@lobehub/lobehub 2.0.0-next.212 → 2.0.0-next.214
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.github/workflows/auto-i18n.yml +1 -1
- package/.github/workflows/bundle-analyzer.yml +1 -1
- package/.github/workflows/claude-auto-testing.yml +1 -1
- package/.github/workflows/claude-dedupe-issues.yml +1 -1
- package/.github/workflows/claude-issue-triage.yml +1 -1
- package/.github/workflows/claude-translate-comments.yml +1 -1
- package/.github/workflows/claude-translator.yml +1 -1
- package/.github/workflows/claude.yml +1 -1
- package/.github/workflows/desktop-build-electron.yml +2 -2
- package/.github/workflows/e2e.yml +1 -1
- package/.github/workflows/issue-auto-close-duplicates.yml +1 -1
- package/.github/workflows/lighthouse.yml +2 -2
- package/.github/workflows/lock-closed-issues.yml +1 -1
- package/.github/workflows/manual-build-desktop.yml +6 -6
- package/.github/workflows/pr-build-desktop.yml +5 -5
- package/.github/workflows/pr-build-docker.yml +2 -2
- package/.github/workflows/release-desktop-beta.yml +4 -4
- package/.github/workflows/release-docker.yml +2 -2
- package/.github/workflows/release.yml +1 -1
- package/.github/workflows/sync-database-schema.yml +1 -1
- package/.github/workflows/sync.yml +1 -1
- package/.github/workflows/test.yml +5 -5
- package/.github/workflows/verify-desktop-patch.yml +1 -1
- package/CHANGELOG.md +58 -0
- package/apps/desktop/package.json +3 -2
- package/apps/desktop/src/main/const/store.ts +1 -1
- package/apps/desktop/src/main/controllers/SystemCtr.ts +2 -3
- package/apps/desktop/src/main/core/App.ts +10 -3
- package/apps/desktop/src/main/types/store.ts +1 -1
- package/changelog/v1.json +14 -0
- package/locales/ar/models.json +35 -4
- package/locales/ar/providers.json +1 -0
- package/locales/bg-BG/models.json +24 -1
- package/locales/bg-BG/providers.json +1 -0
- package/locales/de-DE/models.json +30 -1
- package/locales/de-DE/providers.json +1 -0
- package/locales/en-US/models.json +1 -0
- package/locales/en-US/providers.json +1 -0
- package/locales/es-ES/models.json +32 -1
- package/locales/es-ES/providers.json +1 -0
- package/locales/fa-IR/models.json +48 -1
- package/locales/fa-IR/providers.json +1 -0
- package/locales/fr-FR/models.json +47 -1
- package/locales/fr-FR/providers.json +1 -0
- package/locales/it-IT/models.json +32 -1
- package/locales/it-IT/providers.json +1 -0
- package/locales/ja-JP/models.json +2 -1
- package/locales/ja-JP/providers.json +1 -0
- package/locales/ko-KR/models.json +24 -1
- package/locales/ko-KR/providers.json +1 -0
- package/locales/nl-NL/models.json +46 -1
- package/locales/nl-NL/providers.json +1 -0
- package/locales/pl-PL/models.json +41 -1
- package/locales/pl-PL/providers.json +1 -0
- package/locales/pt-BR/models.json +32 -1
- package/locales/pt-BR/providers.json +1 -0
- package/locales/ru-RU/models.json +54 -2
- package/locales/ru-RU/providers.json +1 -0
- package/locales/tr-TR/models.json +32 -1
- package/locales/tr-TR/providers.json +1 -0
- package/locales/vi-VN/models.json +37 -1
- package/locales/vi-VN/providers.json +1 -0
- package/locales/zh-CN/models.json +24 -3
- package/locales/zh-CN/providers.json +1 -0
- package/locales/zh-TW/models.json +11 -1
- package/locales/zh-TW/providers.json +1 -0
- package/package.json +4 -3
- package/packages/builtin-tool-knowledge-base/src/client/Render/SearchKnowledgeBase/Item/index.tsx +4 -2
- package/packages/builtin-tool-local-system/src/client/Intervention/EditLocalFile/index.tsx +3 -2
- package/packages/builtin-tool-local-system/src/client/Render/EditLocalFile/index.tsx +3 -2
- package/packages/const/src/theme.ts +0 -2
- package/packages/context-engine/src/engine/messages/types.ts +1 -1
- package/packages/desktop-bridge/src/routeVariants.ts +2 -9
- package/packages/electron-client-ipc/src/types/system.ts +1 -1
- package/packages/model-runtime/src/core/BaseAI.ts +1 -1
- package/packages/model-runtime/src/core/streams/qwen.test.ts +140 -0
- package/packages/model-runtime/src/core/streams/qwen.ts +17 -5
- package/packages/model-runtime/src/types/chat.ts +12 -12
- package/packages/model-runtime/src/types/error.ts +1 -1
- package/packages/model-runtime/src/types/image.ts +1 -1
- package/scripts/electronWorkflow/modifiers/nextConfig.mts +41 -13
- package/src/app/[variants]/(auth)/_layout/index.tsx +3 -2
- package/src/app/[variants]/(auth)/_layout/style.ts +8 -18
- package/src/app/[variants]/(auth)/layout.tsx +7 -3
- package/src/app/[variants]/(desktop)/desktop-onboarding/_layout/index.tsx +4 -2
- package/src/app/[variants]/(desktop)/desktop-onboarding/_layout/style.ts +3 -0
- package/src/app/[variants]/(main)/_layout/DesktopLayoutContainer.tsx +3 -2
- package/src/app/[variants]/(main)/chat/features/Conversation/Header/index.tsx +2 -1
- package/src/app/[variants]/(main)/chat/profile/features/ProfileEditor/PluginTag.tsx +3 -2
- package/src/app/[variants]/(main)/community/(list)/_layout/Footer.tsx +3 -2
- package/src/app/[variants]/(main)/group/features/Conversation/ChatItem/Thread.tsx +3 -2
- package/src/app/[variants]/(main)/group/profile/features/AgentBuilder/index.tsx +0 -1
- package/src/app/[variants]/(main)/group/profile/features/ProfileEditor/PluginTag.tsx +3 -2
- package/src/app/[variants]/(main)/home/_layout/Body/Agent/List/AgentItem/Editing.tsx +2 -2
- package/src/app/[variants]/(main)/home/_layout/Footer/index.tsx +1 -1
- package/src/app/[variants]/(main)/home/_layout/index.tsx +3 -2
- package/src/app/[variants]/(main)/home/features/CommunityAgents/Item.tsx +3 -2
- package/src/app/[variants]/(main)/image/_layout/ConfigPanel/components/AspectRatioSelect/index.tsx +4 -2
- package/src/app/[variants]/(main)/image/_layout/ConfigPanel/components/ModelSelect/ImageModelItem.tsx +3 -2
- package/src/app/[variants]/(main)/image/_layout/ConfigPanel/components/Select/index.tsx +4 -2
- package/src/app/[variants]/(main)/image/features/PromptInput/index.tsx +3 -2
- package/src/app/[variants]/(main)/memory/features/TimeLineView/index.tsx +9 -4
- package/src/app/[variants]/(main)/page/_layout/Body/List/Item/Editing.tsx +2 -2
- package/src/app/[variants]/(main)/settings/common/features/Common/Common.tsx +11 -11
- package/src/app/[variants]/(main)/settings/provider/(list)/ProviderGrid/Card.tsx +3 -2
- package/src/app/[variants]/(main)/settings/stats/features/overview/ShareButton/TotalCard.tsx +4 -2
- package/src/app/[variants]/(mobile)/me/(home)/features/Header.tsx +6 -8
- package/src/app/[variants]/layout.tsx +10 -15
- package/src/app/[variants]/onboarding/_layout/index.tsx +3 -2
- package/src/app/[variants]/onboarding/features/ModeSelectionStep.tsx +3 -2
- package/src/app/[variants]/router/index.tsx +12 -8
- package/src/components/Cell/Divider.tsx +4 -2
- package/src/components/DataStyleModal/index.tsx +4 -2
- package/src/components/FeatureList/index.tsx +4 -2
- package/src/components/FileParsingStatus/EmbeddingStatus.tsx +3 -2
- package/src/components/FileParsingStatus/index.tsx +3 -2
- package/src/components/Notification/index.tsx +4 -2
- package/src/components/client/ClientOnly.tsx +17 -0
- package/src/features/AlertBanner/CloudBanner.tsx +4 -3
- package/src/features/CommandMenu/ThemeMenu.tsx +1 -1
- package/src/features/CommandMenu/types.ts +5 -2
- package/src/features/CommandMenu/useCommandMenu.ts +3 -2
- package/src/features/Conversation/Markdown/plugins/LobeArtifact/Render/index.tsx +3 -2
- package/src/features/Conversation/Messages/components/FileChunks/ChunkItem.tsx +3 -2
- package/src/features/Conversation/Messages/components/FileChunks/index.tsx +4 -2
- package/src/features/Conversation/Messages/components/SearchGrounding.tsx +3 -2
- package/src/features/ElectronTitlebar/hooks/useWatchThemeUpdate.ts +21 -38
- package/src/features/GroupChatSettings/AgentCard.tsx +3 -2
- package/src/features/GroupChatSettings/HostMemberCard.tsx +3 -2
- package/src/features/PageEditor/DiffAllToolbar.tsx +4 -2
- package/src/features/User/UserPanel/ThemeButton.tsx +18 -29
- package/src/hooks/useIsDark.ts +11 -0
- package/src/layout/AuthProvider/Clerk/useAppearance.ts +4 -2
- package/src/layout/AuthProvider/MarketAuth/MarketAuthConfirmModal.tsx +3 -2
- package/src/layout/GlobalProvider/AppTheme.tsx +15 -19
- package/src/layout/GlobalProvider/NextThemeProvider.tsx +22 -0
- package/src/layout/GlobalProvider/StyleRegistry.tsx +18 -13
- package/src/layout/GlobalProvider/index.tsx +38 -36
- package/src/libs/next/proxy/define-config.ts +2 -11
- package/src/server/services/comfyui/config/constants.ts +7 -7
- package/src/server/services/comfyui/config/promptToolConst.ts +26 -26
- package/src/server/services/comfyui/utils/promptSplitter.ts +23 -23
- package/src/server/services/comfyui/utils/weightDType.ts +4 -5
- package/src/store/global/action.test.ts +0 -15
