@lobehub/lobehub 2.0.0-next.211 → 2.0.0-next.213
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.github/workflows/auto-i18n.yml +1 -1
- package/.github/workflows/bundle-analyzer.yml +1 -1
- package/.github/workflows/claude-auto-testing.yml +1 -1
- package/.github/workflows/claude-dedupe-issues.yml +1 -1
- package/.github/workflows/claude-issue-triage.yml +1 -1
- package/.github/workflows/claude-translate-comments.yml +1 -1
- package/.github/workflows/claude-translator.yml +1 -1
- package/.github/workflows/claude.yml +1 -1
- package/.github/workflows/desktop-build-electron.yml +2 -2
- package/.github/workflows/e2e.yml +1 -1
- package/.github/workflows/issue-auto-close-duplicates.yml +1 -1
- package/.github/workflows/lighthouse.yml +2 -2
- package/.github/workflows/lock-closed-issues.yml +1 -1
- package/.github/workflows/manual-build-desktop.yml +6 -6
- package/.github/workflows/pr-build-desktop.yml +5 -5
- package/.github/workflows/pr-build-docker.yml +2 -2
- package/.github/workflows/release-desktop-beta.yml +4 -4
- package/.github/workflows/release-docker.yml +2 -2
- package/.github/workflows/release.yml +1 -1
- package/.github/workflows/sync-database-schema.yml +1 -1
- package/.github/workflows/sync.yml +1 -1
- package/.github/workflows/test.yml +5 -5
- package/.github/workflows/verify-desktop-patch.yml +1 -1
- package/CHANGELOG.md +58 -0
- package/changelog/v1.json +14 -0
- package/locales/ar/models.json +35 -4
- package/locales/ar/providers.json +1 -0
- package/locales/bg-BG/models.json +24 -1
- package/locales/bg-BG/providers.json +1 -0
- package/locales/de-DE/models.json +30 -1
- package/locales/de-DE/providers.json +1 -0
- package/locales/en-US/models.json +1 -0
- package/locales/en-US/providers.json +1 -0
- package/locales/es-ES/models.json +32 -1
- package/locales/es-ES/providers.json +1 -0
- package/locales/fa-IR/models.json +48 -1
- package/locales/fa-IR/providers.json +1 -0
- package/locales/fr-FR/models.json +47 -1
- package/locales/fr-FR/providers.json +1 -0
- package/locales/it-IT/models.json +32 -1
- package/locales/it-IT/providers.json +1 -0
- package/locales/ja-JP/models.json +2 -1
- package/locales/ja-JP/providers.json +1 -0
- package/locales/ko-KR/models.json +24 -1
- package/locales/ko-KR/providers.json +1 -0
- package/locales/nl-NL/models.json +46 -1
- package/locales/nl-NL/providers.json +1 -0
- package/locales/pl-PL/models.json +41 -1
- package/locales/pl-PL/providers.json +1 -0
- package/locales/pt-BR/models.json +32 -1
- package/locales/pt-BR/providers.json +1 -0
- package/locales/ru-RU/models.json +54 -2
- package/locales/ru-RU/providers.json +1 -0
- package/locales/tr-TR/models.json +32 -1
- package/locales/tr-TR/providers.json +1 -0
- package/locales/vi-VN/models.json +37 -1
- package/locales/vi-VN/providers.json +1 -0
- package/locales/zh-CN/models.json +24 -3
- package/locales/zh-CN/providers.json +1 -0
- package/locales/zh-TW/models.json +11 -1
- package/locales/zh-TW/providers.json +1 -0
- package/package.json +1 -1
- package/packages/context-engine/src/engine/messages/types.ts +1 -1
- package/packages/model-runtime/src/core/BaseAI.ts +1 -1
- package/packages/model-runtime/src/core/streams/qwen.test.ts +140 -0
- package/packages/model-runtime/src/core/streams/qwen.ts +17 -5
- package/packages/model-runtime/src/types/chat.ts +12 -12
- package/packages/model-runtime/src/types/error.ts +1 -1
- package/packages/model-runtime/src/types/image.ts +1 -1
- package/src/app/(backend)/f/[id]/route.ts +2 -2
- package/src/app/[variants]/(main)/chat/features/Conversation/Header/index.tsx +2 -1
- package/src/app/[variants]/(main)/resource/library/_layout/Header/LibraryHead.tsx +28 -18
- package/src/features/ResourceManager/components/Explorer/ListView/index.tsx +68 -3
- package/src/features/ResourceManager/components/Explorer/MasonryView/MasonryFileItem/MasonryItemWrapper.tsx +0 -2
- package/src/features/ResourceManager/components/Explorer/MasonryView/index.tsx +114 -86
- package/src/features/ResourceManager/components/Explorer/ToolBar/BatchActionsDropdown.tsx +72 -32
- package/src/features/ResourceManager/components/Explorer/index.tsx +1 -14
- package/src/libs/better-auth/define-config.ts +1 -4
- package/src/libs/redis/upstash.ts +4 -1
- package/src/server/services/comfyui/config/constants.ts +7 -7
- package/src/server/services/comfyui/config/promptToolConst.ts +26 -26
- package/src/server/services/comfyui/utils/promptSplitter.ts +23 -23
- package/src/server/services/comfyui/utils/weightDType.ts +4 -5
|
@@ -355,6 +355,7 @@
|
|
|
355
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 е модел за разсъждение от ново поколение с по-силни способности за сложни разсъждения и верига от мисли за задълбочени аналитични задачи.",
|
|
356
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 е модел за разсъждение от ново поколение с по-силни способности за сложни разсъждения и верига от мисли за задълбочени аналитични задачи.",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 е MoE модел за визия и език, базиран на DeepSeekMoE-27B със слаба активация, постигайки висока производителност с едва 4.5 милиарда активни параметъра. Отличава се в визуални въпроси и отговори, OCR, разбиране на документи/таблици/графики и визуално привързване.",
|
|
358
|
+
"deepseek-chat.description": "Нов модел с отворен код, съчетаващ общи и програмни способности. Съхранява общия диалогов капацитет на чат модела и силните програмни умения на кодиращия модел, с по-добро съответствие на предпочитанията. DeepSeek-V2.5 също така подобрява писането и следването на инструкции.",
|
|
358
359
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B е езиков модел за програмиране, обучен върху 2 трилиона токени (87% код, 13% китайски/английски текст). Въвежда 16K контекстен прозорец и задачи за попълване в средата, осигурявайки допълване на код на ниво проект и попълване на фрагменти.",
|
|
359
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 е отворен MoE модел за програмиране, който се представя на ниво GPT-4 Turbo.",
|
|
360
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 е отворен MoE модел за програмиране, който се представя на ниво GPT-4 Turbo.",
|
|
@@ -377,6 +378,7 @@
|
|
|
377
378
|
"deepseek-r1-fast-online.description": "Пълна бърза версия на DeepSeek R1 с търсене в реално време в уеб, комбинираща възможности от мащаб 671B и по-бърз отговор.",
|
|
378
379
|
"deepseek-r1-online.description": "Пълна версия на DeepSeek R1 с 671 милиарда параметъра и търсене в реално време в уеб, предлагаща по-силно разбиране и генериране.",
|
|
379
380
|
"deepseek-r1.description": "DeepSeek-R1 използва данни от студен старт преди подсиленото обучение и се представя наравно с OpenAI-o1 в математика, програмиране и разсъждение.",
|
|
381
|
+
"deepseek-reasoner.description": "Режимът на мислене DeepSeek V3.2 извежда верига от мисли преди крайния отговор за повишаване на точността.",
|
|
380
382
|
"deepseek-v2.description": "DeepSeek V2 е ефективен MoE модел за икономична обработка.",
|
|
381
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B е модел на DeepSeek, фокусиран върху програмиране, с висока производителност при генериране на код.",
|
|
382
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 е MoE модел с 671 милиарда параметъра, с изключителни способности в програмиране, технически задачи, разбиране на контекст и обработка на дълги текстове.",
|
|
@@ -390,6 +392,27 @@
|
|
|
390
392
|
"deepseek-v3.description": "DeepSeek-V3 е мощен MoE модел с общо 671 милиарда параметъра и 37 милиарда активни на токен.",
|
|
391
393
|
"deepseek-vl2-small.description": "DeepSeek VL2 Small е лек мултимодален вариант за среди с ограничени ресурси и висока едновременност.",
|
|
392
394
|
"deepseek-vl2.description": "DeepSeek VL2 е мултимодален модел за разбиране на изображения и текст и прецизни визуални въпроси и отговори.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 е MoE модел с 685 милиарда параметъра и най-новата итерация от водещата чат серия на DeepSeek.\n\nНадгражда [DeepSeek V3](/deepseek/deepseek-chat-v3) и се представя отлично в различни задачи.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 е MoE модел с 685 милиарда параметъра и най-новата итерация от водещата чат серия на DeepSeek.\n\nНадгражда [DeepSeek V3](/deepseek/deepseek-chat-v3) и се представя отлично в различни задачи.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 е хибриден модел за разсъждение с дълъг контекст от DeepSeek, поддържащ смесени режими на мислене/без мислене и интеграция с инструменти.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 е високоефективен хибриден модел за разсъждение от DeepSeek, предназначен за сложни задачи и интеграция с инструменти.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 е обновен вариант, фокусиран върху отворен достъп и по-дълбоко разсъждение.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 значително подобрява разсъждението с минимално етикетирани данни и извежда верига от мисли преди крайния отговор за повишаване на точността.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B е дестилиран LLM, базиран на Llama 3.3 70B, фино настроен с изходи от DeepSeek R1 за постигане на конкурентна производителност спрямо водещите модели.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B е дестилиран LLM, базиран на Llama-3.1-8B-Instruct, обучен с изходи от DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B е дестилиран LLM, базиран на Qwen 2.5 14B, обучен с изходи от DeepSeek R1. Надминава OpenAI o1-mini в множество бенчмаркове, постигайки водещи резултати сред плътните модели. Основни резултати:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces рейтинг: 1481\nФиното настройване с изходи от DeepSeek R1 осигурява конкурентна производителност спрямо по-големи модели.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B е дестилиран LLM, базиран на Qwen 2.5 32B, обучен с изходи от DeepSeek R1. Надминава OpenAI o1-mini в множество бенчмаркове, постигайки водещи резултати сред плътните модели. Основни резултати:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces рейтинг: 1691\nФиното настройване с изходи от DeepSeek R1 осигурява конкурентна производителност спрямо по-големи модели.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 е обновен до DeepSeek-R1-0528. С повече изчислителна мощ и алгоритмични оптимизации след обучение, значително подобрява дълбочината и способността за разсъждение. Представя се отлично в бенчмаркове по математика, програмиране и логика, доближавайки се до водещи модели като o3 и Gemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 е най-новият модел с отворен код, пуснат от екипа на DeepSeek, с много силна производителност в разсъждението, особено в математика, програмиране и логически задачи, сравним с OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 значително подобрява разсъждението с минимално етикетирани данни и извежда верига от мисли преди крайния отговор за повишаване на точността.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) е експериментален модел за разсъждение от DeepSeek, подходящ за задачи с висока сложност.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base е подобрена версия на модела DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Бърз универсален LLM с подобрено разсъждение.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 постига значителен пробив в скоростта на разсъждение спрямо предишни модели. Класира се на първо място сред моделите с отворен код и съперничи на най-напредналите затворени модели. DeepSeek-V3 използва Multi-Head Latent Attention (MLA) и архитектурата DeepSeekMoE, и двете напълно валидирани в DeepSeek-V2. Въвежда и беззагубна помощна стратегия за балансиране на натоварването и цел за обучение с предсказване на множество токени за по-силна производителност.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 е модел за разсъждение, управляван от обучение чрез подсилване, който адресира проблеми с повторения и четимост. Преди RL използва начални данни за допълнително подобряване на разсъждението. Сравнява се с OpenAI-o1 в задачи по математика, програмиране и логика, с внимателно проектирано обучение за подобрени резултати.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B е дестилиран от Llama-3.3-70B-Instruct. Като част от серията DeepSeek-R1, е фино настроен с примери, генерирани от DeepSeek-R1, и се представя силно в математика, програмиране и разсъждение.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B е дестилиран от Qwen2.5-14B и фино настроен с 800K подбрани примера, генерирани от DeepSeek-R1, осигуряващ силно разсъждение.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B е дестилиран от Qwen2.5-32B и фино настроен с 800K подбрани примера, генерирани от DeepSeek-R1, отличаващ се в математика, програмиране и разсъждение.",
|
|
393
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 е отворен LLM, предназначен за разработчици, изследователи и предприятия, създаден да им помага да изграждат, експериментират и отговорно мащабират идеи за генеративен ИИ. Като част от основата за глобални иновации в общността, той е подходящ за среди с ограничени изчислителни ресурси, крайни устройства и по-бързо обучение.",
|
|
394
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Силен визуален анализ на изображения с висока резолюция, подходящ за приложения за визуално разбиране.",
|
|
395
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Разширен визуален анализ за приложения с агенти за визуално разбиране.",
|
|
@@ -622,4 +645,4 @@
|
|
|
622
645
|
"zai/glm-4.5.description": "Серията GLM-4.5 е проектирана за агенти. Флагманският GLM-4.5 комбинира разсъждение, програмиране и агентни умения с 355B общи параметри (32B активни) и предлага два режима на работа като хибридна система за разсъждение.",
|
|
623
646
|
"zai/glm-4.5v.description": "GLM-4.5V надгражда GLM-4.5-Air, наследявайки доказани техники от GLM-4.1V-Thinking и мащабира с мощна MoE архитектура с 106 милиарда параметъра.",
|
|
624
647
|
"zenmux/auto.description": "ZenMux автоматично избира най-добрия модел по стойност и производителност от поддържаните опции според вашата заявка."
