@lobehub/lobehub 2.0.0-next.205 → 2.0.0-next.206
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/components.json +4 -0
- package/locales/ar/models.json +25 -126
- package/locales/bg-BG/components.json +4 -0
- package/locales/bg-BG/models.json +2 -2
- package/locales/de-DE/components.json +4 -0
- package/locales/de-DE/models.json +21 -120
- package/locales/en-US/components.json +4 -0
- package/locales/es-ES/components.json +4 -0
- package/locales/es-ES/models.json +24 -180
- package/locales/fa-IR/components.json +4 -0
- package/locales/fa-IR/models.json +2 -2
- package/locales/fr-FR/components.json +4 -0
- package/locales/fr-FR/models.json +2 -108
- package/locales/it-IT/components.json +4 -0
- package/locales/it-IT/models.json +22 -51
- package/locales/ja-JP/components.json +4 -0
- package/locales/ja-JP/models.json +16 -133
- package/locales/ko-KR/components.json +4 -0
- package/locales/ko-KR/models.json +26 -148
- package/locales/nl-NL/components.json +4 -0
- package/locales/nl-NL/models.json +2 -2
- package/locales/pl-PL/components.json +4 -0
- package/locales/pl-PL/models.json +2 -2
- package/locales/pt-BR/components.json +4 -0
- package/locales/pt-BR/models.json +49 -125
- package/locales/ru-RU/components.json +4 -0
- package/locales/ru-RU/models.json +17 -96
- package/locales/tr-TR/components.json +4 -0
- package/locales/tr-TR/models.json +28 -57
- package/locales/vi-VN/components.json +4 -0
- package/locales/vi-VN/models.json +1 -92
- package/locales/zh-CN/components.json +4 -0
- package/locales/zh-CN/models.json +31 -165
- package/locales/zh-TW/components.json +4 -0
- package/locales/zh-TW/models.json +2 -2
- package/package.json +1 -1
- package/packages/utils/src/object.test.ts +10 -2
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
- package/src/features/ModelSwitchPanel/index.tsx +392 -41
- package/src/locales/default/components.ts +4 -0
- package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
- package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
- package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
- package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,31 @@
|
|
|
2
2
|
|
|
3
3
|
# Changelog
|
|
4
4
|
|
|
5
|
+
## [Version 2.0.0-next.206](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.205...v2.0.0-next.206)
|
|
6
|
+
|
|
7
|
+
<sup>Released on **2026-01-04**</sup>
|
|
8
|
+
|
|
9
|
+
#### 🐛 Bug Fixes
|
|
10
|
+
|
|
11
|
+
- **misc**: Fix data inconsistency in ai provider config.
|
|
12
|
+
|
|
13
|
+
<br/>
|
|
14
|
+
|
|
15
|
+
<details>
|
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
|
17
|
+
|
|
18
|
+
#### What's fixed
|
|
19
|
+
|
|
20
|
+
- **misc**: Fix data inconsistency in ai provider config, closes [#11198](https://github.com/lobehub/lobe-chat/issues/11198) ([f8346f2](https://github.com/lobehub/lobe-chat/commit/f8346f2))
|
|
21
|
+
|
|
22
|
+
</details>
|
|
23
|
+
|
|
24
|
+
<div align="right">
|
|
25
|
+
|
|
26
|
+
[](#readme-top)
|
|
27
|
+
|
|
28
|
+
</div>
|
|
29
|
+
|
|
5
30
|
## [Version 2.0.0-next.205](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.204...v2.0.0-next.205)
|
|
6
31
|
|
|
7
32
|
<sup>Released on **2026-01-04**</sup>
|
package/changelog/v1.json
CHANGED
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "يدعم هذا النموذج التعرف على الفيديو",
|
|
93
93
|
"ModelSelect.featureTag.vision": "يدعم هذا النموذج التعرف البصري.",
|
|
94
94
|
"ModelSelect.removed": "النموذج غير موجود في القائمة. سيتم حذفه تلقائيًا إذا تم إلغاء تحديده.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "حسب النموذج",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "حسب المزوّد",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "لا يوجد نموذج مفعل. يرجى الذهاب إلى الإعدادات لتفعيله.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "لا يوجد مزود مفعل. يرجى الذهاب إلى الإعدادات لتفعيل أحدهم.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "الذهاب إلى الإعدادات",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "إدارة المزوّد",
|
|
98
101
|
"ModelSwitchPanel.provider": "المزود",
|
|
99
102
|
"ModelSwitchPanel.title": "النموذج",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "استخدم هذا النموذج من:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "انقر أو اسحب لتحميل المزيد",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "تم",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "جديد",
|
package/locales/ar/models.json
CHANGED
|
@@ -103,7 +103,7 @@
|
|
|
103
103
|
"Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 هو نموذج MoE يحتوي على 671 مليار معلمة، يستخدم MLA وDeepSeekMoE مع توازن تحميل خالٍ من الفقدان لتحقيق كفاءة في الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون رمز عالي الجودة وتم تحسينه باستخدام SFT وRL، متفوقًا على النماذج المفتوحة الأخرى ويقترب من النماذج المغلقة الرائدة.",
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 هو أحدث وأقوى إصدار من Kimi K2. إنه نموذج MoE من الدرجة الأولى يحتوي على إجمالي 1 تريليون و32 مليار معلمة نشطة. من أبرز ميزاته الذكاء البرمجي القوي مع تحسينات كبيرة في المعايير ومهام الوكلاء الواقعية، بالإضافة إلى تحسينات في جمالية واجهة الشيفرة وسهولة الاستخدام.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo هو إصدار Turbo محسّن لسرعة الاستدلال والإنتاجية مع الحفاظ على قدرات التفكير متعدد الخطوات واستخدام الأدوات في K2 Thinking. إنه نموذج MoE يحتوي على حوالي 1 تريليون معلمة إجمالية، ويدعم سياقًا أصليًا بطول 256 ألف رمز، واستدعاء أدوات واسع النطاق ومستقر لسيناريوهات الإنتاج التي تتطلب زمن استجابة وتزامنًا صارمين.",
|
|
106
|
-
"Pro/zai-org/glm-4.7.description": "GLM-4.7 هو النموذج الرائد من الجيل الجديد لشركة Zhipu،
