@lobehub/lobehub 2.0.7 → 2.0.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. package/.github/workflows/sync.yml +3 -3
  2. package/CHANGELOG.md +50 -0
  3. package/changelog/v2.json +14 -0
  4. package/locales/ar/models.json +53 -0
  5. package/locales/ar/setting.json +2 -0
  6. package/locales/ar/subscription.json +2 -0
  7. package/locales/bg-BG/models.json +32 -0
  8. package/locales/bg-BG/setting.json +2 -0
  9. package/locales/bg-BG/subscription.json +2 -0
  10. package/locales/de-DE/models.json +33 -0
  11. package/locales/de-DE/setting.json +2 -0
  12. package/locales/de-DE/subscription.json +2 -0
  13. package/locales/en-US/subscription.json +2 -0
  14. package/locales/es-ES/models.json +65 -0
  15. package/locales/es-ES/setting.json +2 -0
  16. package/locales/es-ES/subscription.json +2 -0
  17. package/locales/fa-IR/models.json +31 -0
  18. package/locales/fa-IR/setting.json +2 -0
  19. package/locales/fa-IR/subscription.json +2 -0
  20. package/locales/fr-FR/models.json +34 -0
  21. package/locales/fr-FR/setting.json +2 -0
  22. package/locales/fr-FR/subscription.json +2 -0
  23. package/locales/it-IT/models.json +37 -0
  24. package/locales/it-IT/setting.json +2 -0
  25. package/locales/it-IT/subscription.json +2 -0
  26. package/locales/ja-JP/models.json +20 -0
  27. package/locales/ja-JP/setting.json +2 -0
  28. package/locales/ja-JP/subscription.json +2 -0
  29. package/locales/ko-KR/models.json +51 -0
  30. package/locales/ko-KR/setting.json +2 -0
  31. package/locales/ko-KR/subscription.json +2 -0
  32. package/locales/nl-NL/models.json +9 -0
  33. package/locales/nl-NL/setting.json +2 -0
  34. package/locales/nl-NL/subscription.json +2 -0
  35. package/locales/pl-PL/models.json +33 -0
  36. package/locales/pl-PL/setting.json +2 -0
  37. package/locales/pl-PL/subscription.json +2 -0
  38. package/locales/pt-BR/models.json +49 -0
  39. package/locales/pt-BR/setting.json +2 -0
  40. package/locales/pt-BR/subscription.json +2 -0
  41. package/locales/ru-RU/models.json +45 -0
  42. package/locales/ru-RU/setting.json +2 -0
  43. package/locales/ru-RU/subscription.json +2 -0
  44. package/locales/tr-TR/models.json +23 -0
  45. package/locales/tr-TR/setting.json +2 -0
  46. package/locales/tr-TR/subscription.json +2 -0
  47. package/locales/vi-VN/models.json +49 -0
  48. package/locales/vi-VN/setting.json +2 -0
  49. package/locales/vi-VN/subscription.json +2 -0
  50. package/locales/zh-CN/subscription.json +2 -0
  51. package/locales/zh-TW/setting.json +2 -0
  52. package/locales/zh-TW/subscription.json +2 -0
  53. package/package.json +1 -1
  54. package/packages/model-bank/src/aiModels/zenmux.ts +4 -4
  55. package/packages/model-runtime/src/index.ts +1 -1
  56. package/packages/model-runtime/src/runtimeMap.ts +1 -1
  57. package/src/app/[variants]/(mobile)/(home)/features/SessionListContent/Inbox/index.tsx +10 -20
  58. package/src/locales/default/subscription.ts +2 -0
  59. package/src/server/services/memory/userMemory/extract.ts +45 -34
  60. package/src/server/services/memory/userMemory/persona/__tests__/service.test.ts +2 -4
  61. package/src/server/services/memory/userMemory/persona/service.ts +18 -32
@@ -29,9 +29,9 @@ jobs:
29
29
  id: sync
30
30
  uses: aormsby/Fork-Sync-With-Upstream-action@v3.4
31
31
  with:
32
- upstream_sync_repo: lobehub/lobe-chat
33
- upstream_sync_branch: next
34
- target_sync_branch: next
32
+ upstream_sync_repo: lobehub/lobehub
33
+ upstream_sync_branch: main
34
+ target_sync_branch: main
35
35
  target_repo_token: ${{ secrets.GITHUB_TOKEN }} # automatically generated, no need to set
36
36
  test_mode: false
37
37
 
package/CHANGELOG.md CHANGED
@@ -2,6 +2,56 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 2.0.9](https://github.com/lobehub/lobe-chat/compare/v2.0.8...v2.0.9)
6
+
7
+ <sup>Released on **2026-01-29**</sup>
8
+
9
+ #### 🐛 Bug Fixes
10
+
11
+ - **model-bank**: Fix ZenMux model IDs by adding provider prefixes.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### What's fixed
19
+
20
+ - **model-bank**: Fix ZenMux model IDs by adding provider prefixes, closes [#11947](https://github.com/lobehub/lobe-chat/issues/11947) ([17f8a5c](https://github.com/lobehub/lobe-chat/commit/17f8a5c))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
30
+ ### [Version 2.0.8](https://github.com/lobehub/lobe-chat/compare/v2.0.7...v2.0.8)
31
+
32
+ <sup>Released on **2026-01-28**</sup>
33
+
34
+ #### 🐛 Bug Fixes
35
+
36
+ - **misc**: Fix inbox agent in mobile.
37
+
38
+ <br/>
39
+
40
+ <details>
41
+ <summary><kbd>Improvements and Fixes</kbd></summary>
42
+
43
+ #### What's fixed
44
+
45
+ - **misc**: Fix inbox agent in mobile, closes [#11929](https://github.com/lobehub/lobe-chat/issues/11929) ([42f5c0b](https://github.com/lobehub/lobe-chat/commit/42f5c0b))
46
+
47
+ </details>
48
+
49
+ <div align="right">
50
+
51
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
52
+
53
+ </div>
54
+
5
55
  ### [Version 2.0.7](https://github.com/lobehub/lobe-chat/compare/v2.0.6...v2.0.7)
6
56
 
7
57
  <sup>Released on **2026-01-28**</sup>
package/changelog/v2.json CHANGED
@@ -1,4 +1,18 @@
1
1
  [
2
+ {
3
+ "children": {},
4
+ "date": "2026-01-29",
5
+ "version": "2.0.9"
6
+ },
7
+ {
8
+ "children": {
9
+ "fixes": [
10
+ "Fix inbox agent in mobile."
11
+ ]
12
+ },
13
+ "date": "2026-01-28",
14
+ "version": "2.0.8"
15
+ },
2
16
  {
3
17
  "children": {},
4
18
  "date": "2026-01-28",
@@ -825,6 +825,7 @@
825
825
  "meta.llama3-1-405b-instruct-v1:0.description": "Meta Llama 3.1 405B Instruct هو أكبر وأقوى نموذج Llama 3.1 Instruct، نموذج متقدم للغاية للحوار والاستدلال وتوليد البيانات الاصطناعية، ويشكل قاعدة قوية للتدريب المخصص أو التخصيص حسب المجال. نماذج Llama 3.1 متعددة اللغات هي مجموعة من النماذج المدربة مسبقًا والمضبوطة بالتعليمات بأحجام 8B و70B و405B (نص داخل/نص خارج). تم تحسين النماذج المضبوطة للحوار متعدد اللغات وتتجاوز العديد من نماذج الدردشة المفتوحة في المعايير الصناعية. تم تصميم Llama 3.1 للاستخدام التجاري والبحثي عبر اللغات. النماذج المضبوطة مناسبة للدردشة على نمط المساعد، بينما النماذج المدربة مسبقًا تناسب مهام توليد اللغة الطبيعية الأوسع. يمكن أيضًا استخدام مخرجات Llama 3.1 لتحسين نماذج أخرى، بما في ذلك توليد البيانات الاصطناعية وتحسينها. Llama 3.1 هو نموذج Transformer توليدي ذاتي مع بنية محسّنة. تستخدم الإصدارات المضبوطة التخصيص الخاضع للإشراف (SFT) والتعلم المعزز من تغذية راجعة بشرية (RLHF) لتتماشى مع تفضيلات البشر من حيث الفائدة والسلامة.",
826
826
  "meta.llama3-1-70b-instruct-v1:0.description": "Meta Llama 3.1 70B Instruct المحدث مع نافذة سياق ممتدة إلى 128K، ودعم متعدد اللغات، واستدلال محسن. نماذج Llama 3.1 متعددة اللغات هي مجموعة من النماذج المدربة مسبقًا والمضبوطة بالتعليمات بأحجام 8B و70B و405B (نص داخل/نص خارج). تم تحسين النماذج المضبوطة للحوار متعدد اللغات وتتجاوز العديد من نماذج الدردشة المفتوحة في المعايير الصناعية. تم تصميم Llama 3.1 للاستخدام التجاري والبحثي عبر اللغات. النماذج المضبوطة مناسبة للدردشة على نمط المساعد، بينما النماذج المدربة مسبقًا تناسب مهام توليد اللغة الطبيعية الأوسع. يمكن أيضًا استخدام مخرجات Llama 3.1 لتحسين نماذج أخرى، بما في ذلك توليد البيانات الاصطناعية وتحسينها. Llama 3.1 هو نموذج Transformer توليدي ذاتي مع بنية محسّنة. تستخدم الإصدارات المضبوطة التخصيص الخاضع للإشراف (SFT) والتعلم المعزز من تغذية راجعة بشرية (RLHF) لتتماشى مع تفضيلات البشر من حيث الفائدة والسلامة.",
827
827
  "meta.llama3-1-8b-instruct-v1:0.description": "Meta Llama 3.1 8B Instruct المحدث مع نافذة سياق 128K، ودعم متعدد اللغات، واستدلال محسن. عائلة Llama 3.1 تشمل نماذج نصية مضبوطة بأحجام 8B و70B و405B، محسّنة للدردشة متعددة اللغات وأداء قوي في المعايير. تم تصميمه للاستخدام التجاري والبحثي عبر اللغات؛ النماذج المضبوطة تناسب الدردشة على نمط المساعد، بينما النماذج المدربة مسبقًا تناسب مهام التوليد الأوسع. يمكن أيضًا استخدام مخرجات Llama 3.1 لتحسين نماذج أخرى (مثل البيانات الاصطناعية والتحسين). إنه نموذج Transformer توليدي ذاتي، مع SFT وRLHF للتوافق مع الفائدة والسلامة.",
828
+ "meta.llama3-70b-instruct-v1:0.description": "Meta Llama 3 هو نموذج لغوي مفتوح المصدر مخصص للمطورين والباحثين والشركات، صُمم لمساعدتهم في بناء أفكار الذكاء الاصطناعي التوليدي، وتجربتها، وتوسيع نطاقها بشكل مسؤول. ويُعد جزءًا من البنية التحتية للابتكار المجتمعي العالمي، مما يجعله مناسبًا لإنشاء المحتوى، والذكاء الاصطناعي الحواري، وفهم اللغة، والبحث والتطوير، وتطبيقات المؤسسات.",
828
829
  "meta.llama3-8b-instruct-v1:0.description": "ميتا لاما 3 هو نموذج لغوي مفتوح المصدر مخصص للمطورين والباحثين والشركات، صُمم لمساعدتهم في بناء أفكار الذكاء الاصطناعي التوليدي، وتجربتها، وتوسيع نطاقها بشكل مسؤول. يُعد جزءًا من البنية التحتية للابتكار المجتمعي العالمي، وهو مناسب للبيئات ذات الموارد المحدودة، والأجهزة الطرفية، وأوقات التدريب الأسرع.",