|
|
625
|
-
}
|
|
648
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "Платформата за модели на ByteDance предлага сигурен, богат на функции и икономичен достъп до модели, както и цялостни инструменти за данни, фино настройване, инференция и оценка.",
|
|
64
64
|
"wenxin.description": "Платформа за предприятия за базови модели и разработка на AI-приложения, предлагаща цялостни инструменти за работни потоци с генеративен AI.",
|
|
65
65
|
"xai.description": "xAI създава AI за ускоряване на научните открития с мисията да задълбочи разбирането на човечеството за Вселената.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo предоставя услуга за разговорен модел с API, съвместим с OpenAI. Моделът mimo-v2-flash поддържа задълбочено разсъждение, поточно извеждане, извикване на функции, контекстен прозорец от 256K и максимален изход от 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) е open-source платформа, която опростява изпълнението и интеграцията на AI модели. Позволява локално или облачно стартиране на open-source LLM, embedding и мултимодални модели за създаване на мощни AI приложения.",
|
|
67
68
|
"zenmux.description": "ZenMux е обединена платформа за агрегиране на AI, поддържаща OpenAI, Anthropic, Google VertexAI и други, с гъвкаво маршрутизиране за лесно превключване и управление на модели.",
|
|
68
69
|
"zeroone.description": "01.AI води революцията на AI 2.0, ориентирана към човека, използвайки LLM за създаване на икономическа и социална стойност и изграждане на нови AI екосистеми и бизнес модели.",
|
|
@@ -413,6 +413,35 @@
|
|
|
413
413
|
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B ist ein destilliertes Modell basierend auf Llama-3.3-70B-Instruct. Als Teil der DeepSeek-R1-Serie ist es mit DeepSeek-R1-generierten Beispielen feinabgestimmt und zeigt starke Leistung in Mathematik, Programmierung und Schlussfolgerung.",
|
|
414
414
|
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B ist ein destilliertes Modell basierend auf Qwen2.5-14B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 feinabgestimmt. Es liefert starke Schlussfolgerungsleistung.",
|
|
415
415
|
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B ist ein destilliertes Modell basierend auf Qwen2.5-32B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 feinabgestimmt. Es überzeugt in Mathematik, Programmierung und Schlussfolgerung.",
|
|
416
|
+
"devstral-2:123b.description": "Devstral 2 123B ist hervorragend im Einsatz von Tools zur Erkundung von Codebasen, Bearbeitung mehrerer Dateien und Unterstützung von Softwareentwicklungsagenten.",
|
|
417
|
+
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite ist ein neues, leichtgewichtiges Modell mit ultraschneller Reaktionszeit, das erstklassige Qualität und geringe Latenz bietet.",
|
|
418
|
+
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k ist ein umfassendes Upgrade von Doubao-1.5-Pro mit einer Leistungssteigerung von 10 %. Es unterstützt ein Kontextfenster von 256k und bis zu 12k Ausgabetokens und bietet höhere Leistung, ein größeres Kontextfenster und ein starkes Preis-Leistungs-Verhältnis für vielfältige Anwendungsfälle.",
|
|
419
|
+
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro ist ein neues Flaggschiffmodell der nächsten Generation mit umfassenden Verbesserungen und überzeugt in den Bereichen Wissen, Programmierung und logisches Denken.",
|
|
420
|
+
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 ist ein neues Modell für tiefes logisches Denken (die m-Version beinhaltet native multimodale Tiefenanalyse) und überzeugt in Mathematik, Programmierung, wissenschaftlichem Denken sowie allgemeinen Aufgaben wie kreativem Schreiben. Es erreicht oder übertrifft Spitzenwerte in Benchmarks wie AIME 2024, Codeforces und GPQA. Unterstützt ein Kontextfenster von 128k und 16k Ausgabe.",
|
|
421
|
+
"doubao-1.5-thinking-pro.description": "Doubao-1.5 ist ein neues Modell für tiefes logisches Denken und überzeugt in Mathematik, Programmierung, wissenschaftlichem Denken sowie allgemeinen Aufgaben wie kreativem Schreiben. Es erreicht oder übertrifft Spitzenwerte in Benchmarks wie AIME 2024, Codeforces und GPQA. Unterstützt ein Kontextfenster von 128k und 16k Ausgabe.",
|
|
422
|
+
"doubao-1.5-thinking-vision-pro.description": "Ein neues visuelles Modell für tiefes logisches Denken mit verbesserter multimodaler Analyse und Schlussfolgerung, das SOTA-Ergebnisse in 37 von 59 öffentlichen Benchmarks erzielt.",
|
|
423
|
+
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS ist ein nativ auf grafische Benutzeroberflächen fokussiertes Agentenmodell, das durch menschenähnliche Wahrnehmung, Schlussfolgerung und Handlung nahtlos mit Benutzeroberflächen interagiert.",
|
|
424
|
+
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite ist ein verbessertes multimodales Modell, das Bilder in jeder Auflösung und extremen Seitenverhältnissen unterstützt. Es verbessert visuelles Denken, Dokumentenerkennung, Detailverständnis und Befolgen von Anweisungen. Unterstützt ein Kontextfenster von 128k und bis zu 16k Ausgabetokens.",
|
|
425
|
+
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro ist ein verbessertes multimodales Modell, das Bilder in jeder Auflösung und extremen Seitenverhältnissen unterstützt. Es verbessert visuelles Denken, Dokumentenerkennung, Detailverständnis und Befolgen von Anweisungen.",
|
|
426
|
+
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro ist ein verbessertes multimodales Modell, das Bilder in jeder Auflösung und extremen Seitenverhältnissen unterstützt. Es verbessert visuelles Denken, Dokumentenerkennung, Detailverständnis und Befolgen von Anweisungen.",
|
|
427
|
+
"doubao-lite-128k.description": "Ultraschnelle Reaktion mit besserem Preis-Leistungs-Verhältnis und flexiblen Einsatzmöglichkeiten. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 128k.",
|
|
428
|
+
"doubao-lite-32k.description": "Ultraschnelle Reaktion mit besserem Preis-Leistungs-Verhältnis und flexiblen Einsatzmöglichkeiten. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 32k.",
|
|
429
|
+
"doubao-lite-4k.description": "Ultraschnelle Reaktion mit besserem Preis-Leistungs-Verhältnis und flexiblen Einsatzmöglichkeiten. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 4k.",
|
|
430
|
+
"doubao-pro-256k.description": "Das leistungsstärkste Flaggschiffmodell für komplexe Aufgaben mit starken Ergebnissen in referenzbasierten Fragen, Zusammenfassungen, kreativen Texten, Textklassifikation und Rollenspielen. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 256k.",
|
|
431
|
+
"doubao-pro-32k.description": "Das leistungsstärkste Flaggschiffmodell für komplexe Aufgaben mit starken Ergebnissen in referenzbasierten Fragen, Zusammenfassungen, kreativen Texten, Textklassifikation und Rollenspielen. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 32k.",
|
|
432
|
+
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash ist ein ultraschnelles multimodales Modell für tiefes logisches Denken mit einer TPOT von nur 10 ms. Es unterstützt Text- und Bildverarbeitung, übertrifft das vorherige Lite-Modell im Textverständnis und erreicht die Leistung konkurrierender Pro-Modelle im visuellen Bereich. Unterstützt ein Kontextfenster von 256k und bis zu 16k Ausgabetokens.",
|
|
433
|
+
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite ist ein neues multimodales Modell für tiefes logisches Denken mit einstellbarem Denkaufwand (Minimal, Niedrig, Mittel, Hoch). Es bietet ein besseres Preis-Leistungs-Verhältnis und ist eine starke Wahl für allgemeine Aufgaben. Unterstützt ein Kontextfenster von bis zu 256k.",
|
|
434
|
+
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6 verstärkt das logische Denken erheblich und verbessert die Kernfähigkeiten in Programmierung, Mathematik und logischem Denken im Vergleich zu Doubao-1.5-thinking-pro. Zusätzlich wird das visuelle Verständnis erweitert. Unterstützt ein Kontextfenster von 256k und bis zu 16k Ausgabetokens.",
|
|
435
|
+
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision ist ein visuelles Modell für tiefes logisches Denken mit verbesserter multimodaler Analyse für Bildung, Bildprüfung, Inspektion/Sicherheit und KI-gestützte Fragenbeantwortung. Unterstützt ein Kontextfenster von 256k und bis zu 64k Ausgabetokens.",
|
|
436
|
+
"doubao-seed-1.6.description": "Doubao-Seed-1.6 ist ein neues multimodales Modell für tiefes logisches Denken mit Auto-, Denk- und Nicht-Denk-Modi. Im Nicht-Denk-Modus übertrifft es Doubao-1.5-pro/250115 deutlich. Unterstützt ein Kontextfenster von 256k und bis zu 16k Ausgabetokens.",
|
|
437
|
+
"doubao-seed-1.8.description": "Doubao-Seed-1.8 verfügt über eine verbesserte multimodale Verständnisfähigkeit und Agentenfähigkeiten. Es unterstützt Text-, Bild- und Videoeingaben sowie Kontext-Caching und bietet herausragende Leistung bei komplexen Aufgaben.",
|
|
438
|
+
"doubao-seed-code.description": "Doubao-Seed-Code ist speziell für agentenbasiertes Programmieren optimiert, unterstützt multimodale Eingaben (Text/Bild/Video) und ein Kontextfenster von 256k. Es ist kompatibel mit der Anthropic API und eignet sich für Programmierung, visuelles Verständnis und Agenten-Workflows.",
|
|
439
|
+
"doubao-seededit-3-0-i2i-250628.description": "Das Doubao-Bildmodell von ByteDance Seed unterstützt Text- und Bildeingaben mit hochgradig kontrollierbarer, hochwertiger Bildgenerierung. Es unterstützt textgesteuerte Bildbearbeitung mit Ausgabengrößen zwischen 512 und 1536 auf der langen Seite.",
|
|
440
|
+
