@lobehub/lobehub 2.0.0-next.81 → 2.0.0-next.83

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. package/CHANGELOG.md +58 -0
  2. package/changelog/v1.json +21 -0
  3. package/docs/usage/providers/comfyui.mdx +1 -1
  4. package/docs/usage/providers/comfyui.zh-CN.mdx +1 -1
  5. package/locales/ar/error.json +2 -2
  6. package/locales/ar/modelProvider.json +1 -1
  7. package/locales/ar/models.json +7 -1
  8. package/locales/bg-BG/error.json +2 -2
  9. package/locales/bg-BG/modelProvider.json +1 -1
  10. package/locales/bg-BG/models.json +7 -1
  11. package/locales/de-DE/error.json +2 -2
  12. package/locales/de-DE/modelProvider.json +1 -1
  13. package/locales/de-DE/models.json +7 -1
  14. package/locales/en-US/error.json +2 -2
  15. package/locales/en-US/modelProvider.json +1 -1
  16. package/locales/en-US/models.json +7 -1
  17. package/locales/es-ES/error.json +2 -2
  18. package/locales/es-ES/modelProvider.json +1 -1
  19. package/locales/es-ES/models.json +7 -1
  20. package/locales/fa-IR/error.json +2 -2
  21. package/locales/fa-IR/modelProvider.json +1 -1
  22. package/locales/fa-IR/models.json +7 -1
  23. package/locales/fr-FR/error.json +2 -2
  24. package/locales/fr-FR/modelProvider.json +1 -1
  25. package/locales/fr-FR/models.json +7 -1
  26. package/locales/it-IT/error.json +2 -2
  27. package/locales/it-IT/modelProvider.json +1 -1
  28. package/locales/it-IT/models.json +7 -1
  29. package/locales/ja-JP/error.json +2 -2
  30. package/locales/ja-JP/modelProvider.json +1 -1
  31. package/locales/ja-JP/models.json +7 -1
  32. package/locales/ko-KR/error.json +2 -2
  33. package/locales/ko-KR/modelProvider.json +1 -1
  34. package/locales/ko-KR/models.json +7 -1
  35. package/locales/nl-NL/error.json +2 -2
  36. package/locales/nl-NL/modelProvider.json +1 -1
  37. package/locales/nl-NL/models.json +7 -1
  38. package/locales/pl-PL/error.json +2 -2
  39. package/locales/pl-PL/modelProvider.json +1 -1
  40. package/locales/pl-PL/models.json +7 -1
  41. package/locales/pt-BR/error.json +2 -2
  42. package/locales/pt-BR/modelProvider.json +1 -1
  43. package/locales/pt-BR/models.json +7 -1
  44. package/locales/ru-RU/error.json +2 -2
  45. package/locales/ru-RU/modelProvider.json +1 -1
  46. package/locales/ru-RU/models.json +7 -1
  47. package/locales/tr-TR/error.json +2 -2
  48. package/locales/tr-TR/modelProvider.json +1 -1
  49. package/locales/tr-TR/models.json +7 -1
  50. package/locales/vi-VN/error.json +2 -2
  51. package/locales/vi-VN/modelProvider.json +1 -1
  52. package/locales/vi-VN/models.json +7 -1
  53. package/locales/zh-CN/error.json +2 -2
  54. package/locales/zh-CN/modelProvider.json +1 -1
  55. package/locales/zh-CN/models.json +7 -1
  56. package/locales/zh-TW/error.json +2 -2
  57. package/locales/zh-TW/modelProvider.json +1 -1
  58. package/locales/zh-TW/models.json +7 -1
  59. package/package.json +1 -1
  60. package/packages/model-bank/src/aiModels/novita.ts +3 -2
  61. package/packages/model-bank/src/aiModels/nvidia.ts +14 -0
  62. package/packages/model-bank/src/aiModels/ollamacloud.ts +23 -2
  63. package/packages/model-bank/src/aiModels/qwen.ts +88 -0
  64. package/packages/model-bank/src/aiModels/siliconcloud.ts +20 -0
  65. package/packages/model-bank/src/aiModels/vercelaigateway.ts +0 -17
  66. package/packages/model-bank/src/aiModels/volcengine.ts +1 -1
  67. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.test.ts +108 -64
  68. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +150 -125
  69. package/packages/model-runtime/src/providers/newapi/index.test.ts +3 -75
  70. package/packages/model-runtime/src/providers/newapi/index.ts +1 -14
  71. package/packages/model-runtime/src/providers/openrouter/index.test.ts +3 -2
  72. package/packages/model-runtime/src/providers/openrouter/index.ts +1 -1
  73. package/src/app/[variants]/(main)/settings/provider/features/CreateNewProvider/index.tsx +19 -6
  74. package/src/app/[variants]/(main)/settings/provider/features/customProviderSdkOptions.ts +1 -0
  75. package/src/config/modelProviders/aihubmix.ts +1 -0
  76. package/src/config/modelProviders/newapi.ts +1 -0
  77. package/src/libs/trpc/client/lambda.ts +3 -1
  78. package/src/locales/default/modelProvider.ts +1 -1
package/CHANGELOG.md CHANGED
@@ -2,6 +2,64 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ## [Version 2.0.0-next.83](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.82...v2.0.0-next.83)
6
+
7
+ <sup>Released on **2025-11-19**</sup>
8
+
9
+ #### ✨ Features
10
+
11
+ - **misc**: New API support switch Responses API mode.
12
+
13
+ #### 💄 Styles
14
+
15
+ - **misc**: Update i18n.
16
+
17
+ <br/>
18
+
19
+ <details>
20
+ <summary><kbd>Improvements and Fixes</kbd></summary>
21
+
22
+ #### What's improved
23
+
24
+ - **misc**: New API support switch Responses API mode, closes [#9776](https://github.com/lobehub/lobe-chat/issues/9776) [#9916](https://github.com/lobehub/lobe-chat/issues/9916) [#9997](https://github.com/lobehub/lobe-chat/issues/9997) [#9916](https://github.com/lobehub/lobe-chat/issues/9916) ([d0ee3df](https://github.com/lobehub/lobe-chat/commit/d0ee3df))
25
+
26
+ #### Styles
27
+
28
+ - **misc**: Update i18n, closes [#10291](https://github.com/lobehub/lobe-chat/issues/10291) ([1c9f0d9](https://github.com/lobehub/lobe-chat/commit/1c9f0d9))
29
+
30
+ </details>
31
+
32
+ <div align="right">
33
+
34
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
35
+
36
+ </div>
37
+
38
+ ## [Version 2.0.0-next.82](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.81...v2.0.0-next.82)
39
+
40
+ <sup>Released on **2025-11-18**</sup>
41
+
42
+ #### 🐛 Bug Fixes
43
+
44
+ - **misc**: Fix noisy error notification.
45
+
46
+ <br/>
47
+
48
+ <details>
49
+ <summary><kbd>Improvements and Fixes</kbd></summary>
50
+
51
+ #### What's fixed
52
+
53
+ - **misc**: Fix noisy error notification, closes [#10286](https://github.com/lobehub/lobe-chat/issues/10286) ([9ea680c](https://github.com/lobehub/lobe-chat/commit/9ea680c))
54
+
55
+ </details>
56
+
57
+ <div align="right">
58
+
59
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
60
+
61
+ </div>
62
+
5
63
  ## [Version 2.0.0-next.81](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.80...v2.0.0-next.81)
6
64
 
7
65
  <sup>Released on **2025-11-18**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,25 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "features": [
5
+ "New API support switch Responses API mode."
6
+ ],
7
+ "improvements": [
8
+ "Update i18n."
