@lobehub/lobehub 2.0.0-next.51 → 2.0.0-next.52

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/apps/desktop/src/main/controllers/LocalFileCtr.ts +25 -5
  3. package/apps/desktop/src/main/controllers/__tests__/LocalFileCtr.test.ts +4 -1
  4. package/apps/desktop/src/main/modules/fileSearch/__tests__/macOS.integration.test.ts +357 -0
  5. package/apps/desktop/src/main/modules/fileSearch/impl/macOS.ts +30 -22
  6. package/changelog/v1.json +9 -0
  7. package/locales/ar/models.json +119 -126
  8. package/locales/ar/plugin.json +1 -1
  9. package/locales/bg-BG/models.json +104 -132
  10. package/locales/bg-BG/plugin.json +1 -1
  11. package/locales/de-DE/models.json +119 -126
  12. package/locales/de-DE/plugin.json +1 -1
  13. package/locales/en-US/models.json +167 -126
  14. package/locales/en-US/plugin.json +1 -1
  15. package/locales/es-ES/models.json +119 -126
  16. package/locales/es-ES/plugin.json +1 -1
  17. package/locales/fa-IR/models.json +119 -126
  18. package/locales/fa-IR/plugin.json +1 -1
  19. package/locales/fr-FR/models.json +119 -126
  20. package/locales/fr-FR/plugin.json +1 -1
  21. package/locales/it-IT/models.json +119 -126
  22. package/locales/it-IT/plugin.json +1 -1
  23. package/locales/ja-JP/models.json +119 -126
  24. package/locales/ja-JP/plugin.json +1 -1
  25. package/locales/ko-KR/models.json +119 -126
  26. package/locales/ko-KR/plugin.json +1 -1
  27. package/locales/nl-NL/models.json +119 -126
  28. package/locales/nl-NL/plugin.json +1 -1
  29. package/locales/pl-PL/models.json +119 -126
  30. package/locales/pl-PL/plugin.json +1 -1
  31. package/locales/pt-BR/models.json +119 -126
  32. package/locales/pt-BR/plugin.json +1 -1
  33. package/locales/ru-RU/models.json +119 -126
  34. package/locales/ru-RU/plugin.json +1 -1
  35. package/locales/tr-TR/models.json +119 -126
  36. package/locales/tr-TR/plugin.json +1 -1
  37. package/locales/vi-VN/models.json +119 -126
  38. package/locales/vi-VN/plugin.json +1 -1
  39. package/locales/zh-CN/models.json +173 -80
  40. package/locales/zh-CN/plugin.json +1 -1
  41. package/locales/zh-TW/models.json +119 -126
  42. package/locales/zh-TW/plugin.json +1 -1
  43. package/package.json +1 -1
  44. package/packages/electron-client-ipc/src/types/localSystem.ts +26 -2
  45. package/packages/model-runtime/src/core/contextBuilders/openai.test.ts +58 -0
  46. package/packages/model-runtime/src/core/contextBuilders/openai.ts +24 -10
  47. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +3 -2
  48. package/packages/model-runtime/src/providers/openai/index.test.ts +44 -0
  49. package/packages/types/src/tool/builtin.ts +6 -4
  50. package/src/features/Conversation/Messages/Assistant/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  51. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/index.tsx +2 -2
  52. package/src/features/Conversation/Messages/Group/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  53. package/src/features/PluginsUI/Render/BuiltinType/index.test.tsx +10 -4
  54. package/src/features/PluginsUI/Render/BuiltinType/index.tsx +2 -2
  55. package/src/locales/default/plugin.ts +1 -1
  56. package/src/services/chat/chat.test.ts +1 -0
  57. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +62 -0
  58. package/src/store/aiInfra/slices/aiProvider/selectors.ts +1 -1
  59. package/src/tools/code-interpreter/Render/index.tsx +1 -1
  60. package/src/tools/interventions.ts +28 -4
  61. package/src/tools/local-system/Placeholder/ListFiles.tsx +3 -5
  62. package/src/tools/local-system/Placeholder/SearchFiles.tsx +2 -5
  63. package/src/tools/local-system/Render/ListFiles/index.tsx +16 -21
  64. package/src/tools/local-system/Render/RenameLocalFile/index.tsx +15 -20
  65. package/src/tools/local-system/Render/RunCommand/index.tsx +67 -70
  66. package/src/tools/local-system/Render/SearchFiles/SearchQuery/index.tsx +0 -1
  67. package/src/tools/local-system/Render/SearchFiles/index.tsx +15 -20
  68. package/src/tools/local-system/Render/WriteFile/index.tsx +2 -8
  69. package/src/tools/local-system/index.ts +4 -4
  70. package/src/tools/local-system/systemRole.ts +1 -1
  71. package/src/tools/placeholders.ts +39 -8
  72. package/src/tools/renders.ts +56 -9
  73. package/src/tools/web-browsing/Placeholder/{PageContent.tsx → CrawlMultiPages.tsx} +4 -1
  74. package/src/tools/web-browsing/Placeholder/CrawlSinglePage.tsx +12 -0
  75. package/src/tools/web-browsing/Placeholder/Search.tsx +4 -4
  76. package/src/tools/web-browsing/Render/CrawlMultiPages.tsx +15 -0
  77. package/src/tools/web-browsing/Render/CrawlSinglePage.tsx +15 -0
  78. package/src/tools/web-browsing/Render/Search/index.tsx +39 -44
  79. package/packages/database/migrations/0044_add_tool_intervention.sql +0 -1
  80. package/src/tools/local-system/Intervention/index.tsx +0 -17
  81. package/src/tools/local-system/Placeholder/index.tsx +0 -25
  82. package/src/tools/local-system/Render/index.tsx +0 -42
  83. package/src/tools/web-browsing/Placeholder/index.tsx +0 -40
  84. package/src/tools/web-browsing/Render/index.tsx +0 -57
@@ -1049,6 +1049,9 @@
1049
1049
  "deepseek-r1-0528": {
1050
1050
  "description": "Modelo completo de 685B, lançado em 28 de maio de 2025. O DeepSeek-R1 utilizou amplamente técnicas de aprendizado por reforço na fase pós-treinamento, aumentando significativamente a capacidade de raciocínio do modelo mesmo com poucos dados anotados. Apresenta alto desempenho e forte capacidade em tarefas de matemática, código e raciocínio em linguagem natural."