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 ist ein Bildgenerierungsmodell von ByteDance Seed, das Text- und Bildeingaben unterstützt und eine hochgradig kontrollierbare, hochwertige Bildgenerierung ermöglicht. Es erzeugt Bilder aus Texteingaben.",
|
|
441
|
+
"doubao-seedream-4-0-250828.description": "Seedream 4.0 ist ein Bildgenerierungsmodell von ByteDance Seed, das Text- und Bildeingaben unterstützt und eine hochgradig kontrollierbare, hochwertige Bildgenerierung ermöglicht. Es erzeugt Bilder aus Texteingaben.",
|
|
442
|
+
"doubao-vision-lite-32k.description": "Doubao-vision ist ein multimodales Modell von Doubao mit starkem Bildverständnis und logischem Denken sowie präziser Befolgung von Anweisungen. Es überzeugt bei Bild-Text-Extraktion und bildbasierten Denkaufgaben und ermöglicht komplexere und umfassendere visuelle Frage-Antwort-Szenarien.",
|
|
443
|
+
"doubao-vision-pro-32k.description": "Doubao-vision ist ein multimodales Modell von Doubao mit starkem Bildverständnis und logischem Denken sowie präziser Befolgung von Anweisungen. Es überzeugt bei Bild-Text-Extraktion und bildbasierten Denkaufgaben und ermöglicht komplexere und umfassendere visuelle Frage-Antwort-Szenarien.",
|
|
444
|
+
"emohaa.description": "Emohaa ist ein Modell für psychische Gesundheit mit professionellen Beratungsfähigkeiten, das Nutzern hilft, emotionale Probleme zu verstehen.",
|
|
416
445
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 ist ein offenes LLM für Entwickler, Forscher und Unternehmen. Es wurde entwickelt, um beim Aufbau, Experimentieren und verantwortungsvollen Skalieren generativer KI-Ideen zu unterstützen. Als Teil der Grundlage für globale Innovationsgemeinschaften eignet es sich besonders für Umgebungen mit begrenzten Rechenressourcen, Edge-Geräte und schnellere Trainingszeiten.",
|
|
417
446
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Starke Bildverarbeitung bei hochauflösenden Bildern – ideal für visuelle Verständnisanwendungen.",
|
|
418
447
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Fortschrittliche Bildverarbeitung für visuelle Agentenanwendungen.",
|
|
@@ -650,4 +679,4 @@
|
|
|
650
679
|
"zai/glm-4.5.description": "Die GLM-4.5-Serie ist für Agenten konzipiert. Das Flaggschiff GLM-4.5 kombiniert Reasoning-, Coding- und Agentenfähigkeiten mit 355B Gesamtparametern (32B aktiv) und bietet zwei Betriebsmodi als hybrides Reasoning-System.",
|
|
651
680
|
"zai/glm-4.5v.description": "GLM-4.5V baut auf GLM-4.5-Air auf, übernimmt bewährte GLM-4.1V-Thinking-Techniken und skaliert mit einer starken 106B-Parameter-MoE-Architektur.",
|
|
652
681
|
"zenmux/auto.description": "ZenMux Auto-Routing wählt basierend auf Ihrer Anfrage das leistungsstärkste und kosteneffizienteste Modell aus den unterstützten Optionen aus."
|
|
653
|
-
}
|
|
682
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "Die Modellserviceplattform von ByteDance bietet sicheren, funktionsreichen und kostengünstigen Modellzugang sowie End-to-End-Tools für Daten, Feintuning, Inferenz und Bewertung.",
|
|
64
64
|
"wenxin.description": "Eine All-in-One-Plattform für Unternehmen zur Entwicklung von Foundation-Modellen und KI-nativen Anwendungen – mit End-to-End-Tools für generative KI-Workflows.",
|
|
65
65
|
"xai.description": "xAI entwickelt KI zur Beschleunigung wissenschaftlicher Entdeckungen – mit dem Ziel, das Verständnis des Universums durch die Menschheit zu vertiefen.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo bietet einen Konversationsmodell-Service mit einer OpenAI-kompatiblen API. Das Modell mimo-v2-flash unterstützt tiefgreifendes Schlussfolgern, Streaming-Ausgaben, Funktionsaufrufe, ein Kontextfenster von 256K sowie eine maximale Ausgabe von 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) ist eine Open-Source-Plattform, die das Ausführen und Integrieren von KI-Modellen vereinfacht – lokal oder in der Cloud, für leistungsstarke KI-Anwendungen.",
|
|
67
68
|
"zenmux.description": "ZenMux ist eine einheitliche KI-Aggregationsplattform mit Unterstützung für OpenAI, Anthropic, Google VertexAI und mehr – mit flexiblem Routing zur einfachen Modellverwaltung.",
|
|
68
69
|
"zeroone.description": "01.AI treibt eine menschenzentrierte KI-2.0-Revolution voran – mit LLMs zur Schaffung wirtschaftlicher und gesellschaftlicher Werte sowie neuer KI-Ökosysteme und Geschäftsmodelle.",
|
|
@@ -861,6 +861,7 @@
|
|
|
861
861
|
"microsoft/Phi-3.5-vision-instruct.description": "An updated version of the Phi-3-vision model.",
|
|
862
862
|
"microsoft/WizardLM-2-8x22B.description": "WizardLM 2 is a language model from Microsoft AI that excels at complex dialogue, multilingual tasks, reasoning, and assistants.",
|
|
863
863
|
"microsoft/wizardlm-2-8x22b.description": "WizardLM-2 8x22B is Microsoft AI’s most advanced Wizard model with highly competitive performance.",
|
|
864
|
+
"mimo-v2-flash.description": "MiMo-V2-Flash: An efficient model for reasoning, coding, and agent foundations.",
|
|
864
865
|
"minicpm-v.description": "MiniCPM-V is OpenBMB’s next-generation multimodal model with excellent OCR and multimodal understanding for wide-ranging use cases.",
|
|
865
866
|
"minimax-m2.1.description": "MiniMax-M2.1 是 MiniMax 系列的最新版本,专为多语言编程和真实世界复杂任务优化。作为一款 AI 原生模型,MiniMax-M2.1 在模型性能、智能体框架支持以及多场景适配方面实现了显著提升,旨在帮助企业和个人更快地找到 AI 原生的工作与生活方式。",
|
|
866
867
|
"minimax-m2.description": "MiniMax M2 是专为编码和代理工作流程构建的高效大型语言模型。",
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "ByteDance’s model service platform offers secure, feature-rich, cost-competitive model access plus end-to-end tooling for data, fine-tuning, inference, and evaluation.",
|
|
64
64
|
"wenxin.description": "An enterprise all-in-one platform for foundation models and AI-native app development, offering end-to-end tooling for generative AI model and application workflows.",
|
|
65
65
|
"xai.description": "xAI builds AI to accelerate scientific discovery, with a mission to deepen humanity’s understanding of the universe.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo provides a conversational model service with an OpenAI-compatible API. The mimo-v2-flash model supports deep reasoning, streaming output, function calling, a 256K context window, and a maximum output of 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) is an open-source platform that simplifies running and integrating AI models. It lets you run open-source LLMs, embedding models, and multimodal models locally or in the cloud to build powerful AI apps.",
|
|
67
68
|
"zenmux.description": "ZenMux is a unified AI aggregation platform that supports OpenAI, Anthropic, Google VertexAI, and more, with flexible routing to switch and manage models easily.",
|
|
68
69
|
"zeroone.description": "01.AI drives a human-centered AI 2.0 revolution, using LLMs to create economic and social value and build new AI ecosystems and business models.",
|
|
@@ -382,6 +382,37 @@
|
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2 es un modelo MoE eficiente para procesamiento rentable.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B es el modelo de DeepSeek centrado en código con fuerte generación de código.",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 es un modelo MoE con 671 mil millones de parámetros, con fortalezas destacadas en programación, capacidad técnica, comprensión de contexto y manejo de textos largos.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus es un modelo LLM optimizado para terminales de DeepSeek, diseñado específicamente para dispositivos de terminal.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 es el modelo de pensamiento profundo correspondiente a la versión Terminus, creado para un razonamiento de alto rendimiento.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 es un nuevo modelo híbrido de razonamiento de DeepSeek, que admite modos de pensamiento y no pensamiento, y ofrece una mayor eficiencia de razonamiento que DeepSeek-R1-0528. Las optimizaciones posteriores al entrenamiento mejoran significativamente el uso de herramientas por parte de agentes y el rendimiento en tareas. Admite una ventana de contexto de 128k y hasta 64k tokens de salida.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con mejoras en razonamiento complejo y cadena de pensamiento, ideal para tareas que requieren análisis profundo.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduce atención dispersa para mejorar la eficiencia de entrenamiento e inferencia en textos largos, a un precio más bajo que deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think es un modelo de pensamiento profundo completo con razonamiento de cadenas largas más sólido.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 es el primer modelo de razonamiento híbrido de DeepSeek que integra el pensamiento en el uso de herramientas. Con una arquitectura eficiente que ahorra cómputo, aprendizaje reforzado a gran escala para mejorar capacidades y datos sintéticos masivos para una fuerte generalización, su rendimiento es comparable al de GPT-5-High. La longitud de salida se ha reducido considerablemente, disminuyendo significativamente el costo computacional y el tiempo de espera del usuario.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 es un potente modelo MoE con 671 mil millones de parámetros totales y 37 mil millones activos por token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small es una versión multimodal ligera para entornos con recursos limitados y alta concurrencia.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 es un modelo multimodal para comprensión imagen-texto y preguntas visuales detalladas.