@lobehub/lobehub 2.0.0-next.193 → 2.0.0-next.194

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -2,6 +2,31 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ## [Version 2.0.0-next.194](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.193...v2.0.0-next.194)
6
+
7
+ <sup>Released on **2026-01-03**</sup>
8
+
9
+ #### 💄 Styles
10
+
11
+ - **misc**: Update i18n.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Styles
19
+
20
+ - **misc**: Update i18n, closes [#11115](https://github.com/lobehub/lobe-chat/issues/11115) ([072e0dd](https://github.com/lobehub/lobe-chat/commit/072e0dd))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
5
30
  ## [Version 2.0.0-next.193](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.192...v2.0.0-next.193)
6
31
 
7
32
  <sup>Released on **2026-01-02**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,13 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Update i18n."
6
+ ]
7
+ },
8
+ "date": "2026-01-03",
9
+ "version": "2.0.0-next.194"
10
+ },
2
11
  {
3
12
  "children": {},
4
13
  "date": "2026-01-02",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 هو نموذج MoE يحتوي على 671 مليار معلمة، يستخدم MLA وDeepSeekMoE مع توازن تحميل خالٍ من الفقدان لتحقيق كفاءة في الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون رمز عالي الجودة وتم تحسينه باستخدام SFT وRL، متفوقًا على النماذج المفتوحة الأخرى ويقترب من النماذج المغلقة الرائدة.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 هو أحدث وأقوى إصدار من Kimi K2. إنه نموذج MoE من الدرجة الأولى يحتوي على إجمالي 1 تريليون و32 مليار معلمة نشطة. من أبرز ميزاته الذكاء البرمجي القوي مع تحسينات كبيرة في المعايير ومهام الوكلاء الواقعية، بالإضافة إلى تحسينات في جمالية واجهة الشيفرة وسهولة الاستخدام.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo هو إصدار Turbo محسّن لسرعة الاستدلال والإنتاجية مع الحفاظ على قدرات التفكير متعدد الخطوات واستخدام الأدوات في K2 Thinking. إنه نموذج MoE يحتوي على حوالي 1 تريليون معلمة إجمالية، ويدعم سياقًا أصليًا بطول 256 ألف رمز، واستدعاء أدوات واسع النطاق ومستقر لسيناريوهات الإنتاج التي تتطلب زمن استجابة وتزامنًا صارمين.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 هو النموذج الرائد من الجيل الجديد لشركة Zhipu، ويحتوي على 355 مليار معلمة إجمالية و32 مليار معلمة نشطة. يتميز بتحديثات شاملة في قدرات الحوار العام، الاستدلال، والوكالة الذكية. يعزز GLM-4.7 مفهوم التفكير المتداخل (Interleaved Thinking)، ويقدم مفاهيم جديدة مثل التفكير المحفوظ (Preserved Thinking) والتفكير على مستوى الدور (Turn-level Thinking).",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ هو نموذج بحث تجريبي يركز على تحسين الاستدلال.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview هو نموذج بحث من Qwen يركز على الاستدلال البصري، يتميز بفهم المشاهد المعقدة وحل مسائل الرياضيات البصرية.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ هو نموذج بحث تجريبي يركز على تحسين استدلال الذكاء الاصطناعي.",
@@ -270,15 +271,20 @@
270
271
  "chatgpt-4o-latest.description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الفعلي، يجمع بين الفهم العميق والقدرة على التوليد لتلبية احتياجات الاستخدام الواسعة مثل دعم العملاء والتعليم والدعم الفني.",
271
272
  "claude-2.0.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
272
273
  "claude-2.1.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل الجديد لشركة Anthropic. مقارنةً بـ Claude 3 Haiku، فإنه يقدم تحسينات شاملة في المهارات ويتفوق على النموذج الأكبر السابق Claude 3 Opus في العديد من اختبارات الذكاء.",
273
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku يقدم استجابات سريعة للمهام الخفيفة.",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet هو أذكى نموذج من Anthropic وأول نموذج استدلال هجين في السوق. يمكنه تقديم ردود شبه فورية أو استدلال تدريجي خطوة بخطوة يمكن للمستخدمين متابعته. يتميز Sonnet بقوة خاصة في البرمجة، علم البيانات، الرؤية، ومهام الوكلاء.",
274
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم العميق.",
275
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku هو أسرع وأصغر نموذج من Anthropic، مصمم لتقديم استجابات شبه فورية بأداء سريع ودقيق.",
276
279
  "claude-3-opus-20240229.description": "Claude 3 Opus هو أقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
277
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet يوازن بين الذكاء والسرعة لتلبية احتياجات المؤسسات، ويوفر فائدة عالية بتكلفة أقل ونشر موثوق على نطاق واسع.",
281
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 هو أسرع وأذكى نموذج Haiku من Anthropic، يتميز بسرعة فائقة وقدرة استدلال موسعة.",
278
282
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking هو إصدار متقدم يمكنه عرض عملية تفكيره.",
279
283
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
284
+ "claude-opus-4-20250514.description": "Claude Opus 4 هو أقوى نموذج من Anthropic للمهام المعقدة للغاية، ويتفوق في الأداء، الذكاء، الطلاقة، والفهم.",
280
285
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 هو النموذج الرائد من Anthropic، يجمع بين الذكاء الاستثنائي والأداء القابل للتوسع، مثالي للمهام المعقدة التي تتطلب استجابات عالية الجودة وتفكير متقدم.",
281
286
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking يمكنه تقديم استجابات شبه فورية أو تفكير متسلسل مرئي.",
287
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 قادر على تقديم ردود شبه فورية أو تفكير تدريجي خطوة بخطوة مع عرض واضح للعملية.",
282
288
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 هو أذكى نموذج من Anthropic حتى الآن.",
283
289
  "codegeex-4.description": "CodeGeeX-4 هو مساعد برمجة ذكي يدعم الأسئلة والأجوبة متعددة اللغات وإكمال الشيفرة لزيادة إنتاجية المطورين.",
284
290
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B هو نموذج توليد شيفرة متعدد اللغات يدعم الإكمال والتوليد، تفسير الشيفرة، البحث عبر الإنترنت، استدعاء الوظائف، وأسئلة وأجوبة على مستوى المستودع، ويغطي مجموعة واسعة من سيناريوهات تطوير البرمجيات. يُعد من أفضل نماذج الشيفرة تحت 10B.",
@@ -349,6 +355,7 @@
349
355
  "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 هو نموذج تفكير من الجيل التالي يتمتع بقدرات أقوى في التفكير المعقد وسلسلة التفكير لمهام التحليل العميق.",
350
356
  "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 هو نموذج تفكير من الجيل التالي يتمتع بقدرات أقوى في التفكير المعقد وسلسلة التفكير لمهام التحليل العميق.",
