@lobehub/lobehub 2.0.0-next.201 → 2.0.0-next.203
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/chat.json +2 -0
- package/locales/ar/models.json +104 -6
- package/locales/ar/plugin.json +2 -1
- package/locales/bg-BG/chat.json +2 -0
- package/locales/bg-BG/models.json +46 -4
- package/locales/bg-BG/plugin.json +2 -1
- package/locales/de-DE/chat.json +2 -0
- package/locales/de-DE/models.json +74 -4
- package/locales/de-DE/plugin.json +2 -1
- package/locales/en-US/chat.json +2 -0
- package/locales/en-US/plugin.json +2 -1
- package/locales/es-ES/chat.json +2 -0
- package/locales/es-ES/models.json +129 -4
- package/locales/es-ES/plugin.json +2 -1
- package/locales/fa-IR/chat.json +2 -0
- package/locales/fa-IR/models.json +80 -4
- package/locales/fa-IR/plugin.json +2 -1
- package/locales/fr-FR/chat.json +2 -0
- package/locales/fr-FR/models.json +67 -7
- package/locales/fr-FR/plugin.json +2 -1
- package/locales/it-IT/chat.json +2 -0
- package/locales/it-IT/models.json +39 -6
- package/locales/it-IT/plugin.json +2 -1
- package/locales/ja-JP/chat.json +2 -0
- package/locales/ja-JP/models.json +123 -7
- package/locales/ja-JP/plugin.json +2 -1
- package/locales/ko-KR/chat.json +2 -0
- package/locales/ko-KR/models.json +104 -5
- package/locales/ko-KR/plugin.json +2 -1
- package/locales/nl-NL/chat.json +2 -0
- package/locales/nl-NL/models.json +62 -5
- package/locales/nl-NL/plugin.json +2 -1
- package/locales/pl-PL/chat.json +2 -0
- package/locales/pl-PL/models.json +110 -0
- package/locales/pl-PL/plugin.json +2 -1
- package/locales/pt-BR/chat.json +2 -0
- package/locales/pt-BR/models.json +81 -5
- package/locales/pt-BR/plugin.json +2 -1
- package/locales/ru-RU/chat.json +2 -0
- package/locales/ru-RU/models.json +33 -6
- package/locales/ru-RU/plugin.json +2 -1
- package/locales/tr-TR/chat.json +2 -0
- package/locales/tr-TR/models.json +26 -7
- package/locales/tr-TR/plugin.json +2 -1
- package/locales/vi-VN/chat.json +2 -0
- package/locales/vi-VN/models.json +59 -4
- package/locales/vi-VN/plugin.json +2 -1
- package/locales/zh-CN/chat.json +2 -0
- package/locales/zh-CN/models.json +141 -5
- package/locales/zh-CN/plugin.json +2 -1
- package/locales/zh-TW/chat.json +2 -0
- package/locales/zh-TW/models.json +96 -7
- package/locales/zh-TW/plugin.json +2 -1
- package/package.json +1 -1
- package/packages/builtin-tool-gtd/src/client/Inspector/ExecTask/index.tsx +30 -15
- package/packages/builtin-tool-gtd/src/manifest.ts +1 -1
- package/packages/model-runtime/src/core/ModelRuntime.test.ts +44 -86
- package/packages/types/src/aiChat.ts +0 -1
- package/packages/types/src/message/ui/chat.ts +1 -1
- package/src/app/(backend)/middleware/auth/index.ts +16 -2
- package/src/app/(backend)/webapi/chat/[provider]/route.test.ts +30 -15
- package/src/app/(backend)/webapi/chat/[provider]/route.ts +44 -40
- package/src/app/(backend)/webapi/models/[provider]/pull/route.ts +4 -3
- package/src/app/(backend)/webapi/models/[provider]/route.test.ts +36 -13
- package/src/app/(backend)/webapi/models/[provider]/route.ts +4 -11
- package/src/features/Conversation/Messages/AssistantGroup/Tool/Render/index.tsx +21 -23
- package/src/features/Conversation/Messages/AssistantGroup/components/ContentBlock.tsx +16 -3
- package/src/features/Conversation/Messages/Task/TaskDetailPanel/index.tsx +17 -20
- package/src/features/Conversation/Messages/Tasks/shared/ErrorState.tsx +16 -11
- package/src/features/Conversation/Messages/Tasks/shared/InitializingState.tsx +6 -20
- package/src/features/Conversation/Messages/Tasks/shared/ProcessingState.tsx +10 -20
- package/src/features/User/DataStatistics.tsx +4 -4
- package/src/hooks/useQueryParam.ts +0 -2
- package/src/libs/trpc/async/asyncAuth.ts +0 -2
- package/src/libs/trpc/async/context.ts +3 -11
- package/src/locales/default/chat.ts +2 -0
- package/src/locales/default/plugin.ts +2 -1
- package/src/server/modules/AgentRuntime/RuntimeExecutors.ts +6 -6
- package/src/server/modules/AgentRuntime/__tests__/RuntimeExecutors.test.ts +3 -3
- package/src/server/modules/AgentRuntime/factory.ts +39 -20
- package/src/server/modules/ModelRuntime/index.ts +138 -1
- package/src/server/routers/async/__tests__/caller.test.ts +22 -27
- package/src/server/routers/async/caller.ts +4 -6
- package/src/server/routers/async/file.ts +10 -5
- package/src/server/routers/async/image.ts +5 -4
- package/src/server/routers/async/ragEval.ts +7 -5
- package/src/server/routers/lambda/__tests__/aiChat.test.ts +8 -37
- package/src/server/routers/lambda/aiChat.ts +5 -21
- package/src/server/routers/lambda/chunk.ts +9 -28
- package/src/server/routers/lambda/image.ts +1 -7
- package/src/server/routers/lambda/ragEval.ts +1 -1
- package/src/server/routers/lambda/userMemories/reembed.ts +4 -1
- package/src/server/routers/lambda/userMemories/search.ts +7 -7
- package/src/server/routers/lambda/userMemories/shared.ts +8 -10
- package/src/server/routers/lambda/userMemories/tools.ts +140 -118
- package/src/server/routers/lambda/userMemories.test.ts +3 -7
- package/src/server/routers/lambda/userMemories.ts +44 -29
- package/src/server/services/agentRuntime/AgentRuntimeService.test.ts +87 -0
- package/src/server/services/agentRuntime/AgentRuntimeService.ts +53 -2
- package/src/server/services/agentRuntime/__tests__/executeSync.test.ts +2 -6
- package/src/server/services/agentRuntime/__tests__/stepLifecycleCallbacks.test.ts +1 -1
- package/src/server/services/chunk/index.ts +6 -5
- package/src/server/services/toolExecution/types.ts +1 -2
- package/src/services/__tests__/_url.test.ts +0 -1
- package/src/services/_url.ts +0 -3
- package/src/services/aiChat.ts +5 -12
- package/src/store/chat/slices/aiChat/actions/streamingExecutor.ts +0 -2
- package/src/app/(backend)/webapi/text-to-image/[provider]/route.ts +0 -74
|
@@ -63,7 +63,8 @@
|
|
|
63
63
|
"builtins.lobe-gtd.apiName.createPlan.result": "Plan créé : <goal>{{goal}}</goal>",
|
|
64
64
|
"builtins.lobe-gtd.apiName.createTodos": "Créer des tâches",
|
|
65
65
|
"builtins.lobe-gtd.apiName.execTask": "Exécuter la tâche",
|
|
66
|
-
"builtins.lobe-gtd.apiName.execTask.
|
|
66
|
+
"builtins.lobe-gtd.apiName.execTask.completed": "Tâche créée : ",
|
|
67
|
+
"builtins.lobe-gtd.apiName.execTask.loading": "Création de la tâche : ",
|
|
67
68
|
"builtins.lobe-gtd.apiName.execTasks": "Exécuter les tâches",
|
|
68
69
|
"builtins.lobe-gtd.apiName.removeTodos": "Supprimer les tâches",
|
|
69
70
|
"builtins.lobe-gtd.apiName.updatePlan": "Mettre à jour le plan",
|
package/locales/it-IT/chat.json
CHANGED
|
@@ -295,6 +295,8 @@
|
|
|
295
295
|
"task.batchTasks": "{{count}} sottocompiti in batch",
|
|
296
296
|
"task.metrics.stepsShort": "passi",
|
|
297
297
|
"task.metrics.toolCallsShort": "usi strumento",
|
|
298
|
+
"task.status.cancelled": "Attività annullata",
|
|
299
|
+
"task.status.failed": "Attività non riuscita",
|
|
298
300
|
"task.status.initializing": "Inizializzazione attività...",
|
|
299
301
|
"task.subtask": "Sottocompito",
|
|
300
302
|
"thread.divider": "Sottotema",
|
|
@@ -271,20 +271,20 @@
|
|
|
271
271
|
"chatgpt-4o-latest.description": "ChatGPT-4o è un modello dinamico aggiornato in tempo reale, che combina comprensione e generazione avanzate per casi d'uso su larga scala come assistenza clienti, istruzione e supporto tecnico.",
|
|
272
272
|
"claude-2.0.description": "Claude 2 introduce miglioramenti chiave per le imprese, tra cui un contesto leader da 200.000 token, riduzione delle allucinazioni, prompt di sistema e una nuova funzione di test: chiamata agli strumenti.",
|
|
273
273
|
"claude-2.1.description": "Claude 2 introduce miglioramenti chiave per le imprese, tra cui un contesto leader da 200.000 token, riduzione delle allucinazioni, prompt di sistema e una nuova funzione di test: chiamata agli strumenti.",
|
|
274
|
-
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku è il modello di nuova generazione più veloce di Anthropic. Rispetto a Claude 3 Haiku, migliora in tutte le competenze e supera il precedente modello di punta Claude 3 Opus in
|
|
274
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku è il modello di nuova generazione più veloce di Anthropic. Rispetto a Claude 3 Haiku, migliora in tutte le competenze e supera il precedente modello di punta Claude 3 Opus in numerosi benchmark di intelligenza.",
|
|
275
275
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haiku fornisce risposte rapide per attività leggere.",
|
|
276
|
-
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet è il modello più intelligente di Anthropic e il primo modello di ragionamento ibrido sul mercato. È in grado di fornire risposte quasi istantanee o ragionamenti dettagliati passo dopo passo visibili all
|
|
276
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet è il modello più intelligente di Anthropic e il primo modello di ragionamento ibrido sul mercato. È in grado di fornire risposte quasi istantanee o ragionamenti dettagliati passo dopo passo visibili all’utente. Sonnet eccelle in particolare nella programmazione, data science, visione artificiale e compiti per agenti.",
|
|
277
277
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet è il modello più recente e avanzato di Anthropic per compiti altamente complessi, eccellendo in prestazioni, intelligenza, fluidità e comprensione.",
|
|
278
278
|
"claude-3-haiku-20240307.description": "Claude 3 Haiku è il modello più veloce e compatto di Anthropic, progettato per risposte quasi istantanee con prestazioni rapide e accurate.",
|
|
279
279
|
"claude-3-opus-20240229.description": "Claude 3 Opus è il modello più potente di Anthropic per compiti altamente complessi, eccellendo in prestazioni, intelligenza, fluidità e comprensione.",
|
|
280
280
|
"claude-3-sonnet-20240229.description": "Claude 3 Sonnet bilancia intelligenza e velocità per carichi di lavoro aziendali, offrendo alta utilità a costi inferiori e distribuzione affidabile su larga scala.",
|
|
281
|
-
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 è il modello Haiku più veloce e intelligente di Anthropic, con velocità fulminea e capacità di ragionamento
|
|
281
|
+
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 è il modello Haiku più veloce e intelligente di Anthropic, con una velocità fulminea e capacità di ragionamento estese.",
|
|
282
282
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking è una variante avanzata in grado di mostrare il proprio processo di ragionamento.",
|
|
283
283
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1 è il modello più recente e potente di Anthropic per compiti altamente complessi, eccellendo in prestazioni, intelligenza, fluidità e comprensione.",
|
|
284
|
-
"claude-opus-4-20250514.description": "Claude Opus 4 è il modello più potente di Anthropic per compiti altamente complessi,
|
|
284
|
+
"claude-opus-4-20250514.description": "Claude Opus 4 è il modello più potente di Anthropic per compiti altamente complessi, eccellendo in prestazioni, intelligenza, fluidità e comprensione.",
|
|
285
285
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5 è il modello di punta di Anthropic, che combina intelligenza eccezionale e prestazioni scalabili, ideale per compiti complessi che richiedono risposte e ragionamenti di altissima qualità.",
|
|
286
286
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking può produrre risposte quasi istantanee o riflessioni estese passo dopo passo con processo visibile.",
|
|
287
|
-
"claude-sonnet-4-20250514.description": "Claude Sonnet 4
|
|
287
|
+