829
830
  "meta/Llama-3.2-11B-Vision-Instruct.description": "قدرات قوية في الاستدلال الصوري على الصور عالية الدقة، مناسب لتطبيقات الفهم البصري.",
830
831
  "meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال صوري متقدم لتطبيقات الوكلاء المعتمدين على الفهم البصري.",
@@ -853,6 +854,58 @@
853
854
  "meta/llama-3.3-70b.description": "توازن مثالي بين الأداء والكفاءة. مصمم للذكاء الاصطناعي الحواري عالي الأداء في إنشاء المحتوى، وتطبيقات المؤسسات، والبحث، مع فهم لغوي قوي للتلخيص، والتصنيف، وتحليل المشاعر، وتوليد الشيفرة.",
854
855
  "meta/llama-4-maverick.description": "عائلة لاما 4 هي مجموعة نماذج ذكاء اصطناعي متعددة الوسائط تدعم النص والتجارب متعددة الوسائط، وتستخدم MoE لفهم متقدم للنصوص والصور. لاما 4 مافريك هو نموذج يحتوي على 17 مليار معامل و128 خبيرًا، يُقدَّم عبر DeepInfra.",
855
856
  "meta/llama-4-scout.description": "عائلة لاما 4 هي مجموعة نماذج ذكاء اصطناعي متعددة الوسائط تدعم النص والتجارب متعددة الوسائط، وتستخدم MoE لفهم متقدم للنصوص والصور. لاما 4 سكاوت هو نموذج يحتوي على 17 مليار معامل و16 خبيرًا، يُقدَّم عبر DeepInfra.",
857
+ "microsoft/Phi-3-medium-128k-instruct.description": "نفس نموذج Phi-3-medium ولكن مع نافذة سياق أكبر لدعم استرجاع المعلومات أو التعليمات القليلة.",
858
+ "microsoft/Phi-3-medium-4k-instruct.description": "نموذج يحتوي على 14 مليار معامل بجودة أعلى من Phi-3-mini، يركز على البيانات عالية الجودة التي تتطلب استدلالًا عميقًا.",
859
+ "microsoft/Phi-3-mini-128k-instruct.description": "نفس نموذج Phi-3-mini ولكن مع نافذة سياق أكبر لدعم استرجاع المعلومات أو التعليمات القليلة.",
860
+ "microsoft/Phi-3-mini-4k-instruct.description": "أصغر عضو في عائلة Phi-3، مُحسّن للجودة وانخفاض زمن الاستجابة.",
861
+ "microsoft/Phi-3-small-128k-instruct.description": "نفس نموذج Phi-3-small ولكن مع نافذة سياق أكبر لدعم استرجاع المعلومات أو التعليمات القليلة.",
862
+ "microsoft/Phi-3-small-8k-instruct.description": "نموذج يحتوي على 7 مليارات معامل بجودة أعلى من Phi-3-mini، يركز على البيانات عالية الجودة التي تتطلب استدلالًا عميقًا.",
863
+ "microsoft/Phi-3.5-mini-instruct.description": "إصدار محدث من نموذج Phi-3-mini.",
864
+ "microsoft/Phi-3.5-vision-instruct.description": "إصدار محدث من نموذج Phi-3-vision.",
865
+ "microsoft/WizardLM-2-8x22B.description": "WizardLM 2 هو نموذج لغوي من Microsoft AI يتميز بالحوار المعقد، والمهام متعددة اللغات، والاستدلال، والمساعدات الذكية.",
866
+ "microsoft/wizardlm-2-8x22b.description": "WizardLM-2 8x22B هو النموذج الأكثر تقدمًا من Microsoft AI ضمن سلسلة Wizard، ويتميز بأداء تنافسي عالي.",
867
+ "mimo-v2-flash.description": "MiMo-V2-Flash: نموذج فعال للاستدلال، والبرمجة، وبناء الأسس للوكيل الذكي.",
868
+ "minicpm-v.description": "MiniCPM-V هو نموذج متعدد الوسائط من الجيل التالي من OpenBMB يتميز بقدرات ممتازة في التعرف البصري للنصوص وفهم الوسائط المتعددة لمجموعة واسعة من الاستخدامات.",
869
+ "minimax-m2.1.description": "MiniMax-M2.1 هو أحدث إصدار من سلسلة MiniMax، مُحسّن للبرمجة متعددة اللغات والمهام المعقدة الواقعية. كنموذج أصلي للذكاء الاصطناعي، يحقق MiniMax-M2.1 تحسينات كبيرة في الأداء، ودعم أطر الوكلاء، والتكيف مع سيناريوهات متعددة، بهدف مساعدة الأفراد والشركات على تبني نمط حياة وعمل قائم على الذكاء الاصطناعي بسرعة أكبر.",
870
+ "minimax-m2.description": "MiniMax M2 هو نموذج لغوي كبير وفعّال صُمم خصيصًا للبرمجة وسير عمل الوكلاء.",
871
+ "minimax/minimax-m2.1.description": "MiniMax-M2.1 هو نموذج لغوي كبير وخفيف الوزن ومتطور، مُحسّن للبرمجة وسير عمل الوكلاء وتطوير التطبيقات الحديثة، ويقدم مخرجات أنظف وأكثر إيجازًا واستجابة أسرع.",
872
+ "minimax/minimax-m2.description": "MiniMax-M2 هو نموذج عالي القيمة يتميز في مهام البرمجة والوكلاء في العديد من سيناريوهات الهندسة.",
873
+ "minimaxai/minimax-m2.description": "MiniMax-M2 هو نموذج MoE مدمج وسريع وفعّال من حيث التكلفة (230 مليار إجمالي، 10 مليارات نشطة) صُمم لتحقيق أداء رفيع المستوى في البرمجة ومهام الوكلاء مع الحفاظ على ذكاء عام قوي. يتميز بتحرير ملفات متعددة، وتشغيل الكود وتصحيحه، والتحقق من الاختبارات، وسلاسل أدوات معقدة.",
874
+ "ministral-3b-latest.description": "Ministral 3B هو النموذج الرائد من Mistral للأجهزة الطرفية.",
875
+ "ministral-8b-latest.description": "Ministral 8B هو نموذج فعال من حيث التكلفة من Mistral للأجهزة الطرفية.",
876
+ "mistral-ai/Mistral-Large-2411.description": "النموذج الرئيسي من Mistral للمهام المعقدة التي تتطلب استدلالًا واسع النطاق أو تخصصًا (توليد نصوص اصطناعية، توليد كود، استرجاع معلومات، أو وكلاء).",
877
+ "mistral-ai/Mistral-Nemo.description": "Mistral Nemo هو نموذج لغوي متقدم يتميز بأحدث تقنيات الاستدلال والمعرفة العالمية والبرمجة بالنسبة لحجمه.",
878
+ "mistral-ai/mistral-small-2503.description": "Mistral Small مناسب لأي مهمة لغوية تتطلب كفاءة عالية وزمن استجابة منخفض.",
879
+ "mistral-large-instruct.description": "Mistral-Large-Instruct-2407 هو نموذج لغوي كثيف متقدم يحتوي على 123 مليار معامل، يتميز بأحدث تقنيات الاستدلال والمعرفة والبرمجة.",
880
+ "mistral-large-latest.description": "Mistral Large هو النموذج الرئيسي، قوي في المهام متعددة اللغات، والاستدلال المعقد، وتوليد الكود—مثالي للتطبيقات المتقدمة.",
881
+ "mistral-large.description": "Mixtral Large هو النموذج الرئيسي من Mistral، يجمع بين توليد الكود، والرياضيات، والاستدلال مع نافذة سياق 128K.",
882
+ "mistral-medium-latest.description": "Mistral Medium 3 يقدم أداءً متقدمًا بتكلفة أقل 8 مرات، ويسهّل النشر المؤسسي.",
883
+ "mistral-nemo-instruct.description": "Mistral-Nemo-Instruct-2407 هو الإصدار الموجه بالتعليمات من Mistral-Nemo-Base-2407.",
884
+ "mistral-nemo.description": "Mistral Nemo هو نموذج فعال يحتوي على 12 مليار معامل من Mistral AI وNVIDIA.",
885
+ "mistral-small-latest.description": "Mistral Small هو خيار سريع وموثوق وفعال من حيث التكلفة للترجمة، والتلخيص، وتحليل المشاعر.",
886
+ "mistral-small.description": "Mistral Small مناسب لأي مهمة لغوية تتطلب كفاءة عالية وزمن استجابة منخفض.",
887
+ "mistral.description": "Mistral هو نموذج 7B من Mistral AI، مناسب لمهام لغوية متنوعة.",
888
+ "mistral/codestral-embed.description": "نموذج تضمين الكود مخصص لتضمين قواعد الكود والمستودعات لدعم مساعدي البرمجة.",
889
+ "mistral/codestral.description": "Mistral Codestral 25.01 هو نموذج برمجة متقدم يتميز بزمن استجابة منخفض واستخدام عالي التكرار. يدعم أكثر من 80 لغة ويتفوق في FIM، وتصحيح الكود، وتوليد الاختبارات.",
890
+ "mistral/devstral-small.description": "Devstral هو نموذج لغوي وكيل لمهام هندسة البرمجيات، مما يجعله خيارًا قويًا لوكلاء البرمجيات.",
891
+ "mistral/magistral-medium.description": "تفكير معقد مدعوم بفهم عميق واستدلال شفاف يمكن تتبعه والتحقق منه. يحافظ على استدلال عالي الدقة عبر اللغات حتى أثناء المهمة.",
892
+ "mistral/magistral-small.description": "تفكير معقد مدعوم بفهم عميق واستدلال شفاف يمكن تتبعه والتحقق منه. يحافظ على استدلال عالي الدقة عبر اللغات حتى أثناء المهمة.",
893
+ "mistral/ministral-3b.description": "نموذج مدمج وفعّال للمهام على الأجهزة مثل المساعدات والتحليلات المحلية، يقدم أداءً بزمن استجابة منخفض.",
894
+ "mistral/ministral-8b.description": "نموذج أقوى مع استدلال أسرع وكفاءة في استخدام الذاكرة، مثالي لسير العمل المعقد وتطبيقات الأجهزة الطرفية المتطلبة.",
895
+ "mistral/mistral-embed.description": "نموذج تضمين نصوص عام للبحث الدلالي، والتشابه، والتجميع، وسير عمل استرجاع المعلومات.",
896
+ "mistral/mistral-large.description": "Mistral Large مثالي للمهام المعقدة التي تتطلب استدلالًا قويًا أو تخصصًا—مثل توليد النصوص الاصطناعية، وتوليد الكود، واسترجاع المعلومات، أو الوكلاء.",
897
+ "mistral/mistral-small.description": "Mistral Small مثالي للمهام البسيطة القابلة للتجميع مثل التصنيف، ودعم العملاء، أو توليد النصوص، ويقدم أداءً ممتازًا بسعر مناسب.",
898
+ "mistral/mixtral-8x22b-instruct.description": "نموذج Instruct 8x22B. نموذج MoE مفتوح المصدر مقدم من Mistral.",
899
+ "mistral/pixtral-12b.description": "نموذج يحتوي على 12 مليار معامل يتميز بفهم الصور والنصوص.",
900
+ "mistral/pixtral-large.description": "Pixtral Large هو النموذج الثاني في عائلة النماذج متعددة الوسائط لدينا، يتميز بفهم متقدم للصور. يتعامل مع المستندات، والمخططات، والصور الطبيعية مع الحفاظ على فهم نصوص رائد كما في Mistral Large 2.",
901
+ "mistralai/Mistral-7B-Instruct-v0.1.description": "Mistral (7B) Instruct معروف بأدائه القوي في العديد من المهام اللغوية.",
902
+ "mistralai/Mistral-7B-Instruct-v0.2.description": "Mistral (7B) Instruct v0.2 يحسن التعامل مع التعليمات ودقة النتائج.",
903
+ "mistralai/Mistral-7B-Instruct-v0.3.description": "Mistral (7B) Instruct v0.3 يقدم كفاءة في الحوسبة وفهم لغوي قوي لمجموعة واسعة من الاستخدامات.",
904
+ "mistralai/Mistral-7B-v0.1.description": "Mistral 7B هو نموذج مدمج وعالي الأداء، قوي في المعالجة الدفعية والمهام البسيطة مثل التصنيف وتوليد النصوص، مع استدلال متين.",
905
+ "mistralai/Mixtral-8x22B-Instruct-v0.1.description": "Mixtral-8x22B Instruct (141B) هو نموذج لغوي كبير جدًا للمهام الثقيلة.",
906