351
357
  "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 هو نموذج رؤية-لغة MoE يعتمد على DeepSeekMoE-27B مع تنشيط متفرق، ويحقق أداءً قويًا باستخدام 4.5 مليار معلمة نشطة فقط. يتميز في الأسئلة البصرية، وOCR، وفهم المستندات/الجداول/المخططات، والتأريض البصري.",
358
+ "deepseek-chat.description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة والبرمجية. يحافظ على حوار النموذج العام وقوة البرمجة في نموذج المبرمج، مع تحسين توافق التفضيلات. كما يعزز DeepSeek-V2.5 قدرات الكتابة واتباع التعليمات.",
352
359
  "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B هو نموذج لغة برمجية تم تدريبه على 2 تريليون رمز (87٪ كود، 13٪ نص صيني/إنجليزي). يقدم نافذة سياق 16K ومهام الإكمال في المنتصف، ويوفر إكمال كود على مستوى المشاريع وملء مقاطع الكود.",
353
360
  "deepseek-coder-v2.description": "DeepSeek Coder V2 هو نموذج كود MoE مفتوح المصدر يتميز بأداء قوي في مهام البرمجة، ويضاهي GPT-4 Turbo.",
354
361
  "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 هو نموذج كود MoE مفتوح المصدر يتميز بأداء قوي في مهام البرمجة، ويضاهي GPT-4 Turbo.",
@@ -371,9 +378,41 @@
371
378
  "deepseek-r1-fast-online.description": "الإصدار الكامل السريع من DeepSeek R1 مع بحث ويب في الوقت الحقيقي، يجمع بين قدرات بحجم 671B واستجابة أسرع.",
372
379
  "deepseek-r1-online.description": "الإصدار الكامل من DeepSeek R1 مع 671 مليار معلمة وبحث ويب في الوقت الحقيقي، يوفر فهمًا وتوليدًا أقوى.",
373
380
  "deepseek-r1.description": "يستخدم DeepSeek-R1 بيانات البداية الباردة قبل التعلم المعزز ويؤدي أداءً مماثلًا لـ OpenAI-o1 في الرياضيات، والبرمجة، والتفكير.",
381
+ "deepseek-reasoner.description": "وضع التفكير في DeepSeek V3.2 ينتج سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
374
382
  "deepseek-v2.description": "DeepSeek V2 هو نموذج MoE فعال لمعالجة منخفضة التكلفة.",
375
383
  "deepseek-v2:236b.description": "DeepSeek V2 236B هو نموذج DeepSeek الموجه للبرمجة مع قدرات قوية في توليد الكود.",
376
384
  "deepseek-v3-0324.description": "DeepSeek-V3-0324 هو نموذج MoE يحتوي على 671 مليار معلمة يتميز بقوة في البرمجة، والقدرات التقنية، وفهم السياق، والتعامل مع النصوص الطويلة.",
385
+ "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus هو نموذج لغوي كبير محسّن للأجهزة الطرفية، ومصمم خصيصًا للعمل على بيئات الطرفية.",
386
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 هو نموذج تفكير عميق يتوافق مع إصدار Terminus، ومصمم للاستدلال عالي الأداء.",
387
+ "deepseek-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين جديد من DeepSeek، يدعم أوضاع التفكير وغير التفكير، ويوفر كفاءة تفكير أعلى من DeepSeek-R1-0528. التحسينات بعد التدريب تعزز بشكل كبير استخدام أدوات الوكلاء وأداء المهام. يدعم نافذة سياق تصل إلى 128 ألف رمز وإخراج حتى 64 ألف رمز.",
388
+ "deepseek-v3.1:671b.description": "DeepSeek V3.1 هو نموذج استدلال من الجيل التالي مع تحسينات في الاستدلال المعقد وسلسلة الأفكار، مناسب للمهام التي تتطلب تحليلاً عميقًا.",
389
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-exp يقدم انتباهاً متفرقاً لتحسين كفاءة التدريب والاستدلال على النصوص الطويلة، بسعر أقل من deepseek-v3.1.",
390
+ "deepseek-v3.2-think.description": "DeepSeek V3.2 Think هو نموذج تفكير عميق كامل يتمتع بقدرات استدلال طويلة السلسلة أقوى.",
391
+ "deepseek-v3.2.description": "DeepSeek-V3.2 هو أول نموذج استدلال هجين من DeepSeek يدمج التفكير مع استخدام الأدوات. يستخدم بنية فعالة لتقليل استهلاك الحوسبة، ويعزز القدرات من خلال التعلم المعزز واسع النطاق وبيانات مهام تركيبية ضخمة. يجمع بين هذه العناصر لتحقيق أداء يقارب GPT-5-High، مع تقليل كبير في طول الإخراج، مما يقلل من التكاليف والوقت المنتظر للمستخدم.",
392
+ "deepseek-v3.description": "DeepSeek-V3 هو نموذج MoE قوي يحتوي على 671 مليار معلمة إجمالية و37 مليار معلمة نشطة لكل رمز.",
393
+ "deepseek-vl2-small.description": "DeepSeek VL2 Small هو إصدار متعدد الوسائط خفيف الوزن مصمم للبيئات ذات الموارد المحدودة والاستخدام عالي التوازي.",
394
+ "deepseek-vl2.description": "DeepSeek VL2 هو نموذج متعدد الوسائط لفهم النصوص والصور والإجابة البصرية الدقيقة.",
395
+ "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 هو نموذج MoE يحتوي على 685 مليار معلمة، وهو أحدث إصدار من سلسلة دردشة DeepSeek الرائدة.\n\nيعتمد على [DeepSeek V3](/deepseek/deepseek-chat-v3) ويؤدي أداءً قويًا عبر المهام.",
396
+ "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 هو نموذج MoE يحتوي على 685 مليار معلمة، وهو أحدث إصدار من سلسلة دردشة DeepSeek الرائدة.\n\nيعتمد على [DeepSeek V3](/deepseek/deepseek-chat-v3) ويؤدي أداءً قويًا عبر المهام.",
397
+ "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 هو نموذج استدلال هجين طويل السياق من DeepSeek، يدعم أوضاع التفكير وغير التفكير وتكامل الأدوات.",
398
+ "deepseek/deepseek-chat.description": "DeepSeek-V3 هو نموذج استدلال هجين عالي الأداء من DeepSeek للمهام المعقدة وتكامل الأدوات.",
399
+ "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 هو إصدار محدث يركز على الإتاحة المفتوحة والاستدلال الأعمق.",
400
+ "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 يعزز الاستدلال بشكل كبير باستخدام بيانات معنونة قليلة، ويولد سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
401
+ "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B هو نموذج مكرر مبني على Llama 3.3 70B، تم تحسينه باستخدام مخرجات DeepSeek R1 لتحقيق أداء تنافسي مع النماذج الرائدة.",
402
+ "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B هو نموذج مكرر مبني على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1.",
403
+ "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B هو نموذج مكرر مبني على Qwen 2.5 14B، تم تدريبه باستخدام مخرجات DeepSeek R1. يتفوق على OpenAI o1-mini في العديد من المعايير، ويحقق نتائج رائدة بين النماذج الكثيفة.",
404
+ "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B هو نموذج مكرر مبني على Qwen 2.5 32B، تم تدريبه باستخدام مخرجات DeepSeek R1. يتفوق على OpenAI o1-mini في العديد من المعايير، ويحقق نتائج رائدة بين النماذج الكثيفة.",
405
+ "deepseek/deepseek-r1.description": "تم تحديث DeepSeek R1 إلى DeepSeek-R1-0528. مع موارد حوسبة أكبر وتحسينات خوارزمية بعد التدريب، يعزز بشكل كبير عمق وقدرة الاستدلال. يؤدي أداءً قويًا في اختبارات الرياضيات، البرمجة، والمنطق العام، ويقترب من نماذج رائدة مثل o3 وGemini 2.5 Pro.",
406
