@lobehub/lobehub 2.0.0-next.51 → 2.0.0-next.53

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (107) hide show
  1. package/CHANGELOG.md +58 -0
  2. package/README.md +8 -8
  3. package/README.zh-CN.md +8 -8
  4. package/apps/desktop/package.json +1 -1
  5. package/apps/desktop/src/main/controllers/LocalFileCtr.ts +25 -5
  6. package/apps/desktop/src/main/controllers/__tests__/LocalFileCtr.test.ts +4 -1
  7. package/apps/desktop/src/main/modules/fileSearch/__tests__/macOS.integration.test.ts +357 -0
  8. package/apps/desktop/src/main/modules/fileSearch/impl/macOS.ts +30 -22
  9. package/changelog/v1.json +21 -0
  10. package/locales/ar/models.json +119 -126
  11. package/locales/ar/plugin.json +1 -1
  12. package/locales/bg-BG/models.json +104 -132
  13. package/locales/bg-BG/plugin.json +1 -1
  14. package/locales/de-DE/models.json +119 -126
  15. package/locales/de-DE/plugin.json +1 -1
  16. package/locales/en-US/models.json +167 -126
  17. package/locales/en-US/plugin.json +1 -1
  18. package/locales/es-ES/models.json +119 -126
  19. package/locales/es-ES/plugin.json +1 -1
  20. package/locales/fa-IR/models.json +119 -126
  21. package/locales/fa-IR/plugin.json +1 -1
  22. package/locales/fr-FR/models.json +119 -126
  23. package/locales/fr-FR/plugin.json +1 -1
  24. package/locales/it-IT/models.json +119 -126
  25. package/locales/it-IT/plugin.json +1 -1
  26. package/locales/ja-JP/models.json +119 -126
  27. package/locales/ja-JP/plugin.json +1 -1
  28. package/locales/ko-KR/models.json +119 -126
  29. package/locales/ko-KR/plugin.json +1 -1
  30. package/locales/nl-NL/models.json +119 -126
  31. package/locales/nl-NL/plugin.json +1 -1
  32. package/locales/pl-PL/models.json +119 -126
  33. package/locales/pl-PL/plugin.json +1 -1
  34. package/locales/pt-BR/models.json +119 -126
  35. package/locales/pt-BR/plugin.json +1 -1
  36. package/locales/ru-RU/models.json +119 -126
  37. package/locales/ru-RU/plugin.json +1 -1
  38. package/locales/tr-TR/models.json +119 -126
  39. package/locales/tr-TR/plugin.json +1 -1
  40. package/locales/vi-VN/models.json +119 -126
  41. package/locales/vi-VN/plugin.json +1 -1
  42. package/locales/zh-CN/models.json +173 -80
  43. package/locales/zh-CN/plugin.json +1 -1
  44. package/locales/zh-TW/models.json +119 -126
  45. package/locales/zh-TW/plugin.json +1 -1
  46. package/package.json +2 -2
  47. package/packages/const/src/models.ts +2 -0
  48. package/packages/electron-client-ipc/src/types/localSystem.ts +26 -2
  49. package/packages/electron-server-ipc/src/ipcClient.ts +31 -31
  50. package/packages/electron-server-ipc/src/ipcServer.ts +15 -15
  51. package/packages/model-bank/src/aiModels/aihubmix.ts +106 -2
  52. package/packages/model-bank/src/aiModels/openai.ts +107 -3
  53. package/packages/model-bank/src/aiModels/qwen.ts +76 -7
  54. package/packages/model-bank/src/types/aiModel.ts +1 -0
  55. package/packages/model-runtime/src/core/contextBuilders/openai.test.ts +58 -0
  56. package/packages/model-runtime/src/core/contextBuilders/openai.ts +24 -10
  57. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +3 -2
  58. package/packages/model-runtime/src/providers/openai/index.test.ts +44 -0
  59. package/packages/types/src/agent/chatConfig.ts +9 -0
  60. package/packages/types/src/tool/builtin.ts +6 -4
  61. package/src/app/[variants]/(main)/chat/components/WorkspaceLayout.tsx +32 -23
  62. package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +12 -0
  63. package/src/features/ChatInput/ActionBar/Model/GPT51ReasoningEffortSlider.tsx +58 -0
  64. package/src/features/ChatItem/components/MessageContent.tsx +3 -1