- package/src/store/global/actions/__tests__/general.test.ts +0 -37
- package/src/store/global/actions/general.ts +0 -21
- package/src/store/global/initialState.ts +0 -6
- package/src/store/global/selectors/systemStatus.test.ts +0 -20
- package/src/store/global/selectors/systemStatus.ts +0 -2
- package/src/styles/global.ts +0 -2
- package/src/utils/server/routeVariants.test.ts +17 -51
- package/src/utils/server/routeVariants.ts +0 -1
|
@@ -382,6 +382,37 @@
|
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2 è un modello MoE efficiente per un'elaborazione conveniente.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B è il modello DeepSeek focalizzato sul codice con forte capacità di generazione.",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con punti di forza nella programmazione, capacità tecnica, comprensione del contesto e gestione di testi lunghi.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus è un LLM ottimizzato per terminali, sviluppato da DeepSeek e progettato specificamente per dispositivi a riga di comando.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 è il modello di pensiero profondo corrispondente alla versione Terminus, costruito per un ragionamento ad alte prestazioni.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 è un nuovo modello di ragionamento ibrido di DeepSeek, che supporta modalità di pensiero e non-pensiero, offrendo un'efficienza di pensiero superiore rispetto a DeepSeek-R1-0528. Le ottimizzazioni post-addestramento migliorano notevolmente l'uso degli strumenti da parte degli agenti e le prestazioni nei compiti. Supporta una finestra di contesto di 128k e fino a 64k token in output.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 è un modello di ragionamento di nuova generazione con capacità avanzate di ragionamento complesso e catene di pensiero, ideale per compiti che richiedono analisi approfondite.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduce l'attenzione sparsa per migliorare l'efficienza di addestramento e inferenza su testi lunghi, a un costo inferiore rispetto a deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think è un modello completo di pensiero profondo con capacità potenziate di ragionamento a catena lunga.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 è il primo modello di ragionamento ibrido di DeepSeek che integra il pensiero nell'uso degli strumenti. Combina un'architettura efficiente per ridurre il consumo computazionale, un apprendimento per rinforzo su larga scala per potenziare le capacità e dati sintetici su vasta scala per una forte generalizzazione. Le sue prestazioni sono paragonabili a GPT-5-High, con una lunghezza di output notevolmente ridotta, riducendo significativamente i costi computazionali e i tempi di attesa per l'utente.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 è un potente modello MoE con 671 miliardi di parametri totali e 37 miliardi attivi per token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small è una versione multimodale leggera, pensata per ambienti con risorse limitate e alta concorrenza.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 è un modello multimodale per la comprensione immagine-testo e domande visive dettagliate.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 è un modello MoE da 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 è un modello MoE da 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 è il modello di ragionamento ibrido a lungo contesto di DeepSeek, che supporta modalità miste di pensiero/non-pensiero e integrazione con strumenti.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 è il modello di ragionamento ibrido ad alte prestazioni di DeepSeek, progettato per compiti complessi e integrazione con strumenti.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 è una variante aggiornata focalizzata sulla disponibilità aperta e su un ragionamento più profondo.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento utilizzando un numero minimo di dati etichettati e genera una catena di pensiero prima della risposta finale per aumentare l'accuratezza.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B è un LLM distillato basato su Llama 3.3 70B, ottimizzato utilizzando gli output di DeepSeek R1 per raggiungere prestazioni competitive con i modelli di frontiera di grandi dimensioni.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B è un LLM distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando gli output di DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B è un LLM distillato basato su Qwen 2.5 14B, addestrato utilizzando gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati salienti:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nIl fine-tuning sugli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B è un LLM distillato basato su Qwen 2.5 32B, addestrato utilizzando gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati salienti:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nIl fine-tuning sugli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 è stato aggiornato a DeepSeek-R1-0528. Con maggiore potenza computazionale e ottimizzazioni algoritmiche post-addestramento, migliora significativamente la profondità e la capacità di ragionamento. Offre prestazioni elevate in benchmark di matematica, programmazione e logica generale, avvicinandosi a leader come o3 e Gemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 è l'ultimo modello open-source rilasciato dal team DeepSeek, con prestazioni di ragionamento molto elevate, in particolare in matematica, programmazione e compiti logici, comparabili a OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento utilizzando un numero minimo di dati etichettati e genera una catena di pensiero prima della risposta finale per aumentare l'accuratezza.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) è il modello sperimentale di ragionamento di DeepSeek, adatto a compiti di alta complessità.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base è una versione migliorata del modello DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Un LLM veloce e generico con capacità di ragionamento potenziate.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 rappresenta un importante progresso nella velocità di ragionamento rispetto ai modelli precedenti. Si posiziona al primo posto tra i modelli open-source e rivaleggia con i modelli chiusi più avanzati. DeepSeek-V3 adotta l'attenzione latente multi-testa (MLA) e l'architettura DeepSeekMoE, entrambe validate in DeepSeek-V2. Introduce inoltre una strategia ausiliaria lossless per il bilanciamento del carico e un obiettivo di addestramento con previsione multi-token per prestazioni superiori.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 è un modello di ragionamento guidato dall'apprendimento per rinforzo che affronta problemi di ripetizione e leggibilità. Prima dell'RL, utilizza dati di avvio a freddo per migliorare ulteriormente le prestazioni di ragionamento. È comparabile a OpenAI-o1 in matematica, programmazione e compiti logici, con un addestramento attentamente progettato che migliora i risultati complessivi.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B è distillato da Llama-3.3-70B-Instruct. Fa parte della serie DeepSeek-R1, è ottimizzato su campioni generati da DeepSeek-R1 e offre prestazioni elevate in matematica, programmazione e ragionamento.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B è distillato da Qwen2.5-14B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, offrendo un ragionamento solido.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B è distillato da Qwen2.5-32B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, eccellendo in matematica, programmazione e ragionamento.",
|
|
385
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
|
|
386
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
|
|
387
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
|
|
@@ -618,4 +649,4 @@
|
|
|
618
649
|
"zai/glm-4.5.description": "La serie GLM-4.5 è progettata per agenti. Il modello di punta GLM-4.5 combina ragionamento, programmazione e capacità agentiche con 355B parametri totali (32B attivi) e offre modalità operative doppie come sistema di ragionamento ibrido.",
|
|
619
650
|
"zai/glm-4.5v.description": "GLM-4.5V si basa su GLM-4.5-Air, ereditando le tecniche collaudate di GLM-4.1V-Thinking e scalando con una potente architettura MoE da 106B parametri.",
|
|
620
651
|
"zenmux/auto.description": "Il sistema di instradamento automatico ZenMux seleziona il modello con il miglior rapporto qualità/prezzo tra quelli supportati in base alla tua richiesta."