+ "deepseek/deepseek-r1/community.description": "DeepSeek R1 هو أحدث نموذج مفتوح المصدر من فريق DeepSeek، يتمتع بأداء استدلال قوي، خاصة في الرياضيات، البرمجة، ومهام التفكير، ويقارن بـ OpenAI o1.",
407
+ "deepseek/deepseek-r1:free.description": "DeepSeek-R1 يعزز الاستدلال بشكل كبير باستخدام بيانات معنونة قليلة، ويولد سلسلة من الأفكار قبل الإجابة النهائية لتحسين الدقة.",
408
+ "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) هو نموذج استدلال تجريبي من DeepSeek، مناسب للمهام المعقدة عالية الاستدلال.",
409
+ "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base هو إصدار محسّن من نموذج DeepSeek V3.",
410
+ "deepseek/deepseek-v3.description": "نموذج لغوي عام سريع مع استدلال محسّن.",
411
+ "deepseek/deepseek-v3/community.description": "يقدم DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج مفتوحة المصدر ويضاهي النماذج المغلقة المتقدمة. يستخدم DeepSeek-V3 انتباهًا كامنًا متعدد الرؤوس (MLA) وبنية DeepSeekMoE، وكلاهما تم التحقق منه بالكامل في DeepSeek-V2. كما يقدم استراتيجية مساعدة بدون فقدان لتحقيق توازن في التحميل وهدف تدريب لتنبؤ متعدد الرموز لأداء أقوى.",
412
+ "deepseek_r1.description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز يعالج مشكلات التكرار وقابلية القراءة. قبل التعلم المعزز، يستخدم بيانات بدء باردة لتحسين أداء الاستدلال. يضاهي OpenAI-o1 في مهام الرياضيات، البرمجة، والتفكير، مع تدريب مصمم بعناية لتحسين النتائج العامة.",
413
+ "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B هو نسخة مكررة من Llama-3.3-70B-Instruct. كجزء من سلسلة DeepSeek-R1، تم تحسينه باستخدام عينات تم إنشاؤها بواسطة DeepSeek-R1 ويؤدي أداءً قويًا في الرياضيات، البرمجة، والتفكير.",
414
+ "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B هو نسخة مكررة من Qwen2.5-14B وتم تحسينه باستخدام 800 ألف عينة منسقة تم إنشاؤها بواسطة DeepSeek-R1، ويقدم استدلالًا قويًا.",
415
+ "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B هو نسخة مكررة من Qwen2.5-32B وتم تحسينه باستخدام 800 ألف عينة منسقة تم إنشاؤها بواسطة DeepSeek-R1، ويتفوق في الرياضيات، البرمجة، والتفكير.",
377
416
  "meta.llama3-8b-instruct-v1:0.description": "ميتا لاما 3 هو نموذج لغوي مفتوح المصدر مخصص للمطورين والباحثين والشركات، صُمم لمساعدتهم في بناء أفكار الذكاء الاصطناعي التوليدي، وتجربتها، وتوسيع نطاقها بشكل مسؤول. يُعد جزءًا من البنية التحتية للابتكار المجتمعي العالمي، وهو مناسب للبيئات ذات الموارد المحدودة، والأجهزة الطرفية، وأوقات التدريب الأسرع.",
378
417
  "meta/Llama-3.2-11B-Vision-Instruct.description": "قدرات قوية في الاستدلال الصوري على الصور عالية الدقة، مناسب لتطبيقات الفهم البصري.",
379
418
  "meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال صوري متقدم لتطبيقات الوكلاء المعتمدين على الفهم البصري.",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 е MoE модел с 671 милиарда параметъра, използващ MLA и DeepSeekMoE с балансирано натоварване без загуби за ефективно обучение и инференция. Предварително обучен върху 14.8T висококачествени токени и допълнително настроен с SFT и RL, той надминава други отворени модели и се доближава до водещите затворени решения.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 е най-новият и най-мощен модел от серията Kimi K2. Това е MoE модел от най-висок клас с 1T общо и 32B активни параметъра. Основните му предимства включват по-силна агентна интелигентност при програмиране с значителни подобрения в бенчмаркове и реални задачи, както и подобрена естетика и използваемост на фронтенд кода.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo е ускорен вариант, оптимизиран за скорост на разсъждение и пропускателна способност, като запазва многoетапното разсъждение и използване на инструменти от K2 Thinking. Това е MoE модел с ~1T общи параметри, роден 256K контекст и стабилно мащабируемо извикване на инструменти за производствени сценарии с по-строги изисквания за латентност и едновременност.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 е новото флагманско поколение модел на Zhipu с общ брой параметри 355 милиарда и 32 милиарда активни параметри. Той предлага цялостен ъпгрейд в области като обща комуникация, логическо мислене и агентни способности. GLM-4.7 подобрява Interleaved Thinking (преплетено мислене) и въвежда Preserved Thinking (запазено мислене) и Turn-level Thinking (мислене на ниво ход).",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ е експериментален изследователски модел, фокусиран върху подобряване на разсъждението.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview е изследователски модел от Qwen, насочен към визуално разсъждение, със силни страни в разбирането на сложни сцени и визуални математически задачи.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ е експериментален изследователски модел, фокусиран върху подобрено AI разсъждение.",
@@ -270,16 +271,55 @@
270
271
  "chatgpt-4o-latest.description": "ChatGPT-4o е динамичен модел, актуализиран в реално време, комбиниращ силно разбиране и генериране за мащабни приложения като клиентска поддръжка, образование и техническа помощ.",
271
272
  "claude-2.0.description": "Claude 2 предлага ключови подобрения за предприятия, включително водещ контекст от 200 000 токена, намалени халюцинации, системни подканвания и нова тестова функция: използване на инструменти.",
272
273
  "claude-2.1.description": "Claude 2 предлага ключови подобрения за предприятия, включително водещ контекст от 200 000 токена, намалени халюцинации, системни подканвания и нова тестова функция: използване на инструменти.",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku е най-бързият модел от ново поколение на Anthropic. В сравнение с Claude 3 Haiku, той показва подобрения във всички умения и надминава предишния най-голям модел Claude 3 Opus в множество тестове за интелигентност.",
273
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku осигурява бързи отговори за леки задачи.",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet е най-интелигентният модел на Anthropic и първият хибриден модел за разсъждение на пазара. Той може да генерира почти мигновени отговори или разширено поетапно разсъждение, което потребителите могат да проследят. Sonnet е особено силен в програмиране, анализ на данни, компютърно зрение и задачи за агенти.",
274