1051
1051
  },
1052
+ "deepseek-r1-250528": {
1053
+ "description": "DeepSeek R1 250528, versão completa do modelo de inferência DeepSeek-R1, ideal para tarefas complexas de matemática e lógica."
1054
+ },
1052
1055
  "deepseek-r1-70b-fast-online": {
1053
1056
  "description": "DeepSeek R1 70B versão rápida, suporta busca em tempo real, oferecendo maior velocidade de resposta enquanto mantém o desempenho do modelo."
1054
1057
  },
@@ -1059,31 +1062,34 @@
1059
1062
  "description": "deepseek-r1-distill-llama é um modelo baseado no Llama, destilado a partir do DeepSeek-R1."
1060
1063
  },
1061
1064
  "deepseek-r1-distill-llama-70b": {
1062
- "description": "DeepSeek R1 um modelo maior e mais inteligente dentro do pacote DeepSeek — foi destilado para a arquitetura Llama 70B. Com base em testes de referência e avaliações humanas, este modelo é mais inteligente que o Llama 70B original, destacando-se especialmente em tarefas que exigem precisão matemática e factual."
1065
+ "description": "DeepSeek R1 Distill Llama 70B, modelo destilado que combina a capacidade de inferência R1 com o ecossistema Llama."
1063
1066
  },
1064
1067
  "deepseek-r1-distill-llama-8b": {
1065
- "description": "O modelo da série DeepSeek-R1-Distill é obtido através da técnica de destilação de conhecimento, ajustando amostras geradas pelo DeepSeek-R1 em modelos de código aberto como Qwen e Llama."
1068
+ "description": "DeepSeek-R1-Distill-Llama-8B é um modelo de linguagem grande destilado baseado no Llama-3.1-8B, utilizando saídas do DeepSeek R1."
1066
1069
  },
1067
- "deepseek-r1-distill-qianfan-llama-70b": {
1068
- "description": "Lançado pela primeira vez em 14 de fevereiro de 2025, destilado pela equipe de desenvolvimento do modelo Qianfan a partir do modelo base Llama3_70B (Construído com Meta Llama), com dados de destilação que também incluem o corpus do Qianfan."
1070
+ "deepseek-r1-distill-qianfan-70b": {
1071
+ "description": "DeepSeek R1 Distill Qianfan 70B, modelo R1 destilado baseado no Qianfan-70B, com excelente custo-benefício."
1069
1072
  },
1070
- "deepseek-r1-distill-qianfan-llama-8b": {
1071
- "description": "Lançado pela primeira vez em 14 de fevereiro de 2025, destilado pela equipe de desenvolvimento do modelo Qianfan a partir do modelo base Llama3_8B (Construído com Meta Llama), com dados de destilação que também incluem o corpus do Qianfan."
1073
+ "deepseek-r1-distill-qianfan-8b": {
1074
+ "description": "DeepSeek R1 Distill Qianfan 8B, modelo R1 destilado baseado no Qianfan-8B, ideal para aplicações de pequeno e médio porte."
1075
+ },
1076
+ "deepseek-r1-distill-qianfan-llama-70b": {
1077
+ "description": "DeepSeek R1 Distill Qianfan Llama 70B, modelo R1 destilado baseado no Llama-70B."
1072
1078
  },
1073
1079
  "deepseek-r1-distill-qwen": {
1074
1080
  "description": "deepseek-r1-distill-qwen é um modelo derivado do Qwen, destilado a partir do DeepSeek-R1."
1075
1081
  },
1076
1082
  "deepseek-r1-distill-qwen-1.5b": {
1077
- "description": "O modelo da série DeepSeek-R1-Distill é obtido através da técnica de destilação de conhecimento, ajustando amostras geradas pelo DeepSeek-R1 em modelos de código aberto como Qwen e Llama."
1083
+ "description": "DeepSeek R1 Distill Qwen 1.5B, modelo R1 destilado ultraleve, ideal para ambientes com recursos extremamente limitados."
1078
1084
  },
1079
1085
  "deepseek-r1-distill-qwen-14b": {
1080
- "description": "O modelo da série DeepSeek-R1-Distill é obtido através da técnica de destilação de conhecimento, ajustando amostras geradas pelo DeepSeek-R1 em modelos de código aberto como Qwen e Llama."
1086
+ "description": "DeepSeek R1 Distill Qwen 14B, modelo R1 destilado de porte médio, adequado para implantação em múltiplos cenários."
1081
1087
  },
1082
1088
  "deepseek-r1-distill-qwen-32b": {
1083
- "description": "O modelo da série DeepSeek-R1-Distill é obtido através da técnica de destilação de conhecimento, ajustando amostras geradas pelo DeepSeek-R1 em modelos de código aberto como Qwen e Llama."
1089
+ "description": "DeepSeek R1 Distill Qwen 32B, modelo R1 destilado baseado no Qwen-32B, equilibrando desempenho e custo."
1084
1090
  },
1085
1091
  "deepseek-r1-distill-qwen-7b": {
1086
- "description": "O modelo da série DeepSeek-R1-Distill é obtido através da técnica de destilação de conhecimento, ajustando amostras geradas pelo DeepSeek-R1 em modelos de código aberto como Qwen e Llama."
