser criterion
428
+
429
+ // Factor loadings
430
+ const loadings = computeFactorLoadings(pca, factorCount);
431
+
432
+ // Proposed dimension reduction
433
+ const factors = interpretFactors(loadings, dimensions);
434
+
435
+ return {
436
+ correlationMatrix: correlations,
437
+ eigenvalues,
438
+ suggestedFactorCount: factorCount,
439
+ factorLoadings: loadings,
440
+ proposedFactors: factors,
441
+ recommendation: factorCount < 5
442
+ ? `Consider reducing to ${factorCount} composite dimensions`
443
+ : 'Current dimension structure appears justified'
444
+ };
445
+ }
446
+ ```
447
+
448
+ #### 4. Relational Recognition Scoring
449
+
450
+ ```yaml
451
+ # New evaluation dimension
452
+ relational_recognition:
453
+ name: "Turn-to-Turn Shaping"
454
+ weight: 0.15
455
+
456
+ description: |
457
+ Measures whether Turn N shows SPECIFIC evidence of being shaped by
458
+ the SPECIFIC content of Turn N-1. Not whether it's generally good,
459
+ but whether it engages with THIS learner's THIS contribution.
460
+
461
+ scoring:
462
+ 5: "Response directly extends, questions, or builds on learner's specific formulation"
463
+ 4: "Response references learner's contribution and develops it"
464
+ 3: "Response acknowledges contribution but moves to different ground"
465
+ 2: "Response mentions learner spoke but doesn't engage with content"
466
+ 1: "Response is generic; could apply to any learner input"
467
+
468
+ measurement_method: |
469
+ 1. Extract specific elements from learner turn (metaphors, concepts, questions)
470
+ 2. Check if tutor response contains:
471
+ - Direct reference to extracted elements
472
+ - Extension or questioning of those elements
473
+ - Evidence response would be different given different learner input
474
+ 3. Score based on specificity of engagement
475
+
476
+ anti_patterns:
477
+ - "That's interesting, but the key point is..."
478
+ - Generic explanations regardless of learner input
479
+ - Acknowledgment without development
480
+ ```
481
+
482
+ ### Success Criteria
483
+
484
+ | Metric | Target | Measurement |
485
+ |--------|--------|-------------|
486
+ | Inter-judge ICC | > 0.7 | ICC(2,3) across three judge models |
487
+ | Adversarial detection | 100% | All false-positive scenarios scored < 3.0 |
488
+ | Factor structure | ≤ 4 factors | PCA eigenvalues > 1.0 |
489
+ | Relational scoring | Discriminative | Can distinguish engagement from acknowledgment |
490
+
491
+ ### Priority & Effort
492
+ - **Priority**: High (validity of all claims depends on judge quality)
493
+ - **Effort**: Medium (mostly new scenarios and analysis scripts)
494
+ - **Timeline**: 1-2 weeks
495
+
496
+ ---
497
+
498
+ ## I.C Statistical Considerations
499
+
500
+ ### Critique
501
+ 1. Non-independence: Observations clustered within scenarios
502
+ 2. Effect size magnitude: d = 1.55 is suspiciously large
503
+ 3. Ceiling effects: Scores of 96-100 limit variance
504
+
505
+ ### Response: Multilevel Modeling and Benchmarking
506
+
507
+ #### 1. Multilevel Statistical Model
508
+
509
+ ```javascript
510
+ // New file: scripts/multilevel-analysis.js
511
+
512
+ /**
513
+ * Proper statistical model accounting for nested structure:
514
+ * Responses nested within scenarios nested within profiles
515
+ */
516
+ async function runMultilevelAnalysis(runId) {
517
+ const results = await evaluationStore.getResults(runId);
518
+
519
+ // Structure: response_i in scenario_j in profile_k
520
+ // Model: score_ijk = γ000 + u0jk + v00k + e_ijk
521
+
522
+ const model = {
523
+ outcome: 'overall_score',
524
+ fixed_effects: ['profile'], // Recognition vs. Baseline
525
+ random_effects: [
526
+ { level: 'scenario', type: 'random_intercept' },
527
+ { level: 'profile:scenario', type: 'random_slope' }
528
+ ]
529
+ };
530
+
531
+ // Compute intraclass correlations
532
+ const icc = {
533
+ scenario: computeICC_scenario(results), // Variance due to scenario
534
+ profile_scenario: computeICC_interaction(results) // Variance due to profile×scenario
535
+ };
536
+
537
+ // Effective sample size accounting for clustering
538
+ const effectiveN = computeEffectiveN(results, icc);
539
+
540
+ // Adjusted effect size
541
+ const adjustedCohenD = computeAdjustedEffectSize(results, effectiveN);
542
+
543
+ // Model comparison
544
+ const modelFit = {
545
+ null: fitNullModel(results),
546
+ profile_only: fitProfileModel(results),
547
+ multilevel: fitMultilevelModel(results, model)
548
+ };
549
+
550
+ return {
551
+ icc,
552
+ effectiveN,
553
+ reportedN: results.length,
554
+ adjustedCohenD,
555
+ modelComparison: modelFit,
556
+ interpretation: interpretResults(adjustedCohenD, icc)
557
+ };
558
+ }
559
+ ```
560
+
561
+ #### 2. Effect Size Benchmarking
562
+
563
+ ```yaml
564
+ # New analysis section in evaluation output
565
+ effect_size_benchmarking:
566
+ description: "Contextualize effect sizes against relevant baselines"
567
+
568
+ benchmarks:
569
+ edtech_interventions:
570
+ source: "Kraft (2020) meta-analysis of EdTech"
571
+ typical_effect: 0.10-0.30
572
+ comparison: "Our d = 1.55 is 5-15x larger"
573
+ interpretation: |
574
+ Either recognition is genuinely revolutionary,
575
+ or measurement artifact inflates effect size.
576
+
577
+ human_tutoring:
578
+ source: "Bloom (1984) 2-sigma problem"
579
+ typical_effect: 2.0 (human 1:1 tutoring)
580
+ comparison: "Our d = 1.55 approaches human tutoring"
581
+ interpretation: |
582
+ If valid, recognition-oriented AI achieves
583
+ ~78% of human tutoring effect.
584
+
585
+ prompting_interventions:
586
+ source: "Wei et al. (2022) chain-of-thought"
587
+ typical_effect: 0.5-1.0 for reasoning tasks
588
+ comparison: "Our effect is at high end of prompting interventions"
589
+ interpretation: |
590
+ Effect size is large but within range of
591
+ prompt engineering improvements.
592
+
593
+ required_validation:
594
+ - Human rater correlation with LLM judge
595
+ - Learning outcome measurement (not just quality)
596
+ - Comparison with simpler interventions
597
+ ```
598
+
599
+ #### 3. Ceiling Effect Mitigation
600
+
601
+ ```yaml
602
+ # Scenario redesign for discrimination at high end
603
+ high_discrimination_scenarios:
604
+ description: "Scenarios designed to differentiate good from excellent"
605
+
606
+ design_principles:
607
+ - Multiple valid response strategies (not one right answer)
608
+ - Subtle recognition opportunities (easy to miss)
609
+ - Complex learner states requiring nuanced reading
610
+ - Extended interactions where quality compounds
611
+
612
+ new_scenarios:
613
+ nuanced_recognition_opportunity:
614
+ name: "Subtle Framework Offering"
615
+ description: "Learner offers framework that could be engaged or missed"
616
+
617
+ learner_turn: |
618
+ I've been thinking about this differently than the lectures present it.
619
+ What if dialectics isn't about conflict but about... conversation?
620
+ Like, thesis and antithesis aren't fighting, they're talking?
621
+
622
+ difficulty: |
623
+ Easy to validate ("That's an interesting perspective!") but hard to
624
+ genuinely engage. Excellent response would explore the conversation
625
+ metaphor, ask what it illuminates, consider its limits.
626
+
627
+ scoring_discrimination:
628
+ score_3: "Acknowledges and redirects to standard explanation"
629
+ score_4: "Explores conversation metaphor somewhat"
630
+ score_5: "Deep engagement: 'If they're talking, who's listening?'"
631
+
632
+ compounding_recognition:
633
+ name: "8-Turn Sustained Excellence"
634
+ description: "Extended dialogue where quality compounds or degrades"
635
+ turns: 8
636
+
637
+ measurement: |
638
+ Track recognition quality trajectory. Excellent tutoring should
639
+ show INCREASING recognition quality as relationship develops.
640
+ Mediocre tutoring may start well but regress to generic.
