@lobehub/lobehub 2.0.0-next.309 → 2.0.0-next.310
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/e2e/src/steps/page/page-crud.steps.ts +119 -17
- package/locales/ar/auth.json +5 -0
- package/locales/ar/models.json +51 -0
- package/locales/ar/plugin.json +3 -0
- package/locales/bg-BG/auth.json +5 -0
- package/locales/bg-BG/models.json +41 -0
- package/locales/bg-BG/plugin.json +3 -0
- package/locales/de-DE/auth.json +5 -0
- package/locales/de-DE/models.json +39 -0
- package/locales/de-DE/plugin.json +3 -0
- package/locales/en-US/models.json +1 -0
- package/locales/es-ES/auth.json +5 -0
- package/locales/es-ES/models.json +48 -0
- package/locales/es-ES/plugin.json +3 -0
- package/locales/fa-IR/auth.json +5 -0
- package/locales/fa-IR/models.json +39 -0
- package/locales/fa-IR/plugin.json +3 -0
- package/locales/fr-FR/auth.json +5 -0
- package/locales/fr-FR/models.json +40 -0
- package/locales/fr-FR/plugin.json +3 -0
- package/locales/it-IT/auth.json +5 -0
- package/locales/it-IT/models.json +42 -0
- package/locales/it-IT/plugin.json +3 -0
- package/locales/ja-JP/auth.json +5 -0
- package/locales/ja-JP/models.json +39 -0
- package/locales/ja-JP/plugin.json +3 -0
- package/locales/ko-KR/auth.json +5 -0
- package/locales/ko-KR/models.json +41 -0
- package/locales/ko-KR/plugin.json +3 -0
- package/locales/nl-NL/auth.json +5 -0
- package/locales/nl-NL/models.json +51 -0
- package/locales/nl-NL/plugin.json +3 -0
- package/locales/pl-PL/auth.json +5 -0
- package/locales/pl-PL/models.json +41 -0
- package/locales/pl-PL/plugin.json +3 -0
- package/locales/pt-BR/auth.json +5 -0
- package/locales/pt-BR/models.json +44 -0
- package/locales/pt-BR/plugin.json +3 -0
- package/locales/ru-RU/auth.json +5 -0
- package/locales/ru-RU/models.json +41 -0
- package/locales/ru-RU/plugin.json +3 -0
- package/locales/tr-TR/auth.json +5 -0
- package/locales/tr-TR/models.json +41 -0
- package/locales/tr-TR/plugin.json +3 -0
- package/locales/vi-VN/auth.json +5 -0
- package/locales/vi-VN/models.json +20 -0
- package/locales/vi-VN/plugin.json +3 -0
- package/locales/zh-CN/models.json +42 -0
- package/locales/zh-TW/auth.json +5 -0
- package/locales/zh-TW/models.json +32 -0
- package/locales/zh-TW/plugin.json +3 -0
- package/package.json +1 -1
|
@@ -40,6 +40,7 @@
|
|
|
40
40
|
"builtins.lobe-cloud-sandbox.title": "Облачная песочница",
|
|
41
41
|
"builtins.lobe-group-agent-builder.apiName.batchCreateAgents": "Массовое создание агентов",
|
|
42
42
|
"builtins.lobe-group-agent-builder.apiName.createAgent": "Создать агента",
|
|
43
|
+
"builtins.lobe-group-agent-builder.apiName.getAgentInfo": "Получить информацию об участнике",
|
|
43
44
|
"builtins.lobe-group-agent-builder.apiName.getAvailableModels": "Получить доступные модели",
|
|
44
45
|
"builtins.lobe-group-agent-builder.apiName.installPlugin": "Установить навык",
|
|
45
46
|
"builtins.lobe-group-agent-builder.apiName.inviteAgent": "Пригласить участника",
|
|
@@ -70,6 +71,8 @@
|
|
|
70
71
|
"builtins.lobe-group-management.apiName.summarize": "Подвести итоги беседы",
|
|
71
72
|
"builtins.lobe-group-management.apiName.vote": "Начать голосование",
|
|
72
73
|
"builtins.lobe-group-management.inspector.broadcast.title": "Следующие агенты говорят:",
|
|
74
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.assignTo": "Назначить",
|
|
75
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.task": "задача:",
|
|
73
76
|
"builtins.lobe-group-management.inspector.executeAgentTasks.title": "Назначение задач для:",
|
|
74
77
|
"builtins.lobe-group-management.inspector.speak.title": "Назначенный агент говорит:",
|
|
75
78
|
"builtins.lobe-group-management.title": "Координатор группы",
|
package/locales/tr-TR/auth.json
CHANGED
|
@@ -28,6 +28,11 @@
|
|
|
28
28
|
"apikey.list.columns.status": "Etkinlik Durumu",
|
|
29
29
|
"apikey.list.title": "API Anahtarı Listesi",
|
|
30
30
|
"apikey.validation.required": "Bu alan boş bırakılamaz",
|
|
31
|
+
"authModal.description": "Oturum süreniz sona erdi. Bulut senkronizasyon özelliklerini kullanmaya devam etmek için lütfen tekrar giriş yapın.",
|
|
32
|
+
"authModal.later": "Daha Sonra",
|
|
33
|
+
"authModal.signIn": "Yeniden Giriş Yap",
|
|
34
|
+
"authModal.signingIn": "Giriş yapılıyor...",
|
|
35
|
+
"authModal.title": "Oturum Sona Erdi",
|
|
31
36
|
"betterAuth.errors.confirmPasswordRequired": "Lütfen şifrenizi onaylayın",
|
|
32
37
|
"betterAuth.errors.emailExists": "Bu e-posta zaten kayıtlı. Lütfen giriş yapın",
|
|
33
38
|
"betterAuth.errors.emailInvalid": "Lütfen geçerli bir e-posta adresi veya kullanıcı adı girin",
|
|
@@ -396,6 +396,7 @@
|
|
|
396
396
|
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3, 685 milyar parametreli bir MoE modelidir ve DeepSeek’in amiral gemisi sohbet serisinin en son sürümüdür.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3) üzerine inşa edilmiştir ve çeşitli görevlerde güçlü performans sergiler.",
|
|
397
397
|
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1, DeepSeek’in uzun bağlam destekli hibrit akıl yürütme modelidir. Düşünme/düşünmeme modlarını ve araç entegrasyonunu destekler.",
