@lobehub/lobehub 2.0.0-next.82 → 2.0.0-next.83

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/CHANGELOG.md +33 -0
  2. package/changelog/v1.json +12 -0
  3. package/docs/usage/providers/comfyui.mdx +1 -1
  4. package/docs/usage/providers/comfyui.zh-CN.mdx +1 -1
  5. package/locales/ar/error.json +2 -2
  6. package/locales/ar/modelProvider.json +1 -1
  7. package/locales/ar/models.json +7 -1
  8. package/locales/bg-BG/error.json +2 -2
  9. package/locales/bg-BG/modelProvider.json +1 -1
  10. package/locales/bg-BG/models.json +7 -1
  11. package/locales/de-DE/error.json +2 -2
  12. package/locales/de-DE/modelProvider.json +1 -1
  13. package/locales/de-DE/models.json +7 -1
  14. package/locales/en-US/error.json +2 -2
  15. package/locales/en-US/modelProvider.json +1 -1
  16. package/locales/en-US/models.json +7 -1
  17. package/locales/es-ES/error.json +2 -2
  18. package/locales/es-ES/modelProvider.json +1 -1
  19. package/locales/es-ES/models.json +7 -1
  20. package/locales/fa-IR/error.json +2 -2
  21. package/locales/fa-IR/modelProvider.json +1 -1
  22. package/locales/fa-IR/models.json +7 -1
  23. package/locales/fr-FR/error.json +2 -2
  24. package/locales/fr-FR/modelProvider.json +1 -1
  25. package/locales/fr-FR/models.json +7 -1
  26. package/locales/it-IT/error.json +2 -2
  27. package/locales/it-IT/modelProvider.json +1 -1
  28. package/locales/it-IT/models.json +7 -1
  29. package/locales/ja-JP/error.json +2 -2
  30. package/locales/ja-JP/modelProvider.json +1 -1
  31. package/locales/ja-JP/models.json +7 -1
  32. package/locales/ko-KR/error.json +2 -2
  33. package/locales/ko-KR/modelProvider.json +1 -1
  34. package/locales/ko-KR/models.json +7 -1
  35. package/locales/nl-NL/error.json +2 -2
  36. package/locales/nl-NL/modelProvider.json +1 -1
  37. package/locales/nl-NL/models.json +7 -1
  38. package/locales/pl-PL/error.json +2 -2
  39. package/locales/pl-PL/modelProvider.json +1 -1
  40. package/locales/pl-PL/models.json +7 -1
  41. package/locales/pt-BR/error.json +2 -2
  42. package/locales/pt-BR/modelProvider.json +1 -1
  43. package/locales/pt-BR/models.json +7 -1
  44. package/locales/ru-RU/error.json +2 -2
  45. package/locales/ru-RU/modelProvider.json +1 -1
  46. package/locales/ru-RU/models.json +7 -1
  47. package/locales/tr-TR/error.json +2 -2
  48. package/locales/tr-TR/modelProvider.json +1 -1
  49. package/locales/tr-TR/models.json +7 -1
  50. package/locales/vi-VN/error.json +2 -2
  51. package/locales/vi-VN/modelProvider.json +1 -1
  52. package/locales/vi-VN/models.json +7 -1
  53. package/locales/zh-CN/error.json +2 -2
  54. package/locales/zh-CN/modelProvider.json +1 -1
  55. package/locales/zh-CN/models.json +7 -1
  56. package/locales/zh-TW/error.json +2 -2
  57. package/locales/zh-TW/modelProvider.json +1 -1
  58. package/locales/zh-TW/models.json +7 -1
  59. package/package.json +1 -1
  60. package/packages/model-bank/src/aiModels/novita.ts +3 -2
  61. package/packages/model-bank/src/aiModels/nvidia.ts +14 -0
  62. package/packages/model-bank/src/aiModels/ollamacloud.ts +23 -2
  63. package/packages/model-bank/src/aiModels/qwen.ts +88 -0
  64. package/packages/model-bank/src/aiModels/siliconcloud.ts +20 -0
  65. package/packages/model-bank/src/aiModels/vercelaigateway.ts +0 -17
  66. package/packages/model-bank/src/aiModels/volcengine.ts +1 -1
  67. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.test.ts +108 -64
  68. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +150 -125
  69. package/packages/model-runtime/src/providers/newapi/index.test.ts +3 -75
  70. package/packages/model-runtime/src/providers/newapi/index.ts +1 -14
  71. package/packages/model-runtime/src/providers/openrouter/index.test.ts +3 -2
  72. package/packages/model-runtime/src/providers/openrouter/index.ts +1 -1
  73. package/src/app/[variants]/(main)/settings/provider/features/CreateNewProvider/index.tsx +19 -6
  74. package/src/app/[variants]/(main)/settings/provider/features/customProviderSdkOptions.ts +1 -0
  75. package/src/config/modelProviders/aihubmix.ts +1 -0
  76. package/src/config/modelProviders/newapi.ts +1 -0
  77. package/src/locales/default/modelProvider.ts +1 -1
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Guida alla configurazione",
297
297
  "responsesApi": {
298
- "desc": "Utilizza il nuovo formato di richiesta di OpenAI per sbloccare funzionalità avanzate come la catena di pensiero",
298
+ "desc": "Utilizza il nuovo formato di richiesta di OpenAI per sbloccare funzionalità avanzate come la catena di pensiero (supportato solo dai modelli OpenAI)",
299
299
  "title": "Utilizza lo standard Responses API"
300
300
  },
301
301
  "waitingForMore": "Altri modelli sono in fase di <1>implementazione</1>, resta sintonizzato"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 è un modello di inferenza a grande scala con pesi open source e attenzione mista, con 456 miliardi di parametri, di cui circa 45,9 miliardi attivati per ogni token. Il modello supporta nativamente un contesto ultra-lungo di 1 milione di token e, grazie al meccanismo di attenzione lampo, riduce del 75% il carico computazionale in operazioni floating point rispetto a DeepSeek R1 in compiti di generazione con 100.000 token. Inoltre, MiniMax-M1 adotta un'architettura MoE (Mixture of Experts), combinando l'algoritmo CISPO e un design di attenzione mista per un addestramento efficiente tramite apprendimento rinforzato, raggiungendo prestazioni leader nel settore per inferenze con input lunghi e scenari reali di ingegneria software."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 ridefinisce l'efficienza per gli agenti intelligenti. È un modello MoE compatto, veloce ed economico, con 230 miliardi di parametri totali e 10 miliardi di parametri attivi, progettato per offrire prestazioni di alto livello nei compiti di codifica e agenti, mantenendo al contempo una solida intelligenza generale. Con soli 10 miliardi di parametri attivi, MiniMax-M2 offre prestazioni paragonabili a quelle dei modelli su larga scala, rendendolo la scelta ideale per applicazioni ad alta efficienza."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Con un totale di 1 trilione di parametri e 32 miliardi di parametri attivi, questo modello non pensante raggiunge livelli d'eccellenza in conoscenze all'avanguardia, matematica e programmazione, ed è particolarmente adatto a compiti di agenti generici. Ottimizzato per attività di agenti, non solo risponde a domande ma può anche agire. Ideale per chat improvvisate, conversazioni generiche e esperienze di agenti, è un modello riflessivo che non richiede lunghi tempi di elaborazione."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 migliora notevolmente la capacità di ragionamento del modello anche con pochissimi dati annotati. Prima di fornire la risposta finale, il modello genera una catena di pensieri per aumentare la precisione della risposta."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B è una variante distillata e più efficiente del modello Llama da 70B. Mantiene prestazioni robuste nelle attività di generazione testuale, riducendo il carico computazionale per facilitare il deployment e la ricerca. Servito da Groq con il suo hardware personalizzato Language Processing Unit (LPU) per inferenze rapide ed efficienti."