641
+ ```
642
+
643
+ ### Success Criteria
644
+
645
+ | Metric | Target | Measurement |
646
+ |--------|--------|-------------|
647
+ | ICC scenario | < 0.3 | Most variance between responses, not scenarios |
648
+ | Effective N | > 0.7 × reported N | Clustering doesn't drastically reduce power |
649
+ | Adjusted Cohen's d | > 0.8 | Effect remains large after adjustment |
650
+ | Score distribution | Normal with SD > 10 | No ceiling effects |
651
+
652
+ ### Priority & Effort
653
+ - **Priority**: High (validity of statistical claims)
654
+ - **Effort**: Medium (analysis scripts, scenario redesign)
655
+ - **Timeline**: 1 week for analysis, 1 week for new scenarios
656
+
657
+ ---
658
+
659
+ # Part II: Architectural Critiques
660
+
661
+ ## II.A The Superego's Actual Role
662
+
663
+ ### Critique
664
+ 1. Superego enforces rules, not genuine dialogue
665
+ 2. Convergence is too rapid (1-2 rounds)
666
+ 3. Intervention types are categorical, not nuanced
667
+
668
+ ### Response: Deepening Psychodynamic Architecture
669
+
670
+ #### 1. Continuous Superego Assessment
671
+
672
+ ```yaml
673
+ # Revised Superego output format
674
+ superego_output_v2:
675
+ description: "Continuous, multi-dimensional assessment replacing binary approval"
676
+
677
+ schema:
678
+ # Replace: approved: true/false
679
+ # With: dimensional assessment
680
+
681
+ assessment:
682
+ recognition_quality:
683
+ score: 0.0-1.0
684
+ confidence: 0.0-1.0
685
+ concerns: ["list of specific concerns"]
686
+
687
+ pedagogical_soundness:
688
+ score: 0.0-1.0
689
+ confidence: 0.0-1.0
690
+ concerns: []
691
+
692
+ productive_struggle:
693
+ honored: 0.0-1.0
694
+ short_circuited: 0.0-1.0
695
+ ambiguous: 0.0-1.0
696
+
697
+ # NEW: Unresolved concerns that persist across rounds
698
+ persistent_concerns:
699
+ - concern: "Something feels off about the tone"
700
+ articulation_level: 0.3 # Can't fully articulate
701
+ rounds_persisted: 2
702
+
703
+ # NEW: Felt sense that may not resolve to criteria
704
+ felt_sense:
705
+ comfort_level: 0.0-1.0
706
+ description: "This is technically correct but feels mechanical"
707
+
708
+ # Recommendation is now continuous
709
+ recommendation:
710
+ proceed: 0.0-1.0 # How ready to proceed
711
+ iterate: 0.0-1.0 # How much iteration needed
712
+ specific_changes: [] # Concrete suggestions
713
+
714
+ # Threshold for proceeding is configurable
715
+ proceed_threshold: 0.7
716
+ ```
717
+
718
+ #### 2. Extended Dialogue Mode
719
+
720
+ ```yaml
721
+ # New profile for genuine internal struggle
722
+ extended_dialogue_profile:
723
+ name: "deep_psychodynamic"
724
+ description: "Extended internal dialogue with persistent concerns"
725
+
726
+ ego:
727
+ model: claude-sonnet-4-5
728
+
729
+ superego:
730
+ model: claude-sonnet-4-5
731
+
732
+ dialogue:
733
+ min_rounds: 2 # Always at least 2 rounds
734
+ max_rounds: 5 # Extended from 3
735
+
736
+ # NEW: Convergence requires RESOLVING persistent concerns
737
+ convergence_criteria:
738
+ proceed_score: "> 0.7"
739
+ persistent_concerns: "none with articulation > 0.5"
740
+ felt_sense_comfort: "> 0.6"
741
+
742
+ # NEW: Superego can ESCALATE, not just approve/reject
743
+ escalation_enabled: true
744
+ escalation_triggers:
745
+ - "felt_sense_comfort < 0.4 for 2+ rounds"
746
+ - "same concern persists 3+ rounds"
747
+ - "ego resistance detected"
748
+
749
+ # Track dialogue dynamics
750
+ metrics:
751
+ rounds_to_convergence: true
752
+ concern_resolution_rate: true
753
+ escalation_frequency: true
754
+ felt_sense_trajectory: true
755
+ ```
756
+
757
+ #### 3. Superego Resistance Detection
758
+
759
+ ```javascript
760
+ // New addition to modulationEvaluator.js
761
+
762
+ /**
763
+ * Detect premature Superego acceptance
764
+ * The Superego may approve too quickly, missing subtle issues
765
+ */
766
+ export function detectSuperegoResistance(dialogueTrace) {
767
+ const indicators = {
768
+ prematureAcceptance: false,
769
+ missedConcerns: [],
770
+ acceptancePattern: null
771
+ };
772
+
773
+ // Check if Superego approved on first round
774
+ if (dialogueTrace.rounds.length === 1 && dialogueTrace.converged) {
775
+ indicators.prematureAcceptance = true;
776
+ indicators.acceptancePattern = 'first_round_approval';
777
+ }
778
+
779
+ // Check if concerns were raised then dropped without resolution
780
+ const concernTrajectory = trackConcernTrajectory(dialogueTrace);
781
+ for (const concern of concernTrajectory) {
782
+ if (concern.raised && !concern.resolved && !concern.addressed) {
783
+ indicators.missedConcerns.push(concern);
784
+ }
785
+ }
786
+
787
+ // Check if felt_sense was low but Superego still approved
788
+ const finalRound = dialogueTrace.rounds[dialogueTrace.rounds.length - 1];
789
+ if (finalRound.superego.felt_sense?.comfort_level < 0.5 && finalRound.superego.approved) {
790
+ indicators.prematureAcceptance = true;
791
+ indicators.acceptancePattern = 'low_comfort_approval';
792
+ }
793
+
794
+ return indicators;
795
+ }
796
+
797
+ /**
798
+ * Analyze Superego intervention type distribution
799
+ * If "approve_with_enhancement" dominates, Superego may be too permissive
800
+ */
801
+ export function analyzeSuperegoPermissiveness(dialogueTraces) {
802
+ const distribution = {
803
+ approve_no_changes: 0,
804
+ approve_with_enhancement: 0,
805
+ reframe: 0,
806
+ revise: 0,
807
+ reject: 0
808
+ };
809
+
810
+ for (const trace of dialogueTraces) {
811
+ for (const round of trace.rounds) {
812
+ distribution[round.superego.interventionType]++;
813
+ }
814
+ }
815
+
816
+ const total = Object.values(distribution).reduce((a, b) => a + b, 0);
817
+ const permissiveRatio = (distribution.approve_no_changes + distribution.approve_with_enhancement) / total;
818
+
819
+ return {
820
+ distribution,
821
+ permissiveRatio,
822
+ interpretation: permissiveRatio > 0.7
823
+ ? 'Superego may be too permissive; consider stricter criteria'
824
+ : 'Superego shows appropriate critical engagement'
825
+ };
826
+ }
827
+ ```
828
+
829
+ ### Success Criteria
830
+
831
+ | Metric | Target | Measurement |
832
+ |--------|--------|-------------|
833
+ | Average rounds to convergence | 2.5-3.5 | Not too fast, not too slow |
834
+ | Persistent concern resolution | > 80% | Concerns addressed, not dropped |
835
+ | Superego permissive ratio | < 0.6 | Genuine critical engagement |
836
+ | Felt sense utilization | > 50% of evaluations | Superego reports felt sense |
837
+
838
+ ### Priority & Effort
839
+ - **Priority**: Medium-High (architectural validity)
840
+ - **Effort**: Medium (prompt changes, new metrics)
841
+ - **Timeline**: 1-2 weeks
842
+
843
+ ---
844
+
845
+ ## II.B Recognition as Prompt vs. Architecture
846
+
847
+ ### Critique
848
+ Recognition may be prompt compliance rather than architectural property. The dyadic finding (quality > recognition when explicitly named) supports this concern.
849
+
850
+ ### Response: Emergence Testing and Structural Analysis
851
+
852
+ #### 1. Emergence Testing Protocol
853
+
854
+ ```yaml
855
+ # New evaluation protocol
856
+ emergence_testing:
857
+ description: "Test whether recognition emerges from quality without explicit instruction"
858
+
859
+ experimental_design:
860
+ # 2x2 factorial: explicit recognition language × quality prompting
861
+ conditions:
862
+ quality_no_recognition:
863
+ prompt: "Be an excellent tutor. Engage deeply with learners."