|
|
106
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 هو النموذج الرائد من الجيل الجديد لشركة Zhipu، بإجمالي 355 مليار معلمة و32 مليار معلمة نشطة. يقدم تحسينات شاملة في الحوار العام، الاستدلال، وقدرات الوكلاء الذكية. يعزز GLM-4.7 مفهوم التفكير المتداخل (Interleaved Thinking)، ويقدم مفهومي التفكير المحفوظ (Preserved Thinking) والتفكير على مستوى الدور (Turn-level Thinking).",
|
|
107
107
|
"QwQ-32B-Preview.description": "Qwen QwQ هو نموذج بحث تجريبي يركز على تحسين الاستدلال.",
|
|
108
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview هو نموذج بحث من Qwen يركز على الاستدلال البصري، يتميز بفهم المشاهد المعقدة وحل مسائل الرياضيات البصرية.",
|
|
109
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ هو نموذج بحث تجريبي يركز على تحسين استدلال الذكاء الاصطناعي.",
|
|
@@ -271,20 +271,22 @@
|
|
|
271
271
|
"chatgpt-4o-latest.description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الفعلي، يجمع بين الفهم العميق والقدرة على التوليد لتلبية احتياجات الاستخدام الواسعة مثل دعم العملاء والتعليم والدعم الفني.",
|
|
272
272
|
"claude-2.0.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
|
|
273
273
|
"claude-2.1.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
|
|
274
|
-
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل التالي
|
|
274
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل التالي لشركة Anthropic. مقارنةً بـ Claude 3 Haiku، فإنه يقدم تحسينات في المهارات ويتفوق على النموذج الأكبر السابق Claude 3 Opus في العديد من اختبارات الذكاء.",
|
|
275
275
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haiku يقدم استجابات سريعة للمهام الخفيفة.",
|
|
276
|
-
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet هو أذكى نموذج من Anthropic وأول نموذج
|
|
276
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet هو أذكى نموذج من Anthropic وأول نموذج استدلال هجين في السوق. يمكنه تقديم ردود شبه فورية أو استدلال تدريجي مرئي للمستخدم. يتميز Sonnet بقوة خاصة في البرمجة، علم البيانات، الرؤية، ومهام الوكلاء.",
|
|
277
277
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم العميق.",
|
|
278
278
|
"claude-3-haiku-20240307.description": "Claude 3 Haiku هو أسرع وأصغر نموذج من Anthropic، مصمم لتقديم استجابات شبه فورية بأداء سريع ودقيق.",
|
|
279
279
|
"claude-3-opus-20240229.description": "Claude 3 Opus هو أقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
|
|
280
280
|
"claude-3-sonnet-20240229.description": "Claude 3 Sonnet يوازن بين الذكاء والسرعة لتلبية احتياجات المؤسسات، ويوفر فائدة عالية بتكلفة أقل ونشر موثوق على نطاق واسع.",
|
|
281
|
-
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 هو أسرع وأذكى نموذج Haiku من Anthropic، يتميز بسرعة
|
|
281
|
+
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 هو أسرع وأذكى نموذج Haiku من Anthropic، يتميز بسرعة فائقة وقدرة استدلال ممتدة.",
|
|
282
282
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking هو إصدار متقدم يمكنه عرض عملية تفكيره.",
|
|
283
283
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1 هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
|
|
284
284
|
"claude-opus-4-20250514.description": "Claude Opus 4 هو أقوى نموذج من Anthropic للمهام المعقدة للغاية، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم العميق.",
|
|
285
|
+
"claude-opus-4-20250514.description": "Claude Opus 4 هو أقوى نموذج من Anthropic للمهام المعقدة للغاية، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم العميق.",
|
|
285
286
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5 هو النموذج الرائد من Anthropic، يجمع بين الذكاء الاستثنائي والأداء القابل للتوسع، مثالي للمهام المعقدة التي تتطلب استجابات عالية الجودة وتفكير متقدم.",
|
|
286
287
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking يمكنه تقديم استجابات شبه فورية أو تفكير متسلسل مرئي.",
|
|
287
288
|
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 يمكنه تقديم ردود شبه فورية أو تفكير تدريجي مرئي بخطوات واضحة.",
|
|
289
|
+
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 يمكنه تقديم ردود شبه فورية أو تفكير تدريجي مرئي بخطوات واضحة.",
|
|
288
290
|
"claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 هو أذكى نموذج من Anthropic حتى الآن.",
|
|
289
291
|
"codegeex-4.description": "CodeGeeX-4 هو مساعد برمجة ذكي يدعم الأسئلة والأجوبة متعددة اللغات وإكمال الشيفرة لزيادة إنتاجية المطورين.",
|
|
290
292
|
"codegeex4-all-9b.description": "CodeGeeX4-ALL-9B هو نموذج توليد شيفرة متعدد اللغات يدعم الإكمال والتوليد، تفسير الشيفرة، البحث عبر الإنترنت، استدعاء الوظائف، وأسئلة وأجوبة على مستوى المستودع، ويغطي مجموعة واسعة من سيناريوهات تطوير البرمجيات. يُعد من أفضل نماذج الشيفرة تحت 10B.",
|
|
@@ -355,7 +357,7 @@
|
|
|
355
357
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 هو نموذج تفكير من الجيل التالي يتمتع بقدرات أقوى في التفكير المعقد وسلسلة التفكير لمهام التحليل العميق.",
|
|
356
358
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 هو نموذج تفكير من الجيل التالي يتمتع بقدرات أقوى في التفكير المعقد وسلسلة التفكير لمهام التحليل العميق.",
|
|
357
359
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 هو نموذج رؤية-لغة MoE يعتمد على DeepSeekMoE-27B مع تنشيط متفرق، ويحقق أداءً قويًا باستخدام 4.5 مليار معلمة نشطة فقط. يتميز في الأسئلة البصرية، وOCR، وفهم المستندات/الجداول/المخططات، والتأريض البصري.",
|
|
358
|
-
"deepseek-chat.description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة والبرمجية. يحافظ على حوار النموذج العام وقوة نموذج
|
|
360
|
+
"deepseek-chat.description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة والبرمجية. يحافظ على حوار النموذج العام وقوة البرمجة في نموذج المبرمج، مع تحسين توافق التفضيلات. كما يعزز DeepSeek-V2.5 قدرات الكتابة واتباع التعليمات.",
