@lobehub/lobehub 2.0.9 → 2.0.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (108) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/Dockerfile +44 -52
  3. package/changelog/v2.json +18 -0
  4. package/locales/ar/chat.json +4 -0
  5. package/locales/ar/models.json +65 -0
  6. package/locales/bg-BG/chat.json +4 -0
  7. package/locales/bg-BG/models.json +10 -0
  8. package/locales/de-DE/chat.json +4 -0
  9. package/locales/de-DE/models.json +41 -0
  10. package/locales/en-US/chat.json +4 -0
  11. package/locales/es-ES/chat.json +4 -0
  12. package/locales/es-ES/models.json +50 -0
  13. package/locales/fa-IR/chat.json +4 -0
  14. package/locales/fa-IR/models.json +39 -0
  15. package/locales/fr-FR/chat.json +4 -0
  16. package/locales/fr-FR/models.json +9 -0
  17. package/locales/it-IT/chat.json +4 -0
  18. package/locales/it-IT/models.json +62 -0
  19. package/locales/ja-JP/chat.json +4 -0
  20. package/locales/ja-JP/models.json +40 -0
  21. package/locales/ko-KR/chat.json +4 -0
  22. package/locales/ko-KR/models.json +31 -0
  23. package/locales/nl-NL/chat.json +4 -0
  24. package/locales/nl-NL/models.json +52 -0
  25. package/locales/pl-PL/chat.json +4 -0
  26. package/locales/pl-PL/models.json +43 -0
  27. package/locales/pt-BR/chat.json +4 -0
  28. package/locales/pt-BR/models.json +92 -0
  29. package/locales/ru-RU/chat.json +4 -0
  30. package/locales/ru-RU/models.json +34 -0
  31. package/locales/tr-TR/chat.json +4 -0
  32. package/locales/tr-TR/models.json +55 -0
  33. package/locales/vi-VN/chat.json +4 -0
  34. package/locales/vi-VN/models.json +31 -0
  35. package/locales/zh-CN/chat.json +4 -0
  36. package/locales/zh-TW/chat.json +4 -0
  37. package/package.json +1 -1
  38. package/packages/agent-runtime/src/groupOrchestration/GroupOrchestrationSupervisor.ts +18 -1
  39. package/packages/agent-runtime/src/groupOrchestration/__tests__/GroupOrchestrationSupervisor.test.ts +76 -5
  40. package/packages/agent-runtime/src/groupOrchestration/types.ts +3 -3
  41. package/packages/builtin-tool-group-management/src/client/Intervention/ExecuteTask.tsx +11 -11
  42. package/packages/builtin-tool-group-management/src/client/Intervention/ExecuteTasks.tsx +78 -79
  43. package/packages/builtin-tool-group-management/src/client/Render/ExecuteTask/index.tsx +3 -3
  44. package/packages/builtin-tool-group-management/src/client/Render/ExecuteTasks/index.tsx +61 -63
  45. package/packages/builtin-tool-group-management/src/client/Streaming/ExecuteTask/index.tsx +3 -3
  46. package/packages/builtin-tool-group-management/src/executor.test.ts +7 -9
  47. package/packages/builtin-tool-group-management/src/executor.ts +3 -3
  48. package/packages/builtin-tool-group-management/src/manifest.ts +49 -50
  49. package/packages/builtin-tool-group-management/src/systemRole.ts +153 -5
  50. package/packages/builtin-tool-group-management/src/types.ts +3 -2
  51. package/packages/builtin-tool-gtd/src/systemRole.ts +4 -4
  52. package/packages/context-engine/src/processors/TasksFlatten.ts +7 -5
  53. package/packages/context-engine/src/processors/__tests__/TasksFlatten.test.ts +164 -0
  54. package/packages/conversation-flow/src/__tests__/fixtures/inputs/agentGroup/index.ts +4 -0
  55. package/packages/conversation-flow/src/__tests__/fixtures/inputs/agentGroup/supervisor-after-multi-tasks.json +91 -0
  56. package/packages/conversation-flow/src/__tests__/fixtures/inputs/agentGroup/supervisor-content-only.json +74 -0
  57. package/packages/conversation-flow/src/__tests__/parse.test.ts +37 -0
  58. package/packages/conversation-flow/src/transformation/FlatListBuilder.ts +70 -4
  59. package/packages/conversation-flow/src/transformation/__tests__/FlatListBuilder.test.ts +147 -0
  60. package/packages/model-bank/src/aiModels/cerebras.ts +2 -22
  61. package/packages/model-bank/src/aiModels/google.ts +1 -44
  62. package/packages/model-bank/src/aiModels/nvidia.ts +12 -16
  63. package/packages/model-bank/src/aiModels/siliconcloud.ts +20 -0
  64. package/packages/model-bank/src/aiModels/volcengine.ts +69 -0
  65. package/packages/model-bank/src/aiModels/wenxin.ts +41 -38
  66. package/packages/model-bank/src/aiModels/zhipu.ts +58 -28
  67. package/packages/model-bank/src/types/aiModel.ts +29 -0
  68. package/packages/model-runtime/src/core/usageConverters/utils/computeChatCost.test.ts +2 -2
  69. package/packages/model-runtime/src/providers/google/createImage.test.ts +12 -12
  70. package/packages/model-runtime/src/providers/openrouter/index.test.ts +102 -0
  71. package/packages/model-runtime/src/providers/openrouter/index.ts +19 -7
  72. package/packages/model-runtime/src/providers/vercelaigateway/index.test.ts +47 -0
  73. package/packages/model-runtime/src/providers/vercelaigateway/index.ts +7 -1
  74. package/packages/types/src/message/ui/chat.ts +2 -0
  75. package/packages/types/src/tool/builtin.ts +5 -5
  76. package/src/features/Conversation/ChatItem/components/Title.tsx +1 -1
  77. package/src/features/Conversation/ChatList/index.tsx +0 -1
  78. package/src/features/Conversation/Messages/GroupTasks/TaskItem/ClientTaskItem.tsx +183 -0
  79. package/src/features/Conversation/Messages/GroupTasks/TaskItem/ServerTaskItem.tsx +94 -0
  80. package/src/features/Conversation/Messages/GroupTasks/TaskItem/TaskTitle.tsx +177 -0
  81. package/src/features/Conversation/Messages/GroupTasks/TaskItem/index.tsx +26 -0
  82. package/src/features/Conversation/Messages/GroupTasks/TaskItem/useClientTaskStats.ts +93 -0
  83. package/src/features/Conversation/Messages/GroupTasks/index.tsx +151 -0
  84. package/src/features/Conversation/Messages/Supervisor/index.tsx +7 -1
  85. package/src/features/Conversation/Messages/Task/ClientTaskDetail/index.tsx +72 -91
  86. package/src/features/Conversation/Messages/Task/TaskDetailPanel/StatusContent.tsx +46 -17
  87. package/src/features/Conversation/Messages/Tasks/TaskItem/ClientTaskItem.tsx +9 -24
  88. package/src/features/Conversation/Messages/Tasks/TaskItem/ServerTaskItem.tsx +18 -38
  89. package/src/features/Conversation/Messages/Tasks/shared/ErrorState.tsx +45 -2
  90. package/src/features/Conversation/Messages/Tasks/shared/InitializingState.tsx +16 -1
  91. package/src/features/Conversation/Messages/Tasks/shared/TaskContent.tsx +68 -0
  92. package/src/features/Conversation/Messages/Tasks/shared/TaskMessages.tsx +383 -0
  93. package/src/features/Conversation/Messages/Tasks/shared/index.ts +4 -0
  94. package/src/features/Conversation/Messages/Tasks/shared/useTaskPolling.ts +48 -0
  95. package/src/features/Conversation/Messages/index.tsx +5 -0
  96. package/src/locales/default/chat.ts +4 -0
  97. package/src/server/modules/AgentRuntime/RuntimeExecutors.ts +4 -0
  98. package/src/server/modules/AgentRuntime/__tests__/RuntimeExecutors.test.ts +106 -1
  99. package/src/server/services/aiAgent/__tests__/execAgent.threadId.test.ts +2 -2
  100. package/src/server/utils/truncateToolResult.ts +1 -4
  101. package/src/store/chat/agents/GroupOrchestration/__tests__/batch-exec-async-tasks.test.ts +15 -15
  102. package/src/store/chat/agents/GroupOrchestration/createGroupOrchestrationExecutors.ts +22 -15
  103. package/src/store/chat/agents/__tests__/createAgentExecutors/exec-tasks.test.ts +21 -10
  104. package/src/store/chat/agents/createAgentExecutors.ts +2 -0
  105. package/src/store/chat/slices/aiAgent/actions/groupOrchestration.ts +10 -7
  106. package/src/features/Conversation/Messages/Task/ClientTaskDetail/CompletedState.tsx +0 -108
  107. package/src/features/Conversation/Messages/Task/ClientTaskDetail/InstructionAccordion.tsx +0 -63
  108. package/src/features/Conversation/Messages/Task/ClientTaskDetail/ProcessingState.tsx +0 -123
package/CHANGELOG.md CHANGED
@@ -2,6 +2,56 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 2.0.11](https://github.com/lobehub/lobe-chat/compare/v2.0.10...v2.0.11)
6
+
7
+ <sup>Released on **2026-01-29**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Fix group task render.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Fix group task render, closes [#11952](https://github.com/lobehub/lobe-chat/issues/11952) ([b8ef02e](https://github.com/lobehub/lobe-chat/commit/b8ef02e))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
30
+ ### [Version 2.0.10](https://github.com/lobehub/lobe-chat/compare/v2.0.9...v2.0.10)
31
+
32
+ <sup>Released on **2026-01-29**</sup>
33
+
34
+ #### 🐛 Bug Fixes
35
+
36
+ - **misc**: Add ExtendParamsTypeSchema for enhanced model settings.