|
|
621
|
-
}
|
|
652
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "La piattaforma di servizi di modelli di ByteDance offre accesso sicuro, ricco di funzionalità e competitivo nei costi, oltre a strumenti end-to-end per dati, fine-tuning, inferenza e valutazione.",
|
|
64
64
|
"wenxin.description": "Una piattaforma aziendale all-in-one per modelli fondamentali e sviluppo di app AI-native, che offre strumenti end-to-end per flussi di lavoro di modelli e applicazioni generative.",
|
|
65
65
|
"xai.description": "xAI sviluppa intelligenza artificiale per accelerare la scoperta scientifica, con la missione di approfondire la comprensione dell'universo da parte dell'umanità.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo offre un servizio di modelli conversazionali con un'API compatibile con OpenAI. Il modello mimo-v2-flash supporta il ragionamento avanzato, l'output in streaming, le chiamate di funzione, una finestra di contesto di 256K e una produzione massima di 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) è una piattaforma open-source che semplifica l'esecuzione e l'integrazione di modelli AI. Consente di eseguire LLM open-source, modelli di embedding e modelli multimodali localmente o nel cloud per costruire potenti app AI.",
|
|
67
68
|
"zenmux.description": "ZenMux è una piattaforma unificata di aggregazione AI che supporta OpenAI, Anthropic, Google VertexAI e altri, con instradamento flessibile per gestire e cambiare modelli facilmente.",
|
|
68
69
|
"zeroone.description": "01.AI guida una rivoluzione AI 2.0 centrata sull'uomo, utilizzando LLM per creare valore economico e sociale e costruire nuovi ecosistemi e modelli di business AI.",
|
|
@@ -413,6 +413,7 @@
|
|
|
413
413
|
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70Bは、Llama-3.3-70B-Instructから蒸留されたモデルで、DeepSeek-R1シリーズの一部として、DeepSeek-R1が生成したサンプルでファインチューニングされ、数学、コーディング、推論において高い性能を発揮します。",
|
|
414
414
|
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bから蒸留され、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされ、強力な推論能力を発揮します。",
|
|
415
415
|
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bから蒸留され、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされ、数学、コーディング、推論において卓越した性能を発揮します。",
|
|
416
|
+
"devstral-2:123b.description": "Devstral 2 123B は、ツールを活用してコードベースを探索し、複数ファイルを編集し、ソフトウェアエンジニアリングエージェントを支援することに優れています。",
|
|
416
417
|
"gemini-flash-latest.description": "Gemini Flash の最新リリース",
|
|
417
418
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
|
|
418
419
|
"gemini-pro-latest.description": "Gemini Pro の最新リリース",
|
|
@@ -644,4 +645,4 @@
|
|
|
644
645
|
"zai/glm-4.5.description": "GLM-4.5シリーズはエージェント向けに設計されており、フラッグシップのGLM-4.5は推論、コーディング、エージェントスキルを統合し、355B総パラメータ(32Bアクティブ)を持つハイブリッド推論システムとしてデュアル動作モードを提供します。",
|
|
645
646
|
"zai/glm-4.5v.description": "GLM-4.5Vは、GLM-4.5-Airをベースに、実績あるGLM-4.1V-Thinking技術を継承し、強力な106BパラメータのMoEアーキテクチャでスケーリングされています。",
|
|
646
647
|
"zenmux/auto.description": "ZenMuxの自動ルーティングは、リクエストに基づいて最もコストパフォーマンスと性能に優れた対応モデルを選択します。"
|
|
647
|
-
}
|
|
648
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "ByteDanceのモデルサービスプラットフォームで、安全性が高く、機能豊富でコスト競争力のあるモデルアクセスと、データ、ファインチューニング、推論、評価のエンドツーエンドツールを提供します。",
|
|
64
64
|
"wenxin.description": "Wenxinは、基盤モデルとAIネイティブアプリ開発のための企業向けオールインワンプラットフォームで、生成AIモデルとアプリケーションのワークフローを支えるエンドツーエンドツールを提供します。",
|
|
65
65
|
"xai.description": "xAIは、科学的発見を加速し、人類の宇宙理解を深めることを使命とするAIを開発しています。",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo は、OpenAI 互換の API を備えた会話型モデルサービスを提供します。mimo-v2-flash モデルは、高度な推論、ストリーミング出力、関数呼び出し、256K のコンテキストウィンドウ、および最大 128K の出力に対応しています。",
|
|
66
67
|
"xinference.description": "Xorbits Inference(Xinference)は、AIモデルの実行と統合を簡素化するオープンソースプラットフォームで、オープンソースLLM、埋め込みモデル、マルチモーダルモデルをローカルまたはクラウドで実行し、強力なAIアプリを構築できます。",
|
|
67
68
|
"zenmux.description": "ZenMuxは、OpenAI、Anthropic、Google VertexAIなどをサポートする統合AI集約プラットフォームで、柔軟なルーティングによりモデルの切り替えと管理が容易です。",
|
|
68
69
|
"zeroone.description": "01.AIは、人間中心のAI 2.0革命を推進し、LLMを活用して経済的・社会的価値を創出し、新たなAIエコシステムとビジネスモデルを構築します。",
|
|
@@ -390,6 +390,29 @@
|
|
|
390
390
|
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think는 더욱 강력한 장기 연쇄 추론을 지원하는 완전한 심층 사고 모델입니다.",
|
|
391
391
|
"deepseek-v3.2.description": "DeepSeek-V3.2는 DeepSeek가 출시한 최초의 도구 사용에 사고를 결합한 하이브리드 추론 모델로, 효율적인 아키텍처로 연산을 절감하고, 대규모 강화 학습으로 능력을 향상시키며, 대규모 합성 작업 데이터로 일반화 성능을 강화합니다. 이 세 가지를 결합하여 GPT-5-High에 필적하는 성능을 제공하며, 출력 길이를 대폭 줄여 계산 비용과 사용자 대기 시간을 현저히 감소시켰습니다.",
|
|
392
392
|
"deepseek-v3.description": "DeepSeek-V3는 총 671B 파라미터 중 토큰당 37B가 활성화되는 강력한 MoE 모델입니다.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small은 자원이 제한되거나 동시 접속이 많은 환경을 위한 경량 멀티모달 모델입니다.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2는 이미지-텍스트 이해와 정밀한 시각적 질의응답을 위한 멀티모달 모델입니다.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3는 685B 파라미터의 MoE 모델로, DeepSeek의 대표 챗봇 시리즈의 최신 버전입니다.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)를 기반으로 하며 다양한 작업에서 우수한 성능을 발휘합니다.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3는 685B 파라미터의 MoE 모델로, DeepSeek의 대표 챗봇 시리즈의 최신 버전입니다.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)를 기반으로 하며 다양한 작업에서 우수한 성능을 발휘합니다.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1은 DeepSeek의 장문 컨텍스트 하이브리드 추론 모델로, 사고/비사고 모드 전환과 도구 통합을 지원합니다.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3는 복잡한 작업과 도구 통합을 위한 DeepSeek의 고성능 하이브리드 추론 모델입니다.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528은 공개 사용성과 심화된 추론 능력에 중점을 둔 업데이트 버전입니다.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1은 최소한의 라벨링 데이터로 추론 능력을 크게 향상시키며, 최종 답변 전 사고 과정을 출력하여 정확도를 높입니다.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B는 Llama 3.3 70B 기반의 경량화된 LLM으로, DeepSeek R1의 출력 데이터를 활용해 파인튜닝되어 대형 모델과 경쟁력 있는 성능을 보입니다.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B는 Llama-3.1-8B-Instruct 기반의 경량화된 LLM으로, DeepSeek R1의 출력 데이터를 활용해 학습되었습니다.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B는 Qwen 2.5 14B 기반의 경량화된 LLM으로, DeepSeek R1의 출력 데이터를 활용해 학습되었습니다. OpenAI o1-mini를 여러 벤치마크에서 능가하며, 밀집 모델 중 최고 성능을 기록합니다. 주요 벤치마크:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDeepSeek R1 출력 기반의 파인튜닝으로 대형 모델과 경쟁력 있는 성능을 제공합니다.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B는 Qwen 2.5 32B 기반의 경량화된 LLM으로, DeepSeek R1의 출력 데이터를 활용해 학습되었습니다. OpenAI o1-mini를 여러 벤치마크에서 능가하며, 밀집 모델 중 최고 성능을 기록합니다. 주요 벤치마크:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDeepSeek R1 출력 기반의 파인튜닝으로 대형 모델과 경쟁력 있는 성능을 제공합니다.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1은 DeepSeek-R1-0528로 업데이트되었습니다. 더 많은 연산 자원과 사후 학습 알고리즘 최적화를 통해 추론 깊이와 능력을 크게 향상시켰습니다. 수학, 프로그래밍, 일반 논리 벤치마크에서 강력한 성능을 보이며, o3 및 Gemini 2.5 Pro와 같은 선도 모델에 근접합니다.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1은 DeepSeek 팀이 공개한 최신 오픈소스 모델로, 수학, 코딩, 추론 작업에서 매우 강력한 성능을 보이며 OpenAI o1과 견줄 수 있습니다.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1은 최소한의 라벨링 데이터로 추론 능력을 크게 향상시키며, 최종 답변 전 사고 과정을 출력하여 정확도를 높입니다.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking(Reasoner)은 DeepSeek의 실험적 추론 모델로, 복잡한 추론 작업에 적합합니다.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base는 DeepSeek V3 모델의 개선 버전입니다.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "추론 능력이 향상된 빠른 범용 LLM입니다.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3는 이전 모델 대비 추론 속도에서 획기적인 발전을 이뤘습니다. 오픈소스 모델 중 1위를 기록하며, 상용 모델과도 경쟁할 수 있습니다. DeepSeek-V3는 DeepSeek-V2에서 검증된 Multi-Head Latent Attention(MLA)과 DeepSeekMoE 아키텍처를 채택했으며, 부하 균형을 위한 무손실 보조 전략과 다중 토큰 예측 학습 목표를 도입해 성능을 강화했습니다.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1은 반복성과 가독성 문제를 해결하기 위해 강화학습 기반으로 설계된 추론 모델입니다. RL 이전에는 cold-start 데이터를 활용해 추론 성능을 더욱 향상시킵니다. 수학, 코딩, 추론 작업에서 OpenAI-o1과 대등한 성능을 보이며, 정교한 학습 설계로 전반적인 결과를 개선합니다.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B는 Llama-3.3-70B-Instruct에서 경량화된 모델입니다. DeepSeek-R1 시리즈의 일환으로, DeepSeek-R1이 생성한 샘플을 기반으로 파인튜닝되어 수학, 코딩, 추론에서 강력한 성능을 보입니다.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B는 Qwen2.5-14B에서 경량화된 모델로, DeepSeek-R1이 생성한 80만 개의 정제된 샘플을 기반으로 파인튜닝되어 강력한 추론 능력을 제공합니다.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B는 Qwen2.5-32B에서 경량화된 모델로, DeepSeek-R1이 생성한 80만 개의 정제된 샘플을 기반으로 파인튜닝되어 수학, 코딩, 추론에서 뛰어난 성능을 발휘합니다.",
|
|
393
416
|
"gemini-flash-latest.description": "Gemini Flash 최신 버전",
|
|
394
417
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite 최신 버전",
|
|
395
418
|
"gemini-pro-latest.description": "Gemini Pro 최신 버전",
|
|
@@ -648,4 +671,4 @@
|
|
|
648
671
|
"zai/glm-4.5.description": "GLM-4.5 시리즈는 에이전트를 위해 설계되었습니다. 대표 모델인 GLM-4.5는 355B 총 파라미터(32B 활성)를 갖추고 있으며, 추론, 코딩, 에이전트 기능을 결합한 하이브리드 추론 시스템으로 이중 작동 모드를 제공합니다.",
|
|
649
672
|
"zai/glm-4.5v.description": "GLM-4.5V는 GLM-4.5-Air를 기반으로 하며, 검증된 GLM-4.1V-Thinking 기술을 계승하고, 106B 파라미터의 강력한 MoE 아키텍처로 확장되었습니다.",
|
|
650
673
|
"zenmux/auto.description": "ZenMux 자동 라우팅은 요청에 따라 지원되는 옵션 중 최고의 성능과 가성비를 갖춘 모델을 선택합니다."