1092
+ "description": "DeepSeek R1 Distill Qwen 7B, modelo R1 destilado leve, ideal para ambientes de borda e implantações privadas corporativas."
1087
1093
  },
1088
1094
  "deepseek-r1-fast-online": {
1089
1095
  "description": "DeepSeek R1 versão completa rápida, suporta busca em tempo real, combinando a poderosa capacidade de 671B de parâmetros com maior velocidade de resposta."
@@ -1112,12 +1118,24 @@
1112
1118
  "deepseek-v3.1-terminus": {
1113
1119
  "description": "DeepSeek-V3.1-Terminus é uma versão otimizada para dispositivos finais do modelo de linguagem de grande escala lançado pela DeepSeek."
1114
1120
  },
1121
+ "deepseek-v3.1-think-250821": {
1122
+ "description": "DeepSeek V3.1 Think 250821, modelo de pensamento profundo correspondente à versão Terminus, ideal para cenários de inferência de alto desempenho."
1123
+ },
1115
1124
  "deepseek-v3.1:671b": {
1116
1125
  "description": "DeepSeek V3.1: modelo de inferência de próxima geração, aprimorado para raciocínio complexo e pensamento em cadeia, ideal para tarefas que exigem análise profunda."
1117
1126
  },
1118
1127
  "deepseek-v3.2-exp": {
1119
1128
  "description": "deepseek-v3.2-exp introduz um mecanismo de atenção esparsa, visando melhorar a eficiência de treinamento e inferência no processamento de textos longos, com preço inferior ao do deepseek-v3.1."
1120
1129
  },
1130
+ "deepseek-v3.2-think": {
1131
+ "description": "DeepSeek V3.2 Think, versão completa do modelo de pensamento profundo, com capacidade reforçada de raciocínio em cadeia longa."
1132
+ },
1133
+ "deepseek-vl2": {
1134
+ "description": "DeepSeek VL2, modelo multimodal com suporte para compreensão de imagem e texto e perguntas visuais de alta granularidade."
1135
+ },
1136
+ "deepseek-vl2-small": {
1137
+ "description": "DeepSeek VL2 Small, versão multimodal leve, ideal para cenários com recursos limitados e alta concorrência."
1138
+ },
1121
1139
  "deepseek/deepseek-chat-v3-0324": {
1122
1140
  "description": "O DeepSeek V3 é um modelo misto especializado com 685B de parâmetros, sendo a mais recente iteração da série de modelos de chat da equipe DeepSeek.\n\nEle herda o modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) e se destaca em várias tarefas."
1123
1141
  },
@@ -1253,83 +1271,89 @@
1253
1271
  "emohaa": {
1254
1272
  "description": "O Emohaa é um modelo psicológico com capacidade de consultoria profissional, ajudando os usuários a entender questões emocionais."
1255
1273
  },
1256
- "ernie-3.5-128k": {
1257
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, cobrindo uma vasta quantidade de dados em chinês e inglês, com forte capacidade geral, capaz de atender à maioria das demandas de diálogo, geração criativa e aplicações de plugins; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
1258
- },
1259
- "ernie-3.5-8k": {
1260
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, cobrindo uma vasta quantidade de dados em chinês e inglês, com forte capacidade geral, capaz de atender à maioria das demandas de diálogo, geração criativa e aplicações de plugins; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
1261
- },
1262
- "ernie-3.5-8k-preview": {
1263
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, cobrindo uma vasta quantidade de dados em chinês e inglês, com forte capacidade geral, capaz de atender à maioria das demandas de diálogo, geração criativa e aplicações de plugins; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
1264
- },
1265
- "ernie-4.0-8k-latest": {
1266
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com capacidade de modelo amplamente aprimorada em comparação com o ERNIE 3.5, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
1267
- },
1268
- "ernie-4.0-8k-preview": {
1269
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com capacidade de modelo amplamente aprimorada em comparação com o ERNIE 3.5, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas."
1270
- },
1271
- "ernie-4.0-turbo-128k": {
1272
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com desempenho geral excepcional, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
1273
- },
1274
- "ernie-4.0-turbo-8k-latest": {
1275
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com desempenho geral excepcional, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
1276
- },
1277
- "ernie-4.0-turbo-8k-preview": {
1278
- "description": "Modelo de linguagem de grande escala de nível flagship desenvolvido pela Baidu, com desempenho geral excepcional, amplamente aplicável a cenários de tarefas complexas em várias áreas; suporta integração automática com plugins de busca da Baidu, garantindo a atualidade das informações de perguntas e respostas. Em comparação com o ERNIE 4.0, apresenta desempenho superior."
1274
+ "ernie-4.5-0.3b": {
1275
+ "description": "ERNIE 4.5 0.3B, modelo leve e de código aberto, ideal para implantação local e personalizada."
1279
1276
  },
1280
1277
  "ernie-4.5-21b-a3b": {
1281
- "description": "ERNIE 4.5 21B A3B é um modelo especialista híbrido desenvolvido pela Wenxin da Baidu, com fortes capacidades de raciocínio e suporte multilíngue."
1278
+ "description": "ERNIE 4.5 21B A3B, modelo de grande porte de código aberto, com desempenho superior em tarefas de compreensão e geração."
1282
1279
  },
1283
1280
  "ernie-4.5-300b-a47b": {
1284
1281
  "description": "ERNIE 4.5 300B A47B é um modelo especialista híbrido em larga escala lançado pela Wenxin da Baidu, com desempenho excepcional em raciocínio."
1285
1282
  },
1286
1283
  "ernie-4.5-8k-preview": {
1287
- "description": "O modelo ERNIE 4.5 é a nova geração de modelo de base multimodal nativo desenvolvido pela Baidu, alcançando otimização colaborativa por meio de modelagem conjunta de múltiplos modos, com excelente capacidade de compreensão multimodal; apresenta habilidades linguísticas aprimoradas, com melhorias abrangentes em compreensão, geração, lógica e memória, além de redução de alucinações e melhorias significativas em raciocínio lógico e habilidades de codificação."