|
|
359
361
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B هو نموذج لغة برمجية تم تدريبه على 2 تريليون رمز (87٪ كود، 13٪ نص صيني/إنجليزي). يقدم نافذة سياق 16K ومهام الإكمال في المنتصف، ويوفر إكمال كود على مستوى المشاريع وملء مقاطع الكود.",
|
|
360
362
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 هو نموذج كود MoE مفتوح المصدر يتميز بأداء قوي في مهام البرمجة، ويضاهي GPT-4 Turbo.",
|
|
361
363
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 هو نموذج كود MoE مفتوح المصدر يتميز بأداء قوي في مهام البرمجة، ويضاهي GPT-4 Turbo.",
|
|
@@ -379,139 +381,36 @@
|
|
|
379
381
|
"deepseek-r1-online.description": "الإصدار الكامل من DeepSeek R1 مع 671 مليار معلمة وبحث ويب في الوقت الحقيقي، يوفر فهمًا وتوليدًا أقوى.",
|
|
380
382
|
"deepseek-r1.description": "يستخدم DeepSeek-R1 بيانات البداية الباردة قبل التعلم المعزز ويؤدي أداءً مماثلًا لـ OpenAI-o1 في الرياضيات، والبرمجة، والتفكير.",
|
|
381
383
|
"deepseek-reasoner.description": "وضع التفكير في DeepSeek V3.2 ينتج سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
384
|
+
"deepseek-reasoner.description": "وضع التفكير في DeepSeek V3.2 ينتج سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
382
385
|
"deepseek-v2.description": "DeepSeek V2 هو نموذج MoE فعال لمعالجة منخفضة التكلفة.",
|
|
383
386
|
"deepseek-v2:236b.description": "DeepSeek V2 236B هو نموذج DeepSeek الموجه للبرمجة مع قدرات قوية في توليد الكود.",
|
|
384
387
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 هو نموذج MoE يحتوي على 671 مليار معلمة يتميز بقوة في البرمجة، والقدرات التقنية، وفهم السياق، والتعامل مع النصوص الطويلة.",
|
|
385
|
-
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus هو نموذج لغوي كبير محسّن للأجهزة الطرفية،
|
|
386
|
-
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 هو
|
|
387
|
-
"deepseek-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد من DeepSeek، يدعم أوضاع التفكير وغير التفكير، ويوفر كفاءة تفكير أعلى من DeepSeek-R1-0528. التحسينات بعد التدريب تعزز بشكل كبير استخدام أدوات الوكلاء وأداء المهام. يدعم نافذة سياق
|
|
388
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus هو نموذج لغوي كبير محسّن للأجهزة الطرفية، مصمم خصيصًا لأجهزة الطرفية.",
|
|
389
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 هو النموذج العميق للتفكير المقابل لإصدار Terminus، مصمم للاستدلال عالي الأداء.",
|
|
390
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد من DeepSeek، يدعم أوضاع التفكير وغير التفكير، ويوفر كفاءة تفكير أعلى من DeepSeek-R1-0528. التحسينات بعد التدريب تعزز بشكل كبير استخدام أدوات الوكلاء وأداء المهام. يدعم نافذة سياق 128k وما يصل إلى 64k من الرموز الناتجة.",
|
|
388
391
|
"deepseek-v3.1:671b.description": "DeepSeek V3.1 هو نموذج استدلال من الجيل التالي مع تحسينات في الاستدلال المعقد وسلسلة الأفكار، مناسب للمهام التي تتطلب تحليلاً عميقًا.",
|
|
389
392
|
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp يقدم انتباهاً متفرقاً لتحسين كفاءة التدريب والاستدلال على النصوص الطويلة، بسعر أقل من deepseek-v3.1.",
|
|
390
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think هو نموذج تفكير عميق كامل
|
|
393
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think هو نموذج تفكير عميق كامل يتميز باستدلال طويل السلسلة أقوى.",
|
|
391
394
|
"deepseek-v3.2.description": "DeepSeek-V3.2 هو أول نموذج استدلال هجين من DeepSeek يدمج التفكير مع استخدام الأدوات. يستخدم بنية فعالة لتقليل استهلاك الحوسبة، ويعزز القدرات من خلال التعلم المعزز واسع النطاق وبيانات مهام تركيبية ضخمة. يجمع بين هذه العناصر لتحقيق أداء يقارب GPT-5-High، مع تقليل كبير في طول الإخراج، مما يقلل من التكاليف والوقت المنتظر للمستخدم.",
|
|
392
|
-
"deepseek-v3.description": "DeepSeek-V3 هو نموذج MoE قوي
|
|
393
|
-
"deepseek-vl2-small.description": "DeepSeek VL2 Small هو إصدار متعدد الوسائط خفيف الوزن
|
|
395
|
+
"deepseek-v3.description": "DeepSeek-V3 هو نموذج MoE قوي بإجمالي 671 مليار معلمة و37 مليار معلمة نشطة لكل رمز.",
|
|
396
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small هو إصدار متعدد الوسائط خفيف الوزن للاستخدام في البيئات ذات الموارد المحدودة أو التزامن العالي.",
|
|
394
397
|
"deepseek-vl2.description": "DeepSeek VL2 هو نموذج متعدد الوسائط لفهم النصوص والصور والإجابة البصرية الدقيقة.",
|
|
395
398
|
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 هو نموذج MoE يحتوي على 685 مليار معلمة، وهو أحدث إصدار من سلسلة دردشة DeepSeek الرائدة.\n\nيعتمد على [DeepSeek V3](/deepseek/deepseek-chat-v3) ويؤدي أداءً قويًا عبر المهام.",
|
|
396
399
|
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 هو نموذج MoE يحتوي على 685 مليار معلمة، وهو أحدث إصدار من سلسلة دردشة DeepSeek الرائدة.\n\nيعتمد على [DeepSeek V3](/deepseek/deepseek-chat-v3) ويؤدي أداءً قويًا عبر المهام.",
|
|
397
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين طويل السياق من DeepSeek، يدعم أوضاع التفكير وغير التفكير
|
|
398
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3 هو نموذج استدلال هجين عالي الأداء من DeepSeek للمهام المعقدة
|
|
400
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين طويل السياق من DeepSeek، يدعم أوضاع التفكير وغير التفكير ودمج الأدوات.",
|
|
401
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 هو نموذج استدلال هجين عالي الأداء من DeepSeek للمهام المعقدة ودمج الأدوات.",
|
|
399
402
|
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 هو إصدار محدث يركز على الإتاحة المفتوحة والاستدلال الأعمق.",
|
|
400
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1
|
|
401
|
-
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B هو نموذج مكرر
|
|
402
|
-
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B هو نموذج مكرر