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet е най-новият и най-способен модел на Anthropic за силно сложни задачи, отличаващ се с производителност, интелигентност, плавност и разбиране.",
275
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku е най-бързият и най-компактен модел на Anthropic, проектиран за почти мигновени отговори с бърза и точна производителност.",
276
279
  "claude-3-opus-20240229.description": "Claude 3 Opus е най-мощният модел на Anthropic за силно сложни задачи, отличаващ се с производителност, интелигентност, плавност и разбиране.",
277
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet балансира интелигентност и скорост за корпоративни натоварвания, осигурявайки висока полезност на по-ниска цена и надеждно мащабно внедряване.",
281
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 е най-бързият и най-интелигентен Haiku модел на Anthropic, отличаващ се със светкавична скорост и разширено разсъждение.",
278
282
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking е усъвършенстван вариант, който може да разкрие процеса си на разсъждение.",
279
283
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 е най-новият и най-способен модел на Anthropic за силно сложни задачи, отличаващ се с производителност, интелигентност, плавност и разбиране.",
284
+ "claude-opus-4-20250514.description": "Claude Opus 4 е най-мощният модел на Anthropic за изключително сложни задачи, превъзхождащ в производителност, интелигентност, плавност и разбиране.",
280
285
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 е флагманският модел на Anthropic, комбиниращ изключителна интелигентност с мащабируема производителност, идеален за сложни задачи, изискващи най-висококачествени отговори и разсъждение.",
281
286
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking може да генерира почти мигновени отговори или разширено стъпково мислене с видим процес.",
287
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 може да генерира почти мигновени отговори или разширено поетапно мислене с видим процес.",
282
288
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 е най-интелигентният модел на Anthropic досега.",
289
+ "codegeex-4.description": "CodeGeeX-4 е мощен AI асистент за програмиране, който поддържа многоезични въпроси и допълване на код, повишавайки продуктивността на разработчиците.",
290
+ "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B е многоезичен модел за генериране на код, който поддържа допълване и създаване на код, интерпретиране, уеб търсене, извикване на функции и въпроси на ниво хранилище. Подходящ е за широк спектър от софтуерни сценарии и е водещ модел под 10 милиарда параметри.",
291
+ "codegemma.description": "CodeGemma е лек модел за разнообразни програмни задачи, позволяващ бърза итерация и интеграция.",
292
+ "codegemma:2b.description": "CodeGemma е лек модел за разнообразни програмни задачи, позволяващ бърза итерация и интеграция.",
293
+ "codellama.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
294
+ "codellama/CodeLlama-34b-Instruct-hf.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
295
+ "codellama:13b.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
296
+ "codellama:34b.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
297
+ "codellama:70b.description": "Code Llama е голям езиков модел, фокусиран върху генериране и обсъждане на код, с широка езикова поддръжка за работни процеси на разработчици.",
298
+ "codeqwen.description": "CodeQwen1.5 е голям езиков модел, обучен върху обширни данни от код, създаден за сложни програмни задачи.",
299
+ "codestral-latest.description": "Codestral е нашият най-усъвършенстван модел за програмиране; версия 2 (януари 2025) е насочена към задачи с ниска латентност и висока честота като FIM, корекция на код и генериране на тестове.",
300
+ "codestral.description": "Codestral е първият модел за програмиране на Mistral AI, осигуряващ силна поддръжка за генериране на код.",
301
+ "codex-mini-latest.description": "codex-mini-latest е фино настроен o4-mini модел за Codex CLI. За директна употреба чрез API се препоръчва gpt-4.1.",
302
+ "cogito-2.1:671b.description": "Cogito v2.1 671B е отворен модел от САЩ, свободен за търговска употреба, с производителност, съпоставима с водещите модели, по-висока ефективност при разсъждение с токени, 128k контекст и силни общи способности.",
303
+ "cogview-4.description": "CogView-4 е първият отворен модел на Zhipu за преобразуване на текст в изображение, който може да генерира китайски знаци. Подобрява семантичното разбиране, качеството на изображенията и рендирането на китайски/английски текст, поддържа двуезични подкани с произволна дължина и може да генерира изображения с всякаква резолюция в зададени граници.",
304
+ "cohere-command-r-plus.description": "Command R+ е усъвършенстван модел, оптимизиран за RAG, създаден за корпоративни натоварвания.",
305
+ "cohere-command-r.description": "Command R е мащабируем генеративен модел, проектиран за RAG и използване на инструменти, позволяващ продукционен AI.",
306
+ "cohere/Cohere-command-r-plus.description": "Command R+ е усъвършенстван модел, оптимизиран за RAG, създаден за корпоративни натоварвания.",
307
+ "cohere/Cohere-command-r.description": "Command R е мащабируем генеративен модел, проектиран за RAG и използване на инструменти, позволяващ продукционен AI.",
308
+ "cohere/command-a.description": "Command A е най-мощният модел на Cohere досега, отличаващ се в използване на инструменти, агенти, RAG и многоезични сценарии. Има 256K контекст, работи само с два GPU и осигурява 150% по-висока пропускателност от Command R+ 08-2024.",
309
+ "cohere/command-r-plus.description": "Command R+ е най-новият LLM на Cohere, оптимизиран за чат и дълъг контекст, с цел изключителна производителност, за да могат компаниите да преминат от прототипи към продукция.",
310
+ "cohere/command-r.description": "Command R е оптимизиран за чат и задачи с дълъг контекст, позициониран като „мащабируем“ модел, който балансира висока производителност и точност, за да могат компаниите да преминат от прототипи към продукция.",
311
