@lobehub/lobehub 2.0.0-next.193 → 2.0.0-next.195
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +39 -0
- package/locales/bg-BG/models.json +40 -0
- package/locales/de-DE/models.json +31 -0
- package/locales/es-ES/models.json +47 -0
- package/locales/fa-IR/models.json +1 -0
- package/locales/fr-FR/models.json +1 -0
- package/locales/it-IT/models.json +1 -0
- package/locales/ja-JP/models.json +53 -0
- package/locales/ko-KR/models.json +38 -0
- package/locales/nl-NL/models.json +1 -0
- package/locales/pl-PL/models.json +1 -0
- package/locales/pt-BR/models.json +15 -0
- package/locales/ru-RU/models.json +35 -0
- package/locales/tr-TR/models.json +29 -0
- package/locales/vi-VN/models.json +1 -0
- package/locales/zh-CN/models.json +59 -0
- package/locales/zh-TW/models.json +31 -0
- package/package.json +1 -1
- package/packages/database/src/models/user.ts +8 -0
- package/packages/database/src/repositories/aiInfra/index.test.ts +11 -8
- package/packages/database/src/repositories/dataExporter/index.test.ts +11 -9
- package/packages/database/src/repositories/tableViewer/index.test.ts +13 -14
- package/packages/model-runtime/src/providers/zhipu/index.ts +6 -6
- package/src/envs/app.ts +2 -0
- package/src/libs/trpc/lambda/middleware/index.ts +1 -0
- package/src/libs/trpc/lambda/middleware/telemetry.test.ts +237 -0
- package/src/libs/trpc/lambda/middleware/telemetry.ts +74 -0
- package/src/server/routers/lambda/market/index.ts +1 -93
- package/src/server/routers/tools/_helpers/index.ts +1 -0
- package/src/server/routers/tools/_helpers/scheduleToolCallReport.ts +113 -0
- package/src/server/routers/tools/index.ts +2 -2
- package/src/server/routers/tools/market.ts +375 -0
- package/src/server/routers/tools/mcp.ts +77 -20
- package/src/services/chat/index.ts +0 -2
- package/src/services/codeInterpreter.ts +6 -6
- package/src/services/mcp.test.ts +60 -46
- package/src/services/mcp.ts +67 -48
- package/src/store/chat/slices/plugin/action.test.ts +191 -0
- package/src/store/chat/slices/plugin/actions/internals.ts +2 -18
- package/src/store/chat/slices/plugin/actions/pluginTypes.ts +31 -44
- package/packages/database/src/client/db.test.ts +0 -52
- package/packages/database/src/client/db.ts +0 -195
- package/packages/database/src/client/type.ts +0 -6
- package/src/server/routers/tools/codeInterpreter.ts +0 -255
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,56 @@
|
|
|
2
2
|
|
|
3
3
|
# Changelog
|
|
4
4
|
|
|
5
|
+
## [Version 2.0.0-next.195](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.194...v2.0.0-next.195)
|
|
6
|
+
|
|
7
|
+
<sup>Released on **2026-01-03**</sup>
|
|
8
|
+
|
|
9
|
+
#### 🐛 Bug Fixes
|
|
10
|
+
|
|
11
|
+
- **misc**: Fix tool call message content missing.
|
|
12
|
+
|
|
13
|
+
<br/>
|
|
14
|
+
|
|
15
|
+
<details>
|
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
|
17
|
+
|
|
18
|
+
#### What's fixed
|
|
19
|
+
|
|
20
|
+
- **misc**: Fix tool call message content missing, closes [#11116](https://github.com/lobehub/lobe-chat/issues/11116) ([885964e](https://github.com/lobehub/lobe-chat/commit/885964e))
|
|
21
|
+
|
|
22
|
+
</details>
|
|
23
|
+
|
|
24
|
+
<div align="right">
|
|
25
|
+
|
|
26
|
+
[](#readme-top)
|
|
27
|
+
|
|
28
|
+
</div>
|
|
29
|
+
|
|
30
|
+
## [Version 2.0.0-next.194](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.193...v2.0.0-next.194)
|
|
31
|
+
|
|
32
|
+
<sup>Released on **2026-01-03**</sup>
|
|
33
|
+
|
|
34
|
+
#### 💄 Styles
|
|
35
|
+
|
|
36
|
+
- **misc**: Update i18n.
|
|
37
|
+
|
|
38
|
+
<br/>
|
|
39
|
+
|
|
40
|
+
<details>
|
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
|
42
|
+
|
|
43
|
+
#### Styles
|
|
44
|
+
|
|
45
|
+
- **misc**: Update i18n, closes [#11115](https://github.com/lobehub/lobe-chat/issues/11115) ([072e0dd](https://github.com/lobehub/lobe-chat/commit/072e0dd))
|
|
46
|
+
|
|
47
|
+
</details>
|
|
48
|
+
|
|
49
|
+
<div align="right">
|
|
50
|
+
|
|
51
|
+
[](#readme-top)
|
|
52
|
+
|
|
53
|
+
</div>
|
|
54
|
+
|
|
5
55
|
## [Version 2.0.0-next.193](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.192...v2.0.0-next.193)
|
|
6
56
|
|
|
7
57
|
<sup>Released on **2026-01-02**</sup>
|
package/changelog/v1.json
CHANGED
|
@@ -1,4 +1,22 @@
|
|
|
1
1
|
[
|
|
2
|
+
{
|
|
3
|
+
"children": {
|
|
4
|
+
"fixes": [
|
|
5
|
+
"Fix tool call message content missing."
|
|
6
|
+
]
|
|
7
|
+
},
|
|
8
|
+
"date": "2026-01-03",
|
|
9
|
+
"version": "2.0.0-next.195"
|
|
10
|
+
},
|
|
11
|
+
{
|
|
12
|
+
"children": {
|
|
13
|
+
"improvements": [
|
|
14
|
+
"Update i18n."
|
|
15
|
+
]
|
|
16
|
+
},
|
|
17
|
+
"date": "2026-01-03",
|
|
18
|
+
"version": "2.0.0-next.194"
|
|
19
|
+
},
|
|
2
20
|
{
|
|
3
21
|
"children": {},
|
|
4
22
|
"date": "2026-01-02",
|
package/locales/ar/models.json
CHANGED
|
@@ -103,6 +103,7 @@
|
|
|
103
103
|
"Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 هو نموذج MoE يحتوي على 671 مليار معلمة، يستخدم MLA وDeepSeekMoE مع توازن تحميل خالٍ من الفقدان لتحقيق كفاءة في الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون رمز عالي الجودة وتم تحسينه باستخدام SFT وRL، متفوقًا على النماذج المفتوحة الأخرى ويقترب من النماذج المغلقة الرائدة.",
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 هو أحدث وأقوى إصدار من Kimi K2. إنه نموذج MoE من الدرجة الأولى يحتوي على إجمالي 1 تريليون و32 مليار معلمة نشطة. من أبرز ميزاته الذكاء البرمجي القوي مع تحسينات كبيرة في المعايير ومهام الوكلاء الواقعية، بالإضافة إلى تحسينات في جمالية واجهة الشيفرة وسهولة الاستخدام.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo هو إصدار Turbo محسّن لسرعة الاستدلال والإنتاجية مع الحفاظ على قدرات التفكير متعدد الخطوات واستخدام الأدوات في K2 Thinking. إنه نموذج MoE يحتوي على حوالي 1 تريليون معلمة إجمالية، ويدعم سياقًا أصليًا بطول 256 ألف رمز، واستدعاء أدوات واسع النطاق ومستقر لسيناريوهات الإنتاج التي تتطلب زمن استجابة وتزامنًا صارمين.",
|
|
106
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 هو النموذج الرائد من الجيل الجديد لشركة Zhipu، ويحتوي على 355 مليار معلمة إجمالية و32 مليار معلمة نشطة. يتميز بتحديثات شاملة في قدرات الحوار العام، الاستدلال، والوكالة الذكية. يعزز GLM-4.7 مفهوم التفكير المتداخل (Interleaved Thinking)، ويقدم مفاهيم جديدة مثل التفكير المحفوظ (Preserved Thinking) والتفكير على مستوى الدور (Turn-level Thinking).",
|
|
106
107
|
"QwQ-32B-Preview.description": "Qwen QwQ هو نموذج بحث تجريبي يركز على تحسين الاستدلال.",
|
|
107
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview هو نموذج بحث من Qwen يركز على الاستدلال البصري، يتميز بفهم المشاهد المعقدة وحل مسائل الرياضيات البصرية.",
|
|
108
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ هو نموذج بحث تجريبي يركز على تحسين استدلال الذكاء الاصطناعي.",
|
|
@@ -270,15 +271,20 @@
|
|
|
270
271
|
"chatgpt-4o-latest.description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الفعلي، يجمع بين الفهم العميق والقدرة على التوليد لتلبية احتياجات الاستخدام الواسعة مثل دعم العملاء والتعليم والدعم الفني.",
|
|
271
272
|
"claude-2.0.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
|
|
272
273
|
"claude-2.1.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
|
|
274
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل الجديد لشركة Anthropic. مقارنةً بـ Claude 3 Haiku، فإنه يقدم تحسينات شاملة في المهارات ويتفوق على النموذج الأكبر السابق Claude 3 Opus في العديد من اختبارات الذكاء.",
|
|
273
275
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haiku يقدم استجابات سريعة للمهام الخفيفة.",
|
|
276
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet هو أذكى نموذج من Anthropic وأول نموذج استدلال هجين في السوق. يمكنه تقديم ردود شبه فورية أو استدلال تدريجي خطوة بخطوة يمكن للمستخدمين متابعته. يتميز Sonnet بقوة خاصة في البرمجة، علم البيانات، الرؤية، ومهام الوكلاء.",
|
|
274
277
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم العميق.",
|
|
275
278
|
"claude-3-haiku-20240307.description": "Claude 3 Haiku هو أسرع وأصغر نموذج من Anthropic، مصمم لتقديم استجابات شبه فورية بأداء سريع ودقيق.",
|
|
276
279
|
"claude-3-opus-20240229.description": "Claude 3 Opus هو أقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
|
|
277
280
|
"claude-3-sonnet-20240229.description": "Claude 3 Sonnet يوازن بين الذكاء والسرعة لتلبية احتياجات المؤسسات، ويوفر فائدة عالية بتكلفة أقل ونشر موثوق على نطاق واسع.",
|
|
281
|
+
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 هو أسرع وأذكى نموذج Haiku من Anthropic، يتميز بسرعة فائقة وقدرة استدلال موسعة.",
|
|
278
282
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking هو إصدار متقدم يمكنه عرض عملية تفكيره.",
|
|
279
283
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1 هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
|
|
284
|
+