37
+
38
+ <br/>
39
+
40
+ <details>
41
+ <summary><kbd>Improvements and Fixes</kbd></summary>
42
+
43
+ #### What's fixed
44
+
45
+ - **misc**: Add ExtendParamsTypeSchema for enhanced model settings, closes [#11437](https://github.com/lobehub/lobe-chat/issues/11437) ([f58c980](https://github.com/lobehub/lobe-chat/commit/f58c980))
46
+
47
+ </details>
48
+
49
+ <div align="right">
50
+
51
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
52
+
53
+ </div>
54
+
5
55
  ### [Version 2.0.9](https://github.com/lobehub/lobe-chat/compare/v2.0.8...v2.0.9)
6
56
 
7
57
  <sup>Released on **2026-01-29**</sup>
package/Dockerfile CHANGED
@@ -8,24 +8,22 @@ ARG USE_CN_MIRROR
8
8
 
9
9
  ENV DEBIAN_FRONTEND="noninteractive"
10
10
 
11
- RUN <<'EOF'
12
- set -e
13
- if [ "${USE_CN_MIRROR:-false}" = "true" ]; then
14
- sed -i "s/deb.debian.org/mirrors.ustc.edu.cn/g" "/etc/apt/sources.list.d/debian.sources"
15
- fi
16
- apt update
17
- apt install ca-certificates proxychains-ng -qy
18
- mkdir -p /distroless/bin /distroless/etc /distroless/etc/ssl/certs /distroless/lib
19
- cp /usr/lib/$(arch)-linux-gnu/libproxychains.so.4 /distroless/lib/libproxychains.so.4
20
- cp /usr/lib/$(arch)-linux-gnu/libdl.so.2 /distroless/lib/libdl.so.2
21
- cp /usr/bin/proxychains4 /distroless/bin/proxychains
22
- cp /etc/proxychains4.conf /distroless/etc/proxychains4.conf
23
- cp /usr/lib/$(arch)-linux-gnu/libstdc++.so.6 /distroless/lib/libstdc++.so.6
24
- cp /usr/lib/$(arch)-linux-gnu/libgcc_s.so.1 /distroless/lib/libgcc_s.so.1
25
- cp /usr/local/bin/node /distroless/bin/node
26
- cp /etc/ssl/certs/ca-certificates.crt /distroless/etc/ssl/certs/ca-certificates.crt
27
- rm -rf /tmp/* /var/lib/apt/lists/* /var/tmp/*
28
- EOF
11
+ RUN set -e && \
12
+ if [ "${USE_CN_MIRROR:-false}" = "true" ]; then \
13
+ sed -i "s/deb.debian.org/mirrors.ustc.edu.cn/g" "/etc/apt/sources.list.d/debian.sources"; \
14
+ fi && \
15
+ apt update && \
16
+ apt install ca-certificates proxychains-ng -qy && \
17
+ mkdir -p /distroless/bin /distroless/etc /distroless/etc/ssl/certs /distroless/lib && \
18
+ cp /usr/lib/$(arch)-linux-gnu/libproxychains.so.4 /distroless/lib/libproxychains.so.4 && \
19
+ cp /usr/lib/$(arch)-linux-gnu/libdl.so.2 /distroless/lib/libdl.so.2 && \
20
+ cp /usr/bin/proxychains4 /distroless/bin/proxychains && \
21
+ cp /etc/proxychains4.conf /distroless/etc/proxychains4.conf && \
22
+ cp /usr/lib/$(arch)-linux-gnu/libstdc++.so.6 /distroless/lib/libstdc++.so.6 && \
23
+ cp /usr/lib/$(arch)-linux-gnu/libgcc_s.so.1 /distroless/lib/libgcc_s.so.1 && \
24
+ cp /usr/local/bin/node /distroless/bin/node && \
25
+ cp /etc/ssl/certs/ca-certificates.crt /distroless/etc/ssl/certs/ca-certificates.crt && \
26
+ rm -rf /tmp/* /var/lib/apt/lists/* /var/tmp/*
29
27
 
30
28
  ## Builder image, install all the dependencies and build the app
31
29
  FROM base AS builder
@@ -77,23 +75,21 @@ COPY patches ./patches
77
75
  # bring in desktop workspace manifest so pnpm can resolve it
78
76
  COPY apps/desktop/src/main/package.json ./apps/desktop/src/main/package.json
79
77
 
80
- RUN <<'EOF'
81
- set -e
82
- if [ "${USE_CN_MIRROR:-false}" = "true" ]; then
83
- export SENTRYCLI_CDNURL="https://npmmirror.com/mirrors/sentry-cli"
84
- npm config set registry "https://registry.npmmirror.com/"
85
- echo 'canvas_binary_host_mirror=https://npmmirror.com/mirrors/canvas' >> .npmrc
86
- fi
87
- export COREPACK_NPM_REGISTRY=$(npm config get registry | sed 's/\/$//')
88
- npm i -g corepack@latest
89
- corepack enable
90
- corepack use $(sed -n 's/.*"packageManager": "\(.*\)".*/\1/p' package.json)
91
- pnpm i
92
- mkdir -p /deps
93
- cd /deps
94
- pnpm init
95
- pnpm add pg drizzle-orm
96
- EOF
78
+ RUN set -e && \
79
+ if [ "${USE_CN_MIRROR:-false}" = "true" ]; then \
80
+ export SENTRYCLI_CDNURL="https://npmmirror.com/mirrors/sentry-cli"; \
81
+ npm config set registry "https://registry.npmmirror.com/"; \
82
+ echo 'canvas_binary_host_mirror=https://npmmirror.com/mirrors/canvas' >> .npmrc; \
83
+ fi && \
84
+ export COREPACK_NPM_REGISTRY=$(npm config get registry | sed 's/\/$//') && \
85
+ npm i -g corepack@latest && \
86
+ corepack enable && \
87
+ corepack use $(sed -n 's/.*"packageManager": "\(.*\)".*/\1/p' package.json) && \
88
+ pnpm i && \
89
+ mkdir -p /deps && \
90
+ cd /deps && \
91
+ pnpm init && \
92
+ pnpm add pg drizzle-orm
97
93
 
98
94
  COPY . .
99
95
 
@@ -101,17 +97,15 @@ COPY . .
101
97
  RUN npm run build:docker
102
98
 
103
99
  # Prepare desktop export assets for Electron packaging (if generated)
104
- RUN <<'EOF'
105
- set -e
106
- if [ -d "/app/out" ]; then
107
- mkdir -p /app/apps/desktop/dist/next
108
- cp -a /app/out/. /app/apps/desktop/dist/next/
109
- echo "✅ Copied Next export output into /app/apps/desktop/dist/next"
110
- else
111
- echo "ℹ️ No Next export output found at /app/out, creating empty directory"
112
- mkdir -p /app/apps/desktop/dist/next
113
- fi
114
- EOF
100
+ RUN set -e && \
101
+ if [ -d "/app/out" ]; then \
102
+ mkdir -p /app/apps/desktop/dist/next && \
103
+ cp -a /app/out/. /app/apps/desktop/dist/next/ && \
104
+ echo "Copied Next export output into /app/apps/desktop/dist/next"; \
105
+ else \
106
+ echo "No Next export output found at /app/out, creating empty directory" && \
107
+ mkdir -p /app/apps/desktop/dist/next; \
108
+ fi
115
109
 
116
110
  ## Application image, copy all the files for production
117
111
  FROM busybox:latest AS app
@@ -138,12 +132,10 @@ COPY --from=builder /deps/node_modules/drizzle-orm /app/node_modules/drizzle-orm
138
132
  COPY --from=builder /app/scripts/serverLauncher/startServer.js /app/startServer.js
139
133
  COPY --from=builder /app/scripts/_shared /app/scripts/_shared
140
134
 
141
- RUN <<'EOF'
142
- set -e
143
- addgroup -S -g 1001 nodejs
144
- adduser -D -G nodejs -H -S -h /app -u 1001 nextjs
145
- chown -R nextjs:nodejs /app /etc/proxychains4.conf
146
- EOF
135
+ RUN set -e && \
136
+ addgroup -S -g 1001 nodejs && \
137
+ adduser -D -G nodejs -H -S -h /app -u 1001 nextjs && \
138
+ chown -R nextjs:nodejs /app /etc/proxychains4.conf
147
139
 
148
140
  ## Production image, copy all the files and run next
149
141
  FROM scratch
package/changelog/v2.json CHANGED
@@ -1,4 +1,22 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Fix group task render."
6
+ ]
7
+ },
8
+ "date": "2026-01-29",
9
+ "version": "2.0.11"
10
+ },
11
+ {
12
+ "children": {
13
+ "fixes": [
14
+ "Add ExtendParamsTypeSchema for enhanced model settings."