1161
+ "description": "DeepSeek R1 Distill Llama 70B è un modello linguistico di grandi dimensioni basato su Llama3.3 70B. Grazie al fine-tuning effettuato con l'output di DeepSeek R1, il modello raggiunge prestazioni competitive paragonabili a quelle dei modelli all'avanguardia di grandi dimensioni."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B è un modello di linguaggio distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando l'output di DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Progettato per una codifica efficiente e flussi di lavoro con agenti."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 è un modello MoE (Mixture of Experts) compatto, veloce ed economico, con 230 miliardi di parametri totali e 10 miliardi di parametri attivi, progettato per offrire prestazioni eccellenti nei compiti di codifica e agenti, mantenendo una forte intelligenza generale. Si distingue per le sue prestazioni in attività come l'editing di file multipli, il ciclo chiuso codifica-esecuzione-correzione, la verifica e correzione dei test, e le complesse catene di strumenti a collegamento lungo, rendendolo una scelta ideale per i flussi di lavoro degli sviluppatori."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B è il modello di punta di Mistral per edge computing."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "コンテンツに個人の機密情報(SPII)が含まれている可能性があります。プライバシー保護のため、該当する機密情報を削除してから再度お試しください。",
103
103
  "default": "コンテンツがブロックされました:{{blockReason}}。リクエスト内容を調整してから再度お試しください。"
104
104
  },
105
- "InsufficientQuota": "申し訳ありませんが、そのキーのクォータが上限に達しました。アカウントの残高を確認するか、キーのクォータを増やしてから再試行してください。",
105
+ "InsufficientQuota": "申し訳ありませんが、このキーのクォータが上限に達しました。アカウントの残高をご確認いただくか、キーのクォータを増やしてから再度お試しください。",
106
106
  "InvalidAccessCode": "パスワードが正しくないか空です。正しいアクセスパスワードを入力するか、カスタムAPIキーを追加してください",
107
107
  "InvalidBedrockCredentials": "Bedrockの認証に失敗しました。AccessKeyId/SecretAccessKeyを確認してから再試行してください。",
108
108
  "InvalidClerkUser": "申し訳ありませんが、現在ログインしていません。続行するにはログインまたはアカウント登録を行ってください",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "プラグインサーバーのリクエストエラーが発生しました。以下のエラーメッセージを参考に、プラグインのマニフェストファイル、設定、サーバー実装を確認してください",
132
132
  "PluginSettingsInvalid": "このプラグインを使用するには、正しい設定が必要です。設定が正しいかどうか確認してください",
133
133
  "ProviderBizError": "リクエスト {{provider}} サービスでエラーが発生しました。以下の情報を確認して再試行してください。",
134
- "QuotaLimitReached": "申し訳ありませんが、現在のトークン使用量またはリクエスト回数がこのキーのクォータ上限に達しました。キーのクォータを増やすか、後でもう一度お試しください。",
134
+ "QuotaLimitReached": "申し訳ありませんが、現在のトークン使用量またはリクエスト回数がこのキーのクォータ上限に達しています。キーのクォータを増やすか、しばらくしてから再度お試しください。",
135
135
  "StreamChunkError": "ストリーミングリクエストのメッセージブロック解析エラーです。現在のAPIインターフェースが標準仕様に準拠しているか確認するか、APIプロバイダーにお問い合わせください。",
136
136
  "SubscriptionKeyMismatch": "申し訳ありませんが、システムの一時的な障害により、現在のサブスクリプションの使用量が一時的に無効になっています。下のボタンをクリックしてサブスクリプションを復元するか、サポートを受けるためにメールでお問い合わせください。",
137
137
  "SubscriptionPlanLimit": "あなたのサブスクリプションポイントは使い果たされました。この機能を使用することはできません。より高いプランにアップグレードするか、カスタムモデルAPIを設定して引き続き使用してください。",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "設定ガイド",
297
297
  "responsesApi": {
298
- "desc": "OpenAIの新世代リクエストフォーマット規格を採用し、チェーン思考などの高度な機能を解放します",
298
+ "desc": "OpenAI の次世代リクエスト形式仕様を採用し、思考チェーンなどの高度な機能を解放します(OpenAI モデルのみ対応)",
299
299
  "title": "Responses API 規格の使用"
300
300
  },
301
301
  "waitingForMore": "さらに多くのモデルが <1>接続予定</1> です。お楽しみに"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1はオープンソースの重みを持つ大規模混合注意力推論モデルで、4560億のパラメータを有し、各トークンで約459億のパラメータが活性化されます。モデルは100万トークンの超長文コンテキストをネイティブにサポートし、ライトニングアテンション機構により10万トークンの生成タスクでDeepSeek R1と比べて75%の浮動小数点演算量を削減します。また、MiniMax-M1はMoE(混合エキスパート)アーキテクチャを採用し、CISPOアルゴリズムと混合注意力設計による効率的な強化学習トレーニングを組み合わせ、長文入力推論および実際のソフトウェア工学シナリオで業界最高の性能を実現しています。"
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 は、エージェントの効率性を再定義するコンパクトで高速かつコスト効率に優れた MoE(Mixture of Experts)モデルです。総パラメータ数は2,300億、アクティブパラメータは100億で、コーディングやエージェントタスクにおいて最高レベルの性能を発揮しつつ、強力な汎用知能を維持します。わずか100億のアクティブパラメータで、大規模モデルに匹敵する性能を実現しており、高効率なアプリケーションに最適な選択肢です。"
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "総パラメータ数1兆、活性化パラメータ320億。非思考モデルの中で、先端知識、数学、コーディングにおいてトップレベルの性能を持ち、汎用エージェントタスクに優れています。エージェントタスクに特化して最適化されており、質問に答えるだけでなく行動も可能です。即興的で汎用的なチャットやエージェント体験に最適で、長時間の思考を必要としない反射的モデルです。"
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1は極めて少ないラベル付きデータでモデルの推論能力を大幅に向上させました。最終回答を出力する前に、モデルは思考の連鎖を出力し、最終答えの正確性を高めます。"
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B 70B Llama モデルの蒸留版で、より効率的な変種です。テキスト生成タスクで強力な性能を維持しつつ、計算コストを削減し、展開や研究に適しています。Groq のカスタム言語処理ユニット(LPU)ハードウェアでサービス提供され、高速かつ効率的な推論を実現します。"
1161
+ "description": "DeepSeek R1 Distill Llama 70B は、Llama3.3 70B をベースにした大規模言語モデルであり、DeepSeek R1 によるファインチューニングを通じて、最先端の大規模モデルに匹敵する競争力のある性能を実現しています。"
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8BはLlama-3.1-8B-Instructに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。"
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "効率的なコーディングとエージェントワークフローのために設計されたモデルです。"
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 は、コンパクトで高速、かつコスト効率に優れた混合エキスパート(MoE)モデルで、総パラメータ数は2,300億、アクティブパラメータは100億です。コーディングやエージェントタスクにおいて最高の性能を発揮しながら、強力な汎用知能を維持します。複数ファイルの編集、コードの実行と修正のループ、テストによる検証と修復、複雑な長距離ツールチェーンの処理において優れた性能を示し、開発者のワークフローに最適なモデルです。"
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3BはMistralの世界トップクラスのエッジモデルです。"
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "콘텐츠에 민감한 개인 신원 정보가 포함되어 있을 수 있습니다. 개인정보 보호를 위해 해당 민감 정보를 제거한 뒤 다시 시도하세요.",
103
103
  "default": "내용이 차단되었습니다: {{blockReason}}. 요청 내용을 조정한 후 다시 시도하세요."