"claude-opus-4-20250514.description": "Claude Opus 4 هو أقوى نموذج من Anthropic للمهام المعقدة للغاية، ويتفوق في الأداء، الذكاء، الطلاقة، والفهم.",
|
|
280
285
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5 هو النموذج الرائد من Anthropic، يجمع بين الذكاء الاستثنائي والأداء القابل للتوسع، مثالي للمهام المعقدة التي تتطلب استجابات عالية الجودة وتفكير متقدم.",
|
|
281
286
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking يمكنه تقديم استجابات شبه فورية أو تفكير متسلسل مرئي.",
|
|
287
|
+
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 قادر على تقديم ردود شبه فورية أو تفكير تدريجي خطوة بخطوة مع عرض واضح للعملية.",
|
|
282
288
|
"claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 هو أذكى نموذج من Anthropic حتى الآن.",
|
|
283
289
|
"codegeex-4.description": "CodeGeeX-4 هو مساعد برمجة ذكي يدعم الأسئلة والأجوبة متعددة اللغات وإكمال الشيفرة لزيادة إنتاجية المطورين.",
|
|
284
290
|
"codegeex4-all-9b.description": "CodeGeeX4-ALL-9B هو نموذج توليد شيفرة متعدد اللغات يدعم الإكمال والتوليد، تفسير الشيفرة، البحث عبر الإنترنت، استدعاء الوظائف، وأسئلة وأجوبة على مستوى المستودع، ويغطي مجموعة واسعة من سيناريوهات تطوير البرمجيات. يُعد من أفضل نماذج الشيفرة تحت 10B.",
|
|
@@ -349,6 +355,7 @@
|
|
|
349
355
|
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 هو نموذج تفكير من الجيل التالي يتمتع بقدرات أقوى في التفكير المعقد وسلسلة التفكير لمهام التحليل العميق.",
|
|
350
356
|
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 هو نموذج تفكير من الجيل التالي يتمتع بقدرات أقوى في التفكير المعقد وسلسلة التفكير لمهام التحليل العميق.",
|
|
351
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 هو نموذج رؤية-لغة MoE يعتمد على DeepSeekMoE-27B مع تنشيط متفرق، ويحقق أداءً قويًا باستخدام 4.5 مليار معلمة نشطة فقط. يتميز في الأسئلة البصرية، وOCR، وفهم المستندات/الجداول/المخططات، والتأريض البصري.",
|
|
358
|
+
"deepseek-chat.description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة والبرمجية. يحافظ على حوار النموذج العام وقوة البرمجة في نموذج المبرمج، مع تحسين توافق التفضيلات. كما يعزز DeepSeek-V2.5 قدرات الكتابة واتباع التعليمات.",
|
|
352
359
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B هو نموذج لغة برمجية تم تدريبه على 2 تريليون رمز (87٪ كود، 13٪ نص صيني/إنجليزي). يقدم نافذة سياق 16K ومهام الإكمال في المنتصف، ويوفر إكمال كود على مستوى المشاريع وملء مقاطع الكود.",
|
|
353
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 هو نموذج كود MoE مفتوح المصدر يتميز بأداء قوي في مهام البرمجة، ويضاهي GPT-4 Turbo.",
|
|
354
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 هو نموذج كود MoE مفتوح المصدر يتميز بأداء قوي في مهام البرمجة، ويضاهي GPT-4 Turbo.",
|
|
@@ -371,9 +378,41 @@
|
|
|
371
378
|
"deepseek-r1-fast-online.description": "الإصدار الكامل السريع من DeepSeek R1 مع بحث ويب في الوقت الحقيقي، يجمع بين قدرات بحجم 671B واستجابة أسرع.",
|
|
372
379
|
"deepseek-r1-online.description": "الإصدار الكامل من DeepSeek R1 مع 671 مليار معلمة وبحث ويب في الوقت الحقيقي، يوفر فهمًا وتوليدًا أقوى.",
|
|
373
380
|
"deepseek-r1.description": "يستخدم DeepSeek-R1 بيانات البداية الباردة قبل التعلم المعزز ويؤدي أداءً مماثلًا لـ OpenAI-o1 في الرياضيات، والبرمجة، والتفكير.",
|
|
381
|
+
"deepseek-reasoner.description": "وضع التفكير في DeepSeek V3.2 ينتج سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
374
382
|
"deepseek-v2.description": "DeepSeek V2 هو نموذج MoE فعال لمعالجة منخفضة التكلفة.",
|
|
375
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B هو نموذج DeepSeek الموجه للبرمجة مع قدرات قوية في توليد الكود.",
|
|
376
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 هو نموذج MoE يحتوي على 671 مليار معلمة يتميز بقوة في البرمجة، والقدرات التقنية، وفهم السياق، والتعامل مع النصوص الطويلة.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus هو نموذج لغوي كبير محسّن للأجهزة الطرفية، ومصمم خصيصًا للعمل على بيئات الطرفية.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 هو نموذج تفكير عميق يتوافق مع إصدار Terminus، ومصمم للاستدلال عالي الأداء.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد من DeepSeek، يدعم أوضاع التفكير وغير التفكير، ويوفر كفاءة تفكير أعلى من DeepSeek-R1-0528. التحسينات بعد التدريب تعزز بشكل كبير استخدام أدوات الوكلاء وأداء المهام. يدعم نافذة سياق تصل إلى 128 ألف رمز وإخراج حتى 64 ألف رمز.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 هو نموذج استدلال من الجيل التالي مع تحسينات في الاستدلال المعقد وسلسلة الأفكار، مناسب للمهام التي تتطلب تحليلاً عميقًا.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp يقدم انتباهاً متفرقاً لتحسين كفاءة التدريب والاستدلال على النصوص الطويلة، بسعر أقل من deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think هو نموذج تفكير عميق كامل يتمتع بقدرات استدلال طويلة السلسلة أقوى.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 هو أول نموذج استدلال هجين من DeepSeek يدمج التفكير مع استخدام الأدوات. يستخدم بنية فعالة لتقليل استهلاك الحوسبة، ويعزز القدرات من خلال التعلم المعزز واسع النطاق وبيانات مهام تركيبية ضخمة. يجمع بين هذه العناصر لتحقيق أداء يقارب GPT-5-High، مع تقليل كبير في طول الإخراج، مما يقلل من التكاليف والوقت المنتظر للمستخدم.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 هو نموذج MoE قوي يحتوي على 671 مليار معلمة إجمالية و37 مليار معلمة نشطة لكل رمز.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small هو إصدار متعدد الوسائط خفيف الوزن مصمم للبيئات ذات الموارد المحدودة والاستخدام عالي التوازي.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 هو نموذج متعدد الوسائط لفهم النصوص والصور والإجابة البصرية الدقيقة.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 هو نموذج MoE يحتوي على 685 مليار معلمة، وهو أحدث إصدار من سلسلة دردشة DeepSeek الرائدة.\n\nيعتمد على [DeepSeek V3](/deepseek/deepseek-chat-v3) ويؤدي أداءً قويًا عبر المهام.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 هو نموذج MoE يحتوي على 685 مليار معلمة، وهو أحدث إصدار من سلسلة دردشة DeepSeek الرائدة.\n\nيعتمد على [DeepSeek V3](/deepseek/deepseek-chat-v3) ويؤدي أداءً قويًا عبر المهام.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين طويل السياق من DeepSeek، يدعم أوضاع التفكير وغير التفكير وتكامل الأدوات.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 هو نموذج استدلال هجين عالي الأداء من DeepSeek للمهام المعقدة وتكامل الأدوات.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 هو إصدار محدث يركز على الإتاحة المفتوحة والاستدلال الأعمق.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 يعزز الاستدلال بشكل كبير باستخدام بيانات معنونة قليلة، ويولد سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B هو نموذج مكرر مبني على Llama 3.3 70B، تم تحسينه باستخدام مخرجات DeepSeek R1 لتحقيق أداء تنافسي مع النماذج الرائدة.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B هو نموذج مكرر مبني على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B هو نموذج مكرر مبني على Qwen 2.5 14B، تم تدريبه باستخدام مخرجات DeepSeek R1. يتفوق على OpenAI o1-mini في العديد من المعايير، ويحقق نتائج رائدة بين النماذج الكثيفة.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B هو نموذج مكرر مبني على Qwen 2.5 32B، تم تدريبه باستخدام مخرجات DeepSeek R1. يتفوق على OpenAI o1-mini في العديد من المعايير، ويحقق نتائج رائدة بين النماذج الكثيفة.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "تم تحديث DeepSeek R1 إلى DeepSeek-R1-0528. مع موارد حوسبة أكبر وتحسينات خوارزمية بعد التدريب، يعزز بشكل كبير عمق وقدرة الاستدلال. يؤدي أداءً قويًا في اختبارات الرياضيات، البرمجة، والمنطق العام، ويقترب من نماذج رائدة مثل o3 وGemini 2.5 Pro.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 هو أحدث نموذج مفتوح المصدر من فريق DeepSeek، يتمتع بأداء استدلال قوي، خاصة في الرياضيات، البرمجة، ومهام التفكير، ويقارن بـ OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 يعزز الاستدلال بشكل كبير باستخدام بيانات معنونة قليلة، ويولد سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) هو نموذج استدلال تجريبي من DeepSeek، مناسب للمهام المعقدة عالية الاستدلال.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base هو إصدار محسّن من نموذج DeepSeek V3.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "نموذج لغوي عام سريع مع استدلال محسّن.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "يقدم DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج مفتوحة المصدر ويضاهي النماذج المغلقة المتقدمة. يستخدم DeepSeek-V3 انتباهًا كامنًا متعدد الرؤوس (MLA) وبنية DeepSeekMoE، وكلاهما تم التحقق منه بالكامل في DeepSeek-V2. كما يقدم استراتيجية مساعدة بدون فقدان لتحقيق توازن في التحميل وهدف تدريب لتنبؤ متعدد الرموز لأداء أقوى.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز يعالج مشكلات التكرار وقابلية القراءة. قبل التعلم المعزز، يستخدم بيانات بدء باردة لتحسين أداء الاستدلال. يضاهي OpenAI-o1 في مهام الرياضيات، البرمجة، والتفكير، مع تدريب مصمم بعناية لتحسين النتائج العامة.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B هو نسخة مكررة من Llama-3.3-70B-Instruct. كجزء من سلسلة DeepSeek-R1، تم تحسينه باستخدام عينات تم إنشاؤها بواسطة DeepSeek-R1 ويؤدي أداءً قويًا في الرياضيات، البرمجة، والتفكير.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B هو نسخة مكررة من Qwen2.5-14B وتم تحسينه باستخدام 800 ألف عينة منسقة تم إنشاؤها بواسطة DeepSeek-R1، ويقدم استدلالًا قويًا.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B هو نسخة مكررة من Qwen2.5-32B وتم تحسينه باستخدام 800 ألف عينة منسقة تم إنشاؤها بواسطة DeepSeek-R1، ويتفوق في الرياضيات، البرمجة، والتفكير.",