|
|
398
398
|
"deepseek/deepseek-chat.description": "DeepSeek-V3, karmaşık görevler ve araç entegrasyonu için optimize edilmiş yüksek performanslı hibrit akıl yürütme modelidir.",
|
|
399
|
+
"deepseek/deepseek-math-v2.description": "DeepSeek Math V2, matematiksel akıl yürütme yeteneklerinde önemli atılımlar gerçekleştiren bir modeldir. Temel yeniliği, \"öz-doğrulama\" eğitim mekanizmasında yatmaktadır ve birçok üst düzey matematik yarışmasında altın madalya seviyesine ulaşmıştır.",
|
|
399
400
|
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528, açık erişim ve daha derin akıl yürütmeye odaklanan güncellenmiş bir varyanttır.",
|
|
400
401
|
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1, etiketli veri ihtiyacını en aza indirerek akıl yürütme yeteneğini büyük ölçüde geliştirir ve nihai cevaptan önce düşünce zinciri sunarak doğruluğu artırır.",
|
|
401
402
|
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B, Llama 3.3 70B tabanlı damıtılmış bir LLM'dir. DeepSeek R1 çıktılarıyla ince ayar yapılarak büyük öncü modellerle rekabetçi performans elde edilmiştir.",
|
|
@@ -572,6 +573,46 @@
|
|
|
572
573
|
"glm-z1-flash.description": "GLM-Z1 serisi, mantık, matematik ve programlama alanlarında güçlü karmaşık akıl yürütme yetenekleri sunar.",
|
|
573
574
|
"glm-z1-flashx.description": "Hızlı ve düşük maliyetli: Flash ile geliştirilmiş ultra hızlı akıl yürütme ve daha yüksek eşzamanlılık sunar.",
|
|
574
575
|
"glm-zero-preview.description": "GLM-Zero-Preview, mantık, matematik ve programlama alanlarında güçlü karmaşık akıl yürütme yetenekleri sunar.",
|
|
576
|
+
"global.anthropic.claude-opus-4-5-20251101-v1:0.description": "Claude Opus 4.5, Anthropic’in amiral gemisi modelidir ve en yüksek kalitede yanıtlar ve akıl yürütme gerektiren karmaşık görevler için olağanüstü zeka ile ölçeklenebilir performansı birleştirir.",
|
|
577
|
+
"google/gemini-2.0-flash-001.description": "Gemini 2.0 Flash, mükemmel hız, yerel araç kullanımı, çok modlu üretim ve 1M-token bağlam penceresi gibi yeni nesil yetenekler sunar.",
|
|
578
|
+
"google/gemini-2.0-flash-exp:free.description": "Gemini 2.0 Flash Experimental, Google’ın en yeni deneysel çok modlu yapay zeka modelidir ve önceki sürümlere kıyasla özellikle dünya bilgisi, kodlama ve uzun bağlamlarda kalite iyileştirmeleri sunar.",
|
|
579
|
+
"google/gemini-2.0-flash-lite-001.description": "Gemini 2.0 Flash Lite, gecikme süresi ve maliyeti azaltmak için varsayılan olarak düşünme özelliği devre dışı bırakılmış hafif bir Gemini varyantıdır; bu özellik parametrelerle etkinleştirilebilir.",
|
|
580
|
+
"google/gemini-2.0-flash-lite.description": "Gemini 2.0 Flash Lite, olağanüstü hız, yerleşik araç kullanımı, çok modlu üretim ve 1M-token bağlam penceresi gibi yeni nesil özellikler sunar.",
|
|
581
|
+
"google/gemini-2.0-flash.description": "Gemini 2.0 Flash, Google’ın uzun süreli çok modlu görevler için yüksek performanslı akıl yürütme modelidir.",
|
|
582
|
+
"google/gemini-2.5-flash-image-free.description": "Gemini 2.5 Flash Image, sınırlı kotaya sahip çok modlu üretim sunan ücretsiz katmandır.",
|
|
583
|
+
"google/gemini-2.5-flash-image-preview.description": "Gemini 2.5 Flash, görsel üretim desteği sunan deneysel bir modeldir.",
|
|
584
|
+
"google/gemini-2.5-flash-image.description": "Gemini 2.5 Flash Image (Nano Banana), Google’ın çok modlu sohbet desteği sunan görsel üretim modelidir.",
|
|
585
|
+
"google/gemini-2.5-flash-lite.description": "Gemini 2.5 Flash Lite, gecikme süresi ve maliyet açısından optimize edilmiş, yüksek hacimli senaryolar için uygun hafif Gemini 2.5 varyantıdır.",
|
|
586
|
+
"google/gemini-2.5-flash-preview.description": "Gemini 2.5 Flash, gelişmiş akıl yürütme, kodlama, matematik ve bilim görevleri için geliştirilmiş Google’ın en gelişmiş amiral gemisi modelidir. Daha yüksek doğrulukta yanıtlar ve daha hassas bağlam işleme sağlamak için yerleşik \"düşünme\" özelliğine sahiptir.\n\nNot: Bu modelin düşünme ve düşünmesiz olmak üzere iki varyantı vardır. Düşünme etkinleştirildiğinde çıktı fiyatlandırması önemli ölçüde farklılık gösterir. Standart varyantı (\":thinking\" soneki olmadan) seçerseniz, model düşünme token'ları üretmekten kaçınır.\n\nDüşünme özelliğini kullanmak ve düşünme token'ları almak için \":thinking\" varyantını seçmeniz gerekir; bu, daha yüksek çıktı fiyatlandırmasına tabidir.\n\nGemini 2.5 Flash ayrıca belgelenmiş “maksimum akıl yürütme token'ları” parametresiyle yapılandırılabilir (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).",
|
|
587
|
+
"google/gemini-2.5-flash-preview:thinking.description": "Gemini 2.5 Flash, gelişmiş akıl yürütme, kodlama, matematik ve bilim görevleri için geliştirilmiş Google’ın en gelişmiş amiral gemisi modelidir. Daha yüksek doğrulukta yanıtlar ve daha hassas bağlam işleme sağlamak için yerleşik \"düşünme\" özelliğine sahiptir.\n\nNot: Bu modelin düşünme ve düşünmesiz olmak üzere iki varyantı vardır. Düşünme etkinleştirildiğinde çıktı fiyatlandırması önemli ölçüde farklılık gösterir. Standart varyantı (\":thinking\" soneki olmadan) seçerseniz, model düşünme token'ları üretmekten kaçınır.\n\nDüşünme özelliğini kullanmak ve düşünme token'ları almak için \":thinking\" varyantını seçmeniz gerekir; bu, daha yüksek çıktı fiyatlandırmasına tabidir.\n\nGemini 2.5 Flash ayrıca belgelenmiş “maksimum akıl yürütme token'ları” parametresiyle yapılandırılabilir (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).",