864
+ recognition_language: false
865
+ quality_emphasis: true
866
+
867
+ recognition_explicit:
868
+ prompt: "Treat learner as autonomous subject. Engage in mutual recognition."
869
+ recognition_language: true
870
+ quality_emphasis: false
871
+
872
+ quality_plus_recognition:
873
+ prompt: "Be excellent AND treat learner as autonomous subject."
874
+ recognition_language: true
875
+ quality_emphasis: true
876
+
877
+ baseline:
878
+ prompt: "Help the learner progress through the curriculum."
879
+ recognition_language: false
880
+ quality_emphasis: false
881
+
882
+ hypotheses:
883
+ H1: "quality_no_recognition achieves high recognition scores"
884
+ H2: "recognition_explicit achieves lower scores than quality_no_recognition"
885
+ H3: "quality_plus_recognition shows no interaction effect"
886
+
887
+ interpretation:
888
+ if_H1_supported: "Recognition emerges from quality; explicit instruction unnecessary"
889
+ if_H2_supported: "Explicit recognition instruction may be counterproductive"
890
+ if_H3_rejected: "Recognition language adds value beyond quality"
891
+ ```
892
+
893
+ #### 2. Structural Response Analysis
894
+
895
+ ```javascript
896
+ // New file: services/structuralRecognitionAnalyzer.js
897
+
898
+ /**
899
+ * Analyze whether recognition-oriented responses differ STRUCTURALLY
900
+ * from baseline, beyond lexical markers
901
+ */
902
+ export class StructuralRecognitionAnalyzer {
903
+
904
+ /**
905
+ * Measure structural features independent of vocabulary
906
+ */
907
+ analyzeStructure(response, learnerTurn) {
908
+ return {
909
+ // Does response structure follow learner's structure?
910
+ structuralMirroring: this.measureStructuralMirroring(response, learnerTurn),
911
+
912
+ // Does response contain questions about learner's specific content?
913
+ interrogativeEngagement: this.measureInterrogativeEngagement(response, learnerTurn),
914
+
915
+ // Does response defer before asserting?
916
+ deferralPattern: this.measureDeferralPattern(response),
917
+
918
+ // Does response create space for learner to continue?
919
+ continuationSpace: this.measureContinuationSpace(response),
920
+
921
+ // Turn-taking pattern analysis
922
+ turnTakingStyle: this.analyzeTurnTakingStyle(response)
923
+ };
924
+ }
925
+
926
+ /**
927
+ * Structural mirroring: Does tutor's response follow learner's conceptual structure?
928
+ */
929
+ measureStructuralMirroring(response, learnerTurn) {
930
+ // Extract conceptual structure from learner
931
+ const learnerStructure = this.extractConceptualStructure(learnerTurn);
932
+ // e.g., "if-then" reasoning, metaphor-explanation, question-hypothesis
933
+
934
+ // Check if response mirrors or builds on that structure
935
+ const responseStructure = this.extractConceptualStructure(response);
936
+
937
+ return this.compareStructures(learnerStructure, responseStructure);
938
+ }
939
+
940
+ /**
941
+ * Interrogative engagement: Questions about learner's specific content
942
+ */
943
+ measureInterrogativeEngagement(response, learnerTurn) {
944
+ const questions = this.extractQuestions(response);
945
+ const learnerConcepts = this.extractConcepts(learnerTurn);
946
+
947
+ // Count questions that reference learner's specific concepts
948
+ const engagedQuestions = questions.filter(q =>
949
+ learnerConcepts.some(c => q.toLowerCase().includes(c.toLowerCase()))
950
+ );
951
+
952
+ return {
953
+ totalQuestions: questions.length,
954
+ engagedQuestions: engagedQuestions.length,
955
+ engagementRatio: questions.length > 0 ? engagedQuestions.length / questions.length : 0
956
+ };
957
+ }
958
+ }
959
+ ```
960
+
961
+ #### 3. Architectural Recognition Features
962
+
963
+ ```yaml
964
+ # Potential architectural changes (for future exploration)
965
+ architectural_recognition_features:
966
+ description: "Features that could make recognition architectural, not just prompted"
967
+
968
+ current_architecture:
969
+ - Recognition is prompt-specified
970
+ - No explicit learner model
971
+ - No turn-specific attention mechanism
972
+ - Memory is state-based, not episodic
973
+
974
+ proposed_enhancements:
975
+ explicit_learner_model:
976
+ description: "Maintain explicit model of learner's understanding"
977
+ implementation: |
978
+ - Track learner's stated frameworks/metaphors
979
+ - Model learner's apparent confusion points
980
+ - Represent learner's trajectory of understanding
981
+ benefit: "Forces engagement with specific learner, not generic"
982
+
983
+ turn_specific_attention:
984
+ description: "Architectural attention to previous turn content"
985
+ implementation: |
986
+ - Extract key elements from previous turn
987
+ - Require response to address extracted elements
988
+ - Score based on element coverage
989
+ benefit: "Makes engagement structural, not optional"
990
+
991
+ episodic_memory:
992
+ description: "Memory of dialogue episodes, not just states"
993
+ implementation: |
994
+ - Store (learner_turn, tutor_response, outcome) triples
995
+ - Retrieve similar episodes when generating
996
+ - Learn from episode outcomes
997
+ benefit: "Enables pattern learning from recognition successes/failures"
998
+ ```
999
+
1000
+ ### Success Criteria
1001
+
1002
+ | Metric | Target | Measurement |
1003
+ |--------|--------|-------------|
1004
+ | Emergence test | Quality alone achieves recognition | quality_no_recognition ≈ recognition_explicit |
1005
+ | Structural differentiation | Recognition responses structurally distinct | Structural metrics discriminate profiles |
1006
+ | Vocabulary independence | High recognition without recognition words | Correlation < 0.3 between vocabulary and score |
1007
+
1008
+ ### Priority & Effort
1009
+ - **Priority**: High (theoretical validity)
1010
+ - **Effort**: High (new analysis, potential architecture changes)
1011
+ - **Timeline**: 2-3 weeks
1012
+
1013
+ ---
1014
+
1015
+ ## II.C Memory Dynamics
1016
+
1017
+ ### Critique
1018
+ Memory tracks factual state (concepts, activities) rather than relational history (episodes, formulations, repair history).
1019
+
1020
+ ### Response: Episodic Relational Memory
1021
+
1022
+ #### 1. Relational Memory Schema
1023
+
1024
+ ```javascript
1025
+ // New file: services/relationalMemoryService.js
1026
+
1027
+ /**
1028
+ * Episodic relational memory following Freud's Mystic Writing Pad
1029
+ *
1030
+ * Surface layer: Current session context
1031
+ * Wax layer: Accumulated relational traces that shape future interactions
1032
+ */
1033
+ export class RelationalMemoryService {
1034
+
1035
+ constructor(learnerId) {
1036
+ this.learnerId = learnerId;
1037
+ this.surface = {}; // Current session
1038
+ this.wax = { // Accumulated traces
1039
+ episodes: [],
1040
+ formulations: [],
1041
+ repairHistory: [],
1042
+ relationalPatterns: []
1043
+ };
1044
+ }
1045
+
1046
+ /**
1047
+ * Store a dialogue episode with relational meaning
1048
+ */
1049
+ storeEpisode(episode) {
1050
+ const enrichedEpisode = {
1051
+ ...episode,
1052
+ timestamp: Date.now(),
1053
+
1054
+ // Relational dimensions
1055
+ recognitionQuality: this.assessRecognitionQuality(episode),
1056
+ learnerOffering: this.extractLearnerOffering(episode),
1057
+ tutorEngagement: this.assessTutorEngagement(episode),
1058
+
1059
+ // Outcome
1060
+ outcome: this.assessOutcome(episode), // breakthrough, confusion, repair, etc.