9
+ ]
10
+ },
11
+ "date": "2025-11-19",
12
+ "version": "2.0.0-next.83"
13
+ },
14
+ {
15
+ "children": {
16
+ "fixes": [
17
+ "Fix noisy error notification."
18
+ ]
19
+ },
20
+ "date": "2025-11-18",
21
+ "version": "2.0.0-next.82"
22
+ },
2
23
  {
3
24
  "children": {
4
25
  "fixes": [
@@ -11,7 +11,7 @@ tags:
11
11
 
12
12
  # Using ComfyUI in LobeChat
13
13
 
14
- <Image alt={'Using ComfyUI in LobeChat'} cover src={'https://github.com/lobehub/lobe-chat/assets/17870709/c9e5eafc-ca22-496b-a88d-cc0ae53bf720'} />
14
+ <Image alt={'Using ComfyUI in LobeChat'} cover src={'https://hub-apac-1.lobeobjects.space/docs/e9b811f248a1db2bd1be1af888cf9b9d.png'} />
15
15
 
16
16
  This documentation will guide you on how to use [ComfyUI](https://github.com/comfyanonymous/ComfyUI) in LobeChat for high-quality AI image generation and editing.
17
17
 
@@ -11,7 +11,7 @@ tags:
11
11
 
12
12
  # 在 LobeChat 中使用 ComfyUI
13
13
 
14
- <Image alt={'在 LobeChat 中使用 ComfyUI'} cover src={'https://github.com/lobehub/lobe-chat/assets/17870709/c9e5eafc-ca22-496b-a88d-cc0ae53bf720'} />
14
+ <Image alt={'在 LobeChat 中使用 ComfyUI'} cover src={'https://hub-apac-1.lobeobjects.space/docs/e9b811f248a1db2bd1be1af888cf9b9d.png'} />
15
15
 
16
16
  本文档将指导你如何在 LobeChat 中使用 [ComfyUI](https://github.com/comfyanonymous/ComfyUI) 进行高质量的 AI 图像生成和编辑。
17
17
 
@@ -102,7 +102,7 @@
102
102
  "SPII": "قد يحتوي المحتوى على معلومات شخصية حساسة. لحماية الخصوصية، يرجى إزالة المعلومات الحساسة ثم المحاولة مرة أخرى.",
103
103
  "default": "تم حظر المحتوى: {{blockReason}}. يرجى تعديل طلبك ثم المحاولة مرة أخرى."
104
104
  },
105
- "InsufficientQuota": "عذرًا، لقد reached الحد الأقصى للحصة (quota) لهذه المفتاح، يرجى التحقق من رصيد الحساب الخاص بك أو زيادة حصة المفتاح ثم المحاولة مرة أخرى",
105
+ "InsufficientQuota": "عذرًا، لقد تم الوصول إلى الحد الأقصى لحصة المفتاح (quota). يرجى التحقق من رصيد الحساب أو زيادة حصة المفتاح ثم المحاولة مرة أخرى.",
106
106
  "InvalidAccessCode": "كلمة المرور غير صحيحة أو فارغة، يرجى إدخال كلمة مرور الوصول الصحيحة أو إضافة مفتاح API مخصص",
107
107
  "InvalidBedrockCredentials": "فشلت مصادقة Bedrock، يرجى التحقق من AccessKeyId/SecretAccessKey وإعادة المحاولة",
108
108
  "InvalidClerkUser": "عذرًا، لم تقم بتسجيل الدخول بعد، يرجى تسجيل الدخول أو التسجيل للمتابعة",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "خطأ في استجابة الخادم لطلب الإضافة، يرجى التحقق من ملف وصف الإضافة وتكوين الإضافة وتنفيذ الخادم وفقًا لمعلومات الخطأ أدناه",
132
132
  "PluginSettingsInvalid": "تحتاج هذه الإضافة إلى تكوين صحيح قبل الاستخدام، يرجى التحقق من صحة تكوينك",
133
133
  "ProviderBizError": "طلب خدمة {{provider}} خاطئ، يرجى التحقق من المعلومات التالية أو إعادة المحاولة",
134
- "QuotaLimitReached": "عذرًا، لقد reached الحد الأقصى من استخدام الرموز أو عدد الطلبات لهذا المفتاح. يرجى زيادة حصة هذا المفتاح أو المحاولة لاحقًا.",
134
+ "QuotaLimitReached": "عذرًا، لقد تم الوصول إلى الحد الأقصى لاستخدام الرموز (Token) أو عدد الطلبات لهذا المفتاح. يرجى زيادة حصة المفتاح أو المحاولة لاحقًا.",
135
135
  "StreamChunkError": "خطأ في تحليل كتلة الرسالة لطلب التدفق، يرجى التحقق مما إذا كانت واجهة برمجة التطبيقات الحالية تتوافق مع المعايير، أو الاتصال بمزود واجهة برمجة التطبيقات الخاصة بك للاستفسار.",
136
136
  "SubscriptionKeyMismatch": "نعتذر، بسبب عطل عرضي في النظام، فإن استخدام الاشتراك الحالي غير فعال مؤقتًا. يرجى النقر على الزر أدناه لاستعادة الاشتراك، أو مراسلتنا عبر البريد الإلكتروني للحصول على الدعم.",
137
137
  "SubscriptionPlanLimit": "لقد استنفدت نقاط اشتراكك، ولا يمكنك استخدام هذه الميزة. يرجى الترقية إلى خطة أعلى، أو تكوين واجهة برمجة التطبيقات للنموذج المخصص للاستمرار في الاستخدام",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "دليل التكوين",
297
297
  "responsesApi": {
298
- "desc": "استخدام معيار طلبات الجيل الجديد من OpenAI، لفتح ميزات متقدمة مثل سلسلة التفكير",
298
+ "desc": "يعتمد تنسيق طلب الجيل الجديد من OpenAI، لتمكين ميزات متقدمة مثل سلسلة التفكير (مدعومة فقط من نماذج OpenAI)",
299
299
  "title": "استخدام معيار Responses API"
300
300
  },
301
301
  "waitingForMore": "المزيد من النماذج قيد <1>التخطيط للإدماج</1>، يرجى الانتظار"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 هو نموذج استدلال كبير الحجم مفتوح المصدر يعتمد على الانتباه المختلط، يحتوي على 456 مليار معلمة، حيث يمكن لكل رمز تفعيل حوالي 45.9 مليار معلمة. يدعم النموذج أصلاً سياقًا فائق الطول يصل إلى مليون رمز، ومن خلال آلية الانتباه السريع، يوفر 75% من العمليات الحسابية العائمة في مهام التوليد التي تصل إلى 100 ألف رمز مقارنة بـ DeepSeek R1. بالإضافة إلى ذلك، يعتمد MiniMax-M1 على بنية MoE (الخبراء المختلطون)، ويجمع بين خوارزمية CISPO وتصميم الانتباه المختلط لتدريب تعلم معزز فعال، محققًا أداءً رائدًا في الصناعة في استدلال الإدخالات الطويلة وسيناريوهات هندسة البرمجيات الحقيقية."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 يعيد تعريف الكفاءة للوكيل الذكي. إنه نموذج MoE مدمج وسريع وفعّال من حيث التكلفة، يحتوي على 230 مليار معلمة إجمالية و10 مليارات معلمة نشطة، وقد صُمم لتحقيق أداء رفيع المستوى في مهام الترميز والوكالة، مع الحفاظ على ذكاء عام قوي. بفضل 10 مليارات معلمة نشطة فقط، يقدم MiniMax-M2 أداءً يُضاهي النماذج الضخمة، مما يجعله خيارًا مثاليًا للتطبيقات عالية الكفاءة."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "يحتوي على 1 تريليون معلمة و32 مليار معلمة مفعلة. من بين النماذج غير المعتمدة على التفكير، يحقق مستويات متقدمة في المعرفة الحديثة، الرياضيات والبرمجة، ويتفوق في مهام الوكيل العامة. تم تحسينه بعناية لمهام الوكيل، لا يجيب فقط على الأسئلة بل يتخذ إجراءات. مثالي للدردشة العفوية، التجارب العامة والوكيل، وهو نموذج سريع الاستجابة لا يتطلب تفكيرًا طويلًا."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 يعزز بشكل كبير قدرة الاستدلال للنموذج حتى مع وجود بيانات تعليمية قليلة جدًا. قبل إخراج الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B هو نسخة مكثفة وأكثر كفاءة من نموذج Llama 70B. يحافظ على أداء قوي في مهام توليد النصوص مع تقليل استهلاك الحوسبة لتسهيل النشر والبحث. يتم تشغيله بواسطة Groq باستخدام وحدة معالجة اللغة المخصصة (LPU) لتوفير استدلال سريع وفعال."