1284
+ "description": "ERNIE 4.5 8K Preview, modelo de pré-visualização com contexto de 8K, para testes e experimentação das capacidades do Wenxin 4.5."
1288
1285
  },
1289
1286
  "ernie-4.5-turbo-128k": {
1290
- "description": "O Wenxin 4.5 Turbo apresenta melhorias significativas em redução de alucinações, raciocínio lógico e habilidades de codificação. Em comparação com o Wenxin 4.5, é mais rápido e mais barato. A capacidade do modelo foi amplamente aprimorada, atendendo melhor ao processamento de diálogos longos com múltiplas interações e tarefas de compreensão de documentos longos."
1287
+ "description": "ERNIE 4.5 Turbo 128K, modelo universal de alto desempenho com suporte para busca aprimorada e uso de ferramentas, ideal para perguntas e respostas, código, agentes inteligentes e outros cenários."
1288
+ },
1289
+ "ernie-4.5-turbo-128k-preview": {
1290
+ "description": "ERNIE 4.5 Turbo 128K Preview, versão de pré-visualização com capacidades equivalentes à versão oficial, ideal para testes e integração."
1291
1291
  },
1292
1292
  "ernie-4.5-turbo-32k": {
1293
- "description": "O Wenxin 4.5 Turbo também apresenta melhorias significativas em redução de alucinações, raciocínio lógico e habilidades de codificação. Em comparação com o Wenxin 4.5, é mais rápido e mais barato. As habilidades de criação de texto e perguntas e respostas de conhecimento foram significativamente aprimoradas. O comprimento da saída e o atraso de frases completas aumentaram em relação ao ERNIE 4.5."
1293
+ "description": "ERNIE 4.5 Turbo 32K, versão com contexto médio-longo, ideal para perguntas e respostas, recuperação de conhecimento e diálogos em múltiplas rodadas."
1294
+ },
1295
+ "ernie-4.5-turbo-latest": {
1296
+ "description": "ERNIE 4.5 Turbo Latest, versão mais recente com desempenho otimizado, ideal como modelo principal em ambientes de produção."
1297
+ },
1298
+ "ernie-4.5-turbo-vl": {
1299
+ "description": "ERNIE 4.5 Turbo VL, modelo multimodal maduro, ideal para tarefas de compreensão e reconhecimento de imagem e texto em produção."
1294
1300
  },
1295
1301
  "ernie-4.5-turbo-vl-32k": {
1296
- "description": "Nova versão do modelo Wenxin Yiyan, com melhorias significativas em compreensão de imagens, criação, tradução e codificação, suportando pela primeira vez um comprimento de contexto de 32K, com redução significativa no atraso do primeiro token."
1302
+ "description": "ERNIE 4.5 Turbo VL 32K, versão multimodal com contexto médio-longo, ideal para compreensão conjunta de documentos longos e imagens."
1303
+ },
1304
+ "ernie-4.5-turbo-vl-32k-preview": {
1305
+ "description": "ERNIE 4.5 Turbo VL 32K Preview, versão de pré-visualização multimodal 32K, ideal para avaliação de capacidades visuais em contexto longo."
1306
+ },
1307
+ "ernie-4.5-turbo-vl-latest": {
1308
+ "description": "ERNIE 4.5 Turbo VL Latest, versão multimodal mais recente, com melhor desempenho em compreensão e raciocínio de imagem e texto."
1309
+ },
1310
+ "ernie-4.5-turbo-vl-preview": {
1311
+ "description": "ERNIE 4.5 Turbo VL Preview, modelo multimodal de pré-visualização com suporte para compreensão e geração de imagem e texto, ideal para perguntas visuais e experiências de entendimento de conteúdo."
1312
+ },
1313
+ "ernie-4.5-vl-28b-a3b": {
1314
+ "description": "ERNIE 4.5 VL 28B A3B, modelo multimodal de código aberto com suporte para tarefas de compreensão e raciocínio de imagem e texto."
1315
+ },
1316
+ "ernie-5.0-thinking-preview": {
1317
+ "description": "Wenxin 5.0 Thinking Preview, modelo nativo multimodal de última geração com suporte unificado para texto, imagem, áudio e vídeo, com capacidades amplamente aprimoradas, ideal para perguntas complexas, criação e agentes inteligentes."
1297
1318
  },
1298
1319
  "ernie-char-8k": {
1299
- "description": "Modelo de linguagem de grande escala vertical desenvolvido pela Baidu, adequado para aplicações como NPCs de jogos, diálogos de atendimento ao cliente e interpretação de personagens, com estilo de personagem mais distinto e consistente, capacidade de seguir instruções mais forte e desempenho de inferência superior."
1320
+ "description": "ERNIE Character 8K, modelo de diálogo com personalidade, ideal para construção de personagens e conversas de longo prazo."
1300
1321
  },
1301
1322
  "ernie-char-fiction-8k": {
1302
- "description": "Modelo de linguagem de grande escala vertical desenvolvido pela Baidu, adequado para aplicações como NPCs de jogos, diálogos de atendimento ao cliente e interpretação de personagens, com estilo de personagem mais distinto e consistente, capacidade de seguir instruções mais forte e desempenho de inferência superior."
1323
+ "description": "ERNIE Character Fiction 8K, modelo de personalidade voltado para criação de histórias e ficção, ideal para geração de narrativas longas."
1324
+ },
1325
+ "ernie-char-fiction-8k-preview": {
1326
+ "description": "ERNIE Character Fiction 8K Preview, versão de pré-visualização do modelo de criação de personagens e enredos, para testes e experimentação."