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 è in grado di fornire risposte quasi istantanee o ragionamenti articolati passo dopo passo con un processo visibile.",
|
|
288
288
|
"claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 è il modello più intelligente di Anthropic fino ad oggi.",
|
|
289
289
|
"codegeex-4.description": "CodeGeeX-4 è un potente assistente di codifica AI che supporta Q&A multilingue e completamento del codice per aumentare la produttività degli sviluppatori.",
|
|
290
290
|
"codegeex4-all-9b.description": "CodeGeeX4-ALL-9B è un modello multilingue di generazione di codice che supporta completamento e generazione di codice, interprete di codice, ricerca web, chiamata di funzioni e Q&A a livello di repository, coprendo un'ampia gamma di scenari di sviluppo software. È un modello di codice di alto livello con meno di 10B parametri.",
|
|
@@ -355,7 +355,6 @@
|
|
|
355
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 è un modello di nuova generazione per il ragionamento, con capacità avanzate di ragionamento complesso e catena di pensiero per compiti di analisi approfondita.",
|
|
356
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 è un modello di nuova generazione per il ragionamento, con capacità avanzate di ragionamento complesso e catena di pensiero per compiti di analisi approfondita.",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 è un modello visione-linguaggio MoE basato su DeepSeekMoE-27B con attivazione sparsa, che raggiunge prestazioni elevate con solo 4,5B di parametri attivi. Eccelle in QA visivo, OCR, comprensione di documenti/tabelle/grafici e grounding visivo.",
|
|
358
|
-
"deepseek-chat.description": "Un nuovo modello open-source che combina capacità generali e di programmazione. Mantiene il dialogo generale del modello di chat e la forte capacità di codifica del modello coder, con un migliore allineamento alle preferenze. DeepSeek-V2.5 migliora anche la scrittura e il rispetto delle istruzioni.",
|
|
359
358
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B è un modello linguistico per il codice addestrato su 2 trilioni di token (87% codice, 13% testo in cinese/inglese). Introduce una finestra di contesto da 16K e compiti di completamento nel mezzo, offrendo completamento di codice a livello di progetto e riempimento di frammenti.",
|
|
360
359
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 è un modello MoE open-source per il codice che ottiene ottimi risultati nei compiti di programmazione, comparabile a GPT-4 Turbo.",
|
|
361
360
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 è un modello MoE open-source per il codice che ottiene ottimi risultati nei compiti di programmazione, comparabile a GPT-4 Turbo.",
|
|
@@ -378,6 +377,40 @@
|
|
|
378
377
|
"deepseek-r1-fast-online.description": "Versione completa veloce di DeepSeek R1 con ricerca web in tempo reale, che combina capacità su scala 671B e risposte rapide.",
|
|
379
378
|
"deepseek-r1-online.description": "Versione completa di DeepSeek R1 con 671B parametri e ricerca web in tempo reale, che offre comprensione e generazione potenziate.",
|
|
380
379
|
"deepseek-r1.description": "DeepSeek-R1 utilizza dati cold-start prima dell'RL e ottiene prestazioni comparabili a OpenAI-o1 in matematica, programmazione e ragionamento.",
|
|
380
|
+
"deepseek-v2.description": "DeepSeek V2 è un modello MoE efficiente per un'elaborazione conveniente.",
|
|
381
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B è il modello di DeepSeek focalizzato sul codice, con eccellenti capacità di generazione di codice.",
|
|
382
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con punti di forza eccezionali nella programmazione, nella comprensione del contesto e nella gestione di testi lunghi.",
|
|
383
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus è un LLM ottimizzato per terminali, progettato da DeepSeek per dispositivi terminali.",
|
|
384
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 è il modello di pensiero profondo corrispondente alla versione Terminus, progettato per un ragionamento ad alte prestazioni.",
|
|
385
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 è un nuovo modello di ragionamento ibrido di DeepSeek, che supporta modalità con e senza pensiero, offrendo un'efficienza di pensiero superiore rispetto a DeepSeek-R1-0528. Le ottimizzazioni post-addestramento migliorano notevolmente l'uso degli strumenti da parte degli agenti e le prestazioni nei compiti. Supporta una finestra di contesto di 128k e fino a 64k token in output.",
|
|
386
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 è un modello di ragionamento di nuova generazione con capacità migliorate di ragionamento complesso e catena di pensieri, adatto a compiti che richiedono analisi approfondite.",
|
|
387
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduce l'attenzione sparsa per migliorare l'efficienza dell'addestramento e dell'inferenza su testi lunghi, a un costo inferiore rispetto a deepseek-v3.1.",
|
|
388
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think è un modello completo di pensiero profondo con capacità di ragionamento a catena lunga più avanzate.",
|
|
389
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 è il primo modello di ragionamento ibrido di DeepSeek che integra il pensiero nell'uso degli strumenti. Combina un'architettura efficiente per ridurre il consumo computazionale, un apprendimento per rinforzo su larga scala per potenziare le capacità e dati sintetici su larga scala per una forte generalizzazione. Le sue prestazioni sono paragonabili a GPT-5-High, con una lunghezza dell'output significativamente ridotta, abbattendo i costi computazionali e i tempi di attesa per l'utente.",
|
|
390
|
+
"deepseek-v3.description": "DeepSeek-V3 è un potente modello MoE con 671 miliardi di parametri totali e 37 miliardi attivi per token.",
|
|
391
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small è una versione multimodale leggera per ambienti con risorse limitate e alta concorrenza.",
|
|
392
|
+
"deepseek-vl2.description": "DeepSeek VL2 è un modello multimodale per la comprensione immagine-testo e domande visive dettagliate.",
|
|
393
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 è un modello MoE con 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
394
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 è un modello MoE con 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
395
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 è il modello di ragionamento ibrido a lungo contesto di DeepSeek, che supporta modalità miste con/senza pensiero e integrazione con strumenti.",
|
|
396
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 è il modello di ragionamento ibrido ad alte prestazioni di DeepSeek per compiti complessi e integrazione con strumenti.",
|
|
397
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 è una variante aggiornata focalizzata sulla disponibilità open-source e su un ragionamento più profondo.",
|
|
398
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento con un numero minimo di dati etichettati e genera una catena di pensieri prima della risposta finale per aumentare l'accuratezza.",
|
|
399
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B è un LLM distillato basato su Llama 3.3 70B, ottimizzato utilizzando gli output di DeepSeek R1 per raggiungere prestazioni competitive con i modelli di frontiera di grandi dimensioni.",
|
|
400
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B è un LLM distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando gli output di DeepSeek R1.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B è un LLM distillato basato su Qwen 2.5 14B, addestrato con gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati principali:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nIl fine-tuning con gli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B è un LLM distillato basato su Qwen 2.5 32B, addestrato con gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati principali:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nIl fine-tuning con gli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
403
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 è stato aggiornato a DeepSeek-R1-0528. Con maggiore potenza computazionale e ottimizzazioni algoritmiche post-addestramento, migliora significativamente la profondità e la capacità di ragionamento. Ottiene ottimi risultati in matematica, programmazione e logica generale, avvicinandosi a leader come o3 e Gemini 2.5 Pro.",
|
|
404
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 è l'ultimo modello open-source rilasciato dal team DeepSeek, con prestazioni di ragionamento molto elevate, in particolare in matematica, programmazione e compiti logici, comparabili a OpenAI o1.",
|
|
405
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento con un numero minimo di dati etichettati e genera una catena di pensieri prima della risposta finale per aumentare l'accuratezza.",
|
|
406
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) è il modello sperimentale di ragionamento di DeepSeek, adatto a compiti di ragionamento ad alta complessità.",
|
|
407
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base è una versione migliorata del modello DeepSeek V3.",
|
|
408
|
+
"deepseek/deepseek-v3.description": "Un LLM veloce e generico con capacità di ragionamento potenziate.",
|
|
409
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 rappresenta un importante passo avanti nella velocità di ragionamento rispetto ai modelli precedenti. È al primo posto tra i modelli open-source e rivaleggia con i modelli chiusi più avanzati. Adotta l'attenzione latente multi-head (MLA) e l'architettura DeepSeekMoE, entrambe validate in DeepSeek-V2. Introduce anche una strategia ausiliaria lossless per il bilanciamento del carico e un obiettivo di addestramento con previsione multi-token per prestazioni più forti.",
|
|
410
|
+
"deepseek_r1.description": "DeepSeek-R1 è un modello di ragionamento basato su apprendimento per rinforzo che affronta problemi di ripetizione e leggibilità. Prima dell'RL, utilizza dati di avvio a freddo per migliorare ulteriormente le prestazioni di ragionamento. È comparabile a OpenAI-o1 in matematica, programmazione e compiti logici, con un addestramento attentamente progettato che migliora i risultati complessivi.",
|
|
411
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B è distillato da Llama-3.3-70B-Instruct. Fa parte della serie DeepSeek-R1, ottimizzato su campioni generati da DeepSeek-R1 e offre ottime prestazioni in matematica, programmazione e ragionamento.",
|
|
412
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B è distillato da Qwen2.5-14B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, offrendo un ragionamento solido.",
|
|
413
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B è distillato da Qwen2.5-32B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, eccellendo in matematica, programmazione e ragionamento.",
|
|
381
414
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
|
|
382
415
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
|
|
383
416
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
|
|
@@ -63,7 +63,8 @@
|
|
|
63
63
|
"builtins.lobe-gtd.apiName.createPlan.result": "Creato piano: <goal>{{goal}}</goal>",
|
|
64
64
|
"builtins.lobe-gtd.apiName.createTodos": "Crea attività",
|
|
65
65
|
"builtins.lobe-gtd.apiName.execTask": "Esegui attività",
|
|
66
|
-
"builtins.lobe-gtd.apiName.execTask.