|
|
588
|
+
"google/gemini-2.5-flash.description": "Gemini 2.5 Flash (Lite/Pro/Flash), düşük gecikmeden yüksek performanslı akıl yürütmeye kadar uzanan Google model ailesidir.",
|
|
589
|
+
"google/gemini-2.5-pro-free.description": "Gemini 2.5 Pro ücretsiz katmanı, denemeler ve hafif iş akışları için uygun sınırlı kotaya sahip çok modlu uzun bağlam desteği sunar.",
|
|
590
|
+
"google/gemini-2.5-pro-preview.description": "Gemini 2.5 Pro Preview, kod, matematik ve STEM alanlarında karmaşık problemler üzerinde akıl yürütme ve büyük veri kümeleri, kod tabanları ve belgeleri analiz etme konusunda Google’ın en gelişmiş düşünme modelidir.",
|
|
591
|
+
"google/gemini-2.5-pro.description": "Gemini 2.5 Pro, karmaşık görevler için uzun bağlam desteği sunan Google’ın amiral gemisi akıl yürütme modelidir.",
|
|
592
|
+
"google/gemini-3-pro-image-preview-free.description": "Gemini 3 Pro Image ücretsiz katmanı, sınırlı kotaya sahip çok modlu üretim sunar.",
|
|
593
|
+
"google/gemini-3-pro-image-preview.description": "Gemini 3 Pro Image (Nano Banana Pro), çok modlu sohbet desteği sunan Google’ın görsel üretim modelidir.",
|
|
594
|
+
"google/gemini-3-pro-preview-free.description": "Gemini 3 Pro Preview Free, standart sürümle aynı çok modlu anlama ve akıl yürütme yeteneklerini sunar, ancak kota ve hız sınırlarıyla birlikte gelir; bu da onu denemeler ve düşük frekanslı kullanım için daha uygun hale getirir.",
|
|
595
|
+
"google/gemini-3-pro-preview.description": "Gemini 3 Pro, Gemini ailesinin yeni nesil çok modlu akıl yürütme modelidir; metin, ses, görsel ve videoyu anlayabilir, karmaşık görevleri ve büyük kod tabanlarını işleyebilir.",
|
|
596
|
+
"google/gemini-embedding-001.description": "İngilizce, çok dilli ve kod görevlerinde güçlü performans sunan son teknoloji gömme modeli.",
|
|
597
|
+
"google/gemini-flash-1.5.description": "Gemini 1.5 Flash, çeşitli karmaşık görevler için optimize edilmiş çok modlu işlem sunar.",
|
|
598
|
+
"google/gemini-pro-1.5.description": "Gemini 1.5 Pro, daha verimli çok modlu veri işleme için en son optimizasyonları bir araya getirir.",
|
|
599
|
+
"google/gemma-2-27b-it.description": "Gemma 2 27B, birçok senaryoda güçlü performans sunan genel amaçlı bir büyük dil modelidir.",
|
|
600
|
+
"google/gemma-2-27b.description": "Gemma 2, küçük uygulamalardan karmaşık veri işlemeye kadar çeşitli kullanım durumları için Google’ın verimli model ailesidir.",
|
|
601
|
+
"google/gemma-2-2b-it.description": "Uç cihaz uygulamaları için tasarlanmış gelişmiş küçük dil modeli.",
|
|
602
|
+
"google/gemma-2-9b-it.description": "Google tarafından geliştirilen Gemma 2 9B, verimli yönerge takibi ve genel olarak sağlam yetenekler sunar.",
|
|
603
|
+
"google/gemma-2-9b-it:free.description": "Gemma 2, Google’ın hafif açık kaynak metin modeli ailesidir.",
|
|
604
|
+
"google/gemma-2-9b.description": "Gemma 2, küçük uygulamalardan karmaşık veri işlemeye kadar çeşitli kullanım durumları için Google’ın verimli model ailesidir.",
|
|
605
|
+
"google/gemma-2b-it.description": "Gemma Instruct (2B), hafif uygulamalar için temel yönerge işleme sağlar.",
|
|
606
|
+
"google/gemma-3-12b-it.description": "Gemma 3 12B, verimlilik ve performans açısından yeni bir standart belirleyen Google açık kaynak dil modelidir.",
|
|
607
|
+
"google/gemma-3-27b-it.description": "Gemma 3 27B, verimlilik ve performans açısından yeni bir standart belirleyen Google açık kaynak dil modelidir.",
|
|
608
|
+
"google/text-embedding-005.description": "Kod ve İngilizce dil görevleri için optimize edilmiş, İngilizce odaklı bir metin gömme modeli.",
|
|
609
|
+
"google/text-multilingual-embedding-002.description": "Birçok dilde çapraz dil görevleri için optimize edilmiş çok dilli metin gömme modeli.",
|
|
610
|
+
"gpt-3.5-turbo-0125.description": "GPT 3.5 Turbo, metin üretimi ve anlama için kullanılır; şu anda gpt-3.5-turbo-0125 sürümüne işaret eder.",
|
|
611
|
+
"gpt-3.5-turbo-1106.description": "GPT 3.5 Turbo, metin üretimi ve anlama için kullanılır; şu anda gpt-3.5-turbo-0125 sürümüne işaret eder.",
|
|
612
|
+
"gpt-3.5-turbo-instruct.description": "GPT 3.5 Turbo, yönerge takibi için optimize edilmiş metin üretimi ve anlama görevleri için kullanılır.",
|
|
613
|
+
"gpt-3.5-turbo.description": "GPT 3.5 Turbo, metin üretimi ve anlama için kullanılır; şu anda gpt-3.5-turbo-0125 sürümüne işaret eder.",
|
|
614
|
+
"gpt-35-turbo-16k.description": "GPT-3.5 Turbo 16k, karmaşık görevler için yüksek kapasiteli bir metin üretim modelidir.",
|
|
615
|
+
"gpt-35-turbo.description": "GPT-3.5 Turbo, sohbet ve metin üretimi için OpenAI’nin verimli modelidir ve paralel işlev çağrısını destekler.",
|
|
575
616