15
+ ]
16
+ },
17
+ "date": "2026-01-29",
18
+ "version": "2.0.10"
19
+ },
2
20
  {
3
21
  "children": {},
4
22
  "date": "2026-01-29",
@@ -338,6 +338,9 @@
338
338
  "task.activity.toolCalling": "جارٍ استدعاء {{toolName}}...",
339
339
  "task.activity.toolResult": "تم استلام نتيجة {{toolName}}",
340
340
  "task.batchTasks": "{{count}} مهمة فرعية مجمعة",
341
+ "task.groupTasks": "{{count}} مهام متوازية",
342
+ "task.groupTasksTitle": "{{agents}} و{{count}} مهام للوكلاء",
343
+ "task.groupTasksTitleSimple": "{{agents}} {{count}} مهام",
341
344
  "task.instruction": "تعليمات المهمة",
342
345
  "task.intermediateSteps": "{{count}} خطوة وسيطة",
343
346
  "task.metrics.duration": "(استغرق {{duration}})",
@@ -345,6 +348,7 @@
345
348
  "task.metrics.toolCallsShort": "استخدامات الأداة",
346
349
  "task.status.cancelled": "تم إلغاء المهمة",
347
350
  "task.status.failed": "فشلت المهمة",
351
+ "task.status.fetchingDetails": "جارٍ جلب التفاصيل...",
348
352
  "task.status.initializing": "جارٍ تهيئة المهمة...",
349
353
  "task.subtask": "مهمة فرعية",
350
354
  "thread.divider": "موضوع فرعي",
@@ -906,6 +906,9 @@
906
906
  "mistralai/Mixtral-8x7B-Instruct-v0.1.description": "Mixtral-8x7B Instruct (46.7B) يوفر قدرة عالية لمعالجة البيانات على نطاق واسع.",
907
907
  "mistralai/Mixtral-8x7B-v0.1.description": "Mixtral 8x7B هو نموذج MoE متفرق يعزز سرعة الاستدلال، مناسب للمهام متعددة اللغات وتوليد الكود.",
908
908
  "mistralai/mistral-nemo.description": "Mistral Nemo هو نموذج يحتوي على 7.3 مليار معامل يدعم لغات متعددة ويتميز بأداء قوي في البرمجة.",
909
+ "mixtral-8x7b-32768.description": "Mixtral 8x7B يوفر حوسبة متوازية مقاومة للأخطاء للمهام المعقدة.",
910
+ "mixtral.description": "Mixtral هو نموذج MoE من Mistral AI بوزن مفتوح، يدعم توليد الشيفرات وفهم اللغة.",
911
+ "mixtral:8x22b.description": "Mixtral هو نموذج MoE من Mistral AI بوزن مفتوح، يدعم توليد الشيفرات وفهم اللغة.",
909
912
  "moonshot-v1-128k-vision-preview.description": "نماذج Kimi للرؤية (بما في ذلك moonshot-v1-8k-vision-preview/moonshot-v1-32k-vision-preview/moonshot-v1-128k-vision-preview) قادرة على فهم محتوى الصور مثل النصوص، الألوان، وأشكال الكائنات.",
910
913
  "moonshot-v1-128k.description": "Moonshot V1 128K يوفر سياقًا طويلًا للغاية لتوليد نصوص طويلة جدًا، حيث يتعامل مع ما يصل إلى 128,000 رمز، مما يجعله مثاليًا للبحث، والأكاديميا، والوثائق الكبيرة.",
911
914
  "moonshot-v1-32k-vision-preview.description": "نماذج Kimi للرؤية (بما في ذلك moonshot-v1-8k-vision-preview/moonshot-v1-32k-vision-preview/moonshot-v1-128k-vision-preview) قادرة على فهم محتوى الصور مثل النصوص، الألوان، وأشكال الكائنات.",
@@ -941,6 +944,68 @@
941
944
  "o4-mini-2025-04-16.description": "o4-mini هو نموذج تفكير من OpenAI بمدخلات نصية وصورية ومخرجات نصية، مناسب للمهام المعقدة التي تتطلب معرفة واسعة، مع نافذة سياق بحجم 200K.",
942
945
  "o4-mini-deep-research.description": "o4-mini-deep-research هو نموذج بحث عميق أسرع وأكثر توفيرًا للمهام البحثية متعددة الخطوات المعقدة. يمكنه البحث في الويب والوصول إلى بياناتك عبر موصلات MCP.",
943
946
  "o4-mini.description": "o4-mini هو أحدث نموذج صغير من سلسلة o، مُحسّن للتفكير السريع والفعال مع كفاءة عالية في مهام البرمجة والرؤية.",
947
+ "open-codestral-mamba.description": "Codestral Mamba هو نموذج لغة من نوع Mamba 2 يركز على توليد الشيفرات، ويدعم مهام البرمجة المتقدمة والتفكير المنطقي.",
948
+ "open-mistral-7b.description": "Mistral 7B هو نموذج صغير الحجم عالي الأداء، قوي في المعالجة الدُفعية والمهام البسيطة مثل التصنيف وتوليد النصوص، مع قدرات منطقية قوية.",
949
+ "open-mistral-nemo.description": "Mistral Nemo هو نموذج بحجم 12B تم تطويره بالتعاون مع Nvidia، ويقدم أداءً قويًا في التفكير والبرمجة مع سهولة في التكامل.",
950
+ "open-mixtral-8x22b.description": "Mixtral 8x22B هو نموذج MoE أكبر للمهام المعقدة، يوفر قدرات منطقية قوية وإنتاجية أعلى.",
951
+ "open-mixtral-8x7b.description": "Mixtral 8x7B هو نموذج MoE متفرق يعزز سرعة الاستدلال، مناسب للمهام متعددة اللغات وتوليد الشيفرات.",
952
+ "openai/gpt-3.5-turbo-instruct.description": "قدرات مشابهة لنماذج GPT-3، متوافقة مع نقاط نهاية الإكمال القديمة بدلاً من الدردشة.",
953
+ "openai/gpt-3.5-turbo.description": "أقوى وأوفر نماذج GPT-3.5 من OpenAI، محسّن للدردشة مع أداء قوي في الإكمالات التقليدية.",
954
+ "openai/gpt-4-turbo.description": "gpt-4-turbo من OpenAI يتمتع بمعرفة عامة واسعة وخبرة تخصصية، يتبع تعليمات اللغة الطبيعية المعقدة ويحل المشكلات الصعبة بدقة. تاريخ التحديث المعرفي: أبريل 2023، مع نافذة سياق 128K.",
955
+ "openai/gpt-4.1-mini.description": "GPT-4.1 Mini يقدم زمن استجابة أقل وقيمة أفضل للمهام متوسطة السياق.",
956
+ "openai/gpt-4.1-nano.description": "GPT-4.1 Nano هو خيار منخفض التكلفة وزمن استجابة منخفض للمحادثات القصيرة المتكررة أو التصنيف.",
957
+ "openai/gpt-4.1.description": "سلسلة GPT-4.1 توفر نوافذ سياق أكبر وقدرات هندسية ومنطقية أقوى.",
958
+ "openai/gpt-4o-mini.description": "GPT-4o-mini هو إصدار صغير وسريع من GPT-4o للاستخدام متعدد الوسائط بزمن استجابة منخفض.",
959
+ "openai/gpt-4o.description": "عائلة GPT-4o هي نموذج Omni من OpenAI يدعم إدخال نصوص وصور وإخراج نصي.",
960
+ "openai/gpt-5-chat.description": "GPT-5 Chat هو إصدار من GPT-5 محسّن للمحادثات بزمن استجابة أقل لتفاعل أفضل.",
961
+ "openai/gpt-5-codex.description": "GPT-5-Codex هو إصدار من GPT-5 محسّن أكثر للبرمجة وتدفقات العمل البرمجية واسعة النطاق.",
962
+ "openai/gpt-5-mini.description": "GPT-5 Mini هو إصدار أصغر من GPT-5 للسيناريوهات منخفضة التكلفة وزمن الاستجابة.",
963
+ "openai/gpt-5-nano.description": "GPT-5 Nano هو الإصدار فائق الصغر للسيناريوهات ذات القيود الصارمة على التكلفة وزمن الاستجابة.",
964
+ "openai/gpt-5-pro.description": "GPT-5 Pro هو النموذج الرائد من OpenAI، يوفر قدرات منطقية قوية وتوليد شيفرات وميزات على مستوى المؤسسات، مع توجيه ذكي أثناء وقت التنفيذ وسياسات أمان أكثر صرامة.",
965
+ "openai/gpt-5.1-chat.description": "GPT-5.1 Chat هو العضو الخفيف في عائلة GPT-5.1، محسّن للمحادثات بزمن استجابة منخفض مع الحفاظ على قدرات منطقية قوية وتنفيذ التعليمات.",
966
+ "openai/gpt-5.1-codex-mini.description": "GPT-5.1-Codex-Mini هو إصدار أصغر وأسرع من GPT-5.1-Codex، مثالي للبرمجة في سيناريوهات حساسة للتكلفة وزمن الاستجابة.",
967
+ "openai/gpt-5.1-codex.description": "GPT-5.1-Codex هو إصدار من GPT-5.1 محسّن لهندسة البرمجيات وتدفقات العمل البرمجية، مناسب لإعادة هيكلة واسعة، وتصحيح الأخطاء المعقدة، ومهام البرمجة الذاتية الطويلة.",
968
+ "openai/gpt-5.1.description": "GPT-5.1 هو النموذج الرائد الأحدث في سلسلة GPT-5، مع تحسينات كبيرة في التفكير العام، اتباع التعليمات، وطبيعية المحادثة، مناسب لمجموعة واسعة من المهام.",
969
+ "openai/gpt-5.description": "GPT-5 هو نموذج عالي الأداء من OpenAI لمجموعة واسعة من المهام الإنتاجية والبحثية.",
970
+ "openai/gpt-oss-120b.description": "نموذج لغة كبير عام القدرات يتمتع بتفكير قوي وقابل للتحكم.",
971
+ "openai/gpt-oss-20b.description": "نموذج لغة صغير الحجم بوزن مفتوح، محسّن لزمن استجابة منخفض وبيئات محدودة الموارد، بما في ذلك النشر المحلي وعلى الأطراف.",
972
+ "openai/o1-mini.description": "o1-mini هو نموذج تفكير سريع وفعال من حيث التكلفة مصمم للبرمجة والرياضيات والعلوم. يدعم سياق 128K وتاريخ معرفة حتى أكتوبر 2023.",
973
+ "openai/o1-preview.description": "o1 هو نموذج التفكير الجديد من OpenAI للمهام المعقدة التي تتطلب معرفة واسعة. يدعم سياق 128K وتاريخ معرفة حتى أكتوبر 2023.",
974
+ "openai/o1.description": "OpenAI o1 هو نموذج تفكير رائد مصمم لحل المشكلات المعقدة التي تتطلب تفكيرًا عميقًا، ويقدم تفكيرًا قويًا ودقة أعلى في المهام متعددة الخطوات.",
975
+ "openai/o3-mini-high.description": "o3-mini (تفكير عالي) يقدم ذكاءً أعلى بنفس تكلفة وزمن استجابة o1-mini.",
976
+ "openai/o3-mini.description": "o3-mini هو أحدث نموذج تفكير صغير من OpenAI، يقدم ذكاءً أعلى بنفس تكلفة وزمن استجابة o1-mini.",
977
+ "openai/o3.description": "OpenAI o3 هو أقوى نموذج تفكير، يحقق أداءً رائدًا في البرمجة والرياضيات والعلوم والإدراك البصري. يتفوق في الاستفسارات المعقدة متعددة الأبعاد، ويتميز بتحليل الصور والمخططات والرسوم البيانية.",
978
+ "openai/o4-mini-high.description": "o4-mini فئة التفكير العالي، محسّن للتفكير السريع والفعال مع أداء قوي في البرمجة والرؤية.",
979
+ "openai/o4-mini.description": "OpenAI o4-mini هو نموذج تفكير صغير وفعال للسيناريوهات ذات زمن الاستجابة المنخفض.",
980
+ "openai/text-embedding-3-large.description": "أقوى نموذج تضمين من OpenAI للمهام باللغة الإنجليزية وغير الإنجليزية.",