1303
1327
  },
1304
1328
  "ernie-irag-edit": {
1305
- "description": "O modelo de edição de imagens ERNIE iRAG, desenvolvido pela Baidu, suporta operações como apagar objetos (erase), repintar objetos (repaint) e gerar variações (variation) baseadas em imagens."
1329
+ "description": "ERNIE iRAG Edit, modelo de edição de imagem com suporte para remoção, repintura e geração de variantes."
1306
1330
  },
1307
1331
  "ernie-lite-8k": {
1308
- "description": "ERNIE Lite é um modelo de linguagem de grande escala leve desenvolvido pela Baidu, equilibrando excelente desempenho do modelo e eficiência de inferência, adequado para uso em placas de aceleração de IA de baixa potência."
1332
+ "description": "ERNIE Lite 8K, modelo universal leve, ideal para perguntas e respostas cotidianas e geração de conteúdo com baixo custo."
1309
1333
  },
1310
1334
  "ernie-lite-pro-128k": {
1311
- "description": "Modelo de linguagem de grande escala leve desenvolvido pela Baidu, equilibrando excelente desempenho do modelo e eficiência de inferência, com desempenho superior ao ERNIE Lite, adequado para uso em placas de aceleração de IA de baixa potência."
1335
+ "description": "ERNIE Lite Pro 128K, modelo leve de alto desempenho, ideal para cenários sensíveis a latência e custo."
1312
1336
  },
1313
1337
  "ernie-novel-8k": {
1314
- "description": "Modelo de linguagem de grande escala geral desenvolvido pela Baidu, com vantagens notáveis na capacidade de continuar histórias, também aplicável em cenários como peças curtas e filmes."
1338
+ "description": "ERNIE Novel 8K, modelo para criação de romances longos e roteiros de IP, especializado em múltiplos personagens e narrativas paralelas."
1315
1339
  },
1316
1340
  "ernie-speed-128k": {
1317
- "description": "Modelo de linguagem de alto desempenho desenvolvido pela Baidu, lançado em 2024, com excelente capacidade geral, adequado para ser usado como modelo base para ajuste fino, lidando melhor com problemas de cenários específicos, enquanto apresenta excelente desempenho de inferência."
1341
+ "description": "ERNIE Speed 128K, modelo grande sem custo de entrada/saída, ideal para compreensão de textos longos e testes em larga escala."
1342
+ },
1343
+ "ernie-speed-8k": {
1344
+ "description": "ERNIE Speed 8K, modelo gratuito e rápido, ideal para diálogos cotidianos e tarefas leves de texto."
1318
1345
  },
1319
1346
  "ernie-speed-pro-128k": {
1320
- "description": "Modelo de linguagem de alto desempenho desenvolvido pela Baidu, lançado em 2024, com excelente capacidade geral, desempenho superior ao ERNIE Speed, adequado para ser usado como modelo base para ajuste fino, lidando melhor com problemas de cenários específicos, enquanto apresenta excelente desempenho de inferência."
1347
+ "description": "ERNIE Speed Pro 128K, modelo de alta concorrência e excelente custo-benefício, ideal para serviços online em larga escala e aplicações corporativas."
1321
1348
  },
1322
1349
  "ernie-tiny-8k": {
1323
- "description": "ERNIE Tiny é um modelo de linguagem de grande escala de alto desempenho desenvolvido pela Baidu, com os menores custos de implantação e ajuste entre os modelos da série Wenxin."
1324
- },
1325
- "ernie-x1-32k": {
1326
- "description": "Possui habilidades superiores de compreensão, planejamento, reflexão e evolução. Como um modelo de pensamento profundo mais abrangente, o Wenxin X1 combina precisão, criatividade e eloquência, destacando-se em perguntas e respostas de conhecimento em chinês, criação literária, redação de documentos, diálogos cotidianos, raciocínio lógico, cálculos complexos e chamadas de ferramentas."
1327
- },
1328
- "ernie-x1-32k-preview": {
1329
- "description": "O modelo grande Wenxin X1 possui habilidades aprimoradas de compreensão, planejamento, reflexão e evolução. Como um modelo de pensamento profundo mais abrangente, o Wenxin X1 combina precisão, criatividade e eloquência, destacando-se em perguntas e respostas de conhecimento em chinês, criação literária, redação de documentos, diálogos cotidianos, raciocínio lógico, cálculos complexos e chamadas de ferramentas."
1350
+ "description": "ERNIE Tiny 8K, modelo ultraleve, ideal para perguntas simples, classificação e inferência de baixo custo."
1330
1351
  },
1331
1352
  "ernie-x1-turbo-32k": {
1332
- "description": "Melhor desempenho e eficácia em comparação com o ERNIE-X1-32K."
1353
+ "description": "ERNIE X1 Turbo 32K, modelo de raciocínio rápido com contexto longo de 32K, ideal para inferência complexa e diálogos em múltiplas rodadas."
1354
+ },
1355
+ "ernie-x1.1-preview": {
1356
+ "description": "ERNIE X1.1 Preview, versão de pré-visualização do modelo de raciocínio ERNIE X1.1, ideal para testes e validação de capacidades."
1333
1357
  },
1334
1358
  "fal-ai/bytedance/seedream/v4": {
1335
1359
  "description": "O modelo de geração de imagens Seedream 4.0 foi desenvolvido pela equipe Seed da ByteDance, suporta entrada de texto e imagem, oferecendo uma experiência de geração de imagens altamente controlável e de alta qualidade. Gera imagens baseadas em prompts de texto."
@@ -1389,7 +1413,7 @@
1389
1413
  "description": "FLUX.1 [schnell] é atualmente o modelo open source mais avançado de poucos passos, superando concorrentes e até modelos não destilados poderosos como Midjourney v6.0 e DALL·E 3 (HD). Ajustado para preservar toda a diversidade de saída do pré-treinamento, oferece melhorias significativas em qualidade visual, conformidade com instruções, variações de tamanho/proporção, tratamento de fontes e diversidade de saída, proporcionando uma experiência criativa mais rica e variada."