|
|
403
|
-
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B هو نموذج مكرر
|
|
404
|
-
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B هو نموذج مكرر
|
|
403
|
+
"deepseek/deepseek-r1-0528:free.description": "يحسن DeepSeek-R1 الاستدلال بشكل كبير باستخدام بيانات معنونة قليلة، ويخرج سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B هو نموذج LLM مكرر يعتمد على Llama 3.3 70B، تم تحسينه باستخدام مخرجات DeepSeek R1 لتحقيق أداء تنافسي مع النماذج الرائدة.",
|
|
405
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B هو نموذج LLM مكرر يعتمد على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1.",
|
|
406
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B هو نموذج LLM مكرر يعتمد على Qwen 2.5 14B، تم تدريبه باستخدام مخرجات DeepSeek R1. يتفوق على OpenAI o1-mini في العديد من المعايير، ويحقق نتائج رائدة بين النماذج الكثيفة.",
|
|
407
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B هو نموذج LLM مكرر يعتمد على Qwen 2.5 32B، تم تدريبه باستخدام مخرجات DeepSeek R1. يتفوق على OpenAI o1-mini في العديد من المعايير، ويحقق نتائج رائدة بين النماذج الكثيفة.",
|
|
405
408
|
"deepseek/deepseek-r1.description": "تم تحديث DeepSeek R1 إلى DeepSeek-R1-0528. مع موارد حوسبة أكبر وتحسينات خوارزمية بعد التدريب، يعزز بشكل كبير عمق وقدرة الاستدلال. يؤدي أداءً قويًا في اختبارات الرياضيات، البرمجة، والمنطق العام، ويقترب من نماذج رائدة مثل o3 وGemini 2.5 Pro.",
|
|
406
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1 هو أحدث نموذج مفتوح المصدر من فريق DeepSeek،
|
|
407
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1
|
|
408
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) هو نموذج استدلال تجريبي من DeepSeek، مناسب للمهام
|
|
409
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 هو أحدث نموذج مفتوح المصدر من فريق DeepSeek، يتميز بأداء استدلال قوي، خاصة في الرياضيات، البرمجة، ومهام التفكير، ويقارن بـ OpenAI o1.",
|
|
410
|
+
"deepseek/deepseek-r1:free.description": "يحسن DeepSeek-R1 الاستدلال بشكل كبير باستخدام بيانات معنونة قليلة، ويخرج سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
411
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) هو نموذج استدلال تجريبي من DeepSeek، مناسب للمهام المعقدة.",
|
|
409
412
|
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base هو إصدار محسّن من نموذج DeepSeek V3.",
|
|
410
413
|
"deepseek/deepseek-v3.description": "نموذج لغوي عام سريع مع استدلال محسّن.",
|
|
411
|
-
"deepseek/deepseek-v3/community.description": "يقدم DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج مفتوحة المصدر ويضاهي النماذج المغلقة المتقدمة. يستخدم DeepSeek-V3 انتباهًا كامنًا متعدد الرؤوس (MLA) وبنية DeepSeekMoE، وكلاهما تم التحقق منه بالكامل في DeepSeek-V2. كما يقدم استراتيجية مساعدة بدون فقدان لتحقيق توازن في التحميل وهدف تدريب لتنبؤ متعدد الرموز لأداء أقوى.",
|
|
412
|
-
"deepseek_r1.description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز يعالج مشكلات التكرار وقابلية القراءة. قبل التعلم المعزز، يستخدم بيانات بدء باردة لتحسين أداء الاستدلال. يضاهي OpenAI-o1 في مهام الرياضيات، البرمجة، والتفكير، مع تدريب مصمم بعناية لتحسين النتائج العامة.",
|
|
413
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B هو نسخة مكررة من Llama-3.3-70B-Instruct. كجزء من سلسلة DeepSeek-R1، تم تحسينه باستخدام عينات تم إنشاؤها بواسطة DeepSeek-R1 ويؤدي أداءً قويًا في الرياضيات، البرمجة، والتفكير.",
|
|
414
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B هو نسخة مكررة من Qwen2.5-14B وتم تحسينه باستخدام 800 ألف عينة منسقة تم إنشاؤها بواسطة DeepSeek-R1، ويقدم استدلالًا قويًا.",
|
|
415
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B هو نسخة مكررة من Qwen2.5-32B وتم تحسينه باستخدام 800 ألف عينة منسقة تم إنشاؤها بواسطة DeepSeek-R1، ويتفوق في الرياضيات، البرمجة، والتفكير.",
|
|
416
|
-
"devstral-2:123b.description": "Devstral 2 123B يتفوق في استخدام الأدوات لاستكشاف قواعد الشيفرة، وتحرير ملفات متعددة، ودعم وكلاء هندسة البرمجيات.",
|
|
417
|
-
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite هو نموذج خفيف الوزن جديد يتميز باستجابة فائقة السرعة وجودة عالية وأداء منخفض الكمون.",
|
|
418
|
-
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k هو ترقية شاملة لـ Doubao-1.5-Pro، يحسن الأداء العام بنسبة 10٪. يدعم نافذة سياق 256k وما يصل إلى 12k من رموز الإخراج، مما يوفر أداءً أعلى ونافذة أكبر وقيمة قوية لحالات الاستخدام الأوسع.",
|
|
419
|
-
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro هو نموذج رائد من الجيل الجديد يتميز بترقيات شاملة، ويتفوق في المعرفة والبرمجة والاستدلال.",
|
|
420
|
-
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 هو نموذج استدلال عميق جديد (الإصدار m يدعم الاستدلال متعدد الوسائط أصليًا) يتفوق في الرياضيات والبرمجة والاستدلال العلمي والمهام العامة مثل الكتابة الإبداعية. يحقق أو يقترب من نتائج رائدة في معايير مثل AIME 2024 وCodeforces وGPQA. يدعم نافذة سياق 128k وما يصل إلى 16k من رموز الإخراج.",
|
|
421
|
-
"doubao-1.5-thinking-pro.description": "Doubao-1.5 هو نموذج استدلال عميق جديد يتفوق في الرياضيات والبرمجة والاستدلال العلمي والمهام العامة مثل الكتابة الإبداعية. يحقق أو يقترب من نتائج رائدة في معايير مثل AIME 2024 وCodeforces وGPQA. يدعم نافذة سياق 128k وما يصل إلى 16k من رموز الإخراج.",
|
|
422
|
-
"doubao-1.5-thinking-vision-pro.description": "نموذج استدلال بصري عميق جديد يتمتع بفهم واستدلال متعدد الوسائط أقوى، ويحقق نتائج متقدمة في 37 من أصل 59 معيارًا عامًا.",
|
|
423
|
-
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS هو نموذج وكيل يركز على واجهات المستخدم الرسومية، يتفاعل بسلاسة مع الواجهات من خلال الإدراك البشري والاستدلال والعمل.",
|
|
424
|
-