1161
+ "description": "DeepSeek R1 Distill Llama 70B هو نموذج لغوي ضخم مبني على Llama3.3 70B، وقد تم تحسينه باستخدام نتائج DeepSeek R1، ليحقق أداءً تنافسيًا يعادل النماذج الرائدة الكبيرة."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B هو نموذج لغوي كبير مكرر يعتمد على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "مصمم خصيصًا للترميز الفعّال وتدفقات عمل الوكلاء."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 هو نموذج خبراء مختلط (MoE) مدمج وسريع وفعّال من حيث التكلفة، يحتوي على 230 مليار معلمة إجمالية و10 مليارات معلمة نشطة، صُمم لتحقيق أداء فائق في مهام الترميز والوكالة، مع الحفاظ على ذكاء عام قوي. يتميز هذا النموذج بأداء ممتاز في تحرير الملفات المتعددة، ودورة الترميز-التنفيذ-الإصلاح، والتحقق من الاختبارات والإصلاح، وسلاسل الأدوات المعقدة ذات الروابط الطويلة، مما يجعله خيارًا مثاليًا لسير عمل المطورين."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B هو نموذج حافة عالمي المستوى من Mistral."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Вашето съдържание може да съдържа чувствителна лична информация. За да защитите поверителността, моля, премахнете съответната чувствителна информация и опитайте отново.",
103
103
  "default": "Съдържанието е блокирано: {{blockReason}}。请调整您的请求内容后重试。"
104
104
  },
105
- "InsufficientQuota": "Съжаляваме, квотата за този ключ е достигнала лимита. Моля, проверете баланса на акаунта си или увеличете квотата на ключа и опитайте отново.",
105
+ "InsufficientQuota": "Съжаляваме, но квотата за този ключ е изчерпана. Моля, проверете дали имате достатъчен баланс в акаунта си или увеличете квотата на ключа и опитайте отново.",
106
106
  "InvalidAccessCode": "Невалиден или празен код за достъп. Моля, въведете правилния код за достъп или добавете персонализиран API ключ.",
107
107
  "InvalidBedrockCredentials": "Удостоверяването на Bedrock е неуспешно. Моля, проверете AccessKeyId/SecretAccessKey и опитайте отново.",
108
108
  "InvalidClerkUser": "很抱歉,你当前尚未登录,请先登录或注册账号后继续操作",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Заявката към сървъра на плъгина върна грешка. Моля, проверете файла на манифеста на плъгина, конфигурацията на плъгина или изпълнението на сървъра въз основа на информацията за грешката по-долу",
132
132
  "PluginSettingsInvalid": "Този плъгин трябва да бъде конфигуриран правилно, преди да може да се използва. Моля, проверете дали конфигурацията ви е правилна",
133
133
  "ProviderBizError": "Грешка в услугата на {{provider}}, моля проверете следната информация или опитайте отново",
134
- "QuotaLimitReached": "Съжаляваме, но текущото използване на токени или брой на заявките е достигнало лимита на квотата за този ключ. Моля, увеличете квотата на ключа или опитайте отново по-късно.",
134
+ "QuotaLimitReached": "Съжаляваме, но текущото използване на токени или броят на заявките е достигнало лимита на квотата за този ключ. Моля, увеличете квотата на ключа или опитайте отново по-късно.",
135
135
  "StreamChunkError": "Грешка при парсирането на съобщение от потокова заявка. Моля, проверете дали текущият API интерфейс отговаря на стандартите или се свържете с вашия доставчик на API за консултация.",
136
136
  "SubscriptionKeyMismatch": "Съжаляваме, но поради случайна системна грешка, текущото използване на абонамента временно е невалидно. Моля, кликнете върху бутона по-долу, за да възстановите абонамента, или се свържете с нас по имейл за поддръжка.",
137
137
  "SubscriptionPlanLimit": "Вашият абонаментен план е изчерпан, не можете да използвате тази функция. Моля, надстройте до по-висок план или конфигурирайте персонализиран модел API, за да продължите да използвате.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Ръководство за конфигуриране",
297
297
  "responsesApi": {
298
- "desc": "Използва новия формат на заявките на OpenAI, отключващ функции като вериги на мислене и други усъвършенствани възможности",
298
+ "desc": "Използва новия формат за заявки на OpenAI, отключвайки разширени функции като вериги на мисълта (поддържа се само от моделите на OpenAI)",
299
299
  "title": "Използване на Responses API стандарта"
300
300
  },
301
301
  "waitingForMore": "Още модели са в <1>планиране</1>, моля, очаквайте"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 е мащабен модел за разсъждение с отворени тегла и смесено внимание, с 456 милиарда параметри, като всеки токен активира около 45.9 милиарда параметри. Моделът поддържа естествено контекст с дължина до 1 милион токена и чрез механизма за светкавично внимание спестява 75% от изчисленията при задачи с генериране на 100 хиляди токена в сравнение с DeepSeek R1. Освен това MiniMax-M1 използва MoE (смесен експертен) архитектура, комбинирайки CISPO алгоритъм и ефективно обучение с подсилване с дизайн на смесено внимание, постигащи водещи в индустрията резултати при дълги входни разсъждения и реални софтуерни инженерни сценарии."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 преосмисля ефективността на интелигентните агенти. Това е компактен, бърз и икономичен MoE модел с общо 230 милиарда параметъра и 10 милиарда активни параметъра, създаден за постигане на върхова производителност при кодиране и задачи, свързани с интелигентни агенти, като същевременно поддържа силен общ интелект. Със само 10 милиарда активни параметъра, MiniMax-M2 предлага производителност, сравнима с тази на мащабни модели, което го прави идеален избор за приложения с висока ефективност."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Общ брой параметри 1 трилион, активирани параметри 32 милиарда. Сред немисловните модели постига водещи резултати в областта на актуални знания, математика и кодиране, с по-добри възможности за универсални агентски задачи. Специално оптимизиран за агентски задачи, не само отговаря на въпроси, но и може да предприема действия. Най-подходящ за импровизирани, универсални разговори и агентски преживявания, модел с рефлексна скорост без нужда от дълго мислене."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 значително подобрява способността за разсъждение на модела дори с много малко анотирани данни. Преди да изведе окончателния отговор, моделът първо генерира мисловна верига, за да повиши точността на крайния отговор."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B е дистилиран и по-ефективен вариант на 70B Llama модела. Той запазва силна производителност при генериране на текст, намалявайки изчислителните разходи за по-лесно внедряване и изследване. Обслужва се от Groq с помощта на техния персонализиран хардуер за езикова обработка (LPU), осигурявайки бързо и ефективно разсъждение."