+ "cohere/embed-v4.0.description": "Модел, който класифицира или преобразува текст, изображения или смесено съдържание в ембединг представяния.",
312
+ "comfyui/flux-dev.description": "FLUX.1 Dev е висококачествен модел за преобразуване на текст в изображение (10–50 стъпки), идеален за премиум творчески и артистични резултати.",
313
+ "comfyui/flux-kontext-dev.description": "FLUX.1 Kontext-dev е модел за редактиране на изображения, който поддържа редакции, водени от текст, включително локални промени и трансфер на стил.",
314
+ "comfyui/flux-krea-dev.description": "FLUX.1 Krea-dev е модел за преобразуване на текст в изображение с вградени филтри за безопасност, съвместно разработен с Krea.",
315
+ "comfyui/flux-schnell.description": "FLUX.1 Schnell е ултра-бърз модел за преобразуване на текст в изображение, който генерира висококачествени изображения за 1–4 стъпки, идеален за реално време и бързо прототипиране.",
316
+ "comfyui/stable-diffusion-15.description": "Stable Diffusion 1.5 е класически модел 512x512 за преобразуване на текст в изображение, идеален за бързо прототипиране и творчески експерименти.",
317
+ "comfyui/stable-diffusion-35-inclclip.description": "Stable Diffusion 3.5 с вградени CLIP/T5 енкодери не изисква външни файлове, подходящ за модели като sd3.5_medium_incl_clips с по-ниска консумация на ресурси.",
318
+ "comfyui/stable-diffusion-35.description": "Stable Diffusion 3.5 е модел от ново поколение за преобразуване на текст в изображение с варианти Large и Medium. Изисква външни CLIP енкодери и осигурява отлично качество на изображенията и съответствие с подкани.",
319
+ "comfyui/stable-diffusion-custom-refiner.description": "Персонализиран SDXL модел за преобразуване на изображение в изображение. Използвайте custom_sd_lobe.safetensors като име на файл; ако имате VAE, използвайте custom_sd_vae_lobe.safetensors. Поставете файловете в съответните папки на Comfy.",
320
+ "comfyui/stable-diffusion-custom.description": "Персонализиран SD модел за преобразуване на текст в изображение. Използвайте custom_sd_lobe.safetensors като име на файл; ако имате VAE, използвайте custom_sd_vae_lobe.safetensors. Поставете файловете в съответните папки на Comfy.",
321
+ "comfyui/stable-diffusion-refiner.description": "SDXL модел за преобразуване на изображение в изображение, който извършва висококачествени трансформации от входни изображения, поддържайки трансфер на стил, възстановяване и творчески вариации.",
322
+ "comfyui/stable-diffusion-xl.description": "SDXL е модел за преобразуване на текст в изображение, поддържащ висока резолюция 1024x1024 с по-добро качество и детайлност на изображенията.",
283
323
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 е отворен LLM, предназначен за разработчици, изследователи и предприятия, създаден да им помага да изграждат, експериментират и отговорно мащабират идеи за генеративен ИИ. Като част от основата за глобални иновации в общността, той е подходящ за среди с ограничени изчислителни ресурси, крайни устройства и по-бързо обучение.",
284
324
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Силен визуален анализ на изображения с висока резолюция, подходящ за приложения за визуално разбиране.",
285
325
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Разширен визуален анализ за приложения с агенти за визуално разбиране.",
@@ -382,6 +382,37 @@
382
382
  "deepseek-v2.description": "DeepSeek V2 ist ein effizientes MoE-Modell für kostengünstige Verarbeitung.",
383
383
  "deepseek-v2:236b.description": "DeepSeek V2 236B ist das codefokussierte Modell von DeepSeek mit starker Codegenerierung.",
384
384
  "deepseek-v3-0324.description": "DeepSeek-V3-0324 ist ein MoE-Modell mit 671B Parametern und herausragenden Stärken in Programmierung, technischer Kompetenz, Kontextverständnis und Langtextverarbeitung.",
385
+ "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus ist ein für Terminalgeräte optimiertes Sprachmodell von DeepSeek.",
386
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 ist das tiefgründige Denkmodell zur Terminus-Version, entwickelt für leistungsstarke Schlussfolgerungen.",
387
+ "deepseek-v3.1.description": "DeepSeek-V3.1 ist ein neues hybrides Schlussfolgerungsmodell von DeepSeek, das sowohl Denk- als auch Nicht-Denk-Modi unterstützt und eine höhere Denkeffizienz als DeepSeek-R1-0528 bietet. Optimierungen nach dem Training verbessern die Nutzung von Agenten-Tools und die Leistung bei Agentenaufgaben erheblich. Es unterstützt ein Kontextfenster von 128k und bis zu 64k Ausgabetokens.",
388
+ "deepseek-v3.1:671b.description": "DeepSeek V3.1 ist ein Next-Generation-Schlussfolgerungsmodell mit verbesserter komplexer Argumentation und Kettenlogik, ideal für Aufgaben mit tiefgehender Analyse.",
389
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-exp führt Sparse Attention ein, um die Effizienz beim Training und bei der Inferenz bei langen Texten zu verbessern – zu einem günstigeren Preis als deepseek-v3.1.",
390
+ "deepseek-v3.2-think.description": "DeepSeek V3.2 Think ist ein vollständig auf tiefes Denken ausgelegtes Modell mit stärkerer Langketten-Argumentation.",
391
+ "deepseek-v3.2.description": "DeepSeek-V3.2 ist das erste hybride Schlussfolgerungsmodell von DeepSeek, das Denken in die Werkzeugnutzung integriert. Es kombiniert eine effiziente Architektur zur Rechenersparnis, großskaliges verstärkendes Lernen zur Leistungssteigerung und synthetische Aufgabendaten zur besseren Generalisierung. Die Leistung ist vergleichbar mit GPT-5-High, die Ausgabelänge wurde deutlich reduziert, was Rechenaufwand und Wartezeit für Nutzer erheblich senkt.",
392
+ "deepseek-v3.description": "DeepSeek-V3 ist ein leistungsstarkes MoE-Modell mit insgesamt 671 Milliarden Parametern und 37 Milliarden aktiven Parametern pro Token.",
393
+ "deepseek-vl2-small.description": "DeepSeek VL2 Small ist eine leichtgewichtige multimodale Version für ressourcenbeschränkte und hochparallele Anwendungen.",
394
+ "deepseek-vl2.description": "DeepSeek VL2 ist ein multimodales Modell für Bild-Text-Verständnis und präzise visuelle Fragebeantwortung.",
395