|
|
377
416
|
"meta.llama3-8b-instruct-v1:0.description": "ميتا لاما 3 هو نموذج لغوي مفتوح المصدر مخصص للمطورين والباحثين والشركات، صُمم لمساعدتهم في بناء أفكار الذكاء الاصطناعي التوليدي، وتجربتها، وتوسيع نطاقها بشكل مسؤول. يُعد جزءًا من البنية التحتية للابتكار المجتمعي العالمي، وهو مناسب للبيئات ذات الموارد المحدودة، والأجهزة الطرفية، وأوقات التدريب الأسرع.",
|
|
378
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "قدرات قوية في الاستدلال الصوري على الصور عالية الدقة، مناسب لتطبيقات الفهم البصري.",
|
|
379
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال صوري متقدم لتطبيقات الوكلاء المعتمدين على الفهم البصري.",
|
|
@@ -103,6 +103,7 @@
|
|
|
103
103
|
"Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 е MoE модел с 671 милиарда параметъра, използващ MLA и DeepSeekMoE с балансирано натоварване без загуби за ефективно обучение и инференция. Предварително обучен върху 14.8T висококачествени токени и допълнително настроен с SFT и RL, той надминава други отворени модели и се доближава до водещите затворени решения.",
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 е най-новият и най-мощен модел от серията Kimi K2. Това е MoE модел от най-висок клас с 1T общо и 32B активни параметъра. Основните му предимства включват по-силна агентна интелигентност при програмиране с значителни подобрения в бенчмаркове и реални задачи, както и подобрена естетика и използваемост на фронтенд кода.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo е ускорен вариант, оптимизиран за скорост на разсъждение и пропускателна способност, като запазва многoетапното разсъждение и използване на инструменти от K2 Thinking. Това е MoE модел с ~1T общи параметри, роден 256K контекст и стабилно мащабируемо извикване на инструменти за производствени сценарии с по-строги изисквания за латентност и едновременност.",
|
|
106
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 е новото флагманско поколение модел на Zhipu с общ брой параметри 355 милиарда и 32 милиарда активни параметри. Той предлага цялостен ъпгрейд в области като обща комуникация, логическо мислене и агентни способности. GLM-4.7 подобрява Interleaved Thinking (преплетено мислене) и въвежда Preserved Thinking (запазено мислене) и Turn-level Thinking (мислене на ниво ход).",
|
|
106
107
|
"QwQ-32B-Preview.description": "Qwen QwQ е експериментален изследователски модел, фокусиран върху подобряване на разсъждението.",
|
|
107
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview е изследователски модел от Qwen, насочен към визуално разсъждение, със силни страни в разбирането на сложни сцени и визуални математически задачи.",
|
|
108
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ е експериментален изследователски модел, фокусиран върху подобрено AI разсъждение.",
|
|
@@ -270,16 +271,55 @@
|
|
|
270
271
|
"chatgpt-4o-latest.description": "ChatGPT-4o е динамичен модел, актуализиран в реално време, комбиниращ силно разбиране и генериране за мащабни приложения като клиентска поддръжка, образование и техническа помощ.",
|
|
271
272
|
"claude-2.0.description": "Claude 2 предлага ключови подобрения за предприятия, включително водещ контекст от 200 000 токена, намалени халюцинации, системни подканвания и нова тестова функция: използване на инструменти.",
|
|
272
273
|
"claude-2.1.description": "Claude 2 предлага ключови подобрения за предприятия, включително водещ контекст от 200 000 токена, намалени халюцинации, системни подканвания и нова тестова функция: използване на инструменти.",
|
|
274
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku е най-бързият модел от ново поколение на Anthropic. В сравнение с Claude 3 Haiku, той показва подобрения във всички умения и надминава предишния най-голям модел Claude 3 Opus в множество тестове за интелигентност.",
|
|
273
275
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haiku осигурява бързи отговори за леки задачи.",
|
|
276
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet е най-интелигентният модел на Anthropic и първият хибриден модел за разсъждение на пазара. Той може да генерира почти мигновени отговори или разширено поетапно разсъждение, което потребителите могат да проследят. Sonnet е особено силен в програмиране, анализ на данни, компютърно зрение и задачи за агенти.",
|
|
274
277
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet е най-новият и най-способен модел на Anthropic за силно сложни задачи, отличаващ се с производителност, интелигентност, плавност и разбиране.",
|
|
275
278
|
"claude-3-haiku-20240307.description": "Claude 3 Haiku е най-бързият и най-компактен модел на Anthropic, проектиран за почти мигновени отговори с бърза и точна производителност.",
|
|
276
279
|
"claude-3-opus-20240229.description": "Claude 3 Opus е най-мощният модел на Anthropic за силно сложни задачи, отличаващ се с производителност, интелигентност, плавност и разбиране.",
|
|
277
280
|
"claude-3-sonnet-20240229.description": "Claude 3 Sonnet балансира интелигентност и скорост за корпоративни натоварвания, осигурявайки висока полезност на по-ниска цена и надеждно мащабно внедряване.",
|
|
281
|
+
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 е най-бързият и най-интелигентен Haiku модел на Anthropic, отличаващ се със светкавична скорост и разширено разсъждение.",
|
|
278
282
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking е усъвършенстван вариант, който може да разкрие процеса си на разсъждение.",
|
|
279
283
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1 е най-новият и най-способен модел на Anthropic за силно сложни задачи, отличаващ се с производителност, интелигентност, плавност и разбиране.",
|
|
284
|
+
"claude-opus-4-20250514.description": "Claude Opus 4 е най-мощният модел на Anthropic за изключително сложни задачи, превъзхождащ в производителност, интелигентност, плавност и разбиране.",
|
|
280
285
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5 е флагманският модел на Anthropic, комбиниращ изключителна интелигентност с мащабируема производителност, идеален за сложни задачи, изискващи най-висококачествени отговори и разсъждение.",
|
|
281
286
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking може да генерира почти мигновени отговори или разширено стъпково мислене с видим процес.",
|
|
287
|
+
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 може да генерира почти мигновени отговори или разширено поетапно мислене с видим процес.",
|
|
282
288
|
"claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 е най-интелигентният модел на Anthropic досега.",
|
|
289
|
+
"codegeex-4.description": "CodeGeeX-4 е мощен AI асистент за програмиране, който поддържа многоезични въпроси и допълване на код, повишавайки продуктивността на разработчиците.",
|
|
290
|
+
"codegeex4-all-9b.description": "CodeGeeX4-ALL-9B е многоезичен модел за генериране на код, който поддържа допълване и създаване на код, интерпретиране, уеб търсене, извикване на функции и въпроси на ниво хранилище. Подходящ е за широк спектър от софтуерни сценарии и е водещ модел под 10 милиарда параметри.",
|
|
291
|
+
"codegemma.description": "CodeGemma е лек модел за разнообразни програмни задачи, позволяващ бърза итерация и интеграция.",
|
|
292
|
+
"codegemma:2b.description": "CodeGemma е лек модел за разнообразни програмни задачи, позволяващ бърза итерация и интеграция.",
|
|
293
|
+
"codellama.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
|
|
294
|
+
"codellama/CodeLlama-34b-Instruct-hf.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
|
|
295
|
+
"codellama:13b.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
|
|
296
|
+
"codellama:34b.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
|
|
297
|
+
"codellama:70b.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
|
|
298
|
+
"codeqwen.description": "CodeQwen1.5 е голям езиков модел, обучен върху обширни данни от код, създаден за сложни програмни задачи.",
|
|
299
|
+
"codestral-latest.description": "Codestral е нашият най-усъвършенстван модел за програмиране; версия 2 (януари 2025) е насочена към задачи с ниска латентност и висока честота като FIM, корекция на код и генериране на тестове.",