1161
+ "description": "DeepSeek R1 Distill Llama 70B е голям езиков модел, базиран на Llama3.3 70B, който използва фино настройване, извлечено от DeepSeek R1, за да постигне конкурентна производителност, съпоставима с водещите мащабни модели."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B е дестилиран голям езиков модел, базиран на Llama-3.1-8B-Instruct, обучен с изхода на DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Създаден специално за ефективно кодиране и работни потоци с агенти."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 е компактен, бърз и икономичен хибриден експертен (MoE) модел с общо 230 милиарда параметъра и 10 милиарда активни параметъра, създаден за постигане на върхова производителност при кодиране и задачи, свързани с интелигентни агенти, като същевременно поддържа силен общ интелект. Моделът се отличава с отлична работа при редактиране на множество файлове, затворен цикъл кодиране-изпълнение-поправка, тестване и валидиране на поправки, както и при сложни дълговерижни инструментални процеси, което го прави идеален избор за работния процес на разработчиците."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B е световен лидер сред моделите на Mistral."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Ihr Inhalt könnte sensible personenbezogene Daten enthalten. Zum Schutz der Privatsphäre entfernen Sie bitte diese Informationen und versuchen Sie es erneut.",
103
103
  "default": "Inhalt blockiert: {{blockReason}}. Bitte passen Sie Ihre Anfrage an und versuchen Sie es erneut."
104
104
  },
105
- "InsufficientQuota": "Es tut uns leid, das Kontingent (Quota) für diesen Schlüssel ist erreicht. Bitte überprüfen Sie Ihr Kontoguthaben oder erhöhen Sie das Kontingent des Schlüssels und versuchen Sie es erneut.",
105
+ "InsufficientQuota": "Es tut uns leid, das Kontingent dieses Schlüssels wurde erreicht. Bitte überprüfen Sie, ob Ihr Kontostand ausreichend ist, oder erhöhen Sie das Kontingent des Schlüssels und versuchen Sie es erneut.",
106
106
  "InvalidAccessCode": "Das Passwort ist ungültig oder leer. Bitte geben Sie das richtige Zugangspasswort ein oder fügen Sie einen benutzerdefinierten API-Schlüssel hinzu.",
107
107
  "InvalidBedrockCredentials": "Die Bedrock-Authentifizierung ist fehlgeschlagen. Bitte überprüfen Sie AccessKeyId/SecretAccessKey und versuchen Sie es erneut.",
108
108
  "InvalidClerkUser": "Entschuldigung, du bist derzeit nicht angemeldet. Bitte melde dich an oder registriere ein Konto, um fortzufahren.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Fehler bei der Serveranfrage des Plugins. Bitte überprüfen Sie die Fehlerinformationen unten in Ihrer Plugin-Beschreibungsdatei, Plugin-Konfiguration oder Serverimplementierung",
132
132
  "PluginSettingsInvalid": "Das Plugin muss korrekt konfiguriert werden, um verwendet werden zu können. Bitte überprüfen Sie Ihre Konfiguration auf Richtigkeit",
133
133
  "ProviderBizError": "Fehler bei der Anforderung des {{provider}}-Dienstes. Bitte überprüfen Sie die folgenden Informationen oder versuchen Sie es erneut.",
134
- "QuotaLimitReached": "Es tut uns leid, die aktuelle Token-Nutzung oder die Anzahl der Anfragen hat das Kontingent (Quota) für diesen Schlüssel erreicht. Bitte erhöhen Sie das Kontingent für diesen Schlüssel oder versuchen Sie es später erneut.",
134
+ "QuotaLimitReached": "Es tut uns leid, die Anzahl der Token oder Anfragen hat das Kontingent dieses Schlüssels erreicht. Bitte erhöhen Sie das Kontingent des Schlüssels oder versuchen Sie es später erneut.",
135
135
  "StreamChunkError": "Fehler beim Parsen des Nachrichtenchunks der Streaming-Anfrage. Bitte überprüfen Sie, ob die aktuelle API-Schnittstelle den Standards entspricht, oder wenden Sie sich an Ihren API-Anbieter.",
136
136
  "SubscriptionKeyMismatch": "Es tut uns leid, aufgrund eines vorübergehenden Systemfehlers ist das aktuelle Abonnement vorübergehend ungültig. Bitte klicken Sie auf die Schaltfläche unten, um das Abonnement wiederherzustellen, oder kontaktieren Sie uns per E-Mail für Unterstützung.",
137
137
  "SubscriptionPlanLimit": "Ihr Abonnementspunktestand ist erschöpft, Sie können diese Funktion nicht nutzen. Bitte upgraden Sie auf einen höheren Plan oder konfigurieren Sie die benutzerdefinierte Modell-API, um weiterhin zu verwenden.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Konfigurationsanleitung",
297
297
  "responsesApi": {
298
- "desc": "Verwendet das neue Anforderungsformat von OpenAI, um fortgeschrittene Funktionen wie Chain-of-Thought freizuschalten",
298
+ "desc": "Verwendet das neue Anforderungsformat von OpenAI, um erweiterte Funktionen wie Chain-of-Thought freizuschalten (nur mit OpenAI-Modellen kompatibel)",
299
299
  "title": "Verwendung des Responses API-Standards"
300
300
  },
301
301
  "waitingForMore": "Weitere Modelle werden <1>geplant</1>, bitte warten Sie"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 ist ein groß angelegtes hybrides Aufmerksamkeits-Inferenzmodell mit offenen Gewichten, das 456 Milliarden Parameter umfasst und etwa 45,9 Milliarden Parameter pro Token aktiviert. Das Modell unterstützt nativ einen ultralangen Kontext von 1 Million Tokens und spart durch den Blitz-Attention-Mechanismus bei Aufgaben mit 100.000 Tokens im Vergleich zu DeepSeek R1 75 % der Fließkommaoperationen ein. Gleichzeitig verwendet MiniMax-M1 eine MoE-Architektur (Mixture of Experts) und kombiniert den CISPO-Algorithmus mit einem hybriden Aufmerksamkeitsdesign für effizientes verstärkendes Lernen, was in der Langzeiteingabe-Inferenz und realen Software-Engineering-Szenarien branchenführende Leistung erzielt."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 definiert Effizienz für Agenten neu. Es handelt sich um ein kompaktes, schnelles und kosteneffizientes MoE-Modell mit insgesamt 230 Milliarden Parametern und 10 Milliarden aktiven Parametern. Es wurde für Spitzenleistungen bei Codierungs- und Agentenaufgaben entwickelt und bewahrt gleichzeitig eine starke allgemeine Intelligenz. Mit nur 10 Milliarden aktiven Parametern bietet MiniMax-M2 eine Leistung, die mit groß angelegten Modellen vergleichbar ist, und ist damit die ideale Wahl für Anwendungen mit hohen Effizienzanforderungen."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Mit insgesamt 1 Billion Parametern und 32 Milliarden aktivierten Parametern erreicht dieses nicht-denkende Modell Spitzenleistungen in den Bereichen aktuelles Wissen, Mathematik und Programmierung und ist besonders für allgemeine Agentenaufgaben optimiert. Es wurde speziell für Agentenaufgaben verfeinert, kann nicht nur Fragen beantworten, sondern auch Aktionen ausführen. Ideal für spontane, allgemeine Gespräche und Agentenerfahrungen, ist es ein reflexartiges Modell ohne lange Denkzeiten."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 verbessert die Modellschlussfolgerungsfähigkeit erheblich, selbst bei sehr begrenzten annotierten Daten. Vor der Ausgabe der endgültigen Antwort generiert das Modell eine Denkprozesskette, um die Genauigkeit der Antwort zu erhöhen."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B ist eine destillierte, effizientere Variante des 70B Llama Modells. Es behält starke Leistung bei Textgenerierungsaufgaben bei und reduziert den Rechenaufwand für einfachere Bereitstellung und Forschung. Betrieben von Groq mit deren maßgeschneiderter Language Processing Unit (LPU) Hardware für schnelle und effiziente Inferenz."