+ "mistralai/Mixtral-8x7B-Instruct-v0.1.description": "Mixtral-8x7B Instruct (46.7B) يوفر قدرة عالية لمعالجة البيانات على نطاق واسع.",
907
+ "mistralai/Mixtral-8x7B-v0.1.description": "Mixtral 8x7B هو نموذج MoE متفرق يعزز سرعة الاستدلال، مناسب للمهام متعددة اللغات وتوليد الكود.",
908
+ "mistralai/mistral-nemo.description": "Mistral Nemo هو نموذج يحتوي على 7.3 مليار معامل يدعم لغات متعددة ويتميز بأداء قوي في البرمجة.",
856
909
  "moonshot-v1-128k-vision-preview.description": "نماذج Kimi للرؤية (بما في ذلك moonshot-v1-8k-vision-preview/moonshot-v1-32k-vision-preview/moonshot-v1-128k-vision-preview) قادرة على فهم محتوى الصور مثل النصوص، الألوان، وأشكال الكائنات.",
857
910
  "moonshot-v1-128k.description": "Moonshot V1 128K يوفر سياقًا طويلًا للغاية لتوليد نصوص طويلة جدًا، حيث يتعامل مع ما يصل إلى 128,000 رمز، مما يجعله مثاليًا للبحث، والأكاديميا، والوثائق الكبيرة.",
858
911
  "moonshot-v1-32k-vision-preview.description": "نماذج Kimi للرؤية (بما في ذلك moonshot-v1-8k-vision-preview/moonshot-v1-32k-vision-preview/moonshot-v1-128k-vision-preview) قادرة على فهم محتوى الصور مثل النصوص، الألوان، وأشكال الكائنات.",
@@ -446,6 +446,8 @@
446
446
  "settingImage.defaultCount.desc": "تحديد عدد الصور الافتراضي الذي يتم إنشاؤه عند بدء مهمة جديدة في لوحة توليد الصور.",
447
447
  "settingImage.defaultCount.label": "عدد الصور الافتراضي",
448
448
  "settingImage.defaultCount.title": "فن الذكاء الاصطناعي",
449
+ "settingModel.enableContextCompression.desc": "ضغط الرسائل التاريخية تلقائيًا إلى ملخصات عند تجاوز المحادثة 64,000 رمز، مما يوفر من 60٪ إلى 80٪ من استخدام الرموز",
450
+ "settingModel.enableContextCompression.title": "تفعيل ضغط السياق التلقائي",
449
451
  "settingModel.enableMaxTokens.title": "تفعيل حد الرموز القصوى",
450
452
  "settingModel.enableReasoningEffort.title": "تفعيل ضبط جهد الاستدلال",
451
453
  "settingModel.frequencyPenalty.desc": "كلما زادت القيمة، زادت تنوع وغنى المفردات؛ وكلما انخفضت، أصبحت اللغة أبسط وأكثر مباشرة.",
@@ -140,6 +140,8 @@
140
140
  "models.output": "إخراج",
141
141
  "models.title": "النماذج",
142
142
  "payDiffPrice": "دفع الفرق",
143
+ "payDiffPriceApprox": "تقريبًا",
144
+ "payDiffPriceTip": "المبلغ الفعلي يعتمد على صفحة الدفع",
143
145
  "payment.error.actions.billing": "إدارة الفوترة",
144
146
  "payment.error.actions.home": "العودة إلى الصفحة الرئيسية",
145
147
  "payment.error.desc": "معرّف الاشتراك: {{id}} غير موجود. إذا كانت لديك أسئلة، يرجى التواصل معنا عبر البريد الإلكتروني",
@@ -355,6 +355,7 @@
355
355
  "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 е модел за разсъждение от ново поколение с по-силни способности за сложни разсъждения и верига от мисли за задълбочени аналитични задачи.",
356
356
  "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 е модел за разсъждение от ново поколение с по-силни способности за сложни разсъждения и верига от мисли за задълбочени аналитични задачи.",
357
357
  "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 е MoE модел за визия и език, базиран на DeepSeekMoE-27B със слаба активация, постигайки висока производителност с едва 4.5 милиарда активни параметъра. Отличава се в визуални въпроси и отговори, OCR, разбиране на документи/таблици/графики и визуално привързване.",
358
+ "deepseek-chat.description": "DeepSeek V3.2 постига баланс между логическо мислене и дължина на отговорите за ежедневни въпроси и задачи на агенти. Публичните бенчмаркове достигат нивата на GPT-5, а това е първият модел, който интегрира мислене при използване на инструменти, водещ до водещи резултати в оценките на отворените агенти.",
358
359
  "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B е езиков модел за програмиране, обучен върху 2 трилиона токени (87% код, 13% китайски/английски текст). Въвежда 16K контекстен прозорец и задачи за попълване в средата, осигурявайки допълване на код на ниво проект и попълване на фрагменти.",
359
360
  "deepseek-coder-v2.description": "DeepSeek Coder V2 е отворен MoE модел за програмиране, който се представя на ниво GPT-4 Turbo.",
360
361
  "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 е отворен MoE модел за програмиране, който се представя на ниво GPT-4 Turbo.",
@@ -377,6 +378,7 @@
377
378
  "deepseek-r1-fast-online.description": "Пълна бърза версия на DeepSeek R1 с търсене в реално време в уеб, комбинираща възможности от мащаб 671B и по-бърз отговор.",
378
379
  "deepseek-r1-online.description": "Пълна версия на DeepSeek R1 с 671 милиарда параметъра и търсене в реално време в уеб, предлагаща по-силно разбиране и генериране.",
379
380
  "deepseek-r1.description": "DeepSeek-R1 използва данни от студен старт преди подсиленото обучение и се представя наравно с OpenAI-o1 в математика, програмиране и разсъждение.",
381
+ "deepseek-reasoner.description": "DeepSeek V3.2 Thinking е модел за дълбоко разсъждение, който генерира верига от мисли преди отговорите за по-висока точност, с водещи резултати в състезания и логика, сравнима с Gemini-3.0-Pro.",
380
382
  "deepseek-v2.description": "DeepSeek V2 е ефективен MoE модел за икономична обработка.",
381
383
  "deepseek-v2:236b.description": "DeepSeek V2 236B е модел на DeepSeek, фокусиран върху програмиране, с висока производителност при генериране на код.",
382
384
  "deepseek-v3-0324.description": "DeepSeek-V3-0324 е MoE модел с 671 милиарда параметъра, с изключителни способности в програмиране, технически задачи, разбиране на контекст и обработка на дълги текстове.",
@@ -470,6 +472,8 @@
470
472
  "ernie-tiny-8k.description": "ERNIE Tiny 8K е ултралек модел за прости QA, класификация и нискоразходно извеждане.",
471
473
  "ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K е бърз мислещ модел с 32K контекст за сложни разсъждения и многозавойни разговори.",
472
474
  "ernie-x1.1-preview.description": "ERNIE X1.1 Preview е предварителен модел за мислене, предназначен за оценка и тестване.",
475
+ "fal-ai/bytedance/seedream/v4.5.description": "Seedream 4.5, разработен от екипа Seed на ByteDance, поддържа редактиране и композиране на множество изображения. Отличава се с подобрена консистентност на обектите, точно следване на инструкции, разбиране на пространствена логика, естетическо изразяване, оформление на плакати и дизайн на лога с високопрецизно рендиране на текст и изображения.",
476
+ "fal-ai/bytedance/seedream/v4.description": "Seedream 4.0, създаден от ByteDance Seed, поддържа вход от текст и изображения за висококачествено и контролируемо генериране на изображения по подадени подсказки.",
473
477
  "fal-ai/flux-kontext/dev.description": "FLUX.1 модел, фокусиран върху редактиране на изображения, поддържащ вход от текст и изображения.",
474
478
  "fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro] приема текст и референтни изображения като вход, позволявайки целенасочени локални редакции и сложни глобални трансформации на сцени.",
475
479
  "fal-ai/flux/krea.description": "Flux Krea [dev] е модел за генериране на изображения с естетично предпочитание към по-реалистични и естествени изображения.",
@@ -477,6 +481,8 @@
477
481
  "fal-ai/hunyuan-image/v3.description": "Мощен роден мултимодален модел за генериране на изображения.",
478
482
  "fal-ai/imagen4/preview.description": "Модел за висококачествено генериране на изображения от Google.",
479
483
  "fal-ai/nano-banana.description": "Nano Banana е най-новият, най-бърз и най-ефективен роден мултимодален модел на Google, позволяващ генериране и редактиране на изображения чрез разговор.",
484
+ "fal-ai/qwen-image-edit.description": "Професионален модел за редактиране на изображения от екипа на Qwen, поддържащ семантични и визуални промени, прецизно редактиране на текст на китайски/английски, трансфер на стил, завъртане и други.",
485
+ "fal-ai/qwen-image.description": "Мощен модел за генериране на изображения от екипа на Qwen с отлична визуализация на китайски текст и разнообразни визуални стилове.",
480
486
  "flux-1-schnell.description": "Модел за преобразуване на текст в изображение с 12 милиарда параметъра от Black Forest Labs, използващ латентна дифузионна дестилация за генериране на висококачествени изображения в 1–4 стъпки. Съперничи на затворени алтернативи и е пуснат под лиценз Apache-2.0 за лична, изследователска и търговска употреба.",
481
487
  "flux-dev.description": "FLUX.1 [dev] е дестилиран модел с отворени тегла за нетърговска употреба. Запазва почти професионално качество на изображенията и следване на инструкции, като същевременно работи по-ефективно и използва ресурсите по-добре от стандартни модели със същия размер.",
482
488
  "flux-kontext-max.description": "Съвременно генериране и редактиране на изображения с контекст, комбиниращо текст и изображения за прецизни и последователни резултати.",