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3, geliştiriciler, araştırmacılar ve işletmeler için açık bir büyük dil modeli (LLM) olup, üretken yapay zeka fikirlerini oluşturma, deneme ve sorumlu bir şekilde ölçeklendirme süreçlerinde yardımcı olmak üzere tasarlanmıştır. Küresel topluluk inovasyonunun temel taşlarından biri olarak, sınırlı bilgi işlem gücü ve kaynaklara sahip ortamlar, uç cihazlar ve daha hızlı eğitim süreleri için uygundur.",
|
|
576
617
|
"mistral-small-latest.description": "Mistral Small, çeviri, özetleme ve duygu analizi için uygun maliyetli, hızlı ve güvenilir bir seçenektir.",
|
|
577
618
|
"mistral-small.description": "Mistral Small, yüksek verimlilik ve düşük gecikme gerektiren her türlü dil tabanlı görev için uygundur.",
|
|
@@ -40,6 +40,7 @@
|
|
|
40
40
|
"builtins.lobe-cloud-sandbox.title": "Bulut Kum Havuzu",
|
|
41
41
|
"builtins.lobe-group-agent-builder.apiName.batchCreateAgents": "Toplu ajan oluştur",
|
|
42
42
|
"builtins.lobe-group-agent-builder.apiName.createAgent": "Ajan oluştur",
|
|
43
|
+
"builtins.lobe-group-agent-builder.apiName.getAgentInfo": "Üye bilgilerini al",
|
|
43
44
|
"builtins.lobe-group-agent-builder.apiName.getAvailableModels": "Mevcut modelleri al",
|
|
44
45
|
"builtins.lobe-group-agent-builder.apiName.installPlugin": "Yetenek yükle",
|
|
45
46
|
"builtins.lobe-group-agent-builder.apiName.inviteAgent": "Üye davet et",
|
|
@@ -70,6 +71,8 @@
|
|
|
70
71
|
"builtins.lobe-group-management.apiName.summarize": "Konuşmayı özetle",
|
|
71
72
|
"builtins.lobe-group-management.apiName.vote": "Oylama başlat",
|
|
72
73
|
"builtins.lobe-group-management.inspector.broadcast.title": "Aşağıdaki Ajanlar konuşuyor:",
|
|
74
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.assignTo": "Ata",
|
|
75
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.task": "görev:",
|
|
73
76
|
"builtins.lobe-group-management.inspector.executeAgentTasks.title": "Görev atananlar:",
|
|
74
77
|
"builtins.lobe-group-management.inspector.speak.title": "Belirlenen Ajan konuşuyor:",
|
|
75
78
|
"builtins.lobe-group-management.title": "Grup Koordinatörü",
|
package/locales/vi-VN/auth.json
CHANGED
|
@@ -28,6 +28,11 @@
|
|
|
28
28
|
"apikey.list.columns.status": "Trạng thái kích hoạt",
|
|
29
29
|
"apikey.list.title": "Danh sách API Key",
|
|
30
30
|
"apikey.validation.required": "Trường này không được để trống",
|
|
31
|
+
"authModal.description": "Phiên đăng nhập của bạn đã hết hạn. Vui lòng đăng nhập lại để tiếp tục sử dụng các tính năng đồng bộ đám mây.",
|
|
32
|
+
"authModal.later": "Để sau",
|
|
33
|
+
"authModal.signIn": "Đăng nhập lại",
|
|
34
|
+
"authModal.signingIn": "Đang đăng nhập...",
|
|
35
|
+
"authModal.title": "Phiên làm việc đã hết hạn",
|
|
31
36
|
"betterAuth.errors.confirmPasswordRequired": "Vui lòng xác nhận mật khẩu",
|
|
32
37
|
"betterAuth.errors.emailExists": "Email này đã được đăng ký. Vui lòng đăng nhập",
|
|
33
38
|
"betterAuth.errors.emailInvalid": "Vui lòng nhập địa chỉ email hoặc tên người dùng hợp lệ",
|
|
@@ -336,6 +336,26 @@
|
|
|
336
336
|
"dall-e-2.description": "DALL·E thế hệ thứ hai với khả năng tạo hình ảnh thực tế, chính xác hơn và độ phân giải gấp 4 lần thế hệ đầu.",
|
|
337
337
|
"dall-e-3.description": "Mô hình DALL·E mới nhất, phát hành vào tháng 11 năm 2023, hỗ trợ tạo hình ảnh thực tế, chính xác hơn với chi tiết mạnh mẽ hơn.",
|
|
338
338
|
"databricks/dbrx-instruct.description": "DBRX Instruct cung cấp khả năng xử lý hướng dẫn đáng tin cậy cao trong nhiều ngành công nghiệp.",
|
|
339
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR là một mô hình thị giác-ngôn ngữ từ DeepSeek AI tập trung vào OCR và \"nén quang học theo ngữ cảnh.\" Mô hình này khám phá cách nén thông tin ngữ cảnh từ hình ảnh, xử lý tài liệu một cách hiệu quả và chuyển đổi chúng thành văn bản có cấu trúc (ví dụ: Markdown). Nó nhận diện văn bản trong hình ảnh một cách chính xác, phù hợp cho số hóa tài liệu, trích xuất văn bản và xử lý có cấu trúc.",
|
|
340
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B chắt lọc chuỗi suy nghĩ từ DeepSeek-R1-0528 vào Qwen3 8B Base. Mô hình này đạt trạng thái tiên tiến nhất (SOTA) trong số các mô hình mã nguồn mở, vượt Qwen3 8B 10% trên AIME 2024 và tương đương hiệu suất của Qwen3-235B-thinking. Nó vượt trội trong các bài kiểm tra suy luận toán học, lập trình và logic tổng quát. Mô hình sử dụng kiến trúc Qwen3-8B nhưng dùng bộ mã hóa của DeepSeek-R1-0528.",
|
|
341
|
+
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 tận dụng sức mạnh tính toán bổ sung và tối ưu hóa thuật toán sau huấn luyện để tăng cường khả năng suy luận. Mô hình thể hiện hiệu suất mạnh mẽ trên các bài kiểm tra toán học, lập trình và logic tổng quát, tiệm cận các mô hình hàng đầu như o3 và Gemini 2.5 Pro.",
|
|
342
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Các mô hình chắt lọc DeepSeek-R1 sử dụng học tăng cường (RL) và dữ liệu khởi đầu lạnh để cải thiện khả năng suy luận và thiết lập các chuẩn mực mới cho mô hình mã nguồn mở đa nhiệm.",
|
|
343