104
104
  },
105
- "InsufficientQuota": "죄송합니다. 해당 키의 할당량이 초과되었습니다. 계좌 잔액이 충분한지 확인하거나 할당량을 늘린 후 다시 시도해 주십시오.",
105
+ "InsufficientQuota": "죄송합니다. 해당 키의 할당량이 초과되었습니다. 계정 잔액이 충분한지 확인하거나 키의 할당량을 늘린 후 다시 시도해 주세요.",
106
106
  "InvalidAccessCode": "액세스 코드가 잘못되었거나 비어 있습니다. 올바른 액세스 코드를 입력하거나 사용자 지정 API 키를 추가하십시오.",
107
107
  "InvalidBedrockCredentials": "Bedrock 인증에 실패했습니다. AccessKeyId/SecretAccessKey를 확인한 후 다시 시도하십시오.",
108
108
  "InvalidClerkUser": "죄송합니다. 현재 로그인되어 있지 않습니다. 계속하려면 먼저 로그인하거나 계정을 등록해주세요.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "플러그인 서버 요청이 오류로 반환되었습니다. 플러그인 설명 파일, 플러그인 구성 또는 서버 구현을 확인해주세요.",
132
132
  "PluginSettingsInvalid": "플러그인을 사용하려면 올바른 구성이 필요합니다. 구성이 올바른지 확인해주세요.",
133
133
  "ProviderBizError": "요청한 {{provider}} 서비스에서 오류가 발생했습니다. 아래 정보를 확인하고 다시 시도해주세요.",
134
- "QuotaLimitReached": "죄송합니다. 현재 토큰 사용량 또는 요청 횟수가 해당 키의 할당량 한도에 도달했습니다. 해당 키의 할당량을 늘리거나 나중에 다시 시도해 주십시오.",
134
+ "QuotaLimitReached": "죄송합니다. 현재 토큰 사용량 또는 요청 횟수가 해당 키의 할당량 한도에 도달했습니다. 키의 할당량을 늘리거나 잠시 다시 시도해 주세요.",
135
135
  "StreamChunkError": "스트리밍 요청의 메시지 블록 구문 분석 오류입니다. 현재 API 인터페이스가 표준 규격에 부합하는지 확인하거나 API 공급자에게 문의하십시오.",
136
136
  "SubscriptionKeyMismatch": "죄송합니다. 시스템의 일시적인 오류로 인해 현재 구독 사용량이 일시적으로 비활성화되었습니다. 아래 버튼을 클릭하여 구독을 복구하시거나, 이메일로 저희에게 지원을 요청해 주시기 바랍니다.",
137
137
  "SubscriptionPlanLimit": "귀하의 구독 포인트가 소진되어 이 기능을 사용할 수 없습니다. 더 높은 요금제로 업그레이드하거나 사용자 정의 모델 API를 구성한 후 계속 사용하십시오.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "설정 가이드",
297
297
  "responsesApi": {
298
- "desc": "OpenAI의 차세대 요청 형식 규격을 사용하여 Chain of Thought 등 고급 기능을 활성화합니다",
298
+ "desc": "OpenAI의 차세대 요청 형식 규격을 사용하여, 사고의 흐름 등 고급 기능을 활성화합니다 (OpenAI 모델에서만 지원됨)",
299
299
  "title": "Responses API 규격 사용"
300
300
  },
301
301
  "waitingForMore": "더 많은 모델이 <1>도입 예정</1>입니다. 기대해 주세요"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1은 오픈 소스 가중치를 가진 대규모 혼합 주의 추론 모델로, 4,560억 개의 파라미터를 보유하고 있으며, 각 토큰당 약 459억 개의 파라미터가 활성화됩니다. 모델은 100만 토큰의 초장기 문맥을 원활히 지원하며, 번개 주의 메커니즘을 통해 10만 토큰 생성 작업에서 DeepSeek R1 대비 75%의 부동 소수점 연산량을 절감합니다. 또한 MiniMax-M1은 MoE(혼합 전문가) 아키텍처를 채택하고, CISPO 알고리즘과 혼합 주의 설계가 결합된 효율적인 강화 학습 훈련을 통해 긴 입력 추론과 실제 소프트웨어 엔지니어링 환경에서 업계 선도적인 성능을 구현합니다."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2는 에이전트를 위한 효율성을 새롭게 정의합니다. 이 모델은 2,300억 개의 총 파라미터와 100억 개의 활성 파라미터를 갖춘 컴팩트하고 빠르며 경제적인 MoE(Mixture of Experts) 모델로, 코딩 및 에이전트 작업에서 최고의 성능을 발휘하도록 설계되었으며, 강력한 범용 인공지능을 유지합니다. 단 100억 개의 활성 파라미터만으로도 대규모 모델에 필적하는 성능을 제공하여, 고효율 애플리케이션에 이상적인 선택이 됩니다."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "총 파라미터 1조, 활성화 파라미터 320억. 비사고 모델 중에서 최첨단 지식, 수학, 코딩 분야에서 최고 수준을 달성했으며, 범용 에이전트 작업에 더 강합니다. 에이전트 작업에 최적화되어 질문에 답변할 뿐만 아니라 행동도 수행할 수 있습니다. 즉흥적이고 범용적인 대화 및 에이전트 경험에 가장 적합하며, 장시간 사고가 필요 없는 반사 수준 모델입니다."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1은 매우 적은 라벨 데이터만으로도 모델 추론 능력을 크게 향상시켰습니다. 최종 답변 출력 전에 모델이 사고 과정(chain-of-thought)을 먼저 출력하여 최종 답변의 정확도를 높입니다."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B는 70B Llama 모델의 증류 효율적인 변형입니다. 텍스트 생성 작업에서 강력한 성능을 유지하면서 배포 연구를 위한 계산 비용을 줄였습니다. Groq의 맞춤형 언어 처리 유닛(LPU) 하드웨어를 사용하여 빠르고 효율적인 추론을 제공합니다."
1161
+ "description": "DeepSeek R1 Distill Llama 70B는 Llama3.3 70B 기반으로 대형 언어 모델로, DeepSeek R1의 출력으로 미세 조정되어 최첨단 대형 모델과 견줄 있는 경쟁력 있는 성능을 구현합니다."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B는 Llama-3.1-8B-Instruct를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "효율적인 코딩과 에이전트 워크플로우를 위해 설계되었습니다."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2는 2,300억 개의 총 파라미터와 100억 개의 활성 파라미터를 갖춘 컴팩트하고 빠르며 경제적인 혼합 전문가(MoE) 모델로, 코딩 및 에이전트 작업에서 최고의 성능을 발휘하도록 설계되었으며, 강력한 범용 인공지능을 유지합니다. 이 모델은 다중 파일 편집, 코드 실행-수정의 루프, 테스트 기반 검증 및 수정, 복잡한 장기 연결 툴체인 등에서 뛰어난 성능을 보여주며, 개발자 워크플로우에 이상적인 선택입니다."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B는 Mistral의 세계적 수준의 엣지 모델입니다."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Uw inhoud kan gevoelige persoonlijke identificatiegegevens bevatten. Verwijder dergelijke gevoelige gegevens om de privacy te beschermen en probeer het opnieuw.",
103
103
  "default": "Inhoud geblokkeerd: {{blockReason}}. Pas uw verzoek aan en probeer het opnieuw."