@@ -508,6 +514,8 @@
508
514
  "gemini-2.0-flash-lite-001.description": "Вариант на Gemini 2.0 Flash, оптимизиран за ниска цена и ниска латентност.",
509
515
  "gemini-2.0-flash-lite.description": "Вариант на Gemini 2.0 Flash, оптимизиран за ниска цена и ниска латентност.",
510
516
  "gemini-2.0-flash.description": "Gemini 2.0 Flash предлага функции от ново поколение, включително изключителна скорост, вградена употреба на инструменти, мултимодално генериране и контекстен прозорец от 1 милион токена.",
517
+ "gemini-2.5-flash-image-preview.description": "Nano Banana е най-новият, най-бърз и най-ефективен роден мултимодален модел на Google, позволяващ разговорно генериране и редактиране на изображения.",
518
+ "gemini-2.5-flash-image-preview:image.description": "Nano Banana е най-новият, най-бърз и най-ефективен роден мултимодален модел на Google, позволяващ разговорно генериране и редактиране на изображения.",
511
519
  "gemini-2.5-flash-image.description": "Nano Banana е най-новият, най-бърз и най-ефективен роден мултимодален модел на Google, позволяващ разговорно генериране и редактиране на изображения.",
512
520
  "gemini-2.5-flash-image:image.description": "Nano Banana е най-новият, най-бърз и най-ефективен роден мултимодален модел на Google, позволяващ разговорно генериране и редактиране на изображения.",
513
521
  "gemini-2.5-flash-lite-preview-06-17.description": "Gemini 2.5 Flash-Lite Preview е най-малкият и най-изгоден модел на Google, проектиран за мащабна употреба.",
@@ -522,6 +530,7 @@
522
530
  "gemini-2.5-pro.description": "Gemini 2.5 Pro е най-усъвършенстваният модел за разсъждение на Google, способен да разсъждава върху код, математика и STEM проблеми и да анализира големи набори от данни, кодови бази и документи с дълъг контекст.",
523
531
  "gemini-3-flash-preview.description": "Gemini 3 Flash е най-интелигентният модел, създаден за скорост, съчетаващ авангардна интелигентност с отлично търсене и обоснованост.",
524
532
  "gemini-3-pro-image-preview.description": "Gemini 3 Pro Image(Nano Banana Pro)е модел на Google за генериране на изображения, който също така поддържа мултимодален диалог.",
533
+ "gemini-3-pro-image-preview:image.description": "Gemini 3 Pro Image (Nano Banana Pro) е модел на Google за генериране на изображения, който също поддържа мултимодален чат.",
525
534
  "gemini-3-pro-preview.description": "Gemini 3 Pro е най-мощният агентен и „vibe-coding“ модел на Google, който предлага по-богати визуализации и по-дълбоко взаимодействие, базирано на съвременно логическо мислене.",
526
535
  "gemini-flash-latest.description": "Най-новата версия на Gemini Flash",
527
536
  "gemini-flash-lite-latest.description": "Най-новата версия на Gemini Flash-Lite",
@@ -692,6 +701,29 @@
692
701
  "hunyuan-t1-latest.description": "Значително подобрява модела с бавно мислене при трудна математика, сложна логика, трудни задачи по програмиране, следване на инструкции и качество на креативното писане.",
693
702
  "hunyuan-t1-vision-20250619.description": "Най-новият мултимодален модел t1-vision с дълбоко логическо мислене и вградена верига на мисълта, значително подобрен спрямо предишната версия по подразбиране.",
694
703
  "hunyuan-t1-vision-20250916.description": "Най-новият модел t1-vision с дълбоко логическо мислене и големи подобрения във VQA, визуално привързване, OCR, диаграми, решаване на заснети задачи и създаване на съдържание от изображения, както и по-силна поддръжка на английски и езици с ограничени ресурси.",
704
+ "hunyuan-turbo-20241223.description": "Тази версия подобрява мащабирането на инструкции за по-добра генерализация, значително подобрява логическото мислене в математика/код/логика, засилва разбирането на думи и повишава качеството на писане.",
705
+ "hunyuan-turbo-latest.description": "Общи подобрения в NLP разбирането, писането, чата, въпросите и отговорите, превода и специализираните области; по-човешки отговори, по-добро изясняване на неясни намерения, подобрен синтактичен анализ, по-високо творческо качество и интерактивност, както и по-силни многозавойни разговори.",
706
+ "hunyuan-turbo-vision.description": "Флагмански модел от ново поколение за визия и език с нова MoE архитектура, с широки подобрения в разпознаването, създаването на съдържание, въпроси и отговори по знания и аналитично мислене.",
707
+ "hunyuan-turbo.description": "Преглед на следващото поколение LLM на Hunyuan с нова MoE архитектура, осигуряваща по-бързо разсъждение и по-силни резултати от hunyuan-pro.",
708
+ "hunyuan-turbos-20250313.description": "Унифицира стила на решаване на математически задачи и засилва многозавойните въпроси и отговори в математиката. Стилът на писане е усъвършенстван, за да намали изкуствения тон и да добави изтънченост.",
709
+ "hunyuan-turbos-20250416.description": "Подобрен базов модел за предварително обучение за по-добро разбиране и следване на инструкции; подобрено съгласуване в математика, код, логика и наука; подобрено качество на писане, разбиране, точност на превода и въпроси и отговори по знания; засилени способности на агентите, особено при многозавойно разбиране.",
710
+ "hunyuan-turbos-20250604.description": "Подобрен базов модел за предварително обучение с по-добро писане и четене с разбиране, значителни подобрения в кода и STEM, както и по-добро следване на сложни инструкции.",
711
+ "hunyuan-turbos-20250926.description": "Подобрено качество на предварителните данни и стратегията за последващо обучение, подобряваща агентите, английския език/езиците с ограничени ресурси, следването на инструкции, кода и STEM възможностите.",
712
+ "hunyuan-turbos-latest.description": "Най-новият флагмански модел Hunyuan TurboS с по-силно разсъждение и по-добро цялостно изживяване.",
713
+ "hunyuan-turbos-longtext-128k-20250325.description": "Изключителен при задачи с дълги документи като обобщение и въпроси и отговори, като същевременно се справя с общо генериране. Силен при анализ и генериране на дълги текстове за сложни и детайлни съдържания.",
714
+ "hunyuan-turbos-role-plus.description": "Най-новият модел за ролеви игри, официално фино настроен върху ролеви набори от данни, осигуряващ по-силна базова производителност за ролеви сценарии.",
715
+ "hunyuan-turbos-vision-20250619.description": "Най-новият флагмански модел TurboS за визия и език с големи подобрения при задачи с изображения и текст като разпознаване на обекти, въпроси и отговори по знания, копирайтинг и решаване на задачи по снимки.",
716
+ "hunyuan-turbos-vision.description": "Флагмански модел от ново поколение за визия и език, базиран на най-новия TurboS, фокусиран върху задачи с разбиране на изображения и текст като разпознаване на обекти, въпроси и отговори по знания, копирайтинг и решаване на задачи по снимки.",
717
+ "hunyuan-vision-1.5-instruct.description": "Модел за бързо мислене, генериращ текст от изображения, базиран на текстовия TurboS. В сравнение с предишната версия, има значителни подобрения в основното разпознаване и анализ на изображения.",
718
+ "hunyuan-vision.description": "Най-новият мултимодален модел, поддържащ вход от изображения и текст за генериране на текст.",
719
+ "image-01-live.description": "Модел за генериране на изображения с фини детайли, поддържащ преобразуване от текст към изображение и контролируеми стилови настройки.",
720
+ "image-01.description": "Нов модел за генериране на изображения с фини детайли, поддържащ преобразуване от текст към изображение и от изображение към изображение.",
721
+ "imagen-4.0-fast-generate-001.description": "Бързата версия от четвъртото поколение модели Imagen за преобразуване от текст към изображение.",
722
+ "imagen-4.0-generate-001.description": "Четвърто поколение модели Imagen за преобразуване от текст към изображение.",
723
+ "imagen-4.0-generate-preview-06-06.description": "Семейство модели от четвърто поколение Imagen за преобразуване от текст към изображение.",
724
+ "imagen-4.0-ultra-generate-001.description": "Ultra версията от четвъртото поколение модели Imagen за преобразуване от текст към изображение.",
725
+ "imagen-4.0-ultra-generate-preview-06-06.description": "Ultra вариант от четвъртото поколение модели Imagen за преобразуване от текст към изображение.",
726
+ "inception/mercury-coder-small.description": "Mercury Coder Small е идеален за генериране на код, отстраняване на грешки и рефакториране с минимално закъснение.",
695
727
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 е отворен LLM, предназначен за разработчици, изследователи и предприятия, създаден да им помага да изграждат, експериментират и отговорно мащабират идеи за генеративен ИИ. Като част от основата за глобални иновации в общността, той е подходящ за среди с ограничени изчислителни ресурси, крайни устройства и по-бързо обучение.",