|
|
300
|
+
"codestral.description": "Codestral е първият модел за програмиране на Mistral AI, осигуряващ силна поддръжка за генериране на код.",
|
|
301
|
+
"codex-mini-latest.description": "codex-mini-latest е фино настроен o4-mini модел за Codex CLI. За директна употреба чрез API се препоръчва gpt-4.1.",
|
|
302
|
+
"cogito-2.1:671b.description": "Cogito v2.1 671B е отворен модел от САЩ, свободен за търговска употреба, с производителност, съпоставима с водещите модели, по-висока ефективност при разсъждение с токени, 128k контекст и силни общи способности.",
|
|
303
|
+
"cogview-4.description": "CogView-4 е първият отворен модел на Zhipu за преобразуване на текст в изображение, който може да генерира китайски знаци. Подобрява семантичното разбиране, качеството на изображенията и рендирането на китайски/английски текст, поддържа двуезични подкани с произволна дължина и може да генерира изображения с всякаква резолюция в зададени граници.",
|
|
304
|
+
"cohere-command-r-plus.description": "Command R+ е усъвършенстван модел, оптимизиран за RAG, създаден за корпоративни натоварвания.",
|
|
305
|
+
"cohere-command-r.description": "Command R е мащабируем генеративен модел, проектиран за RAG и използване на инструменти, позволяващ продукционен AI.",
|
|
306
|
+
"cohere/Cohere-command-r-plus.description": "Command R+ е усъвършенстван модел, оптимизиран за RAG, създаден за корпоративни натоварвания.",
|
|
307
|
+
"cohere/Cohere-command-r.description": "Command R е мащабируем генеративен модел, проектиран за RAG и използване на инструменти, позволяващ продукционен AI.",
|
|
308
|
+
"cohere/command-a.description": "Command A е най-мощният модел на Cohere досега, отличаващ се в използване на инструменти, агенти, RAG и многоезични сценарии. Има 256K контекст, работи само с два GPU и осигурява 150% по-висока пропускателност от Command R+ 08-2024.",
|
|
309
|
+
"cohere/command-r-plus.description": "Command R+ е най-новият LLM на Cohere, оптимизиран за чат и дълъг контекст, с цел изключителна производителност, за да могат компаниите да преминат от прототипи към продукция.",
|
|
310
|
+
"cohere/command-r.description": "Command R е оптимизиран за чат и задачи с дълъг контекст, позициониран като „мащабируем“ модел, който балансира висока производителност и точност, за да могат компаниите да преминат от прототипи към продукция.",
|
|
311
|
+
"cohere/embed-v4.0.description": "Модел, който класифицира или преобразува текст, изображения или смесено съдържание в ембединг представяния.",
|
|
312
|
+
"comfyui/flux-dev.description": "FLUX.1 Dev е висококачествен модел за преобразуване на текст в изображение (10–50 стъпки), идеален за премиум творчески и артистични резултати.",
|
|
313
|
+
"comfyui/flux-kontext-dev.description": "FLUX.1 Kontext-dev е модел за редактиране на изображения, който поддържа редакции, водени от текст, включително локални промени и трансфер на стил.",
|
|
314
|
+
"comfyui/flux-krea-dev.description": "FLUX.1 Krea-dev е модел за преобразуване на текст в изображение с вградени филтри за безопасност, съвместно разработен с Krea.",
|
|
315
|
+
"comfyui/flux-schnell.description": "FLUX.1 Schnell е ултра-бърз модел за преобразуване на текст в изображение, който генерира висококачествени изображения за 1–4 стъпки, идеален за реално време и бързо прототипиране.",
|
|
316
|
+
"comfyui/stable-diffusion-15.description": "Stable Diffusion 1.5 е класически модел 512x512 за преобразуване на текст в изображение, идеален за бързо прототипиране и творчески експерименти.",
|
|
317
|
+
"comfyui/stable-diffusion-35-inclclip.description": "Stable Diffusion 3.5 с вградени CLIP/T5 енкодери не изисква външни файлове, подходящ за модели като sd3.5_medium_incl_clips с по-ниска консумация на ресурси.",
|
|
318
|
+
"comfyui/stable-diffusion-35.description": "Stable Diffusion 3.5 е модел от ново поколение за преобразуване на текст в изображение с варианти Large и Medium. Изисква външни CLIP енкодери и осигурява отлично качество на изображенията и съответствие с подкани.",
|
|
319
|
+
"comfyui/stable-diffusion-custom-refiner.description": "Персонализиран SDXL модел за преобразуване на изображение в изображение. Използвайте custom_sd_lobe.safetensors като име на файл; ако имате VAE, използвайте custom_sd_vae_lobe.safetensors. Поставете файловете в съответните папки на Comfy.",
|
|
320
|
+
"comfyui/stable-diffusion-custom.description": "Персонализиран SD модел за преобразуване на текст в изображение. Използвайте custom_sd_lobe.safetensors като име на файл; ако имате VAE, използвайте custom_sd_vae_lobe.safetensors. Поставете файловете в съответните папки на Comfy.",
|
|
321
|
+
"comfyui/stable-diffusion-refiner.description": "SDXL модел за преобразуване на изображение в изображение, който извършва висококачествени трансформации от входни изображения, поддържайки трансфер на стил, възстановяване и творчески вариации.",
|
|
322
|
+
"comfyui/stable-diffusion-xl.description": "SDXL е модел за преобразуване на текст в изображение, поддържащ висока резолюция 1024x1024 с по-добро качество и детайлност на изображенията.",
|
|
283
323
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 е отворен LLM, предназначен за разработчици, изследователи и предприятия, създаден да им помага да изграждат, експериментират и отговорно мащабират идеи за генеративен ИИ. Като част от основата за глобални иновации в общността, той е подходящ за среди с ограничени изчислителни ресурси, крайни устройства и по-бързо обучение.",
|
|
284
324
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Силен визуален анализ на изображения с висока резолюция, подходящ за приложения за визуално разбиране.",
|
|
285
325
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Разширен визуален анализ за приложения с агенти за визуално разбиране.",
|
|
@@ -382,6 +382,37 @@
|
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2 ist ein effizientes MoE-Modell für kostengünstige Verarbeitung.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B ist das codefokussierte Modell von DeepSeek mit starker Codegenerierung.",
|
|
384
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324 ist ein MoE-Modell mit 671B Parametern und herausragenden Stärken in Programmierung, technischer Kompetenz, Kontextverständnis und Langtextverarbeitung.",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus ist ein für Terminalgeräte optimiertes Sprachmodell von DeepSeek.",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 ist das tiefgründige Denkmodell zur Terminus-Version, entwickelt für leistungsstarke Schlussfolgerungen.",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1 ist ein neues hybrides Schlussfolgerungsmodell von DeepSeek, das sowohl Denk- als auch Nicht-Denk-Modi unterstützt und eine höhere Denkeffizienz als DeepSeek-R1-0528 bietet. Optimierungen nach dem Training verbessern die Nutzung von Agenten-Tools und die Leistung bei Agentenaufgaben erheblich. Es unterstützt ein Kontextfenster von 128k und bis zu 64k Ausgabetokens.",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 ist ein Next-Generation-Schlussfolgerungsmodell mit verbesserter komplexer Argumentation und Kettenlogik, ideal für Aufgaben mit tiefgehender Analyse.",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp führt Sparse Attention ein, um die Effizienz beim Training und bei der Inferenz bei langen Texten zu verbessern – zu einem günstigeren Preis als deepseek-v3.1.",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think ist ein vollständig auf tiefes Denken ausgelegtes Modell mit stärkerer Langketten-Argumentation.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 ist das erste hybride Schlussfolgerungsmodell von DeepSeek, das Denken in die Werkzeugnutzung integriert. Es kombiniert eine effiziente Architektur zur Rechenersparnis, großskaliges verstärkendes Lernen zur Leistungssteigerung und synthetische Aufgabendaten zur besseren Generalisierung. Die Leistung ist vergleichbar mit GPT-5-High, die Ausgabelänge wurde deutlich reduziert, was Rechenaufwand und Wartezeit für Nutzer erheblich senkt.",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3 ist ein leistungsstarkes MoE-Modell mit insgesamt 671 Milliarden Parametern und 37 Milliarden aktiven Parametern pro Token.",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small ist eine leichtgewichtige multimodale Version für ressourcenbeschränkte und hochparallele Anwendungen.",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 ist ein multimodales Modell für Bild-Text-Verständnis und präzise visuelle Fragebeantwortung.