1390
1414
  },
1391
1415
  "flux.1-schnell": {
1392
- "description": "Transformador de fluxo retificado com 12 bilhões de parâmetros, capaz de gerar imagens a partir de descrições textuais."
1416
+ "description": "FLUX.1-schnell, modelo de geração de imagem de alto desempenho, ideal para criação rápida de imagens em diversos estilos."
1393
1417
  },
1394
1418
  "gemini-1.0-pro-001": {
1395
1419
  "description": "Gemini 1.0 Pro 001 (Ajuste) oferece desempenho estável e ajustável, sendo a escolha ideal para soluções de tarefas complexas."
@@ -1538,6 +1562,9 @@
1538
1562
  "glm-4-0520": {
1539
1563
  "description": "O GLM-4-0520 é a versão mais recente do modelo, projetada para tarefas altamente complexas e diversificadas, com desempenho excepcional."
1540
1564
  },
1565
+ "glm-4-32b-0414": {
1566
+ "description": "GLM-4 32B 0414, versão do modelo universal da série GLM, com suporte para geração e compreensão de texto em múltiplas tarefas."
1567
+ },
1541
1568
  "glm-4-9b-chat": {
1542
1569
  "description": "GLM-4-9B-Chat apresenta alto desempenho em semântica, matemática, raciocínio, programação e conhecimento. Também oferece suporte a navegação na web, execução de código, uso de ferramentas personalizadas e raciocínio com textos longos. Suporta 26 idiomas, incluindo japonês, coreano e alemão."
1543
1570
  },
@@ -2036,14 +2063,26 @@
2036
2063
  "internlm3-latest": {
2037
2064
  "description": "Nossa mais recente série de modelos, com desempenho de inferência excepcional, liderando entre modelos de código aberto de mesma escala. Aponta por padrão para nossa mais recente série de modelos InternLM3."
2038
2065
  },
2066
+ "internvl2.5-38b-mpo": {
2067
+ "description": "InternVL2.5 38B MPO, modelo multimodal pré-treinado com suporte para tarefas complexas de raciocínio de imagem e texto."
2068
+ },
2039
2069
  "internvl2.5-latest": {
2040
2070
  "description": "Versão InternVL2.5 que ainda estamos mantendo, com desempenho excelente e estável. Aponta por padrão para nossa mais recente série de modelos InternVL2.5, atualmente direcionando para internvl2.5-78b."
2041
2071
  },
2072
+ "internvl3-14b": {
2073
+ "description": "InternVL3 14B, modelo multimodal de porte médio, equilibrando desempenho e custo."
2074
+ },
2075
+ "internvl3-1b": {
2076
+ "description": "InternVL3 1B, modelo multimodal leve, ideal para implantação em ambientes com recursos limitados."
2077
+ },
2078
+ "internvl3-38b": {
2079
+ "description": "InternVL3 38B, modelo multimodal de código aberto em larga escala, ideal para tarefas de compreensão de imagem e texto de alta precisão."
2080
+ },
2042
2081
  "internvl3-latest": {
2043
2082
  "description": "Lançamos nosso mais recente modelo multimodal, com habilidades aprimoradas de compreensão de texto e imagem, e capacidade de entender imagens em longas sequências, com desempenho comparável aos melhores modelos fechados. Aponta por padrão para nossa mais recente série de modelos InternVL, atualmente direcionando para internvl3-78b."
2044
2083
  },
2045
2084
  "irag-1.0": {
2046
- "description": "iRAG (image based RAG) desenvolvido pela Baidu, tecnologia de geração de imagens baseada em recuperação, que combina recursos de bilhões de imagens do Baidu Search com poderosos modelos base, gerando imagens ultra-realistas que superam sistemas nativos de geração de imagens, eliminando o aspecto artificial da IA e com baixo custo. iRAG é caracterizado por ausência de alucinações, ultra-realismo e resultados imediatos."
2085
+ "description": "ERNIE iRAG, modelo de geração aprimorada por recuperação de imagem, com suporte para busca por imagem, recuperação de imagem e texto e geração de conteúdo."
2047
2086
  },
2048
2087
  "jamba-large": {
2049
2088
  "description": "Nosso modelo mais poderoso e avançado, projetado para lidar com tarefas complexas em nível empresarial, com desempenho excepcional."
@@ -2064,7 +2103,7 @@
2064
2103
  "description": "O modelo kimi-k2-0905-preview possui comprimento de contexto de 256k, com capacidades aprimoradas de Agentic Coding, maior estética e praticidade do código front-end, além de melhor compreensão do contexto."
2065
2104
  },
2066
2105
  "kimi-k2-instruct": {
2067
- "description": "Kimi K2 Instruct é um modelo de linguagem de grande escala lançado pela Moonshot AI, com capacidade de processamento de contexto ultralongo."
2106
+ "description": "Kimi K2 Instruct, modelo oficial de inferência da Kimi, com suporte para contexto longo, código, perguntas e respostas e outros cenários."
2068
2107
  },
2069
2108
  "kimi-k2-turbo-preview": {
2070
2109
  "description": "kimi-k2 é um modelo base com arquitetura MoE que oferece capacidades avançadas para programação e agentes, com 1T de parâmetros totais e 32B de parâmetros ativados. Em testes de benchmark nas principais categorias — raciocínio de conhecimento geral, programação, matemática e agentes — o desempenho do modelo K2 supera outros modelos de código aberto mais populares."
@@ -2885,9 +2924,7 @@
2885
2924
  "qwen2.5-72b-instruct": {
2886
2925
  "description": "Modelo de 72B parâmetros do Qwen 2.5, disponível como código aberto."