696
728
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Силен визуален анализ на изображения с висока резолюция, подходящ за приложения за визуално разбиране.",
697
729
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Разширен визуален анализ за приложения с агенти за визуално разбиране.",
@@ -446,6 +446,8 @@
446
446
  "settingImage.defaultCount.desc": "Задайте броя изображения по подразбиране, които се генерират при създаване на нова задача в панела за генериране на изображения.",
447
447
  "settingImage.defaultCount.label": "Брой изображения по подразбиране",
448
448
  "settingImage.defaultCount.title": "AI Изкуство",
449
+ "settingModel.enableContextCompression.desc": "Автоматично компресиране на исторически съобщения в обобщения, когато разговорът надвиши 64 000 токена, спестявайки 60–80% от използваните токени",
450
+ "settingModel.enableContextCompression.title": "Активирай автоматично компресиране на контекста",
449
451
  "settingModel.enableMaxTokens.title": "Активиране на лимит за максимален брой токени",
450
452
  "settingModel.enableReasoningEffort.title": "Активиране на настройка за усилие при разсъждение",
451
453
  "settingModel.frequencyPenalty.desc": "Колкото по-висока е стойността, толкова по-богат и разнообразен е речникът; по-ниска стойност води до по-прост и ясен език.",
@@ -140,6 +140,8 @@
140
140
  "models.output": "Изход",
141
141
  "models.title": "Модели",
142
142
  "payDiffPrice": "Плати разликата",
143
+ "payDiffPriceApprox": "Приблизително",
144
+ "payDiffPriceTip": "Действителната сума се определя на страницата за плащане",
143
145
  "payment.error.actions.billing": "Управление на плащания",
144
146
  "payment.error.actions.home": "Обратно към началната страница",
145
147
  "payment.error.desc": "Абонамент с ID: {{id}} не е намерен. Ако имаш въпроси, свържи се с нас по имейл",
@@ -975,6 +975,17 @@
975
975
  "openai/o3-mini-high.description": "o3-mini (High Reasoning) bietet höhere Intelligenz bei gleichen Kosten- und Latenzzielen wie o1-mini.",
976
976
  "openai/o3-mini.description": "o3-mini ist OpenAIs neuestes kleines Modell für logisches Denken und bietet höhere Intelligenz bei gleichen Kosten- und Latenzzielen wie o1-mini.",
977
977
  "openai/o3.description": "OpenAI o3 ist das leistungsstärkste Modell für logisches Denken und setzt neue Maßstäbe in den Bereichen Programmierung, Mathematik, Naturwissenschaften und visuelle Wahrnehmung. Es brilliert bei komplexen, facettenreichen Anfragen und ist besonders stark in der Analyse von Bildern, Diagrammen und Grafiken.",
978
+ "openai/o4-mini-high.description": "o4-mini High-Reasoning-Stufe, optimiert für schnelle, effiziente Schlussfolgerungen mit starker Leistung in den Bereichen Programmierung und visuelle Verarbeitung.",
979
+ "openai/o4-mini.description": "OpenAI o4-mini ist ein kleines, effizientes Modell für logisches Denken in latenzkritischen Szenarien.",
980
+ "openai/text-embedding-3-large.description": "OpenAIs leistungsfähigstes Embedding-Modell für Aufgaben in englischer und nicht-englischer Sprache.",
981
+ "openai/text-embedding-3-small.description": "OpenAIs verbesserte, leistungsstärkere Variante des ada-Embedding-Modells.",
982
+ "openai/text-embedding-ada-002.description": "OpenAIs älteres Text-Embedding-Modell.",
983
+ "openrouter/auto.description": "Basierend auf Kontextlänge, Thema und Komplexität wird Ihre Anfrage an Llama 3 70B Instruct, Claude 3.5 Sonnet (selbstmoderiert) oder GPT-4o weitergeleitet.",
984
+ "perplexity/sonar-pro.description": "Perplexitys Flaggschiffprodukt mit Suchverankerung, unterstützt komplexe Anfragen und Folgefragen.",
985
+ "perplexity/sonar-reasoning-pro.description": "Ein fortschrittliches Modell mit Fokus auf logisches Denken, das CoT mit erweiterter Suche ausgibt, einschließlich mehrerer Suchanfragen pro Anfrage.",
986
+ "perplexity/sonar-reasoning.description": "Ein Modell mit Fokus auf logisches Denken, das Chain-of-Thought (CoT) mit detaillierten, suchbasierten Erklärungen liefert.",
987
+ "perplexity/sonar.description": "Perplexitys leichtgewichtiges Produkt mit Suchverankerung, schneller und günstiger als Sonar Pro.",
988
+ "phi3.description": "Phi-3 ist Microsofts leichtgewichtiges Open-Model für effiziente Integration und groß angelegte Schlussfolgerungen.",
978
989
  "phi3:14b.description": "Phi-3 ist Microsofts leichtgewichtiges Open-Model für effiziente Integration und groß angelegte Schlussfolgerungen.",
979
990
  "pixtral-12b-2409.description": "Pixtral überzeugt bei der Analyse von Diagrammen/Bildern, Dokumenten-QA, multimodaler Schlussfolgerung und Befolgen von Anweisungen. Es verarbeitet Bilder in nativer Auflösung und Seitenverhältnis und unterstützt beliebig viele Bilder im 128K-Kontextfenster.",
980
991
  "pixtral-large-latest.description": "Pixtral Large ist ein multimodales Open-Model mit 124 Milliarden Parametern, basierend auf Mistral Large 2 – dem zweiten Modell unserer multimodalen Familie mit fortschrittlichem Bildverständnis.",
@@ -1025,6 +1036,28 @@
1025
1036
  "qwen-vl-v1.description": "Vortrainiertes Modell, initialisiert von Qwen-7B mit zusätzlichem Vision-Modul und 448er Bildauflösung.",
1026
1037
  "qwen/qwen-2-7b-instruct.description": "Qwen2 ist die neue Qwen-LLM-Serie. Qwen2 7B ist ein Transformer-basiertes Modell, das in Sprachverständnis, Mehrsprachigkeit, Programmierung, Mathematik und Schlussfolgerung überzeugt.",
1027
1038
  "qwen/qwen-2-7b-instruct:free.description": "Qwen2 ist eine neue Familie großer Sprachmodelle mit verbessertem Verständnis und Generierung.",
1039
+ "qwen/qwen-2-vl-72b-instruct.description": "Qwen2-VL ist die neueste Version von Qwen-VL und erreicht Spitzenleistungen in visuellen Benchmarks wie MathVista, DocVQA, RealWorldQA und MTVQA. Es versteht über 20 Minuten Video für hochwertige Video-Q&A, Dialoge und Inhaltserstellung. Es bewältigt komplexe Schlussfolgerungen und Entscheidungsfindung, integriert sich in mobile Geräte und Roboter und agiert basierend auf visuellen Kontexten und Textanweisungen. Neben Englisch und Chinesisch erkennt es auch Texte in Bildern in vielen weiteren Sprachen, darunter die meisten europäischen Sprachen, Japanisch, Koreanisch, Arabisch und Vietnamesisch.",
1040
+ "qwen/qwen-2.5-72b-instruct.description": "Qwen2.5-72B-Instruct ist eines der neuesten LLMs von Alibaba Cloud. Das 72B-Modell bietet deutliche Verbesserungen in den Bereichen Programmierung und Mathematik, unterstützt über 29 Sprachen (darunter Chinesisch und Englisch) und verbessert die Befolgung von Anweisungen, das Verständnis strukturierter Daten und strukturierte Ausgaben (insbesondere JSON) erheblich.",
1041
+ "qwen/qwen2.5-32b-instruct.description": "Qwen2.5-32B-Instruct ist eines der neuesten LLMs von Alibaba Cloud. Das 32B-Modell bietet deutliche Verbesserungen in den Bereichen Programmierung und Mathematik, unterstützt über 29 Sprachen (darunter Chinesisch und Englisch) und verbessert die Befolgung von Anweisungen, das Verständnis strukturierter Daten und strukturierte Ausgaben (insbesondere JSON) erheblich.",
1042
+ "qwen/qwen2.5-7b-instruct.description": "Ein zweisprachiges LLM für Chinesisch und Englisch in den Bereichen Sprache, Programmierung, Mathematik und logisches Denken.",
1043
+ "qwen/qwen2.5-coder-32b-instruct.description": "Ein fortschrittliches LLM für Codegenerierung, logisches Denken und Fehlerbehebung in gängigen Programmiersprachen.",
1044
+ "qwen/qwen2.5-coder-7b-instruct.description": "Ein starkes mittelgroßes Codemodell mit 32K Kontext, hervorragend für mehrsprachige Programmierung geeignet.",
1045
+ "qwen/qwen3-14b.description": "Qwen3-14B ist die 14B-Variante für allgemeine Schlussfolgerungen und Chat-Szenarien.",
1046
+ "qwen/qwen3-14b:free.description": "Qwen3-14B ist ein dichtes kausales LLM mit 14,8 Milliarden Parametern, entwickelt für komplexes logisches Denken und effizienten Chat. Es wechselt zwischen einem Denkmodus für Mathematik, Programmierung und Logik und einem Nicht-Denkmodus für allgemeinen Chat. Feinabgestimmt für Anweisungsbefolgung, Agenten-Tool-Nutzung und kreatives Schreiben in über 100 Sprachen und Dialekten. Unterstützt nativ 32K Kontext und skaliert mit YaRN auf 131K.",
1047
+ "qwen/qwen3-235b-a22b-2507.description": "Qwen3-235B-A22B-Instruct-2507 ist die Instruct-Variante der Qwen3-Serie, die mehrsprachige Anwendungsfälle mit Langkontext-Szenarien ausbalanciert.",
1048