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste Version der Flaggschiff-Chatreihe von DeepSeek.\n\nEs basiert auf [DeepSeek V3](/deepseek/deepseek-chat-v3) und überzeugt in vielfältigen Aufgaben.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste Version der Flaggschiff-Chatreihe von DeepSeek.\n\nEs basiert auf [DeepSeek V3](/deepseek/deepseek-chat-v3) und überzeugt in vielfältigen Aufgaben.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 ist das Langkontext-Hybridmodell von DeepSeek, das gemischte Denk-/Nicht-Denk-Modi und Tool-Integration unterstützt.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 ist das leistungsstarke Hybridmodell von DeepSeek für komplexe Aufgaben und Tool-Integration.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 ist eine aktualisierte Variante mit Fokus auf offene Verfügbarkeit und tiefere Argumentation.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 verbessert die Argumentation erheblich mit minimalen gelabelten Daten und erzeugt vor der finalen Antwort eine Argumentationskette zur Steigerung der Genauigkeit.",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B ist ein destilliertes Sprachmodell basierend auf Llama 3.3 70B, feinabgestimmt mit Ausgaben von DeepSeek R1, um eine konkurrenzfähige Leistung mit großen Modellen zu erreichen.",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B ist ein destilliertes Sprachmodell basierend auf Llama-3.1-8B-Instruct, trainiert mit Ausgaben von DeepSeek R1.",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B ist ein destilliertes Sprachmodell basierend auf Qwen 2.5 14B, trainiert mit Ausgaben von DeepSeek R1. Es übertrifft OpenAI o1-mini in mehreren Benchmarks und erzielt Spitzenwerte unter dichten Modellen. Benchmark-Highlights:\nAIME 2024 pass@1: 69,7\nMATH-500 pass@1: 93,9\nCodeForces Rating: 1481\nFeinabstimmung mit DeepSeek R1-Ausgaben liefert konkurrenzfähige Leistung mit größeren Modellen.",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B ist ein destilliertes Sprachmodell basierend auf Qwen 2.5 32B, trainiert mit Ausgaben von DeepSeek R1. Es übertrifft OpenAI o1-mini in mehreren Benchmarks und erzielt Spitzenwerte unter dichten Modellen. Benchmark-Highlights:\nAIME 2024 pass@1: 72,6\nMATH-500 pass@1: 94,3\nCodeForces Rating: 1691\nFeinabstimmung mit DeepSeek R1-Ausgaben liefert konkurrenzfähige Leistung mit größeren Modellen.",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 wurde zu DeepSeek-R1-0528 aktualisiert. Mit mehr Rechenleistung und algorithmischen Optimierungen nach dem Training verbessert es die Tiefe und Fähigkeit der Argumentation erheblich. Es überzeugt in Mathematik, Programmierung und allgemeiner Logik und nähert sich führenden Modellen wie o3 und Gemini 2.5 Pro an.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 ist das neueste Open-Source-Modell des DeepSeek-Teams mit sehr starker Argumentationsleistung, insbesondere in Mathematik, Programmierung und logischen Aufgaben – vergleichbar mit OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 verbessert die Argumentation erheblich mit minimalen gelabelten Daten und erzeugt vor der finalen Antwort eine Argumentationskette zur Steigerung der Genauigkeit.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (Reasoner) ist das experimentelle Argumentationsmodell von DeepSeek, geeignet für hochkomplexe Denkaufgaben.",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base ist eine verbesserte Version des DeepSeek V3 Modells.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Ein schnelles, vielseitiges Sprachmodell mit verbesserter Argumentation.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 stellt einen Durchbruch in der Argumentationsgeschwindigkeit gegenüber früheren Modellen dar. Es belegt den ersten Platz unter Open-Source-Modellen und konkurriert mit den fortschrittlichsten geschlossenen Modellen. DeepSeek-V3 verwendet Multi-Head Latent Attention (MLA) und die DeepSeekMoE-Architektur, beide validiert in DeepSeek-V2. Es führt außerdem eine verlustfreie Hilfsstrategie zur Lastverteilung und ein Multi-Token-Vorhersageziel für stärkere Leistung ein.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 ist ein durch Reinforcement Learning gesteuertes Argumentationsmodell, das Wiederholungen und Lesbarkeit verbessert. Vor dem RL nutzt es Cold-Start-Daten zur weiteren Leistungssteigerung. Es erreicht das Niveau von OpenAI-o1 in Mathematik, Programmierung und logischen Aufgaben, mit gezieltem Training zur Verbesserung der Gesamtergebnisse.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B ist ein destilliertes Modell basierend auf Llama-3.3-70B-Instruct. Als Teil der DeepSeek-R1-Serie ist es mit DeepSeek-R1-generierten Beispielen feinabgestimmt und überzeugt in Mathematik, Programmierung und Argumentation.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B ist ein destilliertes Modell basierend auf Qwen2.5-14B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 trainiert. Es liefert starke Argumentationsleistung.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B ist ein destilliertes Modell basierend auf Qwen2.5-32B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 trainiert. Es überzeugt in Mathematik, Programmierung und Argumentation.",
|
|
385
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 ist ein offenes LLM für Entwickler, Forscher und Unternehmen. Es wurde entwickelt, um beim Aufbau, Experimentieren und verantwortungsvollen Skalieren generativer KI-Ideen zu unterstützen. Als Teil der Grundlage für globale Innovationsgemeinschaften eignet es sich besonders für Umgebungen mit begrenzten Rechenressourcen, Edge-Geräte und schnellere Trainingszeiten.",
|
|
386
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Starke Bildverarbeitung bei hochauflösenden Bildern – ideal für visuelle Verständnisanwendungen.",
|
|
387
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Fortschrittliche Bildverarbeitung für visuelle Agentenanwendungen.",
|
|
@@ -335,6 +335,53 @@
|
|
|
335
335
|
"computer-use-preview.description": "computer-use-preview es un modelo especializado para la herramienta \"uso de computadora\", entrenado para comprender y ejecutar tareas relacionadas con computadoras.",
|
|
336
336
|
"dall-e-2.description": "Modelo DALL·E de segunda generación con generación de imágenes más realista y precisa, y 4× la resolución de la primera generación.",
|
|
337
337
|
"dall-e-3.description": "El modelo DALL·E más reciente, lanzado en noviembre de 2023, admite generación de imágenes más realista y precisa con mayor nivel de detalle.",
|
|
338
|
+
"databricks/dbrx-instruct.description": "DBRX Instruct ofrece una gestión de instrucciones altamente confiable en múltiples industrias.",
|
|
339
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI centrado en OCR y \"compresión óptica contextual\". Explora la compresión del contexto a partir de imágenes, procesa documentos de forma eficiente y los convierte en texto estructurado (por ejemplo, Markdown). Reconoce texto en imágenes con gran precisión, ideal para digitalización de documentos, extracción de texto y procesamiento estructurado.",
|
|
340
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B destila el razonamiento en cadena de DeepSeek-R1-0528 en Qwen3 8B Base. Alcanza el estado del arte entre los modelos abiertos, superando a Qwen3 8B en un 10% en AIME 2024 y equiparando el rendimiento de Qwen3-235B-thinking. Destaca en razonamiento matemático, programación y lógica general. Comparte la arquitectura de Qwen3-8B pero utiliza el tokenizador de DeepSeek-R1-0528.",
|
|
341
|
+
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 aprovecha mayor capacidad de cómputo y optimizaciones algorítmicas post-entrenamiento para profundizar el razonamiento. Tiene un rendimiento destacado en pruebas de matemáticas, programación y lógica general, acercándose a líderes como o3 y Gemini 2.5 Pro.",
|
|
342
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
|
|
343
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
|
|
344
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
|
|
345
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B está destilado de Qwen2.5-32B y ajustado finamente con 800K muestras curadas de DeepSeek-R1. Destaca en matemáticas, programación y razonamiento, logrando excelentes resultados en AIME 2024, MATH-500 (94.3% de precisión) y GPQA Diamond.",
|
|
346
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B está destilado de Qwen2.5-Math-7B y ajustado finamente con 800K muestras curadas de DeepSeek-R1. Tiene un rendimiento destacado, con 92.8% en MATH-500, 55.5% en AIME 2024 y una puntuación de 1189 en CodeForces para un modelo de 7B.",