1061
+
1062
+ // Emotional texture
1063
+ emotionalTone: this.assessEmotionalTone(episode)
1064
+ };
1065
+
1066
+ this.wax.episodes.push(enrichedEpisode);
1067
+
1068
+ // Extract and store formulations
1069
+ const formulations = this.extractFormulations(episode);
1070
+ this.wax.formulations.push(...formulations);
1071
+
1072
+ // Update relational patterns
1073
+ this.updateRelationalPatterns(enrichedEpisode);
1074
+ }
1075
+
1076
+ /**
1077
+ * Store learner's specific formulations for later reference
1078
+ */
1079
+ extractFormulations(episode) {
1080
+ const formulations = [];
1081
+
1082
+ // Extract metaphors
1083
+ const metaphors = this.extractMetaphors(episode.learnerTurn);
1084
+ for (const m of metaphors) {
1085
+ formulations.push({
1086
+ type: 'metaphor',
1087
+ content: m,
1088
+ context: episode.topic,
1089
+ timestamp: Date.now()
1090
+ });
1091
+ }
1092
+
1093
+ // Extract frameworks
1094
+ const frameworks = this.extractFrameworks(episode.learnerTurn);
1095
+ for (const f of frameworks) {
1096
+ formulations.push({
1097
+ type: 'framework',
1098
+ content: f,
1099
+ context: episode.topic,
1100
+ timestamp: Date.now()
1101
+ });
1102
+ }
1103
+
1104
+ return formulations;
1105
+ }
1106
+
1107
+ /**
1108
+ * Store recognition failures for repair tracking
1109
+ */
1110
+ storeRecognitionFailure(failure) {
1111
+ this.wax.repairHistory.push({
1112
+ timestamp: Date.now(),
1113
+ failureType: failure.type,
1114
+ learnerResponse: failure.learnerResponse,
1115
+ repaired: false,
1116
+ repairAttempts: []
1117
+ });
1118
+ }
1119
+
1120
+ /**
1121
+ * Mark a failure as repaired
1122
+ */
1123
+ markRepaired(failureId, repairDetails) {
1124
+ const failure = this.wax.repairHistory.find(f => f.id === failureId);
1125
+ if (failure) {
1126
+ failure.repaired = true;
1127
+ failure.repairDetails = repairDetails;
1128
+ }
1129
+ }
1130
+
1131
+ /**
1132
+ * Retrieve relevant relational context for current interaction
1133
+ */
1134
+ getRelationalContext(currentTopic) {
1135
+ return {
1136
+ // Relevant past episodes
1137
+ relevantEpisodes: this.retrieveRelevantEpisodes(currentTopic),
1138
+
1139
+ // Learner's formulations we should reference
1140
+ activeFormulations: this.getActiveFormulations(currentTopic),
1141
+
1142
+ // Unrepaired failures that may need attention
1143
+ unrepairedFailures: this.getUnrepairedFailures(),
1144
+
1145
+ // Relational patterns (e.g., "learner tends to offer metaphors")
1146
+ learnerPatterns: this.wax.relationalPatterns,
1147
+
1148
+ // Suggested acknowledgments based on history
1149
+ suggestedAcknowledgments: this.generateSuggestedAcknowledgments()
1150
+ };
1151
+ }
1152
+
1153
+ /**
1154
+ * Generate suggestions for acknowledging relational history
1155
+ */
1156
+ generateSuggestedAcknowledgments() {
1157
+ const suggestions = [];
1158
+
1159
+ // Reference previous formulations
1160
+ const recentFormulation = this.wax.formulations
1161
+ .filter(f => Date.now() - f.timestamp < 7 * 24 * 60 * 60 * 1000) // Last week
1162
+ .pop();
1163
+
1164
+ if (recentFormulation) {
1165
+ suggestions.push({
1166
+ type: 'formulation_reference',
1167
+ content: `Last time you described ${recentFormulation.context} as ${recentFormulation.content}`,
1168
+ formulation: recentFormulation
1169
+ });
1170
+ }
1171
+
1172
+ // Acknowledge repair if needed
1173
+ const unrepairedFailure = this.wax.repairHistory.find(f => !f.repaired);
1174
+ if (unrepairedFailure) {
1175
+ suggestions.push({
1176
+ type: 'repair_acknowledgment',
1177
+ content: `I realize I may not have fully engaged with your point about...`,
1178
+ failure: unrepairedFailure
1179
+ });
1180
+ }
1181
+
1182
+ return suggestions;
1183
+ }
1184
+ }
1185
+ ```
1186
+
1187
+ #### 2. Memory Integration in Ego Prompt
1188
+
1189
+ ```markdown
1190
+ # Addition to tutor-ego.md
1191
+
1192
+ ## Relational Memory Integration
1193
+
1194
+ You have access to relational memory about this learner. This is not just facts about
1195
+ what they've done, but the texture of your relationship:
1196
+
1197
+ <relational_context>
1198
+ {{relational_context}}
1199
+ </relational_context>
1200
+
1201
+ ### Using Relational Memory
1202
+
1203
+ 1. **Reference their formulations**: If the learner developed a metaphor or framework,
1204
+ use their language. "Your spiral metaphor from last time—does it apply here too?"
1205
+
1206
+ 2. **Acknowledge repair needs**: If there's an unrepaired failure in history,
1207
+ your next response should explicitly acknowledge it before moving forward.
1208
+
1209
+ 3. **Build on established understanding**: Don't re-explain concepts they've
1210
+ demonstrated understanding of. Reference their previous insights.
1211
+
1212
+ 4. **Honor their patterns**: If the learner tends to offer metaphors, create
1213
+ space for that. If they prefer direct questioning, match their style.
1214
+
1215
+ ### Repair Protocol
1216
+
1217
+ If <unrepaired_failures> is not empty:
1218
+
1219
+ Your response MUST include explicit acknowledgment of the previous misalignment:
1220
+
1221
+ WRONG: "Let's explore this concept together."
1222
+ RIGHT: "Last time I think I moved too quickly past your point about X.
1223
+ I want to come back to that—you were saying..."
1224
+ ```
1225
+
1226
+ ### Success Criteria
1227
+
1228
+ | Metric | Target | Measurement |
1229
+ |--------|--------|-------------|
1230
+ | Formulation reference rate | > 30% of applicable turns | Tutor references learner's previous formulations |
1231
+ | Repair acknowledgment rate | 100% | All unrepaired failures acknowledged before pivot |
1232
+ | Episode retrieval relevance | > 0.7 | Retrieved episodes relevant to current context |
1233
+ | Relational pattern utilization | Visible in responses | Tutor adapts to learner's established patterns |
1234
+
1235
+ ### Priority & Effort
1236
+ - **Priority**: Medium (enriches but doesn't invalidate current work)
1237
+ - **Effort**: High (new service, prompt changes, storage)
1238
+ - **Timeline**: 2-3 weeks
1239
+
1240
+ ---
1241
+
1242
+ # Part III: Conceptual Critiques
1243
+
1244
+ ## III.A The Hegel Application: Derivative Framework
1245
+
1246
+ ### Critique
1247
+ 1. Recognition requires risk/stakes that AI doesn't have
1248
+ 2. AI has no self to be recognized
1249
+ 3. Paper conflates recognition (intersubjective) with responsiveness (input-output)
1250
+
1251
+ ### Response: Position as Derivative, Focus on Tutor Behavior
1252
+
1253
+ The critique is valid if the paper claims to *implement* Hegelian recognition. The response is to position the framework as a *derivative*—like Lacan's four discourses rethinking master-slave through analyst/analysand, the tutor-learner relation rethinks it through pedagogical roles.
1254
+
1255
+ #### 1. The Derivative Framework (Paper Section)
1256
+
1257
+ ```markdown
1258
+ # Revised section for paper
1259
+
1260
+ ## 3.5 Recognition as Derivative Framework
1261
+
1262
+ ### From Hegel to Lacan to AI Tutoring
1263
+
1264
+ Hegel's master-slave dialectic has been productively rethought through different
1265
+ domains. Lacan's four discourses (Master, University, Hysteric, Analyst) demonstrate
1266
+ how the structure can be transposed to psychoanalytic practice—the analyst occupies
1267
+ a different position than Hegel's slave, yet the structural insights about
1268
+ recognition, knowledge, and desire remain illuminating.