981
+ "openai/text-embedding-3-small.description": "إصدار محسّن عالي الأداء من نموذج تضمين ada.",
982
+ "openai/text-embedding-ada-002.description": "نموذج تضمين النصوص القديم من OpenAI.",
983
+ "openrouter/auto.description": "استنادًا إلى طول السياق والموضوع والتعقيد، يتم توجيه طلبك إلى Llama 3 70B Instruct أو Claude 3.5 Sonnet (بمراقبة ذاتية) أو GPT-4o.",
984
+ "perplexity/sonar-pro.description": "المنتج الرائد من Perplexity مع دعم البحث، يدعم الاستفسارات المتقدمة والمتابعة.",
985
+ "perplexity/sonar-reasoning-pro.description": "نموذج متقدم يركز على التفكير، ينتج سلسلة تفكير (CoT) مع بحث محسّن، بما في ذلك استعلامات بحث متعددة لكل طلب.",
986
+ "perplexity/sonar-reasoning.description": "نموذج يركز على التفكير، ينتج سلسلة تفكير (CoT) مع شروحات مفصلة مدعومة بالبحث.",
987
+ "perplexity/sonar.description": "منتج خفيف من Perplexity مع دعم البحث، أسرع وأرخص من Sonar Pro.",
988
+ "phi3.description": "Phi-3 هو نموذج مفتوح وخفيف من Microsoft للتكامل الفعال والتفكير واسع النطاق.",
989
+ "phi3:14b.description": "Phi-3 هو نموذج مفتوح وخفيف من Microsoft للتكامل الفعال والتفكير واسع النطاق.",
990
+ "pixtral-12b-2409.description": "Pixtral يتميز بفهم الرسوم البيانية/الصور، والإجابة على الأسئلة من المستندات، والتفكير متعدد الوسائط، واتباع التعليمات. يستوعب الصور بدقة ونسبة أبعاد أصلية ويدعم أي عدد من الصور ضمن نافذة سياق 128K.",
991
+ "pixtral-large-latest.description": "Pixtral Large هو نموذج متعدد الوسائط مفتوح يحتوي على 124 مليار معامل، مبني على Mistral Large 2، الثاني في عائلتنا متعددة الوسائط مع فهم متقدم للصور.",
992
+ "pro-128k.description": "Spark Pro 128K يوفر سعة سياق كبيرة جدًا تصل إلى 128K، مثالي للمستندات الطويلة التي تتطلب تحليل نص كامل وتماسك بعيد المدى، مع منطق سلس ودعم استشهاد متنوع في المناقشات المعقدة.",
993
+ "pro-deepseek-r1.description": "نموذج خدمة مخصص للمؤسسات مع تزامن مدمج.",
994
+ "pro-deepseek-v3.description": "نموذج خدمة مخصص للمؤسسات مع تزامن مدمج.",
995
+ "qianfan-70b.description": "Qianfan 70B هو نموذج صيني كبير لتوليد عالي الجودة وتفكير معقد.",
996
+ "qianfan-8b.description": "Qianfan 8B هو نموذج عام متوسط الحجم يوازن بين التكلفة والجودة لتوليد النصوص والإجابة على الأسئلة.",
997
+ "qianfan-agent-intent-32k.description": "Qianfan Agent Intent 32K يستهدف التعرف على النوايا وتنظيم الوكلاء مع دعم سياق طويل.",
998
+ "qianfan-agent-lite-8k.description": "Qianfan Agent Lite 8K هو نموذج وكيل خفيف للحوار متعدد الأدوار منخفض التكلفة وتدفقات العمل.",
999
+ "qianfan-agent-speed-32k.description": "Qianfan Agent Speed 32K هو نموذج وكيل عالي الإنتاجية لتطبيقات الوكلاء متعددة المهام واسعة النطاق.",
1000
+ "qianfan-agent-speed-8k.description": "Qianfan Agent Speed 8K هو نموذج وكيل عالي التزامن للمحادثات القصيرة إلى المتوسطة والاستجابة السريعة.",
1001
+ "qianfan-check-vl.description": "Qianfan Check VL هو نموذج مراجعة محتوى متعدد الوسائط لمهام التوافق والتعرف على الصور والنصوص.",
1002
+ "qianfan-composition.description": "Qianfan Composition هو نموذج إنشاء متعدد الوسائط لفهم وتوليد الصور والنصوص المختلطة.",
1003
+ "qianfan-engcard-vl.description": "Qianfan EngCard VL هو نموذج تعرف متعدد الوسائط يركز على السيناريوهات الإنجليزية.",
1004
+ "qianfan-lightning-128b-a19b.description": "Qianfan Lightning 128B A19B هو نموذج صيني عام عالي الأداء للأسئلة المعقدة والتفكير واسع النطاق.",
1005
+ "qianfan-llama-vl-8b.description": "Qianfan Llama VL 8B هو نموذج متعدد الوسائط مبني على Llama لفهم عام للصور والنصوص.",
1006
+ "qianfan-multipicocr.description": "Qianfan MultiPicOCR هو نموذج OCR متعدد الصور لاكتشاف النصوص والتعرف عليها عبر الصور.",
1007
+ "qianfan-qi-vl.description": "Qianfan QI VL هو نموذج سؤال وجواب متعدد الوسائط للاسترجاع الدقيق والإجابة في سيناريوهات الصور والنصوص المعقدة.",
1008
+ "qianfan-singlepicocr.description": "Qianfan SinglePicOCR هو نموذج OCR لصورة واحدة بدقة عالية في التعرف على الأحرف.",
944
1009
  "qianfan-vl-70b.description": "Qianfan VL 70B هو نموذج لغة بصري كبير لفهم معقد للنصوص والصور.",
945
1010
  "qianfan-vl-8b.description": "Qianfan VL 8B هو نموذج لغة بصري خفيف الوزن مخصص للإجابة اليومية على الأسئلة وتحليل الصور والنصوص.",
946
1011
  "qvq-72b-preview.description": "QVQ-72B-Preview هو نموذج بحث تجريبي من Qwen يركز على تحسين الاستدلال البصري.",
@@ -338,6 +338,9 @@
338
338
  "task.activity.toolCalling": "Извикване на {{toolName}}...",
339
339
  "task.activity.toolResult": "Получен резултат от {{toolName}}",
340
340
  "task.batchTasks": "{{count}} групови подзадачи",
341
+ "task.groupTasks": "{{count}} паралелни задачи",
342
+ "task.groupTasksTitle": "{{agents}} и {{count}} задачи на агенти",
343
+ "task.groupTasksTitleSimple": "{{agents}} {{count}} задачи",
341
344
  "task.instruction": "Инструкция за задача",
342
345
  "task.intermediateSteps": "{{count}} междинни стъпки",
343
346
  "task.metrics.duration": "(отне {{duration}})",
@@ -345,6 +348,7 @@
345
348
  "task.metrics.toolCallsShort": "използвания на инструменти",
346
349
  "task.status.cancelled": "Задачата е отменена",
347
350
  "task.status.failed": "Задачата е неуспешна",
351
+ "task.status.fetchingDetails": "Извличане на подробности...",
348
352
  "task.status.initializing": "Инициализиране на задачата...",
349
353
  "task.subtask": "Подзадача",
350
354
  "thread.divider": "Подтема",
@@ -724,6 +724,16 @@
724
724
  "imagen-4.0-ultra-generate-001.description": "Ultra версията от четвъртото поколение модели Imagen за преобразуване от текст към изображение.",
725
725
  "imagen-4.0-ultra-generate-preview-06-06.description": "Ultra вариант от четвъртото поколение модели Imagen за преобразуване от текст към изображение.",
726
726
  "inception/mercury-coder-small.description": "Mercury Coder Small е идеален за генериране на код, отстраняване на грешки и рефакториране с минимално закъснение.",
727
+ "inclusionAI/Ling-flash-2.0.description": "Ling-flash-2.0 е третият модел от архитектурата Ling 2.0, разработен от екипа Bailing на Ant Group. Това е MoE модел със 100 милиарда общи параметри, от които само 6.1 милиарда са активни на токен (4.8 милиарда без вграждане). Въпреки леката си конфигурация, той съперничи или надминава плътни модели с 40 милиарда параметри и дори по-големи MoE модели в множество бенчмаркове, като постига висока ефективност чрез архитектура и стратегия на обучение.",
728
+ "inclusionAI/Ling-mini-2.0.description": "Ling-mini-2.0 е малък, високоефективен MoE LLM с 16 милиарда общи параметри и само 1.4 милиарда активни на токен (789 милиона без вграждане), осигуряващ изключително бързо генериране. Благодарение на ефективния MoE дизайн и голям обем висококачествени обучителни данни, той постига водеща производителност, сравнима с плътни модели под 10 милиарда и по-големи MoE модели.",
729
+ "inclusionAI/Ring-flash-2.0.description": "Ring-flash-2.0 е високоефективен мислещ модел, оптимизиран от базовия Ling-flash-2.0. Използва MoE архитектура със 100 милиарда общи параметри и само 6.1 милиарда активни при всяка инференция. Алгоритъмът icepop стабилизира обучението с подсилване (RL) за MoE модели, позволявайки допълнителни подобрения в сложното разсъждение. Постига значителни пробиви в трудни бенчмаркове (математически състезания, генериране на код, логическо мислене), надминавайки водещи плътни модели под 40 милиарда и съперничейки на по-големи отворени и затворени MoE модели за разсъждение. Също така се представя добре в творческо писане, а ефективната му архитектура осигурява бърза инференция с по-ниски разходи за внедряване при висока едновременност.",
730
+ "inclusionai/ling-1t.description": "Ling-1T е MoE модел на inclusionAI с 1 трилион параметри, оптимизиран за задачи с висока интензивност на разсъждение и работа с голям контекст.",
731
+ "inclusionai/ling-flash-2.0.description": "Ling-flash-2.0 е MoE модел на inclusionAI, оптимизиран за ефективност и производителност при разсъждение, подходящ за средни до големи задачи.",
732
+ "inclusionai/ling-mini-2.0.description": "Ling-mini-2.0 е лек MoE модел на inclusionAI, който значително намалява разходите, като същевременно запазва способността за разсъждение.",
733
+ "inclusionai/ming-flash-omini-preview.description": "Ming-flash-omni Preview е мултимодален модел на inclusionAI, поддържащ вход от реч, изображение и видео, с подобрено визуализиране на изображения и разпознаване на реч.",