104
104
  },
105
- "InsufficientQuota": "Het spijt ons, de quotum van deze sleutel is bereikt. Controleer of uw account voldoende saldo heeft of vergroot het sleutelquotum en probeer het opnieuw.",
105
+ "InsufficientQuota": "Het spijt ons, het quotum voor deze sleutel is bereikt. Controleer of het saldo van uw account toereikend is of verhoog het quotum van de sleutel en probeer het opnieuw.",
106
106
  "InvalidAccessCode": "Ongeldige toegangscode: het wachtwoord is onjuist of leeg. Voer de juiste toegangscode in of voeg een aangepaste API-sleutel toe.",
107
107
  "InvalidBedrockCredentials": "Bedrock authentication failed, please check AccessKeyId/SecretAccessKey and retry",
108
108
  "InvalidClerkUser": "Sorry, you are not currently logged in. Please log in or register an account to continue.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Fout bij serverrespons voor plug-in. Controleer de foutinformatie hieronder voor uw plug-inbeschrijvingsbestand, plug-inconfiguratie of serverimplementatie",
132
132
  "PluginSettingsInvalid": "Deze plug-in moet correct geconfigureerd zijn voordat deze kan worden gebruikt. Controleer of uw configuratie juist is",
133
133
  "ProviderBizError": "Er is een fout opgetreden bij het aanvragen van de {{provider}}-service. Controleer de volgende informatie of probeer het opnieuw.",
134
- "QuotaLimitReached": "Het spijt ons, het huidige tokenverbruik of het aantal verzoeken heeft de quota-limiet van deze sleutel bereikt. Verhoog de quota van deze sleutel of probeer het later opnieuw.",
134
+ "QuotaLimitReached": "Het spijt ons, het aantal tokens of verzoeken heeft het quotum voor deze sleutel bereikt. Verhoog het quotum van de sleutel of probeer het later opnieuw.",
135
135
  "StreamChunkError": "Fout bij het parseren van het berichtblok van de streamingaanroep. Controleer of de huidige API-interface voldoet aan de standaardnormen, of neem contact op met uw API-leverancier voor advies.",
136
136
  "SubscriptionKeyMismatch": "Het spijt ons, maar door een tijdelijke systeemfout is het huidige abonnement tijdelijk ongeldig. Klik op de onderstaande knop om het abonnement te herstellen, of neem contact met ons op via e-mail voor ondersteuning.",
137
137
  "SubscriptionPlanLimit": "Uw abonnementscredits zijn op, u kunt deze functie niet gebruiken. Upgrade naar een hoger plan of configureer de aangepaste model-API om door te gaan.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Configuratiehandleiding",
297
297
  "responsesApi": {
298
- "desc": "Gebruik de nieuwe generatie OpenAI-aanvraagformaatstandaard om geavanceerde functies zoals keten van gedachten te ontgrendelen",
298
+ "desc": "Maakt gebruik van het nieuwe generatie aanvraagformaat van OpenAI om geavanceerde functies zoals Chain of Thought te ontgrendelen (alleen ondersteund door OpenAI-modellen)",
299
299
  "title": "Gebruik Responses API-standaard"
300
300
  },
301
301
  "waitingForMore": "Meer modellen zijn in <1>planning voor integratie</1>, blijf op de hoogte"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 is een open-source gewichtenschaalmodel met gemengde aandacht, met 456 miljard parameters, waarbij elke token ongeveer 45,9 miljard parameters activeert. Het model ondersteunt native een ultralange context van 1 miljoen tokens en bespaart dankzij het bliksemaandachtmechanisme 75% van de floating-point-bewerkingen bij generatietaken van 100.000 tokens vergeleken met DeepSeek R1. Tegelijkertijd maakt MiniMax-M1 gebruik van een MoE (Mixture of Experts) architectuur, gecombineerd met het CISPO-algoritme en een efficiënt versterkend leermodel met gemengde aandacht, wat leidt tot toonaangevende prestaties bij lange invoerredenering en echte software-engineering scenario's."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 herdefinieert efficiëntie voor agents. Het is een compact, snel en kosteneffectief MoE-model met 230 miljard totale parameters en 10 miljard actieve parameters. Het is ontworpen voor topprestaties bij codering en agenttaken, terwijl het een sterke algemene intelligentie behoudt. Met slechts 10 miljard actieve parameters levert MiniMax-M2 prestaties die vergelijkbaar zijn met grootschalige modellen, waardoor het een ideale keuze is voor toepassingen met hoge efficiëntie."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters is dit het toonaangevende niet-denkende model op het gebied van geavanceerde kennis, wiskunde en codering, en is het beter geschikt voor algemene agenttaken. Het is zorgvuldig geoptimaliseerd voor agenttaken, kan niet alleen vragen beantwoorden maar ook acties ondernemen. Ideaal voor improvisatie, algemene chat en agentervaringen, het is een reflexniveau model zonder lange denktijd."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 verbetert de redeneercapaciteit van het model aanzienlijk, zelfs met zeer weinig gelabelde data. Voor het geven van het uiteindelijke antwoord genereert het model eerst een keten van gedachten om de nauwkeurigheid van het antwoord te verhogen."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B is een gedistilleerde, efficiëntere variant van het 70B Llama-model. Het behoudt sterke prestaties bij tekstgeneratietaken en vermindert de rekenbelasting voor gemakkelijke implementatie en onderzoek. Gehost door Groq met hun aangepaste Language Processing Unit (LPU) hardware voor snelle en efficiënte inferentie."
1161
+ "description": "DeepSeek R1 Distill Llama 70B is een groot taalmodel gebaseerd op Llama3.3 70B. Het model maakt gebruik van fine-tuning op basis van de output van DeepSeek R1 en behaalt concurrerende prestaties die vergelijkbaar zijn met toonaangevende grote modellen."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B is een gedistilleerd groot taalmodel gebaseerd op Llama-3.1-8B-Instruct, dat is getraind met behulp van de output van DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Speciaal ontworpen voor efficiënte codering en agent-workflows."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 is een compact, snel en kosteneffectief Mixture-of-Experts (MoE) model met 230 miljard totale parameters en 10 miljard actieve parameters. Het is ontworpen voor topprestaties bij codering en agenttaken, terwijl het een sterke algemene intelligentie behoudt. Het model blinkt uit in bewerkingen met meerdere bestanden, de code-run-fix-cyclus, testvalidatie en -correctie, en complexe langetermijn toolchains, waardoor het een ideale keuze is voor ontwikkelaarsworkflows."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B is het toonaangevende edge-model van Mistral."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Twoja treść może zawierać wrażliwe dane osobowe. Aby chronić prywatność, usuń te informacje i spróbuj ponownie.",
103
103
  "default": "Treść została zablokowana: {{blockReason}}. Dostosuj proszę zapytanie i spróbuj ponownie."