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 es un modelo MoE de 685 mil millones de parámetros y la última iteración de la serie insignia de chat de DeepSeek.\n\nSe basa en [DeepSeek V3](/deepseek/deepseek-chat-v3) y ofrece un rendimiento sólido en diversas tareas.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 es un modelo MoE de 685 mil millones de parámetros y la última iteración de la serie insignia de chat de DeepSeek.\n\nSe basa en [DeepSeek V3](/deepseek/deepseek-chat-v3) y ofrece un rendimiento sólido en diversas tareas.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 es el modelo de razonamiento híbrido de largo contexto de DeepSeek, compatible con modos mixtos de pensamiento/no pensamiento e integración de herramientas.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 es el modelo de razonamiento híbrido de alto rendimiento de DeepSeek para tareas complejas e integración de herramientas.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 es una variante actualizada centrada en disponibilidad abierta y razonamiento más profundo.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 mejora significativamente el razonamiento con datos etiquetados mínimos y genera una cadena de pensamiento antes de la respuesta final para mejorar la precisión.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B es un modelo LLM destilado basado en Llama 3.3 70B, ajustado finamente con salidas de DeepSeek R1 para lograr un rendimiento competitivo con modelos de frontera de gran tamaño.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B es un modelo LLM destilado basado en Llama-3.1-8B-Instruct, entrenado con salidas de DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B es un modelo LLM destilado basado en Qwen 2.5 14B, entrenado con salidas de DeepSeek R1. Supera a OpenAI o1-mini en múltiples pruebas, logrando resultados de vanguardia entre modelos densos. Resultados destacados:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nPuntaje CodeForces: 1481\nEl ajuste fino con salidas de DeepSeek R1 ofrece un rendimiento competitivo con modelos de frontera más grandes.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B es un modelo LLM destilado basado en Qwen 2.5 32B, entrenado con salidas de DeepSeek R1. Supera a OpenAI o1-mini en múltiples pruebas, logrando resultados de vanguardia entre modelos densos. Resultados destacados:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nPuntaje CodeForces: 1691\nEl ajuste fino con salidas de DeepSeek R1 ofrece un rendimiento competitivo con modelos de frontera más grandes.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 ha sido actualizado a DeepSeek-R1-0528. Con mayor capacidad de cómputo y optimizaciones algorítmicas posteriores al entrenamiento, mejora significativamente la profundidad y capacidad de razonamiento. Tiene un rendimiento sólido en matemáticas, programación y pruebas de lógica general, acercándose a líderes como o3 y Gemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 es el último modelo de código abierto lanzado por el equipo de DeepSeek, con un rendimiento de razonamiento muy sólido, especialmente en matemáticas, programación y tareas de lógica, comparable a OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 mejora significativamente el razonamiento con datos etiquetados mínimos y genera una cadena de pensamiento antes de la respuesta final para mejorar la precisión.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) es el modelo experimental de razonamiento de DeepSeek, adecuado para tareas de razonamiento de alta complejidad.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base es una versión mejorada del modelo DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Un modelo LLM rápido de propósito general con razonamiento mejorado.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 representa un gran avance en velocidad de razonamiento respecto a modelos anteriores. Ocupa el primer lugar entre los modelos de código abierto y rivaliza con los modelos cerrados más avanzados. DeepSeek-V3 adopta Multi-Head Latent Attention (MLA) y la arquitectura DeepSeekMoE, ambas validadas en DeepSeek-V2. También introduce una estrategia auxiliar sin pérdida para balanceo de carga y un objetivo de entrenamiento de predicción multi-token para un rendimiento más sólido.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 es un modelo de razonamiento impulsado por aprendizaje por refuerzo que aborda problemas de repetición y legibilidad. Antes del RL, utiliza datos de arranque en frío para mejorar aún más el rendimiento de razonamiento. Igual a OpenAI-o1 en tareas de matemáticas, programación y razonamiento, con un entrenamiento cuidadosamente diseñado que mejora los resultados generales.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B es una versión destilada de Llama-3.3-70B-Instruct. Como parte de la serie DeepSeek-R1, está ajustado finamente con muestras generadas por DeepSeek-R1 y ofrece un rendimiento sólido en matemáticas, programación y razonamiento.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B es una versión destilada de Qwen2.5-14B y ajustada finamente con 800K muestras seleccionadas generadas por DeepSeek-R1, ofreciendo un razonamiento sólido.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B es una versión destilada de Qwen2.5-32B y ajustada finamente con 800K muestras seleccionadas generadas por DeepSeek-R1, destacando en matemáticas, programación y razonamiento.",
|
|
385
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 es un modelo LLM abierto para desarrolladores, investigadores y empresas, diseñado para ayudarles a construir, experimentar y escalar de manera responsable ideas de IA generativa. Como parte de la base para la innovación de la comunidad global, es ideal para entornos con recursos y capacidad de cómputo limitados, dispositivos en el borde y tiempos de entrenamiento más rápidos.",
|
|
386
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Razonamiento visual sólido en imágenes de alta resolución, ideal para aplicaciones de comprensión visual.",
|
|
387
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Razonamiento visual avanzado para aplicaciones de agentes con comprensión visual.",
|
|
@@ -589,4 +620,4 @@
|
|
|
589
620
|
"zai/glm-4.5.description": "La serie GLM-4.5 está diseñada para agentes. El modelo insignia GLM-4.5 combina razonamiento, programación y habilidades de agente con 355B de parámetros totales (32B activos) y ofrece modos de operación dual como sistema de razonamiento híbrido.",
|
|
590
621
|
"zai/glm-4.5v.description": "GLM-4.5V se basa en GLM-4.5-Air, heredando técnicas comprobadas de GLM-4.1V-Thinking y escalando con una sólida arquitectura MoE de 106B parámetros.",
|
|
591
622
|
"zenmux/auto.description": "El enrutamiento automático de ZenMux selecciona el modelo con mejor relación calidad-rendimiento entre las opciones compatibles según tu solicitud."
|
|
592
|
-
}
|
|
623
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "La plataforma de servicios de modelos de ByteDance ofrece acceso seguro, completo y rentable a modelos, además de herramientas de extremo a extremo para datos, ajuste fino, inferencia y evaluación.",
|
|
64
64
|
"wenxin.description": "Una plataforma empresarial todo en uno para modelos fundacionales y desarrollo de aplicaciones nativas de IA, que ofrece herramientas de extremo a extremo para flujos de trabajo de modelos y aplicaciones de IA generativa.",
|
|
65
65
|
"xai.description": "xAI desarrolla IA para acelerar el descubrimiento científico, con la misión de profundizar la comprensión humana del universo.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo ofrece un servicio de modelo conversacional con una API compatible con OpenAI. El modelo mimo-v2-flash admite razonamiento profundo, salida en streaming, llamadas a funciones, una ventana de contexto de 256K y una salida máxima de 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) es una plataforma de código abierto que simplifica la ejecución e integración de modelos de IA. Permite ejecutar LLMs, modelos de embeddings y modelos multimodales de código abierto localmente o en la nube para construir potentes aplicaciones de IA.",
|
|
67
68
|
"zenmux.description": "ZenMux es una plataforma unificada de agregación de IA que admite OpenAI, Anthropic, Google VertexAI y más, con enrutamiento flexible para cambiar y gestionar modelos fácilmente.",
|
|
68
69
|
"zeroone.description": "01.AI impulsa una revolución de IA 2.0 centrada en el ser humano, utilizando LLMs para crear valor económico y social y construir nuevos ecosistemas y modelos de negocio de IA.",
|
|
@@ -355,6 +355,7 @@
|
|
|
355
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 یک مدل استدلال نسل بعدی با توانایی استدلال پیچیده و زنجیره تفکر برای وظایف تحلیلی عمیق است.",
|
|
356
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 یک مدل استدلال نسل بعدی با توانایی استدلال پیچیده و زنجیره تفکر برای وظایف تحلیلی عمیق است.",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 یک مدل بینایی-زبانی MoE مبتنی بر DeepSeekMoE-27B با فعالسازی پراکنده است که تنها با ۴.۵ میلیارد پارامتر فعال عملکرد قویای دارد. این مدل در پاسخ به سوالات بصری، OCR، درک اسناد/جداول/نمودارها و پایهگذاری بصری عملکرد درخشانی دارد.",
|
|
358
|
+
"deepseek-chat.description": "مدلی متنباز و نوین که تواناییهای عمومی و برنامهنویسی را ترکیب میکند. این مدل گفتوگوی عمومی مدل چت و قدرت کدنویسی مدل برنامهنویس را حفظ کرده و با همراستایی ترجیحی بهتر ارائه میدهد. DeepSeek-V2.5 همچنین در نوشتن و پیروی از دستورالعملها بهبود یافته است.",
|
|
358