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite هو نموذج متعدد الوسائط مطور يدعم الصور بأي دقة ونسب أبعاد متطرفة، مما يعزز الاستدلال البصري والتعرف على المستندات وفهم التفاصيل واتباع التعليمات. يدعم نافذة سياق 128k وما يصل إلى 16k من رموز الإخراج.",
|
|
425
|
-
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro هو نموذج متعدد الوسائط مطور يدعم الصور بأي دقة ونسب أبعاد متطرفة، مما يعزز الاستدلال البصري والتعرف على المستندات وفهم التفاصيل واتباع التعليمات.",
|
|
426
|
-
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro هو نموذج متعدد الوسائط مطور يدعم الصور بأي دقة ونسب أبعاد متطرفة، مما يعزز الاستدلال البصري والتعرف على المستندات وفهم التفاصيل واتباع التعليمات.",
|
|
427
|
-
"doubao-lite-128k.description": "استجابة فائقة السرعة مع قيمة أفضل، يوفر خيارات أكثر مرونة عبر السيناريوهات. يدعم الاستدلال والتخصيص الدقيق مع نافذة سياق 128k.",
|
|
428
|
-
"doubao-lite-32k.description": "استجابة فائقة السرعة مع قيمة أفضل، يوفر خيارات أكثر مرونة عبر السيناريوهات. يدعم الاستدلال والتخصيص الدقيق مع نافذة سياق 32k.",
|
|
429
|
-
"doubao-lite-4k.description": "استجابة فائقة السرعة مع قيمة أفضل، يوفر خيارات أكثر مرونة عبر السيناريوهات. يدعم الاستدلال والتخصيص الدقيق مع نافذة سياق 4k.",
|
|
430
|
-
"doubao-pro-256k.description": "أفضل نموذج رائد للأداء في المهام المعقدة، يحقق نتائج قوية في الأسئلة المرجعية والتلخيص والإبداع وتصنيف النصوص والمحاكاة. يدعم الاستدلال والتخصيص الدقيق مع نافذة سياق 256k.",
|
|
431
|
-
"doubao-pro-32k.description": "أفضل نموذج رائد للأداء في المهام المعقدة، يحقق نتائج قوية في الأسئلة المرجعية والتلخيص والإبداع وتصنيف النصوص والمحاكاة. يدعم الاستدلال والتخصيص الدقيق مع نافذة سياق 32k.",
|
|
432
|
-
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash هو نموذج استدلال عميق متعدد الوسائط فائق السرعة بزمن استجابة منخفض يصل إلى 10 مللي ثانية. يدعم النصوص والرؤية، ويتفوق على النموذج الخفيف السابق في فهم النصوص، ويضاهي النماذج الاحترافية المنافسة في الرؤية. يدعم نافذة سياق 256k وما يصل إلى 16k من رموز الإخراج.",
|
|
433
|
-
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite هو نموذج استدلال عميق متعدد الوسائط جديد مع جهد استدلال قابل للتعديل (أدنى، منخفض، متوسط، مرتفع)، يوفر قيمة أفضل وخيارًا قويًا للمهام الشائعة، مع نافذة سياق تصل إلى 256k.",
|
|
434
|
-
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6 يعزز الاستدلال بشكل كبير، ويحسن القدرات الأساسية في البرمجة والرياضيات والمنطق مقارنة بـ Doubao-1.5-thinking-pro، مع إضافة فهم بصري. يدعم نافذة سياق 256k وما يصل إلى 16k من رموز الإخراج.",
|
|
435
|
-
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision هو نموذج استدلال بصري يقدم فهمًا واستدلالًا متعدد الوسائط أقوى للتعليم، مراجعة الصور، الفحص/الأمن، وأسئلة وأجوبة البحث بالذكاء الاصطناعي. يدعم نافذة سياق 256k وما يصل إلى 64k من رموز الإخراج.",
|
|
436
|
-
"doubao-seed-1.6.description": "Doubao-Seed-1.6 هو نموذج استدلال عميق متعدد الوسائط جديد مع أوضاع تلقائية، تفكير، وغير تفكير. في وضع غير التفكير، يتفوق بشكل كبير على Doubao-1.5-pro/250115. يدعم نافذة سياق 256k وما يصل إلى 16k من رموز الإخراج.",
|
|
437
|
-
"doubao-seed-1.8.description": "Doubao-Seed-1.8 يتمتع بقدرات أقوى في الفهم متعدد الوسائط والقدرات الوكيلة، ويدعم إدخال النصوص/الصور/الفيديو مع تخزين السياق، مما يوفر أداءً متميزًا في المهام المعقدة.",
|
|
438
|
-
"doubao-seed-code.description": "Doubao-Seed-Code مُحسَّن بعمق للبرمجة الوكيلة، يدعم إدخالات متعددة الوسائط (نص/صورة/فيديو) ونافذة سياق 256k، متوافق مع واجهة Anthropic API، ومناسب للبرمجة وفهم الرؤية وسير العمل الوكيلة.",
|
|
439
|
-
"doubao-seededit-3-0-i2i-250628.description": "نموذج الصور Doubao من ByteDance Seed يدعم إدخال النصوص والصور مع توليد صور عالية الجودة وقابلة للتحكم بدرجة كبيرة. يدعم تحرير الصور الموجه بالنص، مع أحجام إخراج تتراوح بين 512 و1536 على الجانب الطويل.",
|
|
440
|
-
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 هو نموذج توليد صور من ByteDance Seed، يدعم إدخال النصوص والصور مع توليد صور عالية الجودة وقابلة للتحكم بدرجة كبيرة. يولد الصور من التعليمات النصية.",
|
|
441
|
-
"doubao-seedream-4-0-250828.description": "Seedream 4.0 هو نموذج توليد صور من ByteDance Seed، يدعم إدخال النصوص والصور مع توليد صور عالية الجودة وقابلة للتحكم بدرجة كبيرة. يولد الصور من التعليمات النصية.",
|
|
442
|
-
"doubao-vision-lite-32k.description": "Doubao-vision هو نموذج متعدد الوسائط من Doubao يتمتع بفهم قوي للصور واستدلال دقيق واتباع دقيق للتعليمات. يقدم أداءً ممتازًا في استخراج النصوص من الصور ومهام الاستدلال المعتمد على الصور، مما يتيح سيناريوهات أسئلة وأجوبة بصرية أكثر تعقيدًا واتساعًا.",
|
|
443
|
-
"doubao-vision-pro-32k.description": "Doubao-vision هو نموذج متعدد الوسائط من Doubao يتمتع بفهم قوي للصور واستدلال دقيق واتباع دقيق للتعليمات. يقدم أداءً ممتازًا في استخراج النصوص من الصور ومهام الاستدلال المعتمد على الصور، مما يتيح سيناريوهات أسئلة وأجوبة بصرية أكثر تعقيدًا واتساعًا.",
|
|
444
|
-
"emohaa.description": "Emohaa هو نموذج للصحة النفسية يتمتع بقدرات استشارية احترافية لمساعدة المستخدمين على فهم القضايا العاطفية.",
|
|
445
|
-
"ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B هو نموذج مفتوح المصدر وخفيف الوزن مصمم للنشر المحلي والمخصص.",
|
|
446
|
-
"ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B هو نموذج مفتوح المصدر ذو عدد كبير من المعلمات يتمتع بقدرات قوية في الفهم والتوليد.",
|
|
447
|
-
"ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B هو نموذج MoE فائق الحجم من Baidu ERNIE يتميز بقدرات استدلال ممتازة.",
|
|
448
|
-
"ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview هو نموذج معاينة بسياق 8K لتقييم أداء ERNIE 4.5.",
|
|
449
|
-
"ernie-4.5-turbo-128k-preview.description": "معاينة ERNIE 4.5 Turbo 128K بقدرات على مستوى الإصدار، مناسبة للتكامل والاختبار التجريبي.",
|
|
450
|
-
"ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K هو نموذج عام عالي الأداء مدعوم بالبحث واستدعاء الأدوات، مناسب لسيناريوهات الأسئلة والأجوبة، البرمجة، والوكلاء.",
|
|
451
|
-
"ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K هو إصدار متوسط الطول من حيث السياق، مخصص للأسئلة والأجوبة، استرجاع قواعد المعرفة، والحوار متعدد الأدوار.",
|
|
452
|
-
"ernie-4.5-turbo-latest.description": "أحدث إصدار من ERNIE 4.5 Turbo بأداء محسن شامل، مثالي كنموذج إنتاج رئيسي.",
|
|
453
|
-
"ernie-4.5-turbo-vl-32k-preview.description": "معاينة ERNIE 4.5 Turbo VL 32K هو نموذج متعدد الوسائط بسياق طويل لتقييم قدرات الرؤية.",
|
|
454
|
-
"ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K هو إصدار متعدد الوسائط متوسط الطول لفهم المستندات الطويلة والصور معًا.",
|
|
455
|
-
"ernie-4.5-turbo-vl-latest.description": "أحدث إصدار من ERNIE 4.5 Turbo VL بقدرات محسنة لفهم الصور والنصوص والاستدلال.",
|
|
456
|
-
"ernie-4.5-turbo-vl-preview.description": "معاينة ERNIE 4.5 Turbo VL هو نموذج متعدد الوسائط لفهم وتوليد الصور والنصوص، مناسب لأسئلة وأجوبة بصرية وفهم المحتوى.",
|
|
457
|
-
"ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL هو نموذج متعدد الوسائط ناضج لفهم الصور والنصوص في بيئات الإنتاج.",
|
|
458
|
-
"ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B هو نموذج مفتوح المصدر متعدد الوسائط لفهم الصور والنصوص والاستدلال.",
|
|
459
|
-
"ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking هو نموذج رائد متعدد الوسائط أصلي يجمع بين النص، الصورة، الصوت، والفيديو في نموذج موحد. يوفر ترقيات شاملة للقدرات في الأسئلة المعقدة، الإبداع، وسيناريوهات الوكلاء.",
|
|
460
|
-
"ernie-5.0-thinking-preview.description": "معاينة Wenxin 5.0 Thinking هو نموذج رائد متعدد الوسائط أصلي يجمع بين النص، الصورة، الصوت، والفيديو في نموذج موحد. يوفر ترقيات شاملة للقدرات في الأسئلة المعقدة، الإبداع، وسيناريوهات الوكلاء.",
|
|
461
|
-
"ernie-char-8k.description": "ERNIE Character 8K هو نموذج حواري بشخصية مخصصة لبناء شخصيات IP والدردشة طويلة الأمد.",
|
|
462
|
-
"ernie-char-fiction-8k-preview.description": "معاينة ERNIE Character Fiction 8K هو نموذج لإنشاء الشخصيات والحبكات القصصية مخصص للتقييم والاختبار.",
|
|
463
|
-
"ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K هو نموذج شخصيات مخصص للروايات وإنشاء الحبكات، مناسب لتوليد القصص الطويلة.",
|
|
464
|
-
"ernie-irag-edit.description": "ERNIE iRAG Edit هو نموذج لتحرير الصور يدعم المسح، إعادة الرسم، وتوليد النسخ المتنوعة.",
|
|
465
|
-
"ernie-lite-8k.description": "ERNIE Lite 8K هو نموذج عام خفيف الوزن للأسئلة اليومية الحساسة للتكلفة وتوليد المحتوى.",
|
|
466
|
-
"ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K هو نموذج خفيف الوزن وعالي الأداء للسيناريوهات الحساسة للتكلفة والزمن.",
|
|
467
|
-
"ernie-novel-8k.description": "ERNIE Novel 8K مصمم خصيصًا للروايات الطويلة وحبكات IP متعددة الشخصيات.",
|
|
468
|
-
"ernie-speed-128k.description": "ERNIE Speed 128K هو نموذج بدون رسوم إدخال/إخراج لفهم النصوص الطويلة والتجارب واسعة النطاق.",
|
|
469
|
-
"ernie-speed-8k.description": "ERNIE Speed 8K هو نموذج مجاني وسريع للدردشة اليومية والمهام النصية الخفيفة.",
|
|
470
|
-
"ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K هو نموذج عالي التوافر والقيمة للخدمات عبر الإنترنت واسعة النطاق وتطبيقات المؤسسات.",
|
|
471
|
-
"ernie-tiny-8k.description": "ERNIE Tiny 8K هو نموذج فائق الخفة للأسئلة البسيطة، التصنيف، والاستدلال منخفض التكلفة.",
|
|
472
|
-
"ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K هو نموذج تفكير سريع بسياق 32K للاستدلال المعقد والدردشة متعددة الأدوار.",
|
|
473
|
-
"ernie-x1.1-preview.description": "معاينة ERNIE X1.1 هو نموذج تفكير مخصص للتقييم والاختبار.",
|
|
474
|
-
"fal-ai/bytedance/seedream/v4.description": "Seedream 4.0 هو نموذج توليد صور من ByteDance Seed، يدعم إدخال النصوص والصور مع تحكم عالي الجودة في إخراج الصور. يقوم بإنشاء صور من التعليمات النصية.",
|
|
475
|
-
"fal-ai/flux-kontext/dev.description": "نموذج FLUX.1 يركز على تحرير الصور، ويدعم إدخال النصوص والصور.",
|
|
476
|
-
"fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro] يقبل نصوصًا وصورًا مرجعية كمدخلات، مما يتيح تعديلات محلية مستهدفة وتحولات معقدة في المشهد العام.",
|
|
477
|
-
"fal-ai/flux/krea.description": "Flux Krea [dev] هو نموذج توليد صور يتميز بميول جمالية نحو صور أكثر واقعية وطبيعية.",
|
|
478
|
-
"fal-ai/flux/schnell.description": "FLUX.1 [schnell] هو نموذج توليد صور يحتوي على 12 مليار معامل، مصمم لإنتاج سريع وعالي الجودة.",
|
|
479
|
-
"fal-ai/hunyuan-image/v3.description": "نموذج توليد صور متعدد الوسائط قوي وأصلي.",
|
|
480
|
-
"fal-ai/imagen4/preview.description": "نموذج توليد صور عالي الجودة من Google.",
|
|
481
|
-
"fal-ai/nano-banana.description": "Nano Banana هو أحدث وأسرع وأكثر نماذج Google كفاءةً، يتيح توليد وتحرير الصور من خلال المحادثة.",
|
|
482
|
-
"fal-ai/qwen-image-edit.description": "نموذج تحرير صور احترافي من فريق Qwen يدعم التعديلات الدلالية والمظهرية، ويحرر النصوص الصينية والإنجليزية بدقة، ويدعم تعديلات عالية الجودة مثل نقل الأسلوب وتدوير العناصر.",
|
|
483
|
-
"fal-ai/qwen-image.description": "نموذج توليد صور قوي من فريق Qwen يتميز بعرض نصوص صينية مميز وأنماط بصرية متنوعة.",
|
|
484
|
-
"flux-1-schnell.description": "نموذج تحويل نص إلى صورة يحتوي على 12 مليار معامل من Black Forest Labs يستخدم تقنيات تقطير الانتشار العدائي الكامن لتوليد صور عالية الجودة في 1-4 خطوات. ينافس البدائل المغلقة ومتاح بموجب ترخيص Apache-2.0 للاستخدام الشخصي والبحثي والتجاري.",
|
|
485
|
-
"flux-dev.description": "FLUX.1 [dev] هو نموذج مفتوح الأوزان مخصص للاستخدام غير التجاري. يحافظ على جودة صور قريبة من المستوى الاحترافي واتباع التعليمات مع كفاءة تشغيل أعلى مقارنة بالنماذج القياسية من نفس الحجم.",
|
|
486
|
-