734
+ "inclusionai/ring-1t.description": "Ring-1T е MoE модел на inclusionAI с трилион параметри, предназначен за мащабни задачи по разсъждение и научни изследвания.",
735
+ "inclusionai/ring-flash-2.0.description": "Ring-flash-2.0 е вариант на модела Ring от inclusionAI за сценарии с висока пропускателна способност, с акцент върху скоростта и ефективността на разходите.",
736
+ "inclusionai/ring-mini-2.0.description": "Ring-mini-2.0 е лек MoE модел на inclusionAI с висока пропускателна способност, създаден за едновременна работа.",
727
737
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 е отворен LLM, предназначен за разработчици, изследователи и предприятия, създаден да им помага да изграждат, експериментират и отговорно мащабират идеи за генеративен ИИ. Като част от основата за глобални иновации в общността, той е подходящ за среди с ограничени изчислителни ресурси, крайни устройства и по-бързо обучение.",
728
738
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Силен визуален анализ на изображения с висока резолюция, подходящ за приложения за визуално разбиране.",
729
739
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Разширен визуален анализ за приложения с агенти за визуално разбиране.",
@@ -338,6 +338,9 @@
338
338
  "task.activity.toolCalling": "{{toolName}} wird aufgerufen...",
339
339
  "task.activity.toolResult": "{{toolName}}-Ergebnis empfangen",
340
340
  "task.batchTasks": "{{count}} Teilaufgaben",
341
+ "task.groupTasks": "{{count}} parallele Aufgaben",
342
+ "task.groupTasksTitle": "{{agents}} und {{count}} Aufgaben von Agenten",
343
+ "task.groupTasksTitleSimple": "{{agents}} {{count}} Aufgaben",
341
344
  "task.instruction": "Aufgabenanweisung",
342
345
  "task.intermediateSteps": "{{count}} Zwischenschritte",
343
346
  "task.metrics.duration": "(dauerte {{duration}})",
@@ -345,6 +348,7 @@
345
348
  "task.metrics.toolCallsShort": "Tool-Nutzungen",
346
349
  "task.status.cancelled": "Aufgabe abgebrochen",
347
350
  "task.status.failed": "Aufgabe fehlgeschlagen",
351
+ "task.status.fetchingDetails": "Details werden abgerufen...",
348
352
  "task.status.initializing": "Aufgabe wird initialisiert...",
349
353
  "task.subtask": "Teilaufgabe",
350
354
  "thread.divider": "Unterthema",
@@ -1118,6 +1118,46 @@
1118
1118
  "qwen3-vl-flash.description": "Qwen3 VL Flash: leichtgewichtige, hochschnelle Denkversion für latenzempfindliche oder hochvolumige Anfragen.",
1119
1119
  "qwen3-vl-plus.description": "Qwen VL ist ein Textgenerierungsmodell mit Bildverständnis. Es kann OCR durchführen sowie zusammenfassen und schlussfolgern, z. B. Attribute aus Produktfotos extrahieren oder Probleme aus Bildern lösen.",
1120
1120
  "qwen3.description": "Qwen3 ist Alibabas nächste Generation eines großen Sprachmodells mit starker Leistung in vielfältigen Anwendungsfällen.",
1121
+ "qwq-32b-preview.description": "QwQ ist ein experimentelles Forschungsmodell von Qwen mit Fokus auf verbesserte Schlussfolgerungen.",
1122
+ "qwq-32b.description": "QwQ ist ein Schlussfolgerungsmodell aus der Qwen-Familie. Im Vergleich zu standardmäßig instruktionstunierten Modellen bietet es überlegene Denk- und Schlussfolgerungsfähigkeiten, die die Leistung bei nachgelagerten Aufgaben deutlich steigern – insbesondere bei komplexen Problemen. QwQ-32B ist ein mittelgroßes Modell, das mit führenden Schlussfolgerungsmodellen wie DeepSeek-R1 und o1-mini konkurriert.",
1123
+ "qwq-plus.description": "Das auf Qwen2.5 trainierte QwQ-Schlussfolgerungsmodell nutzt Reinforcement Learning (RL), um die Denkfähigkeiten erheblich zu verbessern. Zentrale Kennzahlen in Mathematik/Code (AIME 24/25, LiveCodeBench) sowie in allgemeinen Benchmarks (IFEval, LiveBench) erreichen das Niveau von DeepSeek-R1.",
1124
+ "qwq.description": "QwQ ist ein Schlussfolgerungsmodell aus der Qwen-Familie. Im Vergleich zu standardmäßig instruktionstunierten Modellen bietet es überlegene Denk- und Schlussfolgerungsfähigkeiten, die die Leistung bei nachgelagerten Aufgaben deutlich verbessern – insbesondere bei schwierigen Problemen. QwQ-32B ist ein mittelgroßes Modell, das mit führenden Schlussfolgerungsmodellen wie DeepSeek-R1 und o1-mini mithalten kann.",
1125
+ "qwq_32b.description": "Mittelgroßes Schlussfolgerungsmodell aus der Qwen-Familie. Im Vergleich zu standardmäßig instruktionstunierten Modellen steigern QwQs Denk- und Schlussfolgerungsfähigkeiten die Leistung bei nachgelagerten Aufgaben deutlich – insbesondere bei schwierigen Problemen.",
1126
+ "r1-1776.description": "R1-1776 ist eine nachtrainierte Variante von DeepSeek R1, die darauf ausgelegt ist, unzensierte, objektive und faktenbasierte Informationen bereitzustellen.",
1127
+ "solar-mini-ja.description": "Solar Mini (Ja) erweitert Solar Mini mit einem Fokus auf Japanisch und behält dabei eine effiziente und starke Leistung in Englisch und Koreanisch bei.",
1128
+ "solar-mini.description": "Solar Mini ist ein kompaktes LLM, das GPT-3.5 übertrifft. Es bietet starke mehrsprachige Fähigkeiten in Englisch und Koreanisch und ist eine effiziente Lösung mit kleinem Ressourcenbedarf.",
1129
+ "solar-pro.description": "Solar Pro ist ein hochintelligentes LLM von Upstage, das auf Befolgen von Anweisungen auf einer einzelnen GPU ausgelegt ist und IFEval-Werte über 80 erreicht. Derzeit wird Englisch unterstützt; die vollständige Veröffentlichung mit erweitertem Sprachsupport und längeren Kontexten war für November 2024 geplant.",
1130
+ "sonar-deep-research.description": "Deep Research führt umfassende Expertenrecherchen durch und bereitet diese in zugänglichen, umsetzbaren Berichten auf.",
1131
+ "sonar-pro.description": "Ein fortschrittliches Suchprodukt mit fundierter Suche für komplexe Anfragen und Folgefragen.",
1132
+ "sonar-reasoning-pro.description": "Ein fortschrittliches Suchprodukt mit fundierter Suche für komplexe Anfragen und Folgefragen.",
1133
+ "sonar-reasoning.description": "Ein fortschrittliches Suchprodukt mit fundierter Suche für komplexe Anfragen und Folgefragen.",
1134
+ "sonar.description": "Ein leichtgewichtiges, suchbasiertes Produkt – schneller und kostengünstiger als Sonar Pro.",
1135
+ "spark-x.description": "X1.5-Updates: (1) Einführung eines dynamischen Denkmodus, gesteuert über das Feld `thinking`; (2) größere Kontextlänge mit 64K Eingabe und 64K Ausgabe; (3) Unterstützung für FunctionCall.",
1136
+ "stable-diffusion-3-medium.description": "Das neueste Text-zu-Bild-Modell von Stability AI. Diese Version verbessert die Bildqualität, das Textverständnis und die Stilvielfalt erheblich, interpretiert komplexe Spracheingaben präziser und erzeugt genauere, vielfältigere Bilder.",
1137
+ "stable-diffusion-3.5-large-turbo.description": "stable-diffusion-3.5-large-turbo nutzt Adversarial Diffusion Distillation (ADD) auf stable-diffusion-3.5-large für höhere Geschwindigkeit.",
1138
+ "stable-diffusion-3.5-large.description": "stable-diffusion-3.5-large ist ein MMDiT Text-zu-Bild-Modell mit 800 Millionen Parametern, das hervorragende Qualität und präzise Prompt-Umsetzung bietet. Es unterstützt 1-Megapixel-Bilder und läuft effizient auf Consumer-Hardware.",
1139
+ "stable-diffusion-v1.5.description": "stable-diffusion-v1.5 basiert auf dem v1.2-Checkpoint und wurde 595.000 Schritte lang auf „laion-aesthetics v2 5+“ bei 512x512 Auflösung feinjustiert. Die Textkonditionierung wurde um 10 % reduziert, um das classifier-free guidance sampling zu verbessern.",
1140
+ "stable-diffusion-xl-base-1.0.description": "Ein Open-Source-Text-zu-Bild-Modell von Stability AI mit branchenführender kreativer Bildgenerierung. Es versteht Anweisungen sehr gut und unterstützt umgekehrte Prompt-Definitionen für präzise Generierung.",
1141
+ "stable-diffusion-xl.description": "stable-diffusion-xl bringt große Verbesserungen gegenüber v1.5 und erreicht Ergebnisse auf dem Niveau der besten offenen Text-zu-Bild-Modelle. Zu den Verbesserungen gehören ein dreimal größerer UNet-Backbone, ein Verfeinerungsmodul für bessere Bildqualität und effizientere Trainingstechniken.",