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Các mô hình chắt lọc DeepSeek-R1 sử dụng học tăng cường (RL) và dữ liệu khởi đầu lạnh để cải thiện khả năng suy luận và thiết lập các chuẩn mực mới cho mô hình mã nguồn mở đa nhiệm.",
|
|
344
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Các mô hình chắt lọc DeepSeek-R1 sử dụng học tăng cường (RL) và dữ liệu khởi đầu lạnh để cải thiện khả năng suy luận và thiết lập các chuẩn mực mới cho mô hình mã nguồn mở đa nhiệm.",
|
|
345
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B được chắt lọc từ Qwen2.5-32B và tinh chỉnh trên 800K mẫu dữ liệu được chọn lọc từ DeepSeek-R1. Mô hình này vượt trội trong toán học, lập trình và suy luận, đạt kết quả cao trên AIME 2024, MATH-500 (độ chính xác 94.3%) và GPQA Diamond.",
|
|
346
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B được chắt lọc từ Qwen2.5-Math-7B và tinh chỉnh trên 800K mẫu dữ liệu được chọn lọc từ DeepSeek-R1. Mô hình này thể hiện hiệu suất mạnh mẽ, đạt 92.8% trên MATH-500, 55.5% trên AIME 2024 và xếp hạng CodeForces 1189 cho một mô hình 7B.",
|
|
347
|
+
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 cải thiện khả năng suy luận thông qua học tăng cường (RL) và dữ liệu khởi đầu lạnh, thiết lập các chuẩn mực mới cho mô hình mã nguồn mở đa nhiệm và vượt qua OpenAI-o1-mini.",
|
|
348
|
+
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 nâng cấp từ DeepSeek-V2-Chat và DeepSeek-Coder-V2-Instruct, kết hợp khả năng tổng quát và lập trình. Mô hình cải thiện khả năng viết và tuân thủ hướng dẫn để phù hợp hơn với sở thích người dùng, và đạt tiến bộ đáng kể trên các bài kiểm tra như AlpacaEval 2.0, ArenaHard, AlignBench và MT-Bench.",
|
|
349
|
+
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus là phiên bản cập nhật của mô hình V3.1, được định vị như một mô hình đại lý lai (hybrid agent LLM). Mô hình khắc phục các vấn đề do người dùng báo cáo, cải thiện độ ổn định, tính nhất quán ngôn ngữ và giảm ký tự bất thường hoặc pha trộn Trung-Anh. Nó tích hợp chế độ Suy nghĩ và Không suy nghĩ với mẫu trò chuyện để chuyển đổi linh hoạt. Ngoài ra, mô hình còn nâng cao hiệu suất của Code Agent và Search Agent để sử dụng công cụ đáng tin cậy hơn và thực hiện các tác vụ nhiều bước.",
|
|
350
|
+
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 sử dụng kiến trúc suy luận lai và hỗ trợ cả chế độ suy nghĩ và không suy nghĩ.",
|
|
351
|
+
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp là phiên bản thử nghiệm của V3.2, là cầu nối đến kiến trúc tiếp theo. Mô hình bổ sung DeepSeek Sparse Attention (DSA) trên nền tảng V3.1-Terminus để cải thiện hiệu quả huấn luyện và suy luận với ngữ cảnh dài, cùng các tối ưu hóa cho việc sử dụng công cụ, hiểu tài liệu dài và suy luận nhiều bước. Đây là lựa chọn lý tưởng để khám phá hiệu quả suy luận cao hơn với ngân sách ngữ cảnh lớn.",
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 là mô hình MoE với 671 tỷ tham số, sử dụng MLA và DeepSeekMoE với cân bằng tải không tổn thất để huấn luyện và suy luận hiệu quả. Được huấn luyện trước trên 14.8T token chất lượng cao với SFT và RL, mô hình vượt trội so với các mô hình mã nguồn mở khác và tiệm cận các mô hình đóng hàng đầu.",
|
|
353
|
+
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) là một mô hình sáng tạo cung cấp khả năng hiểu và tương tác ngôn ngữ sâu sắc.",
|
|
354
|
+
"deepseek-ai/deepseek-r1.description": "Một mô hình ngôn ngữ tiên tiến, hiệu quả, mạnh về suy luận, toán học và lập trình.",
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 là mô hình suy luận thế hệ mới với khả năng suy luận phức tạp mạnh mẽ và chuỗi suy nghĩ cho các tác vụ phân tích chuyên sâu.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 là mô hình suy luận thế hệ mới với khả năng suy luận phức tạp mạnh mẽ và chuỗi suy nghĩ cho các tác vụ phân tích chuyên sâu.",
|
|
357
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 là mô hình thị giác-ngôn ngữ MoE dựa trên DeepSeekMoE-27B với kích hoạt thưa, đạt hiệu suất cao với chỉ 4.5B tham số hoạt động. Mô hình vượt trội trong QA thị giác, OCR, hiểu tài liệu/bảng/biểu đồ và định vị hình ảnh.",
|
|
358
|
+
"deepseek-chat.description": "Một mô hình mã nguồn mở mới kết hợp khả năng tổng quát và lập trình. Mô hình giữ lại khả năng đối thoại chung của mô hình trò chuyện và khả năng lập trình mạnh mẽ của mô hình lập trình viên, với sự điều chỉnh sở thích tốt hơn. DeepSeek-V2.5 cũng cải thiện khả năng viết và tuân thủ hướng dẫn.",
|
|
339
359
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 là một mô hình ngôn ngữ mở dành cho nhà phát triển, nhà nghiên cứu và doanh nghiệp, được thiết kế để hỗ trợ xây dựng, thử nghiệm và mở rộng các ý tưởng AI sinh ngữ một cách có trách nhiệm. Là một phần trong nền tảng đổi mới cộng đồng toàn cầu, mô hình này phù hợp với môi trường có tài nguyên hạn chế, thiết bị biên và yêu cầu thời gian huấn luyện nhanh hơn.",
|
|
340
360
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Khả năng suy luận hình ảnh mạnh mẽ trên ảnh độ phân giải cao, phù hợp cho các ứng dụng hiểu thị giác.",
|
|
341
361
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Khả năng suy luận hình ảnh tiên tiến dành cho các ứng dụng tác tử hiểu thị giác.",