  65. package/src/features/Conversation/Messages/Assistant/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  66. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/ApprovalActions.tsx +34 -13
  67. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/index.tsx +2 -2
  68. package/src/features/Conversation/Messages/Group/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  69. package/src/features/Conversation/Messages/User/index.tsx +11 -1
  70. package/src/features/PluginsUI/Render/BuiltinType/index.test.tsx +10 -4
  71. package/src/features/PluginsUI/Render/BuiltinType/index.tsx +2 -2
  72. package/src/libs/mcp/__tests__/__snapshots__/index.test.ts.snap +0 -6
  73. package/src/locales/default/chat.ts +2 -0
  74. package/src/locales/default/plugin.ts +1 -1
  75. package/src/services/chat/chat.test.ts +1 -0
  76. package/src/services/chat/index.ts +7 -0
  77. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +62 -0
  78. package/src/store/aiInfra/slices/aiProvider/selectors.ts +1 -1
  79. package/src/store/chat/slices/aiChat/actions/conversationControl.ts +42 -0
  80. package/src/tools/code-interpreter/Render/index.tsx +1 -1
  81. package/src/tools/interventions.ts +28 -4
  82. package/src/tools/local-system/Intervention/RunCommand/index.tsx +4 -5
  83. package/src/tools/local-system/Placeholder/ListFiles.tsx +3 -5
  84. package/src/tools/local-system/Placeholder/SearchFiles.tsx +2 -5
  85. package/src/tools/local-system/Render/ListFiles/index.tsx +16 -21
  86. package/src/tools/local-system/Render/ReadLocalFile/ReadFileView.tsx +2 -1
  87. package/src/tools/local-system/Render/RenameLocalFile/index.tsx +15 -20
  88. package/src/tools/local-system/Render/RunCommand/index.tsx +67 -70
  89. package/src/tools/local-system/Render/SearchFiles/SearchQuery/index.tsx +0 -1
  90. package/src/tools/local-system/Render/SearchFiles/index.tsx +15 -20
  91. package/src/tools/local-system/Render/WriteFile/index.tsx +2 -8
  92. package/src/tools/local-system/index.ts +5 -4
  93. package/src/tools/local-system/systemRole.ts +1 -1
  94. package/src/tools/placeholders.ts +39 -8
  95. package/src/tools/renders.ts +56 -9
  96. package/src/tools/web-browsing/Placeholder/{PageContent.tsx → CrawlMultiPages.tsx} +4 -1
  97. package/src/tools/web-browsing/Placeholder/CrawlSinglePage.tsx +12 -0
  98. package/src/tools/web-browsing/Placeholder/Search.tsx +4 -4
  99. package/src/tools/web-browsing/Render/CrawlMultiPages.tsx +15 -0
  100. package/src/tools/web-browsing/Render/CrawlSinglePage.tsx +15 -0
  101. package/src/tools/web-browsing/Render/Search/index.tsx +39 -44
  102. package/packages/database/migrations/0044_add_tool_intervention.sql +0 -1
  103. package/src/tools/local-system/Intervention/index.tsx +0 -17
  104. package/src/tools/local-system/Placeholder/index.tsx +0 -25
  105. package/src/tools/local-system/Render/index.tsx +0 -42
  106. package/src/tools/web-browsing/Placeholder/index.tsx +0 -40
  107. package/src/tools/web-browsing/Render/index.tsx +0 -57
@@ -1049,6 +1049,9 @@
1049
1049
  "deepseek-r1-0528": {
1050
1050
  "description": "685B フルスペックモデルで、2025年5月28日にリリースされました。DeepSeek-R1 は後期トレーニング段階で大規模に強化学習技術を活用し、極めて少ないラベル付きデータでモデルの推論能力を大幅に向上させました。数学、コード、自然言語推論などのタスクで高い性能と強力な能力を持ちます。"
1051
1051
  },
1052
+ "deepseek-r1-250528": {
1053
+ "description": "DeepSeek R1 250528、フルスペックの DeepSeek-R1 推論モデルで、高度な数学および論理タスクに適しています。"
1054
+ },
1052
1055
  "deepseek-r1-70b-fast-online": {
1053
1056
  "description": "DeepSeek R1 70Bファスト版で、リアルタイムのオンライン検索をサポートし、モデルのパフォーマンスを維持しながら、より速い応答速度を提供します。"
1054
1057
  },
@@ -1059,31 +1062,34 @@
1059
1062