|
|
651
|
-
}
|
|
674
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "ByteDance의 모델 서비스 플랫폼은 안전하고 기능이 풍부하며 비용 경쟁력 있는 모델 접근성과 데이터, 파인튜닝, 추론, 평가를 위한 엔드투엔드 도구를 제공합니다.",
|
|
64
64
|
"wenxin.description": "Wenxin은 생성형 AI 모델 및 애플리케이션 워크플로우를 위한 엔드투엔드 도구를 제공하는 기업용 기반 모델 및 AI 네이티브 앱 개발 통합 플랫폼입니다.",
|
|
65
65
|
"xai.description": "xAI는 과학적 발견을 가속화하고 인류의 우주에 대한 이해를 심화시키는 것을 목표로 AI를 개발합니다.",
|
|
66
|
+
"xiaomimimo.description": "샤오미 MiMo는 OpenAI 호환 API를 통해 대화형 모델 서비스를 제공합니다. mimo-v2-flash 모델은 심층 추론, 스트리밍 출력, 함수 호출, 256K 컨텍스트 윈도우, 최대 128K 출력 기능을 지원합니다.",
|
|
66
67
|
"xinference.description": "Xorbits Inference(Xinference)는 AI 모델 실행과 통합을 간소화하는 오픈소스 플랫폼으로, 오픈소스 LLM, 임베딩 모델, 멀티모달 모델을 로컬 또는 클라우드에서 실행하여 강력한 AI 앱을 구축할 수 있습니다.",
|
|
67
68
|
"zenmux.description": "ZenMux는 OpenAI, Anthropic, Google VertexAI 등을 지원하는 통합 AI 집약 플랫폼으로, 유연한 라우팅을 통해 모델을 손쉽게 전환하고 관리할 수 있습니다.",
|
|
68
69
|
"zeroone.description": "01.AI는 인간 중심의 AI 2.0 혁신을 주도하며, LLM을 통해 경제적·사회적 가치를 창출하고 새로운 AI 생태계와 비즈니스 모델을 구축합니다.",
|
|
@@ -355,6 +355,51 @@
|
|
|
355
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 is een next-gen redeneermodel met sterkere complexe redenering en chain-of-thought voor diepgaande analysetaken.",
|
|
356
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 is een next-gen redeneermodel met sterkere complexe redenering en chain-of-thought voor diepgaande analysetaken.",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 is een MoE vision-language model gebaseerd op DeepSeekMoE-27B met sparse activatie, dat sterke prestaties levert met slechts 4,5B actieve parameters. Het blinkt uit in visuele QA, OCR, document-/tabel-/grafiekbegrip en visuele verankering.",
|
|
358
|
+
"deepseek-chat.description": "Een nieuw open-source model dat algemene en codevaardigheden combineert. Het behoudt de algemene dialoogcapaciteiten van het chatmodel en de sterke codeerprestaties van het coderingsmodel, met betere voorkeurafstemming. DeepSeek-V2.5 verbetert ook schrijfvaardigheid en het opvolgen van instructies.",
|
|
359
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B is een codeertaalmodel getraind op 2 biljoen tokens (87% code, 13% Chinees/Engels tekst). Het introduceert een contextvenster van 16K en 'fill-in-the-middle'-taken, wat projectniveau codeaanvulling en fragmentinvoeging mogelijk maakt.",
|
|
360
|
+
"deepseek-coder-v2.description": "DeepSeek Coder V2 is een open-source MoE-codeermodel dat sterk presteert bij programmeertaken, vergelijkbaar met GPT-4 Turbo.",
|
|
361
|
+
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 is een open-source MoE-codeermodel dat sterk presteert bij programmeertaken, vergelijkbaar met GPT-4 Turbo.",
|
|
362
|
+
"deepseek-ocr.description": "DeepSeek-OCR is een visie-taalmodel van DeepSeek AI dat zich richt op OCR en \"contextuele optische compressie\". Het onderzoekt het comprimeren van contextuele informatie uit afbeeldingen, verwerkt documenten efficiënt en zet ze om in gestructureerde tekstformaten zoals Markdown. Het herkent nauwkeurig tekst in afbeeldingen, ideaal voor documentdigitalisatie, tekstuittrekking en gestructureerde verwerking.",
|
|
363
|
+
"deepseek-r1-0528.description": "685B volledig model uitgebracht op 2025-05-28. DeepSeek-R1 gebruikt grootschalige versterkingsleren in de post-trainingfase, wat het redeneervermogen sterk verbetert met minimale gelabelde data, en presteert uitstekend op wiskunde, programmeren en natuurlijke taalredenering.",
|
|
364
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528 is het volledige DeepSeek-R1 redeneermodel voor complexe wiskundige en logische taken.",
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B snelle editie met realtime webzoekfunctie, levert snellere reacties met behoud van prestaties.",
|
|
366
|
+
"deepseek-r1-70b-online.description": "DeepSeek R1 70B standaardeditie met realtime webzoekfunctie, geschikt voor actuele chat- en teksttaken.",
|
|
367
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combineert R1-redenering met het Llama-ecosysteem.",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B is gedistilleerd uit Llama-3.1-8B met behulp van DeepSeek R1-uitvoer.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama is gedistilleerd uit DeepSeek-R1 op Llama.",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B is een R1-distillatie gebaseerd op Qianfan-70B met hoge waarde.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B is een R1-distillatie gebaseerd op Qianfan-8B voor kleine en middelgrote toepassingen.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B is een R1-distillatie gebaseerd op Llama-70B.",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B is een ultralicht distillatiemodel voor zeer beperkte omgevingen.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B is een middelgroot distillatiemodel voor inzet in meerdere scenario's.",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B is een R1-distillatie gebaseerd op Qwen-32B, met een balans tussen prestaties en kosten.",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B is een lichtgewicht distillatiemodel voor edge- en privébedrijfstoepassingen.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen is gedistilleerd uit DeepSeek-R1 op Qwen.",
|
|
378
|
+
"deepseek-r1-fast-online.description": "DeepSeek R1 snelle volledige versie met realtime webzoekfunctie, combineert 671B-capaciteit met snellere reacties.",
|
|
379
|
+
"deepseek-r1-online.description": "DeepSeek R1 volledige versie met 671B parameters en realtime webzoekfunctie, biedt sterkere begrip- en generatiecapaciteiten.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1 gebruikt cold-start data vóór versterkingsleren en presteert vergelijkbaar met OpenAI-o1 op wiskunde, programmeren en redenering.",
|
|
381
|
+
"deepseek-reasoner.description": "DeepSeek V3.2 denkmodus genereert een gedachtegang vóór het eindantwoord om de nauwkeurigheid te verbeteren.",
|
|
382
|
+
"deepseek-v2.description": "DeepSeek V2 is een efficiënt MoE-model voor kosteneffectieve verwerking.",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B is DeepSeek’s codegerichte model met sterke codegeneratie.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 is een MoE-model met 671B parameters en uitmuntende prestaties in programmeren, technische vaardigheden, contextbegrip en verwerking van lange teksten.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus is een terminal-geoptimaliseerd LLM van DeepSeek, afgestemd op terminalapparaten.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 is het diepdenkende model dat overeenkomt met de Terminus-versie, gebouwd voor hoogwaardig redeneervermogen.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 is een nieuw hybride redeneermodel van DeepSeek, dat zowel denk- als niet-denkmodi ondersteunt en een hogere denkefficiëntie biedt dan DeepSeek-R1-0528. Optimalisaties na training verbeteren het gebruik van agenttools en de prestaties bij agenttaken aanzienlijk. Het ondersteunt een contextvenster van 128k en tot 64k outputtokens.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 is een next-gen redeneermodel met verbeterde complexe redenering en gedachtegang, geschikt voor taken die diepgaande analyse vereisen.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduceert sparse attention om de efficiëntie van training en inferentie op lange teksten te verbeteren, tegen een lagere prijs dan deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think is een volledig diepdenkend model met sterker langketen-redeneervermogen.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 is het eerste hybride redeneermodel van DeepSeek dat denken integreert met toolgebruik. Het combineert een efficiënte architectuur voor rekenbesparing, grootschalig versterkingsleren voor capaciteitsverhoging en grootschalige synthetische taakdata voor sterke generalisatie. De prestaties zijn vergelijkbaar met GPT-5-High, met aanzienlijk kortere outputlengte, wat de rekentijd en wachttijd voor gebruikers drastisch vermindert.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 is een krachtig MoE-model met in totaal 671B parameters en 37B actief per token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small is een lichtgewicht multimodaal model voor omgevingen met beperkte middelen en hoge gelijktijdigheid.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 is een multimodaal model voor beeld-tekstbegrip en fijnmazige visuele vraagbeantwoording.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 is een MoE-model met 685B parameters en de nieuwste iteratie van DeepSeek’s vlaggenschip-chatserie.\n\nHet bouwt voort op [DeepSeek V3](/deepseek/deepseek-chat-v3) en presteert sterk over verschillende taken.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 is een MoE-model met 685B parameters en de nieuwste iteratie van DeepSeek’s vlaggenschip-chatserie.\n\nHet bouwt voort op [DeepSeek V3](/deepseek/deepseek-chat-v3) en presteert sterk over verschillende taken.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 is DeepSeek’s hybride redeneermodel met lange context, dat gemengde denk-/niet-denkmodi en toolintegratie ondersteunt.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 is DeepSeek’s krachtige hybride redeneermodel voor complexe taken en toolintegratie.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 is een bijgewerkte variant gericht op open beschikbaarheid en diepere redenering.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 verbetert het redeneervermogen aanzienlijk met minimale gelabelde data en genereert een gedachtegang vóór het eindantwoord om de nauwkeurigheid te verhogen.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B is een gedistilleerd LLM gebaseerd op Llama 3.3 70B, fijngestemd met DeepSeek R1-uitvoer om concurrerende prestaties te leveren met grote frontiermodellen.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B is een gedistilleerd LLM gebaseerd op Llama-3.1-8B-Instruct, getraind met DeepSeek R1-uitvoer.",
|
|
358
403
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 is een open LLM voor ontwikkelaars, onderzoekers en bedrijven, ontworpen om hen te helpen bij het bouwen, experimenteren en verantwoord opschalen van generatieve AI-ideeën. Als onderdeel van de basis voor wereldwijde gemeenschapsinnovatie is het goed geschikt voor beperkte rekenkracht en middelen, edge-apparaten en snellere trainingstijden.",
|
|
359
404
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Sterke beeldredenering op afbeeldingen met hoge resolutie, geschikt voor toepassingen voor visueel begrip.",
|
|
360
405
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Geavanceerde beeldredenering voor toepassingen met visueel begrip en agentfunctionaliteit.",
|
|
@@ -562,4 +607,4 @@
|
|
|
562
607
|
"zai/glm-4.5.description": "De GLM-4.5-serie is ontworpen voor agents. Het vlaggenschip GLM-4.5 combineert redenering, codering en agentvaardigheden met 355B totale parameters (32B actief) en biedt dubbele werkmodi als hybride redeneersysteem.",
|
|
563
608
|
"zai/glm-4.5v.description": "GLM-4.5V is gebaseerd op GLM-4.5-Air, erft bewezen technieken van GLM-4.1V-Thinking en schaalt met een krachtige 106B-parameter MoE-architectuur.",
|
|
564
609
|
"zenmux/auto.description": "ZenMux auto-routing selecteert het best presterende en meest kostenefficiënte model uit de ondersteunde opties op basis van je aanvraag."