|
|
66
|
+
"builtins.lobe-gtd.apiName.execTask.completed": "Attività creata: ",
|
|
67
|
+
"builtins.lobe-gtd.apiName.execTask.loading": "Creazione dell'attività in corso: ",
|
|
67
68
|
"builtins.lobe-gtd.apiName.execTasks": "Esegui attività",
|
|
68
69
|
"builtins.lobe-gtd.apiName.removeTodos": "Elimina attività",
|
|
69
70
|
"builtins.lobe-gtd.apiName.updatePlan": "Aggiorna piano",
|
package/locales/ja-JP/chat.json
CHANGED
|
@@ -295,6 +295,8 @@
|
|
|
295
295
|
"task.batchTasks": "{{count}} 件のバッチサブタスク",
|
|
296
296
|
"task.metrics.stepsShort": "ステップ",
|
|
297
297
|
"task.metrics.toolCallsShort": "回のスキル呼び出し",
|
|
298
|
+
"task.status.cancelled": "タスクがキャンセルされました",
|
|
299
|
+
"task.status.failed": "タスクが失敗しました",
|
|
298
300
|
"task.status.initializing": "タスクを起動中…",
|
|
299
301
|
"task.subtask": "サブタスク",
|
|
300
302
|
"thread.divider": "サブトピック",
|
|
@@ -271,20 +271,20 @@
|
|
|
271
271
|
"chatgpt-4o-latest.description": "ChatGPT-4oは、リアルタイムで更新される動的モデルで、顧客サポート、教育、技術支援などの大規模ユースケースにおいて、優れた理解力と生成能力を兼ね備えています。",
|
|
272
272
|
"claude-2.0.description": "Claude 2は、200Kトークンのコンテキスト、幻覚の削減、システムプロンプト、ツール呼び出しの新機能など、エンタープライズ向けの主要な改善を提供します。",
|
|
273
273
|
"claude-2.1.description": "Claude 2は、200Kトークンのコンテキスト、幻覚の削減、システムプロンプト、ツール呼び出しの新機能など、エンタープライズ向けの主要な改善を提供します。",
|
|
274
|
-
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku
|
|
274
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku は、Anthropic による次世代モデルの中で最速のモデルです。Claude 3 Haiku と比較してあらゆるスキルが向上しており、従来の最大モデルである Claude 3 Opus を多くの知能ベンチマークで上回ります。",
|
|
275
275
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haikuは、軽量タスク向けに高速な応答を提供します。",
|
|
276
|
-
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet
|
|
276
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet は、Anthropic による最も知的なモデルであり、市場初のハイブリッド推論モデルです。瞬時の応答から、ユーザーが確認できる段階的な推論まで対応可能です。特にコーディング、データサイエンス、画像認識、エージェントタスクに優れています。",
|
|
277
277
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnetは、Anthropicの最新かつ最も高性能なモデルで、非常に複雑なタスクにおいて卓越した性能、知性、流暢さ、理解力を発揮します。",
|
|
278
278
|
"claude-3-haiku-20240307.description": "Claude 3 Haikuは、Anthropicの最速かつ最小のモデルで、即時応答と高速かつ正確な性能を実現するよう設計されています。",
|
|
279
279
|
"claude-3-opus-20240229.description": "Claude 3 Opusは、Anthropicの最も強力なモデルで、非常に複雑なタスクにおいて卓越した性能、知性、流暢さ、理解力を発揮します。",
|
|
280
280
|
"claude-3-sonnet-20240229.description": "Claude 3 Sonnetは、知性と速度のバランスを取り、エンタープライズ向けのワークロードにおいて高い実用性とコスト効率、信頼性のある大規模展開を実現します。",
|
|
281
|
-
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5
|
|
281
|
+
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 は、Anthropic による最速かつ最も高性能な Haiku モデルであり、驚異的なスピードと高度な推論能力を備えています。",
|
|
282
282
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinkingは、推論プロセスを可視化できる高度なバリアントです。",
|
|
283
283
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1は、Anthropicの最新かつ最も高性能なモデルで、非常に複雑なタスクにおいて卓越した性能、知性、流暢さ、理解力を発揮します。",
|
|
284
|
-
"claude-opus-4-20250514.description": "Claude Opus 4
|
|
284
|
+
"claude-opus-4-20250514.description": "Claude Opus 4 は、Anthropic による最も強力なモデルであり、極めて複雑なタスクにおいて卓越した性能、知性、流暢さ、理解力を発揮します。",
|
|
285
285
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5は、Anthropicのフラッグシップモデルで、卓越した知性とスケーラブルな性能を兼ね備え、最高品質の応答と推論が求められる複雑なタスクに最適です。",
|
|
286
286
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinkingは、即時応答または段階的な思考プロセスを可視化しながら出力できます。",
|
|
287
|
-
"claude-sonnet-4-20250514.description": "Claude Sonnet 4
|
|
287
|
+
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 は、瞬時の応答や、可視化された段階的な思考プロセスによる推論を生成できます。",
|
|
288
288
|
"claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5は、Anthropic史上最も知的なモデルです。",
|
|
289
289
|
"codegeex-4.description": "CodeGeeX-4は、開発者の生産性を向上させる多言語対応のAIコーディングアシスタントで、Q&Aやコード補完をサポートします。",
|
|
290
290
|
"codegeex4-all-9b.description": "CodeGeeX4-ALL-9Bは、多言語コード生成モデルで、コード補完、生成、インタープリタ、Web検索、関数呼び出し、リポジトリレベルのQ&Aなど、幅広いソフトウェア開発シナリオに対応します。10B未満のパラメータで最高クラスのコードモデルです。",
|
|
@@ -355,7 +355,7 @@
|
|
|
355
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 は次世代の推論モデルで、複雑な推論と連想思考に優れ、深い分析タスクに対応します。",
|
|
356
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 は次世代の推論モデルで、複雑な推論と連想思考に優れ、深い分析タスクに対応します。",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 は DeepSeekMoE-27B をベースにした MoE 視覚言語モデルで、スパースアクティベーションにより、4.5B のアクティブパラメータで高性能を実現しています。視覚 QA、OCR、文書・表・チャート理解、視覚的グラウンディングに優れています。",
|
|
358
|
-
"deepseek-chat.description": "
|
|
358
|
+
"deepseek-chat.description": "一般的な対話能力と強力なコーディング能力を兼ね備えた新しいオープンソースモデルです。チャットモデルの自然な対話と、コーディングモデルの高いプログラミング能力を維持しつつ、ユーザーの好みにより適合するよう改善されています。DeepSeek-V2.5 は、文章生成や指示の理解・実行能力も向上しています。",
|
|
359
359
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B は 2T トークン(コード 87%、中英テキスト 13%)で学習されたコード言語モデルです。16K のコンテキストウィンドウと Fill-in-the-Middle タスクを導入し、プロジェクトレベルのコード補完とスニペット補完を提供します。",
|
|
360
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
|
|
361
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
|
|
@@ -378,7 +378,7 @@
|
|
|
378
378
|
"deepseek-r1-fast-online.description": "DeepSeek R1 高速フルバージョンは、リアルタイムのウェブ検索を搭載し、671Bスケールの能力と高速応答を両立します。",
|
|
379
379
|
"deepseek-r1-online.description": "DeepSeek R1 フルバージョンは、671Bパラメータとリアルタイムのウェブ検索を備え、より強力な理解と生成を提供します。",
|
|
380
380
|
"deepseek-r1.description": "DeepSeek-R1は、強化学習前にコールドスタートデータを使用し、数学、コーディング、推論においてOpenAI-o1と同等の性能を発揮します。",
|
|
381
|
-
"deepseek-reasoner.description": "DeepSeek V3.2
|
|
381
|
+
"deepseek-reasoner.description": "DeepSeek V3.2 の思考モードは、最終的な回答の前に思考の過程(Chain-of-Thought)を出力することで、精度を高めます。",
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2は、コスト効率の高い処理を実現する効率的なMoEモデルです。",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236Bは、コード生成に特化したDeepSeekのモデルで、強力なコード生成能力を持ちます。",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324は、671BパラメータのMoEモデルで、プログラミングや技術的能力、文脈理解、長文処理において優れた性能を発揮します。",
|
|
@@ -414,6 +414,122 @@
|
|
|
414
414
|
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、強力な推論能力を持ちます。",
|
|
415
415
|
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において優れた性能を発揮します。",
|
|
416
416
|
"devstral-2:123b.description": "Devstral 2 123B は、ツールを活用してコードベースを探索し、複数ファイルを編集し、ソフトウェアエンジニアリングエージェントを支援することに優れています。",
|
|
417
|
+
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite は、超高速応答を実現する新しい軽量モデルであり、最高水準の品質と低遅延を提供します。",
|
|
418
|
+
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k は、Doubao-1.5-Pro の包括的なアップグレード版で、全体的な性能が 10% 向上しています。256k のコンテキストウィンドウと最大 12k の出力トークンをサポートし、より高い性能と広範な用途に対応する価値を提供します。",
|
|
419
|
+
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro は、知識、コーディング、推論において優れた性能を発揮する新世代のフラッグシップモデルです。",
|
|
420
|
+
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 は、新しい深層推論モデルであり(m バージョンはネイティブなマルチモーダル深層推論を含む)、数学、コーディング、科学的推論、創作などの一般タスクにおいて卓越した性能を発揮します。AIME 2024、Codeforces、GPQA などのベンチマークでトップレベルの結果を達成または接近しており、128k のコンテキストウィンドウと 16k の出力をサポートします。",
|
|
421
|
+
"doubao-1.5-thinking-pro.description": "Doubao-1.5 は、新しい深層推論モデルであり、数学、コーディング、科学的推論、創作などの一般タスクにおいて卓越した性能を発揮します。AIME 2024、Codeforces、GPQA などのベンチマークでトップレベルの結果を達成または接近しており、128k のコンテキストウィンドウと 16k の出力をサポートします。",
|
|
422
|
+
"doubao-1.5-thinking-vision-pro.description": "新しい視覚的深層推論モデルであり、マルチモーダルの理解と推論能力が強化されており、59 の公開ベンチマーク中 37 で SOTA(最先端)結果を達成しています。",
|
|
423
|
+
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS は、ネイティブ GUI に特化したエージェントモデルであり、人間のような知覚、推論、行動を通じてインターフェースとシームレスに対話します。",