  "description": "deepseek-r1-distill-llama は、DeepSeek-R1 から Llama を蒸留したモデルです。"
1060
1063
  },
1061
1064
  "deepseek-r1-distill-llama-70b": {
1062
- "description": "DeepSeek R1——DeepSeekスイートの中でより大きく、より賢いモデル——がLlama 70Bアーキテクチャに蒸留されました。ベンチマークテストと人間評価に基づき、このモデルは元のLlama 70Bよりも賢く、特に数学と事実の正確性が求められるタスクで優れたパフォーマンスを示します。"
1065
+ "description": "DeepSeek R1 Distill Llama 70B、汎用 R1 推論能力と Llama エコシステムを融合した蒸留モデルです。"
1063
1066
  },
1064
1067
  "deepseek-r1-distill-llama-8b": {
1065
- "description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
1068
+ "description": "DeepSeek-R1-Distill-Llama-8B は Llama-3.1-8B をベースにした蒸留型大規模言語モデルで、DeepSeek R1 の出力を活用しています。"
1066
1069
  },
1067
- "deepseek-r1-distill-qianfan-llama-70b": {
1068
- "description": "2025年2月14日に初めてリリースされ、千帆大モデル開発チームがLlama3_70Bをベースモデル(Built with Meta Llama)として蒸留したもので、蒸留データには千帆のコーパスも追加されています。"
1070
+ "deepseek-r1-distill-qianfan-70b": {
1071
+ "description": "DeepSeek R1 Distill Qianfan 70B、Qianfan-70B をベースにした R1 蒸留モデルで、コストパフォーマンスに優れています。"
1069
1072
  },
1070
- "deepseek-r1-distill-qianfan-llama-8b": {
1071
- "description": "2025年2月14日に初めてリリースされ、千帆大モデル開発チームがLlama3_8Bをベースモデル(Built with Meta Llama)として蒸留したもので、蒸留データには千帆のコーパスも追加されています。"
1073
+ "deepseek-r1-distill-qianfan-8b": {
1074
+ "description": "DeepSeek R1 Distill Qianfan 8B、Qianfan-8B をベースにした R1 蒸留モデルで、中小規模のアプリケーションに適しています。"
1075
+ },
1076
+ "deepseek-r1-distill-qianfan-llama-70b": {
1077
+ "description": "DeepSeek R1 Distill Qianfan Llama 70B、Llama-70B をベースにした R1 蒸留モデルです。"
1072
1078
  },
1073
1079
  "deepseek-r1-distill-qwen": {
1074
1080
  "description": "deepseek-r1-distill-qwen は、Qwen をベースに DeepSeek-R1 から蒸留されたモデルです。"
1075
1081
  },
1076
1082
  "deepseek-r1-distill-qwen-1.5b": {
1077
- "description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
1083
+ "description": "DeepSeek R1 Distill Qwen 1.5B、超軽量の R1 蒸留モデルで、リソースが極めて限られた環境に適しています。"
1078
1084
  },
1079
1085
  "deepseek-r1-distill-qwen-14b": {
1080
- "description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
1086
+ "description": "DeepSeek R1 Distill Qwen 14B、中規模の R1 蒸留モデルで、さまざまなシーンでの展開に適しています。"
1081
1087
  },
1082
1088
  "deepseek-r1-distill-qwen-32b": {
1083
- "description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
1089
+ "description": "DeepSeek R1 Distill Qwen 32B、Qwen-32B をベースにした R1 蒸留モデルで、性能とコストのバランスに優れています。"
1084
1090
  },
1085
1091
  "deepseek-r1-distill-qwen-7b": {
1086
- "description": "DeepSeek-R1-Distillシリーズモデルは、知識蒸留技術を通じて、DeepSeek-R1が生成したサンプルをQwen、Llamaなどのオープンソースモデルに微調整して得られたものです。"
1092
+ "description": "DeepSeek R1 Distill Qwen 7B、軽量の R1 蒸留モデルで、エッジ環境や企業のオンプレミス環境に適しています。"
1087
1093
  },
1088
1094
  "deepseek-r1-fast-online": {
1089
1095
  "description": "DeepSeek R1フルファスト版で、リアルタイムのオンライン検索をサポートし、671Bパラメータの強力な能力とより速い応答速度を組み合わせています。"
@@ -1112,12 +1118,24 @@
1112
1118
  "deepseek-v3.1-terminus": {
1113
1119
  "description": "DeepSeek-V3.1-Terminus は DeepSeek によって開発されたエッジデバイス向けに最適化された大規模言語モデルです。"
1114
1120
  },
1121
+ "deepseek-v3.1-think-250821": {
1122
+ "description": "DeepSeek V3.1 Think 250821、Terminus バージョンに対応した深層思考モデルで、高性能な推論シナリオに適しています。"
1123
+ },
1115
1124
  "deepseek-v3.1:671b": {
1116
1125
  "description": "DeepSeek V3.1:次世代推論モデルで、複雑な推論と連鎖的思考能力を向上させ、深い分析を必要とするタスクに適しています。"
1117
1126
  },
1118
1127
  "deepseek-v3.2-exp": {
1119
1128
  "description": "deepseek-v3.2-exp はスパースアテンション機構を導入し、長文処理時のトレーニングと推論の効率を向上させることを目的としており、価格は deepseek-v3.1 よりも低く設定されています。"
1120
1129
  },
1130
+ "deepseek-v3.2-think": {
1131
+ "description": "DeepSeek V3.2 Think、フルスペックの深層思考モデルで、長い推論チェーンの能力を強化しています。"
1132
+ },
1133
+ "deepseek-vl2": {
1134