359
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B یک مدل زبان برنامهنویسی است که با ۲ تریلیون توکن (۸۷٪ کد، ۱۳٪ متن چینی/انگلیسی) آموزش دیده است. این مدل دارای پنجره متنی ۱۶K و وظایف تکمیل در میانه است که تکمیل کد در سطح پروژه و پر کردن قطعات کد را فراهم میکند.",
|
|
359
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 یک مدل کدنویسی MoE متنباز است که در وظایف برنامهنویسی عملکردی همسطح با GPT-4 Turbo دارد.",
|
|
360
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 یک مدل کدنویسی MoE متنباز است که در وظایف برنامهنویسی عملکردی همسطح با GPT-4 Turbo دارد.",
|
|
@@ -377,6 +378,7 @@
|
|
|
377
378
|
"deepseek-r1-fast-online.description": "نسخه کامل سریع DeepSeek R1 با جستجوی وب در زمان واقعی که توانایی در مقیاس ۶۷۱B را با پاسخدهی سریعتر ترکیب میکند.",
|
|
378
379
|
"deepseek-r1-online.description": "نسخه کامل DeepSeek R1 با ۶۷۱ میلیارد پارامتر و جستجوی وب در زمان واقعی که درک و تولید قویتری را ارائه میدهد.",
|
|
379
380
|
"deepseek-r1.description": "DeepSeek-R1 پیش از یادگیری تقویتی از دادههای شروع سرد استفاده میکند و در وظایف ریاضی، کدنویسی و استدلال عملکردی همسطح با OpenAI-o1 دارد.",
|
|
381
|
+
"deepseek-reasoner.description": "حالت تفکر DeepSeek V3.2 پیش از پاسخ نهایی، زنجیرهای از افکار را تولید میکند تا دقت را افزایش دهد.",
|
|
380
382
|
"deepseek-v2.description": "DeepSeek V2 یک مدل MoE کارآمد است که پردازش مقرونبهصرفه را امکانپذیر میسازد.",
|
|
381
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B مدل متمرکز بر کدنویسی DeepSeek است که توانایی بالایی در تولید کد دارد.",
|
|
382
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 یک مدل MoE با ۶۷۱ میلیارد پارامتر است که در برنامهنویسی، تواناییهای فنی، درک زمینه و پردازش متون بلند عملکرد برجستهای دارد.",
|
|
@@ -411,6 +413,51 @@
|
|
|
411
413
|
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B از Llama-3.3-70B-Instruct تقطیر شده است. بهعنوان بخشی از سری DeepSeek-R1، با استفاده از نمونههای تولیدشده توسط DeepSeek-R1 تنظیم دقیق شده و در ریاضی، کدنویسی و استدلال عملکرد قوی دارد.",
|
|
412
414
|
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B از Qwen2.5-14B تقطیر شده و با استفاده از ۸۰۰ هزار نمونه منتخب تولیدشده توسط DeepSeek-R1 تنظیم دقیق شده است و عملکرد استدلالی قوی ارائه میدهد.",
|
|
413
415
|
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B از Qwen2.5-32B تقطیر شده و با استفاده از ۸۰۰ هزار نمونه منتخب تولیدشده توسط DeepSeek-R1 تنظیم دقیق شده است و در ریاضی، کدنویسی و استدلال عملکرد برجستهای دارد.",
|
|
416
|
+
"devstral-2:123b.description": "Devstral 2 123B در استفاده از ابزارها برای بررسی پایگاههای کد، ویرایش چندین فایل و پشتیبانی از عاملهای مهندسی نرمافزار عملکرد برجستهای دارد.",
|
|
417
|
+
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite یک مدل سبک و جدید با پاسخدهی فوقالعاده سریع است که کیفیت و تأخیر سطح بالا را ارائه میدهد.",
|
|
418
|
+
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k ارتقایی جامع از Doubao-1.5-Pro است که عملکرد کلی را ۱۰٪ بهبود میبخشد. این مدل از پنجره متنی ۲۵۶هزار توکن و خروجی تا ۱۲هزار توکن پشتیبانی میکند و عملکرد بالاتر، پنجره بزرگتر و ارزش قویتری برای کاربردهای گستردهتر ارائه میدهد.",
|
|
419
|
+
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro یک مدل پرچمدار نسل جدید با ارتقاهای همهجانبه است که در دانش، کدنویسی و استدلال عملکرد درخشانی دارد.",
|
|
420
|
+
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 یک مدل جدید با استدلال عمیق است (نسخه m شامل استدلال عمیق چندوجهی بومی است) که در ریاضیات، کدنویسی، استدلال علمی و وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد. این مدل به نتایج سطح بالا در معیارهایی مانند AIME 2024، Codeforces و GPQA دست یافته یا نزدیک شده است. از پنجره متنی ۱۲۸هزار توکن و خروجی تا ۱۶هزار توکن پشتیبانی میکند.",
|
|
421
|
+
"doubao-1.5-thinking-pro.description": "Doubao-1.5 یک مدل جدید با استدلال عمیق است که در ریاضیات، کدنویسی، استدلال علمی و وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد. این مدل به نتایج سطح بالا در معیارهایی مانند AIME 2024، Codeforces و GPQA دست یافته یا نزدیک شده است. از پنجره متنی ۱۲۸هزار توکن و خروجی تا ۱۶هزار توکن پشتیبانی میکند.",
|
|
422
|
+
"doubao-1.5-thinking-vision-pro.description": "مدلی جدید با استدلال بصری عمیق و درک و استدلال چندوجهی قویتر که در ۳۷ از ۵۹ معیار عمومی به نتایج SOTA دست یافته است.",
|
|
423
|
+
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS یک مدل عامل بومی متمرکز بر رابط گرافیکی است که با ادراک، استدلال و اقدام شبیه انسان بهطور یکپارچه با رابطها تعامل دارد.",
|
|
424
|
+
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite یک مدل چندوجهی ارتقایافته است که از تصاویر با هر وضوح و نسبت تصویر پشتیبانی میکند و استدلال بصری، شناسایی اسناد، درک جزئیات و پیروی از دستورالعملها را بهبود میبخشد. از پنجره متنی ۱۲۸هزار توکن و خروجی تا ۱۶هزار توکن پشتیبانی میکند.",
|
|
425
|
+
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro یک مدل چندوجهی ارتقایافته است که از تصاویر با هر وضوح و نسبت تصویر پشتیبانی میکند و استدلال بصری، شناسایی اسناد، درک جزئیات و پیروی از دستورالعملها را بهبود میبخشد.",
|
|
426
|
+
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro یک مدل چندوجهی ارتقایافته است که از تصاویر با هر وضوح و نسبت تصویر پشتیبانی میکند و استدلال بصری، شناسایی اسناد، درک جزئیات و پیروی از دستورالعملها را بهبود میبخشد.",
|
|
427
|
+
"doubao-lite-128k.description": "پاسخدهی فوقالعاده سریع با ارزش بهتر، ارائه گزینههای انعطافپذیرتر در سناریوهای مختلف. از استدلال و تنظیم دقیق با پنجره متنی ۱۲۸هزار توکن پشتیبانی میکند.",
|
|
428
|
+
"doubao-lite-32k.description": "پاسخدهی فوقالعاده سریع با ارزش بهتر، ارائه گزینههای انعطافپذیرتر در سناریوهای مختلف. از استدلال و تنظیم دقیق با پنجره متنی ۳۲هزار توکن پشتیبانی میکند.",
|
|
429
|
+
"doubao-lite-4k.description": "پاسخدهی فوقالعاده سریع با ارزش بهتر، ارائه گزینههای انعطافپذیرتر در سناریوهای مختلف. از استدلال و تنظیم دقیق با پنجره متنی ۴هزار توکن پشتیبانی میکند.",
|
|
430
|
+
"doubao-pro-256k.description": "بهترین مدل پرچمدار برای وظایف پیچیده با نتایج قوی در پرسش و پاسخ مرجع، خلاصهسازی، تولید محتوا، طبقهبندی متنی و نقشآفرینی. از استدلال و تنظیم دقیق با پنجره متنی ۲۵۶هزار توکن پشتیبانی میکند.",
|
|
431
|
+
"doubao-pro-32k.description": "بهترین مدل پرچمدار برای وظایف پیچیده با نتایج قوی در پرسش و پاسخ مرجع، خلاصهسازی، تولید محتوا، طبقهبندی متنی و نقشآفرینی. از استدلال و تنظیم دقیق با پنجره متنی ۳۲هزار توکن پشتیبانی میکند.",
|
|
432
|
+
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash یک مدل چندوجهی با استدلال عمیق و پاسخدهی فوقالعاده سریع با TPOT تا ۱۰ میلیثانیه است. از متن و تصویر پشتیبانی میکند، در درک متن از مدل lite قبلی پیشی میگیرد و در درک تصویر با مدلهای pro رقابت میکند. از پنجره متنی ۲۵۶هزار توکن و خروجی تا ۱۶هزار توکن پشتیبانی میکند.",
|
|
433
|
+
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite یک مدل جدید چندوجهی با استدلال عمیق است که تلاش استدلالی قابل تنظیم (حداقل، کم، متوسط، زیاد) را ارائه میدهد و گزینهای با ارزش بالا برای وظایف رایج است. از پنجره متنی تا ۲۵۶هزار توکن پشتیبانی میکند.",
|
|
434
|
+
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking استدلال را بهطور قابل توجهی تقویت کرده و تواناییهای اصلی در کدنویسی، ریاضیات و استدلال منطقی را نسبت به Doubao-1.5-thinking-pro بهبود میبخشد و درک تصویر را نیز اضافه میکند. از پنجره متنی ۲۵۶هزار توکن و خروجی تا ۱۶هزار توکن پشتیبانی میکند.",
|
|
435
|
+
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision یک مدل استدلال بصری است که درک و استدلال چندوجهی قویتری را برای آموزش، بررسی تصویر، بازرسی/امنیت و پرسش و پاسخ هوش مصنوعی ارائه میدهد. از پنجره متنی ۲۵۶هزار توکن و خروجی تا ۶۴هزار توکن پشتیبانی میکند.",
|
|
436
|
+
"doubao-seed-1.6.description": "Doubao-Seed-1.6 یک مدل جدید چندوجهی با استدلال عمیق است که از حالتهای خودکار، تفکری و غیرتفکری پشتیبانی میکند. در حالت غیرتفکری، عملکرد آن بهطور قابل توجهی از Doubao-1.5-pro/250115 بهتر است. از پنجره متنی ۲۵۶هزار توکن و خروجی تا ۱۶هزار توکن پشتیبانی میکند.",
|
|
437
|
+
"doubao-seed-1.8.description": "Doubao-Seed-1.8 دارای تواناییهای قویتر در درک چندوجهی و عاملها است، از ورودیهای متن/تصویر/ویدیو و حافظه زمینهای پشتیبانی میکند و در وظایف پیچیده عملکرد بهتری ارائه میدهد.",
|
|
438
|
+
"doubao-seed-code.description": "Doubao-Seed-Code برای کدنویسی عاملمحور بهینهسازی عمیقی شده است، از ورودیهای چندوجهی (متن/تصویر/ویدیو) و پنجره متنی ۲۵۶هزار توکن پشتیبانی میکند، با API شرکت Anthropic سازگار است و برای کدنویسی، درک تصویر و جریانهای کاری عامل مناسب است.",
|
|
439
|
+
"doubao-seededit-3-0-i2i-250628.description": "مدل تصویر Doubao از ByteDance Seed از ورودیهای متن و تصویر پشتیبانی میکند و تولید تصویر با کیفیت بالا و قابل کنترل را ارائه میدهد. از ویرایش تصویر با راهنمایی متن پشتیبانی میکند و اندازه خروجی بین ۵۱۲ تا ۱۵۳۶ در ضلع بلندتر است.",
|
|
440
|
+
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 یک مدل تولید تصویر از ByteDance Seed است که از ورودیهای متن و تصویر پشتیبانی میکند و تولید تصویر با کیفیت بالا و قابل کنترل را ارائه میدهد. این مدل تصاویر را از دستورات متنی تولید میکند.",
|
|
441
|
+
"doubao-seedream-4-0-250828.description": "Seedream 4.0 یک مدل تولید تصویر از ByteDance Seed است که از ورودیهای متن و تصویر پشتیبانی میکند و تولید تصویر با کیفیت بالا و قابل کنترل را ارائه میدهد. این مدل تصاویر را از دستورات متنی تولید میکند.",
|
|
442
|
+
"doubao-vision-lite-32k.description": "Doubao-vision یک مدل چندوجهی از Doubao است که درک تصویر و استدلال قوی به همراه پیروی دقیق از دستورالعملها را ارائه میدهد. در استخراج متن از تصویر و وظایف استدلال مبتنی بر تصویر عملکرد خوبی دارد و سناریوهای پیچیدهتر و گستردهتری برای پرسش و پاسخ بصری را ممکن میسازد.",
|
|
443
|
+
"doubao-vision-pro-32k.description": "Doubao-vision یک مدل چندوجهی از Doubao است که درک تصویر و استدلال قوی به همراه پیروی دقیق از دستورالعملها را ارائه میدهد. در استخراج متن از تصویر و وظایف استدلال مبتنی بر تصویر عملکرد خوبی دارد و سناریوهای پیچیدهتر و گستردهتری برای پرسش و پاسخ بصری را ممکن میسازد.",