|
|
424
|
+
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite は、あらゆる解像度と極端なアスペクト比の画像をサポートするアップグレードされたマルチモーダルモデルであり、視覚的推論、文書認識、詳細理解、指示追従を強化します。128k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
|
|
425
|
+
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro は、あらゆる解像度と極端なアスペクト比の画像をサポートするアップグレードされたマルチモーダルモデルであり、視覚的推論、文書認識、詳細理解、指示追従を強化します。",
|
|
426
|
+
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro は、あらゆる解像度と極端なアスペクト比の画像をサポートするアップグレードされたマルチモーダルモデルであり、視覚的推論、文書認識、詳細理解、指示追従を強化します。",
|
|
427
|
+
"doubao-lite-128k.description": "超高速応答と優れたコストパフォーマンスを実現し、さまざまなシナリオに柔軟に対応可能です。128k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
|
|
428
|
+
"doubao-lite-32k.description": "超高速応答と優れたコストパフォーマンスを実現し、さまざまなシナリオに柔軟に対応可能です。32k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
|
|
429
|
+
"doubao-lite-4k.description": "超高速応答と優れたコストパフォーマンスを実現し、さまざまなシナリオに柔軟に対応可能です。4k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
|
|
430
|
+
"doubao-pro-256k.description": "複雑なタスクに最適な最高性能のフラッグシップモデルであり、参照型 QA、要約、創作、テキスト分類、ロールプレイにおいて優れた結果を発揮します。256k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
|
|
431
|
+
"doubao-pro-32k.description": "複雑なタスクに最適な最高性能のフラッグシップモデルであり、参照型 QA、要約、創作、テキスト分類、ロールプレイにおいて優れた結果を発揮します。32k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
|
|
432
|
+
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash は、TPOT が 10ms 以下の超高速マルチモーダル深層推論モデルです。テキストと画像の両方をサポートし、テキスト理解では従来の lite モデルを上回り、視覚では競合する pro モデルに匹敵します。256k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
|
|
433
|
+
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite は、推論の強度(最小、低、中、高)を調整可能な新しいマルチモーダル深層推論モデルであり、一般的なタスクにおいて優れたコストパフォーマンスを提供します。最大 256k のコンテキストウィンドウをサポートします。",
|
|
434
|
+
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking は、Doubao-1.5-thinking-pro に比べて推論力を大幅に強化し、コーディング、数学、論理推論の中核能力をさらに向上させ、視覚理解も追加されています。256k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
|
|
435
|
+
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision は、教育、画像レビュー、検査・セキュリティ、AI 検索 QA などにおいて、より強力なマルチモーダル理解と推論を提供する視覚的深層推論モデルです。256k のコンテキストウィンドウと最大 64k の出力トークンをサポートします。",
|
|
436
|
+
"doubao-seed-1.6.description": "Doubao-Seed-1.6 は、自動、思考あり、思考なしのモードを備えた新しいマルチモーダル深層推論モデルです。思考なしモードでは、Doubao-1.5-pro/250115 を大きく上回る性能を発揮します。256k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
|
|
437
|
+
"doubao-seed-1.8.description": "Doubao-Seed-1.8 は、より強力なマルチモーダル理解能力とエージェント能力を備え、テキスト/画像/動画入力とコンテキストキャッシュをサポートし、複雑なタスクにおいて優れた性能を発揮します。",
|
|
438
|
+
"doubao-seed-code.description": "Doubao-Seed-Code は、エージェント型コーディングに最適化されており、マルチモーダル入力(テキスト/画像/動画)と 256k のコンテキストウィンドウをサポートします。Anthropic API に対応し、コーディング、視覚理解、エージェントワークフローに適しています。",
|
|
439
|
+
"doubao-seededit-3-0-i2i-250628.description": "ByteDance Seed による Doubao 画像モデルは、テキストと画像入力をサポートし、高品質かつ高い制御性のある画像生成を実現します。テキストによる画像編集をサポートし、出力サイズは長辺 512〜1536 の範囲で調整可能です。",
|
|
440
|
+
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 は、ByteDance Seed による画像生成モデルであり、テキストと画像入力をサポートし、高品質かつ高い制御性のある画像生成を実現します。テキストプロンプトから画像を生成します。",
|
|
441
|
+
"doubao-seedream-4-0-250828.description": "Seedream 4.0 は、ByteDance Seed による画像生成モデルであり、テキストと画像入力をサポートし、高品質かつ高い制御性のある画像生成を実現します。テキストプロンプトから画像を生成します。",
|
|
442
|
+
"doubao-vision-lite-32k.description": "Doubao-vision は、Doubao によるマルチモーダルモデルであり、強力な画像理解と推論、正確な指示追従を実現します。画像とテキストの抽出や画像ベースの推論タスクにおいて優れた性能を発揮し、より複雑で広範な視覚 QA シナリオを可能にします。",
|
|
443
|
+
"doubao-vision-pro-32k.description": "Doubao-vision は、Doubao によるマルチモーダルモデルであり、強力な画像理解と推論、正確な指示追従を実現します。画像とテキストの抽出や画像ベースの推論タスクにおいて優れた性能を発揮し、より複雑で広範な視覚 QA シナリオを可能にします。",
|
|
444
|
+
"emohaa.description": "Emohaa は、専門的なカウンセリング能力を備えたメンタルヘルスモデルであり、ユーザーが感情的な問題を理解するのを支援します。",
|
|
445
|
+
"ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B は、ローカルおよびカスタマイズされた導入に適したオープンソースの軽量モデルです。",
|
|
446
|
+
"ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B は、より高度な理解と生成能力を備えたオープンソースの大規模パラメータモデルです。",
|
|
447
|
+
"ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B は、優れた推論能力を持つ Baidu ERNIE の超大規模 MoE モデルです。",
|
|
448
|
+
"ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview は、ERNIE 4.5 の評価用に設計された 8K コンテキストのプレビューモデルです。",
|
|
449
|
+
"ernie-4.5-turbo-128k-preview.description": "ERNIE 4.5 Turbo 128K Preview は、リリースレベルの機能を備えた統合およびカナリアテストに適したモデルです。",
|
|
450
|
+
"ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K は、検索拡張とツール呼び出し機能を備えた高性能な汎用モデルで、QA、コーディング、エージェントシナリオに適しています。",
|
|
451
|
+
"ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K は、中程度の長さのコンテキストを持つバージョンで、QA、ナレッジベース検索、マルチターン対話に適しています。",
|
|
452
|
+
"ernie-4.5-turbo-latest.description": "最新の ERNIE 4.5 Turbo は、全体的な性能が最適化されており、主要な本番モデルとして理想的です。",
|
|
453
|
+
"ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview は、長文コンテキストにおける視覚能力を評価するための 32K マルチモーダルプレビューモデルです。",
|
|
454
|
+
"ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K は、長文ドキュメントと画像の理解を組み合わせた中長文マルチモーダルバージョンです。",
|
|
455
|
+
"ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest は、画像とテキストの理解および推論能力が向上した最新のマルチモーダルバージョンです。",
|
|
456
|
+
"ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview は、視覚的 QA やコンテンツ理解に適した画像とテキストの理解・生成を行うマルチモーダルプレビューモデルです。",
|
|
457
|
+
"ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL は、画像とテキストの理解および認識において本番環境で使用可能な成熟したマルチモーダルモデルです。",
|
|
458
|
+
"ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B は、画像とテキストの理解および推論に対応したオープンソースのマルチモーダルモデルです。",
|
|
459
|
+
"ernie-5.0-thinking-latest.description": "文心 5.0 Thinking は、テキスト・画像・音声・動画を統合的に扱うネイティブなフルモーダルのフラッグシップモデルで、複雑なQA、創作、エージェントシナリオにおける能力を大幅に強化します。",
|
|
460
|
+
"ernie-5.0-thinking-preview.description": "文心 5.0 Thinking Preview は、テキスト・画像・音声・動画を統合的に扱うネイティブなフルモーダルのフラッグシップモデルで、複雑なQA、創作、エージェントシナリオにおける能力を大幅に強化します。",
|
|
461
|
+
"ernie-char-8k.description": "ERNIE Character 8K は、IPキャラクター構築や長期的な対話に適したパーソナリティ対話モデルです。",
|
|
462
|
+
"ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview は、キャラクターおよびプロット創作の機能評価とテスト用のプレビューモデルです。",
|
|
463
|
+
"ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K は、小説やプロット創作に適したパーソナリティモデルで、長編ストーリー生成に対応します。",
|
|
464
|
+
"ernie-irag-edit.description": "ERNIE iRAG Edit は、消去、再描画、バリエーション生成をサポートする画像編集モデルです。",
|
|
465
|
+
"ernie-lite-8k.description": "ERNIE Lite 8K は、コスト重視の日常的なQAやコンテンツ生成に適した軽量汎用モデルです。",
|
|
466
|
+
"ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K は、レイテンシとコストに敏感なシナリオ向けの軽量高性能モデルです。",
|
|
467
|
+
"ernie-novel-8k.description": "ERNIE Novel 8K は、複数キャラクターによる長編小説やIPプロットの生成に特化したモデルです。",
|
|
468
|
+
"ernie-speed-128k.description": "ERNIE Speed 128K は、I/Oコスト不要で長文理解や大規模試験に適したモデルです。",
|
|
469
|
+
"ernie-speed-8k.description": "ERNIE Speed 8K は、日常会話や軽量なテキストタスクに適した無料かつ高速なモデルです。",
|
|
470
|
+
"ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K は、大規模オンラインサービスや企業アプリ向けの高同時接続・高価値モデルです。",
|
|
471
|
+
"ernie-tiny-8k.description": "ERNIE Tiny 8K は、シンプルなQA、分類、低コスト推論に適した超軽量モデルです。",
|
|
472
|
+
"ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K は、複雑な推論やマルチターン対話に対応する32Kコンテキストの高速思考モデルです。",
|
|
473
|
+
"ernie-x1.1-preview.description": "ERNIE X1.1 Preview は、評価とテスト用の思考モデルのプレビューバージョンです。",
|
|
474
|
+
"fal-ai/bytedance/seedream/v4.description": "Seedream 4.0 は、ByteDance Seed による画像生成モデルで、テキストおよび画像入力に対応し、高品質かつ制御性の高い画像生成を実現します。テキストプロンプトから画像を生成します。",
|
|
475
|
+