104
104
  },
105
- "InsufficientQuota": "Przykro nam, limit dla tego klucza został osiągnięty. Proszę sprawdzić saldo konta lub zwiększyć limit klucza i spróbować ponownie.",
105
+ "InsufficientQuota": "Przepraszamy, limit przydziału (quota) dla tego klucza został osiągnięty. Proszę sprawdzić, czy saldo konta jest wystarczające lub zwiększyć przydział klucza i spróbować ponownie.",
106
106
  "InvalidAccessCode": "Nieprawidłowy kod dostępu: Hasło jest nieprawidłowe lub puste. Proszę wprowadzić poprawne hasło dostępu lub dodać niestandardowy klucz API.",
107
107
  "InvalidBedrockCredentials": "Uwierzytelnienie Bedrock nie powiodło się, prosimy sprawdzić AccessKeyId/SecretAccessKey i spróbować ponownie.",
108
108
  "InvalidClerkUser": "Przepraszamy, nie jesteś obecnie zalogowany. Proszę najpierw zalogować się lub zarejestrować, aby kontynuować.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Błąd zwrócony przez serwer wtyczki. Proszę sprawdź plik opisowy wtyczki, konfigurację wtyczki lub implementację serwera zgodnie z poniższymi informacjami o błędzie",
132
132
  "PluginSettingsInvalid": "Ta wtyczka wymaga poprawnej konfiguracji przed użyciem. Proszę sprawdź, czy Twoja konfiguracja jest poprawna",
133
133
  "ProviderBizError": "Wystąpił błąd usługi {{provider}}, proszę sprawdzić poniższe informacje lub spróbować ponownie",
134
- "QuotaLimitReached": "Przykro nam, bieżące zużycie tokenów lub liczba żądań osiągnęła limit kwoty dla tego klucza. Proszę zwiększyć limit kwoty dla tego klucza lub spróbować ponownie później.",
134
+ "QuotaLimitReached": "Przepraszamy, bieżące zużycie tokenów lub liczba żądań osiągnęły limit przydziału (quota) dla tego klucza. Proszę zwiększyć przydział klucza lub spróbować ponownie później.",
135
135
  "StreamChunkError": "Błąd analizy bloku wiadomości w żądaniu strumieniowym. Proszę sprawdzić, czy aktualny interfejs API jest zgodny z normami, lub skontaktować się z dostawcą API w celu uzyskania informacji.",
136
136
  "SubscriptionKeyMismatch": "Przepraszamy, z powodu sporadycznych awarii systemu, bieżące zużycie subskrypcji jest tymczasowo nieaktywne. Proszę kliknąć przycisk poniżej, aby przywrócić subskrypcję lub skontaktować się z nami drogą mailową w celu uzyskania wsparcia.",
137
137
  "SubscriptionPlanLimit": "Twoje punkty subskrypcyjne zostały wyczerpane, nie możesz korzystać z tej funkcji. Proszę zaktualizować do wyższego planu lub skonfigurować API modelu niestandardowego, aby kontynuować korzystanie.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Dokumentacja konfiguracyjna",
297
297
  "responsesApi": {
298
- "desc": "Wykorzystuje nową generację formatu zapytań OpenAI, odblokowując zaawansowane funkcje, takie jak łańcuchy myślowe",
298
+ "desc": "Zgodne z nowym formatem żądań OpenAI, umożliwia korzystanie z zaawansowanych funkcji, takich jak łańcuchy myślowe (obsługiwane tylko przez modele OpenAI)",
299
299
  "title": "Użyj specyfikacji Responses API"
300
300
  },
301
301
  "waitingForMore": "Więcej modeli jest w <1>planach integracji</1>, proszę czekać"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 to otwartoźródłowy model inferencyjny o dużej skali z mieszanym mechanizmem uwagi, posiadający 456 miliardów parametrów, z których około 45,9 miliarda jest aktywowanych na każdy token. Model natywnie obsługuje ultra-długi kontekst do 1 miliona tokenów i dzięki mechanizmowi błyskawicznej uwagi oszczędza 75% operacji zmiennoprzecinkowych w zadaniach generowania na 100 tysiącach tokenów w porównaniu do DeepSeek R1. Ponadto MiniMax-M1 wykorzystuje architekturę MoE (mieszani eksperci), łącząc algorytm CISPO z efektywnym treningiem wzmacniającym opartym na mieszanej uwadze, osiągając wiodącą w branży wydajność w inferencji długich wejść i rzeczywistych scenariuszach inżynierii oprogramowania."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 na nowo definiuje wydajność agentów inteligentnych. To kompaktowy, szybki i ekonomiczny model MoE (Mixture of Experts) z 230 miliardami całkowitych parametrów i 10 miliardami aktywnych parametrów, zaprojektowany z myślą o najwyższej wydajności w zadaniach kodowania i agentowych, przy jednoczesnym zachowaniu silnej inteligencji ogólnej. Dzięki zaledwie 10 miliardom aktywnych parametrów, MiniMax-M2 oferuje wydajność porównywalną z dużymi modelami, co czyni go idealnym wyborem dla zastosowań wymagających wysokiej efektywności."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Model o łącznej liczbie parametrów 1 biliona i aktywowanych 32 miliardach parametrów. Wśród modeli nie myślących osiąga czołowe wyniki w wiedzy specjalistycznej, matematyce i kodowaniu, lepiej radząc sobie z zadaniami ogólnymi agenta. Model jest starannie zoptymalizowany pod kątem zadań agenta, potrafi nie tylko odpowiadać na pytania, ale także podejmować działania. Idealny do improwizacji, ogólnej rozmowy i doświadczeń agenta, działający na poziomie refleksu bez potrzeby długiego przetwarzania."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 znacząco poprawia zdolność wnioskowania modelu nawet przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi model najpierw generuje łańcuch myślowy, co zwiększa dokładność końcowej odpowiedzi."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B to zdystylowana, bardziej wydajna wersja modelu Llama 70B. Utrzymuje silną wydajność w zadaniach generowania tekstu, zmniejszając koszty obliczeniowe dla łatwiejszego wdrożenia i badań. Obsługiwany przez Groq na ich niestandardowym sprzęcie LPU, zapewnia szybkie i efektywne wnioskowanie."
1161
+ "description": "DeepSeek R1 Distill Llama 70B to duży model językowy oparty na Llama3.3 70B, który dzięki dostrojeniu na podstawie wyników DeepSeek R1 osiąga konkurencyjną wydajność porównywalną z czołowymi modelami najnowszej generacji."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B to destylowany duży model językowy oparty na Llama-3.1-8B-Instruct, wytrenowany przy użyciu wyjścia DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Stworzony z myślą o wydajnym kodowaniu i przepływach pracy agentów."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 to kompaktowy, szybki i ekonomiczny model MoE (Mixture of Experts) z 230 miliardami całkowitych parametrów i 10 miliardami aktywnych parametrów, zaprojektowany z myślą o najwyższej wydajności w zadaniach kodowania i agentowych, przy jednoczesnym zachowaniu silnej inteligencji ogólnej. Model ten doskonale sprawdza się w edycji wielu plików, zamkniętej pętli kodowanie-uruchamianie-naprawa, testowaniu i weryfikacji poprawek oraz w złożonych, długich łańcuchach narzędziowych, co czyni go idealnym wyborem dla przepływów pracy deweloperów."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B to czołowy model brzegowy Mistrala."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Seu conteúdo pode conter informações pessoais sensíveis. Para proteger a privacidade, remova essas informações e tente novamente.",
103
103
  "default": "Conteúdo bloqueado: {{blockReason}}。Ajuste sua solicitação e tente novamente。"
104
104
  },
105
- "InsufficientQuota": "Desculpe, a cota dessa chave atingiu o limite. Verifique se o saldo da conta é suficiente ou aumente a cota da chave e tente novamente.",
105
+ "InsufficientQuota": "Desculpe, a cota desta chave foi atingida. Verifique se saldo suficiente na conta ou aumente a cota da chave antes de tentar novamente.",
106
106
  "InvalidAccessCode": "Senha de acesso inválida ou em branco. Por favor, insira a senha de acesso correta ou adicione uma Chave de API personalizada.",
107
107
  "InvalidBedrockCredentials": "Credenciais Bedrock inválidas, por favor, verifique AccessKeyId/SecretAccessKey e tente novamente",