+ "qwen/qwen3-235b-a22b-thinking-2507.description": "Qwen3-235B-A22B-Thinking-2507 ist die Thinking-Variante von Qwen3, verstärkt für komplexe Mathematik- und Denkaufgaben.",
1049
+ "qwen/qwen3-235b-a22b.description": "Qwen3-235B-A22B ist ein MoE-Modell mit 235 Milliarden Parametern von Qwen, mit 22 Milliarden aktiven Parametern pro Durchlauf. Es wechselt zwischen einem Denkmodus für komplexes logisches Denken, Mathematik und Code und einem Nicht-Denkmodus für effizienten Chat. Es bietet starke Denkfähigkeiten, mehrsprachige Unterstützung (100+ Sprachen/Dialekte), fortschrittliche Anweisungsbefolgung und Agenten-Tool-Nutzung. Unterstützt nativ 32K Kontext und skaliert mit YaRN auf 131K.",
1050
+ "qwen/qwen3-235b-a22b:free.description": "Qwen3-235B-A22B ist ein MoE-Modell mit 235 Milliarden Parametern von Qwen, mit 22 Milliarden aktiven Parametern pro Durchlauf. Es wechselt zwischen einem Denkmodus für komplexes logisches Denken, Mathematik und Code und einem Nicht-Denkmodus für effizienten Chat. Es bietet starke Denkfähigkeiten, mehrsprachige Unterstützung (100+ Sprachen/Dialekte), fortschrittliche Anweisungsbefolgung und Agenten-Tool-Nutzung. Unterstützt nativ 32K Kontext und skaliert mit YaRN auf 131K.",
1051
+ "qwen/qwen3-30b-a3b.description": "Qwen3 ist die neueste LLM-Generation von Qwen mit dichten und MoE-Architekturen, hervorragend in den Bereichen logisches Denken, mehrsprachige Unterstützung und fortgeschrittene Agentenaufgaben. Die einzigartige Fähigkeit, zwischen Denkmodus für komplexe Aufgaben und Nicht-Denkmodus für effizienten Chat zu wechseln, sorgt für vielseitige, hochwertige Leistung.\n\nQwen3 übertrifft frühere Modelle wie QwQ und Qwen2.5 deutlich und liefert exzellente Ergebnisse in Mathematik, Programmierung, Alltagslogik, kreativem Schreiben und interaktivem Chat. Die Variante Qwen3-30B-A3B verfügt über 30,5 Milliarden Parameter (3,3B aktiv), 48 Schichten, 128 Experten (8 aktiv pro Aufgabe) und unterstützt bis zu 131K Kontext mit YaRN – ein neuer Maßstab für Open-Modelle.",
1052
+ "qwen/qwen3-30b-a3b:free.description": "Qwen3 ist die neueste LLM-Generation von Qwen mit dichten und MoE-Architekturen, hervorragend in den Bereichen logisches Denken, mehrsprachige Unterstützung und fortgeschrittene Agentenaufgaben. Die einzigartige Fähigkeit, zwischen Denkmodus für komplexe Aufgaben und Nicht-Denkmodus für effizienten Chat zu wechseln, sorgt für vielseitige, hochwertige Leistung.\n\nQwen3 übertrifft frühere Modelle wie QwQ und Qwen2.5 deutlich und liefert exzellente Ergebnisse in Mathematik, Programmierung, Alltagslogik, kreativem Schreiben und interaktivem Chat. Die Variante Qwen3-30B-A3B verfügt über 30,5 Milliarden Parameter (3,3B aktiv), 48 Schichten, 128 Experten (8 aktiv pro Aufgabe) und unterstützt bis zu 131K Kontext mit YaRN – ein neuer Maßstab für Open-Modelle.",
1053
+ "qwen/qwen3-32b.description": "Qwen3-32B ist ein dichtes kausales LLM mit 32,8 Milliarden Parametern, optimiert für komplexes logisches Denken und effizienten Chat. Es wechselt zwischen einem Denkmodus für Mathematik, Programmierung und Logik und einem Nicht-Denkmodus für schnelleren allgemeinen Chat. Es überzeugt bei Anweisungsbefolgung, Agenten-Tool-Nutzung und kreativem Schreiben in über 100 Sprachen und Dialekten. Unterstützt nativ 32K Kontext und skaliert mit YaRN auf 131K.",
1054
+ "qwen/qwen3-32b:free.description": "Qwen3-32B ist ein dichtes kausales LLM mit 32,8 Milliarden Parametern, optimiert für komplexes logisches Denken und effizienten Chat. Es wechselt zwischen einem Denkmodus für Mathematik, Programmierung und Logik und einem Nicht-Denkmodus für schnelleren allgemeinen Chat. Es überzeugt bei Anweisungsbefolgung, Agenten-Tool-Nutzung und kreativem Schreiben in über 100 Sprachen und Dialekten. Unterstützt nativ 32K Kontext und skaliert mit YaRN auf 131K.",
1055
+ "qwen/qwen3-8b:free.description": "Qwen3-8B ist ein dichtes kausales LLM mit 8,2 Milliarden Parametern, entwickelt für aufschlussreiche Aufgaben und effizienten Chat. Es wechselt zwischen einem Denkmodus für Mathematik, Programmierung und Logik und einem Nicht-Denkmodus für allgemeinen Chat. Feinabgestimmt für Anweisungsbefolgung, Agentenintegration und kreatives Schreiben in über 100 Sprachen und Dialekten. Unterstützt nativ 32K Kontext und skaliert mit YaRN auf 131K.",
1056
+ "qwen/qwen3-coder-plus.description": "Qwen3-Coder-Plus ist ein Modell der Qwen-Serie für Codegenerierung, optimiert für komplexe Tool-Nutzung und lang andauernde Sitzungen.",
1057
+ "qwen/qwen3-coder.description": "Qwen3-Coder ist die Codegenerierungsfamilie von Qwen3, stark im Verständnis und der Generierung von Code in langen Dokumenten.",
1058
+ "qwen/qwen3-max-preview.description": "Qwen3 Max (Vorschau) ist die Max-Variante für fortgeschrittenes logisches Denken und Tool-Integration.",
1059
+ "qwen/qwen3-max.description": "Qwen3 Max ist das High-End-Modell für logisches Denken in der Qwen3-Serie, mit Fokus auf mehrsprachige Schlussfolgerungen und Tool-Integration.",
1060
+ "qwen/qwen3-vl-plus.description": "Qwen3 VL-Plus ist die visuell erweiterte Qwen3-Variante mit verbessertem multimodalem Denken und Videobearbeitung.",
1028
1061
  "qwen2.5-14b-instruct-1m.description": "Qwen2.5 Open-Source-Modell mit 72 Milliarden Parametern.",
1029
1062
  "qwen2.5-14b-instruct.description": "Qwen2.5 Open-Source-Modell mit 14 Milliarden Parametern.",
1030
1063
  "qwen2.5-32b-instruct.description": "Qwen2.5 Open-Source-Modell mit 32 Milliarden Parametern.",
@@ -446,6 +446,8 @@
446
446
  "settingImage.defaultCount.desc": "Standardanzahl der Bilder festlegen, die beim Erstellen einer neuen Aufgabe im Bildgenerierungsbereich erzeugt werden.",
447
447
  "settingImage.defaultCount.label": "Standardanzahl Bilder",
448
448
  "settingImage.defaultCount.title": "KI-Kunst",
449
+ "settingModel.enableContextCompression.desc": "Komprimiert automatisch frühere Nachrichten zu Zusammenfassungen, wenn das Gespräch 64.000 Tokens überschreitet, und spart dabei 60–80 % an Token-Nutzung",
450
+ "settingModel.enableContextCompression.title": "Automatische Kontextkomprimierung aktivieren",
449
451
  "settingModel.enableMaxTokens.title": "Begrenzung der maximalen Tokens aktivieren",
450
452
  "settingModel.enableReasoningEffort.title": "Anpassung des Denkaufwands aktivieren",
451
453
  "settingModel.frequencyPenalty.desc": "Je höher der Wert, desto vielfältiger der Wortschatz; je niedriger, desto einfacher die Sprache.",
@@ -140,6 +140,8 @@
140
140
  "models.output": "Ausgabe",
141
141
  "models.title": "Modelle",
142
142
  "payDiffPrice": "Differenz bezahlen",
143
+ "payDiffPriceApprox": "Ca.",
144
+ "payDiffPriceTip": "Der tatsächliche Betrag richtet sich nach der Zahlungsseite",
143
145
  "payment.error.actions.billing": "Abrechnungsverwaltung",
144
146
  "payment.error.actions.home": "Zur Startseite",
145
147
  "payment.error.desc": "Abonnement-ID: {{id}} nicht gefunden. Bei Fragen kontaktieren Sie uns bitte per E-Mail",
@@ -140,6 +140,8 @@
140
140
  "models.output": "Output",
141
141
  "models.title": "Models",
142
142
  "payDiffPrice": "Pay Difference",
143
+ "payDiffPriceApprox": "Approx.",
144
+ "payDiffPriceTip": "Actual amount subject to payment page",
143
145
  "payment.error.actions.billing": "Billing Management",
144
146
  "payment.error.actions.home": "Back to Home",
145
147
  "payment.error.desc": "Subscription ID: {{id}} not found. If you have questions, please contact us via email",
@@ -919,6 +919,29 @@
919
919
  "moonshotai/Kimi-Dev-72B.description": "Kimi-Dev-72B es un modelo de código de código abierto optimizado con aprendizaje por refuerzo a gran escala para generar parches robustos y listos para producción. Obtiene un 60.4% en SWE-bench Verified, estableciendo un nuevo récord entre modelos abiertos para tareas de ingeniería de software automatizada como corrección de errores y revisión de código.",
920
920
  "moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 es la versión más nueva y potente de Kimi K2. Es un modelo MoE de primer nivel con 1T total y 32B de parámetros activos. Sus características clave incluyen mayor inteligencia en programación de agentes con mejoras significativas en benchmarks y tareas reales, además de mejor estética y usabilidad en código frontend.",
921
921
  "moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking es el modelo de razonamiento de código abierto más potente hasta la fecha. Amplía considerablemente la profundidad del razonamiento multietapa y mantiene un uso estable de herramientas en 200–300 llamadas consecutivas, estableciendo nuevos récords en Humanity's Last Exam (HLE), BrowseComp y otros benchmarks. Destaca en programación, matemáticas, lógica y escenarios de agentes. Basado en una arquitectura MoE con ~1T de parámetros totales, admite una ventana de contexto de 256K y llamadas a herramientas.",