|
|
347
|
+
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 mejora el razonamiento mediante aprendizaje por refuerzo (RL) y datos de arranque en frío, estableciendo nuevos estándares en tareas múltiples con modelos abiertos y superando a OpenAI-o1-mini.",
|
|
348
|
+
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 mejora DeepSeek-V2-Chat y DeepSeek-Coder-V2-Instruct, combinando capacidades generales y de programación. Mejora la redacción y el seguimiento de instrucciones para una mejor alineación con las preferencias, mostrando avances significativos en AlpacaEval 2.0, ArenaHard, AlignBench y MT-Bench.",
|
|
349
|
+
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus es una versión actualizada del modelo V3.1, concebido como un agente híbrido. Corrige problemas reportados por usuarios y mejora la estabilidad, coherencia lingüística y reduce caracteres anómalos o mezclas de chino/inglés. Integra modos de pensamiento y no pensamiento con plantillas de chat para cambiar de forma flexible. También mejora el rendimiento de los agentes de código y búsqueda para un uso más confiable de herramientas y tareas de múltiples pasos.",
|
|
350
|
+
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utiliza una arquitectura de razonamiento híbrido y admite modos de pensamiento y no pensamiento.",
|
|
351
|
+
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp es una versión experimental de V3.2 que sirve de puente hacia la próxima arquitectura. Añade DeepSeek Sparse Attention (DSA) sobre V3.1-Terminus para mejorar el entrenamiento y la inferencia en contextos largos, con optimizaciones para el uso de herramientas, comprensión de documentos extensos y razonamiento de múltiples pasos. Ideal para explorar mayor eficiencia de razonamiento con presupuestos de contexto amplios.",
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 es un modelo MoE con 671 mil millones de parámetros que utiliza MLA y DeepSeekMoE con balanceo de carga sin pérdida para un entrenamiento e inferencia eficientes. Preentrenado con 14.8T tokens de alta calidad, SFT y RL, supera a otros modelos abiertos y se acerca a los modelos cerrados líderes.",
|
|
353
|
+
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) es un modelo innovador que ofrece una comprensión profunda del lenguaje y una interacción avanzada.",
|
|
354
|
+
"deepseek-ai/deepseek-r1.description": "Un modelo LLM de última generación, eficiente y fuerte en razonamiento, matemáticas y programación.",
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento en tareas de análisis profundo.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento en tareas de análisis profundo.",
|
|
357
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 es un modelo visión-lenguaje MoE basado en DeepSeekMoE-27B con activación dispersa, logrando un alto rendimiento con solo 4.5B parámetros activos. Destaca en preguntas visuales, OCR, comprensión de documentos/tablas/gráficos y anclaje visual.",
|
|
358
|
+
"deepseek-chat.description": "Un nuevo modelo de código abierto que combina capacidades generales y de programación. Conserva el diálogo general del modelo de chat y la sólida programación del modelo coder, con mejor alineación de preferencias. DeepSeek-V2.5 también mejora la redacción y el seguimiento de instrucciones.",
|
|
359
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B es un modelo de lenguaje para programación entrenado con 2T tokens (87% código, 13% texto en chino/inglés). Introduce una ventana de contexto de 16K y tareas de completado intermedio, ofreciendo completado de código a nivel de proyecto y relleno de fragmentos.",
|
|
360
|
+
"deepseek-coder-v2.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que rinde fuertemente en tareas de programación, comparable a GPT-4 Turbo.",
|
|
361
|
+
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que rinde fuertemente en tareas de programación, comparable a GPT-4 Turbo.",
|
|
362
|
+
"deepseek-ocr.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI centrado en OCR y \"compresión óptica contextual\". Explora la compresión de información contextual a partir de imágenes, procesa documentos de forma eficiente y los convierte en formatos de texto estructurado como Markdown. Reconoce texto en imágenes con gran precisión, ideal para digitalización de documentos, extracción de texto y procesamiento estructurado.",
|
|
363
|
+
"deepseek-r1-0528.description": "Modelo completo de 685B lanzado el 28-05-2025. DeepSeek-R1 utiliza aprendizaje por refuerzo a gran escala en la fase post-entrenamiento, mejorando significativamente el razonamiento con datos etiquetados mínimos, y rinde fuertemente en matemáticas, programación y razonamiento en lenguaje natural.",
|
|
364
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528 es el modelo completo de razonamiento DeepSeek-R1 para tareas complejas de matemáticas y lógica.",
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "Edición rápida de DeepSeek R1 70B con búsqueda web en tiempo real, ofreciendo respuestas más rápidas sin sacrificar rendimiento.",
|
|
366
|
+
"deepseek-r1-70b-online.description": "Edición estándar de DeepSeek R1 70B con búsqueda web en tiempo real, ideal para tareas de chat y texto actualizadas.",
|
|
367
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combina el razonamiento de R1 con el ecosistema Llama.",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B está destilado de Llama-3.1-8B utilizando salidas de DeepSeek R1.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama está destilado de DeepSeek-R1 sobre Llama.",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B es una destilación R1 basada en Qianfan-70B con gran valor.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B es una destilación R1 basada en Qianfan-8B para aplicaciones pequeñas y medianas.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B es una destilación R1 basada en Llama-70B.",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B es un modelo destilado ultraligero para entornos con muy pocos recursos.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B es un modelo destilado de tamaño medio para despliegue en múltiples escenarios.",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B es una destilación R1 basada en Qwen-32B, equilibrando rendimiento y coste.",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B es un modelo destilado ligero para entornos empresariales privados y en el borde.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen está destilado de DeepSeek-R1 sobre Qwen.",
|
|
378
|
+
"deepseek-r1-fast-online.description": "Versión completa rápida de DeepSeek R1 con búsqueda web en tiempo real, combinando capacidad a escala 671B y respuesta ágil.",
|
|
379
|
+
"deepseek-r1-online.description": "Versión completa de DeepSeek R1 con 671B parámetros y búsqueda web en tiempo real, ofreciendo mejor comprensión y generación.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1 utiliza datos de arranque en frío antes del aprendizaje por refuerzo y rinde de forma comparable a OpenAI-o1 en matemáticas, programación y razonamiento.",
|
|
381
|
+
"deepseek-reasoner.description": "El modo de pensamiento de DeepSeek V3.2 genera una cadena de razonamiento antes de la respuesta final para mejorar la precisión.",
|
|
382
|
+
"deepseek-v2.description": "DeepSeek V2 es un modelo MoE eficiente para procesamiento rentable.",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B es el modelo de DeepSeek centrado en código con fuerte generación de código.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 es un modelo MoE con 671B parámetros, con fortalezas destacadas en programación, capacidad técnica, comprensión de contexto y manejo de textos largos.",
|
|
338
385
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 es un modelo LLM abierto para desarrolladores, investigadores y empresas, diseñado para ayudarles a construir, experimentar y escalar de manera responsable ideas de IA generativa. Como parte de la base para la innovación de la comunidad global, es ideal para entornos con recursos y capacidad de cómputo limitados, dispositivos en el borde y tiempos de entrenamiento más rápidos.",
|
|
339
386
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Razonamiento visual sólido en imágenes de alta resolución, ideal para aplicaciones de comprensión visual.",
|
|
340
387
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Razonamiento visual avanzado para aplicaciones de agentes con comprensión visual.",