|
|
444
|
+
"emohaa.description": "Emohaa یک مدل سلامت روان با توانایی مشاوره حرفهای است که به کاربران در درک مسائل احساسی کمک میکند.",
|
|
445
|
+
"ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B یک مدل سبک متنباز برای استقرار محلی و سفارشیسازی شده است.",
|
|
446
|
+
"ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B یک مدل متنباز با پارامترهای زیاد و توانایی درک و تولید قویتر است.",
|
|
447
|
+
"ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B مدل MoE بسیار بزرگ Baidu ERNIE با توانایی استدلال عالی است.",
|
|
448
|
+
"ernie-4.5-8k-preview.description": "پیشنمایش مدل با پنجره متنی ۸هزار توکن برای ارزیابی ERNIE 4.5.",
|
|
449
|
+
"ernie-4.5-turbo-128k-preview.description": "پیشنمایش ERNIE 4.5 Turbo 128K با قابلیتهای سطح انتشار، مناسب برای یکپارچهسازی و تستهای مقدماتی.",
|
|
450
|
+
"ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K یک مدل عمومی با عملکرد بالا است که از تقویت جستجو و فراخوانی ابزار برای پرسش و پاسخ، کدنویسی و سناریوهای عامل پشتیبانی میکند.",
|
|
451
|
+
"ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K نسخهای با طول زمینه متوسط برای پرسش و پاسخ، بازیابی از پایگاه دانش و گفتوگوی چندمرحلهای است.",
|
|
452
|
+
"ernie-4.5-turbo-latest.description": "جدیدترین نسخه ERNIE 4.5 Turbo با عملکرد کلی بهینهشده، ایدهآل برای استفاده در تولید اصلی است.",
|
|
453
|
+
"ernie-4.5-turbo-vl-32k-preview.description": "پیشنمایش چندوجهی ERNIE 4.5 Turbo VL 32K برای ارزیابی توانایی دید در زمینههای طولانی.",
|
|
454
|
+
"ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K نسخهای چندوجهی با طول زمینه متوسط برای درک ترکیبی اسناد بلند و تصاویر است.",
|
|
455
|
+
"ernie-4.5-turbo-vl-latest.description": "جدیدترین نسخه چندوجهی ERNIE 4.5 Turbo VL با درک و استدلال بهتر تصویر-متن.",
|
|
456
|
+
"ernie-4.5-turbo-vl-preview.description": "پیشنمایش مدل چندوجهی ERNIE 4.5 Turbo VL برای درک و تولید تصویر-متن، مناسب برای پرسش و پاسخ بصری و درک محتوا.",
|
|
457
|
+
"ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL یک مدل چندوجهی بالغ برای درک و شناسایی تصویر-متن در محیطهای تولیدی است.",
|
|
458
|
+
"ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B یک مدل چندوجهی متنباز برای درک و استدلال تصویر-متن است.",
|
|
459
|
+
"ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking یک مدل پرچمدار بومی تماموجهی است که مدلسازی متن، تصویر، صدا و ویدیو را یکپارچه میکند. این مدل ارتقاهای گستردهای در توانایی برای پرسش و پاسخ پیچیده، تولید محتوا و سناریوهای عامل ارائه میدهد.",
|
|
460
|
+
"ernie-5.0-thinking-preview.description": "پیشنمایش Wenxin 5.0 Thinking، یک مدل پرچمدار بومی تماموجهی با مدلسازی یکپارچه متن، تصویر، صدا و ویدیو. این مدل ارتقاهای گستردهای در توانایی برای پرسش و پاسخ پیچیده، تولید محتوا و سناریوهای عامل ارائه میدهد.",
|
|
414
461
|
"meta.llama3-8b-instruct-v1:0.description": "متا لاما ۳ یک مدل زبان باز برای توسعهدهندگان، پژوهشگران و شرکتها است که برای کمک به ساخت، آزمایش و گسترش مسئولانه ایدههای هوش مصنوعی مولد طراحی شده است. این مدل بهعنوان بخشی از زیرساخت نوآوری جامعه جهانی، برای محیطهایی با منابع محدود، دستگاههای لبه و زمانهای آموزش سریع مناسب است.",
|
|
415
462
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "استدلال تصویری قوی بر روی تصاویر با وضوح بالا، مناسب برای برنامههای درک بصری.",
|
|
416
463
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال تصویری پیشرفته برای برنامههای عامل با قابلیت درک بصری.",
|
|
@@ -609,4 +656,4 @@
|
|
|
609
656
|
"x-ai/grok-4.1-fast-non-reasoning.description": "Grok 4 Fast (بدون استدلال) مدل چندوجهی با توان عملیاتی بالا و هزینه پایین از xAI است (با پشتیبانی از پنجره زمینه ۲ میلیون توکن) که برای سناریوهای حساس به تأخیر و هزینه طراحی شده و نیازی به استدلال درونمدلی ندارد. این مدل در کنار نسخه استدلالی Grok 4 Fast قرار دارد و میتوان استدلال را از طریق پارامتر API فعال کرد. اعلانها و تکمیلها ممکن است توسط xAI یا OpenRouter برای بهبود مدلهای آینده استفاده شوند.",
|
|
610
657
|
"x-ai/grok-4.1-fast.description": "Grok 4 Fast مدل با توان عملیاتی بالا و هزینه پایین از xAI است (با پشتیبانی از پنجره زمینه ۲ میلیون توکن) که برای موارد استفاده با همزمانی بالا و زمینههای طولانی ایدهآل است.",
|
|
611
658
|
"x-ai/grok-4.description": "Grok 4 مدل پرچمدار xAI با توانایی استدلال قوی و قابلیت چندوجهی است."
|
|
612
|
-
}
|
|
659
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "پلتفرم خدمات مدل ByteDance دسترسی ایمن، غنی از ویژگی و مقرونبهصرفه به مدلها را به همراه ابزارهای کامل برای داده، تنظیم دقیق، استنتاج و ارزیابی فراهم میکند.",
|
|
64
64
|
"wenxin.description": "یک پلتفرم جامع سازمانی برای مدلهای پایه و توسعه اپلیکیشنهای بومی هوش مصنوعی که ابزارهای کامل برای گردش کار مدلها و اپلیکیشنهای مولد ارائه میدهد.",
|
|
65
65
|
"xai.description": "xAI برای تسریع کشفهای علمی هوش مصنوعی میسازد، با مأموریتی برای تعمیق درک بشر از جهان.",
|
|
66
|
+
"xiaomimimo.description": "شیائومی MiMo یک سرویس مدل مکالمهای با API سازگار با OpenAI ارائه میدهد. مدل mimo-v2-flash از استدلال عمیق، خروجی بهصورت جریانی، فراخوانی توابع، پنجره متنی ۲۵۶ هزار توکن و حداکثر خروجی ۱۲۸ هزار توکن پشتیبانی میکند.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) یک پلتفرم متنباز است که اجرای مدلهای هوش مصنوعی را ساده میکند. این پلتفرم امکان اجرای مدلهای LLM، جاسازی و چندوجهی را بهصورت محلی یا ابری برای ساخت اپلیکیشنهای قدرتمند هوش مصنوعی فراهم میکند.",
|
|
67
68
|
"zenmux.description": "ZenMux یک پلتفرم تجمیع هوش مصنوعی یکپارچه است که از OpenAI، Anthropic، Google VertexAI و دیگران پشتیبانی میکند و با مسیریابی انعطافپذیر، مدیریت و جابجایی آسان بین مدلها را ممکن میسازد.",
|
|
68
69
|
"zeroone.description": "01.AI با استفاده از مدلهای زبانی بزرگ، انقلابی انسانمحور در هوش مصنوعی 2.0 ایجاد میکند تا ارزش اقتصادی و اجتماعی خلق کرده و اکوسیستمها و مدلهای تجاری جدیدی بسازد.",
|
|
@@ -336,6 +336,52 @@
|
|
|
336
336
|
"dall-e-2.description": "Modèle DALL·E de deuxième génération avec une génération d'images plus réaliste et précise, et une résolution 4× supérieure à la première génération.",
|
|
337
337
|
"dall-e-3.description": "Le dernier modèle DALL·E, publié en novembre 2023, prend en charge une génération d'images plus réaliste et précise avec un niveau de détail renforcé.",
|
|
338
338
|
"databricks/dbrx-instruct.description": "DBRX Instruct offre une gestion des instructions hautement fiable, adaptée à divers secteurs d'activité.",
|
|
339
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR est un modèle vision-langage développé par DeepSeek AI, spécialisé dans la reconnaissance optique de caractères (OCR) et la « compression optique contextuelle ». Il explore la compression du contexte à partir d’images, traite efficacement les documents et les convertit en texte structuré (par exemple, Markdown). Il reconnaît avec précision le texte dans les images, ce qui le rend idéal pour la numérisation de documents, l’extraction de texte et le traitement structuré.",
|
|
340
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B distille la chaîne de raisonnement de DeepSeek-R1-0528 dans Qwen3 8B Base. Il atteint l’état de l’art parmi les modèles open source, surpassant Qwen3 8B de 10 % sur AIME 2024 et égalant les performances de raisonnement de Qwen3-235B. Il excelle en raisonnement mathématique, en programmation et sur les benchmarks de logique générale. Il partage l’architecture de Qwen3-8B mais utilise le tokenizer de DeepSeek-R1-0528.",
|
|
341
|
+
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 exploite une puissance de calcul accrue et des optimisations algorithmiques post-entraînement pour approfondir le raisonnement. Il affiche d’excellentes performances sur les benchmarks en mathématiques, programmation et logique générale, rivalisant avec des leaders comme o3 et Gemini 2.5 Pro.",
|
|
342
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Les modèles distillés DeepSeek-R1 utilisent l’apprentissage par renforcement (RL) et des données de démarrage à froid pour améliorer le raisonnement et établir de nouveaux standards sur les benchmarks multitâches open source.",
|
|
343
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Les modèles distillés DeepSeek-R1 utilisent l’apprentissage par renforcement (RL) et des données de démarrage à froid pour améliorer le raisonnement et établir de nouveaux standards sur les benchmarks multitâches open source.",
|
|
344
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Les modèles distillés DeepSeek-R1 utilisent l’apprentissage par renforcement (RL) et des données de démarrage à froid pour améliorer le raisonnement et établir de nouveaux standards sur les benchmarks multitâches open source.",
|
|
345
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B est distillé à partir de Qwen2.5-32B et affiné sur 800 000 échantillons sélectionnés de DeepSeek-R1. Il excelle en mathématiques, programmation et raisonnement, avec d’excellents résultats sur AIME 2024, MATH-500 (94,3 % de précision) et GPQA Diamond.",
|
|
346
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B est distillé à partir de Qwen2.5-Math-7B et affiné sur 800 000 échantillons sélectionnés de DeepSeek-R1. Il affiche de solides performances avec 92,8 % sur MATH-500, 55,5 % sur AIME 2024 et une note CodeForces de 1189 pour un modèle 7B.",
|
|
347
|
+
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 améliore le raisonnement grâce à l’apprentissage par renforcement et à des données de démarrage à froid, établissant de nouveaux standards multitâches open source et surpassant OpenAI-o1-mini.",
|
|
348
|
+
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 améliore DeepSeek-V2-Chat et DeepSeek-Coder-V2-Instruct, combinant capacités générales et de codage. Il améliore la rédaction et le suivi des instructions pour un meilleur alignement des préférences, avec des gains significatifs sur AlpacaEval 2.0, ArenaHard, AlignBench et MT-Bench.",