1161
+ "description": "DeepSeek R1 Distill Llama 70B ist ein großes Sprachmodell auf Basis von Llama3.3 70B. Durch Feintuning mit den Ausgaben von DeepSeek R1 erreicht es eine konkurrenzfähige Leistung, die mit führenden Großmodellen vergleichbar ist."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B ist ein distilliertes großes Sprachmodell, das auf Llama-3.1-8B-Instruct basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Speziell entwickelt für effizientes Codieren und Agenten-Workflows."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 ist ein kompaktes, schnelles und kosteneffizientes Mixture-of-Experts (MoE)-Modell mit 230 Milliarden Gesamtparametern und 10 Milliarden aktiven Parametern. Es wurde für höchste Leistung bei Codierungs- und Agentenaufgaben entwickelt und bietet gleichzeitig eine starke allgemeine Intelligenz. Das Modell überzeugt bei Aufgaben wie der Bearbeitung mehrerer Dateien, dem Code-Ausführen-Fehlerbeheben-Zyklus, Testverifikation und -korrektur sowie bei komplexen, lang verknüpften Toolchains – und ist damit die ideale Wahl für Entwickler-Workflows."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B ist das weltbeste Edge-Modell von Mistral."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Your content may contain sensitive personally identifiable information (PII). To protect privacy, please remove any sensitive details and try again.",
103
103
  "default": "Content blocked: {{blockReason}}. Please adjust your request and try again."
104
104
  },
105
- "InsufficientQuota": "Sorry, the quota for this key has been reached. Please check your account balance or increase the key quota and try again.",
105
+ "InsufficientQuota": "Sorry, the quota for this key has been reached. Please check if your account balance is sufficient or try again after increasing the key's quota.",
106
106
  "InvalidAccessCode": "Invalid access code or empty. Please enter the correct access code or add a custom API Key.",
107
107
  "InvalidBedrockCredentials": "Bedrock authentication failed. Please check the AccessKeyId/SecretAccessKey and retry.",
108
108
  "InvalidClerkUser": "Sorry, you are not currently logged in. Please log in or register an account to continue.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Plugin server request returned an error. Please check your plugin manifest file, plugin configuration, or server implementation based on the error information below",
132
132
  "PluginSettingsInvalid": "This plugin needs to be correctly configured before it can be used. Please check if your configuration is correct",
133
133
  "ProviderBizError": "Error requesting {{provider}} service, please troubleshoot or retry based on the following information",
134
- "QuotaLimitReached": "We apologize, but the current token usage or number of requests has reached the quota limit for this key. Please increase the quota for this key or try again later.",
134
+ "QuotaLimitReached": "Sorry, the token usage or request count has reached the quota limit for this key. Please increase the key's quota or try again later.",
135
135
  "StreamChunkError": "Error parsing the message chunk of the streaming request. Please check if the current API interface complies with the standard specifications, or contact your API provider for assistance.",
136
136
  "SubscriptionKeyMismatch": "We apologize for the inconvenience. Due to a temporary system malfunction, your current subscription usage is inactive. Please click the button below to restore your subscription, or contact us via email for support.",
137
137
  "SubscriptionPlanLimit": "Your subscription points have been exhausted, and you cannot use this feature. Please upgrade to a higher plan or configure a custom model API to continue using it.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Configuration Guide",
297
297
  "responsesApi": {
298
- "desc": "Utilizes OpenAI's next-generation request format specification to unlock advanced features like chain of thought",
298
+ "desc": "Uses OpenAI's next-generation request format specification to unlock advanced features like chain-of-thought (supported by OpenAI models only)",
299
299
  "title": "Use Responses API Specification"
300
300
  },
301
301
  "waitingForMore": "More models are currently <1>planned for integration</1>, please stay tuned"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 is a large-scale hybrid attention inference model with open-source weights, featuring 456 billion parameters, with approximately 45.9 billion parameters activated per token. The model natively supports ultra-long contexts of up to 1 million tokens and, through lightning attention mechanisms, reduces floating-point operations by 75% compared to DeepSeek R1 in tasks generating 100,000 tokens. Additionally, MiniMax-M1 employs a Mixture of Experts (MoE) architecture, combining the CISPO algorithm with an efficient reinforcement learning training design based on hybrid attention, achieving industry-leading performance in long-input inference and real-world software engineering scenarios."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 redefines efficiency for intelligent agents. It is a compact, fast, and cost-effective Mixture of Experts (MoE) model with 230 billion total parameters and 10 billion active parameters. Designed for top-tier performance in coding and agent tasks, it also maintains strong general intelligence. With only 10 billion active parameters, MiniMax-M2 delivers performance comparable to large-scale models, making it an ideal choice for high-efficiency applications."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "With a total of 1 trillion parameters and 32 billion activated parameters, this non-thinking model achieves top-tier performance in cutting-edge knowledge, mathematics, and coding, excelling in general agent tasks. It is carefully optimized for agent tasks, capable not only of answering questions but also taking actions. Ideal for improvisational, general chat, and agent experiences, it is a reflex-level model requiring no prolonged thinking."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 greatly improves model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first generates a chain of thought to enhance answer accuracy."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B is a distilled, more efficient variant of the 70B Llama model. It maintains strong performance on text generation tasks while reducing computational overhead for easier deployment and research. Served by Groq using its custom Language Processing Unit (LPU) hardware for fast, efficient inference."
1161
+ "description": "DeepSeek R1 Distill Llama 70B is a large language model based on Llama3.3 70B. Fine-tuned using outputs from DeepSeek R1, it achieves competitive performance on par with leading-edge large models."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B is a distilled large language model based on Llama-3.1-8B-Instruct, trained using outputs from DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Purpose-built for efficient coding and agent workflows."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 is a compact, fast, and cost-efficient Mixture of Experts (MoE) model with 230 billion total parameters and 10 billion active parameters. It is engineered for top performance in coding and agent tasks while maintaining robust general intelligence. Excelling in multi-file editing, code-run-debug loops, test validation and repair, and complex long-chain tool integrations, it is an ideal choice for developer workflows."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B is Mistral's top-tier edge model."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Su contenido podría contener información personal sensible. Para proteger la privacidad, elimine la información sensible y vuelva a intentarlo.",
103
103
  "default": "Contenido bloqueado: {{blockReason}}. Ajuste su solicitud y vuelva a intentarlo."