|
|
@@ -103,6 +103,7 @@
|
|
|
103
103
|
"Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 یک مدل MoE با ۶۷۱ میلیارد پارامتر است که از MLA و DeepSeekMoE با تعادل بار بدون اتلاف برای استنتاج و آموزش کارآمد استفاده میکند. با پیشآموزش بر روی ۱۴.۸ تریلیون توکن با کیفیت بالا و تنظیم بیشتر با SFT و RL، از سایر مدلهای باز پیشی میگیرد و به مدلهای بسته پیشرو نزدیک میشود.",
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 جدیدترین و قدرتمندترین نسخه Kimi K2 است. این مدل MoE سطح بالا با ۱ تریلیون پارامتر کل و ۳۲ میلیارد پارامتر فعال است. ویژگیهای کلیدی شامل هوش کدنویسی عاملمحور قویتر با پیشرفتهای قابل توجه در معیارها و وظایف واقعی عاملها، بهعلاوه زیباییشناسی و قابلیت استفاده بهتر در کدنویسی رابط کاربری است.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo نسخه توربو بهینهشده برای سرعت استدلال و توان عملیاتی است، در حالی که استدلال چندمرحلهای و استفاده از ابزار K2 Thinking را حفظ میکند. این مدل MoE با حدود ۱ تریلیون پارامتر کل، زمینه بومی ۲۵۶ هزار توکن و فراخوانی ابزار در مقیاس بزرگ پایدار برای سناریوهای تولیدی با نیازهای سختگیرانهتر در تأخیر و همزمانی است.",
|
|
106
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 مدل پرچمدار نسل جدید شرکت Zhipu است که دارای ۳۵۵ میلیارد پارامتر کلی و ۳۲ میلیارد پارامتر فعال میباشد. این مدل در زمینههای گفتوگوی عمومی، استدلال و تواناییهای عامل هوشمند بهطور کامل ارتقاء یافته است. GLM-4.7 قابلیت Interleaved Thinking (تفکر درهمتنیده) را بهبود داده و مفاهیم Preserved Thinking (تفکر حفظشده) و Turn-level Thinking (تفکر در سطح نوبت) را معرفی کرده است.",
|
|
106
107
|
"QwQ-32B-Preview.description": "Qwen QwQ یک مدل تحقیقاتی آزمایشی است که بر بهبود توانایی استدلال تمرکز دارد.",
|
|
107
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview یک مدل تحقیقاتی از Qwen است که بر استدلال بصری تمرکز دارد و در درک صحنههای پیچیده و حل مسائل ریاضی بصری توانمند است.",
|
|
108
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ یک مدل تحقیقاتی آزمایشی است که بر بهبود استدلال هوش مصنوعی تمرکز دارد.",
|
|
@@ -335,6 +335,7 @@
|
|
|
335
335
|
"computer-use-preview.description": "computer-use-preview est un modèle spécialisé pour l'outil \"utilisation de l'ordinateur\", entraîné pour comprendre et exécuter des tâches liées à l'informatique.",
|
|
336
336
|
"dall-e-2.description": "Modèle DALL·E de deuxième génération avec une génération d'images plus réaliste et précise, et une résolution 4× supérieure à la première génération.",
|
|
337
337
|
"dall-e-3.description": "Le dernier modèle DALL·E, publié en novembre 2023, prend en charge une génération d'images plus réaliste et précise avec un niveau de détail renforcé.",
|
|
338
|
+
"databricks/dbrx-instruct.description": "DBRX Instruct offre une gestion des instructions hautement fiable dans divers secteurs.",
|
|
338
339
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 est un modèle LLM ouvert destiné aux développeurs, chercheurs et entreprises, conçu pour les aider à créer, expérimenter et faire évoluer de manière responsable des idées d'IA générative. Faisant partie de la base de l'innovation communautaire mondiale, il est particulièrement adapté aux environnements à ressources limitées, aux appareils en périphérie et aux temps d'entraînement réduits.",
|
|
339
340
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Raisonnement visuel performant sur des images haute résolution, idéal pour les applications de compréhension visuelle.",
|
|
340
341
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Raisonnement visuel avancé pour les agents d'applications de compréhension visuelle.",
|
|
@@ -335,6 +335,7 @@
|
|
|
335
335
|
"computer-use-preview.description": "computer-use-preview è un modello specializzato per lo strumento \"uso del computer\", addestrato per comprendere ed eseguire compiti legati al computer.",
|
|
336
336
|
"dall-e-2.description": "Modello DALL·E di seconda generazione con generazione di immagini più realistica e accurata e risoluzione 4× rispetto alla prima generazione.",
|
|
337
337
|
"dall-e-3.description": "L'ultimo modello DALL·E, rilasciato a novembre 2023, supporta generazione di immagini più realistica e accurata con maggiore dettaglio.",
|
|
338
|
+
"databricks/dbrx-instruct.description": "DBRX Instruct offre una gestione delle istruzioni altamente affidabile in diversi settori.",
|
|
338
339
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
|
|
339
340
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
|
|
340
341
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
|
|
@@ -360,6 +360,59 @@
|
|
|
360
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
|
|
361
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
|
|
362
362
|
"deepseek-ocr.description": "DeepSeek-OCR は DeepSeek AI による視覚と言語の統合モデルで、OCR(光学文字認識)と「コンテキスト光学圧縮」に特化しています。画像からの文脈情報を圧縮し、文書を効率的に処理して構造化テキスト(例:Markdown)に変換します。画像内のテキストを高精度で認識し、文書のデジタル化、テキスト抽出、構造化処理に最適です。",
|
|
363
|
+
"deepseek-r1-0528.description": "2025年5月28日に685Bのフルモデルをリリース。DeepSeek-R1は、事後学習において大規模な強化学習(RL)を活用し、最小限のラベル付きデータで推論能力を大幅に向上。数学、コーディング、自然言語推論において高い性能を発揮します。",
|
|
364
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528は、難解な数学や論理タスク向けに設計されたDeepSeek-R1の完全推論モデルです。",
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B 高速版はリアルタイムのウェブ検索を搭載し、性能を維持しつつ応答速度を向上させています。",
|
|
366
|
+
"deepseek-r1-70b-online.description": "DeepSeek R1 70B 標準版はリアルタイムのウェブ検索を備え、最新のチャットやテキストタスクに適しています。",
|
|
367
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70Bは、R1の推論能力とLlamaエコシステムを融合させたモデルです。",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8Bは、Llama-3.1-8BをベースにDeepSeek R1の出力を用いて蒸留されたモデルです。",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llamaは、DeepSeek-R1をLlama上で蒸留したモデルです。",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70Bは、Qianfan-70BをベースにしたR1蒸留モデルで、高い価値を提供します。",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8Bは、Qianfan-8BをベースにしたR1蒸留モデルで、小規模から中規模アプリケーションに適しています。",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70Bは、Llama-70BをベースにしたR1蒸留モデルです。",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5Bは、非常に低リソース環境向けの超軽量蒸留モデルです。",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14Bは、複数のシナリオに対応可能な中規模蒸留モデルです。",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32Bは、Qwen-32BをベースにしたR1蒸留モデルで、性能とコストのバランスに優れています。",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7Bは、エッジ環境や企業内プライベート環境向けの軽量蒸留モデルです。",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwenは、DeepSeek-R1をQwen上で蒸留したモデルです。",
|
|
378
|
+
"deepseek-r1-fast-online.description": "DeepSeek R1 高速フルバージョンは、リアルタイムのウェブ検索を搭載し、671Bスケールの能力と高速応答を両立します。",
|
|
379
|
+
"deepseek-r1-online.description": "DeepSeek R1 フルバージョンは、671Bパラメータとリアルタイムのウェブ検索を備え、より強力な理解と生成を提供します。",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1は、強化学習前にコールドスタートデータを使用し、数学、コーディング、推論においてOpenAI-o1と同等の性能を発揮します。",
|
|
381
|
+
"deepseek-reasoner.description": "DeepSeek V3.2の思考モードは、最終的な回答の前に思考の連鎖(Chain-of-Thought)を出力し、精度を向上させます。",
|
|
382
|
+
"deepseek-v2.description": "DeepSeek V2は、コスト効率の高い処理を実現する効率的なMoEモデルです。",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236Bは、コード生成に特化したDeepSeekのモデルで、強力なコード生成能力を持ちます。",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324は、671BパラメータのMoEモデルで、プログラミングや技術的能力、文脈理解、長文処理において優れた性能を発揮します。",
|
|
385
|
+
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminusは、ターミナルデバイス向けに最適化されたDeepSeekのLLMです。",
|
|
386
|
+
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821は、Terminusバージョンに対応する深い思考モデルで、高性能な推論に対応します。",
|
|
387
|
+
"deepseek-v3.1.description": "DeepSeek-V3.1は、DeepSeekの新しいハイブリッド推論モデルで、思考モードと非思考モードの両方をサポートし、DeepSeek-R1-0528よりも高い思考効率を実現します。事後学習の最適化により、エージェントツールの使用とタスク処理能力が大幅に向上。128kのコンテキストウィンドウと最大64kの出力トークンに対応します。",
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1は、複雑な推論とChain-of-Thoughtに優れた次世代推論モデルで、深い分析を必要とするタスクに適しています。",
|
|
389
|
+
"deepseek-v3.2-exp.description": "deepseek-v3.2-expは、長文テキストの学習と推論効率を向上させるスパースアテンションを導入し、deepseek-v3.1よりも低価格で提供されます。",
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Thinkは、長い思考の連鎖に対応した完全な深層思考モデルです。",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2は、深度求索が開発した初の思考とツール使用を融合したハイブリッド推論モデルです。効率的なアーキテクチャで計算資源を節約し、大規模強化学習で能力を強化、大量の合成タスクデータで汎化性能を高め、三位一体でGPT-5-Highに匹敵する性能を実現。出力長が大幅に短縮され、計算コストとユーザーの待機時間を大きく削減します。",
|
|
392
|
+
"deepseek-v3.description": "DeepSeek-V3は、671Bの総パラメータとトークンごとに37Bがアクティブな強力なMoEモデルです。",
|
|
393
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Smallは、リソース制約や高同時接続環境向けの軽量マルチモーダルモデルです。",