|
|
349
|
+
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus est une version mise à jour du modèle V3.1, positionnée comme un agent hybride LLM. Il corrige les problèmes signalés par les utilisateurs et améliore la stabilité, la cohérence linguistique, tout en réduisant les caractères anormaux et le mélange chinois/anglais. Il intègre les modes de pensée et non-pensée avec des modèles de chat pour un basculement flexible. Il améliore également les performances des agents de code et de recherche pour une utilisation plus fiable des outils et des tâches multi-étapes.",
|
|
350
|
+
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utilise une architecture de raisonnement hybride et prend en charge les modes pensée et non-pensée.",
|
|
351
|
+
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp est une version expérimentale de V3.2 servant de pont vers la prochaine architecture. Il ajoute DeepSeek Sparse Attention (DSA) au-dessus de V3.1-Terminus pour améliorer l’efficacité de l’entraînement et de l’inférence sur les contextes longs, avec des optimisations pour l’utilisation d’outils, la compréhension de documents longs et le raisonnement multi-étapes. Idéal pour explorer une efficacité de raisonnement accrue avec de grands budgets de contexte.",
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 est un modèle MoE de 671 milliards de paramètres utilisant MLA et DeepSeekMoE avec un équilibrage de charge sans perte pour un entraînement et une inférence efficaces. Préentraîné sur 14,8T de tokens de haute qualité avec SFT et RL, il surpasse les autres modèles open source et rivalise avec les modèles fermés de pointe.",
|
|
353
|
+
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) est un modèle innovant offrant une compréhension linguistique approfondie et une interaction fluide.",
|
|
354
|
+
"deepseek-ai/deepseek-r1.description": "Un modèle LLM efficace de pointe, performant en raisonnement, mathématiques et programmation.",
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 est un modèle de raisonnement nouvelle génération avec un raisonnement complexe renforcé et une chaîne de pensée pour les tâches d’analyse approfondie.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 est un modèle de raisonnement nouvelle génération avec un raisonnement complexe renforcé et une chaîne de pensée pour les tâches d’analyse approfondie.",
|
|
357
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 est un modèle vision-langage MoE basé sur DeepSeekMoE-27B avec activation clairsemée, atteignant de hautes performances avec seulement 4,5B de paramètres actifs. Il excelle en QA visuelle, OCR, compréhension de documents/tableaux/graphes et ancrage visuel.",
|
|
358
|
+
"deepseek-chat.description": "Un nouveau modèle open source combinant capacités générales et de codage. Il conserve le dialogue général du modèle de chat et la puissance de codage du modèle de programmeur, avec un meilleur alignement des préférences. DeepSeek-V2.5 améliore également la rédaction et le suivi des instructions.",
|
|
359
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B est un modèle de langage pour le code entraîné sur 2T de tokens (87 % de code, 13 % de texte en chinois/anglais). Il introduit une fenêtre de contexte de 16K et des tâches de remplissage au milieu, offrant une complétion de code à l’échelle du projet et un remplissage de fragments.",
|
|
360
|
+
"deepseek-coder-v2.description": "DeepSeek Coder V2 est un modèle de code MoE open source performant sur les tâches de programmation, comparable à GPT-4 Turbo.",
|
|
361
|
+
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 est un modèle de code MoE open source performant sur les tâches de programmation, comparable à GPT-4 Turbo.",
|
|
362
|
+
"deepseek-ocr.description": "DeepSeek-OCR est un modèle vision-langage de DeepSeek AI axé sur l’OCR et la « compression optique contextuelle ». Il explore la compression des informations contextuelles à partir d’images, traite efficacement les documents et les convertit en formats de texte structuré tels que Markdown. Il reconnaît avec précision le texte dans les images, ce qui le rend idéal pour la numérisation de documents, l’extraction de texte et le traitement structuré.",
|
|
363
|
+
"deepseek-r1-0528.description": "Modèle complet de 685B publié le 28/05/2025. DeepSeek-R1 utilise un apprentissage par renforcement à grande échelle en post-entraînement, améliorant considérablement le raisonnement avec peu de données annotées, et affiche de solides performances en mathématiques, codage et raisonnement en langage naturel.",
|
|
364
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528 est le modèle complet de raisonnement DeepSeek-R1 pour les tâches complexes en mathématiques et logique.",
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B édition rapide avec recherche web en temps réel, offrant des réponses plus rapides tout en maintenant les performances.",
|
|
366
|
+
"deepseek-r1-70b-online.description": "DeepSeek R1 70B édition standard avec recherche web en temps réel, adaptée aux tâches de chat et de texte à jour.",
|
|
367
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combine le raisonnement R1 avec l’écosystème Llama.",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B est distillé à partir de Llama-3.1-8B en utilisant les sorties de DeepSeek R1.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama est distillé à partir de DeepSeek-R1 sur Llama.",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B est une distillation R1 basée sur Qianfan-70B avec une forte valeur ajoutée.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B est une distillation R1 basée sur Qianfan-8B pour les applications petites et moyennes.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B est une distillation R1 basée sur Llama-70B.",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B est un modèle ultra-léger pour les environnements à très faibles ressources.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B est un modèle de taille moyenne pour un déploiement multi-scénarios.",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B est une distillation R1 basée sur Qwen-32B, équilibrant performance et coût.",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B est un modèle léger pour les environnements en périphérie et les entreprises privées.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen est distillé à partir de DeepSeek-R1 sur Qwen.",
|
|
378
|
+
"deepseek-r1-fast-online.description": "Version complète rapide de DeepSeek R1 avec recherche web en temps réel, combinant des capacités à l’échelle de 671B et des réponses plus rapides.",
|
|
379
|
+
"deepseek-r1-online.description": "Version complète de DeepSeek R1 avec 671B de paramètres et recherche web en temps réel, offrant une meilleure compréhension et génération.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1 utilise des données de démarrage à froid avant l’apprentissage par renforcement et affiche des performances comparables à OpenAI-o1 en mathématiques, codage et raisonnement.",
|
|
381
|
+
"deepseek-reasoner.description": "Le mode de pensée DeepSeek V3.2 produit une chaîne de raisonnement avant la réponse finale pour améliorer la précision.",
|
|
382
|
+
"deepseek-v2.description": "DeepSeek V2 est un modèle MoE efficace pour un traitement économique.",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B est le modèle axé sur le code de DeepSeek avec une forte génération de code.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 est un modèle MoE de 671B paramètres avec des points forts en programmation, compréhension du contexte et traitement de longs textes.",
|
|
339
385
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 est un modèle LLM ouvert destiné aux développeurs, chercheurs et entreprises, conçu pour les aider à créer, expérimenter et faire évoluer de manière responsable des idées d'IA générative. Faisant partie de la base de l'innovation communautaire mondiale, il est particulièrement adapté aux environnements à ressources limitées, aux appareils en périphérie et aux temps d'entraînement réduits.",
|
|
340
386
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Raisonnement visuel performant sur des images haute résolution, idéal pour les applications de compréhension visuelle.",
|
|
341
387
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Raisonnement visuel avancé pour les agents d'applications de compréhension visuelle.",
|
|
@@ -537,4 +583,4 @@
|
|
|
537
583
|
"wizardlm2:8x22b.description": "WizardLM 2 est un modèle linguistique de Microsoft AI qui excelle dans les dialogues complexes, les tâches multilingues, le raisonnement et les assistants.",
|
|
538
584
|
"x-ai/grok-4-fast-non-reasoning.description": "Grok 4 Fast (Non-Reasoning) est le modèle multimodal à haut débit et faible coût de xAI (avec une fenêtre de contexte de 2M), conçu pour les scénarios sensibles à la latence et au coût ne nécessitant pas de raisonnement intégré. Il est proposé aux côtés de la version avec raisonnement de Grok 4 Fast, et le raisonnement peut être activé via le paramètre API. Les prompts et complétions peuvent être utilisés par xAI ou OpenRouter pour améliorer les modèles futurs.",
|
|
539
585
|
"x-ai/grok-4-fast.description": "Grok 4 Fast est le modèle à haut débit et faible coût de xAI (avec une fenêtre de contexte de 2M), idéal pour les cas d’usage à forte concurrence et à long contexte."