104
104
  },
105
- "InsufficientQuota": "Lo sentimos, la cuota de esta clave ha alcanzado su límite. Por favor, verifique si el saldo de su cuenta es suficiente o aumente la cuota de la clave y vuelva a intentarlo.",
105
+ "InsufficientQuota": "Lo sentimos, la cuota de esta clave ha alcanzado su límite. Por favor, verifica si el saldo de tu cuenta es suficiente o aumenta la cuota de la clave antes de intentarlo nuevamente.",
106
106
  "InvalidAccessCode": "La contraseña no es válida o está vacía. Por favor, introduce una contraseña de acceso válida o añade una clave API personalizada",
107
107
  "InvalidBedrockCredentials": "La autenticación de Bedrock no se ha completado con éxito, por favor, verifica AccessKeyId/SecretAccessKey e inténtalo de nuevo",
108
108
  "InvalidClerkUser": "Lo siento mucho, actualmente no has iniciado sesión. Por favor, inicia sesión o regístrate antes de continuar.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Error al recibir la respuesta del servidor del complemento. Verifique el archivo de descripción del complemento, la configuración del complemento o la implementación del servidor según la información de error a continuación",
132
132
  "PluginSettingsInvalid": "Este complemento necesita una configuración correcta antes de poder usarse. Verifique si su configuración es correcta",
133
133
  "ProviderBizError": "Se produjo un error al solicitar el servicio de {{provider}}, por favor, revise la siguiente información o inténtelo de nuevo",
134
- "QuotaLimitReached": "Lo sentimos, el uso actual de tokens o el número de solicitudes ha alcanzado el límite de cuota de esta clave. Por favor, aumenta la cuota de esta clave o intenta de nuevo más tarde.",
134
+ "QuotaLimitReached": "Lo sentimos, el uso de tokens o el número de solicitudes ha alcanzado el límite de cuota de esta clave. Por favor, aumenta la cuota de la clave o inténtalo más tarde.",
135
135
  "StreamChunkError": "Error de análisis del bloque de mensajes de la solicitud en streaming. Por favor, verifica si la API actual cumple con las normas estándar o contacta a tu proveedor de API para más información.",
136
136
  "SubscriptionKeyMismatch": "Lo sentimos, debido a un fallo ocasional del sistema, el uso de la suscripción actual ha dejado de ser válido temporalmente. Por favor, haga clic en el botón de abajo para restaurar la suscripción o contáctenos por correo electrónico para obtener soporte.",
137
137
  "SubscriptionPlanLimit": "Se han agotado sus puntos de suscripción, no puede utilizar esta función. Por favor, actualice a un plan superior o configure la API del modelo personalizado para continuar.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Guía de configuración",
297
297
  "responsesApi": {
298
- "desc": "Utiliza el nuevo formato de solicitud de OpenAI para desbloquear características avanzadas como cadenas de pensamiento",
298
+ "desc": "Adopta el nuevo formato de solicitud de OpenAI, desbloqueando funciones avanzadas como la cadena de pensamiento (solo compatible con modelos de OpenAI)",
299
299
  "title": "Uso de la especificación Responses API"
300
300
  },
301
301
  "waitingForMore": "Más modelos están en <1>planificación de integración</1>, por favor, espera"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 es un modelo de inferencia de atención mixta a gran escala con pesos de código abierto, que cuenta con 456 mil millones de parámetros, activando aproximadamente 45.9 mil millones de parámetros por token. El modelo soporta de forma nativa contextos ultra largos de hasta 1 millón de tokens y, gracias a su mecanismo de atención relámpago, reduce en un 75 % las operaciones de punto flotante en tareas de generación de 100 mil tokens en comparación con DeepSeek R1. Además, MiniMax-M1 utiliza una arquitectura MoE (Mezcla de Expertos), combinando el algoritmo CISPO y un diseño de atención mixta para un entrenamiento eficiente mediante aprendizaje reforzado, logrando un rendimiento líder en la industria en inferencia con entradas largas y escenarios reales de ingeniería de software."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 redefine la eficiencia para los agentes inteligentes. Es un modelo MoE compacto, rápido y rentable, con un total de 230 mil millones de parámetros y 10 mil millones de parámetros activos. Está diseñado para ofrecer un rendimiento de primer nivel en tareas de codificación y agentes, manteniendo al mismo tiempo una inteligencia general sólida. Con solo 10 mil millones de parámetros activos, MiniMax-M2 ofrece un rendimiento comparable al de modelos a gran escala, lo que lo convierte en una opción ideal para aplicaciones de alta eficiencia."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Con un total de 1 billón de parámetros y 32 mil millones de parámetros activados, este modelo no reflexivo alcanza niveles de vanguardia en conocimiento avanzado, matemáticas y codificación, destacando en tareas generales de agentes. Optimizado para tareas de agentes, no solo responde preguntas sino que también puede actuar. Ideal para conversaciones improvisadas, chat general y experiencias de agentes, es un modelo de nivel reflexivo que no requiere largos tiempos de pensamiento."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 mejora enormemente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de generar la respuesta final, el modelo produce una cadena de pensamiento para aumentar la precisión de la respuesta."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B es una variante destilada y más eficiente del modelo Llama de 70B. Mantiene un rendimiento sólido en tareas de generación de texto, reduciendo el costo computacional para facilitar su despliegue e investigación. Operado por Groq con su hardware personalizado de unidad de procesamiento de lenguaje (LPU) para ofrecer inferencia rápida y eficiente."
1161
+ "description": "DeepSeek R1 Distill Llama 70B es un modelo de lenguaje de gran escala basado en Llama3.3 70B. Este modelo ha sido ajustado finamente utilizando las salidas de DeepSeek R1, logrando un rendimiento competitivo comparable al de los modelos más avanzados del mercado."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B es un modelo de lenguaje grande destilado basado en Llama-3.1-8B-Instruct, entrenado utilizando la salida de DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Diseñado para una codificación eficiente y flujos de trabajo de agentes."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 es un modelo de expertos mixtos (MoE) compacto, rápido y rentable, con un total de 230 mil millones de parámetros y 10 mil millones de parámetros activos. Está diseñado para ofrecer un rendimiento de primer nivel en tareas de codificación y agentes, manteniendo una inteligencia general robusta. El modelo destaca en edición de múltiples archivos, ciclos cerrados de codificación-ejecución-corrección, verificación y corrección de pruebas, así como en complejas cadenas de herramientas de enlaces largos, lo que lo convierte en una opción ideal para los flujos de trabajo de los desarrolladores."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B es el modelo de borde de primer nivel mundial de Mistral."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "محتوای شما ممکن است شامل اطلاعات هویتی حساس فردی باشد. برای محافظت از حریم خصوصی، لطفاً اطلاعات حساس را حذف کرده و دوباره تلاش کنید.",
103
103
  "default": "محتوا مسدود شد: {{blockReason}}。لطفاً محتوای درخواست خود را اصلاح کرده و دوباره تلاش کنید."