"flux-kontext-max.description": "توليد وتحرير صور سياقية متقدمة، يجمع بين النصوص والصور لتحقيق نتائج دقيقة ومتسقة.",
|
|
487
|
-
"flux-kontext-pro.description": "توليد وتحرير صور سياقية متقدمة، يجمع بين النصوص والصور لتحقيق نتائج دقيقة ومتسقة.",
|
|
488
|
-
"flux-merged.description": "FLUX.1-merged يجمع بين الميزات العميقة المستكشفة في \"DEV\" مع مزايا السرعة العالية في \"Schnell\"، مما يوسع حدود الأداء ويوسع نطاق التطبيقات.",
|
|
489
|
-
"flux-pro-1.1-ultra.description": "توليد صور بدقة فائقة تصل إلى 4 ميغابكسل، ينتج صورًا واضحة في غضون 10 ثوانٍ.",
|
|
490
|
-
"flux-pro-1.1.description": "نموذج توليد صور احترافي مطور بجودة صور ممتازة واتباع دقيق للتعليمات.",
|
|
491
|
-
"flux-pro.description": "نموذج توليد صور تجاري من الدرجة الأولى بجودة صور لا مثيل لها ومخرجات متنوعة.",
|
|
492
|
-
"flux-schnell.description": "FLUX.1 [schnell] هو أكثر النماذج مفتوحة المصدر تقدمًا في خطوات قليلة، يتفوق على المنافسين المماثلين وحتى على نماذج غير مقطرة قوية مثل Midjourney v6.0 وDALL-E 3 (HD). تم ضبطه بدقة للحفاظ على تنوع ما قبل التدريب، مما يحسن بشكل كبير من الجودة البصرية، واتباع التعليمات، وتنوع الحجم/النسبة، والتعامل مع الخطوط، وتنوع المخرجات.",
|
|
493
|
-
"flux.1-schnell.description": "FLUX.1-schnell هو نموذج توليد صور عالي الأداء لإخراج أنماط متعددة بسرعة.",
|
|
494
|
-
"gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001 (Tuning) يوفر أداءً مستقرًا وقابلًا للضبط للمهام المعقدة.",
|
|
495
|
-
"gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002 (Tuning) يوفر دعمًا متعدد الوسائط قويًا للمهام المعقدة.",
|
|
496
|
-
"gemini-1.0-pro-latest.description": "Gemini 1.0 Pro هو نموذج ذكاء اصطناعي عالي الأداء من Google مصمم لتوسيع نطاق المهام.",
|
|
497
|
-
"gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001 هو نموذج متعدد الوسائط فعال لتوسيع التطبيقات على نطاق واسع.",
|
|
498
|
-
"gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002 هو نموذج متعدد الوسائط فعال مصمم للنشر الواسع.",
|
|
499
|
-
"gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924 هو أحدث نموذج تجريبي يحقق مكاسب ملحوظة في استخدامات النص والمتعدد الوسائط.",
|
|
500
|
-
"gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B هو نموذج متعدد الوسائط فعال مصمم للنشر الواسع.",
|
|
501
|
-
"gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B هو نموذج متعدد الوسائط فعال لتوسيع التطبيقات على نطاق واسع.",
|
|
502
|
-
"gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827 يقدم معالجة متعددة الوسائط محسّنة للمهام المعقدة.",
|
|
503
|
-
"gemini-1.5-flash-latest.description": "Gemini 1.5 Flash هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط من Google يتميز بسرعة المعالجة ويدعم إدخال النصوص والصور والفيديو لتوسيع المهام بكفاءة.",
|
|
504
|
-
"gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001 هو حل ذكاء اصطناعي متعدد الوسائط قابل للتوسع للمهام المعقدة.",
|
|
505
|
-
"gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002 هو أحدث نموذج جاهز للإنتاج بجودة إخراج أعلى، خاصة في الرياضيات والسياقات الطويلة ومهام الرؤية.",
|
|
506
|
-
"gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801 يوفر معالجة متعددة الوسائط قوية مع مرونة أكبر لتطوير التطبيقات.",
|
|
507
|
-
"gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827 يطبق أحدث التحسينات لمعالجة متعددة الوسائط أكثر كفاءة.",
|
|
508
|
-
"gemini-1.5-pro-latest.description": "Gemini 1.5 Pro يدعم ما يصل إلى 2 مليون رمز، وهو نموذج متعدد الوسائط متوسط الحجم مثالي للمهام المعقدة.",
|
|
509
|
-
"gemini-2.0-flash-001.description": "Gemini 2.0 Flash يقدم ميزات الجيل التالي بما في ذلك السرعة الاستثنائية، استخدام الأدوات الأصلية، التوليد المتعدد الوسائط، ونافذة سياق تصل إلى مليون رمز.",
|
|
510
|
-
"gemini-2.0-flash-exp-image-generation.description": "نموذج تجريبي من Gemini 2.0 Flash يدعم توليد الصور.",
|
|
511
|
-
"gemini-2.0-flash-exp.description": "إصدار من Gemini 2.0 Flash محسن لتقليل التكاليف وتقليل زمن الاستجابة.",
|
|
512
|
-
"gemini-2.0-flash-lite-001.description": "إصدار من Gemini 2.0 Flash محسن لتقليل التكاليف وتقليل زمن الاستجابة.",
|
|
513
|
-
"gemini-2.0-flash-lite.description": "إصدار من Gemini 2.0 Flash محسن لتقليل التكاليف وتقليل زمن الاستجابة.",
|
|
514
|
-
"gemini-2.0-flash.description": "Gemini 2.0 Flash يقدم ميزات الجيل التالي بما في ذلك السرعة الاستثنائية، استخدام الأدوات الأصلية، التوليد المتعدد الوسائط، ونافذة سياق تصل إلى مليون رمز.",
|
|
515
414
|
"meta.llama3-8b-instruct-v1:0.description": "ميتا لاما 3 هو نموذج لغوي مفتوح المصدر مخصص للمطورين والباحثين والشركات، صُمم لمساعدتهم في بناء أفكار الذكاء الاصطناعي التوليدي، وتجربتها، وتوسيع نطاقها بشكل مسؤول. يُعد جزءًا من البنية التحتية للابتكار المجتمعي العالمي، وهو مناسب للبيئات ذات الموارد المحدودة، والأجهزة الطرفية، وأوقات التدريب الأسرع.",
|
|
516
415
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "قدرات قوية في الاستدلال الصوري على الصور عالية الدقة، مناسب لتطبيقات الفهم البصري.",
|
|
517
416
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال صوري متقدم لتطبيقات الوكلاء المعتمدين على الفهم البصري.",
|
|
@@ -726,4 +625,4 @@
|
|
|
726
625
|
"zai/glm-4.5.description": "سلسلة GLM-4.5 مصممة للوكلاء. النموذج الرائد GLM-4.5 يجمع بين الاستدلال، والبرمجة، ومهارات الوكلاء مع 355 مليار معلمة إجمالية (32 مليار نشطة) ويقدّم أوضاع تشغيل مزدوجة كنظام استدلال هجين.",
|
|
727
626
|
"zai/glm-4.5v.description": "GLM-4.5V مبني على GLM-4.5-Air، ويَرِث تقنيات GLM-4.1V-Thinking المثبتة، ويتوسع ببنية MoE قوية بسعة 106 مليار.",
|
|
728
627
|
"zenmux/auto.description": "يختار ZenMux auto-routing النموذج الأفضل من حيث القيمة والأداء من بين الخيارات المدعومة بناءً على طلبك."
|
|
729
|
-
}
|
|
628