|
|
@@ -40,6 +40,7 @@
|
|
|
40
40
|
"builtins.lobe-cloud-sandbox.title": "Môi trường Đám mây",
|
|
41
41
|
"builtins.lobe-group-agent-builder.apiName.batchCreateAgents": "Tạo hàng loạt tác nhân",
|
|
42
42
|
"builtins.lobe-group-agent-builder.apiName.createAgent": "Tạo tác nhân",
|
|
43
|
+
"builtins.lobe-group-agent-builder.apiName.getAgentInfo": "Lấy thông tin thành viên",
|
|
43
44
|
"builtins.lobe-group-agent-builder.apiName.getAvailableModels": "Lấy mô hình khả dụng",
|
|
44
45
|
"builtins.lobe-group-agent-builder.apiName.installPlugin": "Cài đặt Kỹ năng",
|
|
45
46
|
"builtins.lobe-group-agent-builder.apiName.inviteAgent": "Mời thành viên",
|
|
@@ -70,6 +71,8 @@
|
|
|
70
71
|
"builtins.lobe-group-management.apiName.summarize": "Tóm tắt cuộc trò chuyện",
|
|
71
72
|
"builtins.lobe-group-management.apiName.vote": "Bắt đầu bỏ phiếu",
|
|
72
73
|
"builtins.lobe-group-management.inspector.broadcast.title": "Các Tác nhân sau sẽ phát biểu:",
|
|
74
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.assignTo": "Giao nhiệm vụ",
|
|
75
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.task": "nhiệm vụ:",
|
|
73
76
|
"builtins.lobe-group-management.inspector.executeAgentTasks.title": "Giao nhiệm vụ cho:",
|
|
74
77
|
"builtins.lobe-group-management.inspector.speak.title": "Tác nhân được chỉ định phát biểu:",
|
|
75
78
|
"builtins.lobe-group-management.title": "Điều phối viên Nhóm",
|
|
@@ -396,6 +396,7 @@
|
|
|
396
396
|
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 是一款拥有 685B 参数的 MoE 模型,是 DeepSeek 旗舰聊天系列的最新版本。\n\n该模型基于 [DeepSeek V3](/deepseek/deepseek-chat-v3) 构建,在多项任务中表现出色。",
|
|
397
397
|
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 是 DeepSeek 推出的长上下文混合推理模型,支持思考/非思考模式切换及工具集成。",
|
|
398
398
|
"deepseek/deepseek-chat.description": "DeepSeek-V3 是 DeepSeek 面向复杂任务和工具集成的高性能混合推理模型。",
|
|
399
|
+
"deepseek/deepseek-math-v2.description": "DeepSeek Math V2 是一款在数学推理能力上取得重大突破的模型。其核心创新在于“自我验证”训练机制,并在多个顶级数学竞赛中达到了金牌水平。",
|
|
399
400
|
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 是一款更新版本,专注于开放可用性和更深层次的推理能力。",
|
|
400
401
|
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 在仅需极少标注数据的情况下显著提升推理能力,并在最终答案前输出思维链以提高准确性。",
|
|
401
402
|
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B 是基于 Llama 3.3 70B 蒸馏而成的大语言模型,使用 DeepSeek R1 输出进行微调,在性能上可媲美大型前沿模型。",
|
|
@@ -703,6 +704,47 @@
|
|
|
703
704
|
"hunyuan-turbo-latest.description": "在 NLP 理解、写作、对话、问答、翻译与专业领域方面全面优化;响应更具人性化,模糊意图澄清更清晰,词法解析更准确,创意质量与交互性更高,多轮对话能力更强。",
|
|
704
705
|
"hunyuan-turbo-vision.description": "下一代视觉语言旗舰模型,采用全新 MoE 架构,在识别、内容创作、知识问答与分析推理方面全面提升。",
|
|
705
706
|
"hunyuan-turbo.description": "混元下一代大模型预览版,采用全新 MoE 架构,推理速度更快,性能超越 hunyuan-pro。",
|
|
707
|
+
"hunyuan-turbos-20250313.description": "统一数学解题风格,增强多轮数学问答能力。优化写作风格,减少 AI 语气,提升表达质量。",
|
|
708
|
+
"hunyuan-turbos-20250416.description": "升级预训练基座,提升指令理解与执行能力;对齐优化增强数学、编程、逻辑与科学能力;提升写作质量、理解力、翻译准确性与知识问答表现;强化智能体能力,尤其是多轮理解。",
|
|
709
|
+
"hunyuan-turbos-20250604.description": "升级预训练基座,提升写作与阅读理解能力,在编程与 STEM 领域取得显著进展,复杂指令执行能力更强。",
|
|
710
|
+
"hunyuan-turbos-20250926.description": "优化预训练数据质量与后训练策略,提升智能体能力、英语及低资源语言支持、指令执行、编程与 STEM 表现。",
|
|
711
|
+
"hunyuan-turbos-latest.description": "最新的 Hunyuan TurboS 旗舰模型,具备更强推理能力与更优整体体验。",
|
|
712
|
+
"hunyuan-turbos-longtext-128k-20250325.description": "擅长长文档任务,如摘要生成与问答,同时具备通用生成能力。对复杂、细节丰富内容的长文本分析与生成表现出色。",
|
|
713
|
+
"hunyuan-turbos-role-plus.description": "最新角色扮演模型,基于角色扮演数据集官方微调,在角色扮演场景中具备更强的基础表现。",
|
|
714
|
+
"hunyuan-turbos-vision-20250619.description": "最新 TurboS 视觉语言旗舰模型,在图文任务如实体识别、知识问答、文案创作与图像题解方面取得重大进展。",
|
|
715
|
+
"hunyuan-turbos-vision.description": "基于最新 TurboS 的下一代视觉语言旗舰模型,专注于图文理解任务,如实体识别、知识问答、文案创作与图像题解。",
|
|
716
|
+
"hunyuan-vision-1.5-instruct.description": "基于文本 TurboS 基座打造的图生文快思考模型,相较上一版本在图像基础识别、图像分析推理等方面有显著提升。",
|
|
717
|
+
"hunyuan-vision.description": "最新多模态模型,支持图像+文本输入,生成文本输出。",
|
|
718
|
+
"image-01-live.description": "一款细节精致的图像生成模型,支持文本生成图像与可控风格预设。",
|
|
719
|
+
"image-01.description": "一款全新图像生成模型,细节表现出色,支持文本生成图像与图像转图像。",
|
|
720
|
+
"imagen-4.0-fast-generate-001.description": "Imagen 第四代文本生成图像模型系列 Fast 版本",
|
|
721
|
+
"imagen-4.0-generate-001.description": "Imagen 第四代文本生成图像模型系列",
|
|
722
|
+
"imagen-4.0-generate-preview-06-06.description": "Imagen 第四代文本生成图像模型家族。",
|
|
723
|
+
"imagen-4.0-ultra-generate-001.description": "Imagen 第四代文本生成图像模型系列 Ultra 版本",
|
|
724
|
+
"imagen-4.0-ultra-generate-preview-06-06.description": "Imagen 第四代文本生成图像 Ultra 变体。",
|
|
725
|
+
"inception/mercury-coder-small.description": "Mercury Coder Small 是一款适用于代码生成、调试与重构的低延迟模型。",
|
|
726
|
+
"inclusionAI/Ling-flash-2.0.description": "Ling-flash-2.0 是蚂蚁集团百灵团队推出的第三款 Ling 2.0 架构模型。该模型采用 MoE 架构,总参数量为 100B,每个 token 激活参数仅为 6.1B(非嵌入部分为 4.8B)。尽管配置轻量,但在多个基准测试中表现与 40B 密集模型甚至更大 MoE 模型相当甚至更优,探索了通过架构与训练策略实现高效能的路径。",
|
|
727
|
+
"inclusionAI/Ling-mini-2.0.description": "Ling-mini-2.0 是一款小型高性能 MoE 大模型,总参数量为 16B,每个 token 激活参数仅为 1.4B(非嵌入部分为 789M),生成速度极快。凭借高效的 MoE 设计与大规模高质量训练数据,在性能上可媲美 10B 以下密集模型及更大 MoE 模型。",
|
|
728
|
+