922
+ "moonshotai/kimi-k2-0711.description": "Kimi K2 0711 es la variante instructiva de la serie Kimi, adecuada para el uso de herramientas y generación de código de alta calidad.",
923
+ "moonshotai/kimi-k2-0905.description": "Kimi K2 0905 es una actualización que amplía el contexto y mejora el rendimiento en razonamiento con optimizaciones para programación.",
924
+ "moonshotai/kimi-k2-instruct-0905.description": "El modelo kimi-k2-0905-preview admite una ventana de contexto de 256k, con programación más autónoma, código frontend más pulido y práctico, y mejor comprensión del contexto.",
925
+ "moonshotai/kimi-k2-thinking-turbo.description": "Kimi K2 Thinking Turbo es una versión de alta velocidad de Kimi K2 Thinking, que reduce significativamente la latencia sin sacrificar el razonamiento profundo.",
926
+ "moonshotai/kimi-k2-thinking.description": "Kimi K2 Thinking es el modelo de razonamiento de Moonshot optimizado para tareas de razonamiento profundo, con capacidades generales de agente.",
927
+ "moonshotai/kimi-k2.description": "Kimi K2 es un modelo MoE de gran escala de Moonshot AI con 1T de parámetros totales y 32B activos por paso, optimizado para capacidades de agente como uso avanzado de herramientas, razonamiento y síntesis de código.",
928
+ "morph/morph-v3-fast.description": "Morph ofrece un modelo especializado para aplicar cambios de código sugeridos por modelos avanzados (por ejemplo, Claude o GPT-4o) a tus archivos existentes a una velocidad RÁPIDA de más de 4500 tokens/seg. Es el paso final en un flujo de trabajo de codificación con IA y admite 16k tokens de entrada/salida.",
929
+ "morph/morph-v3-large.description": "Morph ofrece un modelo especializado para aplicar cambios de código sugeridos por modelos avanzados (por ejemplo, Claude o GPT-4o) a tus archivos existentes a una velocidad RÁPIDA de más de 2500 tokens/seg. Es el paso final en un flujo de trabajo de codificación con IA y admite 16k tokens de entrada/salida.",
930
+ "nousresearch/hermes-2-pro-llama-3-8b.description": "Hermes 2 Pro Llama 3 8B es una versión actualizada de Nous Hermes 2 con los últimos conjuntos de datos desarrollados internamente.",
931
+ "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF.description": "Llama 3.1 Nemotron 70B es un modelo LLM personalizado por NVIDIA para mejorar la utilidad. Tiene un rendimiento destacado en Arena Hard, AlpacaEval 2 LC y GPT-4-Turbo MT-Bench, ocupando el puesto #1 en los tres benchmarks de autoalineación al 1 de octubre de 2024. Está entrenado a partir de Llama-3.1-70B-Instruct usando RLHF (REINFORCE), Llama-3.1-Nemotron-70B-Reward y prompts de HelpSteer2-Preference.",
932
+ "nvidia/llama-3.1-nemotron-51b-instruct.description": "Un modelo de lenguaje distintivo que ofrece precisión y eficiencia excepcionales.",
933
+ "nvidia/llama-3.1-nemotron-70b-instruct.description": "Llama-3.1-Nemotron-70B-Instruct es un modelo personalizado de NVIDIA diseñado para mejorar la utilidad de las respuestas de los LLM.",
934
+ "o1-mini.description": "Más pequeño y rápido que o1-preview, con un costo 80% menor, fuerte en generación de código y tareas de contexto corto.",
935
+ "o1-preview.description": "Enfocado en razonamiento avanzado y resolución de problemas complejos, incluyendo matemáticas y ciencia. Ideal para aplicaciones que requieren comprensión profunda del contexto y flujos de trabajo autónomos.",
936
+ "o1-pro.description": "La serie o1 está entrenada con aprendizaje por refuerzo para pensar antes de responder y manejar razonamiento complejo. o1-pro utiliza más recursos computacionales para un pensamiento más profundo y respuestas de mayor calidad de forma constante.",
937
+ "o1.description": "o1 es el nuevo modelo de razonamiento de OpenAI con entrada de texto+imagen y salida de texto, adecuado para tareas complejas que requieren conocimiento amplio. Tiene una ventana de contexto de 200K y un límite de conocimiento de octubre de 2023.",
938
+ "o3-2025-04-16.description": "o3 es el nuevo modelo de razonamiento de OpenAI con entrada de texto+imagen y salida de texto para tareas complejas que requieren conocimiento amplio.",
939
+ "o3-deep-research.description": "o3-deep-research es nuestro modelo más avanzado para investigación profunda en tareas complejas de múltiples pasos. Puede buscar en la web y acceder a tus datos mediante conectores MCP.",
940
+ "o3-mini.description": "o3-mini es nuestro último modelo pequeño de razonamiento, que ofrece mayor inteligencia con el mismo costo y latencia que o1-mini.",
941
+ "o3-pro-2025-06-10.description": "o3 Pro es el nuevo modelo de razonamiento de OpenAI con entrada de texto+imagen y salida de texto para tareas complejas que requieren conocimiento amplio.",
942
+ "o3-pro.description": "o3-pro utiliza más recursos computacionales para pensar más profundamente y ofrecer respuestas de mejor calidad de forma constante; disponible solo a través de la API de Respuestas.",
943
+ "o3.description": "o3 es un modelo versátil y potente que establece un nuevo estándar en matemáticas, ciencia, programación y razonamiento visual. Destaca en redacción técnica y seguimiento de instrucciones, y puede analizar texto, código e imágenes para resolver problemas de múltiples pasos.",
944
+ "o4-mini-2025-04-16.description": "o4-mini es un modelo de razonamiento de OpenAI con entrada de texto+imagen y salida de texto, adecuado para tareas complejas que requieren conocimiento amplio, con una ventana de contexto de 200K.",
922
945
  "o4-mini-deep-research.description": "o4-mini-deep-research es un modelo de investigación profunda más rápido y asequible para investigaciones complejas de múltiples pasos. Puede buscar en la web y también acceder a tus datos mediante conectores MCP.",
923
946
  "o4-mini.description": "o4-mini es el último modelo pequeño de la serie o, optimizado para razonamiento rápido y eficaz con alta eficiencia en tareas de codificación y visión.",
924
947
  "open-codestral-mamba.description": "Codestral Mamba es un modelo de lenguaje Mamba 2 enfocado en la generación de código, compatible con tareas avanzadas de programación y razonamiento.",
@@ -969,6 +992,48 @@
969
992
  "pro-128k.description": "Spark Pro 128K ofrece una capacidad de contexto muy grande, manejando hasta 128K, ideal para documentos extensos que requieren análisis de texto completo y coherencia a largo plazo, con lógica fluida y soporte diverso de citas en discusiones complejas.",
970
993
  "pro-deepseek-r1.description": "Modelo de servicio dedicado empresarial con concurrencia incluida.",
971
994
  "pro-deepseek-v3.description": "Modelo de servicio dedicado empresarial con concurrencia incluida.",
995
+ "qianfan-70b.description": "Qianfan 70B es un modelo chino de gran escala para generación de alta calidad y razonamiento complejo.",
996
+ "qianfan-8b.description": "Qianfan 8B es un modelo general de tamaño medio que equilibra costo y calidad para generación de texto y preguntas y respuestas.",
997
+ "qianfan-agent-intent-32k.description": "Qianfan Agent Intent 32K está orientado al reconocimiento de intención y orquestación de agentes con soporte para contexto largo.",
998
+ "qianfan-agent-lite-8k.description": "Qianfan Agent Lite 8K es un modelo de agente ligero para diálogos de múltiples turnos y flujos de trabajo de bajo costo.",
999
+ "qianfan-agent-speed-32k.description": "Qianfan Agent Speed 32K es un modelo de agente de alto rendimiento para aplicaciones de agentes a gran escala y múltiples tareas.",
1000
+ "qianfan-agent-speed-8k.description": "Qianfan Agent Speed 8K es un modelo de agente de alta concurrencia para conversaciones cortas a medias y respuestas rápidas.",
1001
+ "qianfan-check-vl.description": "Qianfan Check VL es un modelo de revisión de contenido multimodal para tareas de cumplimiento y reconocimiento de imagen-texto.",
1002
+ "qianfan-composition.description": "Qianfan Composition es un modelo de creación multimodal para comprensión y generación combinada de imagen y texto.",
1003
+ "qianfan-engcard-vl.description": "Qianfan EngCard VL es un modelo de reconocimiento multimodal enfocado en escenarios en inglés.",
1004
+ "qianfan-lightning-128b-a19b.description": "Qianfan Lightning 128B A19B es un modelo general chino de alto rendimiento para preguntas complejas y razonamiento a gran escala.",
1005
+ "qianfan-llama-vl-8b.description": "Qianfan Llama VL 8B es un modelo multimodal basado en Llama para comprensión general de imagen y texto.",
1006