1142
+ "step-1-128k.description": "Ausgewogenes Verhältnis von Leistung und Kosten für allgemeine Anwendungsfälle.",
1143
+ "step-1-256k.description": "Verarbeitung extralanger Kontexte – ideal für die Analyse langer Dokumente.",
1144
+ "step-1-32k.description": "Unterstützt mittellange Konversationen für vielfältige Szenarien.",
1145
+ "step-1-8k.description": "Kleines Modell für einfache Aufgaben mit geringem Ressourcenbedarf.",
1146
+ "step-1-flash.description": "Hochgeschwindigkeitsmodell für Echtzeit-Chats geeignet.",
1147
+ "step-1.5v-mini.description": "Starke Fähigkeiten im Videoverständnis.",
1148
+ "step-1o-turbo-vision.description": "Starkes Bildverständnis, übertrifft 1o in Mathematik und Programmierung. Kleiner als 1o mit schnellerer Ausgabe.",
1149
+ "step-1o-vision-32k.description": "Starkes Bildverständnis mit besserer visueller Leistung als die Step-1V-Serie.",
1150
+ "step-1v-32k.description": "Unterstützt visuelle Eingaben für reichhaltige multimodale Interaktionen.",
1151
+ "step-1v-8k.description": "Kleines Vision-Modell für grundlegende Bild-und-Text-Aufgaben.",
1152
+ "step-1x-edit.description": "Dieses Modell konzentriert sich auf die Bildbearbeitung – es verändert und verbessert Bilder basierend auf benutzerdefinierten Bildern und Texten. Es unterstützt mehrere Eingabeformate, darunter Textbeschreibungen und Beispielbilder, und erzeugt Bearbeitungen, die der Benutzerabsicht entsprechen.",
1153
+ "step-1x-medium.description": "Dieses Modell bietet starke Bildgenerierung auf Basis von Texteingaben. Mit nativer Unterstützung für Chinesisch versteht es chinesische Beschreibungen besser, erfasst deren Bedeutung und wandelt sie in visuelle Merkmale für eine präzisere Generierung um. Es erzeugt hochauflösende, qualitativ hochwertige Bilder und unterstützt einen gewissen Grad an Stilübertragung.",
1154
+ "step-2-16k-exp.description": "Experimentelle Step-2-Version mit den neuesten Funktionen und laufenden Updates. Nicht für den Produktionseinsatz empfohlen.",
1155
+ "step-2-16k.description": "Unterstützt Interaktionen mit großem Kontext für komplexe Dialoge.",
1156
+ "step-2-mini.description": "Basierend auf der nächsten Generation der internen MFA-Attention-Architektur liefert es Ergebnisse auf Step-1-Niveau bei deutlich geringeren Kosten, höherem Durchsatz und geringerer Latenz. Bewältigt allgemeine Aufgaben mit starker Programmierleistung.",
1157
+ "step-2x-large.description": "Ein neues StepFun-Bildmodell der nächsten Generation mit Fokus auf Bildgenerierung. Es erzeugt hochwertige Bilder aus Texteingaben mit realistischeren Texturen und besserer Darstellung chinesischer/englischer Texte.",
1158
+ "step-3.description": "Dieses Modell verfügt über starke visuelle Wahrnehmung und komplexe Schlussfolgerungsfähigkeiten. Es verarbeitet domänenübergreifendes Wissen, analysiert Mathematik und visuelle Inhalte gemeinsam und bewältigt eine Vielzahl alltäglicher visueller Analyseaufgaben.",
1159
+ "step-r1-v-mini.description": "Ein Schlussfolgerungsmodell mit starkem Bildverständnis, das Bilder und Texte verarbeiten und anschließend durch tiefes Denken Text generieren kann. Es glänzt im visuellen Denken und liefert Spitzenleistungen in Mathematik, Programmierung und Textverständnis – mit einem Kontextfenster von 100K.",
1160
+ "stepfun-ai/step3.description": "Step3 ist ein hochmodernes multimodales Schlussfolgerungsmodell von StepFun, basierend auf einer MoE-Architektur mit insgesamt 321B und 38B aktiven Parametern. Sein End-to-End-Design minimiert die Dekodierungskosten und liefert erstklassige Vision-Language-Schlussfolgerungen. Dank MFA- und AFD-Design bleibt es sowohl auf High-End- als auch auf Low-End-Beschleunigern effizient. Das Pretraining umfasst über 20T Text-Tokens und 4T Bild-Text-Tokens in vielen Sprachen. Es erreicht führende Leistungen bei offenen Modellen in Mathematik, Code und multimodalen Benchmarks.",
1121
1161
  "taichu_llm.description": "Trainiert mit umfangreichen hochwertigen Daten, mit verbesserter Textverständnis, Inhaltserstellung und dialogbasierter Fragebeantwortung.",
1122
1162
  "taichu_o1.description": "taichu_o1 ist ein Next-Gen-Reasoning-Modell, das multimodale Interaktion und Reinforcement Learning nutzt, um menschenähnliches Denken in Ketten zu ermöglichen. Es unterstützt komplexe Entscheidungssimulationen, legt Denkpfade offen und liefert hochpräzise Ergebnisse – ideal für strategische Analysen und tiefgehendes Denken.",
1123
1163
  "taichu_vl.description": "Kombiniert Bildverständnis, Wissensübertragung und logische Zuordnung – herausragend bei Bild-Text-Fragen.",
@@ -1182,6 +1222,7 @@
1182
1222
  "z-ai/glm-4.5-air.description": "GLM 4.5 Air ist eine leichtgewichtige Variante von GLM 4.5 für kostensensitive Szenarien bei gleichzeitig starker Reasoning-Leistung.",
1183
1223
  "z-ai/glm-4.5.description": "GLM 4.5 ist Z.AIs Flaggschiffmodell mit hybridem Reasoning, optimiert für Engineering- und Langkontextaufgaben.",
1184
1224
  "z-ai/glm-4.6.description": "GLM 4.6 ist Z.AIs Flaggschiffmodell mit erweitertem Kontextumfang und Codierungsfähigkeiten.",
1225
+ "z-ai/glm-4.7.description": "GLM-4.7 ist das neueste Flaggschiffmodell von Zhipu mit verbesserten allgemeinen Fähigkeiten, natürlicheren und einfacheren Antworten sowie einem immersiveren Schreiberlebnis.",
1185
1226
  "zai-glm-4.6.description": "Leistungsstark bei Codierungs- und Reasoning-Aufgaben, unterstützt Streaming und Toolaufrufe – ideal für agentenbasiertes Codieren und komplexes Denken.",
1186
1227
  "zai-org/GLM-4.5-Air.description": "GLM-4.5-Air ist ein Basismodell für Agentenanwendungen mit Mixture-of-Experts-Architektur. Es ist optimiert für Toolnutzung, Web-Browsing, Softwareentwicklung und Frontend-Codierung und integriert sich mit Code-Agenten wie Claude Code und Roo Code. Es nutzt hybrides Reasoning für komplexe und alltägliche Szenarien.",
1187
1228
  "zai-org/GLM-4.5.description": "GLM-4.5 ist ein Basismodell für Agentenanwendungen mit Mixture-of-Experts-Architektur. Es ist tiefgreifend optimiert für Toolnutzung, Web-Browsing, Softwareentwicklung und Frontend-Codierung und integriert sich mit Code-Agenten wie Claude Code und Roo Code. Es nutzt hybrides Reasoning für komplexe und alltägliche Szenarien.",
@@ -338,6 +338,9 @@
338
338
  "task.activity.toolCalling": "Calling {{toolName}}...",
339
339
  "task.activity.toolResult": "{{toolName}} result received",
340
340
  "task.batchTasks": "{{count}} Batch Subtasks",
341
+ "task.groupTasks": "{{count}} Parallel Tasks",
342
+ "task.groupTasksTitle": "{{agents}} and {{count}} agents tasks",
343
+ "task.groupTasksTitleSimple": "{{agents}} {{count}} tasks",
341
344
  "task.instruction": "Task Instruction",
342
345
  "task.intermediateSteps": "{{count}} intermediate steps",
343
346
  "task.metrics.duration": "(took {{duration}})",
@@ -345,6 +348,7 @@
345
348
  "task.metrics.toolCallsShort": "skill uses",
346
349
  "task.status.cancelled": "Task Cancelled",
347
350
  "task.status.failed": "Task Failed",
351
+ "task.status.fetchingDetails": "Fetching details...",
348
352
  "task.status.initializing": "Initializing task...",
349
353
  "task.subtask": "Subtask",
350
354
  "thread.divider": "Subtopic",
@@ -338,6 +338,9 @@
338
338
  "task.activity.toolCalling": "Llamando a {{toolName}}...",
339
339
  "task.activity.toolResult": "Resultado de {{toolName}} recibido",
340
340
  "task.batchTasks": "{{count}} subtareas en lote",
341
+ "task.groupTasks": "{{count}} Tareas Paralelas",
342
+ "task.groupTasksTitle": "{{agents}} y {{count}} tareas de agentes",
343
+ "task.groupTasksTitleSimple": "{{agents}} {{count}} tareas",
341
344
  "task.instruction": "Instrucciones de la tarea",
342
345
  "task.intermediateSteps": "{{count}} pasos intermedios",
343
346
  "task.metrics.duration": "(duró {{duration}})",
@@ -345,6 +348,7 @@
345
348
  "task.metrics.toolCallsShort": "usos de herramientas",
346
349
  "task.status.cancelled": "Tarea cancelada",
347
350
  "task.status.failed": "Tarea fallida",
351
+ "task.status.fetchingDetails": "Obteniendo detalles...",
348
352
  "task.status.initializing": "Inicializando tarea...",