|
|
565
|
-
}
|
|
610
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "Het modelserviceplatform van ByteDance biedt veilige, uitgebreide en kosteneffectieve toegang tot modellen, plus end-to-end tooling voor data, fine-tuning, inferentie en evaluatie.",
|
|
64
64
|
"wenxin.description": "Een alles-in-één platform voor fundamentele modellen en AI-native appontwikkeling voor bedrijven, met end-to-end tooling voor generatieve AI-workflows.",
|
|
65
65
|
"xai.description": "xAI ontwikkelt AI om wetenschappelijke ontdekkingen te versnellen, met als missie het verdiepen van het menselijk begrip van het universum.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo biedt een conversatiemodelservice met een OpenAI-compatibele API. Het mimo-v2-flash-model ondersteunt diepgaande redenering, streamingoutput, functieaanroepen, een contextvenster van 256K en een maximale output van 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) is een open-source platform dat het uitvoeren en integreren van AI-modellen vereenvoudigt. Je kunt open-source LLM’s, embeddingmodellen en multimodale modellen lokaal of in de cloud draaien om krachtige AI-apps te bouwen.",
|
|
67
68
|
"zenmux.description": "ZenMux is een uniform AI-aggregatieplatform dat OpenAI, Anthropic, Google VertexAI en meer ondersteunt, met flexibele routering om modellen eenvoudig te wisselen en beheren.",
|
|
68
69
|
"zeroone.description": "01.AI leidt een mensgerichte AI 2.0-revolutie, waarbij LLM’s worden ingezet om economische en sociale waarde te creëren en nieuwe AI-ecosystemen en bedrijfsmodellen te bouwen.",
|
|
@@ -360,6 +360,46 @@
|
|
|
360
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 to open-source’owy model kodu MoE, który osiąga wysokie wyniki w zadaniach programistycznych, porównywalne z GPT-4 Turbo.",
|
|
361
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 to open-source’owy model kodu MoE, który osiąga wysokie wyniki w zadaniach programistycznych, porównywalne z GPT-4 Turbo.",
|
|
362
362
|
"deepseek-ocr.description": "DeepSeek-OCR to model językowo-wizualny od DeepSeek AI skoncentrowany na OCR i „optycznej kompresji kontekstowej”. Eksploruje kompresję informacji kontekstowych z obrazów, efektywnie przetwarza dokumenty i konwertuje je do ustrukturyzowanych formatów tekstowych, takich jak Markdown. Dokładnie rozpoznaje tekst na obrazach, idealny do cyfryzacji dokumentów, ekstrakcji tekstu i przetwarzania strukturalnego.",
|
|
363
|
+
"deepseek-r1-0528.description": "Model pełny 685B wydany 28.05.2025. DeepSeek-R1 wykorzystuje uczenie przez wzmocnienie (RL) na dużą skalę po etapie trenowania, znacznie poprawiając rozumowanie przy minimalnej ilości oznaczonych danych. Wyróżnia się w zadaniach matematycznych, programistycznych i językowych.",
|
|
364
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528 to pełna wersja modelu DeepSeek-R1 przeznaczona do trudnych zadań matematycznych i logicznych.",
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "Szybka edycja DeepSeek R1 70B z wyszukiwaniem w czasie rzeczywistym, zapewniająca szybsze odpowiedzi przy zachowaniu wysokiej wydajności.",
|
|
366
|
+
"deepseek-r1-70b-online.description": "Standardowa edycja DeepSeek R1 70B z wyszukiwaniem w czasie rzeczywistym, idealna do aktualnych zadań konwersacyjnych i tekstowych.",
|
|
367
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B łączy rozumowanie R1 z ekosystemem Llama.",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B to model zdestylowany z Llama-3.1-8B przy użyciu wyników DeepSeek R1.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama to model zdestylowany z DeepSeek-R1 na bazie Llama.",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B to destylacja R1 oparta na Qianfan-70B o wysokiej wartości użytkowej.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B to destylacja R1 oparta na Qianfan-8B, przeznaczona do małych i średnich aplikacji.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B to destylacja R1 oparta na Llama-70B.",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B to ultralekki model destylowany do środowisk o bardzo ograniczonych zasobach.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B to model średniej wielkości do wdrożeń w różnych scenariuszach.",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B to destylacja R1 oparta na Qwen-32B, zapewniająca równowagę między wydajnością a kosztem.",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B to lekki model destylowany do zastosowań brzegowych i środowisk korporacyjnych.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen to model zdestylowany z DeepSeek-R1 na bazie Qwen.",
|
|
378
|
+
"deepseek-r1-fast-online.description": "Szybka pełna wersja DeepSeek R1 z wyszukiwaniem w czasie rzeczywistym, łącząca możliwości modelu 671B z szybszymi odpowiedziami.",
|
|
379
|
+
"deepseek-r1-online.description": "Pełna wersja DeepSeek R1 z 671 miliardami parametrów i wyszukiwaniem w czasie rzeczywistym, oferująca lepsze rozumienie i generowanie.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1 wykorzystuje dane startowe przed RL i osiąga wyniki porównywalne z OpenAI-o1 w zadaniach matematycznych, programistycznych i logicznych.",
|
|
381
|
+
"deepseek-reasoner.description": "Tryb myślenia DeepSeek V3.2 generuje łańcuch rozumowania przed odpowiedzią końcową, poprawiając trafność wyników.",
|
|
382
|
+
"deepseek-v2.description": "DeepSeek V2 to wydajny model MoE zoptymalizowany pod kątem efektywności kosztowej.",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B to model skoncentrowany na kodzie, oferujący zaawansowane generowanie kodu.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 to model MoE z 671 miliardami parametrów, wyróżniający się w programowaniu, rozumieniu kontekstu i obsłudze długich tekstów.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus to zoptymalizowany pod terminale model LLM od DeepSeek, dostosowany do urządzeń końcowych.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 to model głębokiego rozumowania odpowiadający wersji Terminus, stworzony do zadań wymagających wysokiej wydajności rozumowania.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 to nowy hybrydowy model rozumowania od DeepSeek, obsługujący tryby myślenia i bezmyślenia, oferujący wyższą efektywność rozumowania niż DeepSeek-R1-0528. Optymalizacje po etapie trenowania znacznie poprawiają wykorzystanie narzędzi i wydajność zadań agentowych. Obsługuje okno kontekstowe 128k i do 64k tokenów wyjściowych.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 to model nowej generacji do złożonego rozumowania i łańcuchów myślowych, odpowiedni do zadań wymagających głębokiej analizy.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp wprowadza rzadką uwagę (sparse attention), poprawiając efektywność trenowania i wnioskowania na długich tekstach przy niższej cenie niż deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think to pełny model głębokiego rozumowania z silniejszymi zdolnościami do długich łańcuchów myślowych.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 to pierwszy model hybrydowego rozumowania od DeepSeek, który integruje myślenie z użyciem narzędzi. Dzięki wydajnej architekturze oszczędza moc obliczeniową, wykorzystuje RL na dużą skalę do zwiększenia możliwości oraz dane zadań syntetycznych do poprawy uogólnienia. Wydajność porównywalna z GPT-5-High, znacznie skrócony czas odpowiedzi i mniejsze zużycie zasobów.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 to potężny model MoE z 671 miliardami parametrów ogółem i 37 miliardami aktywnymi na token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small to lekka wersja multimodalna do środowisk o ograniczonych zasobach i wysokiej równoczesności.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 to model multimodalny do rozumienia obrazu i tekstu oraz precyzyjnych zadań wizualnych typu pytanie-odpowiedź.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 to model MoE z 685 miliardami parametrów i najnowsza wersja flagowej serii czatów DeepSeek.\n\nBazuje na [DeepSeek V3](/deepseek/deepseek-chat-v3) i osiąga wysokie wyniki w różnych zadaniach.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 to model MoE z 685 miliardami parametrów i najnowsza wersja flagowej serii czatów DeepSeek.\n\nBazuje na [DeepSeek V3](/deepseek/deepseek-chat-v3) i osiąga wysokie wyniki w różnych zadaniach.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 to model hybrydowego rozumowania z długim kontekstem, obsługujący tryby myślenia i bezmyślenia oraz integrację z narzędziami.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 to model hybrydowego rozumowania o wysokiej wydajności, przeznaczony do złożonych zadań i integracji z narzędziami.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 to zaktualizowana wersja skoncentrowana na otwartej dostępności i głębszym rozumowaniu.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 znacznie poprawia rozumowanie przy minimalnej ilości oznaczonych danych i generuje łańcuch rozumowania przed odpowiedzią końcową, zwiększając trafność.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B to zdestylowany model LLM oparty na Llama 3.3 70B, dostrojony przy użyciu wyników DeepSeek R1, osiągający konkurencyjne wyniki względem czołowych modeli.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B to zdestylowany model LLM oparty na Llama-3.1-8B-Instruct, trenowany przy użyciu wyników DeepSeek R1.",
|
|
363
403
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 to otwarty model językowy (LLM) stworzony z myślą o programistach, naukowcach i przedsiębiorstwach, zaprojektowany, by wspierać ich w budowaniu, eksperymentowaniu i odpowiedzialnym skalowaniu pomysłów z zakresu generatywnej sztucznej inteligencji. Jako fundament globalnej innowacji społecznościowej, doskonale sprawdza się przy ograniczonych zasobach obliczeniowych, na urządzeniach brzegowych oraz przy szybszym czasie trenowania.",
|
|
364
404
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Zaawansowane rozumowanie obrazów w wysokiej rozdzielczości, idealne do aplikacji zrozumienia wizualnego.",
|
|
365
405
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Zaawansowane rozumowanie obrazów dla aplikacji agentów opartych na zrozumieniu wizualnym.",
|
|
@@ -570,4 +610,4 @@
|
|
|
570
610
|
"zai/glm-4.5.description": "Seria GLM-4.5 została zaprojektowana z myślą o agentach. Flagowy model GLM-4.5 łączy rozumowanie, kodowanie i umiejętności agentowe, posiada 355B parametrów ogółem (32B aktywnych) i oferuje dwa tryby działania jako system hybrydowego rozumowania.",
|
|
571
611
|
"zai/glm-4.5v.description": "GLM-4.5V bazuje na GLM-4.5-Air, dziedzicząc sprawdzone techniki GLM-4.1V-Thinking i skalując się dzięki silnej architekturze MoE z 106 miliardami parametrów.",
|
|
572
612
|
"zenmux/auto.description": "Automatyczne trasowanie ZenMux wybiera najlepiej wyceniony i najbardziej wydajny model spośród obsługiwanych opcji na podstawie Twojego zapytania."