"inclusionAI/Ring-flash-2.0.description": "Ring-flash-2.0 是一款从 Ling-flash-2.0-base 优化而来的高性能思维模型,采用 MoE 架构,总参数量为 100B,每次推理激活参数仅为 6.1B。其 icepop 算法稳定了 MoE 模型的强化学习训练,使其在复杂推理任务中持续进步。在数学竞赛、代码生成、逻辑推理等高难度基准测试中取得重大突破,超越 40B 以下顶级密集模型,媲美更大规模的开放或闭源推理模型。同时在创意写作方面表现优异,架构高效,推理速度快,部署成本低,适合高并发场景。",
|
|
729
|
+
"inclusionai/ling-1t.description": "Ling-1T 是 inclusionAI 推出的 1T MoE 模型,专为高强度推理任务与大上下文工作负载优化。",
|
|
730
|
+
"inclusionai/ling-flash-2.0.description": "Ling-flash-2.0 是 inclusionAI 推出的 MoE 模型,优化了效率与推理性能,适用于中大型任务。",
|
|
731
|
+
"inclusionai/ling-mini-2.0.description": "Ling-mini-2.0 是 inclusionAI 推出的轻量级 MoE 模型,在保留推理能力的同时大幅降低成本。",
|
|
732
|
+
"inclusionai/ming-flash-omini-preview.description": "Ming-flash-omni Preview 是 inclusionAI 推出的多模态模型,支持语音、图像与视频输入,图像渲染与语音识别能力提升。",
|
|
733
|
+
"inclusionai/ring-1t.description": "Ring-1T 是 inclusionAI 推出的万亿参数 MoE 推理模型,适用于大规模推理与科研任务。",
|
|
734
|
+
"inclusionai/ring-flash-2.0.description": "Ring-flash-2.0 是 inclusionAI 推出的 Ring 系列变体,面向高吞吐场景,强调速度与成本效率。",
|
|
735
|
+
"inclusionai/ring-mini-2.0.description": "Ring-mini-2.0 是 inclusionAI 推出的高吞吐轻量级 MoE 模型,专为高并发设计。",
|
|
736
|
+
"internlm/internlm2_5-7b-chat.description": "InternLM2.5-7B-Chat 是基于 InternLM2 架构的开源聊天模型。该 7B 模型专注于中英文对话生成,采用现代训练方法,具备流畅、智能的对话能力,适用于客服、个人助手等多种聊天场景。",
|
|
737
|
+
"internlm2.5-latest.description": "经典模型仍在维护,经过多轮迭代后表现稳定优异。提供 7B 与 20B 两种规格,支持 1M 上下文,具备更强的指令执行与工具使用能力。默认使用最新 InternLM2.5 系列(当前为 internlm2.5-20b-chat)。",
|
|
738
|
+
"internlm3-latest.description": "我们最新的模型系列,在推理性能方面表现卓越,在同类开源模型中处于领先地位。默认使用最新 InternLM3 系列(当前为 internlm3-8b-instruct)。",
|
|
739
|
+
"internvl2.5-38b-mpo.description": "InternVL2.5 38B MPO 是一款多模态预训练模型,专注于复杂图文推理任务。",
|
|
740
|
+
"internvl2.5-latest.description": "InternVL2.5 仍在维护,性能稳定强劲。默认使用最新 InternVL2.5 系列(当前为 internvl2.5-78b)。",
|
|
741
|
+
"internvl3-14b.description": "InternVL3 14B 是一款中等规模的多模态模型,在性能与成本之间取得平衡。",
|
|
742
|
+
"internvl3-1b.description": "InternVL3 1B 是一款轻量级多模态模型,适用于资源受限的部署场景。",
|
|
743
|
+
"internvl3-38b.description": "InternVL3 38B 是一款大型开源多模态模型,专注于高精度图文理解。",
|
|
744
|
+
"internvl3-latest.description": "我们最新的多模态模型,具备更强的图文理解与长序列图像理解能力,表现媲美顶级闭源模型。默认使用最新 InternVL 系列(当前为 internvl3-78b)。",
|
|
745
|
+
"irag-1.0.description": "ERNIE iRAG 是一款图像检索增强生成模型,支持图像搜索、图文检索与内容生成任务。",
|
|
746
|
+
"jamba-large.description": "我们最强大、最先进的模型,专为复杂企业任务设计,性能卓越。",
|
|
747
|
+
"jamba-mini.description": "同类中效率最高的模型,在速度与质量之间实现平衡,占用资源更少。",
|
|
706
748
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "适用于视觉理解代理应用的高级图像推理模型。",
|
|
707
749
|
"meta/Llama-3.3-70B-Instruct.description": "Llama 3.3 是最先进的多语言开源 Llama 模型,在极低成本下实现接近 405B 的性能。该模型基于 Transformer 架构,并通过 SFT 和 RLHF 提升实用性与安全性。其指令微调版本专为多语言对话优化,在行业基准测试中超越众多开源与闭源聊天模型。知识截止时间:2023 年 12 月。",
|
|
708
750
|
"meta/Meta-Llama-3-70B-Instruct.description": "一款功能强大的 700 亿参数模型,擅长推理、编程和广泛的语言任务。",
|
package/locales/zh-TW/auth.json
CHANGED
|
@@ -28,6 +28,11 @@
|
|
|
28
28
|
"apikey.list.columns.status": "啟用狀態",
|
|
29
29
|
"apikey.list.title": "API Key 列表",
|
|
30
30
|
"apikey.validation.required": "內容不得為空",
|
|
31
|
+
"authModal.description": "您的登入階段已過期。請重新登入以繼續使用雲端同步功能。",
|
|
32
|
+
"authModal.later": "稍後再說",
|
|
33
|
+
"authModal.signIn": "重新登入",
|
|
34
|
+
"authModal.signingIn": "正在登入⋯⋯",
|
|
35
|
+
"authModal.title": "登入階段已過期",
|
|
31
36
|
"betterAuth.errors.confirmPasswordRequired": "請確認密碼",
|
|
32
37
|
"betterAuth.errors.emailExists": "該電子郵件已註冊,請直接登入",
|
|
33
38
|
"betterAuth.errors.emailInvalid": "請輸入有效的電子郵件地址",
|
|
@@ -396,6 +396,7 @@
|
|
|
396
396
|
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 是一款擁有 685B 參數的 MoE 模型,是 DeepSeek 旗艦聊天系列的最新版本。\n\n它基於 [DeepSeek V3](/deepseek/deepseek-chat-v3) 打造,在多項任務中表現出色。",
|
|
397
397
|
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 是 DeepSeek 的長上下文混合推理模型,支援思考與非思考模式切換,並整合工具使用。",
|
|
398
398
|
"deepseek/deepseek-chat.description": "DeepSeek-V3 是 DeepSeek 的高效能混合推理模型,適用於複雜任務與工具整合。",
|
|
399
|
+
"deepseek/deepseek-math-v2.description": "DeepSeek Math V2 是一款在數學推理能力上取得重大突破的模型。其核心創新在於「自我驗證」訓練機制,並在多項頂級數學競賽中達到金牌水準。",
|
|
399
400
|
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 是一個專注於開放可用性與深度推理的更新版本。",
|
|
400
401
|
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 在僅需少量標註資料的情況下大幅提升推理能力,並在最終答案前輸出思考鏈以提高準確性。",
|
|
401
402
|
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B 是基於 Llama 3.3 70B 精煉而成的大型語言模型,透過 DeepSeek R1 輸出進行微調,達到與大型前沿模型相當的效能。",
|
|
@@ -714,6 +715,37 @@
|
|
|
714
715
|
"hunyuan-turbos-vision.description": "基於最新 TurboS 的下一代視覺語言旗艦模型,專注於圖文理解任務,如實體識別、知識問答、文案撰寫與拍照題解。",
|
|
715
716
|
"hunyuan-vision-1.5-instruct.description": "基於文本 TurboS 基座打造的圖生文快思考模型,較前代在圖像基礎識別、圖像分析推理等方面有明顯提升。",
|
|
716
717
|
"hunyuan-vision.description": "最新多模態模型,支援圖像+文字輸入以生成文字。",
|
|
718
|
+
"image-01-live.description": "一款具備精細細節的圖像生成模型,支援文字轉圖像與可控風格預設。",
|
|
719
|
+
"image-01.description": "一款全新圖像生成模型,具備精細細節,支援文字轉圖像與圖像轉圖像功能。",
|
|
720
|
+
"imagen-4.0-fast-generate-001.description": "Imagen 第四代文字轉圖像模型系列的快速版本",
|
|
721
|
+
"imagen-4.0-generate-001.description": "Imagen 第四代文字轉圖像模型系列",
|
|
722
|
+
"imagen-4.0-generate-preview-06-06.description": "Imagen 第四代文字轉圖像模型家族。",
|
|
723
|
+
"imagen-4.0-ultra-generate-001.description": "Imagen 第四代文字轉圖像模型系列的超高版本",
|
|
724
|
+
"imagen-4.0-ultra-generate-preview-06-06.description": "Imagen 第四代文字轉圖像模型的 Ultra 變體。",