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Този модел поддържа разпознаване на видео",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Този модел поддържа визуално разпознаване.",
|
|
94
94
|
"ModelSelect.removed": "Моделът не е в списъка. Ще бъде автоматично премахнат, ако бъде деселектиран.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "По модел",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "По доставчик",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "Няма активиран модел. Моля, отидете в настройките, за да активирате.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "Няма активирани доставчици. Моля, отидете в настройките, за да активирате такъв.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Отиди в настройките",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Управление на доставчик",
|
|
98
101
|
"ModelSwitchPanel.provider": "Доставчик",
|
|
99
102
|
"ModelSwitchPanel.title": "Модел",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Използвай този модел от:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Кликнете или плъзнете за качване на още",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Готово",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Нов",
|
|
@@ -103,7 +103,7 @@
|
|
|
103
103
|
"Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 е MoE модел с 671 милиарда параметъра, използващ MLA и DeepSeekMoE с балансирано натоварване без загуби за ефективно обучение и инференция. Предварително обучен върху 14.8T висококачествени токени и допълнително настроен с SFT и RL, той надминава други отворени модели и се доближава до водещите затворени решения.",
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 е най-новият и най-мощен модел от серията Kimi K2. Това е MoE модел от най-висок клас с 1T общо и 32B активни параметъра. Основните му предимства включват по-силна агентна интелигентност при програмиране с значителни подобрения в бенчмаркове и реални задачи, както и подобрена естетика и използваемост на фронтенд кода.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo е ускорен вариант, оптимизиран за скорост на разсъждение и пропускателна способност, като запазва многoетапното разсъждение и използване на инструменти от K2 Thinking. Това е MoE модел с ~1T общи параметри, роден 256K контекст и стабилно мащабируемо извикване на инструменти за производствени сценарии с по-строги изисквания за латентност и едновременност.",
|
|
106
|
-
"Pro/zai-org/glm-4.7.description": "GLM-4.7 е новото флагманско поколение модел на Zhipu с общ брой параметри 355 милиарда и 32 милиарда активни параметри. Той предлага цялостен ъпгрейд в области като обща комуникация, логическо
|
|
106
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 е новото флагманско поколение модел на Zhipu с общ брой параметри 355 милиарда и 32 милиарда активни параметри. Той предлага цялостен ъпгрейд в области като обща диалогова комуникация, логическо разсъждение и способности на интелигентни агенти. GLM-4.7 подобрява Interleaved Thinking (преплетено мислене) и въвежда Preserved Thinking (запазено мислене) и Turn-level Thinking (мислене на ниво ход), осигурявайки по-дълбоко и последователно разсъждение.",
|
|
107
107
|
"QwQ-32B-Preview.description": "Qwen QwQ е експериментален изследователски модел, фокусиран върху подобряване на разсъждението.",
|
|
108
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview е изследователски модел от Qwen, насочен към визуално разсъждение, със силни страни в разбирането на сложни сцени и визуални математически задачи.",
|
|
109
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ е експериментален изследователски модел, фокусиран върху подобрено AI разсъждение.",
|
|
@@ -622,4 +622,4 @@
|
|
|
622
622
|
"zai/glm-4.5.description": "Серията GLM-4.5 е проектирана за агенти. Флагманският GLM-4.5 комбинира разсъждение, програмиране и агентни умения с 355B общи параметри (32B активни) и предлага два режима на работа като хибридна система за разсъждение.",
|
|
623
623
|
"zai/glm-4.5v.description": "GLM-4.5V надгражда GLM-4.5-Air, наследявайки доказани техники от GLM-4.1V-Thinking и мащабира с мощна MoE архитектура с 106 милиарда параметъра.",
|
|
624
624
|
"zenmux/auto.description": "ZenMux автоматично избира най-добрия модел по стойност и производителност от поддържаните опции според вашата заявка."
|
|
625
|
-
}
|
|
625
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Dieses Modell unterstützt Videoerkennung",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Dieses Modell unterstützt visuelle Erkennung.",
|
|
94
94
|
"ModelSelect.removed": "Das Modell ist nicht in der Liste. Es wird automatisch entfernt, wenn es abgewählt wird.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "Nach Modell",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "Nach Anbieter",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "Kein Modell aktiviert. Bitte aktivieren Sie eines in den Einstellungen.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "Keine Anbieter aktiviert. Bitte aktivieren Sie einen in den Einstellungen.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Zu den Einstellungen",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Anbieter verwalten",
|
|
98
101
|
"ModelSwitchPanel.provider": "Anbieter",
|
|
99
102
|
"ModelSwitchPanel.title": "Modell",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Dieses Modell verwenden von:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Klicken oder ziehen, um weitere hochzuladen",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Fertig",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Neu",
|