108
108
  "InvalidClerkUser": "Desculpe, você ainda não fez login. Por favor, faça login ou registre uma conta antes de continuar.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Erro na resposta do servidor do plugin. Verifique o arquivo de descrição do plugin, a configuração do plugin ou a implementação do servidor de acordo com as informações de erro abaixo",
132
132
  "PluginSettingsInvalid": "Este plugin precisa ser configurado corretamente antes de ser usado. Verifique se sua configuração está correta",
133
133
  "ProviderBizError": "Erro no serviço {{provider}} solicitado. Por favor, verifique as informações abaixo ou tente novamente.",
134
- "QuotaLimitReached": "Desculpe, o uso atual de tokens ou o número de solicitações atingiu o limite de quota da chave. Por favor, aumente a quota dessa chave ou tente novamente mais tarde.",
134
+ "QuotaLimitReached": "Desculpe, o uso de tokens ou o número de solicitações atingiu o limite da cota desta chave. Aumente a cota da chave ou tente novamente mais tarde.",
135
135
  "StreamChunkError": "Erro de análise do bloco de mensagem da solicitação em fluxo. Verifique se a interface da API atual está em conformidade com os padrões ou entre em contato com seu fornecedor de API para mais informações.",
136
136
  "SubscriptionKeyMismatch": "Desculpe, devido a uma falha ocasional no sistema, o uso da assinatura atual está temporariamente inativo. Por favor, clique no botão abaixo para restaurar a assinatura ou entre em contato conosco por e-mail para obter suporte.",
137
137
  "SubscriptionPlanLimit": "Seu limite de pontos de assinatura foi atingido, não é possível usar essa funcionalidade. Por favor, faça um upgrade para um plano superior ou configure a API do modelo personalizado para continuar usando.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Tutorial de Configuração",
297
297
  "responsesApi": {
298
- "desc": "Adota o novo padrão de formato de requisição da OpenAI, desbloqueando recursos avançados como cadeias de raciocínio",
298
+ "desc": "Adota o novo formato de solicitação da OpenAI, desbloqueando recursos avançados como Cadeia de Raciocínio (disponível apenas para modelos da OpenAI)",
299
299
  "title": "Usar o padrão Responses API"
300
300
  },
301
301
  "waitingForMore": "Mais modelos estão <1>planejados para integração</1>, fique atento"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 é um modelo de inferência de atenção mista em grande escala com pesos abertos, possuindo 456 bilhões de parâmetros, com cerca de 45,9 bilhões de parâmetros ativados por token. O modelo suporta nativamente contextos ultra longos de 1 milhão de tokens e, graças ao mecanismo de atenção relâmpago, economiza 75% do custo computacional em operações de ponto flutuante em tarefas de geração com 100 mil tokens, em comparação com o DeepSeek R1. Além disso, MiniMax-M1 utiliza a arquitetura MoE (Mistura de Especialistas), combinando o algoritmo CISPO e um design eficiente de atenção mista para treinamento reforçado, alcançando desempenho líder na indústria em inferência de entradas longas e cenários reais de engenharia de software."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "O MiniMax-M2 redefine a eficiência para agentes inteligentes. É um modelo MoE compacto, rápido e econômico, com 230 bilhões de parâmetros totais e 10 bilhões de parâmetros ativos, projetado para oferecer desempenho de ponta em tarefas de codificação e agentes, mantendo uma inteligência geral robusta. Com apenas 10 bilhões de parâmetros ativos, o MiniMax-M2 oferece desempenho comparável a modelos de grande escala, tornando-se a escolha ideal para aplicações de alta eficiência."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Com 1 trilhão de parâmetros totais e 32 bilhões de parâmetros ativados, este modelo não reflexivo alcança níveis de ponta em conhecimento avançado, matemática e codificação, sendo especialmente apto para tarefas gerais de agentes. Otimizado para tarefas de agentes, não apenas responde perguntas, mas também pode agir. Ideal para conversas improvisadas, experiências gerais de chat e agentes, funcionando como um modelo reflexivo sem necessidade de longos processos de pensamento."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 melhora significativamente a capacidade de raciocínio do modelo mesmo com poucos dados anotados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B é uma variante destilada e mais eficiente do modelo Llama 70B. Mantém desempenho robusto em tarefas de geração de texto, reduzindo o custo computacional para facilitar implantação e pesquisa. Atendido pela Groq usando seu hardware personalizado de unidade de processamento de linguagem (LPU) para fornecer inferência rápida e eficiente."
1161
+ "description": "O DeepSeek R1 Distill Llama 70B é um modelo de linguagem de grande porte baseado no Llama3.3 70B. Utilizando o ajuste fino derivado da saída do DeepSeek R1, ele alcança um desempenho competitivo comparável aos modelos de ponta de grande escala."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B é um modelo de linguagem grande destilado baseado no Llama-3.1-8B-Instruct, treinado usando a saída do DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Projetado para codificação eficiente e fluxos de trabalho com agentes."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "O MiniMax-M2 é um modelo de especialistas mistos (MoE) compacto, rápido e econômico, com 230 bilhões de parâmetros totais e 10 bilhões de parâmetros ativos, projetado para oferecer desempenho de alto nível em tarefas de codificação e agentes, mantendo uma inteligência geral poderosa. O modelo se destaca em edição de múltiplos arquivos, ciclos de codificação-execução-correção, verificação e correção de testes, bem como em cadeias de ferramentas complexas e de longo alcance, sendo a escolha ideal para fluxos de trabalho de desenvolvedores."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B é o modelo de ponta da Mistral para aplicações de edge computing."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Ваш запрос может содержать конфиденциальную личную информацию. Для защиты приватности удалите соответствующие данные и попробуйте снова.",
103
103
  "default": "Содержимое заблокировано: {{blockReason}}. Пожалуйста, отредактируйте запрос и попробуйте снова."
104
104
  },
105
- "InsufficientQuota": "Извините, квота для этого ключа достигла предела. Пожалуйста, проверьте, достаточно ли средств на вашем счете, или увеличьте квоту ключа и попробуйте снова.",
105
+ "InsufficientQuota": "Извините, квота для данного ключа исчерпана. Пожалуйста, проверьте баланс вашего аккаунта или увеличьте квоту ключа и попробуйте снова.",
106
106
  "InvalidAccessCode": "Неверный код доступа: введите правильный код доступа или добавьте пользовательский ключ API",
107
107
  "InvalidBedrockCredentials": "Аутентификация Bedrock не прошла, пожалуйста, проверьте AccessKeyId/SecretAccessKey и повторите попытку",
108
108
  "InvalidClerkUser": "Извините, вы еще не вошли в систему. Пожалуйста, войдите или зарегистрируйтесь, прежде чем продолжить",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Запрос сервера плагина возвратил ошибку. Проверьте файл манифеста плагина, конфигурацию плагина или реализацию сервера на основе информации об ошибке ниже",
132
132
  "PluginSettingsInvalid": "Этот плагин необходимо правильно настроить, прежде чем его можно будет использовать. Пожалуйста, проверьте правильность вашей конфигурации",
133
133
  "ProviderBizError": "Ошибка обслуживания {{provider}}. Пожалуйста, проверьте следующую информацию или повторите попытку",
134