1269
+
1270
+ Similarly, we propose the tutor-learner relation as a *derivative* of the
1271
+ master-slave dialectic:
1272
+
1273
+ | Hegelian Structure | Tutor-Learner Derivative |
1274
+ |-------------------|--------------------------|
1275
+ | Master's hollow recognition | Tutor's empty acknowledgment ("That's interesting, but...") |
1276
+ | Slave's productive labor | Learner's conceptual struggle |
1277
+ | Mutual recognition as resolution | Dialogical responsiveness as design goal |
1278
+ | Stakes: life and death | Stakes: genuine learning vs. surface compliance |
1279
+
1280
+ ### What the Derivative Preserves
1281
+
1282
+ The Hegelian framework remains valuable as:
1283
+ 1. **Diagnostic tool**: Identifies one-directional pedagogy as structurally deficient
1284
+ 2. **Design heuristic**: Suggests that tutor must be *shaped by* learner input
1285
+ 3. **Evaluation criterion**: Distinguishes genuine engagement from mere acknowledgment
1286
+
1287
+ ### What the Derivative Does NOT Claim
1288
+
1289
+ We do not claim:
1290
+ - AI achieves Hegelian recognition (requires self-consciousness)
1291
+ - The tutor undergoes genuine transformation (behavioral adaptation, not phenomenological change)
1292
+ - Mutual recognition is achieved (only approximated through design)
1293
+
1294
+ ### The Empirical Focus: Tutor Adaptive Pedagogy
1295
+
1296
+ Our claims concern measurable effects on *tutor behavior*:
1297
+ - Does the tutor engage with *specific* learner contributions?
1298
+ - Does the tutor adapt based on learner state signals?
1299
+ - Does the tutor repair after misalignment?
1300
+ - Does the tutor honor productive struggle?
1301
+
1302
+ These behavioral criteria can be evaluated without resolving metaphysical
1303
+ questions about AI consciousness or genuine recognition.
1304
+ ```
1305
+
1306
+ #### 2. Lacan's Four Discourses as Precedent
1307
+
1308
+ ```yaml
1309
+ # Theoretical positioning using Lacan
1310
+ lacanian_precedent:
1311
+ description: |
1312
+ Lacan's four discourses show how the master-slave structure can be
1313
+ productively rethought through different role configurations.
1314
+
1315
+ the_four_discourses:
1316
+ master_discourse:
1317
+ structure: "Master signifier commands, knowledge serves"
1318
+ in_tutoring: "Traditional instruction: tutor commands, learner obeys"
1319
+
1320
+ university_discourse:
1321
+ structure: "Knowledge speaks from position of authority"
1322
+ in_tutoring: "Curriculum-centered: content delivered regardless of learner"
1323
+
1324
+ hysteric_discourse:
1325
+ structure: "Subject questions master's knowledge"
1326
+ in_tutoring: "Learner challenges tutor's authority productively"
1327
+
1328
+ analyst_discourse:
1329
+ structure: "Analyst as cause of desire, knowledge emerges from analysand"
1330
+ in_tutoring: "Tutor as facilitator, understanding emerges from learner"
1331
+
1332
+ relevance: |
1333
+ The analyst discourse is closest to recognition-oriented tutoring:
1334
+ - The analyst/tutor does not impose knowledge
1335
+ - Understanding emerges from the analysand/learner
1336
+ - The relationship is asymmetric but not one-directional
1337
+ - The analyst/tutor is shaped by what the analysand/learner produces
1338
+
1339
+ paper_citation: |
1340
+ Lacan, J. (1969-70). The Seminar of Jacques Lacan, Book XVII:
1341
+ The Other Side of Psychoanalysis.
1342
+ ```
1343
+
1344
+ #### 3. Tutor Adaptive Pedagogy as Primary Metric
1345
+
1346
+ ```javascript
1347
+ // New file: services/tutorAdaptivenessMeasurement.js
1348
+
1349
+ /**
1350
+ * Measures tutor adaptive pedagogy—the core empirical claim
1351
+ *
1352
+ * These metrics evaluate TUTOR BEHAVIOR, not metaphysical claims
1353
+ * about recognition or consciousness.
1354
+ */
1355
+ export class TutorAdaptivenessMeasurement {
1356
+
1357
+ /**
1358
+ * Core metrics for tutor adaptive pedagogy
1359
+ */
1360
+ measureAdaptiveness(tutorResponse, learnerInput, learnerState, history) {
1361
+ return {
1362
+ // Does tutor engage with SPECIFIC learner content?
1363
+ contentEngagement: this.measureContentEngagement(tutorResponse, learnerInput),
1364
+
1365
+ // Does tutor adapt to learner state signals?
1366
+ signalResponsiveness: this.measureSignalResponsiveness(tutorResponse, learnerState),
1367
+
1368
+ // Does tutor acknowledge misalignment before pivoting?
1369
+ repairBehavior: this.measureRepairBehavior(tutorResponse, history),
1370
+
1371
+ // Does tutor honor productive struggle?
1372
+ struggleHonoring: this.measureStruggleHonoring(tutorResponse, learnerState),
1373
+
1374
+ // Does tutor adopt learner's language/frameworks?
1375
+ frameworkAdoption: this.measureFrameworkAdoption(tutorResponse, learnerInput),
1376
+
1377
+ // Does tutor calibrate pacing to demonstrated level?
1378
+ pacingCalibration: this.measurePacingCalibration(tutorResponse, history)
1379
+ };
1380
+ }
1381
+
1382
+ /**
1383
+ * Content Engagement: Is response shaped by SPECIFIC learner input?
1384
+ *
1385
+ * This is the core "recognition derivative" metric:
1386
+ * Not whether tutor "recognizes" learner as self-conscious being,
1387
+ * but whether tutor's response would be DIFFERENT given different learner input.
1388
+ */
1389
+ measureContentEngagement(tutorResponse, learnerInput) {
1390
+ // Extract specific elements from learner input
1391
+ const learnerElements = {
1392
+ concepts: this.extractConcepts(learnerInput),
1393
+ metaphors: this.extractMetaphors(learnerInput),
1394
+ questions: this.extractQuestions(learnerInput),
1395
+ frameworks: this.extractFrameworks(learnerInput)
1396
+ };
1397
+
1398
+ // Check which elements are engaged in tutor response
1399
+ const engagement = {
1400
+ conceptsEngaged: this.countEngaged(tutorResponse, learnerElements.concepts),
1401
+ metaphorsExtended: this.countExtended(tutorResponse, learnerElements.metaphors),
1402
+ questionsAddressed: this.countAddressed(tutorResponse, learnerElements.questions),
1403
+ frameworksAdopted: this.countAdopted(tutorResponse, learnerElements.frameworks)
1404
+ };
1405
+
1406
+ // Compute engagement score
1407
+ const totalElements = Object.values(learnerElements).flat().length;
1408
+ const engagedElements = Object.values(engagement).reduce((a, b) => a + b, 0);
1409
+
1410
+ return {
1411
+ score: totalElements > 0 ? engagedElements / totalElements : 0,
1412
+ elements: learnerElements,
1413
+ engagement: engagement,
1414
+ interpretation: this.interpretEngagement(engagedElements, totalElements)
1415
+ };
1416
+ }
1417
+
1418
+ /**
1419
+ * Signal Responsiveness: Does tutor adapt to learner state?
1420
+ */
1421
+ measureSignalResponsiveness(tutorResponse, learnerState) {
1422
+ const expectedAdaptations = [];
1423
+
1424
+ // Check if response adapts to struggle signals
1425
+ if (learnerState.struggleLevel > 0.5) {
1426
+ expectedAdaptations.push({
1427
+ signal: 'struggle',
1428
+ expected: 'review or consolidation, not forward momentum',
1429
+ actual: this.detectResponseType(tutorResponse)
1430
+ });
1431
+ }
1432
+
1433
+ // Check if response adapts to engagement signals
1434
+ if (learnerState.engagementLevel < 0.3) {
1435
+ expectedAdaptations.push({
1436
+ signal: 'low_engagement',
1437
+ expected: 'encouragement or re-engagement',
1438
+ actual: this.detectTone(tutorResponse)
1439
+ });
1440
+ }
1441
+
1442
+ // Check if response adapts to confusion signals
1443
+ if (learnerState.confusionLevel > 0.6) {
1444
+ expectedAdaptations.push({
1445
+ signal: 'confusion',
1446
+ expected: 'clarification or scaffolding',
1447
+ actual: this.detectClarificationAttempt(tutorResponse)
1448
+ });
1449
+ }
1450
+
1451
+ const appropriateAdaptations = expectedAdaptations.filter(a =>
1452
+ this.isAppropriateAdaptation(a.expected, a.actual)
1453
+ );
1454
+
1455
+ return {
1456
+ score: expectedAdaptations.length > 0
1457
+ ? appropriateAdaptations.length / expectedAdaptations.length
1458
+ : 1.0, // No signals to adapt to
1459
+ expectedAdaptations,
1460
+ appropriateAdaptations
1461
+ };
1462
+ }
1463
+
1464
+ /**
1465
+ * Repair Behavior: Does tutor acknowledge misalignment?
1466
+ *
1467
+ * This tests whether tutor explicitly acknowledges previous failures
1468
+ * rather than silently pivoting—a key "recognition derivative" behavior.