|
|
573
|
-
}
|
|
613
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "Platforma usług modelowych ByteDance oferuje bezpieczny, bogaty w funkcje i konkurencyjny cenowo dostęp do modeli oraz kompleksowe narzędzia do danych, dostrajania, inferencji i oceny.",
|
|
64
64
|
"wenxin.description": "Platforma all-in-one dla przedsiębiorstw do modeli bazowych i tworzenia aplikacji AI-native, oferująca kompleksowe narzędzia do pracy z generatywnymi modelami AI i aplikacjami.",
|
|
65
65
|
"xai.description": "xAI tworzy AI w celu przyspieszenia odkryć naukowych, z misją pogłębiania zrozumienia wszechświata przez ludzkość.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo oferuje usługę modelu konwersacyjnego z interfejsem API kompatybilnym z OpenAI. Model mimo-v2-flash obsługuje zaawansowane rozumowanie, strumieniowe generowanie odpowiedzi, wywoływanie funkcji, kontekst o rozmiarze 256K oraz maksymalną długość odpowiedzi wynoszącą 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) to open-source’owa platforma upraszczająca uruchamianie i integrację modeli AI. Umożliwia lokalne lub chmurowe uruchamianie otwartych LLM, modeli osadzania i modeli multimodalnych do tworzenia zaawansowanych aplikacji AI.",
|
|
67
68
|
"zenmux.description": "ZenMux to zunifikowana platforma agregacji AI obsługująca OpenAI, Anthropic, Google VertexAI i inne, z elastycznym routingiem umożliwiającym łatwe przełączanie i zarządzanie modelami.",
|
|
68
69
|
"zeroone.description": "01.AI napędza rewolucję AI 2.0 skoncentrowaną na człowieku, wykorzystując LLM do tworzenia wartości ekonomicznej i społecznej oraz budowania nowych ekosystemów i modeli biznesowych AI.",
|
|
@@ -382,6 +382,37 @@
|
|
|
382
382
|
"deepseek-v2.description": "O DeepSeek V2 é um modelo MoE eficiente para processamento econômico.",
|
|
383
383
|
"deepseek-v2:236b.description": "O DeepSeek V2 236B é o modelo da DeepSeek focado em código com forte geração de código.",
|
|
384
384
|
"deepseek-v3-0324.description": "O DeepSeek-V3-0324 é um modelo MoE com 671B de parâmetros, com destaque em programação, capacidade técnica, compreensão de contexto e manipulação de textos longos.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus é um modelo LLM otimizado para terminais da DeepSeek, desenvolvido especialmente para dispositivos de terminal.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 é o modelo de raciocínio profundo correspondente à versão Terminus, projetado para desempenho elevado em tarefas de raciocínio.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 é um novo modelo híbrido de raciocínio da DeepSeek, que suporta modos com e sem raciocínio, oferecendo maior eficiência de pensamento em comparação ao DeepSeek-R1-0528. Otimizações pós-treinamento melhoram significativamente o uso de ferramentas por agentes e o desempenho em tarefas. Suporta uma janela de contexto de 128k e até 64k tokens de saída.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 é um modelo de raciocínio de nova geração com melhorias em raciocínio complexo e cadeia de pensamento, ideal para tarefas que exigem análise profunda.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduz atenção esparsa para melhorar a eficiência de treinamento e inferência em textos longos, com custo inferior ao deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think é um modelo completo de raciocínio profundo com raciocínio em cadeias longas mais robusto.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 é o primeiro modelo híbrido de raciocínio da DeepSeek que integra pensamento ao uso de ferramentas. Com arquitetura eficiente para economia de recursos, aprendizado por reforço em larga escala para aumento de capacidade e dados sintéticos em grande volume para melhor generalização, seu desempenho rivaliza com o GPT-5-High. A redução significativa no comprimento da saída diminui o custo computacional e o tempo de espera do usuário.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 é um poderoso modelo MoE com 671 bilhões de parâmetros totais e 37 bilhões ativos por token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small é uma versão multimodal leve, ideal para ambientes com recursos limitados e alta concorrência.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 é um modelo multimodal para compreensão de imagem-texto e perguntas e respostas visuais detalhadas.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 é um modelo MoE com 685 bilhões de parâmetros e a mais recente iteração da série de chat principal da DeepSeek.\n\nBaseado no [DeepSeek V3](/deepseek/deepseek-chat-v3), apresenta excelente desempenho em diversas tarefas.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 é um modelo MoE com 685 bilhões de parâmetros e a mais recente iteração da série de chat principal da DeepSeek.\n\nBaseado no [DeepSeek V3](/deepseek/deepseek-chat-v3), apresenta excelente desempenho em diversas tarefas.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 é o modelo híbrido de raciocínio com longo contexto da DeepSeek, com suporte a modos mistos de pensamento/não pensamento e integração com ferramentas.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 é o modelo híbrido de raciocínio de alto desempenho da DeepSeek para tarefas complexas e integração com ferramentas.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 é uma variante atualizada com foco em disponibilidade aberta e raciocínio mais profundo.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 melhora significativamente o raciocínio com dados rotulados mínimos e gera uma cadeia de pensamento antes da resposta final para aumentar a precisão.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B é um LLM destilado baseado no Llama 3.3 70B, ajustado com saídas do DeepSeek R1 para alcançar desempenho competitivo com modelos de ponta.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B é um LLM destilado baseado no Llama-3.1-8B-Instruct, treinado com saídas do DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B é um LLM destilado baseado no Qwen 2.5 14B, treinado com saídas do DeepSeek R1. Supera o OpenAI o1-mini em vários benchmarks, alcançando resultados de ponta entre modelos densos. Destaques de benchmark:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nO ajuste fino com saídas do DeepSeek R1 oferece desempenho competitivo com modelos de ponta maiores.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B é um LLM destilado baseado no Qwen 2.5 32B, treinado com saídas do DeepSeek R1. Supera o OpenAI o1-mini em vários benchmarks, alcançando resultados de ponta entre modelos densos. Destaques de benchmark:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nO ajuste fino com saídas do DeepSeek R1 oferece desempenho competitivo com modelos de ponta maiores.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 foi atualizado para DeepSeek-R1-0528. Com mais capacidade computacional e otimizações algorítmicas pós-treinamento, melhora significativamente a profundidade e capacidade de raciocínio. Apresenta forte desempenho em benchmarks de matemática, programação e lógica geral, aproximando-se de líderes como o o3 e Gemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 é o mais recente modelo de código aberto lançado pela equipe DeepSeek, com desempenho de raciocínio muito forte, especialmente em matemática, programação e tarefas de lógica, comparável ao OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 melhora significativamente o raciocínio com dados rotulados mínimos e gera uma cadeia de pensamento antes da resposta final para aumentar a precisão.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) é o modelo experimental de raciocínio da DeepSeek, adequado para tarefas de alta complexidade.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base é uma versão aprimorada do modelo DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Um LLM rápido e de uso geral com raciocínio aprimorado.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 representa um grande avanço na velocidade de raciocínio em relação aos modelos anteriores. Classifica-se em primeiro lugar entre os modelos de código aberto e rivaliza com os modelos fechados mais avançados. Adota Multi-Head Latent Attention (MLA) e a arquitetura DeepSeekMoE, ambas validadas no DeepSeek-V2. Também introduz uma estratégia auxiliar sem perdas para balanceamento de carga e um objetivo de treinamento com previsão de múltiplos tokens para desempenho superior.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 é um modelo de raciocínio orientado por aprendizado por reforço que resolve problemas de repetição e legibilidade. Antes do RL, utiliza dados de início a frio para melhorar ainda mais o desempenho de raciocínio. Alcança desempenho comparável ao OpenAI-o1 em tarefas de matemática, programação e raciocínio, com treinamento cuidadosamente projetado para melhorar os resultados gerais.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B é destilado do Llama-3.3-70B-Instruct. Como parte da série DeepSeek-R1, é ajustado com amostras geradas pelo DeepSeek-R1 e apresenta forte desempenho em matemática, programação e raciocínio.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B é destilado do Qwen2.5-14B e ajustado com 800 mil amostras selecionadas geradas pelo DeepSeek-R1, oferecendo raciocínio robusto.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B é destilado do Qwen2.5-32B e ajustado com 800 mil amostras selecionadas geradas pelo DeepSeek-R1, destacando-se em matemática, programação e raciocínio.",
|
|
385
416
|
"meta.llama3-8b-instruct-v1:0.description": "O Meta Llama 3 é um modelo de linguagem aberto para desenvolvedores, pesquisadores e empresas, projetado para ajudá-los a construir, experimentar e escalar ideias de IA generativa de forma responsável. Como parte da base para a inovação da comunidade global, é ideal para ambientes com recursos computacionais limitados, dispositivos de borda e tempos de treinamento mais rápidos.",
|
|
386
417
|
"mistral-large-latest.description": "Mistral Large é o modelo principal, com excelente desempenho em tarefas multilíngues, raciocínio complexo e geração de código — ideal para aplicações de alto nível.",
|
|
387
418
|
"mistral-large.description": "Mixtral Large é o modelo principal da Mistral, combinando geração de código, matemática e raciocínio com uma janela de contexto de 128K.",
|
|
@@ -569,4 +600,4 @@
|
|
|
569
600
|
"zai/glm-4.5.description": "A série GLM-4.5 foi projetada para agentes. O modelo principal GLM-4.5 combina raciocínio, codificação e habilidades de agente com 355B de parâmetros totais (32B ativos) e oferece modos de operação duplos como um sistema de raciocínio híbrido.",
|
|
570
601
|
"zai/glm-4.5v.description": "GLM-4.5V é baseado no GLM-4.5-Air, herdando técnicas comprovadas do GLM-4.1V-Thinking e escalando com uma robusta arquitetura MoE de 106B parâmetros.",
|
|
571
602
|
"zenmux/auto.description": "O roteamento automático do ZenMux seleciona o modelo com melhor desempenho e custo-benefício entre as opções suportadas, com base na sua solicitação."
|
|
572
|
-
}
|
|
603
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "A plataforma de serviços de modelos da ByteDance oferece acesso seguro, completo e competitivo a modelos, além de ferramentas de ponta a ponta para dados, ajuste fino, inferência e avaliação.",
|
|
64
64
|
"wenxin.description": "Uma plataforma empresarial tudo-em-um para modelos fundamentais e desenvolvimento de aplicativos nativos de IA, oferecendo ferramentas completas para fluxos de trabalho de modelos e aplicativos generativos.",
|
|
65
65
|
"xai.description": "A xAI desenvolve IA para acelerar descobertas científicas, com a missão de aprofundar a compreensão humana do universo.",
|
|
66
|
+
"xiaomimimo.description": "O Xiaomi MiMo oferece um serviço de modelo conversacional com uma API compatível com o OpenAI. O modelo mimo-v2-flash suporta raciocínio profundo, saída em tempo real, chamadas de função, uma janela de contexto de 256K e uma saída máxima de 128K.",
|
|
66
67
|
"xinference.description": "O Xorbits Inference (Xinference) é uma plataforma open-source que simplifica a execução e integração de modelos de IA. Permite executar LLMs, modelos de embedding e modelos multimodais localmente ou na nuvem para construir aplicativos de IA poderosos.",
|
|
67
68
|
"zenmux.description": "O ZenMux é uma plataforma unificada de agregação de IA que suporta OpenAI, Anthropic, Google VertexAI e outros, com roteamento flexível para alternar e gerenciar modelos com facilidade.",
|
|
68
69
|
"zeroone.description": "A 01.AI lidera uma revolução de IA 2.0 centrada no ser humano, usando LLMs para criar valor econômico e social e construir novos ecossistemas e modelos de negócios com IA.",
|
|
@@ -104,7 +104,6 @@
|
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 — новейшая и самая мощная версия Kimi K2. Это передовая модель MoE с общим числом параметров 1 трлн и 32 млрд активных. Ключевые особенности включают усиленный агентный интеллект в программировании с заметным улучшением результатов на тестах и в реальных задачах, а также улучшенную эстетику и удобство интерфейсного кода.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo — это ускоренный вариант, оптимизированный для скорости рассуждений и пропускной способности, при сохранении многошагового мышления и использования инструментов K2 Thinking. Это модель MoE с ~1 трлн параметров, нативной поддержкой контекста 256K и стабильным вызовом инструментов в масштабных производственных сценариях с жёсткими требованиями к задержке и параллельности.",
|
|
106
106
|
"Pro/zai-org/glm-4.7.description": "GLM-4.7 — это флагманская модель нового поколения от Zhipu AI с общим числом параметров 355 миллиардов и 32 миллиардами активных параметров. Она представляет собой всестороннее обновление в области универсального диалога, рассуждений и возможностей интеллектуальных агентов. GLM-4.7 усиливает Interleaved Thinking (перекрёстное мышление), а также вводит концепции Preserved Thinking (сохранённое мышление) и Turn-level Thinking (пошаговое мышление).",