|
|
725
|
+
"inception/mercury-coder-small.description": "Mercury Coder Small 是一款適用於程式碼生成、除錯與重構的低延遲模型。",
|
|
726
|
+
"inclusionAI/Ling-flash-2.0.description": "Ling-flash-2.0 是螞蟻集團百靈團隊推出的第三款 Ling 2.0 架構模型。該模型為 MoE 架構,總參數量為 1000 億,但每個 token 僅啟用 61 億參數(不含嵌入為 48 億)。儘管配置輕量,卻在多項基準測試中與 400 億密集模型甚至更大型 MoE 模型相媲美甚至超越,展現出透過架構與訓練策略實現高效能的潛力。",
|
|
727
|
+
"inclusionAI/Ling-mini-2.0.description": "Ling-mini-2.0 是一款小型高效能 MoE 大語言模型,總參數為 160 億,每個 token 僅啟用 14 億參數(不含嵌入為 7.89 億),具備極快的生成速度。透過高效的 MoE 設計與大量高品質訓練資料,其效能可媲美 100 億以下的密集模型與更大型的 MoE 模型。",
|
|
728
|
+
"inclusionAI/Ring-flash-2.0.description": "Ring-flash-2.0 是從 Ling-flash-2.0-base 優化而來的高效能推理模型。採用 MoE 架構,總參數為 1000 億,每次推理僅啟用 61 億參數。其 icepop 演算法穩定了 MoE 模型的強化學習訓練,使其在複雜推理任務中持續進步。該模型在數學競賽、程式碼生成與邏輯推理等嚴苛基準測試中取得重大突破,超越 400 億以下的密集模型,並可與更大型的開源或封閉推理模型匹敵。它在創意寫作方面也表現出色,且其高效架構可在高併發場景下以較低部署成本實現快速推理。",
|
|
729
|
+
"inclusionai/ling-1t.description": "Ling-1T 是 inclusionAI 推出的 1 兆參數 MoE 模型,專為高強度推理任務與大上下文工作負載而優化。",
|
|
730
|
+
"inclusionai/ling-flash-2.0.description": "Ling-flash-2.0 是 inclusionAI 推出的 MoE 模型,針對效率與推理效能進行優化,適用於中大型任務。",
|
|
731
|
+
"inclusionai/ling-mini-2.0.description": "Ling-mini-2.0 是 inclusionAI 推出的輕量級 MoE 模型,在大幅降低成本的同時保有推理能力。",
|
|
732
|
+
"inclusionai/ming-flash-omini-preview.description": "Ming-flash-omni 預覽版是 inclusionAI 的多模態模型,支援語音、圖像與影片輸入,並提升了圖像渲染與語音辨識能力。",
|
|
733
|
+
"inclusionai/ring-1t.description": "Ring-1T 是 inclusionAI 推出的兆級參數 MoE 推理模型,適用於大規模推理與研究任務。",
|
|
734
|
+
"inclusionai/ring-flash-2.0.description": "Ring-flash-2.0 是 inclusionAI 推出的 Ring 模型變體,專為高吞吐量場景設計,強調速度與成本效益。",
|
|
735
|
+
"inclusionai/ring-mini-2.0.description": "Ring-mini-2.0 是 inclusionAI 推出的高吞吐量輕量級 MoE 模型,專為高併發場景打造。",
|
|
736
|
+
"internlm/internlm2_5-7b-chat.description": "InternLM2.5-7B-Chat 是基於 InternLM2 架構的開源聊天模型。該 70 億參數模型專注於中英文對話生成,採用現代化訓練方法,實現流暢且智慧的對話體驗,適用於客服、個人助理等多種聊天場景。",
|
|
737
|
+
"internlm2.5-latest.description": "歷經多次迭代後仍維持優異穩定表現的舊版模型。提供 70 億與 200 億版本,支援 100 萬上下文長度,具備更強的指令遵循與工具使用能力。預設為最新 InternLM2.5 系列(目前為 internlm2.5-20b-chat)。",
|
|
738
|
+
"internlm3-latest.description": "我們最新的模型系列,具備卓越的推理能力,在同級開源模型中表現領先。預設為最新 InternLM3 系列(目前為 internlm3-8b-instruct)。",
|
|
739
|
+
"internvl2.5-38b-mpo.description": "InternVL2.5 38B MPO 是一款多模態預訓練模型,專為複雜圖文推理任務設計。",
|
|
740
|
+
"internvl2.5-latest.description": "InternVL2.5 維持穩定且強大的表現。預設為最新 InternVL2.5 系列(目前為 internvl2.5-78b)。",
|
|
741
|
+
"internvl3-14b.description": "InternVL3 14B 是一款中型多模態模型,在效能與成本之間取得平衡。",
|
|
742
|
+
"internvl3-1b.description": "InternVL3 1B 是一款輕量級多模態模型,適合資源受限的部署場景。",
|
|
743
|
+
"internvl3-38b.description": "InternVL3 38B 是一款大型開源多模態模型,專為高準確度圖文理解任務設計。",
|
|
744
|
+
"internvl3-latest.description": "我們最新的多模態模型,具備更強的圖文理解與長序列圖像理解能力,表現可媲美頂級封閉模型。預設為最新 InternVL 系列(目前為 internvl3-78b)。",
|
|
745
|
+
"irag-1.0.description": "ERNIE iRAG 是一款圖像檢索增強生成模型,支援圖像搜尋、圖文檢索與內容生成任務。",
|
|
746
|
+
"jamba-large.description": "我們最強大、最先進的模型,專為複雜企業任務設計,具備卓越效能。",
|
|
747
|
+
"jamba-mini.description": "同級中最具效率的模型,在速度與品質之間取得平衡,佔用資源更少。",
|
|
748
|
+
"jina-deepsearch-v1.description": "DeepSearch 結合網頁搜尋、閱讀與推理,進行深入調查。它如同一位代理人,接收你的研究任務後,進行多輪廣泛搜尋,最終才產出答案。整個過程包含持續研究、推理與多角度問題解決,與僅依賴預訓練資料的標準 LLM 或一次性檢索的傳統 RAG 系統截然不同。",
|
|
717
749
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "先進的圖像推理能力,適用於視覺理解代理應用。",
|
|
718
750
|
"meta/Llama-3.3-70B-Instruct.description": "Llama 3.3 是最先進的多語言開源 Llama 模型,以極低成本提供接近 405B 的效能。該模型基於 Transformer 架構,並透過 SFT 與 RLHF 提升實用性與安全性。經指令微調版本針對多語言對話進行最佳化,在業界基準測試中超越多數開放與封閉模型。知識截止時間:2023 年 12 月。",
|
|
719
751
|
"meta/Meta-Llama-3-70B-Instruct.description": "一款功能強大的 70B 參數模型,擅長推理、程式編寫與廣泛語言任務。",
|
|
@@ -40,6 +40,7 @@
|
|
|
40
40
|
"builtins.lobe-cloud-sandbox.title": "雲端沙盒",
|
|
41
41
|
"builtins.lobe-group-agent-builder.apiName.batchCreateAgents": "批次建立代理",
|
|
42
42
|
"builtins.lobe-group-agent-builder.apiName.createAgent": "建立代理",
|
|
43
|
+
"builtins.lobe-group-agent-builder.apiName.getAgentInfo": "取得成員資訊",
|
|
43
44
|
"builtins.lobe-group-agent-builder.apiName.getAvailableModels": "取得可用模型",
|
|
44
45
|
"builtins.lobe-group-agent-builder.apiName.installPlugin": "安裝外掛",
|
|
45
46
|
"builtins.lobe-group-agent-builder.apiName.inviteAgent": "邀請成員",
|
|
@@ -70,6 +71,8 @@
|
|
|
70
71
|
"builtins.lobe-group-management.apiName.summarize": "總結對話",
|
|
71
72
|
"builtins.lobe-group-management.apiName.vote": "發起投票",
|
|
72
73
|
"builtins.lobe-group-management.inspector.broadcast.title": "以下代理人發言:",
|
|
74
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.assignTo": "指派",
|
|
75
|
+
"builtins.lobe-group-management.inspector.executeAgentTask.task": "任務:",
|
|
73
76
|
"builtins.lobe-group-management.inspector.executeAgentTasks.title": "指派任務給:",
|
|
74
77
|
"builtins.lobe-group-management.inspector.speak.title": "指定代理人發言:",
|
|
75
78
|
"builtins.lobe-group-management.title": "協調團隊",
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@lobehub/lobehub",
|
|
3
|
-
"version": "2.0.0-next.
|
|
3
|
+
"version": "2.0.0-next.310",
|
|
4
4
|
"description": "LobeHub - an open-source,comprehensive AI Agent framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
|
5
5
|
"keywords": [
|
|
6
6
|
"framework",
|