"fal-ai/flux-kontext/dev.description": "FLUX.1 モデルは画像編集に特化しており、テキストと画像の入力をサポートします。",
|
|
476
|
+
"fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro] は、テキストと参照画像を入力として受け取り、局所的な編集や複雑なグローバルシーン変換を可能にします。",
|
|
477
|
+
"fal-ai/flux/krea.description": "Flux Krea [dev] は、よりリアルで自然な画像を生成する美的バイアスを持つ画像生成モデルです。",
|
|
478
|
+
"fal-ai/flux/schnell.description": "FLUX.1 [schnell] は、迅速かつ高品質な出力を目的とした 120 億パラメータの画像生成モデルです。",
|
|
479
|
+
"fal-ai/hunyuan-image/v3.description": "強力なネイティブマルチモーダル画像生成モデルです。",
|
|
480
|
+
"fal-ai/imagen4/preview.description": "Google による高品質な画像生成モデルです。",
|
|
481
|
+
"fal-ai/nano-banana.description": "Nano Banana は、Google の最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話を通じた画像生成と編集を可能にします。",
|
|
482
|
+
"fal-ai/qwen-image-edit.description": "Qwen チームによるプロフェッショナルな画像編集モデルで、意味や外観の編集、中文・英文テキストの精密な編集、スタイル変換や物体の回転など高品質な編集が可能です。",
|
|
483
|
+
"fal-ai/qwen-image.description": "Qwen チームによる強力な画像生成モデルで、中国語テキストの描画に優れ、多様なビジュアルスタイルに対応します。",
|
|
484
|
+
"flux-1-schnell.description": "Black Forest Labs による 120 億パラメータのテキストから画像への変換モデルで、潜在敵対的拡散蒸留を使用して 1~4 ステップで高品質な画像を生成します。Apache-2.0 ライセンスの下で個人、研究、商用利用が可能です。",
|
|
485
|
+
"flux-dev.description": "FLUX.1 [dev] は、非商用利用向けのオープンウェイト蒸留モデルで、プロ品質に近い画像と指示追従性を維持しつつ、同サイズの標準モデルよりも効率的に動作します。",
|
|
486
|
+
"flux-kontext-max.description": "テキストと画像を組み合わせて、精密かつ一貫性のある結果を生成する最先端のコンテキスト画像生成・編集モデルです。",
|
|
487
|
+
"flux-kontext-pro.description": "テキストと画像を組み合わせて、精密かつ一貫性のある結果を生成する最先端のコンテキスト画像生成・編集モデルです。",
|
|
488
|
+
"flux-merged.description": "FLUX.1-merged は、「DEV」で探求された深い特徴と「Schnell」の高速性を融合し、性能の限界を拡張し、応用範囲を広げます。",
|
|
489
|
+
"flux-pro-1.1-ultra.description": "4MP 出力による超高解像度画像生成で、10 秒以内に鮮明な画像を生成します。",
|
|
490
|
+
"flux-pro-1.1.description": "優れた画像品質と正確なプロンプト追従性を備えた、アップグレードされたプロフェッショナルグレードの画像生成モデルです。",
|
|
491
|
+
"flux-pro.description": "比類なき画像品質と多様な出力を誇る、最上級の商用画像生成モデルです。",
|
|
492
|
+
"flux-schnell.description": "FLUX.1 [schnell] は、最も高度なオープンソースの少ステップ画像生成モデルで、Midjourney v6.0 や DALL-E 3 (HD) などの強力な非蒸留モデルをも凌駕します。事前学習の多様性を保持するように微調整されており、視覚品質、指示追従性、サイズ・アスペクト比の変化、フォント処理、出力の多様性が大幅に向上しています。",
|
|
493
|
+
"flux.1-schnell.description": "FLUX.1-schnell は、迅速なマルチスタイル出力に対応する高性能画像生成モデルです。",
|
|
494
|
+
"gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001(チューニング版)は、複雑なタスクに対して安定した調整可能な性能を提供します。",
|
|
495
|
+
"gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002(チューニング版)は、複雑なタスクに対して強力なマルチモーダル対応を提供します。",
|
|
496
|
+
"gemini-1.0-pro-latest.description": "Gemini 1.0 Pro は、Google による高性能 AI モデルで、幅広いタスクに対応可能なスケーラビリティを備えています。",
|
|
497
|
+
"gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001 は、幅広い用途に対応する効率的なマルチモーダルモデルです。",
|
|
498
|
+
"gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002 は、広範な展開を目的とした効率的なマルチモーダルモデルです。",
|
|
499
|
+
"gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924 は、テキストおよびマルチモーダルのユースケースにおいて顕著な進歩を示す最新の実験モデルです。",
|
|
500
|
+
"gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B は、広範な展開を目的とした効率的なマルチモーダルモデルです。",
|
|
501
|
+
"gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B は、幅広い用途に対応する効率的なマルチモーダルモデルです。",
|
|
502
|
+
"gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827 は、複雑なタスクに対する最適化されたマルチモーダル処理を提供します。",
|
|
503
|
+
"gemini-1.5-flash-latest.description": "Gemini 1.5 Flash は、Google による最新のマルチモーダル AI モデルで、テキスト、画像、動画入力に対応し、タスク全体の効率的なスケーリングを実現します。",
|
|
504
|
+
"gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001 は、複雑なタスクに対応するスケーラブルなマルチモーダル AI ソリューションです。",
|
|
505
|
+
"gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002 は、特に数学、長文コンテキスト、視覚タスクにおいて高品質な出力を提供する最新の本番対応モデルです。",
|
|
506
|
+
"gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801 は、アプリ開発における柔軟性を高めた強力なマルチモーダル処理を提供します。",
|
|
507
|
+
"gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827 は、より効率的なマルチモーダル処理のための最新の最適化を適用しています。",
|
|
508
|
+
"gemini-1.5-pro-latest.description": "Gemini 1.5 Pro は最大 200 万トークンに対応し、複雑なタスクに最適な中規模マルチモーダルモデルです。",
|
|
509
|
+
"gemini-2.0-flash-001.description": "Gemini 2.0 Flash は、卓越したスピード、ネイティブツールの使用、マルチモーダル生成、100 万トークンのコンテキストウィンドウなど、次世代の機能を提供します。",
|
|
510
|
+
"gemini-2.0-flash-exp-image-generation.description": "Gemini 2.0 Flash の実験モデルで、画像生成に対応しています。",
|
|
511
|
+
"gemini-2.0-flash-exp.description": "コスト効率と低遅延に最適化された Gemini 2.0 Flash のバリアントです。",
|
|
512
|
+
"gemini-2.0-flash-lite-001.description": "コスト効率と低遅延に最適化された Gemini 2.0 Flash のバリアントです。",
|
|
513
|
+
"gemini-2.0-flash-lite.description": "コスト効率と低遅延に最適化された Gemini 2.0 Flash のバリアントです。",
|
|
514
|
+
"gemini-2.0-flash.description": "Gemini 2.0 Flash は、卓越したスピード、ネイティブツールの使用、マルチモーダル生成、100 万トークンのコンテキストウィンドウなど、次世代の機能を提供します。",
|
|
515
|
+
"gemini-2.5-flash-image-preview.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
|
|
516
|
+
"gemini-2.5-flash-image-preview:image.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
|
|
517
|
+
"gemini-2.5-flash-image.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
|
|
518
|
+
"gemini-2.5-flash-image:image.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
|
|
519
|
+
"gemini-2.5-flash-lite-preview-06-17.description": "Gemini 2.5 Flash-Lite Preview は、Google による最小かつ最高のコストパフォーマンスを誇るモデルで、大規模な利用に適しています。",
|
|
520
|
+
"gemini-2.5-flash-lite-preview-09-2025.description": "Gemini 2.5 Flash-Lite のプレビューリリース(2025年9月25日)",
|
|
521
|
+
"gemini-2.5-flash-lite.description": "Gemini 2.5 Flash-Lite は、Google による最小かつ最高のコストパフォーマンスを誇るモデルで、大規模な利用に適しています。",
|
|
522
|
+
"gemini-2.5-flash-preview-04-17.description": "Gemini 2.5 Flash Preview は、Google によるフル機能を備えた最高のコストパフォーマンスモデルです。",
|
|
523
|
+
"gemini-2.5-flash-preview-09-2025.description": "Gemini 2.5 Flash のプレビューリリース(2025年9月25日)",
|
|
524
|
+
"gemini-2.5-flash.description": "Gemini 2.5 Flash は、Google によるフル機能を備えた最高のコストパフォーマンスモデルです。",
|
|
525
|
+
"gemini-2.5-pro-preview-03-25.description": "Gemini 2.5 Pro Preview は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
|
|
526
|
+
"gemini-2.5-pro-preview-05-06.description": "Gemini 2.5 Pro Preview は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
|
|
527
|
+
"gemini-2.5-pro-preview-06-05.description": "Gemini 2.5 Pro Preview は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
|
|
528
|
+
"gemini-2.5-pro.description": "Gemini 2.5 Pro は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
|
|
529
|
+
"gemini-3-flash-preview.description": "Gemini 3 Flash は、スピードを重視して設計された最もインテリジェントなモデルで、最先端の知能と優れた検索接地を融合しています。",
|
|
530
|
+
"gemini-3-pro-image-preview.description": "Gemini 3 Pro Image(Nano Banana Pro)は、Google による画像生成モデルで、マルチモーダル対話にも対応しています。",
|
|
531
|
+
"gemini-3-pro-image-preview:image.description": "Gemini 3 Pro Image(Nano Banana Pro)は、Google による画像生成モデルで、マルチモーダル対話にも対応しています。",
|
|
532
|
+
"gemini-3-pro-preview.description": "Gemini 3 Pro は、Google による最も強力なエージェントおよびバイブコーディングモデルで、最先端の推論に加え、より豊かなビジュアルと深いインタラクションを提供します。",
|
|
417
533
|
"gemini-flash-latest.description": "Gemini Flash の最新リリース",
|
|
418
534
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
|
|
419
535
|
"gemini-pro-latest.description": "Gemini Pro の最新リリース",
|
|
@@ -63,7 +63,8 @@
|
|
|
63
63
|
"builtins.lobe-gtd.apiName.createPlan.result": "プランを作成:<goal>{{goal}}</goal>",
|
|
64
64
|
"builtins.lobe-gtd.apiName.createTodos": "ToDoを作成",
|
|
65
65
|
"builtins.lobe-gtd.apiName.execTask": "タスクを実行",
|
|
66
|
-
"builtins.lobe-gtd.apiName.execTask.