+ "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste Version der Flaggschiff-Chatreihe von DeepSeek.\n\nEs basiert auf [DeepSeek V3](/deepseek/deepseek-chat-v3) und überzeugt in vielfältigen Aufgaben.",
396
+ "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste Version der Flaggschiff-Chatreihe von DeepSeek.\n\nEs basiert auf [DeepSeek V3](/deepseek/deepseek-chat-v3) und überzeugt in vielfältigen Aufgaben.",
397
+ "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 ist das Langkontext-Hybridmodell von DeepSeek, das gemischte Denk-/Nicht-Denk-Modi und Tool-Integration unterstützt.",
398
+ "deepseek/deepseek-chat.description": "DeepSeek-V3 ist das leistungsstarke Hybridmodell von DeepSeek für komplexe Aufgaben und Tool-Integration.",
399
+ "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 ist eine aktualisierte Variante mit Fokus auf offene Verfügbarkeit und tiefere Argumentation.",
400
+ "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 verbessert die Argumentation erheblich mit minimalen gelabelten Daten und erzeugt vor der finalen Antwort eine Argumentationskette zur Steigerung der Genauigkeit.",
401
+ "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B ist ein destilliertes Sprachmodell basierend auf Llama 3.3 70B, feinabgestimmt mit Ausgaben von DeepSeek R1, um eine konkurrenzfähige Leistung mit großen Modellen zu erreichen.",
402
+ "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B ist ein destilliertes Sprachmodell basierend auf Llama-3.1-8B-Instruct, trainiert mit Ausgaben von DeepSeek R1.",
403
+ "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B ist ein destilliertes Sprachmodell basierend auf Qwen 2.5 14B, trainiert mit Ausgaben von DeepSeek R1. Es übertrifft OpenAI o1-mini in mehreren Benchmarks und erzielt Spitzenwerte unter dichten Modellen. Benchmark-Highlights:\nAIME 2024 pass@1: 69,7\nMATH-500 pass@1: 93,9\nCodeForces Rating: 1481\nFeinabstimmung mit DeepSeek R1-Ausgaben liefert konkurrenzfähige Leistung mit größeren Modellen.",
404
+ "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B ist ein destilliertes Sprachmodell basierend auf Qwen 2.5 32B, trainiert mit Ausgaben von DeepSeek R1. Es übertrifft OpenAI o1-mini in mehreren Benchmarks und erzielt Spitzenwerte unter dichten Modellen. Benchmark-Highlights:\nAIME 2024 pass@1: 72,6\nMATH-500 pass@1: 94,3\nCodeForces Rating: 1691\nFeinabstimmung mit DeepSeek R1-Ausgaben liefert konkurrenzfähige Leistung mit größeren Modellen.",
405
+ "deepseek/deepseek-r1.description": "DeepSeek R1 wurde zu DeepSeek-R1-0528 aktualisiert. Mit mehr Rechenleistung und algorithmischen Optimierungen nach dem Training verbessert es die Tiefe und Fähigkeit der Argumentation erheblich. Es überzeugt in Mathematik, Programmierung und allgemeiner Logik und nähert sich führenden Modellen wie o3 und Gemini 2.5 Pro an.",
406
+ "deepseek/deepseek-r1/community.description": "DeepSeek R1 ist das neueste Open-Source-Modell des DeepSeek-Teams mit sehr starker Argumentationsleistung, insbesondere in Mathematik, Programmierung und logischen Aufgaben – vergleichbar mit OpenAI o1.",
407
+ "deepseek/deepseek-r1:free.description": "DeepSeek-R1 verbessert die Argumentation erheblich mit minimalen gelabelten Daten und erzeugt vor der finalen Antwort eine Argumentationskette zur Steigerung der Genauigkeit.",
408
+ "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (Reasoner) ist das experimentelle Argumentationsmodell von DeepSeek, geeignet für hochkomplexe Denkaufgaben.",
409
+ "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base ist eine verbesserte Version des DeepSeek V3 Modells.",
410
+ "deepseek/deepseek-v3.description": "Ein schnelles, vielseitiges Sprachmodell mit verbesserter Argumentation.",
411
+ "deepseek/deepseek-v3/community.description": "DeepSeek-V3 stellt einen Durchbruch in der Argumentationsgeschwindigkeit gegenüber früheren Modellen dar. Es belegt den ersten Platz unter Open-Source-Modellen und konkurriert mit den fortschrittlichsten geschlossenen Modellen. DeepSeek-V3 verwendet Multi-Head Latent Attention (MLA) und die DeepSeekMoE-Architektur, beide validiert in DeepSeek-V2. Es führt außerdem eine verlustfreie Hilfsstrategie zur Lastverteilung und ein Multi-Token-Vorhersageziel für stärkere Leistung ein.",
412
+ "deepseek_r1.description": "DeepSeek-R1 ist ein durch Reinforcement Learning gesteuertes Argumentationsmodell, das Wiederholungen und Lesbarkeit verbessert. Vor dem RL nutzt es Cold-Start-Daten zur weiteren Leistungssteigerung. Es erreicht das Niveau von OpenAI-o1 in Mathematik, Programmierung und logischen Aufgaben, mit gezieltem Training zur Verbesserung der Gesamtergebnisse.",
413
+ "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B ist ein destilliertes Modell basierend auf Llama-3.3-70B-Instruct. Als Teil der DeepSeek-R1-Serie ist es mit DeepSeek-R1-generierten Beispielen feinabgestimmt und überzeugt in Mathematik, Programmierung und Argumentation.",
414
+ "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B ist ein destilliertes Modell basierend auf Qwen2.5-14B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 trainiert. Es liefert starke Argumentationsleistung.",
415
+ "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B ist ein destilliertes Modell basierend auf Qwen2.5-32B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 trainiert. Es überzeugt in Mathematik, Programmierung und Argumentation.",
385
416
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 ist ein offenes LLM für Entwickler, Forscher und Unternehmen. Es wurde entwickelt, um beim Aufbau, Experimentieren und verantwortungsvollen Skalieren generativer KI-Ideen zu unterstützen. Als Teil der Grundlage für globale Innovationsgemeinschaften eignet es sich besonders für Umgebungen mit begrenzten Rechenressourcen, Edge-Geräte und schnellere Trainingszeiten.",
386
417
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Starke Bildverarbeitung bei hochauflösenden Bildern – ideal für visuelle Verständnisanwendungen.",
387
418
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Fortschrittliche Bildverarbeitung für visuelle Agentenanwendungen.",
@@ -335,6 +335,53 @@
335
335