+ "description": "DeepSeek VL2、マルチモーダルモデルで、画像と言語の理解およびきめ細かな視覚的質問応答をサポートします。"
1135
+ },
1136
+ "deepseek-vl2-small": {
1137
+ "description": "DeepSeek VL2 Small、軽量なマルチモーダルバージョンで、リソース制限や高負荷環境に適しています。"
1138
+ },
1121
1139
  "deepseek/deepseek-chat-v3-0324": {
1122
1140
  "description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
1123
1141
  },
@@ -1253,83 +1271,89 @@
1253
1271
  "emohaa": {
1254
1272
  "description": "Emohaaは心理モデルで、専門的な相談能力を持ち、ユーザーが感情問題を理解するのを助けます。"
1255
1273
  },
1256
- "ernie-3.5-128k": {
1257
- "description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英文コーパスをカバーし、強力な汎用能力を持ち、ほとんどの対話質問応答、創作生成、プラグインアプリケーションシーンの要求を満たすことができます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
1258
- },
1259
- "ernie-3.5-8k": {
1260
- "description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英文コーパスをカバーし、強力な汎用能力を持ち、ほとんどの対話質問応答、創作生成、プラグインアプリケーションシーンの要求を満たすことができます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
1261
- },
1262
- "ernie-3.5-8k-preview": {
1263
- "description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英文コーパスをカバーし、強力な汎用能力を持ち、ほとんどの対話質問応答、創作生成、プラグインアプリケーションシーンの要求を満たすことができます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
1264
- },
1265
- "ernie-4.0-8k-latest": {
1266
- "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、ERNIE 3.5に比べてモデル能力が全面的にアップグレードされ、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
1267
- },
1268
- "ernie-4.0-8k-preview": {
1269
- "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、ERNIE 3.5に比べてモデル能力が全面的にアップグレードされ、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
1270
- },
1271
- "ernie-4.0-turbo-128k": {
1272
- "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
1273
- },
1274
- "ernie-4.0-turbo-8k-latest": {
1275
- "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
1276
- },
1277
- "ernie-4.0-turbo-8k-preview": {
1278
- "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
1274
+ "ernie-4.5-0.3b": {
1275
+ "description": "ERNIE 4.5 0.3B、オープンソースの軽量モデルで、ローカルおよびカスタマイズされたデプロイに適しています。"
1279
1276
  },
1280
1277
  "ernie-4.5-21b-a3b": {
1281
- "description": "ERNIE 4.5 21B A3B は Baidu の文心によって開発された混合エキスパートモデルで、優れた推論能力と多言語対応力を備えています。"
1278
+ "description": "ERNIE 4.5 21B A3B、オープンソースの大規模パラメータモデルで、理解と生成タスクにおいて優れた性能を発揮します。"
1282
1279
  },
1283
1280
  "ernie-4.5-300b-a47b": {
1284
1281
  "description": "ERNIE 4.5 300B A47B は Baidu の文心によって開発された超大規模混合エキスパートモデルで、卓越した推論能力を誇ります。"
1285
1282
  },
1286
1283
  "ernie-4.5-8k-preview": {
1287
- "description": "文心大モデル4.5は、百度が独自に開発した次世代のネイティブマルチモーダル基盤大モデルで、複数のモーダルを共同でモデル化することで協調最適化を実現し、優れたマルチモーダル理解能力を持っています。言語能力がさらに向上し、理解、生成、論理、記憶能力が全面的に向上し、幻覚の排除、論理推論、コード能力が顕著に向上しています。"
1284
+ "description": "ERNIE 4.5 8K Preview、8K コンテキストのプレビューモデルで、文心 4.5 の機能を体験・テストできます。"
1288
1285
  },
1289
1286
  "ernie-4.5-turbo-128k": {
1290
- "description": "文心4.5 Turboは、幻覚の除去、論理推論、コード能力などの面で明らかな強化が見られます。文心4.5と比較して、速度が速く、価格が低くなっています。モデルの能力が全体的に向上し、複数回の長い履歴対話処理や長文書理解問答タスクにより良く対応します。"
1287
+ "description": "ERNIE 4.5 Turbo 128K、高性能な汎用モデルで、検索強化やツール呼び出しをサポートし、QA、コード、エージェントなど多様な業務に対応します。"
1288
+ },
1289
+ "ernie-4.5-turbo-128k-preview": {
1290
+ "description": "ERNIE 4.5 Turbo 128K Preview、正式版と同等の機能を提供するプレビューバージョンで、統合テストや段階的導入に適しています。"
1291
1291
  },
1292
1292
  "ernie-4.5-turbo-32k": {
1293
- "description": "文心4.5 Turboは、幻覚の除去、論理推論、コード能力などの面で明らかな強化が見られます。文心4.5と比較して、速度が速く、価格が低くなっています。テキスト創作、知識問答などの能力が顕著に向上しています。出力の長さと全体の文の遅延はERNIE 4.5に比べて増加しています。"
1293
+ "description": "ERNIE 4.5 Turbo 32K、中長文コンテキスト対応モデルで、QA、ナレッジ検索、多ターン対話などに適しています。"
1294
+ },
1295
+ "ernie-4.5-turbo-latest": {
1296
+ "description": "ERNIE 4.5 Turbo 最新版、総合的に最適化されたモデルで、プロダクション環境の主力汎用モデルとして適しています。"
1297
+ },
1298
+ "ernie-4.5-turbo-vl": {