|
|
66
|
+
"builtins.lobe-gtd.apiName.execTask.completed": "タスクが作成されました:",
|
|
67
|
+
"builtins.lobe-gtd.apiName.execTask.loading": "タスクを作成中:",
|
|
67
68
|
"builtins.lobe-gtd.apiName.execTasks": "タスクを実行",
|
|
68
69
|
"builtins.lobe-gtd.apiName.removeTodos": "ToDoを削除",
|
|
69
70
|
"builtins.lobe-gtd.apiName.updatePlan": "プランを更新",
|
package/locales/ko-KR/chat.json
CHANGED
|
@@ -295,6 +295,8 @@
|
|
|
295
295
|
"task.batchTasks": "{{count}}개의 일괄 하위 작업",
|
|
296
296
|
"task.metrics.stepsShort": "단계",
|
|
297
297
|
"task.metrics.toolCallsShort": "회 기능 호출",
|
|
298
|
+
"task.status.cancelled": "작업이 취소되었습니다",
|
|
299
|
+
"task.status.failed": "작업에 실패했습니다",
|
|
298
300
|
"task.status.initializing": "작업 시작 중…",
|
|
299
301
|
"task.subtask": "하위 작업",
|
|
300
302
|
"thread.divider": "하위 주제",
|
|
@@ -271,9 +271,9 @@
|
|
|
271
271
|
"chatgpt-4o-latest.description": "ChatGPT-4o는 실시간으로 업데이트되는 동적 모델로, 고객 지원, 교육, 기술 지원과 같은 대규모 활용 사례를 위한 강력한 이해 및 생성 능력을 결합합니다.",
|
|
272
272
|
"claude-2.0.description": "Claude 2는 업계 최고 수준의 200K 토큰 컨텍스트, 환각 감소, 시스템 프롬프트, 새로운 테스트 기능인 도구 호출을 포함한 주요 엔터프라이즈 기능 향상을 제공합니다.",
|
|
273
273
|
"claude-2.1.description": "Claude 2는 업계 최고 수준의 200K 토큰 컨텍스트, 환각 감소, 시스템 프롬프트, 새로운 테스트 기능인 도구 호출을 포함한 주요 엔터프라이즈 기능 향상을 제공합니다.",
|
|
274
|
-
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku는 Anthropic의 가장 빠른
|
|
274
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku는 Anthropic의 차세대 모델 중 가장 빠른 모델입니다. Claude 3 Haiku에 비해 전반적인 능력이 향상되었으며, 많은 지능 벤치마크에서 이전의 최고 모델인 Claude 3 Opus를 능가합니다.",
|
|
275
275
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haiku는 가벼운 작업에 빠른 응답을 제공하는 모델입니다.",
|
|
276
|
-
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet은 Anthropic의 가장 지능적인
|
|
276
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet은 Anthropic의 가장 지능적인 모델이자 시장 최초의 하이브리드 추론 모델입니다. 즉각적인 응답은 물론, 사용자가 확인할 수 있는 단계별 추론도 제공합니다. Sonnet은 특히 코딩, 데이터 과학, 비전, 에이전트 작업에 강점을 보입니다.",
|
|
277
277
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet은 Anthropic의 최신이자 가장 강력한 모델로, 고난도 작업에서 뛰어난 성능, 지능, 유창성, 이해력을 자랑합니다.",
|
|
278
278
|
"claude-3-haiku-20240307.description": "Claude 3 Haiku는 Anthropic의 가장 빠르고 컴팩트한 모델로, 빠르고 정확한 성능으로 즉각적인 응답을 위해 설계되었습니다.",
|
|
279
279
|
"claude-3-opus-20240229.description": "Claude 3 Opus는 Anthropic의 가장 강력한 모델로, 고난도 작업에서 뛰어난 성능, 지능, 유창성, 이해력을 자랑합니다.",
|
|
@@ -281,7 +281,7 @@
|
|
|
281
281
|
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5는 Anthropic의 가장 빠르고 지능적인 Haiku 모델로, 번개 같은 속도와 확장된 추론 능력을 갖추고 있습니다.",
|
|
282
282
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking은 자신의 추론 과정을 드러낼 수 있는 고급 변형 모델입니다.",
|
|
283
283
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1은 Anthropic의 최신이자 가장 강력한 모델로, 고난도 작업에서 뛰어난 성능, 지능, 유창성, 이해력을 자랑합니다.",
|
|
284
|
-
"claude-opus-4-20250514.description": "Claude Opus 4는
|
|
284
|
+
"claude-opus-4-20250514.description": "Claude Opus 4는 Anthropic의 가장 강력한 모델로, 고난도 작업에서 탁월한 성능, 지능, 유창성, 이해력을 자랑합니다.",
|
|
285
285
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5는 Anthropic의 플래그십 모델로, 탁월한 지능과 확장 가능한 성능을 결합하여 최고 품질의 응답과 추론이 필요한 복잡한 작업에 이상적입니다.",
|
|
286
286
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking은 즉각적인 응답 또는 단계별 사고 과정을 시각적으로 보여주는 확장된 사고를 생성할 수 있습니다.",
|
|
287
287
|
"claude-sonnet-4-20250514.description": "Claude Sonnet 4는 즉각적인 응답 또는 단계별 사고 과정을 시각적으로 보여주는 확장된 추론을 생성할 수 있습니다.",
|
|
@@ -355,7 +355,7 @@
|
|
|
355
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
|
|
356
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2는 DeepSeekMoE-27B 기반의 MoE 비전-언어 모델로, 희소 활성화를 통해 4.5B 활성 파라미터만으로도 뛰어난 성능을 발휘합니다. 시각적 질의응답, OCR, 문서/표/차트 이해, 시각적 정렬에 탁월합니다.",
|
|
358
|
-
"deepseek-chat.description": "일반 대화 능력과
|
|
358
|
+
"deepseek-chat.description": "일반 대화 능력과 코딩 능력을 결합한 새로운 오픈소스 모델입니다. 대화형 모델의 일반적인 대화 능력과 코더 모델의 강력한 코딩 능력을 유지하면서 선호도 정렬이 향상되었습니다. DeepSeek-V2.5는 글쓰기와 지시 따르기 능력도 개선되었습니다.",
|
|
359
359
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B는 2T 토큰(코드 87%, 중/영문 텍스트 13%)으로 학습된 코드 언어 모델입니다. 16K 문맥 창과 중간 채우기(fit-in-the-middle) 작업을 도입하여 프로젝트 수준의 코드 완성과 코드 조각 보완을 지원합니다.",
|
|
360
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2는 오픈소스 MoE 코드 모델로, GPT-4 Turbo에 필적하는 뛰어난 코딩 성능을 자랑합니다.",
|
|
361
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2는 오픈소스 MoE 코드 모델로, GPT-4 Turbo에 필적하는 뛰어난 코딩 성능을 자랑합니다.",
|
|
@@ -378,7 +378,7 @@
|
|
|
378
378
|
"deepseek-r1-fast-online.description": "DeepSeek R1의 빠른 전체 버전으로, 실시간 웹 검색을 지원하며 671B 규모의 성능과 빠른 응답을 결합합니다.",
|
|
379
379
|
"deepseek-r1-online.description": "DeepSeek R1 전체 버전은 671B 파라미터와 실시간 웹 검색을 지원하여 더 강력한 이해 및 생성 능력을 제공합니다.",
|
|
380
380
|
"deepseek-r1.description": "DeepSeek-R1은 강화 학습 이전에 콜드 스타트 데이터를 사용하며, 수학, 코딩, 추론 작업에서 OpenAI-o1과 유사한 성능을 보입니다.",
|
|
381
|
-
"deepseek-reasoner.description": "DeepSeek V3.2
|
|
381
|
+
"deepseek-reasoner.description": "DeepSeek V3.2 추론 모드는 최종 답변 전에 사고 과정을 출력하여 정확도를 높입니다.",
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2는 비용 효율적인 처리를 위한 고효율 MoE 모델입니다.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B는 코드 생성에 강점을 가진 DeepSeek의 코드 특화 모델입니다.",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324는 671B 파라미터의 MoE 모델로, 프로그래밍 및 기술적 역량, 문맥 이해, 장문 처리에서 뛰어난 성능을 보입니다.",
|
|
@@ -413,6 +413,105 @@
|
|
|
413
413
|
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B는 Llama-3.3-70B-Instruct에서 디스틸된 모델로, DeepSeek-R1 시리즈의 일부입니다. DeepSeek-R1이 생성한 샘플로 파인튜닝되어 수학, 코딩, 추론에서 뛰어난 성능을 발휘합니다.",
|
|
414
414
|
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B는 Qwen2.5-14B에서 디스틸되었으며, DeepSeek-R1이 생성한 80만 개의 정제된 샘플로 파인튜닝되어 강력한 추론 능력을 제공합니다.",
|
|
415
415
|
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B는 Qwen2.5-32B에서 디스틸되었으며, DeepSeek-R1이 생성한 80만 개의 정제된 샘플로 파인튜닝되어 수학, 코딩, 추론에서 탁월한 성능을 발휘합니다.",
|
|
416
|
+
"devstral-2:123b.description": "Devstral 2 123B는 코드베이스 탐색, 다중 파일 편집, 소프트웨어 엔지니어링 에이전트 지원에 탁월한 도구 활용 능력을 갖춘 모델입니다.",
|
|
417
|
+
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite는 초고속 응답을 제공하는 경량 모델로, 최고 수준의 품질과 지연 시간을 자랑합니다.",
|
|
418
|
+
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k는 Doubao-1.5-Pro의 전면 업그레이드 버전으로, 전체 성능이 10% 향상되었습니다. 256k 컨텍스트 윈도우와 최대 12k 출력 토큰을 지원하며, 더 넓은 활용 사례에 적합한 고성능과 가성비를 제공합니다.",
|
|
419
|
+
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro는 지식, 코딩, 추론 전반에서 뛰어난 성능을 보이는 차세대 플래그십 모델입니다.",
|
|
420
|
+
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5는 수학, 코딩, 과학적 추론, 창의적 글쓰기 등 일반 작업에서 뛰어난 성능을 보이는 심층 추론 모델입니다. m 버전은 멀티모달 심층 추론을 기본으로 포함하며, AIME 2024, Codeforces, GPQA 등 주요 벤치마크에서 최고 수준의 결과를 달성하거나 근접합니다. 128k 컨텍스트 윈도우와 16k 출력 토큰을 지원합니다.",
|
|
421
|
+
"doubao-1.5-thinking-pro.description": "Doubao-1.5는 수학, 코딩, 과학적 추론, 창의적 글쓰기 등 일반 작업에서 뛰어난 성능을 보이는 심층 추론 모델입니다. AIME 2024, Codeforces, GPQA 등 주요 벤치마크에서 최고 수준의 결과를 달성하거나 근접하며, 128k 컨텍스트 윈도우와 16k 출력 토큰을 지원합니다.",
|
|
422
|
+