  "computer-use-preview.description": "computer-use-preview es un modelo especializado para la herramienta \"uso de computadora\", entrenado para comprender y ejecutar tareas relacionadas con computadoras.",
336
336
  "dall-e-2.description": "Modelo DALL·E de segunda generación con generación de imágenes más realista y precisa, y 4× la resolución de la primera generación.",
337
337
  "dall-e-3.description": "El modelo DALL·E más reciente, lanzado en noviembre de 2023, admite generación de imágenes más realista y precisa con mayor nivel de detalle.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct ofrece una gestión de instrucciones altamente confiable en múltiples industrias.",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI centrado en OCR y \"compresión óptica contextual\". Explora la compresión del contexto a partir de imágenes, procesa documentos de forma eficiente y los convierte en texto estructurado (por ejemplo, Markdown). Reconoce texto en imágenes con gran precisión, ideal para digitalización de documentos, extracción de texto y procesamiento estructurado.",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B destila el razonamiento en cadena de DeepSeek-R1-0528 en Qwen3 8B Base. Alcanza el estado del arte entre los modelos abiertos, superando a Qwen3 8B en un 10% en AIME 2024 y equiparando el rendimiento de Qwen3-235B-thinking. Destaca en razonamiento matemático, programación y lógica general. Comparte la arquitectura de Qwen3-8B pero utiliza el tokenizador de DeepSeek-R1-0528.",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 aprovecha mayor capacidad de cómputo y optimizaciones algorítmicas post-entrenamiento para profundizar el razonamiento. Tiene un rendimiento destacado en pruebas de matemáticas, programación y lógica general, acercándose a líderes como o3 y Gemini 2.5 Pro.",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B está destilado de Qwen2.5-32B y ajustado finamente con 800K muestras curadas de DeepSeek-R1. Destaca en matemáticas, programación y razonamiento, logrando excelentes resultados en AIME 2024, MATH-500 (94.3% de precisión) y GPQA Diamond.",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B está destilado de Qwen2.5-Math-7B y ajustado finamente con 800K muestras curadas de DeepSeek-R1. Tiene un rendimiento destacado, con 92.8% en MATH-500, 55.5% en AIME 2024 y una puntuación de 1189 en CodeForces para un modelo de 7B.",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 mejora el razonamiento mediante aprendizaje por refuerzo (RL) y datos de arranque en frío, estableciendo nuevos estándares en tareas múltiples con modelos abiertos y superando a OpenAI-o1-mini.",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 mejora DeepSeek-V2-Chat y DeepSeek-Coder-V2-Instruct, combinando capacidades generales y de programación. Mejora la redacción y el seguimiento de instrucciones para una mejor alineación con las preferencias, mostrando avances significativos en AlpacaEval 2.0, ArenaHard, AlignBench y MT-Bench.",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus es una versión actualizada del modelo V3.1, concebido como un agente híbrido. Corrige problemas reportados por usuarios y mejora la estabilidad, coherencia lingüística y reduce caracteres anómalos o mezclas de chino/inglés. Integra modos de pensamiento y no pensamiento con plantillas de chat para cambiar de forma flexible. También mejora el rendimiento de los agentes de código y búsqueda para un uso más confiable de herramientas y tareas de múltiples pasos.",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utiliza una arquitectura de razonamiento híbrido y admite modos de pensamiento y no pensamiento.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp es una versión experimental de V3.2 que sirve de puente hacia la próxima arquitectura. Añade DeepSeek Sparse Attention (DSA) sobre V3.1-Terminus para mejorar el entrenamiento y la inferencia en contextos largos, con optimizaciones para el uso de herramientas, comprensión de documentos extensos y razonamiento de múltiples pasos. Ideal para explorar mayor eficiencia de razonamiento con presupuestos de contexto amplios.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 es un modelo MoE con 671 mil millones de parámetros que utiliza MLA y DeepSeekMoE con balanceo de carga sin pérdida para un entrenamiento e inferencia eficientes. Preentrenado con 14.8T tokens de alta calidad, SFT y RL, supera a otros modelos abiertos y se acerca a los modelos cerrados líderes.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) es un modelo innovador que ofrece una comprensión profunda del lenguaje y una interacción avanzada.",
354
+ "deepseek-ai/deepseek-r1.description": "Un modelo LLM de última generación, eficiente y fuerte en razonamiento, matemáticas y programación.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento en tareas de análisis profundo.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento en tareas de análisis profundo.",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 es un modelo visión-lenguaje MoE basado en DeepSeekMoE-27B con activación dispersa, logrando un alto rendimiento con solo 4.5B parámetros activos. Destaca en preguntas visuales, OCR, comprensión de documentos/tablas/gráficos y anclaje visual.",
358
+ "deepseek-chat.description": "Un nuevo modelo de código abierto que combina capacidades generales y de programación. Conserva el diálogo general del modelo de chat y la sólida programación del modelo coder, con mejor alineación de preferencias. DeepSeek-V2.5 también mejora la redacción y el seguimiento de instrucciones.",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B es un modelo de lenguaje para programación entrenado con 2T tokens (87% código, 13% texto en chino/inglés). Introduce una ventana de contexto de 16K y tareas de completado intermedio, ofreciendo completado de código a nivel de proyecto y relleno de fragmentos.",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que rinde fuertemente en tareas de programación, comparable a GPT-4 Turbo.",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que rinde fuertemente en tareas de programación, comparable a GPT-4 Turbo.",