1299
+ "description": "ERNIE 4.5 Turbo VL、成熟したマルチモーダルモデルで、画像と言語の理解・認識タスクに適しています。"
1294
1300
  },
1295
1301
  "ernie-4.5-turbo-vl-32k": {
1296
- "description": "文心一言大モデルの新しいバージョンで、画像理解、創作、翻訳、コードなどの能力が顕著に向上し、初めて32Kのコンテキスト長をサポートし、最初のトークンの遅延が大幅に減少しました。"
1302
+ "description": "ERNIE 4.5 Turbo VL 32K、中長文対応のマルチモーダルモデルで、長文と画像の統合理解に適しています。"
1303
+ },
1304
+ "ernie-4.5-turbo-vl-32k-preview": {
1305
+ "description": "ERNIE 4.5 Turbo VL 32K Preview、32K コンテキスト対応のマルチモーダルプレビューモデルで、長文視覚理解能力の評価に適しています。"
1306
+ },
1307
+ "ernie-4.5-turbo-vl-latest": {
1308
+ "description": "ERNIE 4.5 Turbo VL Latest、最新のマルチモーダルバージョンで、より優れた画像と言語の理解・推論性能を提供します。"
1309
+ },
1310
+ "ernie-4.5-turbo-vl-preview": {
1311
+ "description": "ERNIE 4.5 Turbo VL Preview、マルチモーダルプレビューモデルで、画像と言語の理解・生成をサポートし、視覚的質問応答やコンテンツ理解に適しています。"
1312
+ },
1313
+ "ernie-4.5-vl-28b-a3b": {
1314
+ "description": "ERNIE 4.5 VL 28B A3B、オープンソースのマルチモーダルモデルで、画像と言語の理解・推論タスクに対応します。"
1315
+ },
1316
+ "ernie-5.0-thinking-preview": {
1317
+ "description": "文心5.0 Thinking Preview、ネイティブな全モーダル対応のフラッグシップモデルで、テキスト、画像、音声、動画の統一モデリングを実現し、複雑な質問応答、創作、エージェントシナリオに対応します。"
1297
1318
  },
1298
1319
  "ernie-char-8k": {
1299
- "description": "百度が独自に開発した垂直シーン向けの大規模言語モデルで、ゲームのNPC、カスタマーサービスの対話、対話キャラクターの役割演技などのアプリケーションシーンに適しており、キャラクターのスタイルがより鮮明で一貫しており、指示に従う能力が強く、推論性能が優れています。"
1320
+ "description": "ERNIE Character 8K、キャラクター人格対話モデルで、IP キャラクター構築や長期的な対話に適しています。"
1300
1321
  },
1301
1322
  "ernie-char-fiction-8k": {
1302
- "description": "百度が独自に開発した垂直シーン向けの大規模言語モデルで、ゲームのNPC、カスタマーサービスの対話、対話キャラクターの役割演技などのアプリケーションシーンに適しており、キャラクターのスタイルがより鮮明で一貫しており、指示に従う能力が強く、推論性能が優れています。"
1323
+ "description": "ERNIE Character Fiction 8K、小説やストーリー創作向けの人格モデルで、長文ストーリー生成に適しています。"
1324
+ },
1325
+ "ernie-char-fiction-8k-preview": {
1326
+ "description": "ERNIE Character Fiction 8K Preview、キャラクターとストーリー創作向けのプレビューモデルで、機能体験とテストに適しています。"
1303
1327
  },
1304
1328
  "ernie-irag-edit": {
1305
- "description": "百度が独自開発したERNIE iRAG Edit画像編集モデルは、画像に基づく消去(erase)、再描画(repaint)、バリエーション生成(variation)などの操作をサポートします。"
1329
+ "description": "ERNIE iRAG Edit、画像の消去、再描画、バリエーション生成をサポートする画像編集モデルです。"
1306
1330
  },
1307
1331
  "ernie-lite-8k": {
1308
- "description": "ERNIE Liteは、百度が独自に開発した軽量級の大規模言語モデルで、優れたモデル効果と推論性能を兼ね備え、低計算能力のAIアクセラレータカードでの推論使用に適しています。"
1332
+ "description": "ERNIE Lite 8K、軽量な汎用モデルで、コストに敏感な日常的な質問応答やコンテンツ生成に適しています。"
1309
1333
  },
1310
1334
  "ernie-lite-pro-128k": {
1311
- "description": "百度が独自に開発した軽量級の大規模言語モデルで、優れたモデル効果と推論性能を兼ね備え、ERNIE Liteよりも優れた効果を持ち、低計算能力のAIアクセラレータカードでの推論使用に適しています。"
1335
+ "description": "ERNIE Lite Pro 128K、軽量かつ高性能なモデルで、レイテンシーとコストに敏感な業務シナリオに適しています。"
1312
1336
  },
1313
1337
  "ernie-novel-8k": {
1314
- "description": "百度が独自に開発した汎用大規模言語モデルで、小説の続編作成能力に明らかな優位性があり、短編劇や映画などのシーンにも使用できます。"
1338
+ "description": "ERNIE Novel 8K、長編小説や IP ストーリー創作向けモデルで、多キャラクター・多視点の物語構成に優れています。"
1315
1339
  },
1316
1340
  "ernie-speed-128k": {
1317
- "description": "百度が2024年に最新リリースした自社開発の高性能大規模言語モデルで、汎用能力が優れており、基盤モデルとして微調整に適しており、特定のシーンの問題をより良く処理し、優れた推論性能を持っています。"
1341
+ "description": "ERNIE Speed 128K、入出力コスト不要の大規模モデルで、長文理解や大規模試用に適しています。"
1342
+ },
1343
+ "ernie-speed-8k": {
1344
+ "description": "ERNIE Speed 8K、無料で高速なモデルで、日常会話や軽量なテキストタスクに適しています。"
1318
1345
  },
1319
1346
  "ernie-speed-pro-128k": {
1320
- "description": "百度が2024年に最新リリースした自社開発の高性能大規模言語モデルで、汎用能力が優れており、ERNIE Speedよりも優れた効果を持ち、基盤モデルとして微調整に適しており、特定のシーンの問題をより良く処理し、優れた推論性能を持っています。"
1347
+ "description": "ERNIE Speed Pro 128K、高スループットかつ高コストパフォーマンスのモデルで、大規模オンラインサービスや企業向けアプリケーションに適しています。"
1321
1348
  },
1322
1349
  "ernie-tiny-8k": {
1323
- "description": "ERNIE Tinyは、百度が独自に開発した超高性能の大規模言語モデルで、文心シリーズモデルの中でデプロイと微調整コストが最も低いです。"
1324