"doubao-1.5-thinking-vision-pro.description": "더 강력한 멀티모달 이해 및 추론 능력을 갖춘 새로운 시각 심층 추론 모델로, 59개 공개 벤치마크 중 37개에서 SOTA 성과를 달성했습니다.",
|
|
423
|
+
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS는 GUI 중심의 네이티브 에이전트 모델로, 인간과 유사한 인지, 추론, 행동을 통해 인터페이스와 자연스럽게 상호작용합니다.",
|
|
424
|
+
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite는 모든 해상도 및 극단적인 종횡비의 이미지를 지원하는 업그레이드된 멀티모달 모델로, 시각적 추론, 문서 인식, 세부 이해, 지시 따르기 능력을 향상시킵니다. 128k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
|
|
425
|
+
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro는 모든 해상도 및 극단적인 종횡비의 이미지를 지원하는 업그레이드된 멀티모달 모델로, 시각적 추론, 문서 인식, 세부 이해, 지시 따르기 능력을 향상시킵니다.",
|
|
426
|
+
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro는 모든 해상도 및 극단적인 종횡비의 이미지를 지원하는 업그레이드된 멀티모달 모델로, 시각적 추론, 문서 인식, 세부 이해, 지시 따르기 능력을 향상시킵니다.",
|
|
427
|
+
"doubao-lite-128k.description": "초고속 응답과 뛰어난 가성비를 제공하며, 다양한 상황에서 유연한 선택이 가능합니다. 128k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
|
|
428
|
+
"doubao-lite-32k.description": "초고속 응답과 뛰어난 가성비를 제공하며, 다양한 상황에서 유연한 선택이 가능합니다. 32k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
|
|
429
|
+
"doubao-lite-4k.description": "초고속 응답과 뛰어난 가성비를 제공하며, 다양한 상황에서 유연한 선택이 가능합니다. 4k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
|
|
430
|
+
"doubao-pro-256k.description": "복잡한 작업을 위한 최고 성능의 플래그십 모델로, 참조 기반 질의응답, 요약, 창작, 텍스트 분류, 롤플레이 등에서 강력한 성과를 보입니다. 256k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
|
|
431
|
+
"doubao-pro-32k.description": "복잡한 작업을 위한 최고 성능의 플래그십 모델로, 참조 기반 질의응답, 요약, 창작, 텍스트 분류, 롤플레이 등에서 강력한 성과를 보입니다. 32k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
|
|
432
|
+
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash는 TPOT 10ms 수준의 초고속 멀티모달 심층 추론 모델입니다. 텍스트와 시각 입력을 모두 지원하며, 텍스트 이해는 이전 lite 모델을 능가하고, 시각 성능은 경쟁 pro 모델과 동등합니다. 256k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
|
|
433
|
+
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite는 추론 강도를 조절할 수 있는 새로운 멀티모달 심층 추론 모델로, 일반 작업에 적합한 가성비 높은 선택지를 제공합니다. 최대 256k 컨텍스트 윈도우를 지원합니다.",
|
|
434
|
+
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking은 Doubao-1.5-thinking-pro보다 코딩, 수학, 논리 추론의 핵심 능력을 더욱 강화하고 시각 이해 기능을 추가한 모델입니다. 256k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
|
|
435
|
+
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision은 교육, 이미지 리뷰, 검사/보안, AI 검색 질의응답 등에서 강력한 멀티모달 이해 및 추론을 제공하는 시각 심층 추론 모델입니다. 256k 컨텍스트 윈도우와 최대 64k 출력 토큰을 지원합니다.",
|
|
436
|
+
"doubao-seed-1.6.description": "Doubao-Seed-1.6은 자동, 사고, 비사고 모드를 지원하는 새로운 멀티모달 심층 추론 모델입니다. 비사고 모드에서는 Doubao-1.5-pro/250115보다 현저히 뛰어난 성능을 보입니다. 256k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
|
|
437
|
+
"doubao-seed-1.8.description": "Doubao-Seed-1.8은 더 강력한 멀티모달 이해력과 에이전트 능력을 갖추고 있으며, 텍스트/이미지/비디오 입력과 컨텍스트 캐시를 지원하여 복잡한 작업에서 뛰어난 성능을 발휘합니다.",
|
|
438
|
+
"doubao-seed-code.description": "Doubao-Seed-Code는 에이전트 기반 코딩에 최적화된 모델로, 멀티모달 입력(텍스트/이미지/비디오)과 256k 컨텍스트 윈도우를 지원하며, Anthropic API와 호환됩니다. 코딩, 시각 이해, 에이전트 워크플로우에 적합합니다.",
|
|
439
|
+
"doubao-seededit-3-0-i2i-250628.description": "ByteDance Seed의 Doubao 이미지 모델은 텍스트 및 이미지 입력을 지원하며, 고품질 이미지 생성과 세밀한 제어가 가능합니다. 텍스트 기반 이미지 편집을 지원하며, 출력 크기는 긴 변 기준 512~1536 사이입니다.",
|
|
440
|
+
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0은 ByteDance Seed의 이미지 생성 모델로, 텍스트 및 이미지 입력을 지원하며, 고품질 이미지 생성을 세밀하게 제어할 수 있습니다. 텍스트 프롬프트로부터 이미지를 생성합니다.",
|
|
441
|
+
"doubao-seedream-4-0-250828.description": "Seedream 4.0은 ByteDance Seed의 이미지 생성 모델로, 텍스트 및 이미지 입력을 지원하며, 고품질 이미지 생성을 세밀하게 제어할 수 있습니다. 텍스트 프롬프트로부터 이미지를 생성합니다.",
|
|
442
|
+
"doubao-vision-lite-32k.description": "Doubao-vision은 Doubao의 멀티모달 모델로, 강력한 이미지 이해 및 추론 능력과 정확한 지시 따르기 기능을 갖추고 있습니다. 이미지-텍스트 추출 및 이미지 기반 추론 작업에서 뛰어난 성능을 발휘하며, 더 복잡하고 다양한 시각 질의응답 시나리오를 가능하게 합니다.",
|
|
443
|
+
"doubao-vision-pro-32k.description": "Doubao-vision은 Doubao의 멀티모달 모델로, 강력한 이미지 이해 및 추론 능력과 정확한 지시 따르기 기능을 갖추고 있습니다. 이미지-텍스트 추출 및 이미지 기반 추론 작업에서 뛰어난 성능을 발휘하며, 더 복잡하고 다양한 시각 질의응답 시나리오를 가능하게 합니다.",
|
|
444
|
+
"emohaa.description": "Emohaa는 전문 상담 능력을 갖춘 정신 건강 모델로, 사용자가 감정 문제를 이해하도록 돕습니다.",
|
|
445
|
+
"ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B는 로컬 및 맞춤형 배포를 위한 오픈소스 경량 모델입니다.",
|
|
446
|
+
"ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B는 이해력과 생성 능력이 뛰어난 오픈소스 대규모 파라미터 모델입니다.",
|
|
447
|
+
"ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B는 Baidu ERNIE의 초대형 MoE 모델로, 탁월한 추론 능력을 자랑합니다.",
|
|
448
|
+
"ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview는 ERNIE 4.5의 평가를 위한 8K 컨텍스트 프리뷰 모델입니다.",
|
|
449
|
+
"ernie-4.5-turbo-128k-preview.description": "ERNIE 4.5 Turbo 128K Preview는 릴리스 수준의 기능을 갖춘 모델로, 통합 및 카나리아 테스트에 적합합니다.",
|
|
450
|
+
"ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K는 검색 보강 및 도구 호출 기능을 갖춘 고성능 범용 모델로, QA, 코딩, 에이전트 시나리오에 적합합니다.",
|
|
451
|
+
"ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K는 QA, 지식 기반 검색, 다중 턴 대화를 위한 중간 길이 컨텍스트 버전입니다.",
|
|
452
|
+
"ernie-4.5-turbo-latest.description": "최신 ERNIE 4.5 Turbo는 전반적인 성능이 최적화되어 주력 프로덕션 모델로 이상적입니다.",
|
|
453
|
+
"ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview는 장문 컨텍스트 비전 능력 평가를 위한 32K 멀티모달 프리뷰 모델입니다.",
|
|
454
|
+
"ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K는 장문 문서와 이미지 이해를 결합한 중장기 멀티모달 버전입니다.",
|
|
455
|
+
"ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest는 이미지-텍스트 이해 및 추론 능력이 향상된 최신 멀티모달 버전입니다.",
|
|
456
|
+
"ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview는 이미지-텍스트 이해 및 생성을 위한 멀티모달 프리뷰 모델로, 시각적 QA 및 콘텐츠 이해에 적합합니다.",
|
|
457
|
+
"ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL은 프로덕션 환경에서 이미지-텍스트 이해 및 인식을 위한 성숙한 멀티모달 모델입니다.",
|
|
458
|
+
"ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B는 이미지-텍스트 이해 및 추론을 위한 오픈소스 멀티모달 모델입니다.",
|
|
459
|
+
"ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking은 텍스트, 이미지, 오디오, 비디오를 통합 모델링하는 네이티브 풀모달 플래그십 모델로, 복잡한 QA, 창작, 에이전트 시나리오에 대한 전반적인 기능 향상을 제공합니다.",
|
|
460
|
+
"ernie-5.0-thinking-preview.description": "Wenxin 5.0 Thinking Preview는 텍스트, 이미지, 오디오, 비디오를 통합 모델링하는 네이티브 풀모달 플래그십 모델로, 복잡한 QA, 창작, 에이전트 시나리오에 대한 전반적인 기능 향상을 제공합니다.",
|
|
461
|
+
"ernie-char-8k.description": "ERNIE Character 8K는 IP 캐릭터 구축 및 장기 동반자형 대화를 위한 페르소나 대화 모델입니다.",
|
|
462
|
+
"ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview는 캐릭터 및 플롯 창작 기능 평가를 위한 프리뷰 모델입니다.",
|
|
463
|
+
"ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K는 장편 소설 및 플롯 창작에 적합한 페르소나 모델입니다.",
|
|
464
|
+
"ernie-irag-edit.description": "ERNIE iRAG Edit는 지우기, 다시 그리기, 변형 생성 등을 지원하는 이미지 편집 모델입니다.",
|
|
465
|
+
"ernie-lite-8k.description": "ERNIE Lite 8K는 비용 민감한 일상 QA 및 콘텐츠 생성을 위한 경량 범용 모델입니다.",
|
|
466
|
+
"ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K는 지연 시간 및 비용에 민감한 시나리오를 위한 경량 고성능 모델입니다.",
|
|
467
|
+
"ernie-novel-8k.description": "ERNIE Novel 8K는 다중 캐릭터 내러티브를 포함한 장편 소설 및 IP 플롯 생성을 위해 설계되었습니다.",
|
|
468
|
+
"ernie-speed-128k.description": "ERNIE Speed 128K는 I/O 비용이 없는 모델로, 장문 이해 및 대규모 테스트에 적합합니다.",