|
|
540
|
-
}
|
|
586
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "La plateforme de services de modèles de ByteDance offre un accès sécurisé, riche en fonctionnalités et compétitif en coût, avec des outils de bout en bout pour les données, l’ajustement, l’inférence et l’évaluation.",
|
|
64
64
|
"wenxin.description": "Une plateforme tout-en-un pour les modèles fondamentaux et le développement d’applications IA-native en entreprise, offrant des outils de bout en bout pour les workflows de modèles et d’applications génératives.",
|
|
65
65
|
"xai.description": "xAI développe une IA pour accélérer la découverte scientifique, avec pour mission d’approfondir la compréhension humaine de l’univers.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo propose un service de modèle conversationnel avec une API compatible OpenAI. Le modèle mimo-v2-flash prend en charge le raisonnement approfondi, la sortie en streaming, l’appel de fonctions, une fenêtre de contexte de 256K et une sortie maximale de 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) est une plateforme open source qui simplifie l’exécution et l’intégration de modèles IA. Elle permet d’exécuter localement ou dans le cloud des LLMs open source, des modèles d’embedding et multimodaux pour créer des applications IA puissantes.",
|
|
67
68
|
"zenmux.description": "ZenMux est une plateforme unifiée d’agrégation d’IA prenant en charge OpenAI, Anthropic, Google VertexAI et d’autres, avec un routage flexible pour gérer et basculer facilement entre les modèles.",
|
|
68
69
|
"zeroone.description": "01.AI mène une révolution IA 2.0 centrée sur l’humain, utilisant les LLMs pour créer de la valeur économique et sociale et bâtir de nouveaux écosystèmes et modèles économiques IA.",
|
|
@@ -382,6 +382,37 @@
|
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2 è un modello MoE efficiente per un'elaborazione conveniente.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B è il modello DeepSeek focalizzato sul codice con forte capacità di generazione.",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con punti di forza nella programmazione, capacità tecnica, comprensione del contesto e gestione di testi lunghi.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus è un LLM ottimizzato per terminali, sviluppato da DeepSeek e progettato specificamente per dispositivi a riga di comando.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 è il modello di pensiero profondo corrispondente alla versione Terminus, costruito per un ragionamento ad alte prestazioni.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 è un nuovo modello di ragionamento ibrido di DeepSeek, che supporta modalità di pensiero e non-pensiero, offrendo un'efficienza di pensiero superiore rispetto a DeepSeek-R1-0528. Le ottimizzazioni post-addestramento migliorano notevolmente l'uso degli strumenti da parte degli agenti e le prestazioni nei compiti. Supporta una finestra di contesto di 128k e fino a 64k token in output.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 è un modello di ragionamento di nuova generazione con capacità avanzate di ragionamento complesso e catene di pensiero, ideale per compiti che richiedono analisi approfondite.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduce l'attenzione sparsa per migliorare l'efficienza di addestramento e inferenza su testi lunghi, a un costo inferiore rispetto a deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think è un modello completo di pensiero profondo con capacità potenziate di ragionamento a catena lunga.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 è il primo modello di ragionamento ibrido di DeepSeek che integra il pensiero nell'uso degli strumenti. Combina un'architettura efficiente per ridurre il consumo computazionale, un apprendimento per rinforzo su larga scala per potenziare le capacità e dati sintetici su vasta scala per una forte generalizzazione. Le sue prestazioni sono paragonabili a GPT-5-High, con una lunghezza di output notevolmente ridotta, riducendo significativamente i costi computazionali e i tempi di attesa per l'utente.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 è un potente modello MoE con 671 miliardi di parametri totali e 37 miliardi attivi per token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small è una versione multimodale leggera, pensata per ambienti con risorse limitate e alta concorrenza.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 è un modello multimodale per la comprensione immagine-testo e domande visive dettagliate.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 è un modello MoE da 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 è un modello MoE da 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 è il modello di ragionamento ibrido a lungo contesto di DeepSeek, che supporta modalità miste di pensiero/non-pensiero e integrazione con strumenti.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 è il modello di ragionamento ibrido ad alte prestazioni di DeepSeek, progettato per compiti complessi e integrazione con strumenti.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 è una variante aggiornata focalizzata sulla disponibilità aperta e su un ragionamento più profondo.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento utilizzando un numero minimo di dati etichettati e genera una catena di pensiero prima della risposta finale per aumentare l'accuratezza.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B è un LLM distillato basato su Llama 3.3 70B, ottimizzato utilizzando gli output di DeepSeek R1 per raggiungere prestazioni competitive con i modelli di frontiera di grandi dimensioni.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B è un LLM distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando gli output di DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B è un LLM distillato basato su Qwen 2.5 14B, addestrato utilizzando gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati salienti:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nIl fine-tuning sugli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B è un LLM distillato basato su Qwen 2.5 32B, addestrato utilizzando gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati salienti:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nIl fine-tuning sugli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 è stato aggiornato a DeepSeek-R1-0528. Con maggiore potenza computazionale e ottimizzazioni algoritmiche post-addestramento, migliora significativamente la profondità e la capacità di ragionamento. Offre prestazioni elevate in benchmark di matematica, programmazione e logica generale, avvicinandosi a leader come o3 e Gemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 è l'ultimo modello open-source rilasciato dal team DeepSeek, con prestazioni di ragionamento molto elevate, in particolare in matematica, programmazione e compiti logici, comparabili a OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento utilizzando un numero minimo di dati etichettati e genera una catena di pensiero prima della risposta finale per aumentare l'accuratezza.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) è il modello sperimentale di ragionamento di DeepSeek, adatto a compiti di alta complessità.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base è una versione migliorata del modello DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Un LLM veloce e generico con capacità di ragionamento potenziate.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 rappresenta un importante progresso nella velocità di ragionamento rispetto ai modelli precedenti. Si posiziona al primo posto tra i modelli open-source e rivaleggia con i modelli chiusi più avanzati. DeepSeek-V3 adotta l'attenzione latente multi-testa (MLA) e l'architettura DeepSeekMoE, entrambe validate in DeepSeek-V2. Introduce inoltre una strategia ausiliaria lossless per il bilanciamento del carico e un obiettivo di addestramento con previsione multi-token per prestazioni superiori.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 è un modello di ragionamento guidato dall'apprendimento per rinforzo che affronta problemi di ripetizione e leggibilità. Prima dell'RL, utilizza dati di avvio a freddo per migliorare ulteriormente le prestazioni di ragionamento. È comparabile a OpenAI-o1 in matematica, programmazione e compiti logici, con un addestramento attentamente progettato che migliora i risultati complessivi.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B è distillato da Llama-3.3-70B-Instruct. Fa parte della serie DeepSeek-R1, è ottimizzato su campioni generati da DeepSeek-R1 e offre prestazioni elevate in matematica, programmazione e ragionamento.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B è distillato da Qwen2.5-14B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, offrendo un ragionamento solido.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B è distillato da Qwen2.5-32B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, eccellendo in matematica, programmazione e ragionamento.",
|
|
385
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
|
|
386
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
|
|
387
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
|
|
@@ -618,4 +649,4 @@
|
|
|
618
649
|
"zai/glm-4.5.description": "La serie GLM-4.5 è progettata per agenti. Il modello di punta GLM-4.5 combina ragionamento, programmazione e capacità agentiche con 355B parametri totali (32B attivi) e offre modalità operative doppie come sistema di ragionamento ibrido.",
|
|
619
650
|
"zai/glm-4.5v.description": "GLM-4.5V si basa su GLM-4.5-Air, ereditando le tecniche collaudate di GLM-4.1V-Thinking e scalando con una potente architettura MoE da 106B parametri.",
|
|
620
651
|
"zenmux/auto.description": "Il sistema di instradamento automatico ZenMux seleziona il modello con il miglior rapporto qualità/prezzo tra quelli supportati in base alla tua richiesta."
|
|
621
|
-
}
|
|
652
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "La piattaforma di servizi di modelli di ByteDance offre accesso sicuro, ricco di funzionalità e competitivo nei costi, oltre a strumenti end-to-end per dati, fine-tuning, inferenza e valutazione.",
|
|
64
64
|
"wenxin.description": "Una piattaforma aziendale all-in-one per modelli fondamentali e sviluppo di app AI-native, che offre strumenti end-to-end per flussi di lavoro di modelli e applicazioni generative.",
|
|
65
65
|
"xai.description": "xAI sviluppa intelligenza artificiale per accelerare la scoperta scientifica, con la missione di approfondire la comprensione dell'universo da parte dell'umanità.",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo offre un servizio di modelli conversazionali con un'API compatibile con OpenAI. Il modello mimo-v2-flash supporta il ragionamento avanzato, l'output in streaming, le chiamate di funzione, una finestra di contesto di 256K e una produzione massima di 128K.",
|
|
66
67
|
"xinference.description": "Xorbits Inference (Xinference) è una piattaforma open-source che semplifica l'esecuzione e l'integrazione di modelli AI. Consente di eseguire LLM open-source, modelli di embedding e modelli multimodali localmente o nel cloud per costruire potenti app AI.",
|
|
67
68
|
"zenmux.description": "ZenMux è una piattaforma unificata di aggregazione AI che supporta OpenAI, Anthropic, Google VertexAI e altri, con instradamento flessibile per gestire e cambiare modelli facilmente.",
|
|
68
69
|
"zeroone.description": "01.AI guida una rivoluzione AI 2.0 centrata sull'uomo, utilizzando LLM per creare valore economico e sociale e costruire nuovi ecosistemi e modelli di business AI.",
|
|
@@ -413,6 +413,7 @@
|
|
|
413
413
|
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70Bは、Llama-3.3-70B-Instructから蒸留されたモデルで、DeepSeek-R1シリーズの一部として、DeepSeek-R1が生成したサンプルでファインチューニングされ、数学、コーディング、推論において高い性能を発揮します。",
|
|
414
414
|
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bから蒸留され、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされ、強力な推論能力を発揮します。",
|
|
415
415
|
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bから蒸留され、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされ、数学、コーディング、推論において卓越した性能を発揮します。",
|
|
416
|
+
"devstral-2:123b.description": "Devstral 2 123B は、ツールを活用してコードベースを探索し、複数ファイルを編集し、ソフトウェアエンジニアリングエージェントを支援することに優れています。",
|
|
416
417
|
"gemini-flash-latest.description": "Gemini Flash の最新リリース",
|
|
417
418
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
|
|
418
419
|
"gemini-pro-latest.description": "Gemini Pro の最新リリース",
|
|
@@ -644,4 +645,4 @@
|
|
|
644
645
|
"zai/glm-4.5.description": "GLM-4.5シリーズはエージェント向けに設計されており、フラッグシップのGLM-4.5は推論、コーディング、エージェントスキルを統合し、355B総パラメータ(32Bアクティブ)を持つハイブリッド推論システムとしてデュアル動作モードを提供します。",
|
|
645
646
|
"zai/glm-4.5v.description": "GLM-4.5Vは、GLM-4.5-Airをベースに、実績あるGLM-4.1V-Thinking技術を継承し、強力な106BパラメータのMoEアーキテクチャでスケーリングされています。",
|
|
646
647
|
"zenmux/auto.description": "ZenMuxの自動ルーティングは、リクエストに基づいて最もコストパフォーマンスと性能に優れた対応モデルを選択します。"
|
|
647
|
-
}
|
|
648
|
+
}
|
|
@@ -63,6 +63,7 @@
|
|
|
63
63
|
"volcengine.description": "ByteDanceのモデルサービスプラットフォームで、安全性が高く、機能豊富でコスト競争力のあるモデルアクセスと、データ、ファインチューニング、推論、評価のエンドツーエンドツールを提供します。",
|
|
64
64
|
"wenxin.description": "Wenxinは、基盤モデルとAIネイティブアプリ開発のための企業向けオールインワンプラットフォームで、生成AIモデルとアプリケーションのワークフローを支えるエンドツーエンドツールを提供します。",
|
|
65
65
|
"xai.description": "xAIは、科学的発見を加速し、人類の宇宙理解を深めることを使命とするAIを開発しています。",
|
|
66
|
+
"xiaomimimo.description": "Xiaomi MiMo は、OpenAI 互換の API を備えた会話型モデルサービスを提供します。mimo-v2-flash モデルは、高度な推論、ストリーミング出力、関数呼び出し、256K のコンテキストウィンドウ、および最大 128K の出力に対応しています。",
|
|
66
67
|
"xinference.description": "Xorbits Inference(Xinference)は、AIモデルの実行と統合を簡素化するオープンソースプラットフォームで、オープンソースLLM、埋め込みモデル、マルチモーダルモデルをローカルまたはクラウドで実行し、強力なAIアプリを構築できます。",
|
|
67
68
|
"zenmux.description": "ZenMuxは、OpenAI、Anthropic、Google VertexAIなどをサポートする統合AI集約プラットフォームで、柔軟なルーティングによりモデルの切り替えと管理が容易です。",
|
|
68
69
|
"zeroone.description": "01.AIは、人間中心のAI 2.0革命を推進し、LLMを活用して経済的・社会的価値を創出し、新たなAIエコシステムとビジネスモデルを構築します。",
|