- },
1325
- "ernie-x1-32k": {
1326
- "description": "より強力な理解、計画、反省、進化能力を備えています。より包括的な深い思考モデルとして、文心X1は正確さ、創造性、文才を兼ね備え、中国語の知識問答、文学創作、文書作成、日常会話、論理推論、複雑な計算およびツール呼び出しなどの分野で特に優れたパフォーマンスを発揮します。"
1327
- },
1328
- "ernie-x1-32k-preview": {
1329
- "description": "文心大モデルX1は、より強力な理解、計画、反省、進化の能力を備えています。より包括的な深い思考モデルとして、文心X1は正確さ、創造性、文才を兼ね備え、中国語の知識問答、文学創作、文書作成、日常会話、論理推論、複雑な計算、ツールの呼び出しなどの分野で特に優れたパフォーマンスを発揮します。"
1350
+ "description": "ERNIE Tiny 8K、超軽量モデルで、簡単な質問応答や分類などの低コスト推論シナリオに適しています。"
1330
1351
  },
1331
1352
  "ernie-x1-turbo-32k": {
1332
- "description": "ERNIE-X1-32Kと比較して、モデルの効果と性能が向上しています。"
1353
+ "description": "ERNIE X1 Turbo 32K、高速思考モデルで、32K の長文コンテキストに対応し、複雑な推論や多ターン対話に適しています。"
1354
+ },
1355
+ "ernie-x1.1-preview": {
1356
+ "description": "ERNIE X1.1 Preview、ERNIE X1.1 思考モデルのプレビューバージョンで、機能検証やテストに適しています。"
1333
1357
  },
1334
1358
  "fal-ai/bytedance/seedream/v4": {
1335
1359
  "description": "Seedream 4.0 画像生成モデルはバイトダンスの Seed チームによって開発され、テキストと画像の入力をサポートし、高い制御性と高品質な画像生成体験を提供します。テキストプロンプトに基づいて画像を生成します。"
@@ -1389,7 +1413,7 @@
1389
1413
  "description": "FLUX.1 [schnell]は現時点で最先端の少ステップモデルであり、同種の競合モデルを凌駕し、Midjourney v6.0やDALL·E 3 (HD)などの強力な非蒸留モデルよりも優れています。専用の微調整により、事前学習段階の出力多様性を完全に保持し、市場の最先端モデルと比較して視覚品質、指示遵守、サイズ・比率変化、フォント処理、出力多様性の面で大幅に向上。ユーザーにより豊かで多様な創造的画像生成体験を提供します。"
1390
1414
  },
1391
1415
  "flux.1-schnell": {
1392
- "description": "120億パラメータを持つ修正フロートランスフォーマーで、テキスト記述に基づいて画像を生成します。"
1416
+ "description": "FLUX.1-schnell、高性能な画像生成モデルで、多様なスタイルの画像を素早く生成できます。"
1393
1417
  },
1394
1418
  "gemini-1.0-pro-001": {
1395
1419
  "description": "Gemini 1.0 Pro 001(チューニング)は、安定した調整可能な性能を提供し、複雑なタスクのソリューションに理想的な選択肢です。"
@@ -1538,6 +1562,9 @@
1538
1562
  "glm-4-0520": {
1539
1563
  "description": "GLM-4-0520は最新のモデルバージョンで、高度に複雑で多様なタスクのために設計され、優れたパフォーマンスを発揮します。"
1540
1564
  },
1565
+ "glm-4-32b-0414": {
1566
+ "description": "GLM-4 32B 0414、GLM シリーズの汎用大規模モデルで、マルチタスクのテキスト生成と理解をサポートします。"
1567
+ },
1541
1568
  "glm-4-9b-chat": {
1542
1569
  "description": "GLM-4-9B-Chat は意味理解、数学、推論、コード、知識など多方面で高い性能を発揮します。ウェブ閲覧、コード実行、カスタムツールの呼び出し、長文推論にも対応。日本語、韓国語、ドイツ語を含む26言語をサポート。"
1543
1570
  },
@@ -2036,14 +2063,26 @@
2036
2063
  "internlm3-latest": {
2037
2064
  "description": "私たちの最新のモデルシリーズは、卓越した推論性能を持ち、同等のオープンソースモデルの中でリーダーシップを発揮しています。デフォルトで最新のInternLM3シリーズモデルを指します。"
2038
2065
  },
2066
+ "internvl2.5-38b-mpo": {
2067
+ "description": "InternVL2.5 38B MPO、マルチモーダル事前学習モデルで、複雑な画像と言語の推論タスクに対応します。"
2068
+ },
2039
2069
  "internvl2.5-latest": {
2040
2070
  "description": "私たちが引き続きメンテナンスしている InternVL2.5 バージョンは、優れた安定した性能を持っています。デフォルトでは、私たちの最新の InternVL2.5 シリーズモデルに指向されており、現在は internvl2.5-78b に指向しています。"
2041
2071
  },
2072
+ "internvl3-14b": {
2073
+ "description": "InternVL3 14B、中規模のマルチモーダルモデルで、性能とコストのバランスに優れています。"
2074
+ },
2075
+ "internvl3-1b": {
2076
+ "description": "InternVL3 1B、軽量なマルチモーダルモデルで、リソース制限のある環境での導入に適しています。"
2077
+ },
2078
+ "internvl3-38b": {
2079
+ "description": "InternVL3 38B、大規模なマルチモーダルオープンソースモデルで、高精度な画像と言語の理解タスクに適しています。"
2080
+ },
2042
2081
  "internvl3-latest": {
2043
2082
  "description": "私たちの最新のマルチモーダル大規模モデルは、より強力な画像と言語の理解能力と長期的な画像理解能力を備えており、トップクラスのクローズドソースモデルに匹敵する性能を持っています。デフォルトでは、私たちの最新の InternVL シリーズモデルに指向されており、現在は internvl3-78b に指向しています。"
2044
2083
  },
2045
2084
  "irag-1.0": {
2046
- "description": "百度が独自開発したiRAG(image based RAG)は、検索強化型のテキストから画像生成技術で、百度検索の億単位の画像リソースと強力な基盤モデル能力を組み合わせ、非常にリアルな画像を生成します。従来のテキストから画像生成システムを大きく上回る効果を持ち、AI臭さがなく、コストも低減。iRAGは幻覚がなく、超リアルで即時利用可能な特徴を備えています。"
2085
+ "description": "ERNIE iRAG、画像検索強化生成モデルで、画像検索、画像と言語の検索、コンテンツ生成をサポートします。"
2047
2086
  },
2048
2087
  "jamba-large": {
2049
2088
  "description": "私たちの最も強力で先進的なモデルで、企業レベルの複雑なタスクを処理するために設計されており、卓越した性能を備えています。"