2887
2926
  },
2888
- "qwen2.5-7b-instruct": {
2889
- "description": "Modelo de 7B parâmetros do Qwen 2.5, disponível como código aberto."
2890
- },
2927
+ "qwen2.5-7b-instruct": {},
2891
2928
  "qwen2.5-coder-1.5b-instruct": {
2892
2929
  "description": "Versão open source do modelo de código do Qwen."
2893
2930
  },
@@ -2918,15 +2955,11 @@
2918
2955
  "qwen2.5-omni-7b": {
2919
2956
  "description": "O modelo da série Qwen-Omni suporta a entrada de múltiplos tipos de dados, incluindo vídeo, áudio, imagens e texto, e produz saídas em áudio e texto."
2920
2957
  },
2921
- "qwen2.5-vl-32b-instruct": {
2922
- "description": "A série de modelos Qwen2.5-VL aprimorou o nível de inteligência, praticidade e aplicabilidade dos modelos, proporcionando um desempenho superior em cenários como conversação natural, criação de conteúdo, serviços de conhecimento especializado e desenvolvimento de código. A versão 32B utiliza técnicas de aprendizado por reforço para otimizar o modelo, oferecendo, em comparação com outros modelos da série Qwen2.5 VL, um estilo de saída mais alinhado com as preferências humanas, capacidade de raciocínio para problemas matemáticos complexos e compreensão detalhada e raciocínio sobre imagens."
2923
- },
2958
+ "qwen2.5-vl-32b-instruct": {},
2924
2959
  "qwen2.5-vl-72b-instruct": {
2925
2960
  "description": "Aprimoramento geral em seguimento de instruções, matemática, resolução de problemas e código, com capacidade de reconhecimento de objetos aprimorada, suporte a formatos diversos para localização precisa de elementos visuais, compreensão de arquivos de vídeo longos (até 10 minutos) e localização de eventos em segundos, capaz de entender a sequência e a velocidade do tempo, suportando controle de agentes em OS ou Mobile com forte capacidade de extração de informações e saída em formato Json. Esta versão é a de 72B, a mais poderosa da série."
2926
2961
  },
2927
- "qwen2.5-vl-7b-instruct": {
2928
- "description": "Aprimoramento geral em seguimento de instruções, matemática, resolução de problemas e código, com capacidade de reconhecimento de objetos aprimorada, suporte a formatos diversos para localização precisa de elementos visuais, compreensão de arquivos de vídeo longos (até 10 minutos) e localização de eventos em segundos, capaz de entender a sequência e a velocidade do tempo, suportando controle de agentes em OS ou Mobile com forte capacidade de extração de informações e saída em formato Json. Esta versão é a de 72B, a mais poderosa da série."
2929
- },
2962
+ "qwen2.5-vl-7b-instruct": {},
2930
2963
  "qwen2.5-vl-instruct": {
2931
2964
  "description": "Qwen2.5-VL é a versão mais recente do modelo de linguagem visual da família de modelos Qwen."
2932
2965
  },
@@ -2951,48 +2984,22 @@
2951
2984
  "qwen3": {
2952
2985
  "description": "Qwen3 é a nova geração do modelo de linguagem em larga escala da Alibaba, que oferece desempenho excepcional para atender a diversas necessidades de aplicação."
2953
2986
  },
2954
- "qwen3-0.6b": {
2955
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2956
- },
2957
- "qwen3-1.7b": {
2958
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2959
- },
2960
- "qwen3-14b": {
2961
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2962
- },
2963
- "qwen3-235b-a22b": {
2964
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2965
- },
2966
- "qwen3-235b-a22b-instruct-2507": {
2967
- "description": "Modelo open source no modo não reflexivo baseado no Qwen3, com melhorias modestas em criatividade subjetiva e segurança do modelo em relação à versão anterior (Tongyi Qianwen 3-235B-A22B)."
2968
- },
2969
- "qwen3-235b-a22b-thinking-2507": {
2970
- "description": "Modelo open source no modo reflexivo baseado no Qwen3, com melhorias significativas em lógica, capacidades gerais, enriquecimento de conhecimento e criatividade em relação à versão anterior (Tongyi Qianwen 3-235B-A22B), adequado para cenários de raciocínio complexo e avançado."
2971
- },
2972
- "qwen3-30b-a3b": {
2973
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2974
- },
2975
- "qwen3-30b-a3b-instruct-2507": {
2976
- "description": "Em comparação com a versão anterior (Qwen3-30B-A3B), houve um aumento significativo na capacidade geral em chinês, inglês e múltiplos idiomas. Otimizado especialmente para tarefas subjetivas e abertas, alinhando-se muito melhor às preferências dos usuários e fornecendo respostas mais úteis."
2977
- },
2978
- "qwen3-30b-a3b-thinking-2507": {
2979
- "description": "Baseado no modelo open source do modo reflexivo Qwen3, esta versão apresenta melhorias substanciais em lógica, capacidade geral, conhecimento e criatividade em relação à versão anterior (Tongyi Qianwen 3-30B-A3B), sendo adequada para cenários complexos que exigem raciocínio avançado."
2980
- },
2981
- "qwen3-32b": {
2982
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2983
- },
2984
- "qwen3-4b": {
2985
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2986
- },
2987
- "qwen3-8b": {
2988
- "description": "Qwen3 é um novo modelo de linguagem de próxima geração com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, generalidade, agentes e multilíngue, e suporta a alternância de modos de pensamento."