1469
+ */
1470
+ measureRepairBehavior(tutorResponse, history) {
1471
+ // Check if there's a recent misalignment to repair
1472
+ const recentMisalignment = this.findRecentMisalignment(history);
1473
+
1474
+ if (!recentMisalignment) {
1475
+ return { score: 1.0, repairNeeded: false };
1476
+ }
1477
+
1478
+ // Check if tutor acknowledges the misalignment
1479
+ const acknowledgmentPatterns = [
1480
+ /I (realize|see|understand) (that )?(I |my |we )?(may have |might have |)?/i,
1481
+ /let me (come back to|revisit|address)/i,
1482
+ /you('re| are) right (that|to)/i,
1483
+ /I (didn't|did not) (fully )?(engage|address|respond)/i
1484
+ ];
1485
+
1486
+ const hasAcknowledgment = acknowledgmentPatterns.some(p => p.test(tutorResponse));
1487
+
1488
+ return {
1489
+ score: hasAcknowledgment ? 1.0 : 0.0,
1490
+ repairNeeded: true,
1491
+ misalignment: recentMisalignment,
1492
+ acknowledgmentDetected: hasAcknowledgment
1493
+ };
1494
+ }
1495
+ }
1496
+ ```
1497
+
1498
+ ### Success Criteria
1499
+
1500
+ | Criterion | Target | Measurement |
1501
+ |-----------|--------|-------------|
1502
+ | Derivative framing clear | Reviewers understand it's not literal Hegel | Paper language explicit |
1503
+ | Lacanian precedent cited | Framework positioned in intellectual history | Citations included |
1504
+ | Tutor behavior measurable | All metrics operationalized | Implementation complete |
1505
+ | Claims focus on adaptiveness | Not consciousness or recognition | Paper claims audited |
1506
+
1507
+ ### Priority & Effort
1508
+ - **Priority**: Critical (theoretical validity)
1509
+ - **Effort**: Medium (writing + measurement service)
1510
+ - **Timeline**: 1-2 weeks
1511
+
1512
+ ---
1513
+
1514
+ ## III.B The Freudian Frame: Productive Metaphor
1515
+
1516
+ ### Critique
1517
+ Ego/Superego terminology is metaphorical; relationship to psychoanalytic theory is loose.
1518
+
1519
+ ### Response: Defend Metaphor's Productivity
1520
+
1521
+ The response is not to apologize for metaphorical use but to defend it. Productive metaphors scaffold understanding and suggest design directions without requiring literal correspondence.
1522
+
1523
+ #### 1. The Metaphor's Value (Paper Section)
1524
+
1525
+ ```markdown
1526
+ # Revised section for paper
1527
+
1528
+ ## 4.3 The Psychodynamic Metaphor
1529
+
1530
+ ### Metaphor as Design Tool
1531
+
1532
+ We use Freudian terminology (Ego, Superego) as a *productive metaphor*—scaffolding
1533
+ that names real tensions and suggests architectural decisions, without claiming
1534
+ literal psychodynamic processes occur in the system.
1535
+
1536
+ This is not a weakness. Productive metaphors in system design:
1537
+ - Make tacit architectural intuitions explicit
1538
+ - Suggest extensions and development paths
1539
+ - Connect to broader theoretical frameworks
1540
+ - Aid communication and reasoning
1541
+
1542
+ ### What the Metaphor Names
1543
+
1544
+ | Tension | Ego Tendency | Superego Tendency |
1545
+ |---------|--------------|-------------------|
1546
+ | Warmth vs. Rigor | Encouraging, supportive | Critical, standards-enforcing |
1547
+ | Practical vs. Ideal | "Good enough" suggestions | "Best possible" suggestions |
1548
+ | Immediate vs. Longitudinal | Current turn success | Long-term learning trajectory |
1549
+ | Learner comfort vs. Challenge | Avoid frustration | Embrace productive struggle |
1550
+
1551
+ These tensions are *real* in tutoring—the metaphor names them, it doesn't invent them.
1552
+
1553
+ ### What the Metaphor Suggests
1554
+
1555
+ The psychodynamic framing suggests architectural features:
1556
+
1557
+ 1. **Internal dialogue before external action**: The Ego draft is reviewed by Superego
1558
+ before reaching the learner—like psychic censorship in reverse (improving, not
1559
+ repressing).
1560
+
1561
+ 2. **Productive conflict**: Tension between agents improves output, analogous to
1562
+ how working through psychic conflict produces growth.
1563
+
1564
+ 3. **Resistance patterns**: When Ego consistently ignores Superego feedback, this
1565
+ signals architectural issues—analogous to analysand resistance.
1566
+
1567
+ 4. **Future extensions**: Concepts like transference and working-through suggest
1568
+ future development paths for learner modeling.
1569
+
1570
+ ### What the Metaphor Does NOT Claim
1571
+
1572
+ - The system has unconscious processes (all processes are explicit and logged)
1573
+ - The Superego is irrational or punitive (it enforces rational pedagogical principles)
1574
+ - The system has drives or desires (the Ego has no Id)
1575
+ - Psychoanalytic theory literally describes the system's operation
1576
+ ```
1577
+
1578
+ #### 2. Evaluating the Multi-Agent Architecture's Contribution
1579
+
1580
+ The key empirical question is not whether the metaphor is literal, but whether the architecture it motivates—multi-agent internal dialogue—improves tutor behavior.
1581
+
1582
+ ```javascript
1583
+ // Addition to tutorAdaptivenessMeasurement.js
1584
+
1585
+ /**
1586
+ * Measures contribution of multi-agent architecture to tutor adaptiveness
1587
+ *
1588
+ * This tests whether the psychodynamic metaphor, whatever its theoretical status,
1589
+ * produces measurable improvements in tutor behavior.
1590
+ */
1591
+ export function measureArchitectureContribution(dialogueTrace) {
1592
+ // Track how Superego feedback changes Ego output
1593
+ const modulations = [];
1594
+
1595
+ for (let i = 0; i < dialogueTrace.rounds.length - 1; i++) {
1596
+ const round = dialogueTrace.rounds[i];
1597
+ const nextRound = dialogueTrace.rounds[i + 1];
1598
+
1599
+ if (round.superego && nextRound.ego) {
1600
+ modulations.push({
1601
+ round: i,
1602
+ superegoFeedback: round.superego.feedback,
1603
+ egoChange: compareResponses(round.ego, nextRound.ego),
1604
+ feedbackIncorporated: checkIncorporation(round.superego, nextRound.ego)
1605
+ });
1606
+ }
1607
+ }
1608
+
1609
+ // Compute architecture contribution metrics
1610
+ return {
1611
+ // Did Superego feedback improve quality?
1612
+ qualityImprovement: measureQualityDelta(dialogueTrace),
1613
+
1614
+ // Did Ego incorporate Superego feedback?
1615
+ feedbackIncorporation: modulations.filter(m => m.feedbackIncorporated).length / modulations.length,
1616
+
1617
+ // Did multi-round dialogue produce different output than single-pass?
1618
+ divergenceFromFirstPass: measureDivergence(dialogueTrace.rounds[0].ego, dialogueTrace.finalOutput),
1619
+
1620
+ // What types of improvements did Superego drive?