@@ -2064,7 +2103,7 @@
2064
2103
  "description": "kimi-k2-0905-previewモデルは256kのコンテキスト長を持ち、より強力なエージェントコーディング能力、より優れたフロントエンドコードの美観と実用性、そしてより良いコンテキスト理解能力を備えています。"
2065
2104
  },
2066
2105
  "kimi-k2-instruct": {
2067
- "description": "Kimi K2 Instruct Moonshot AI によって開発された大規模言語モデルで、超長文の文脈処理能力を備えています。"
2106
+ "description": "Kimi K2 Instruct、Kimi 公式の推論モデルで、長文コンテキスト、コード、QA など多様なシナリオに対応します。"
2068
2107
  },
2069
2108
  "kimi-k2-turbo-preview": {
2070
2109
  "description": "kimi-k2 は高度なコード処理能力とエージェント機能を備えた MoE(Mixture of Experts)アーキテクチャの基盤モデルで、総パラメータ数は1T、アクティブパラメータは32Bです。一般的な知識推論、プログラミング、数学、エージェントなどの主要カテゴリにおけるベンチマークで、K2モデルは他の主要なオープンソースモデルを上回る性能を示しています。"
@@ -2885,9 +2924,7 @@
2885
2924
  "qwen2.5-72b-instruct": {
2886
2925
  "description": "通義千問2.5の対外オープンソースの72B規模のモデルです。"
2887
2926
  },
2888
- "qwen2.5-7b-instruct": {
2889
- "description": "通義千問2.5の対外オープンソースの7B規模のモデルです。"
2890
- },
2927
+ "qwen2.5-7b-instruct": {},
2891
2928
  "qwen2.5-coder-1.5b-instruct": {
2892
2929
  "description": "通義千問コードモデルのオープンソース版です。"
2893
2930
  },
@@ -2918,15 +2955,11 @@
2918
2955
  "qwen2.5-omni-7b": {
2919
2956
  "description": "Qwen-Omniシリーズモデルは、動画、音声、画像、テキストなどの多様なモダリティのデータを入力としてサポートし、音声とテキストを出力します。"
2920
2957
  },
2921
- "qwen2.5-vl-32b-instruct": {
2922
- "description": "Qwen2.5-VLシリーズモデルは、モデルの知能レベル、実用性、適応性を向上させ、自然な会話、コンテンツ作成、専門知識サービス、コード開発などのシナリオにおいてより優れたパフォーマンスを発揮します。32Bバージョンでは強化学習技術を用いてモデルを最適化しており、Qwen2.5 VLシリーズの他のモデルと比較して、人間の嗜好に合致した出力スタイル、複雑な数学問題の推論能力、および画像の細粒度理解と推論能力を提供します。"
2923
- },
2958
+ "qwen2.5-vl-32b-instruct": {},
2924
2959
  "qwen2.5-vl-72b-instruct": {
2925
2960
  "description": "指示に従い、数学、問題解決、コード全体の向上、万物認識能力の向上を実現し、多様な形式で視覚要素を直接的に正確に特定し、長い動画ファイル(最大10分)を理解し、秒単位のイベント時刻を特定でき、時間の前後や速さを理解し、解析と特定能力に基づいてOSやモバイルのエージェントを操作し、重要な情報抽出能力とJson形式出力能力が強化されています。このバージョンは72Bバージョンで、本シリーズの中で最も強力なバージョンです。"
2926
2961
  },
2927
- "qwen2.5-vl-7b-instruct": {
2928
- "description": "指示に従い、数学、問題解決、コード全体の向上、万物認識能力の向上を実現し、多様な形式で視覚要素を直接的に正確に特定し、長い動画ファイル(最大10分)を理解し、秒単位のイベント時刻を特定でき、時間の前後や速さを理解し、解析と特定能力に基づいてOSやモバイルのエージェントを操作し、重要な情報抽出能力とJson形式出力能力が強化されています。このバージョンは72Bバージョンで、本シリーズの中で最も強力なバージョンです。"
2929
- },
2962
+ "qwen2.5-vl-7b-instruct": {},
2930
2963
  "qwen2.5-vl-instruct": {
2931
2964
  "description": "Qwen2.5-VLは、Qwenモデルファミリーにおける最新の視覚言語モデルです。"
2932
2965
  },
@@ -2951,48 +2984,22 @@
2951
2984
  "qwen3": {
2952
2985
  "description": "Qwen3は、Alibabaの次世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
2953
2986
  },
2954
- "qwen3-0.6b": {
2955
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2956
- },
2957
- "qwen3-1.7b": {
2958
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2959
- },
2960
- "qwen3-14b": {
2961
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2962
- },
2963
- "qwen3-235b-a22b": {
2964
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2965
- },
2966
- "qwen3-235b-a22b-instruct-2507": {
2967
- "description": "Qwen3ベースの非思考モードオープンソースモデルで、前バージョン(通義千問3-235B-A22B)に比べ、主観的創作能力とモデルの安全性がわずかに向上しています。"
2968
- },
2969
- "qwen3-235b-a22b-thinking-2507": {
2970
- "description": "Qwen3ベースの思考モードオープンソースモデルで、前バージョン(通義千問3-235B-A22B)に比べ、論理能力、汎用能力、知識強化、創作能力が大幅に向上し、高難度の強推論シナリオに適しています。"
2971
- },
2972
- "qwen3-30b-a3b": {
2973
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2974
- },
2975
- "qwen3-30b-a3b-instruct-2507": {
2976
- "description": "前バージョン(Qwen3-30B-A3B)に比べて、中国語・英語および多言語の全体的な汎用能力が大幅に向上しました。主観的かつオープンなタスクに特化した最適化により、ユーザーの好みにより適合し、より有用な応答を提供できます。"
2977
- },
2978
- "qwen3-30b-a3b-thinking-2507": {
2979
- "description": "Qwen3の思考モードオープンソースモデルで、前バージョン(通義千問3-30B-A3B)に比べて論理能力、汎用能力、知識強化および創作能力が大幅に向上しており、高難度の強推論シナリオに適しています。"
2980
- },
2981
- "qwen3-32b": {