2989
- },
2987
+ "qwen3-0.6b": {},
2988
+ "qwen3-1.7b": {},
2989
+ "qwen3-14b": {},
2990
+ "qwen3-235b-a22b": {},
2991
+ "qwen3-235b-a22b-instruct-2507": {},
2992
+ "qwen3-235b-a22b-thinking-2507": {},
2993
+ "qwen3-30b-a3b": {},
2994
+ "qwen3-30b-a3b-instruct-2507": {},
2995
+ "qwen3-30b-a3b-thinking-2507": {},
2996
+ "qwen3-32b": {},
2997
+ "qwen3-4b": {},
2998
+ "qwen3-8b": {},
2990
2999
  "qwen3-coder-30b-a3b-instruct": {
2991
3000
  "description": "Versão open-source do modelo de código Tongyi Qianwen. O mais recente qwen3-coder-30b-a3b-instruct é um modelo de geração de código baseado no Qwen3, com poderosas capacidades de agente de codificação, especializado em chamadas de ferramentas e interação com ambientes, capaz de programação autônoma com excelência em código e habilidades gerais."
2992
3001
  },
2993
- "qwen3-coder-480b-a35b-instruct": {
2994
- "description": "Versão open source do modelo de código Tongyi Qianwen. O mais recente qwen3-coder-480b-a35b-instruct é um modelo de geração de código baseado no Qwen3, com forte capacidade de agente de codificação, especializado em chamadas de ferramentas e interação com ambientes, capaz de programação autônoma, combinando excelência em código com capacidades gerais."
2995
- },
3002
+ "qwen3-coder-480b-a35b-instruct": {},
2996
3003
  "qwen3-coder-flash": {
2997
3004
  "description": "Modelo de código Tongyi Qianwen. A mais recente série de modelos Qwen3-Coder é baseada no Qwen3 para geração de código, com forte capacidade de agente de codificação, especializada em chamadas de ferramentas e interação com o ambiente, capaz de programação autônoma, combinando excelente habilidade de codificação com capacidades gerais."
2998
3005
  },
@@ -3008,30 +3015,16 @@
3008
3015
  "qwen3-next-80b-a3b-instruct": {
3009
3016
  "description": "Modelo open source de nova geração no modo não reflexivo baseado no Qwen3, que apresenta melhor compreensão de texto em chinês, capacidades aprimoradas de raciocínio lógico e desempenho superior em tarefas de geração de texto em comparação com a versão anterior (Tongyi Qianwen 3-235B-A22B-Instruct-2507)."
3010
3017
  },
3011
- "qwen3-next-80b-a3b-thinking": {
3012
- "description": "Modelo open source de nova geração no modo reflexivo baseado no Qwen3, que oferece melhor conformidade com instruções e respostas mais concisas em resumos, em comparação com a versão anterior (Tongyi Qianwen 3-235B-A22B-Thinking-2507)."
3013
- },
3018
+ "qwen3-next-80b-a3b-thinking": {},
3014
3019
  "qwen3-omni-flash": {
3015
3020
  "description": "O modelo Qwen-Omni aceita entradas combinadas de texto, imagem, áudio e vídeo, e gera respostas em forma de texto ou voz. Oferece múltiplas vozes humanizadas, com suporte para saída de voz em vários idiomas e dialetos. Pode ser aplicado em criação de texto, reconhecimento visual, assistentes de voz e outros cenários."
3016
3021
  },
3017
- "qwen3-vl-235b-a22b-instruct": {
3018
- "description": "Qwen3 VL 235B A22B no modo não-racional (Instruct), ideal para cenários de instruções sem raciocínio, mantendo forte capacidade de compreensão visual."
3019
- },
3020
- "qwen3-vl-235b-a22b-thinking": {
3021
- "description": "Qwen3 VL 235B A22B no modo de raciocínio (versão open-source), projetado para cenários complexos com raciocínio avançado e compreensão de vídeos longos, oferecendo capacidades de ponta em raciocínio visual + textual."
3022
- },
3023
- "qwen3-vl-30b-a3b-instruct": {
3024
- "description": "Qwen3 VL 30B no modo não-racional (Instruct), voltado para cenários comuns de seguimento de instruções, mantendo alta capacidade de compreensão e geração multimodal."
3025
- },
3026
- "qwen3-vl-30b-a3b-thinking": {
3027
- "description": "Qwen-VL (versão open-source) oferece capacidades de compreensão visual e geração de texto, com suporte para interação com agentes, codificação visual, percepção espacial, compreensão de vídeos longos e raciocínio profundo, além de forte reconhecimento de texto e suporte multilíngue em cenários complexos."
3028
- },
3029
- "qwen3-vl-8b-instruct": {
3030
- "description": "Qwen3 VL 8B no modo não-racional (Instruct), adequado para tarefas regulares de geração e reconhecimento multimodal."
3031
- },
3032
- "qwen3-vl-8b-thinking": {
3033
- "description": "Qwen3 VL 8B no modo de raciocínio, voltado para cenários leves de raciocínio e interação multimodal, mantendo a capacidade de compreensão de contexto longo."
3034
- },
3022
+ "qwen3-vl-235b-a22b-instruct": {},
3023
+ "qwen3-vl-235b-a22b-thinking": {},
3024
+ "qwen3-vl-30b-a3b-instruct": {},
3025
+ "qwen3-vl-30b-a3b-thinking": {},
3026
+ "qwen3-vl-8b-instruct": {},
3027
+ "qwen3-vl-8b-thinking": {},
3035
3028
  "qwen3-vl-flash": {
3036
3029
  "description": "Qwen3 VL Flash: versão leve e de inferência rápida, ideal para cenários sensíveis à latência ou com grandes volumes de requisições."
3037
3030
  },
@@ -259,7 +259,7 @@
259
259
  "searchLocalFiles": "Pesquisar arquivos",
260
260
  "writeLocalFile": "Escrever arquivo"
261
261
  },
262
- "title": "Arquivos locais"
262
+ "title": "Sistema Local"
263
263
  },
264
264
  "mcpInstall": {
265
265
  "CHECKING_INSTALLATION": "Verificando ambiente de instalação...",