|
|
469
|
+
"ernie-speed-8k.description": "ERNIE Speed 8K는 일상 대화 및 간단한 텍스트 작업을 위한 무료 고속 모델입니다.",
|
|
470
|
+
"ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K는 대규모 온라인 서비스 및 엔터프라이즈 앱을 위한 고동시성 고가치 모델입니다.",
|
|
471
|
+
"ernie-tiny-8k.description": "ERNIE Tiny 8K는 간단한 QA, 분류, 저비용 추론을 위한 초경량 모델입니다.",
|
|
472
|
+
"ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K는 복잡한 추론 및 다중 턴 대화를 위한 32K 컨텍스트의 고속 사고 모델입니다.",
|
|
473
|
+
"ernie-x1.1-preview.description": "ERNIE X1.1 Preview는 평가 및 테스트를 위한 사고 모델 프리뷰입니다.",
|
|
474
|
+
"fal-ai/bytedance/seedream/v4.description": "Seedream 4.0은 ByteDance Seed에서 개발한 이미지 생성 모델로, 텍스트와 이미지 입력을 지원하며 고품질의 이미지 생성과 높은 제어력을 제공합니다. 텍스트 프롬프트로부터 이미지를 생성합니다.",
|
|
475
|
+
"fal-ai/flux-kontext/dev.description": "FLUX.1 모델은 이미지 편집에 중점을 두며, 텍스트와 이미지 입력을 지원합니다.",
|
|
476
|
+
"fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro]는 텍스트와 참조 이미지를 입력으로 받아, 국소 편집과 복잡한 장면 변환을 정밀하게 수행할 수 있습니다.",
|
|
477
|
+
"fal-ai/flux/krea.description": "Flux Krea [dev]는 보다 사실적이고 자연스러운 이미지 스타일에 중점을 둔 이미지 생성 모델입니다.",
|
|
478
|
+
"fal-ai/flux/schnell.description": "FLUX.1 [schnell]은 빠르고 고품질의 출력을 위해 설계된 120억 파라미터 이미지 생성 모델입니다.",
|
|
479
|
+
"fal-ai/hunyuan-image/v3.description": "강력한 네이티브 멀티모달 이미지 생성 모델입니다.",
|
|
480
|
+
"fal-ai/imagen4/preview.description": "Google에서 개발한 고품질 이미지 생성 모델입니다.",
|
|
481
|
+
"fal-ai/nano-banana.description": "Nano Banana는 Google의 최신, 가장 빠르고 효율적인 네이티브 멀티모달 모델로, 대화형 이미지 생성 및 편집을 지원합니다.",
|
|
482
|
+
"fal-ai/qwen-image-edit.description": "Qwen 팀에서 개발한 전문 이미지 편집 모델로, 의미 및 외형 편집을 지원하며, 중국어 및 영어 텍스트를 정밀하게 편집하고 스타일 전환, 객체 회전 등 고품질 편집을 수행할 수 있습니다.",
|
|
483
|
+
"fal-ai/qwen-image.description": "Qwen 팀에서 개발한 강력한 이미지 생성 모델로, 중국어 텍스트 렌더링과 다양한 시각 스타일에서 뛰어난 성능을 보입니다.",
|
|
484
|
+
"flux-1-schnell.description": "Black Forest Labs에서 개발한 120억 파라미터 텍스트-이미지 모델로, 잠재 적대 확산 증류를 사용하여 1~4단계 내에 고품질 이미지를 생성합니다. 상용 모델과 경쟁하며, Apache-2.0 라이선스로 개인, 연구, 상업적 사용이 가능합니다.",
|
|
485
|
+
"flux-dev.description": "FLUX.1 [dev]는 비상업적 사용을 위한 오픈 가중치 증류 모델로, 전문가 수준의 이미지 품질과 지시 따르기를 유지하면서도 더 효율적으로 작동합니다.",
|
|
486
|
+
"flux-kontext-max.description": "최첨단 문맥 기반 이미지 생성 및 편집 모델로, 텍스트와 이미지를 결합하여 정밀하고 일관된 결과를 생성합니다.",
|
|
487
|
+
"flux-kontext-pro.description": "최첨단 문맥 기반 이미지 생성 및 편집 모델로, 텍스트와 이미지를 결합하여 정밀하고 일관된 결과를 생성합니다.",
|
|
488
|
+
"flux-merged.description": "FLUX.1-merged는 \"DEV\"의 심층 기능과 \"Schnell\"의 고속 장점을 결합하여 성능 한계를 확장하고 활용 범위를 넓혔습니다.",
|
|
489
|
+
"flux-pro-1.1-ultra.description": "4MP 해상도의 초고해상도 이미지 생성 모델로, 10초 내에 선명한 이미지를 생성합니다.",
|
|
490
|
+
"flux-pro-1.1.description": "우수한 이미지 품질과 정밀한 프롬프트 반응을 제공하는 업그레이드된 전문가급 이미지 생성 모델입니다.",
|
|
491
|
+
"flux-pro.description": "최고 수준의 상업용 이미지 생성 모델로, 탁월한 이미지 품질과 다양한 출력을 제공합니다.",
|
|
492
|
+
"flux-schnell.description": "FLUX.1 [schnell]은 가장 진보된 오픈소스 소수 단계 모델로, Midjourney v6.0 및 DALL-E 3 (HD)와 같은 강력한 비증류 모델을 능가합니다. 사전 학습의 다양성을 유지하도록 정밀하게 조정되어 시각 품질, 지시 따르기, 크기/비율 다양성, 글꼴 처리, 출력 다양성이 크게 향상되었습니다.",
|
|
493
|
+
"flux.1-schnell.description": "FLUX.1-schnell은 빠른 다중 스타일 출력을 위한 고성능 이미지 생성 모델입니다.",
|
|
494
|
+
"gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001 (튜닝)은 복잡한 작업을 위한 안정적이고 조정 가능한 성능을 제공합니다.",
|
|
495
|
+
"gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002 (튜닝)은 복잡한 작업을 위한 강력한 멀티모달 지원을 제공합니다.",
|
|
496
|
+
"gemini-1.0-pro-latest.description": "Gemini 1.0 Pro는 Google의 고성능 AI 모델로, 다양한 작업 확장에 적합하도록 설계되었습니다.",
|
|
497
|
+
"gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001은 광범위한 애플리케이션 확장을 위한 효율적인 멀티모달 모델입니다.",
|
|
498
|
+
"gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002는 대규모 배포를 위해 설계된 효율적인 멀티모달 모델입니다.",
|
|
499
|
+
"gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924는 텍스트 및 멀티모달 사용 사례 전반에서 눈에 띄는 향상을 보이는 최신 실험 모델입니다.",
|
|
500
|
+
"gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B는 대규모 배포를 위해 설계된 효율적인 멀티모달 모델입니다.",
|
|
501
|
+
"gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B는 광범위한 애플리케이션 확장을 위한 효율적인 멀티모달 모델입니다.",
|
|
502
|
+
"gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827은 복잡한 작업을 위한 최적화된 멀티모달 처리를 제공합니다.",
|
|
503
|
+
"gemini-1.5-flash-latest.description": "Gemini 1.5 Flash는 Google의 최신 멀티모달 AI 모델로, 빠른 처리 속도와 텍스트, 이미지, 비디오 입력을 지원하여 다양한 작업에 효율적으로 확장할 수 있습니다.",
|
|
504
|
+
"gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001은 복잡한 작업을 위한 확장 가능한 멀티모달 AI 솔루션입니다.",
|
|
505
|
+
"gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002는 수학, 장문 문맥, 비전 작업에서 특히 뛰어난 품질을 제공하는 최신 생산 준비 모델입니다.",
|
|
506
|
+
"gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801은 앱 개발을 위한 더 큰 유연성을 갖춘 강력한 멀티모달 처리를 제공합니다.",
|
|
507
|
+
"gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827은 보다 효율적인 멀티모달 처리를 위해 최신 최적화를 적용했습니다.",
|
|
508
|
+
"gemini-1.5-pro-latest.description": "Gemini 1.5 Pro는 최대 200만 토큰을 지원하는 중간 규모의 멀티모달 모델로, 복잡한 작업에 이상적입니다.",
|
|
509
|
+
"gemini-2.0-flash-001.description": "Gemini 2.0 Flash는 차세대 기능을 제공하며, 뛰어난 속도, 네이티브 도구 사용, 멀티모달 생성, 100만 토큰 문맥 창을 지원합니다.",
|
|
510
|
+
"gemini-2.0-flash-exp-image-generation.description": "이미지 생성을 지원하는 Gemini 2.0 Flash 실험 모델입니다.",
|
|
511
|
+
"gemini-2.0-flash-exp.description": "비용 효율성과 낮은 지연 시간에 최적화된 Gemini 2.0 Flash 변형입니다.",
|
|
512
|
+
"gemini-2.0-flash-lite-001.description": "비용 효율성과 낮은 지연 시간에 최적화된 Gemini 2.0 Flash 변형입니다.",
|
|
513
|
+
"gemini-2.0-flash-lite.description": "비용 효율성과 낮은 지연 시간에 최적화된 Gemini 2.0 Flash 변형입니다.",
|
|
514
|
+
"gemini-2.0-flash.description": "Gemini 2.0 Flash는 차세대 기능을 제공하며, 뛰어난 속도, 네이티브 도구 사용, 멀티모달 생성, 100만 토큰 문맥 창을 지원합니다.",
|
|
416
515
|
"gemini-flash-latest.description": "Gemini Flash 최신 버전",
|
|
417
516
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite 최신 버전",
|
|
418
517
|
"gemini-pro-latest.description": "Gemini Pro 최신 버전",
|
|
@@ -63,7 +63,8 @@
|
|
|
63
63
|
"builtins.lobe-gtd.apiName.createPlan.result": "계획 생성: <goal>{{goal}}</goal>",
|
|
64
64
|
"builtins.lobe-gtd.apiName.createTodos": "할 일 만들기",
|
|
65
65
|
"builtins.lobe-gtd.apiName.execTask": "작업 실행",
|
|
66
|
-
"builtins.lobe-gtd.apiName.execTask.
|
|
66
|
+
"builtins.lobe-gtd.apiName.execTask.completed": "작업이 생성되었습니다: ",
|
|
67
|
+
"builtins.lobe-gtd.apiName.execTask.loading": "작업 생성 중: ",
|
|
67
68
|
"builtins.lobe-gtd.apiName.execTasks": "작업들 실행",
|
|
68
69
|
"builtins.lobe-gtd.apiName.removeTodos": "할 일 삭제",
|
|
69
70
|
"builtins.lobe-gtd.apiName.updatePlan": "계획 업데이트",
|
package/locales/nl-NL/chat.json
CHANGED
|
@@ -295,6 +295,8 @@
|
|
|
295
295
|
"task.batchTasks": "{{count}} batch-subtaken",
|
|
296
296
|
"task.metrics.stepsShort": "stappen",
|
|
297
297
|
"task.metrics.toolCallsShort": "toolgebruik",
|
|
298
|
+
"task.status.cancelled": "Taak geannuleerd",
|
|
299
|
+
"task.status.failed": "Taak mislukt",
|
|
298
300
|
"task.status.initializing": "Taak initialiseren...",
|
|
299
301
|
"task.subtask": "Subtaak",
|
|
300
302
|
"thread.divider": "Subonderwerp",
|