+ "qianfan-multipicocr.description": "Qianfan MultiPicOCR es un modelo OCR para múltiples imágenes que detecta y reconoce texto en varias imágenes.",
1007
+ "qianfan-qi-vl.description": "Qianfan QI VL es un modelo de preguntas y respuestas multimodal para recuperación precisa y QA en escenarios complejos de imagen y texto.",
1008
+ "qianfan-singlepicocr.description": "Qianfan SinglePicOCR es un modelo OCR para una sola imagen con reconocimiento de caracteres de alta precisión.",
1009
+ "qianfan-vl-70b.description": "Qianfan VL 70B es un modelo VLM de gran escala para comprensión compleja de imagen y texto.",
1010
+ "qianfan-vl-8b.description": "Qianfan VL 8B es un VLM ligero para preguntas y respuestas diarias de imagen y texto y análisis.",
1011
+ "qvq-72b-preview.description": "QVQ-72B-Preview es un modelo de investigación experimental de Qwen enfocado en mejorar el razonamiento visual.",
1012
+ "qvq-max.description": "El modelo de razonamiento visual Qwen QVQ admite entrada visual y salida con cadena de pensamiento, con mejor rendimiento en matemáticas, programación, análisis visual, creatividad y tareas generales.",
1013
+ "qvq-plus.description": "Modelo de razonamiento visual con entrada visual y salida con cadena de pensamiento. La serie qvq-plus sigue a qvq-max y ofrece razonamiento más rápido con mejor equilibrio entre calidad y costo.",
1014
+ "qwen-3-32b.description": "Qwen 3 32B: fuerte en tareas multilingües y de programación, adecuado para uso en producción de escala media.",
1015
+ "qwen-coder-plus.description": "Modelo de código Qwen.",
1016
+ "qwen-coder-turbo-latest.description": "Modelo de código Qwen.",
1017
+ "qwen-coder-turbo.description": "Modelo de código Qwen.",
1018
+ "qwen-flash.description": "El modelo Qwen más rápido y económico, ideal para tareas simples.",
1019
+ "qwen-image-edit.description": "Qwen Image Edit es un modelo de imagen a imagen que edita imágenes basándose en imágenes de entrada y prompts de texto, permitiendo ajustes precisos y transformaciones creativas.",
1020
+ "qwen-image.description": "Qwen-Image es un modelo general de generación de imágenes que admite múltiples estilos artísticos y una sólida representación de texto complejo, especialmente en chino e inglés. Soporta diseños de múltiples líneas, texto a nivel de párrafo y detalles finos para composiciones complejas de texto e imagen.",
1021
+ "qwen-long.description": "Modelo Qwen ultra grande con contexto largo y chat en escenarios de múltiples documentos.",
1022
+ "qwen-math-plus-latest.description": "Qwen Math es un modelo de lenguaje especializado en resolver problemas matemáticos.",
1023
+ "qwen-math-plus.description": "Qwen Math es un modelo de lenguaje especializado en resolver problemas matemáticos.",
1024
+ "qwen-math-turbo-latest.description": "Qwen Math es un modelo de lenguaje especializado en resolver problemas matemáticos.",
1025
+ "qwen-math-turbo.description": "Qwen Math es un modelo de lenguaje especializado en resolver problemas matemáticos.",
1026
+ "qwen-max.description": "Modelo Qwen ultra grande a escala de cientos de miles de millones que admite chino, inglés y otros idiomas; es el modelo API detrás de los productos actuales Qwen2.5.",
1027
+ "qwen-omni-turbo.description": "Los modelos Qwen-Omni admiten entradas multimodales (video, audio, imágenes, texto) y salida de audio y texto.",
1028
+ "qwen-plus.description": "Modelo Qwen ultra grande mejorado que admite chino, inglés y otros idiomas.",
1029
+ "qwen-turbo.description": "Qwen Turbo ya no se actualizará; reemplázalo con Qwen Flash. Modelo Qwen ultra grande que admite chino, inglés y otros idiomas.",
1030
+ "qwen-vl-chat-v1.description": "Qwen VL admite interacciones flexibles, incluyendo entrada de múltiples imágenes, preguntas y respuestas de múltiples turnos y tareas creativas.",
1031
+ "qwen-vl-max-latest.description": "Modelo Qwen visión-lenguaje ultra grande. En comparación con la versión mejorada, mejora aún más el razonamiento visual y el seguimiento de instrucciones para una percepción y cognición más sólidas.",
1032
+ "qwen-vl-max.description": "Modelo Qwen visión-lenguaje ultra grande. En comparación con la versión mejorada, mejora aún más el razonamiento visual y el seguimiento de instrucciones para una percepción y cognición visual más sólidas.",
1033
+ "qwen-vl-ocr.description": "Qwen OCR es un modelo de extracción de texto para documentos, tablas, imágenes de exámenes y escritura a mano. Admite chino, inglés, francés, japonés, coreano, alemán, ruso, italiano, vietnamita y árabe.",
1034
+ "qwen-vl-plus-latest.description": "Modelo Qwen visión-lenguaje mejorado a gran escala con importantes mejoras en detalle y reconocimiento de texto, compatible con resoluciones superiores a un megapíxel y relaciones de aspecto arbitrarias.",
1035
+ "qwen-vl-plus.description": "Modelo Qwen visión-lenguaje mejorado a gran escala con importantes mejoras en detalle y reconocimiento de texto, compatible con resoluciones superiores a un megapíxel y relaciones de aspecto arbitrarias.",
1036
+ "qwen-vl-v1.description": "Modelo preentrenado inicializado desde Qwen-7B con un módulo de visión añadido y entrada de imagen de resolución 448.",
972
1037
  "qwen/qwen3-235b-a22b.description": "Qwen3-235B-A22B es un modelo MoE de 235 mil millones de parámetros de Qwen, con 22 mil millones activos por pasada. Alterna entre un modo de pensamiento para razonamiento complejo, matemáticas y programación, y un modo sin pensamiento para chats eficientes. Ofrece un razonamiento sólido, soporte multilingüe (más de 100 idiomas y dialectos), seguimiento avanzado de instrucciones y uso de herramientas de agentes. Maneja de forma nativa contextos de 32K y escala hasta 131K con YaRN.",
973
1038
  "qwen/qwen3-235b-a22b:free.description": "Qwen3-235B-A22B es un modelo MoE de 235 mil millones de parámetros de Qwen, con 22 mil millones activos por pasada. Alterna entre un modo de pensamiento para razonamiento complejo, matemáticas y programación, y un modo sin pensamiento para chats eficientes. Ofrece un razonamiento sólido, soporte multilingüe (más de 100 idiomas y dialectos), seguimiento avanzado de instrucciones y uso de herramientas de agentes. Maneja de forma nativa contextos de 32K y escala hasta 131K con YaRN.",
974
1039
  "qwen/qwen3-30b-a3b.description": "Qwen3 es la última generación de modelos LLM de Qwen con arquitecturas densas y MoE, destacando en razonamiento, soporte multilingüe y tareas avanzadas de agentes. Su capacidad única de alternar entre un modo de pensamiento para razonamiento complejo y un modo sin pensamiento para chats eficientes garantiza un rendimiento versátil y de alta calidad.\n\nQwen3 supera significativamente a modelos anteriores como QwQ y Qwen2.5, ofreciendo excelentes resultados en matemáticas, programación, razonamiento de sentido común, escritura creativa y chat interactivo. La variante Qwen3-30B-A3B tiene 30.5 mil millones de parámetros (3.3 mil millones activos), 48 capas, 128 expertos (8 activos por tarea) y admite contextos de hasta 131K con YaRN, estableciendo un nuevo estándar para modelos abiertos.",
@@ -446,6 +446,8 @@
446
446
  "settingImage.defaultCount.desc": "Establece el número predeterminado de imágenes generadas al crear una nueva tarea en el panel de generación de imágenes.",
447
447
  "settingImage.defaultCount.label": "Cantidad de Imágenes Predeterminada",
448
448
  "settingImage.defaultCount.title": "Arte con IA",
449
+ "settingModel.enableContextCompression.desc": "Comprime automáticamente los mensajes históricos en resúmenes cuando la conversación supera los 64.000 tokens, ahorrando entre un 60 % y un 80 % en el uso de tokens",
450
+ "settingModel.enableContextCompression.title": "Activar compresión automática de contexto",
449
451
  "settingModel.enableMaxTokens.title": "Activar Límite de Tokens Máximos",
450
452
  "settingModel.enableReasoningEffort.title": "Activar Ajuste de Esfuerzo de Razonamiento",
451
453
  "settingModel.frequencyPenalty.desc": "Cuanto mayor sea el valor, más diverso y rico será el vocabulario; cuanto menor, más simple y directo.",
@@ -140,6 +140,8 @@
140
140
  "models.output": "Salida",
141
141
  "models.title": "Modelos",
142
142
  "payDiffPrice": "Pagar Diferencia",
143
+ "payDiffPriceApprox": "Aprox.",
144
+ "payDiffPriceTip": "El importe real se mostrará en la página de pago",
143
145
  "payment.error.actions.billing": "Gestión de Facturación",
144
146
  "payment.error.actions.home": "Volver al Inicio",
145
147
  "payment.error.desc": "ID de suscripción: {{id}} no encontrado. Si tienes preguntas, contáctanos por correo electrónico",