|
|
107
|
-
"Pro/zai-org/glm-4.7.description": "GLM-4.7 — это флагманская модель нового поколения от Zhipu AI с общим числом параметров 355 миллиардов и 32 миллиардами активных параметров. Она представляет собой всестороннее обновление в области универсального диалога, рассуждений и возможностей интеллектуальных агентов. GLM-4.7 усиливает Interleaved Thinking (перекрёстное мышление), а также вводит концепции Preserved Thinking (сохранённое мышление) и Turn-level Thinking (пошаговое мышление).",
|
|
108
107
|
"QwQ-32B-Preview.description": "Qwen QwQ — это экспериментальная исследовательская модель, направленная на улучшение логического мышления.",
|
|
109
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview — исследовательская модель от Qwen, ориентированная на визуальное мышление, с сильными сторонами в понимании сложных сцен и решении визуальных математических задач.",
|
|
110
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ — экспериментальная исследовательская модель, сосредоточенная на улучшении логического мышления ИИ.",
|
|
@@ -361,6 +360,59 @@
|
|
|
361
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
|
|
362
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
|
|
363
362
|
"deepseek-ocr.description": "DeepSeek-OCR — визуально-языковая модель от DeepSeek AI, ориентированная на OCR и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированные текстовые форматы, такие как Markdown. Точно распознаёт текст на изображениях, идеально подходит для оцифровки документов, извлечения текста и структурированной обработки.",
|
|
363
|
+
"deepseek-r1-0528.description": "Полная модель 685B выпущена 28.05.2025. DeepSeek-R1 использует масштабное обучение с подкреплением на этапе постобучения, значительно улучшая логическое мышление при минимуме размеченных данных. Демонстрирует высокие результаты в математике, программировании и языковом рассуждении.",
|
|
364
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528 — это полная модель логического вывода DeepSeek-R1, предназначенная для сложных математических и логических задач.",
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "Быстрая версия DeepSeek R1 70B с поддержкой поиска в интернете в реальном времени, обеспечивающая быстрые ответы при сохранении высокой производительности.",
|
|
366
|
+
"deepseek-r1-70b-online.description": "Стандартная версия DeepSeek R1 70B с поиском в интернете в реальном времени, подходящая для актуальных диалогов и текстовых задач.",
|
|
367
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B сочетает логическое мышление R1 с экосистемой Llama.",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B — дистиллированная модель на основе Llama-3.1-8B, обученная на выходных данных DeepSeek R1.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama — дистиллированная модель DeepSeek-R1 на базе Llama.",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B — дистиллированная модель R1 на основе Qianfan-70B с высокой ценностью.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B — дистиллированная модель R1 на базе Qianfan-8B, предназначенная для малых и средних приложений.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B — дистиллированная модель R1 на основе Llama-70B.",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B — сверхлёгкая дистиллированная модель для сред с ограниченными ресурсами.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B — дистиллированная модель среднего размера для многосценарного применения.",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B — дистиллированная модель R1 на базе Qwen-32B, обеспечивающая баланс между производительностью и стоимостью.",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B — лёгкая дистиллированная модель для периферийных и корпоративных сред.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen — дистиллированная модель DeepSeek-R1 на базе Qwen.",
|
|
378
|
+
"deepseek-r1-fast-online.description": "Быстрая полная версия DeepSeek R1 с поиском в интернете в реальном времени, объединяющая возможности масштаба 671B и ускоренный отклик.",
|
|
379
|
+
"deepseek-r1-online.description": "Полная версия DeepSeek R1 с 671B параметрами и поиском в интернете в реальном времени, обеспечивающая улучшенное понимание и генерацию.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1 использует данные холодного старта до этапа RL и демонстрирует сопоставимую с OpenAI-o1 производительность в математике, программировании и логическом мышлении.",
|
|
381
|
+
"deepseek-reasoner.description": "Режим мышления DeepSeek V3.2 выводит цепочку рассуждений перед финальным ответом для повышения точности.",
|
|
382
|
+
"deepseek-v2.description": "DeepSeek V2 — эффективная модель MoE для экономичной обработки.",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B — модель DeepSeek, ориентированная на программирование, с высокой способностью к генерации кода.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 — модель MoE с 671B параметрами, выделяющаяся в программировании, технических задачах, понимании контекста и работе с длинными текстами.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus — оптимизированная для терминальных устройств LLM от DeepSeek.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 — модель глубокого мышления, соответствующая версии Terminus, созданная для высокоэффективного логического вывода.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 — гибридная модель логического вывода нового поколения от DeepSeek, поддерживающая режимы с мышлением и без, с более высокой эффективностью мышления по сравнению с DeepSeek-R1-0528. Оптимизации после обучения значительно улучшают использование инструментов агентами и выполнение задач. Поддерживает окно контекста 128k и до 64k выходных токенов.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 — модель логического вывода следующего поколения с улучшенным сложным мышлением и цепочкой рассуждений, подходящая для задач, требующих глубокого анализа.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp внедряет разреженное внимание для повышения эффективности обучения и вывода на длинных текстах по более низкой цене, чем deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think — полноценная модель глубокого мышления с усиленным длинноцепочечным рассуждением.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 — первая гибридная модель логического вывода от DeepSeek, объединяющая мышление с использованием инструментов. Эффективная архитектура снижает потребление ресурсов, масштабное обучение с подкреплением повышает способности, а синтетические данные задач улучшают обобщение. В совокупности модель достигает производительности, сопоставимой с GPT-5-High, при значительно меньших вычислительных затратах и времени ожидания пользователя.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 — мощная модель MoE с 671B общих параметров и 37B активных на токен.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small — лёгкая мультимодальная модель для сред с ограниченными ресурсами и высокой нагрузкой.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 — мультимодальная модель для понимания изображений и текста и точного визуального вопросо-ответа.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 — модель MoE с 685B параметрами и последняя итерация флагманской серии чатов DeepSeek.\n\nОснована на [DeepSeek V3](/deepseek/deepseek-chat-v3) и демонстрирует высокую производительность в различных задачах.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 — модель MoE с 685B параметрами и последняя итерация флагманской серии чатов DeepSeek.\n\nОснована на [DeepSeek V3](/deepseek/deepseek-chat-v3) и демонстрирует высокую производительность в различных задачах.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 — гибридная модель логического вывода с длинным контекстом от DeepSeek, поддерживающая смешанные режимы мышления/без мышления и интеграцию инструментов.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 — высокопроизводительная гибридная модель логического вывода от DeepSeek для сложных задач и интеграции инструментов.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 — обновлённый вариант, ориентированный на открытую доступность и более глубокое логическое мышление.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 значительно улучшает логическое мышление при минимуме размеченных данных и выводит цепочку рассуждений перед финальным ответом для повышения точности.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B — дистиллированная LLM на основе Llama 3.3 70B, дообученная на выходных данных DeepSeek R1 для достижения конкурентной производительности с передовыми моделями.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B — дистиллированная LLM на основе Llama-3.1-8B-Instruct, обученная на выходных данных DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B — дистиллированная LLM на основе Qwen 2.5 14B, обученная на выходных данных DeepSeek R1. Превосходит OpenAI o1-mini по нескольким бенчмаркам, достигая передовых результатов среди плотных моделей. Основные показатели:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nРейтинг CodeForces: 1481\nДообучение на выходных данных DeepSeek R1 обеспечивает конкурентную производительность с более крупными моделями.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B — дистиллированная LLM на основе Qwen 2.5 32B, обученная на выходных данных DeepSeek R1. Превосходит OpenAI o1-mini по нескольким бенчмаркам, достигая передовых результатов среди плотных моделей. Основные показатели:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nРейтинг CodeForces: 1691\nДообучение на выходных данных DeepSeek R1 обеспечивает конкурентную производительность с более крупными моделями.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 обновлён до версии DeepSeek-R1-0528. Благодаря увеличенным вычислениям и алгоритмическим оптимизациям после обучения, модель значительно улучшает глубину и качество логического мышления. Демонстрирует высокие результаты в математике, программировании и логике, приближаясь к лидерам, таким как o3 и Gemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 — последняя открытая модель от команды DeepSeek с очень высокой производительностью в логическом мышлении, особенно в математике, программировании и рассуждении, сопоставимая с OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 значительно улучшает логическое мышление при минимуме размеченных данных и выводит цепочку рассуждений перед финальным ответом для повышения точности.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) — экспериментальная модель логического мышления от DeepSeek, подходящая для задач высокой сложности.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base — улучшенная версия модели DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Быстрая универсальная LLM с улучшенным логическим мышлением.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 обеспечивает значительный прорыв в скорости логического мышления по сравнению с предыдущими моделями. Занимает первое место среди открытых моделей и соперничает с самыми продвинутыми закрытыми решениями. DeepSeek-V3 использует Multi-Head Latent Attention (MLA) и архитектуру DeepSeekMoE, проверенные в DeepSeek-V2. Также внедрена вспомогательная стратегия без потерь для балансировки нагрузки и цель многотокенного предсказания для повышения производительности.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 — модель логического мышления, основанная на обучении с подкреплением, решающая проблемы повторов и читаемости. До этапа RL использует данные холодного старта для повышения качества рассуждений. Сопоставима с OpenAI-o1 в задачах по математике, программированию и логике, с тщательно продуманным обучением для улучшения общих результатов.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B — дистиллированная модель на основе Llama-3.3-70B-Instruct. Является частью серии DeepSeek-R1, дообучена на выборках, сгенерированных DeepSeek-R1, и демонстрирует высокие результаты в математике, программировании и логике.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B — дистиллированная модель на основе Qwen2.5-14B, дообученная на 800K отобранных выборках, сгенерированных DeepSeek-R1, обеспечивая высокое качество логического мышления.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B — дистиллированная модель на основе Qwen2.5-32B, дообученная на 800K отобранных выборках, сгенерированных DeepSeek-R1, превосходящая в математике, программировании и логике.",
|
|
364
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 — это открытая LLM для разработчиков, исследователей и предприятий, созданная для поддержки создания, экспериментов и ответственного масштабирования идей генеративного ИИ. Являясь частью основы для глобальных инноваций сообщества, она хорошо подходит для ограниченных вычислительных ресурсов, устройств на периферии и ускоренного обучения.",
|
|
365
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Модель с высокой способностью к визуальному рассуждению на изображениях высокого разрешения, подходящая для приложений визуального понимания.",
|
|
366
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Продвинутая модель визуального рассуждения для агентов, ориентированных на визуальное понимание.",
|
|
@@ -596,4 +648,4 @@
|
|
|
596
648
|
"zai/glm-4.5.description": "Серия GLM-4.5 разработана для агентов. Флагманская модель GLM-4.5 сочетает рассуждение, программирование и агентные навыки с 355B параметров (32B активно) и предлагает два режима работы как гибридная система рассуждения.",
|
|
597
649
|
"zai/glm-4.5v.description": "GLM-4.5V построена на базе GLM-4.5-Air, унаследовав проверенные техники GLM-4.1V-Thinking и масштабируясь с мощной архитектурой MoE на 106B параметров.",
|
|
598
650
|
"zenmux/auto.description": "ZenMux auto-routing автоматически выбирает наиболее выгодную и производительную модель из поддерживаемых вариантов на основе вашего запроса."