- "QuotaLimitReached": "Извините, текущий объем токенов или количество запросов достигло предела квоты для этого ключа. Пожалуйста, увеличьте квоту для этого ключа или попробуйте позже.",
134
+ "QuotaLimitReached": "Извините, текущее использование токенов или количество запросов достигло лимита квоты для данного ключа. Пожалуйста, увеличьте квоту ключа или попробуйте позже.",
135
135
  "StreamChunkError": "Ошибка разбора блока сообщения потокового запроса. Пожалуйста, проверьте, соответствует ли текущий API стандартам, или свяжитесь с вашим поставщиком API для получения консультации.",
136
136
  "SubscriptionKeyMismatch": "К сожалению, из-за случайного сбоя в системе текущий объем подписки временно недоступен. Пожалуйста, нажмите кнопку ниже, чтобы восстановить подписку, или свяжитесь с нами по электронной почте для получения поддержки.",
137
137
  "SubscriptionPlanLimit": "Ваши подписочные баллы исчерпаны, вы не можете использовать эту функцию. Пожалуйста, обновите до более высокого плана или настройте API пользовательской модели, чтобы продолжить использование.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Документация по настройке",
297
297
  "responsesApi": {
298
- "desc": "Использует новый формат запросов OpenAI, открывая доступ к таким продвинутым функциям, как цепочки мышления",
298
+ "desc": "Использует новый формат запроса OpenAI, открывая доступ к продвинутым функциям, таким как цепочки рассуждений (поддерживается только моделями OpenAI)",
299
299
  "title": "Использование спецификации Responses API"
300
300
  },
301
301
  "waitingForMore": "Больше моделей находится в <1>планировании подключения</1>, ожидайте с нетерпением"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 — это масштабная модель вывода с гибридным вниманием и открытыми весами, содержащая 456 миллиардов параметров, при этом каждый токен активирует около 45,9 миллиарда параметров. Модель изначально поддерживает сверхдлинный контекст до 1 миллиона токенов и благодаря механизму молниеносного внимания экономит 75% вычислительных операций с плавающей точкой в задачах генерации на 100 тысяч токенов по сравнению с DeepSeek R1. Кроме того, MiniMax-M1 использует архитектуру MoE (смешанные эксперты), сочетая алгоритм CISPO и эффективное обучение с подкреплением с гибридным вниманием, достигая ведущих в отрасли показателей при выводе на длинных входах и в реальных сценариях программной инженерии."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 переопределяет эффективность для интеллектуальных агентов. Это компактная, быстрая и экономичная модель MoE с общим числом параметров 230 миллиардов и 10 миллиардами активных параметров. Она разработана для достижения выдающейся производительности в задачах кодирования и работы агентов, при этом сохраняя мощный уровень общей интеллектуальности. Благодаря использованию всего 10 миллиардов активных параметров, MiniMax-M2 обеспечивает производительность, сопоставимую с крупномасштабными моделями, что делает её идеальным выбором для высокоэффективных приложений."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Общая численность параметров — 1 триллион, активируемых параметров — 32 миллиарда. Среди немыслящих моделей достигает передовых результатов в области актуальных знаний, математики и программирования, особенно эффективна для универсальных агентских задач. Модель тщательно оптимизирована для агентских задач, способна не только отвечать на вопросы, но и предпринимать действия. Идеально подходит для импровизационного, универсального общения и агентских сценариев, являясь моделью рефлекторного уровня без необходимости длительного обдумывания."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 значительно улучшил способность модели к рассуждению при минимальном количестве размеченных данных. Перед выводом окончательного ответа модель сначала генерирует цепочку рассуждений для повышения точности ответа."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B — дистиллированная и более эффективная версия модели Llama 70B. Она сохраняет высокую производительность в задачах генерации текста при сниженных вычислительных затратах для удобства развертывания и исследований. Обслуживается на аппаратуре Groq с использованием их специализированных языковых процессорных блоков (LPU) для быстрой и эффективной работы."
1161
+ "description": "DeepSeek R1 Distill Llama 70B — это крупная языковая модель на основе Llama3.3 70B, которая была дообучена с использованием выходных данных DeepSeek R1 и достигла конкурентоспособной производительности, сопоставимой с передовыми крупными моделями."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B — это дистиллированная большая языковая модель на основе Llama-3.1-8B-Instruct, обученная с использованием выходных данных DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Создана для эффективного кодирования и рабочих процессов агентов."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 — это компактная, быстрая и экономичная модель с архитектурой смешанных экспертов (MoE), обладающая 230 миллиардами общих параметров и 10 миллиардами активных параметров. Она разработана для достижения выдающейся производительности в задачах кодирования и работы агентов, при этом сохраняя мощную общую интеллектуальность. Модель демонстрирует отличные результаты в редактировании нескольких файлов, замкнутом цикле кодирования-запуска-исправления, проверке и исправлении тестов, а также в сложных цепочках инструментов с длинными связями, что делает её идеальным выбором для рабочих процессов разработчиков."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B - это выдающаяся модель от Mistral."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "İçeriğiniz hassas kişisel kimlik bilgileri içerebilir. Gizliliği korumak için lütfen ilgili hassas bilgileri kaldırıp tekrar deneyin.",
103
103
  "default": "İçerik engellendi: {{blockReason}}。Lütfen isteğinizin içeriğini düzenleyip tekrar deneyin."
104
104
  },
105
- "InsufficientQuota": "Üzgünüm, bu anahtarın kotası (quota) dolmuş durumda, lütfen hesap bakiyenizi kontrol edin veya anahtar kotasını artırdıktan sonra tekrar deneyin",
105
+ "InsufficientQuota": "Üzgünüz, bu anahtarın kotası doldu. Lütfen hesap bakiyenizin yeterli olup olmadığını kontrol edin veya anahtar kotasını artırdıktan sonra tekrar deneyin.",
106
106
  "InvalidAccessCode": "Geçersiz Erişim Kodu: Geçersiz veya boş bir şifre girdiniz. Lütfen doğru erişim şifresini girin veya özel API Anahtarı ekleyin.",
107
107
  "InvalidBedrockCredentials": "Bedrock kimlik doğrulaması geçersiz, lütfen AccessKeyId/SecretAccessKey bilgilerinizi kontrol edip tekrar deneyin",
108
108
  "InvalidClerkUser": "Üzgünüz, şu anda giriş yapmadınız. Lütfen işlemlere devam etmeden önce giriş yapın veya hesap oluşturun",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Eklenti sunucusu isteği bir hata ile döndü. Lütfen aşağıdaki hata bilgilerine dayanarak eklenti bildirim dosyanızı, eklenti yapılandırmanızı veya sunucu uygulamanızı kontrol edin",
132
132
  "PluginSettingsInvalid": "Bu eklenti, kullanılmadan önce doğru şekilde yapılandırılmalıdır. Lütfen yapılandırmanızın doğru olup olmadığını kontrol edin",
133
133
  "ProviderBizError": "Talep {{provider}} hizmetinde bir hata oluştu, lütfen aşağıdaki bilgilere göre sorunu giderin veya tekrar deneyin",
134
- "QuotaLimitReached": "Üzgünüz, mevcut Token kullanımı veya istek sayısı bu anahtarın kota (quota) sınırına ulaştı. Lütfen bu anahtarın kotasını artırın veya daha sonra tekrar deneyin.",
134
+ "QuotaLimitReached": "Üzgünüz, mevcut Token kullanımı veya istek sayısı bu anahtarın kota sınırına ulaştı. Lütfen anahtar kotasını artırın ya da daha sonra tekrar deneyin.",
135
135