2982
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2983
- },
2984
- "qwen3-4b": {
2985
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2986
- },
2987
- "qwen3-8b": {
2988
- "description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
2989
- },
2987
+ "qwen3-0.6b": {},
2988
+ "qwen3-1.7b": {},
2989
+ "qwen3-14b": {},
2990
+ "qwen3-235b-a22b": {},
2991
+ "qwen3-235b-a22b-instruct-2507": {},
2992
+ "qwen3-235b-a22b-thinking-2507": {},
2993
+ "qwen3-30b-a3b": {},
2994
+ "qwen3-30b-a3b-instruct-2507": {},
2995
+ "qwen3-30b-a3b-thinking-2507": {},
2996
+ "qwen3-32b": {},
2997
+ "qwen3-4b": {},
2998
+ "qwen3-8b": {},
2990
2999
  "qwen3-coder-30b-a3b-instruct": {
2991
3000
  "description": "通義千問のコード生成モデルのオープンソース版。最新の qwen3-coder-30b-a3b-instruct は Qwen3 に基づくコード生成モデルで、強力な Coding Agent 機能を備え、ツールの呼び出しや環境との対話に長けており、自律的なプログラミングと卓越したコード生成能力、さらに汎用的な能力も兼ね備えています。"
2992
3001
  },
2993
- "qwen3-coder-480b-a35b-instruct": {
2994
- "description": "通義千問のコードモデルオープンソース版。最新のqwen3-coder-480b-a35b-instructはQwen3ベースのコード生成モデルで、強力なコーディングエージェント能力を持ち、ツール呼び出しや環境とのインタラクションに優れ、自律的なプログラミングが可能で、コード能力と汎用能力を兼ね備えています。"
2995
- },
3002
+ "qwen3-coder-480b-a35b-instruct": {},
2996
3003
  "qwen3-coder-flash": {
2997
3004
  "description": "通義千問コードモデル。最新のQwen3-CoderシリーズモデルはQwen3をベースにしたコード生成モデルで、強力なコーディングエージェント能力を持ち、ツール呼び出しや環境とのインタラクションに長けています。自主的なプログラミングが可能で、コード能力に優れると同時に汎用能力も兼ね備えています。"
2998
3005
  },
@@ -3008,30 +3015,16 @@
3008
3015
  "qwen3-next-80b-a3b-instruct": {
3009
3016
  "description": "Qwen3に基づく次世代の非思考モードのオープンソースモデルで、前バージョン(通義千問3-235B-A22B-Instruct-2507)と比べて中国語テキストの理解能力が向上し、論理推論能力が強化され、テキスト生成タスクのパフォーマンスがより優れています。"
3010
3017
  },
3011
- "qwen3-next-80b-a3b-thinking": {
3012
- "description": "Qwen3に基づく次世代の思考モードのオープンソースモデルで、前バージョン(通義千問3-235B-A22B-Thinking-2507)と比べて指示遵守能力が向上し、モデルの要約応答がより簡潔になっています。"
3013
- },
3018
+ "qwen3-next-80b-a3b-thinking": {},
3014
3019
  "qwen3-omni-flash": {
3015
3020
  "description": "Qwen-Omni モデルは、テキスト、画像、音声、動画など複数のモダリティを組み合わせた入力に対応し、テキストまたは音声での応答を生成可能。多様な人間らしい音声スタイルを提供し、多言語・方言での音声出力をサポート。文章生成、視覚認識、音声アシスタントなどのシーンに応用可能です。"
3016
3021
  },
3017
- "qwen3-vl-235b-a22b-instruct": {
3018
- "description": "Qwen3 VL 235B A22B の非思考モード(Instruct)は、非思考型の指示実行シナリオに適しており、優れた視覚理解能力を維持しています。"
3019
- },
3020
- "qwen3-vl-235b-a22b-thinking": {
3021
- "description": "Qwen3 VL 235B A22B の思考モード(オープンソース版)は、高難度な推論や長尺動画の理解シナリオに対応し、視覚とテキストの高度な推論能力を提供します。"
3022
- },
3023
- "qwen3-vl-30b-a3b-instruct": {
3024
- "description": "Qwen3 VL 30B の非思考モード(Instruct)は、一般的な指示に従うシナリオ向けで、高いマルチモーダル理解と生成能力を維持しています。"
3025
- },
3026
- "qwen3-vl-30b-a3b-thinking": {
3027
- "description": "Qwen-VL(オープンソース版)は、視覚理解とテキスト生成能力を提供し、エージェントとの対話、視覚エンコーディング、空間認識、長尺動画の理解、深い思考に対応。複雑なシーンにおいても優れた文字認識と多言語対応力を発揮します。"
3028
- },
3029
- "qwen3-vl-8b-instruct": {
3030
- "description": "Qwen3 VL 8B の非思考モード(Instruct)は、一般的なマルチモーダル生成および認識タスクに適しています。"
3031
- },
3032
- "qwen3-vl-8b-thinking": {
3033
- "description": "Qwen3 VL 8B の思考モードは、軽量なマルチモーダル推論および対話シナリオ向けで、長いコンテキストの理解能力を保持しています。"
3034
- },
3022
+ "qwen3-vl-235b-a22b-instruct": {},
3023
+ "qwen3-vl-235b-a22b-thinking": {},
3024
+ "qwen3-vl-30b-a3b-instruct": {},
3025
+ "qwen3-vl-30b-a3b-thinking": {},
3026
+ "qwen3-vl-8b-instruct": {},
3027
+ "qwen3-vl-8b-thinking": {},
3035
3028
  "qwen3-vl-flash": {
3036
3029
  "description": "Qwen3 VL Flash:軽量かつ高速な推論バージョンで、低遅延が求められるシナリオや大量リクエストに最適です。"
3037
3030
  },
@@ -259,7 +259,7 @@
259
259
  "searchLocalFiles": "ファイルを検索",
260
260
  "writeLocalFile": "ファイルに書き込み"
261
261
  },
262
- "title": "ローカルファイル"
262
+ "title": "ローカルシステム"
263
263
  },
264
264
  "mcpInstall": {
265
265
  "CHECKING_INSTALLATION": "インストール環境を確認中...",