|
|
599
|
-
}
|
|
651
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "Платформа моделей от ByteDance предлагает безопасный, функционально насыщенный и экономически эффективный доступ к моделям, а также инструменты для работы с данными, дообучения, инференса и оценки.",
|
|
64
64
|
"wenxin.description": "Универсальная корпоративная платформа для базовых моделей и разработки ИИ-приложений, предлагающая сквозные инструменты для генеративных моделей и рабочих процессов.",
|
|
65
65
|
"xai.description": "xAI разрабатывает ИИ для ускорения научных открытий, стремясь углубить понимание Вселенной человечеством.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo предоставляет сервис разговорной модели с API, совместимым с OpenAI. Модель mimo-v2-flash поддерживает глубокое рассуждение, потоковую передачу ответов, вызов функций, контекстное окно объёмом 256K и максимальный вывод до 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) — это open-source платформа, упрощающая запуск и интеграцию ИИ-моделей. Позволяет запускать open-source LLM, модели эмбеддингов и мультимодальные модели локально или в облаке для создания мощных ИИ-приложений.",
|
|
67
68
|
"zenmux.description": "ZenMux — это единая платформа агрегации ИИ, поддерживающая OpenAI, Anthropic, Google VertexAI и другие, с гибкой маршрутизацией для легкого переключения и управления моделями.",
|
|
68
69
|
"zeroone.description": "01.AI ведет революцию ИИ 2.0, ориентированную на человека, используя LLM для создания экономической и социальной ценности, а также новых экосистем и бизнес-моделей.",
|
|
@@ -382,6 +382,37 @@
|
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2, maliyet etkin işlem için verimli bir MoE modelidir.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B, güçlü kod üretimi sunan DeepSeek’in kod odaklı modelidir.",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324, programlama ve teknik yetenek, bağlam anlama ve uzun metin işleme konularında öne çıkan 671B parametreli bir MoE modelidir.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus, terminal cihazlar için optimize edilmiş bir LLM'dir ve DeepSeek tarafından geliştirilmiştir.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821, Terminus sürümüne karşılık gelen derin düşünme modelidir ve yüksek performanslı akıl yürütme için tasarlanmıştır.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1, düşünme ve düşünmeme modlarını destekleyen yeni bir hibrit akıl yürütme modelidir. DeepSeek-R1-0528'e kıyasla daha yüksek düşünme verimliliği sunar. Eğitim sonrası optimizasyonlar, araç kullanımı ve görev performansını büyük ölçüde artırır. 128k bağlam penceresi ve 64k'ya kadar çıktı token'ı desteği sunar.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciri yetenekleri geliştirilmiş yeni nesil bir akıl yürütme modelidir. Derin analiz gerektiren görevler için uygundur.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp, uzun metinlerde eğitim ve çıkarım verimliliğini artırmak için seyrek dikkat mekanizması sunar ve deepseek-v3.1'e göre daha uygun fiyatlıdır.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think, daha güçlü uzun zincirli akıl yürütme yeteneklerine sahip tam kapsamlı bir derin düşünme modelidir.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2, DeepSeek tarafından geliştirilen ilk düşünmeyi araç kullanımına entegre eden hibrit akıl yürütme modelidir. Verimli mimarisiyle hesaplama maliyetini azaltır, büyük ölçekli pekiştirmeli öğrenmeyle yeteneklerini geliştirir ve geniş çaplı sentetik görev verisiyle genelleme gücünü artırır. Bu üç unsurun birleşimiyle GPT-5-High seviyesinde performans sunar. Çıktı uzunluğu önemli ölçüde azaltılmıştır, bu da hesaplama yükünü ve kullanıcı bekleme süresini düşürür.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3, toplamda 671 milyar parametreye ve token başına 37 milyar aktif parametreye sahip güçlü bir MoE modelidir.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small, kaynak kısıtlı ve yüksek eşzamanlı kullanım senaryoları için hafif bir çok modlu modeldir.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2, görsel-sözel anlama ve ayrıntılı görsel soru-cevap için geliştirilmiş çok modlu bir modeldir.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3, 685 milyar parametreli bir MoE modelidir ve DeepSeek’in amiral gemisi sohbet serisinin en son sürümüdür.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3) üzerine inşa edilmiştir ve çeşitli görevlerde güçlü performans sergiler.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3, 685 milyar parametreli bir MoE modelidir ve DeepSeek’in amiral gemisi sohbet serisinin en son sürümüdür.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3) üzerine inşa edilmiştir ve çeşitli görevlerde güçlü performans sergiler.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1, DeepSeek’in uzun bağlam destekli hibrit akıl yürütme modelidir. Düşünme/düşünmeme modlarını ve araç entegrasyonunu destekler.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3, karmaşık görevler ve araç entegrasyonu için optimize edilmiş yüksek performanslı hibrit akıl yürütme modelidir.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528, açık erişim ve daha derin akıl yürütmeye odaklanan güncellenmiş bir varyanttır.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1, etiketli veri ihtiyacını en aza indirerek akıl yürütme yeteneğini büyük ölçüde geliştirir ve nihai cevaptan önce düşünce zinciri sunarak doğruluğu artırır.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B, Llama 3.3 70B tabanlı damıtılmış bir LLM'dir. DeepSeek R1 çıktılarıyla ince ayar yapılarak büyük öncü modellerle rekabetçi performans elde edilmiştir.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B, Llama-3.1-8B-Instruct tabanlı damıtılmış bir LLM'dir ve DeepSeek R1 çıktılarıyla eğitilmiştir.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B, Qwen 2.5 14B tabanlı damıtılmış bir LLM'dir ve DeepSeek R1 çıktılarıyla eğitilmiştir. OpenAI o1-mini'yi birçok ölçütte geride bırakır ve yoğun modeller arasında SOTA sonuçlar elde eder. Öne çıkan ölçütler:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Puanı: 1481\nDeepSeek R1 çıktılarıyla yapılan ince ayar, büyük öncü modellerle rekabetçi performans sağlar.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B, Qwen 2.5 32B tabanlı damıtılmış bir LLM'dir ve DeepSeek R1 çıktılarıyla eğitilmiştir. OpenAI o1-mini'yi birçok ölçütte geride bırakır ve yoğun modeller arasında SOTA sonuçlar elde eder. Öne çıkan ölçütler:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Puanı: 1691\nDeepSeek R1 çıktılarıyla yapılan ince ayar, büyük öncü modellerle rekabetçi performans sağlar.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1, DeepSeek-R1-0528 olarak güncellenmiştir. Daha fazla hesaplama gücü ve eğitim sonrası algoritmik iyileştirmelerle akıl yürütme derinliği ve yeteneği önemli ölçüde artırılmıştır. Matematik, programlama ve genel mantık ölçütlerinde güçlü performans sergiler ve o3 ile Gemini 2.5 Pro gibi lider modellere yaklaşır.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1, DeepSeek ekibi tarafından yayımlanan en son açık kaynak modelidir. Özellikle matematik, kodlama ve akıl yürütme görevlerinde çok güçlü performans sunar ve OpenAI o1 ile karşılaştırılabilir düzeydedir.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1, etiketli veri ihtiyacını en aza indirerek akıl yürütme yeteneğini büyük ölçüde geliştirir ve nihai cevaptan önce düşünce zinciri sunarak doğruluğu artırır.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner), DeepSeek’in deneysel akıl yürütme modelidir ve yüksek karmaşıklıktaki akıl yürütme görevleri için uygundur.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base, DeepSeek V3 modelinin geliştirilmiş bir sürümüdür.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Geliştirilmiş akıl yürütme yeteneklerine sahip hızlı, genel amaçlı bir LLM'dir.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3, önceki modellere kıyasla akıl yürütme hızında büyük bir atılım sunar. Açık kaynak modeller arasında birinci sırada yer alır ve en gelişmiş kapalı modellerle rekabet eder. DeepSeek-V3, DeepSeek-V2'de tamamen doğrulanan Çok Başlı Gizli Dikkat (MLA) ve DeepSeekMoE mimarisini benimser. Ayrıca yük dengeleme için kayıpsız yardımcı strateji ve daha güçlü performans için çoklu token tahmin eğitim hedefi sunar.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1, tekrar ve okunabilirlik sorunlarını ele alan pekiştirmeli öğrenme odaklı bir akıl yürütme modelidir. RL öncesinde, soğuk başlangıç verileriyle akıl yürütme performansı daha da artırılır. Matematik, kodlama ve akıl yürütme görevlerinde OpenAI-o1 ile eşleşir ve dikkatle tasarlanmış eğitim süreci genel sonuçları iyileştirir.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B, Llama-3.3-70B-Instruct'tan damıtılmıştır. DeepSeek-R1 serisinin bir parçası olarak, DeepSeek-R1 tarafından üretilen örneklerle ince ayar yapılmıştır ve matematik, kodlama ve akıl yürütme alanlarında güçlü performans sunar.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B, Qwen2.5-14B'den damıtılmıştır ve DeepSeek-R1 tarafından üretilen 800K seçilmiş örnekle ince ayar yapılmıştır. Güçlü akıl yürütme yetenekleri sunar.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B, Qwen2.5-32B'den damıtılmıştır ve DeepSeek-R1 tarafından üretilen 800K seçilmiş örnekle ince ayar yapılmıştır. Matematik, kodlama ve akıl yürütme alanlarında üstün performans gösterir.",
|
|
385
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3, geliştiriciler, araştırmacılar ve işletmeler için açık bir büyük dil modeli (LLM) olup, üretken yapay zeka fikirlerini oluşturma, deneme ve sorumlu bir şekilde ölçeklendirme süreçlerinde yardımcı olmak üzere tasarlanmıştır. Küresel topluluk inovasyonunun temel taşlarından biri olarak, sınırlı bilgi işlem gücü ve kaynaklara sahip ortamlar, uç cihazlar ve daha hızlı eğitim süreleri için uygundur.",
|
|
386
417
|
"mistral-small-latest.description": "Mistral Small, çeviri, özetleme ve duygu analizi için uygun maliyetli, hızlı ve güvenilir bir seçenektir.",
|
|
387
418
|
"mistral-small.description": "Mistral Small, yüksek verimlilik ve düşük gecikme gerektiren her türlü dil tabanlı görev için uygundur.",
|
|
@@ -586,4 +617,4 @@
|
|
|
586
617
|
"whisper-1.description": "Çok dilli ASR, konuşma çevirisi ve dil tanıma destekleyen genel bir konuşma tanıma modelidir.",
|
|
587
618
|
"wizardlm2.description": "WizardLM 2, Microsoft AI tarafından geliştirilen, karmaşık diyalog, çok dilli görevler, akıl yürütme ve asistanlarda üstün performans gösteren bir dil modelidir.",
|
|
588
619
|
"wizardlm2:8x22b.description": "WizardLM 2, Microsoft AI tarafından geliştirilen, karmaşık diyalog, çok dilli görevler, akıl yürütme ve asistanlarda üstün performans gösteren bir dil modelidir."
|
|
589
|
-
}
|
|
620
|
+
}
|