349
353
  "task.subtask": "Subtarea",
350
354
  "thread.divider": "Subtema",
@@ -1034,6 +1034,18 @@
1034
1034
  "qwen-vl-plus-latest.description": "Modelo Qwen visión-lenguaje mejorado a gran escala con importantes mejoras en detalle y reconocimiento de texto, compatible con resoluciones superiores a un megapíxel y relaciones de aspecto arbitrarias.",
1035
1035
  "qwen-vl-plus.description": "Modelo Qwen visión-lenguaje mejorado a gran escala con importantes mejoras en detalle y reconocimiento de texto, compatible con resoluciones superiores a un megapíxel y relaciones de aspecto arbitrarias.",
1036
1036
  "qwen-vl-v1.description": "Modelo preentrenado inicializado desde Qwen-7B con un módulo de visión añadido y entrada de imagen de resolución 448.",
1037
+ "qwen/qwen-2-7b-instruct.description": "Qwen2 es la nueva serie de modelos LLM de Qwen. Qwen2 7B es un modelo basado en transformadores que destaca en comprensión del lenguaje, capacidad multilingüe, programación, matemáticas y razonamiento.",
1038
+ "qwen/qwen-2-7b-instruct:free.description": "Qwen2 es una nueva familia de modelos de lenguaje de gran tamaño con mayor capacidad de comprensión y generación.",
1039
+ "qwen/qwen-2-vl-72b-instruct.description": "Qwen2-VL es la última iteración de Qwen-VL, alcanzando un rendimiento de vanguardia en pruebas de visión como MathVista, DocVQA, RealWorldQA y MTVQA. Puede comprender más de 20 minutos de video para preguntas y respuestas de alta calidad, diálogos y creación de contenido. También maneja razonamiento complejo y toma de decisiones, integrándose con dispositivos móviles y robots para actuar según el contexto visual e instrucciones de texto. Además del inglés y chino, también lee texto en imágenes en muchos idiomas, incluidos la mayoría de los idiomas europeos, japonés, coreano, árabe y vietnamita.",
1040
+ "qwen/qwen-2.5-72b-instruct.description": "Qwen2.5-72B-Instruct es uno de los últimos lanzamientos de modelos LLM de Alibaba Cloud. El modelo de 72B ofrece mejoras notables en programación y matemáticas, admite más de 29 idiomas (incluidos chino e inglés) y mejora significativamente el seguimiento de instrucciones, la comprensión de datos estructurados y la generación de salidas estructuradas (especialmente JSON).",
1041
+ "qwen/qwen2.5-32b-instruct.description": "Qwen2.5-32B-Instruct es uno de los últimos lanzamientos de modelos LLM de Alibaba Cloud. El modelo de 32B ofrece mejoras notables en programación y matemáticas, admite más de 29 idiomas (incluidos chino e inglés) y mejora significativamente el seguimiento de instrucciones, la comprensión de datos estructurados y la generación de salidas estructuradas (especialmente JSON).",
1042
+ "qwen/qwen2.5-7b-instruct.description": "Un modelo LLM bilingüe para chino e inglés que abarca lenguaje, programación, matemáticas y razonamiento.",
1043
+ "qwen/qwen2.5-coder-32b-instruct.description": "Un modelo LLM avanzado para generación, razonamiento y corrección de código en lenguajes de programación principales.",
1044
+ "qwen/qwen2.5-coder-7b-instruct.description": "Un modelo de código de tamaño medio con contexto de 32K, excelente en programación multilingüe.",
1045
+ "qwen/qwen3-14b.description": "Qwen3-14B es la variante de 14B para razonamiento general y escenarios de conversación.",
1046
+ "qwen/qwen3-14b:free.description": "Qwen3-14B es un modelo LLM denso de 14.8B parámetros diseñado para razonamiento complejo y conversación eficiente. Alterna entre un modo de pensamiento para matemáticas, programación y lógica, y un modo sin pensamiento para conversación general. Ajustado para seguir instrucciones, uso de herramientas de agentes y escritura creativa en más de 100 idiomas y dialectos. Maneja nativamente contexto de 32K y escala hasta 131K con YaRN.",
1047
+ "qwen/qwen3-235b-a22b-2507.description": "Qwen3-235B-A22B-Instruct-2507 es la variante Instruct de la serie Qwen3, equilibrando el uso multilingüe de instrucciones con escenarios de contexto largo.",
1048
+ "qwen/qwen3-235b-a22b-thinking-2507.description": "Qwen3-235B-A22B-Thinking-2507 es la variante de pensamiento de Qwen3, reforzada para tareas complejas de matemáticas y razonamiento.",
1037
1049
  "qwen/qwen3-235b-a22b.description": "Qwen3-235B-A22B es un modelo MoE de 235 mil millones de parámetros de Qwen, con 22 mil millones activos por pasada. Alterna entre un modo de pensamiento para razonamiento complejo, matemáticas y programación, y un modo sin pensamiento para chats eficientes. Ofrece un razonamiento sólido, soporte multilingüe (más de 100 idiomas y dialectos), seguimiento avanzado de instrucciones y uso de herramientas de agentes. Maneja de forma nativa contextos de 32K y escala hasta 131K con YaRN.",
1038
1050
  "qwen/qwen3-235b-a22b:free.description": "Qwen3-235B-A22B es un modelo MoE de 235 mil millones de parámetros de Qwen, con 22 mil millones activos por pasada. Alterna entre un modo de pensamiento para razonamiento complejo, matemáticas y programación, y un modo sin pensamiento para chats eficientes. Ofrece un razonamiento sólido, soporte multilingüe (más de 100 idiomas y dialectos), seguimiento avanzado de instrucciones y uso de herramientas de agentes. Maneja de forma nativa contextos de 32K y escala hasta 131K con YaRN.",
1039
1051
  "qwen/qwen3-30b-a3b.description": "Qwen3 es la última generación de modelos LLM de Qwen con arquitecturas densas y MoE, destacando en razonamiento, soporte multilingüe y tareas avanzadas de agentes. Su capacidad única de alternar entre un modo de pensamiento para razonamiento complejo y un modo sin pensamiento para chats eficientes garantiza un rendimiento versátil y de alta calidad.\n\nQwen3 supera significativamente a modelos anteriores como QwQ y Qwen2.5, ofreciendo excelentes resultados en matemáticas, programación, razonamiento de sentido común, escritura creativa y chat interactivo. La variante Qwen3-30B-A3B tiene 30.5 mil millones de parámetros (3.3 mil millones activos), 48 capas, 128 expertos (8 activos por tarea) y admite contextos de hasta 131K con YaRN, estableciendo un nuevo estándar para modelos abiertos.",
@@ -1073,6 +1085,44 @@
1073
1085
  "qwen2:0.5b.description": "Qwen2 es el modelo de lenguaje de nueva generación de Alibaba con un rendimiento sólido en diversos casos de uso.",
1074
1086
  "qwen2:1.5b.description": "Qwen2 es el modelo de lenguaje de nueva generación de Alibaba con un rendimiento sólido en diversos casos de uso.",
1075
1087
  "qwen2:72b.description": "Qwen2 es el modelo de lenguaje de nueva generación de Alibaba con un rendimiento sólido en diversos casos de uso.",
1088
+ "qwen3-0.6b.description": "Qwen3 0.6B es un modelo de nivel inicial para razonamiento simple y entornos muy limitados.",
1089
+ "qwen3-1.7b.description": "Qwen3 1.7B es un modelo ultraligero para implementación en dispositivos y entornos periféricos.",
1090
+ "qwen3-14b.description": "Qwen3 14B es un modelo de tamaño medio para preguntas y respuestas multilingües y generación de texto.",
1091
+ "qwen3-235b-a22b-instruct-2507.description": "Qwen3 235B A22B Instruct 2507 es un modelo instructivo insignia para una amplia gama de tareas de generación y razonamiento.",
1092
+ "qwen3-235b-a22b-thinking-2507.description": "Qwen3 235B A22B Thinking 2507 es un modelo de pensamiento ultra grande para razonamiento complejo.",
1093
+ "qwen3-235b-a22b.description": "Qwen3 235B A22B es un modelo general de gran tamaño para tareas complejas.",
1094
+ "qwen3-30b-a3b-instruct-2507.description": "Qwen3 30B A3B Instruct 2507 es un modelo instructivo de tamaño medio-grande para generación de alta calidad y preguntas y respuestas.",
1095
+ "qwen3-30b-a3b-thinking-2507.description": "Qwen3 30B A3B Thinking 2507 es un modelo de pensamiento de tamaño medio-grande que equilibra precisión y coste.",
1096
+ "qwen3-30b-a3b.description": "Qwen3 30B A3B es un modelo general de tamaño medio-grande que equilibra coste y calidad.",
1097
+ "qwen3-32b.description": "Qwen3 32B es adecuado para tareas generales que requieren mayor comprensión.",
1098