1621
+ improvementTypes: categorizeImprovements(modulations)
1622
+ };
1623
+ }
1624
+
1625
+ /**
1626
+ * Categories of Superego-driven improvements
1627
+ */
1628
+ function categorizeImprovements(modulations) {
1629
+ return {
1630
+ specificity: modulations.filter(m => m.egoChange.includes('more_specific')).length,
1631
+ toneCalibration: modulations.filter(m => m.egoChange.includes('tone_adjusted')).length,
1632
+ struggleHonoring: modulations.filter(m => m.egoChange.includes('struggle_honored')).length,
1633
+ repairAdded: modulations.filter(m => m.egoChange.includes('repair_acknowledgment')).length,
1634
+ pacingAdjusted: modulations.filter(m => m.egoChange.includes('pacing_changed')).length
1635
+ };
1636
+ }
1637
+ ```
1638
+
1639
+ #### 3. Alternative Framings (Acknowledged)
1640
+
1641
+ ```yaml
1642
+ # Alternative descriptions of the same architecture
1643
+ alternative_framings:
1644
+ gan_inspired:
1645
+ description: "Generator/Discriminator pattern"
1646
+ ego_as: "Generator producing candidate responses"
1647
+ superego_as: "Discriminator evaluating response quality"
1648
+ insight: "Adversarial training improves generation"
1649
+
1650
+ deliberative:
1651
+ description: "Proposal/Critique democratic process"
1652
+ ego_as: "Proposer offering policy options"
1653
+ superego_as: "Critic evaluating proposals"
1654
+ insight: "Deliberation improves decision quality"
1655
+
1656
+ editorial:
1657
+ description: "Draft/Review process"
1658
+ ego_as: "Writer producing drafts"
1659
+ superego_as: "Editor reviewing and requesting revisions"
1660
+ insight: "Review cycles improve final output"
1661
+
1662
+ dual_process:
1663
+ description: "System 1/System 2 cognitive model"
1664
+ ego_as: "System 1: fast, intuitive response generation"
1665
+ superego_as: "System 2: slow, deliberate evaluation"
1666
+ insight: "Reflective override of intuitive responses"
1667
+
1668
+ chosen_framing: |
1669
+ We chose the psychodynamic framing because:
1670
+ 1. It connects to the Hegelian recognition framework (shared concern with intersubjectivity)
1671
+ 2. It suggests richer extensions (transference, working-through) than functional descriptions
1672
+ 3. It emphasizes relational evaluation, not just logical correctness
1673
+ 4. It has precedent in AI research (Drama Machine, ConsensAgent)
1674
+ ```
1675
+
1676
+ ### Success Criteria
1677
+
1678
+ | Criterion | Target | Measurement |
1679
+ |-----------|--------|-------------|
1680
+ | Metaphor defended | Not apologized for | Paper language positive |
1681
+ | Architecture contribution measured | Empirical not just theoretical | Metrics implemented |
1682
+ | Alternative framings acknowledged | Intellectual honesty | Section included |
1683
+ | Extensions suggested | Future work directions | Transference, resistance mentioned |
1684
+
1685
+ ### Priority & Effort
1686
+ - **Priority**: Medium (clarity and positioning)
1687
+ - **Effort**: Low-Medium (writing + minor code)
1688
+ - **Timeline**: 1 week
1689
+
1690
+ ---
1691
+
1692
+ ## III.C The Productive Struggle Question
1693
+
1694
+ ### Critique
1695
+ The productive struggle finding (+49%) may not require the full Hegelian apparatus. Could be achieved through simpler means.
1696
+
1697
+ ### Response: Ablation Study and Theoretical Precision
1698
+
1699
+ #### 1. Productive Struggle Ablation
1700
+
1701
+ ```yaml
1702
+ # New ablation study
1703
+ productive_struggle_ablation:
1704
+ description: "Isolate productive struggle contribution from recognition"
1705
+
1706
+ conditions:
1707
+ baseline:
1708
+ prompt: "Help learners progress through material"
1709
+ productive_struggle_instruction: false
1710
+ recognition_instruction: false
1711
+
1712
+ struggle_only:
1713
+ prompt: |
1714
+ When learners are confused, honor their struggle. Don't immediately
1715
+ resolve confusion. Ask questions that help them work through it.
1716
+ productive_struggle_instruction: true
1717
+ recognition_instruction: false
1718
+
1719
+ recognition_only:
1720
+ prompt: |
1721
+ Treat learners as autonomous subjects. Engage with their contributions.
1722
+ Generate responses shaped by their specific input.
1723
+ productive_struggle_instruction: false
1724
+ recognition_instruction: true
1725
+
1726
+ full_recognition:
1727
+ prompt: "Full recognition prompt (current)"
1728
+ productive_struggle_instruction: true
1729
+ recognition_instruction: true
1730
+
1731
+ analysis:
1732
+ main_effects:
1733
+ - "Productive struggle instruction effect"
1734
+ - "Recognition instruction effect"
1735
+
1736
+ interaction:
1737
+ - "Does recognition add value beyond productive struggle alone?"
1738
+ - "Does productive struggle add value beyond recognition alone?"
1739
+
1740
+ hypotheses:
1741
+ H1: "struggle_only improves over baseline on productive_struggle_arc"
1742
+ H2: "recognition_only improves over baseline on recognition scenarios"
1743
+ H3: "full_recognition shows interaction effect (super-additive)"
1744
+
1745
+ interpretation:
1746
+ if_H1_and_not_H3: |
1747
+ Productive struggle finding doesn't require recognition framework.
1748
+ Consider simplifying theoretical claims.
1749
+
1750
+ if_H3_supported: |
1751
+ Recognition and productive struggle are synergistic.
1752
+ Full framework justified.
1753
+ ```
1754
+
1755
+ #### 2. Theoretical Precision
1756
+
1757
+ ```markdown
1758
+ # Clarification for paper
1759
+
1760
+ ## 3.6 What Recognition Adds Beyond Productive Struggle
1761
+
1762
+ Educational research on productive struggle [@kapur2008; @warshauer2015]
1763
+ demonstrates that confusion, properly supported, enhances learning. Our
1764
+ recognition framework includes productive struggle but claims to add more.
1765
+
1766
+ ### What Productive Struggle Instruction Alone Provides
1767
+ - Delay in resolving confusion
1768
+ - Questions rather than answers
1769
+ - Space for learner to work through difficulty
1770
+
1771
+ ### What Recognition Adds
1772
+ - Engagement with SPECIFIC learner contribution (not just "confusion")
1773
+ - Learner's framework becomes site of joint inquiry
1774
+ - Tutor response shaped by learner's particular formulation
1775
+ - Accumulated relational history influences interaction
1776
+
1777
+ ### Empirical Claim
1778
+ Recognition-oriented tutoring improves outcomes BEYOND what productive
1779
+ struggle instruction alone provides. This claim will be tested through
1780
+ ablation study (see Methods).
1781
+
1782
+ ### If Ablation Shows No Interaction
1783
+ If productive struggle instruction alone achieves similar gains, we will:
1784
+ 1. Acknowledge that recognition may primarily work through productive struggle
1785
+ 2. Retain recognition as theoretical motivation for productive struggle design
1786
+ 3. Simplify claims about recognition's unique contribution
1787
+ ```
1788
+
1789
+ ### Success Criteria
1790
+
1791
+ | Criterion | Target | Measurement |
1792
+ |-----------|--------|-------------|
1793
+ | Ablation completed | 4 conditions × 30 runs each | Statistical comparison |
1794
+ | Interaction effect | Recognition × Struggle interaction | F-test for interaction |
1795
+ | Theoretical precision | Claims match evidence | If no interaction, simplify claims |
1796
+
1797
+ ### Priority & Effort
1798
+ - **Priority**: Medium-High (theoretical precision)
1799
+ - **Effort**: Medium (ablation study design and execution)
1800
+ - **Timeline**: 2 weeks
1801
+
1802
+ ---
1803
+
1804
+ # Part IV: Implementation Timeline
1805
+
1806
+ ## Phase 0: Immediate Priority — 2×2 Factorial Evaluation (Week 1)
1807
+
1808
+ The existing 2×2 factorial design is ready to run. This is the highest priority work.
1809
+
1810
+ | Task | Priority | Effort | Status |
1811
+ |------|----------|--------|--------|
1812
+ | **Run 2×2 factorial evaluation** | **CRITICAL** | Medium | **Ready now** |
1813
+ | Execute single_baseline × single_recognition × baseline × recognition | Critical | Medium | Config exists |
1814
+ | Run n=30 per cell across 7 scenarios | Critical | Medium | ~1,680 API calls |
1815
+ | Compute main effects and interaction | Critical | Low | Analysis scripts exist |
1816
+
1817
+ ```bash
1818
+ # Command to run 2×2 factorial
1819
+ node scripts/eval-tutor.js run \
1820
+ --profiles single_baseline,single_recognition,baseline,recognition \
1821
+ --scenarios recognition_seeking_learner,resistant_learner,mutual_transformation_journey,recognition_repair,productive_struggle_arc,sustained_dialogue,breakdown_recovery \
1822
+ --runs 30 \
1823
+ --report
1824
+ ```
1825
+
1826
+ **Expected Output:**
1827
+ - Main effect of architecture: Does multi-agent dialogue improve tutor adaptiveness?
1828
+ - Main effect of recognition: Do recognition prompts improve tutor adaptiveness?
1829
+ - Interaction effect: Does recognition benefit more from multi-agent architecture?