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2は、画像と言語の理解および精緻な視覚的質問応答に対応するマルチモーダルモデルです。",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、あらゆるタスクで高い性能を発揮します。",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、あらゆるタスクで高い性能を発揮します。",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1は、長文コンテキストに対応したDeepSeekのハイブリッド推論モデルで、思考モードと非思考モードの切り替えやツール統合をサポートします。",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3は、複雑なタスクやツール統合に対応する高性能ハイブリッド推論モデルです。",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528は、オープンアクセスと深い推論に焦点を当てた更新版です。",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1は、最小限のラベル付きデータで推論能力を大幅に向上させ、最終的な回答の前に思考の連鎖を出力して精度を高めます。",
|
|
401
|
+
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70Bは、Llama 3.3 70BをベースにDeepSeek R1の出力でファインチューニングされた蒸留LLMで、大規模最先端モデルに匹敵する性能を実現します。",
|
|
402
|
+
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8Bは、Llama-3.1-8B-InstructをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。",
|
|
403
|
+
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14Bは、Qwen 2.5 14BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。複数のベンチマークでOpenAI o1-miniを上回り、密なモデルの中で最先端の結果を達成しています。ベンチマークのハイライト:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
|
|
404
|
+
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32Bは、Qwen 2.5 32BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。複数のベンチマークでOpenAI o1-miniを上回り、密なモデルの中で最先端の結果を達成しています。ベンチマークのハイライト:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1は、DeepSeek-R1-0528にアップデートされました。計算資源と事後学習アルゴリズムの最適化により、推論の深さと能力が大幅に向上。数学、プログラミング、一般的な論理ベンチマークで高い性能を発揮し、o3やGemini 2.5 Proといったリーダーに迫る実力を持ちます。",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1は、DeepSeekチームがリリースした最新のオープンソースモデルで、特に数学、コーディング、推論タスクにおいて非常に高い推論性能を発揮し、OpenAI o1に匹敵します。",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1は、最小限のラベル付きデータで推論能力を大幅に向上させ、最終的な回答の前に思考の連鎖を出力して精度を高めます。",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking(reasoner)は、DeepSeekの実験的推論モデルで、高度な複雑性を持つ推論タスクに適しています。",
|
|
409
|
+
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Baseは、DeepSeek V3モデルの改良版です。",
|
|
410
|
+
"deepseek/deepseek-v3.description": "高速かつ汎用性の高いLLMで、推論能力が強化されています。",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3は、従来モデルに比べて推論速度で大きなブレークスルーを達成。オープンソースモデルの中でトップにランクインし、最先端のクローズドモデルにも匹敵します。DeepSeek-V3は、DeepSeek-V2で実証されたMulti-Head Latent Attention(MLA)とDeepSeekMoEアーキテクチャを採用。さらに、負荷分散のためのロスレス補助戦略や、性能を強化するマルチトークン予測学習目標も導入しています。",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1は、強化学習を活用した推論モデルで、繰り返しや可読性の問題に対応します。RL前にはコールドスタートデータを使用し、推論性能をさらに向上。数学、コーディング、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、慎重に設計されたトレーニングにより全体的な結果を改善します。",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70Bは、Llama-3.3-70B-Instructをベースに、DeepSeek-R1が生成したサンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において高い性能を発揮します。",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、強力な推論能力を持ちます。",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において優れた性能を発揮します。",
|
|
363
416
|
"gemini-flash-latest.description": "Gemini Flash の最新リリース",
|
|
364
417
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
|
|
365
418
|
"gemini-pro-latest.description": "Gemini Pro の最新リリース",
|
|
@@ -348,6 +348,44 @@
|
|
|
348
348
|
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5는 DeepSeek-V2-Chat과 DeepSeek-Coder-V2-Instruct를 업그레이드하여 일반 및 코딩 능력을 통합합니다. 글쓰기 및 지시문 이행 능력을 향상시켜 선호도 정렬을 개선하며, AlpacaEval 2.0, ArenaHard, AlignBench, MT-Bench에서 큰 성능 향상을 보입니다.",
|
|
349
349
|
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus는 하이브리드 에이전트 LLM으로 포지셔닝된 V3.1 모델의 업데이트 버전입니다. 사용자 피드백 문제를 해결하고 안정성, 언어 일관성, 중문/영문 혼합 및 비정상 문자 출력을 개선합니다. 사고 및 비사고 모드를 통합하고 채팅 템플릿을 통해 유연하게 전환할 수 있으며, Code Agent 및 Search Agent 성능도 향상되어 도구 사용 및 다단계 작업에서 더 높은 신뢰성을 제공합니다.",
|
|
350
350
|
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1은 하이브리드 추론 아키텍처를 사용하며, 사고 모드와 비사고 모드를 모두 지원합니다.",
|
|
351
|
+
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp는 차세대 아키텍처로의 전환을 위한 실험적 V3.2 릴리스입니다. V3.1-Terminus 위에 DeepSeek Sparse Attention(DSA)을 추가하여 긴 문맥 학습 및 추론 효율성을 향상시켰으며, 도구 사용, 장문 문서 이해, 다단계 추론에 최적화되어 있습니다. 대규모 문맥 처리 예산 하에서 고차원 추론 효율성을 탐색하기에 이상적입니다.",
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3는 MLA와 DeepSeekMoE를 기반으로 손실 없는 부하 분산을 구현한 671B 파라미터의 MoE 모델입니다. 14.8T 고품질 토큰으로 사전 학습되었으며 SFT와 RL을 통해 미세 조정되어, 다른 오픈 모델을 능가하고 주요 폐쇄형 모델에 근접한 성능을 보입니다.",
|
|
353
|
+
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B)은 심층 언어 이해와 상호작용을 제공하는 혁신적인 모델입니다.",
|
|
354
|
+
"deepseek-ai/deepseek-r1.description": "최신 기술을 반영한 고효율 LLM으로, 추론, 수학, 프로그래밍에 강점을 보입니다.",
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
|
|
357
|
+
"deepseek-ai/deepseek-v3.2-exp.description": "deepseek-v3.2-exp는 희소 어텐션을 도입하여 장문 텍스트에 대한 학습 및 추론 효율을 향상시키며, deepseek-v3.1보다 저렴한 비용으로 제공됩니다.",
|
|
358
|
+
"deepseek-ai/deepseek-v3.2-think.description": "DeepSeek V3.2 Think는 장기 사고 추론에 강한 완전한 심층 사고 모델입니다.",
|
|
359
|
+
"deepseek-ai/deepseek-v3.2.description": "DeepSeek-V3.2는 DeepSeek가 출시한 최초의 도구 사용에 사고를 결합한 하이브리드 추론 모델입니다. 효율적인 아키텍처로 연산 자원을 절약하고, 대규모 강화 학습으로 능력을 향상시키며, 대규모 합성 작업 데이터로 일반화 성능을 강화하여, 세 가지 요소가 결합된 성능은 GPT-5-High에 필적합니다. 출력 길이가 크게 줄어들어 계산 비용과 사용자 대기 시간이 현저히 감소합니다.",
|
|
360
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2는 DeepSeekMoE-27B 기반의 MoE 비전-언어 모델로, 희소 활성화를 통해 4.5B 활성 파라미터만으로도 뛰어난 성능을 발휘합니다. 시각적 질의응답, OCR, 문서/표/차트 이해, 시각적 정렬에 탁월합니다.",
|
|
361
|
+
"deepseek-chat.description": "일반 대화 능력과 코드 처리 능력을 결합한 새로운 오픈소스 모델입니다. 대화 모델의 자연스러운 상호작용과 코드 모델의 강력한 코딩 능력을 유지하며, 사용자 선호도에 더 잘 맞춰졌습니다. DeepSeek-V2.5는 글쓰기와 지시 따르기에서도 향상된 성능을 보입니다.",
|
|
362
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B는 2T 토큰(코드 87%, 중/영문 텍스트 13%)으로 학습된 코드 언어 모델입니다. 16K 문맥 창과 중간 채우기(fit-in-the-middle) 작업을 도입하여 프로젝트 수준의 코드 완성과 코드 조각 보완을 지원합니다.",
|
|
363
|
+
"deepseek-ocr.description": "DeepSeek-OCR은 DeepSeek AI가 개발한 비전-언어 모델로, OCR과 '문맥 기반 광학 압축'에 중점을 둡니다. 이미지에서 문맥 정보를 압축하고 문서를 효율적으로 처리하여 Markdown과 같은 구조화된 텍스트 형식으로 변환합니다. 이미지 내 텍스트를 정확하게 인식하여 문서 디지털화, 텍스트 추출, 구조화 처리에 적합합니다.",
|
|
364
|
+
"deepseek-r1-0528.description": "2025년 5월 28일에 공개된 685B 전체 모델입니다. DeepSeek-R1은 사후 학습에서 대규모 강화 학습을 활용하여 소량의 라벨 데이터로도 추론 능력을 크게 향상시켰으며, 수학, 코딩, 자연어 추론에서 뛰어난 성능을 보입니다.",
|
|
365
|
+
"deepseek-r1-250528.description": "DeepSeek R1 250528은 고난도 수학 및 논리 작업을 위한 DeepSeek-R1 전체 추론 모델입니다.",
|
|
366
|
+
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B의 빠른 버전으로, 실시간 웹 검색을 지원하며 성능을 유지하면서 더 빠른 응답을 제공합니다.",
|
|
367
|
+
"deepseek-r1-70b-online.description": "DeepSeek R1 70B 표준 버전으로, 실시간 웹 검색을 지원하며 최신 대화 및 텍스트 작업에 적합합니다.",
|
|
368
|
+
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B는 R1 추론을 Llama 생태계와 결합한 모델입니다.",
|
|
369
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B는 DeepSeek R1의 출력을 기반으로 Llama-3.1-8B에서 증류된 모델입니다.",
|
|
370
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama는 DeepSeek-R1을 Llama에 증류한 모델입니다.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B는 Qianfan-70B를 기반으로 한 R1 증류 모델로, 높은 가치의 성능을 제공합니다.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B는 Qianfan-8B를 기반으로 한 R1 증류 모델로, 중소형 애플리케이션에 적합합니다.",
|
|
373
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B는 Llama-70B를 기반으로 한 R1 증류 모델입니다.",
|
|
374
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B는 매우 저자원 환경을 위한 초경량 증류 모델입니다.",
|
|
375
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B는 다양한 시나리오에 배포 가능한 중형 증류 모델입니다.",
|
|
376
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B는 Qwen-32B를 기반으로 한 R1 증류 모델로, 성능과 비용의 균형을 이룹니다.",
|
|
377
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B는 엣지 및 프라이빗 기업 환경을 위한 경량 증류 모델입니다.",
|
|
378
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen은 DeepSeek-R1을 Qwen에 증류한 모델입니다.",
|
|
379
|
+
"deepseek-r1-fast-online.description": "DeepSeek R1의 빠른 전체 버전으로, 실시간 웹 검색을 지원하며 671B 규모의 성능과 빠른 응답을 결합합니다.",
|
|
380
|
+
"deepseek-r1-online.description": "DeepSeek R1 전체 버전은 671B 파라미터와 실시간 웹 검색을 지원하여 더 강력한 이해 및 생성 능력을 제공합니다.",
|
|
381
|
+
"deepseek-r1.description": "DeepSeek-R1은 강화 학습 이전에 콜드 스타트 데이터를 사용하며, 수학, 코딩, 추론 작업에서 OpenAI-o1과 유사한 성능을 보입니다.",
|
|
382
|
+
"deepseek-reasoner.description": "DeepSeek V3.2 사고 모드는 최종 답변 전에 사고의 흐름(chain-of-thought)을 출력하여 정확도를 높입니다.",
|
|
383
|
+
"deepseek-v2.description": "DeepSeek V2는 비용 효율적인 처리를 위한 고효율 MoE 모델입니다.",
|
|
384
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B는 코드 생성에 강점을 가진 DeepSeek의 코드 특화 모델입니다.",
|
|
385
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324는 671B 파라미터의 MoE 모델로, 프로그래밍 및 기술적 역량, 문맥 이해, 장문 처리에서 뛰어난 성능을 보입니다.",
|
|
386
|
+
"deepseek-v3.description": "DeepSeek-V3는 총 671B 파라미터 중 토큰당 37B가 활성화되는 강력한 MoE 모델입니다.",
|
|
387
|
+
"deepseek-vl2-small.description": "DeepSeek VL2 Small은 자원이 제한되거나 동시 접속이 많은 환경을 위한 경량 멀티모달 버전입니다.",
|
|
388
|
+
"deepseek-vl2.description": "DeepSeek VL2는 이미지-텍스트 이해와 정밀한 시각적 질의응답에 특화된 멀티모달 모델입니다.",
|
|
351
389
|
"gemini-flash-latest.description": "Gemini Flash 최신 버전",
|
|
352
390
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite 최신 버전",
|
|
353
391
|
"gemini-pro-latest.description": "Gemini Pro 최신 버전",
|