+ "qwen3-4b.description": "Qwen3 4B es adecuado para aplicaciones pequeñas a medianas e inferencia local.",
1099
+ "qwen3-8b.description": "Qwen3 8B es un modelo ligero con implementación flexible para cargas de trabajo de alta concurrencia.",
1100
+ "qwen3-coder-30b-a3b-instruct.description": "Modelo de código Qwen de código abierto. El último qwen3-coder-30b-a3b-instruct se basa en Qwen3 y ofrece sólidas capacidades de agente de codificación, uso de herramientas e interacción con entornos para programación autónoma, con excelente rendimiento en código y capacidad general sólida.",
1101
+ "qwen3-coder-480b-a35b-instruct.description": "Qwen3 Coder 480B A35B Instruct es un modelo de código insignia para programación multilingüe y comprensión de código complejo.",
1102
+ "qwen3-coder-flash.description": "Modelo de código Qwen. La última serie Qwen3-Coder se basa en Qwen3 y ofrece sólidas capacidades de agente de codificación, uso de herramientas e interacción con entornos para programación autónoma, con excelente rendimiento en código y capacidad general sólida.",
1103
+ "qwen3-coder-plus.description": "Modelo de código Qwen. La última serie Qwen3-Coder se basa en Qwen3 y ofrece sólidas capacidades de agente de codificación, uso de herramientas e interacción con entornos para programación autónoma, con excelente rendimiento en código y capacidad general sólida.",
1104
+ "qwen3-coder:480b.description": "Modelo de alto rendimiento de Alibaba para tareas de agente y programación con contexto largo.",
1105
+ "qwen3-max-preview.description": "Modelo Qwen con mejor rendimiento para tareas complejas y de múltiples pasos. La vista previa admite razonamiento.",
1106
+ "qwen3-max.description": "Los modelos Qwen3 Max ofrecen grandes mejoras sobre la serie 2.5 en capacidad general, comprensión en chino/inglés, seguimiento de instrucciones complejas, tareas abiertas subjetivas, capacidad multilingüe y uso de herramientas, con menos alucinaciones. La última versión qwen3-max mejora la programación agente y el uso de herramientas respecto a qwen3-max-preview. Este lanzamiento alcanza el estado del arte en el campo y está dirigido a necesidades de agentes más complejas.",
1107
+ "qwen3-next-80b-a3b-instruct.description": "Modelo de próxima generación Qwen3 de código abierto sin razonamiento. En comparación con la versión anterior (Qwen3-235B-A22B-Instruct-2507), mejora la comprensión del chino, el razonamiento lógico y la generación de texto.",
1108
+ "qwen3-next-80b-a3b-thinking.description": "Qwen3 Next 80B A3B Thinking es una versión insignia de razonamiento para tareas complejas.",
1109
+ "qwen3-omni-flash.description": "Qwen-Omni acepta entradas combinadas de texto, imágenes, audio y video, y genera texto o voz. Ofrece múltiples estilos de voz natural, admite habla multilingüe y dialectal, y se adapta a casos como redacción, reconocimiento visual y asistentes de voz.",
1110
+ "qwen3-vl-235b-a22b-instruct.description": "Qwen3 VL 235B A22B Instruct es un modelo multimodal insignia para comprensión y creación exigentes.",
1111
+ "qwen3-vl-235b-a22b-thinking.description": "Qwen3 VL 235B A22B Thinking es la versión de razonamiento insignia para planificación y razonamiento multimodal complejo.",
1112
+ "qwen3-vl-30b-a3b-instruct.description": "Qwen3 VL 30B A3B Instruct es un modelo multimodal grande que equilibra precisión y rendimiento en razonamiento.",
1113
+ "qwen3-vl-30b-a3b-thinking.description": "Qwen3 VL 30B A3B Thinking es una versión de pensamiento profundo para tareas multimodales complejas.",
1114
+ "qwen3-vl-32b-instruct.description": "Qwen3 VL 32B Instruct es un modelo multimodal ajustado para instrucciones, ideal para preguntas y respuestas imagen-texto de alta calidad y creación.",
1115
+ "qwen3-vl-32b-thinking.description": "Qwen3 VL 32B Thinking es una versión multimodal de pensamiento profundo para razonamiento complejo y análisis de cadenas largas.",
1116
+ "qwen3-vl-8b-instruct.description": "Qwen3 VL 8B Instruct es un modelo multimodal ligero para preguntas visuales diarias e integración en aplicaciones.",
1117
+ "qwen3-vl-8b-thinking.description": "Qwen3 VL 8B Thinking es un modelo multimodal de cadena de pensamiento para razonamiento visual detallado.",
1118
+ "qwen3-vl-flash.description": "Qwen3 VL Flash: versión ligera y de razonamiento rápido para solicitudes sensibles a la latencia o de alto volumen.",
1119
+ "qwen3-vl-plus.description": "Qwen VL es un modelo de generación de texto con comprensión visual. Puede realizar OCR, resumir y razonar, como extraer atributos de fotos de productos o resolver problemas a partir de imágenes.",
1120
+ "qwen3.description": "Qwen3 es el modelo de lenguaje de próxima generación de Alibaba con alto rendimiento en diversos casos de uso.",
1121
+ "qwq-32b-preview.description": "QwQ es un modelo experimental de investigación de Qwen centrado en mejorar el razonamiento.",
1122
+ "qwq-32b.description": "QwQ es un modelo de razonamiento de la familia Qwen. En comparación con los modelos estándar ajustados por instrucciones, ofrece capacidades de pensamiento y razonamiento que mejoran significativamente el rendimiento en tareas complejas. QwQ-32B es un modelo de razonamiento de tamaño medio que rivaliza con los mejores modelos como DeepSeek-R1 y o1-mini.",
1123
+ "qwq-plus.description": "El modelo de razonamiento QwQ entrenado sobre Qwen2.5 utiliza aprendizaje por refuerzo (RL) para mejorar significativamente el razonamiento. Las métricas clave en matemáticas/código (AIME 24/25, LiveCodeBench) y algunos benchmarks generales (IFEval, LiveBench) alcanzan el nivel completo de DeepSeek-R1.",
1124
+ "qwq.description": "QwQ es un modelo de razonamiento de la familia Qwen. En comparación con los modelos estándar ajustados por instrucciones, ofrece capacidades de pensamiento y razonamiento que mejoran significativamente el rendimiento en tareas difíciles. QwQ-32B es un modelo de razonamiento de tamaño medio que compite con los mejores modelos como DeepSeek-R1 y o1-mini.",
1125
+ "qwq_32b.description": "Modelo de razonamiento de tamaño medio de la familia Qwen. En comparación con los modelos estándar ajustados por instrucciones, las capacidades de pensamiento y razonamiento de QwQ mejoran significativamente el rendimiento en tareas difíciles.",
1076
1126
  "stable-diffusion-3.5-large.description": "stable-diffusion-3.5-large es un modelo de texto a imagen MMDiT con 800 millones de parámetros que ofrece una excelente calidad y alineación con los prompts, compatible con imágenes de 1 megapíxel y ejecución eficiente en hardware de consumo.",
1077
1127
  "stable-diffusion-v1.5.description": "stable-diffusion-v1.5 se inicializa desde el checkpoint v1.2 y se afina durante 595k pasos en \"laion-aesthetics v2 5+\" a una resolución de 512x512, reduciendo el condicionamiento de texto en un 10% para mejorar el muestreo sin clasificador.",
1078
1128
  "stable-diffusion-xl-base-1.0.description": "Un modelo de texto a imagen de código abierto de Stability AI con generación creativa de imágenes líder en la industria. Posee una sólida comprensión de instrucciones y admite definiciones inversas de prompts para una generación precisa.",
@@ -338,6 +338,9 @@
338
338
  "task.activity.toolCalling": "در حال فراخوانی {{toolName}}...",
339
339
  "task.activity.toolResult": "نتیجه {{toolName}} دریافت شد",
340
340
  "task.batchTasks": "{{count}} زیرکار گروهی",
341
+ "task.groupTasks": "{{count}} وظیفه هم‌زمان",
342
+ "task.groupTasksTitle": "{{agents}} و {{count}} وظیفه برای نمایندگان",
343
+ "task.groupTasksTitleSimple": "{{agents}} {{count}} وظیفه",
341
344
  "task.instruction": "دستورالعمل وظیفه",
342
345
  "task.intermediateSteps": "{{count}} مرحله میانی",
343
346
  "task.metrics.duration": "(مدت زمان: {{duration}})",
@@ -345,6 +348,7 @@
345
348
  "task.metrics.toolCallsShort": "استفاده از ابزار",
346
349
  "task.status.cancelled": "وظیفه لغو شد",
347
350
  "task.status.failed": "وظیفه ناموفق بود",
351
+ "task.status.fetchingDetails": "در حال دریافت جزئیات...",
348
352
  "task.status.initializing": "در حال آغاز وظیفه...",
349
353
  "task.subtask": "زیرکار",
350
354
  "thread.divider": "زیرموضوع",