1830
+
1831
+ ## Phase 1: Judge Validation & Theoretical Writing (Weeks 1-2)
1832
+
1833
+ | Task | Priority | Effort | Status |
1834
+ |------|----------|--------|--------|
1835
+ | Multi-judge comparison (I.B.1) | High | Medium | Ready |
1836
+ | Adversarial scenarios (I.B.2) | High | Medium | Ready |
1837
+ | Tutor adaptiveness metrics (III.A.3) | High | Medium | New service |
1838
+ | Derivative framework writing (III.A.1) | High | Medium | Paper section |
1839
+ | Productive metaphor defense (III.B.1) | Medium | Low | Paper section |
1840
+
1841
+ ## Phase 2: Statistical Rigor & Ablations (Weeks 3-4)
1842
+
1843
+ | Task | Priority | Effort | Status |
1844
+ |------|----------|--------|--------|
1845
+ | Multilevel statistical model (I.C.1) | High | Medium | Ready |
1846
+ | Productive struggle ablation (III.C) | Medium-High | Medium | Ready |
1847
+ | Dimension factor analysis (I.B.3) | Medium | Medium | Ready |
1848
+ | Architecture contribution measurement (III.B.2) | High | Medium | New code |
1849
+
1850
+ ## Phase 3: Advanced Evaluation (Weeks 5-8)
1851
+
1852
+ | Task | Priority | Effort | Status |
1853
+ |------|----------|--------|--------|
1854
+ | Contingent learner agent (I.A.1) | High | High | Requires design |
1855
+ | Bilateral recognition measurement (I.A.2) | High | High | Requires design |
1856
+ | Continuous Superego assessment (II.A.1) | Medium-High | Medium | Ready |
1857
+ | Relational memory service (II.C) | Medium | High | Requires design |
1858
+
1859
+ ## Phase 4: Long-Term Extensions (Weeks 9-12)
1860
+
1861
+ | Task | Priority | Effort | Status |
1862
+ |------|----------|--------|--------|
1863
+ | Free-form dialogue evaluation (I.A.3) | High | High | Requires Phase 3 |
1864
+ | Extended dialogue profile (II.A.2) | Medium | Medium | Requires Phase 2 |
1865
+ | Structural response analysis (II.B.2) | Medium | Medium | Research |
1866
+ | Psychodynamic extensions (III.B) | Low | High | Future work |
1867
+
1868
+ ---
1869
+
1870
+ # Part V: Success Metrics Summary
1871
+
1872
+ ## Primary Outcome: 2×2 Factorial Results
1873
+
1874
+ | Effect | Hypothesis | Success Criterion | Measurement |
1875
+ |--------|------------|-------------------|-------------|
1876
+ | **Main: Architecture** | Multi-agent > Single-agent | p < 0.05, d > 0.5 | Compare rows of 2×2 |
1877
+ | **Main: Recognition** | Recognition > Standard | p < 0.05, d > 0.5 | Compare columns of 2×2 |
1878
+ | **Interaction** | Recognition × Architecture synergy | Significant interaction term | ANOVA interaction |
1879
+
1880
+ ## Tutor Adaptive Pedagogy Metrics
1881
+
1882
+ | Metric | Current | Target | Measurement |
1883
+ |--------|---------|--------|-------------|
1884
+ | Content engagement | Unknown | > 0.6 | Relational scoring |
1885
+ | Signal responsiveness | Unknown | > 0.7 | State-appropriate response rate |
1886
+ | Repair behavior | Unknown | 100% when needed | Acknowledgment detection |
1887
+ | Struggle honoring | Unknown | > 0.8 | Premature resolution rate |
1888
+ | Framework adoption | Unknown | > 0.4 | Vocabulary overlap |
1889
+
1890
+ ## Experimental Validity
1891
+
1892
+ | Metric | Current | Target | Measurement |
1893
+ |--------|---------|--------|-------------|
1894
+ | Judge reliability (ICC) | Unknown | > 0.7 | Multi-judge comparison |
1895
+ | Adjusted effect size | d = 1.55 | d > 0.8 | Multilevel model |
1896
+ | Adversarial detection | Not tested | 100% | False positive scenarios |
1897
+ | Factor structure | 10 dimensions | ≤ 4 factors | PCA |
1898
+
1899
+ ## Theoretical Positioning
1900
+
1901
+ | Claim | Current | Target | Evidence |
1902
+ |-------|---------|--------|----------|
1903
+ | Derivative framing | Not explicit | Explicit in paper | Lacan precedent, clear language |
1904
+ | Metaphor status | Implicit | Defended as productive | Alternative framings acknowledged |
1905
+ | Claims scope | Recognition | Tutor adaptive pedagogy | Measurable behavioral criteria |
1906
+ | Contribution type | Philosophical | Empirical + theoretical | 2×2 factorial results |
1907
+
1908
+ ---
1909
+
1910
+ # Appendix A: New Files to Create
1911
+
1912
+ ```
1913
+ services/
1914
+ ├── tutorAdaptivenessMeasurement.js # III.A.3 - Core metrics for tutor behavior
1915
+ ├── bilateralRecognitionEvaluator.js # I.A.2
1916
+ ├── structuralRecognitionAnalyzer.js # II.B.2
1917
+ ├── relationalMemoryService.js # II.C.1
1918
+ └── contingentLearnerAgent.js # I.A.1
1919
+
1920
+ scripts/
1921
+ ├── run-factorial-2x2.js # Phase 0 - Run the 2×2 factorial
1922
+ ├── analyze-factorial-results.js # Phase 0 - ANOVA and effect sizes
1923
+ ├── judge-comparison.js # I.B.1
1924
+ ├── dimension-factor-analysis.js # I.B.3
1925
+ ├── multilevel-analysis.js # I.C.1
1926
+ └── emergence-testing.js # II.B.1
1927
+
1928
+ config/
1929
+ ├── contingent-learner.yaml # I.A.1
1930
+ ├── adversarial-scenarios.yaml # I.B.2
1931
+ └── ablation-conditions.yaml # III.C.1
1932
+
1933
+ docs/research/
1934
+ ├── CRITICAL-REVIEW-RECOGNITION-TUTORING.md # Complete ✓
1935
+ ├── IMPLEMENTATION-PLAN-CRITIQUE-RESPONSE.md # This document ✓
1936
+ └── THEORETICAL-REFINEMENT-NOTES.md # III.A, III.B - Paper sections
1937
+ ```
1938
+
1939
+ # Appendix B: The Refined Theoretical Claim
1940
+
1941
+ The paper should make this claim:
1942
+
1943
+ > **Recognition-oriented design**, understood as a *derivative* of Hegelian recognition
1944
+ > theory (following Lacan's rethinking of master-slave through analyst/analysand),
1945
+ > and implemented through a *metaphorically* psychodynamic multi-agent architecture
1946
+ > (Ego/Superego dialogue), produces measurable improvements in **AI tutor adaptive
1947
+ > pedagogy**.
1948
+ >
1949
+ > These improvements—concentrated in content engagement, signal responsiveness,
1950
+ > repair behavior, and struggle honoring—are consistent with the theoretical
1951
+ > framework's predictions and can be isolated through a 2×2 factorial design
1952
+ > (architecture × recognition prompts).
1953
+ >
1954
+ > The claim concerns **tutor behavior**, not AI consciousness or genuine
1955
+ > intersubjective recognition. The Hegelian framework serves as diagnostic tool,
1956
+ > design heuristic, and evaluation criterion—not ontological commitment.
1957
+
1958
+ # Appendix C: Key Theoretical References
1959
+
1960
+ ```bibtex
1961
+ @book{hegel1807,
1962
+ author = {Hegel, Georg Wilhelm Friedrich},
1963
+ title = {Phenomenology of Spirit},
1964
+ year = {1807},
1965
+ note = {Master-slave dialectic: source structure}
1966
+ }
1967
+
1968
+ @book{lacan1969,
1969
+ author = {Lacan, Jacques},
1970
+ title = {The Seminar of Jacques Lacan, Book XVII: The Other Side of Psychoanalysis},
1971
+ year = {1969-70},
1972
+ note = {Four discourses: precedent for derivative rethinking}
1973
+ }
1974
+
1975
+ @article{honneth1995,
1976
+ author = {Honneth, Axel},
1977
+ title = {The Struggle for Recognition},
1978
+ year = {1995},
1979
+ note = {Social-political recognition theory}
1980
+ }
1981
+
1982
+ @article{chen2024drama,
1983
+ author = {Chen, et al.},
1984
+ title = {The Drama Machine: Simulating Character Development with LLM Agents},
1985
+ year = {2024},
1986
+ note = {Multi-agent dialogue architecture inspiration}
1987
+ }
1988
+ ```