104
104
  },
105
- "InsufficientQuota": "متأسفیم، سهمیه این کلید به حداکثر رسیده است، لطفاً موجودی حساب خود را بررسی کرده یا سهمیه کلید را افزایش دهید و دوباره تلاش کنید",
105
+ "InsufficientQuota": "متأسفیم، سهمیه این کلید به حداکثر رسیده است. لطفاً موجودی حساب خود را بررسی کرده یا پس از افزایش سهمیه کلید دوباره تلاش کنید.",
106
106
  "InvalidAccessCode": "رمز عبور نادرست یا خالی است، لطفاً رمز عبور صحیح را وارد کنید یا API Key سفارشی اضافه کنید",
107
107
  "InvalidBedrockCredentials": "اعتبارسنجی Bedrock ناموفق بود، لطفاً AccessKeyId/SecretAccessKey را بررسی کرده و دوباره تلاش کنید",
108
108
  "InvalidClerkUser": "متأسفیم، شما هنوز وارد نشده‌اید، لطفاً ابتدا وارد شوید یا ثبت‌نام کنید و سپس ادامه دهید",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "درخواست سرور افزونه با خطا مواجه شد، لطفاً بر اساس اطلاعات زیر فایل توصیف افزونه، پیکربندی افزونه یا پیاده‌سازی سرور را بررسی کنید",
132
132
  "PluginSettingsInvalid": "این افزونه نیاز به پیکربندی صحیح دارد تا قابل استفاده باشد، لطفاً پیکربندی خود را بررسی کنید",
133
133
  "ProviderBizError": "درخواست به سرویس {{provider}} با خطا مواجه شد، لطفاً بر اساس اطلاعات زیر بررسی کنید یا دوباره تلاش کنید",
134
- "QuotaLimitReached": "متأسفیم، میزان استفاده از توکن یا تعداد درخواست‌های شما به حد مجاز این کلید رسیده است، لطفاً سهمیه کلید را افزایش دهید یا بعداً دوباره تلاش کنید",
134
+ "QuotaLimitReached": "متأسفیم، میزان استفاده از توکن یا تعداد درخواست‌ها به حداکثر سهمیه این کلید رسیده است. لطفاً سهمیه کلید را افزایش داده یا بعداً دوباره تلاش کنید.",
135
135
  "StreamChunkError": "خطا در تجزیه بلوک پیام درخواست جریانی، لطفاً بررسی کنید که آیا API فعلی با استانداردها مطابقت دارد یا با ارائه‌دهنده API خود تماس بگیرید",
136
136
  "SubscriptionKeyMismatch": "متأسفیم، به دلیل یک نقص موقتی در سیستم، مصرف فعلی اشتراک به طور موقت غیر فعال شده است. لطفاً بر روی دکمه زیر کلیک کنید تا اشتراک خود را بازیابی کنید، یا با ما از طریق ایمیل تماس بگیرید تا از ما پشتیبانی دریافت کنید.",
137
137
  "SubscriptionPlanLimit": "نقاط اشتراک شما تمام شده است و نمی‌توانید از این ویژگی استفاده کنید. لطفاً به یک طرح بالاتر ارتقا دهید یا پس از پیکربندی API مدل سفارشی، به استفاده ادامه دهید.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "راهنمای پیکربندی",
297
297
  "responsesApi": {
298
- "desc": "استفاده از قالب درخواست نسل جدید OpenAI برای باز کردن ویژگی‌های پیشرفته مانند زنجیره تفکر",
298
+ "desc": "با استفاده از قالب جدید درخواست OpenAI، ویژگی‌های پیشرفته‌ای مانند زنجیره تفکر فعال می‌شود (فقط برای مدل‌های OpenAI پشتیبانی می‌شود)",
299
299
  "title": "استفاده از استاندارد Responses API"
300
300
  },
301
301
  "waitingForMore": "مدل‌های بیشتری در حال <1>برنامه‌ریزی برای اتصال</1> هستند، لطفاً منتظر بمانید"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 یک مدل استنتاج بزرگ با وزن‌های متن‌باز و توجه ترکیبی است که دارای ۴۵۶ میلیارد پارامتر است و هر توکن می‌تواند حدود ۴۵.۹ میلیارد پارامتر را فعال کند. این مدل به طور بومی از زمینه بسیار طولانی ۱ میلیون توکن پشتیبانی می‌کند و با مکانیزم توجه سریع، در وظایف تولید ۱۰۰ هزار توکن نسبت به DeepSeek R1، ۷۵٪ از محاسبات نقطه شناور را صرفه‌جویی می‌کند. همچنین، MiniMax-M1 از معماری MoE (متخصصان ترکیبی) بهره می‌برد و با ترکیب الگوریتم CISPO و طراحی توجه ترکیبی در آموزش تقویتی کارآمد، عملکرد پیشرو در صنعت را در استنتاج ورودی‌های طولانی و سناریوهای واقعی مهندسی نرم‌افزار ارائه می‌دهد."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 بهره‌وری را برای عامل‌های هوشمند بازتعریف می‌کند. این یک مدل MoE فشرده، سریع و مقرون‌به‌صرفه است که دارای ۲۳۰ میلیارد پارامتر کلی و ۱۰ میلیارد پارامتر فعال می‌باشد. این مدل برای ارائه عملکردی در سطح بالا در وظایف کدنویسی و عامل‌های هوشمند طراحی شده است، در حالی که هوش عمومی قدرتمندی را نیز حفظ می‌کند. تنها با ۱۰ میلیارد پارامتر فعال، MiniMax-M2 عملکردی هم‌تراز با مدل‌های بسیار بزرگ ارائه می‌دهد و آن را به گزینه‌ای ایده‌آل برای کاربردهای با بهره‌وری بالا تبدیل می‌کند."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "مدل با 1 تریلیون پارامتر کل و 32 میلیارد پارامتر فعال. در میان مدل‌های غیرتفکری، در دانش پیشرفته، ریاضیات و برنامه‌نویسی در سطح برتر قرار دارد و در وظایف عامل عمومی تخصص دارد. به طور ویژه برای وظایف نمایندگی بهینه شده است، نه تنها قادر به پاسخگویی به سوالات بلکه قادر به انجام اقدامات است. بهترین گزینه برای گفتگوهای بداهه، چت عمومی و تجربه‌های نمایندگی است و یک مدل واکنشی بدون نیاز به تفکر طولانی مدت محسوب می‌شود."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 با داشتن داده‌های برچسب‌خورده بسیار محدود، توانایی استدلال مدل را به طور چشمگیری افزایش داده است. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره فکری را تولید می‌کند تا دقت پاسخ نهایی را بهبود بخشد."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B نسخه تقطیر شده و بهینه‌تر مدل 70B Llama است. این مدل در وظایف تولید متن عملکرد قوی خود را حفظ کرده و هزینه محاسباتی را کاهش داده تا استقرار و پژوهش را تسهیل کند. توسط Groq با استفاده از سخت‌افزار واحد پردازش زبان سفارشی (LPU) ارائه می‌شود تا استدلال سریع و کارآمد فراهم کند."
1161
+ "description": "DeepSeek R1 Distill Llama 70B یک مدل زبان بزرگ مبتنی بر Llama3.3 70B است که با استفاده از خروجی‌های تنظیم‌شده DeepSeek R1، به عملکردی رقابتی در سطح مدل‌های پیشرفته بزرگ دست یافته است."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B یک مدل زبان بزرگ تقطیر شده مبتنی بر Llama-3.1-8B-Instruct است که با استفاده از خروجی DeepSeek R1 آموزش دیده است."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "ویژه طراحی شده برای کدنویسی کارآمد و جریان‌های کاری عامل‌ها."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 یک مدل فشرده، سریع و مقرون‌به‌صرفه از نوع متخصصان ترکیبی (MoE) است که دارای ۲۳۰ میلیارد پارامتر کلی و ۱۰ میلیارد پارامتر فعال می‌باشد. این مدل برای ارائه عملکردی عالی در وظایف کدنویسی و عامل‌های هوشمند طراحی شده و در عین حال هوش عمومی قدرتمندی را حفظ می‌کند. این مدل در ویرایش چندفایلی، چرخه کدنویسی-اجرا-اصلاح، آزمون و تصحیح، و زنجیره ابزارهای پیچیده و طولانی عملکردی برجسته دارد و گزینه‌ای ایده‌آل برای جریان کاری توسعه‌دهندگان محسوب می‌شود."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B مدل پیشرفته و برتر Mistral در سطح جهانی است."
2467
2473
  },
@@ -102,7 +102,7 @@
102
102
  "SPII": "Votre contenu peut contenir des informations personnelles sensibles. Pour protéger la vie privée, veuillez retirer ces informations sensibles puis réessayer.",
103
103
  "default": "Contenu bloqué : {{blockReason}}. Veuillez modifier votre demande et réessayer."