  "StreamChunkError": "Akış isteği mesaj parçası çözümleme hatası, lütfen mevcut API arayüzünün standartlara uygun olup olmadığını kontrol edin veya API sağlayıcınızla iletişime geçin.",
136
136
  "SubscriptionKeyMismatch": "Üzgünüz, sistemdeki geçici bir arıza nedeniyle mevcut abonelik kullanımınız geçici olarak devre dışı kalmıştır. Lütfen aşağıdaki düğmeye tıklayarak aboneliğinizi geri yükleyin veya destek almak için bizimle iletişime geçin.",
137
137
  "SubscriptionPlanLimit": "Abonelik puanlarınız tükenmiştir, bu özelliği kullanamazsınız. Lütfen daha yüksek bir plana geçin veya özel model API'sini yapılandırarak devam edin.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Yapılandırma Kılavuzu",
297
297
  "responsesApi": {
298
- "desc": "OpenAI'nin yeni nesil istek formatı standardını kullanarak düşünce zinciri gibi gelişmiş özelliklerin kilidini açın",
298
+ "desc": "OpenAI'nin yeni nesil istek formatı standardını kullanır, düşünce zinciri gibi gelişmiş özelliklerin kilidini açar (yalnızca OpenAI modelleri desteklenir)",
299
299
  "title": "Responses API Standardını Kullan"
300
300
  },
301
301
  "waitingForMore": "Daha fazla model <1>planlanıyor</1>, lütfen bekleyin"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1, açık kaynak ağırlıklı büyük ölçekli karma dikkat çıkarım modeli olup, 456 milyar parametreye sahiptir ve her Token yaklaşık 45.9 milyar parametreyi aktive eder. Model, doğal olarak 1 milyon Token uzunluğunda bağlamı destekler ve şimşek dikkat mekanizması sayesinde 100 bin Token üretim görevlerinde DeepSeek R1'e kıyasla %75 daha az kayan nokta işlemi kullanır. Ayrıca, MiniMax-M1 MoE (karışık uzman) mimarisini, CISPO algoritması ve karma dikkat tasarımı ile verimli pekiştirmeli öğrenme eğitimiyle birleştirerek uzun giriş çıkarımı ve gerçek yazılım mühendisliği senaryolarında sektör lideri performans sunar."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2, yapay zekâ ajanları için verimliliği yeniden tanımlıyor. 230 milyar toplam parametreye ve 10 milyar etkin parametreye sahip olan bu kompakt, hızlı ve ekonomik MoE (Uzman Karışımı) modeli, kodlama ve yapay zekâ görevlerinde üstün performans sunmak üzere tasarlanmıştır ve aynı zamanda güçlü bir genel zekâ kapasitesini korur. Sadece 10 milyar etkin parametreyle, MiniMax-M2 büyük ölçekli modellerle karşılaştırılabilir bir performans sunarak yüksek verimlilik gerektiren uygulamalar için ideal bir tercih haline gelir."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Toplam 1 trilyon parametre, 32 milyar aktif parametreye sahip. Düşünme modeli olmayanlar arasında, güncel bilgi, matematik ve kodlama alanlarında en üst düzeyde performans gösterir ve genel ajan görevlerinde daha yetkindir. Ajan görevleri için optimize edilmiştir; sadece soruları yanıtlamakla kalmaz, aynı zamanda eylem de gerçekleştirebilir. Doğaçlama, genel sohbet ve ajan deneyimleri için en uygunudur; uzun düşünme gerektirmeyen refleks seviyesinde bir modeldir."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1, çok az etiketli veri ile modelin akıl yürütme yeteneğini büyük ölçüde artırır. Nihai yanıtı vermeden önce, model doğruluğu artırmak için bir düşünce zinciri çıktısı üretir."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B, 70B Llama modelinin damıtılmış ve daha verimli bir varyantıdır. Metin üretimi görevlerinde güçlü performansını korur, hesaplama maliyetini azaltarak dağıtım ve araştırmayı kolaylaştırır. Groq tarafından özel Dil İşleme Birimi (LPU) donanımı ile hizmet verilir ve hızlı, verimli çıkarım sağlar."
1161
+ "description": "DeepSeek R1 Distill Llama 70B, Llama3.3 70B tabanlı büyük bir dil modelidir. Bu model, DeepSeek R1 tarafından sağlanan ince ayarlarla, öncü büyük modellerle kıyaslanabilir rekabetçi bir performans elde etmiştir."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B, Llama-3.1-8B-Instruct tabanlı bir damıtılmış büyük dil modelidir ve DeepSeek R1'in çıktısını kullanarak eğitilmiştir."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Verimli kodlama ve Agent iş akışları için özel olarak tasarlanmıştır."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2, 230 milyar toplam parametreye ve 10 milyar etkin parametreye sahip kompakt, hızlı ve ekonomik bir Uzman Karışımı (MoE) modelidir. Kodlama ve yapay zekâ görevlerinde üstün performans sunmak üzere tasarlanmış olup, güçlü bir genel zekâ kapasitesini de korur. Çoklu dosya düzenleme, kodla-çalıştır-düzelt döngüsü, test doğrulama ve düzeltme ile karmaşık uzun zincirli araç zincirlerinde üstün performans göstererek geliştirici iş akışları için ideal bir seçimdir."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B, Mistral'ın dünya çapında en üst düzey kenar modelidir."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Nội dung của bạn có thể chứa thông tin cá nhân nhạy cảm. Để bảo vệ quyền riêng tư, vui lòng loại bỏ các thông tin nhạy cảm liên quan rồi thử lại.",
103
103
  "default": "Nội dung bị chặn: {{blockReason}}。Vui lòng điều chỉnh yêu cầu rồi thử lại。"
104
104
  },
105
- "InsufficientQuota": "Xin lỗi, hạn mức của khóa này đã đạt giới hạn, vui lòng kiểm tra số dư tài khoản của bạn hoặc tăng hạn mức khóa trước khi thử lại",
105
+ "InsufficientQuota": "Rất tiếc, hạn ngạch (quota) của khóa này đã đạt giới hạn. Vui lòng kiểm tra số dư tài khoản hoặc tăng hạn ngạch của khóa rồi thử lại.",
106
106
  "InvalidAccessCode": "Mật khẩu truy cập không hợp lệ hoặc trống, vui lòng nhập mật khẩu truy cập đúng hoặc thêm Khóa API tùy chỉnh",
107
107
  "InvalidBedrockCredentials": "Xác thực Bedrock không thành công, vui lòng kiểm tra AccessKeyId/SecretAccessKey và thử lại",
108
108
  "InvalidClerkUser": "Xin lỗi, bạn chưa đăng nhập. Vui lòng đăng nhập hoặc đăng ký tài khoản trước khi tiếp tục.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Lỗi trả về từ máy chủ plugin, vui lòng kiểm tra tệp mô tả plugin, cấu hình plugin hoặc triển khai máy chủ theo thông tin lỗi dưới đây",
132
132
  "PluginSettingsInvalid": "Plugin cần phải được cấu hình đúng trước khi sử dụng, vui lòng kiểm tra cấu hình của bạn có đúng không",
133
133
  "ProviderBizError": "Yêu cầu dịch vụ {{provider}} gặp sự cố, vui lòng kiểm tra thông tin dưới đây hoặc thử lại",
134
- "QuotaLimitReached": "Xin lỗi, lượng Token hiện tại hoặc số lần yêu cầu đã đạt đến giới hạn quota của khóa này, vui lòng tăng quota của khóa hoặc thử lại sau.",
134
+ "QuotaLimitReached": "Rất tiếc, số lượng Token sử dụng hoặc số lần yêu cầu hiện tại đã đạt giới hạn hạn ngạch (quota) của khóa này. Vui lòng tăng hạn ngạch của khóa hoặc thử lại sau.",
135
135
  "StreamChunkError": "Lỗi phân tích khối tin nhắn yêu cầu luồng, vui lòng kiểm tra xem API hiện tại có tuân thủ tiêu chuẩn hay không, hoặc liên hệ với nhà cung cấp API của bạn để được tư vấn.",
136
136
  "SubscriptionKeyMismatch": "Xin lỗi, do sự cố hệ thống tạm thời, lượng sử dụng đăng ký hiện tại đã không còn hiệu lực. Vui lòng nhấp vào nút bên dưới để khôi phục đăng ký hoặc gửi email cho chúng tôi để nhận hỗ trợ.",
137
137
  "SubscriptionPlanLimit": "Điểm đăng ký của bạn đã hết, không thể sử dụng tính năng này. Vui lòng nâng cấp lên gói cao hơn hoặc cấu hình API mô hình tùy chỉnh để tiếp tục sử dụng.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Hướng dẫn cấu hình",
297
297
  "responsesApi": {
298
- "desc": "Sử dụng định dạng yêu cầu thế hệ mới của OpenAI, mở khóa các tính năng nâng cao như chuỗi suy nghĩ",
298
+ "desc": "Áp dụng định dạng yêu cầu thế hệ mới của OpenAI, mở khóa các tính năng nâng cao như chuỗi duy (chỉ hỗ trợ mô hình OpenAI)",
299
299
  "title": "Sử dụng chuẩn Responses API"
300
300
  },
301
301
  "waitingForMore": "Nhiều mô hình hơn đang <1>được lên kế hoạch</1>, xin hãy chờ đợi"