104
104
  },
105
- "InsufficientQuota": "Désolé, le quota de cette clé a atteint sa limite. Veuillez vérifier si le solde de votre compte est suffisant ou augmenter le quota de la clé avant de réessayer.",
105
+ "InsufficientQuota": "Désolé, le quota associé à cette clé a été atteint. Veuillez vérifier si le solde de votre compte est suffisant ou augmenter le quota de la clé avant de réessayer.",
106
106
  "InvalidAccessCode": "Le mot de passe est incorrect ou vide. Veuillez saisir le mot de passe d'accès correct ou ajouter une clé API personnalisée.",
107
107
  "InvalidBedrockCredentials": "L'authentification Bedrock a échoué, veuillez vérifier AccessKeyId/SecretAccessKey et réessayer",
108
108
  "InvalidClerkUser": "Désolé, vous n'êtes pas actuellement connecté. Veuillez vous connecter ou vous inscrire avant de continuer.",
@@ -131,7 +131,7 @@
131
131
  "PluginServerError": "Erreur de réponse du serveur du plugin. Veuillez vérifier le fichier de description du plugin, la configuration du plugin ou la mise en œuvre côté serveur en fonction des informations d'erreur ci-dessous",
132
132
  "PluginSettingsInvalid": "Ce plugin doit être correctement configuré avant de pouvoir être utilisé. Veuillez vérifier votre configuration",
133
133
  "ProviderBizError": "Erreur de service {{provider}}. Veuillez vérifier les informations suivantes ou réessayer.",
134
- "QuotaLimitReached": "Désolé, l'utilisation actuelle des tokens ou le nombre de requêtes a atteint la limite de quota de cette clé. Veuillez augmenter le quota de cette clé ou réessayer plus tard.",
134
+ "QuotaLimitReached": "Désolé, la consommation de jetons ou le nombre de requêtes a atteint la limite de quota de cette clé. Veuillez augmenter le quota de la clé ou réessayer plus tard.",
135
135
  "StreamChunkError": "Erreur de parsing du bloc de message de la requête en streaming. Veuillez vérifier si l'API actuelle respecte les normes ou contacter votre fournisseur d'API pour des conseils.",
136
136
  "SubscriptionKeyMismatch": "Nous sommes désolés, en raison d'une défaillance système occasionnelle, l'utilisation actuelle de l'abonnement est temporairement inactive. Veuillez cliquer sur le bouton ci-dessous pour rétablir votre abonnement ou nous contacter par e-mail pour obtenir de l'aide.",
137
137
  "SubscriptionPlanLimit": "Votre quota d'abonnement est épuisé, vous ne pouvez pas utiliser cette fonctionnalité. Veuillez passer à un plan supérieur ou configurer l'API du modèle personnalisé pour continuer à l'utiliser.",
@@ -295,7 +295,7 @@
295
295
  },
296
296
  "helpDoc": "Guide de configuration",
297
297
  "responsesApi": {
298
- "desc": "Utilise la nouvelle norme de format de requête d'OpenAI, débloquant des fonctionnalités avancées telles que les chaînes de pensée",
298
+ "desc": "Adopte le nouveau format de requête de dernière génération d'OpenAI, permettant de débloquer des fonctionnalités avancées telles que la chaîne de pensée (pris en charge uniquement par les modèles OpenAI)",
299
299
  "title": "Utiliser la norme Responses API"
300
300
  },
301
301
  "waitingForMore": "D'autres modèles sont en <1>planification d'intégration</1>, restez à l'écoute"
@@ -236,6 +236,9 @@
236
236
  "MiniMaxAI/MiniMax-M1-80k": {
237
237
  "description": "MiniMax-M1 est un modèle d'inférence à attention mixte à grande échelle avec poids open source, comptant 456 milliards de paramètres, activant environ 45,9 milliards de paramètres par token. Le modèle supporte nativement un contexte ultra-long de 1 million de tokens et, grâce au mécanisme d'attention éclair, réduit de 75 % les opérations en virgule flottante lors de tâches de génération de 100 000 tokens par rapport à DeepSeek R1. Par ailleurs, MiniMax-M1 utilise une architecture MoE (Experts Mixtes), combinant l'algorithme CISPO et une conception d'attention mixte pour un entraînement efficace par apprentissage par renforcement, offrant des performances de pointe dans l'inférence sur longues entrées et les scénarios réels d'ingénierie logicielle."
238
238
  },
239
+ "MiniMaxAI/MiniMax-M2": {
240
+ "description": "MiniMax-M2 redéfinit l'efficacité pour les agents intelligents. Il s'agit d'un modèle MoE compact, rapide et économique, doté de 230 milliards de paramètres totaux et de 10 milliards de paramètres actifs, conçu pour offrir des performances de pointe dans les tâches de codage et d'agents, tout en conservant une intelligence générale puissante. Avec seulement 10 milliards de paramètres actifs, MiniMax-M2 offre des performances comparables à celles des modèles de grande taille, ce qui en fait un choix idéal pour les applications à haute efficacité."
241
+ },
239
242
  "Moonshot-Kimi-K2-Instruct": {
240
243
  "description": "Avec un total de 1 000 milliards de paramètres et 32 milliards de paramètres activés, ce modèle non cognitif atteint un niveau de pointe en connaissances avancées, mathématiques et codage, excelling dans les tâches d'agents généraux. Optimisé pour les tâches d'agents, il peut non seulement répondre aux questions mais aussi agir. Idéal pour les conversations improvisées, générales et les expériences d'agents, c'est un modèle réflexe ne nécessitant pas de longues réflexions."
241
244
  },
@@ -1155,7 +1158,7 @@
1155
1158
  "description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère une chaîne de pensée pour améliorer la précision de la réponse."
1156
1159
  },
1157
1160
  "deepseek/deepseek-r1-distill-llama-70b": {
1158
- "description": "DeepSeek-R1-Distill-Llama-70B est une variante distillée et plus efficace du modèle Llama 70B. Il conserve de solides performances en génération de texte tout en réduisant les coûts de calcul pour faciliter le déploiement et la recherche. Il est servi par Groq avec son matériel personnalisé LPU pour un raisonnement rapide et efficace."
1161
+ "description": "DeepSeek R1 Distill Llama 70B est un grand modèle de langage basé sur Llama3.3 70B. Grâce au fine-tuning réalisé à partir des sorties de DeepSeek R1, il atteint des performances compétitives comparables à celles des modèles de pointe de grande envergure."
1159
1162
  },
1160
1163
  "deepseek/deepseek-r1-distill-llama-8b": {
1161
1164
  "description": "DeepSeek R1 Distill Llama 8B est un modèle de langage distillé basé sur Llama-3.1-8B-Instruct, entraîné en utilisant les sorties de DeepSeek R1."
@@ -2462,6 +2465,9 @@
2462
2465
  "minimax/minimax-m2": {
2463
2466
  "description": "Conçu pour un codage efficace et des flux de travail d'agents performants."
2464
2467
  },
2468
+ "minimaxai/minimax-m2": {
2469
+ "description": "MiniMax-M2 est un modèle MoE (Mixture of Experts) compact, rapide et économique, doté de 230 milliards de paramètres totaux et de 10 milliards de paramètres actifs. Il est conçu pour offrir des performances optimales dans les tâches de codage et d'agents, tout en maintenant une intelligence générale robuste. Ce modèle excelle dans l'édition multi-fichiers, les boucles de codage-exécution-correction, la vérification et la correction de tests, ainsi que dans les chaînes d'outils complexes à long terme, ce qui en fait un choix idéal pour les flux de travail des développeurs."
2470
+ },
2465
2471
  "ministral-3b-latest": {
2466
2472
  "description": "Ministral 3B est le modèle de pointe de Mistral sur le marché."
2467
2473
  },