362
+ "deepseek-ocr.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI centrado en OCR y \"compresión óptica contextual\". Explora la compresión de información contextual a partir de imágenes, procesa documentos de forma eficiente y los convierte en formatos de texto estructurado como Markdown. Reconoce texto en imágenes con gran precisión, ideal para digitalización de documentos, extracción de texto y procesamiento estructurado.",
363
+ "deepseek-r1-0528.description": "Modelo completo de 685B lanzado el 28-05-2025. DeepSeek-R1 utiliza aprendizaje por refuerzo a gran escala en la fase post-entrenamiento, mejorando significativamente el razonamiento con datos etiquetados mínimos, y rinde fuertemente en matemáticas, programación y razonamiento en lenguaje natural.",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528 es el modelo completo de razonamiento DeepSeek-R1 para tareas complejas de matemáticas y lógica.",
365
+ "deepseek-r1-70b-fast-online.description": "Edición rápida de DeepSeek R1 70B con búsqueda web en tiempo real, ofreciendo respuestas más rápidas sin sacrificar rendimiento.",
366
+ "deepseek-r1-70b-online.description": "Edición estándar de DeepSeek R1 70B con búsqueda web en tiempo real, ideal para tareas de chat y texto actualizadas.",
367
+ "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combina el razonamiento de R1 con el ecosistema Llama.",
368
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B está destilado de Llama-3.1-8B utilizando salidas de DeepSeek R1.",
369
+ "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama está destilado de DeepSeek-R1 sobre Llama.",
370
+ "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B es una destilación R1 basada en Qianfan-70B con gran valor.",
371
+ "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B es una destilación R1 basada en Qianfan-8B para aplicaciones pequeñas y medianas.",
372
+ "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B es una destilación R1 basada en Llama-70B.",
373
+ "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B es un modelo destilado ultraligero para entornos con muy pocos recursos.",
374
+ "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B es un modelo destilado de tamaño medio para despliegue en múltiples escenarios.",
375
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B es una destilación R1 basada en Qwen-32B, equilibrando rendimiento y coste.",
376
+ "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B es un modelo destilado ligero para entornos empresariales privados y en el borde.",
377
+ "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen está destilado de DeepSeek-R1 sobre Qwen.",
378
+ "deepseek-r1-fast-online.description": "Versión completa rápida de DeepSeek R1 con búsqueda web en tiempo real, combinando capacidad a escala 671B y respuesta ágil.",
379
+ "deepseek-r1-online.description": "Versión completa de DeepSeek R1 con 671B parámetros y búsqueda web en tiempo real, ofreciendo mejor comprensión y generación.",
380
+ "deepseek-r1.description": "DeepSeek-R1 utiliza datos de arranque en frío antes del aprendizaje por refuerzo y rinde de forma comparable a OpenAI-o1 en matemáticas, programación y razonamiento.",
381
+ "deepseek-reasoner.description": "El modo de pensamiento de DeepSeek V3.2 genera una cadena de razonamiento antes de la respuesta final para mejorar la precisión.",
382
+ "deepseek-v2.description": "DeepSeek V2 es un modelo MoE eficiente para procesamiento rentable.",
383
+ "deepseek-v2:236b.description": "DeepSeek V2 236B es el modelo de DeepSeek centrado en código con fuerte generación de código.",
384
+ "deepseek-v3-0324.description": "DeepSeek-V3-0324 es un modelo MoE con 671B parámetros, con fortalezas destacadas en programación, capacidad técnica, comprensión de contexto y manejo de textos largos.",
338
385
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 es un modelo LLM abierto para desarrolladores, investigadores y empresas, diseñado para ayudarles a construir, experimentar y escalar de manera responsable ideas de IA generativa. Como parte de la base para la innovación de la comunidad global, es ideal para entornos con recursos y capacidad de cómputo limitados, dispositivos en el borde y tiempos de entrenamiento más rápidos.",
339
386
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Razonamiento visual sólido en imágenes de alta resolución, ideal para aplicaciones de comprensión visual.",
340
387
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Razonamiento visual avanzado para aplicaciones de agentes con comprensión visual.",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 یک مدل MoE با ۶۷۱ میلیارد پارامتر است که از MLA و DeepSeekMoE با تعادل بار بدون اتلاف برای استنتاج و آموزش کارآمد استفاده می‌کند. با پیش‌آموزش بر روی ۱۴.۸ تریلیون توکن با کیفیت بالا و تنظیم بیشتر با SFT و RL، از سایر مدل‌های باز پیشی می‌گیرد و به مدل‌های بسته پیشرو نزدیک می‌شود.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 جدیدترین و قدرتمندترین نسخه Kimi K2 است. این مدل MoE سطح بالا با ۱ تریلیون پارامتر کل و ۳۲ میلیارد پارامتر فعال است. ویژگی‌های کلیدی شامل هوش کدنویسی عامل‌محور قوی‌تر با پیشرفت‌های قابل توجه در معیارها و وظایف واقعی عامل‌ها، به‌علاوه زیبایی‌شناسی و قابلیت استفاده بهتر در کدنویسی رابط کاربری است.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo نسخه توربو بهینه‌شده برای سرعت استدلال و توان عملیاتی است، در حالی که استدلال چندمرحله‌ای و استفاده از ابزار K2 Thinking را حفظ می‌کند. این مدل MoE با حدود ۱ تریلیون پارامتر کل، زمینه بومی ۲۵۶ هزار توکن و فراخوانی ابزار در مقیاس بزرگ پایدار برای سناریوهای تولیدی با نیازهای سخت‌گیرانه‌تر در تأخیر و هم‌زمانی است.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 مدل پرچم‌دار نسل جدید شرکت Zhipu است که دارای ۳۵۵ میلیارد پارامتر کلی و ۳۲ میلیارد پارامتر فعال می‌باشد. این مدل در زمینه‌های گفت‌وگوی عمومی، استدلال و توانایی‌های عامل هوشمند به‌طور کامل ارتقاء یافته است. GLM-4.7 قابلیت Interleaved Thinking (تفکر درهم‌تنیده) را بهبود داده و مفاهیم Preserved Thinking (تفکر حفظ‌شده) و Turn-level Thinking (تفکر در سطح نوبت) را معرفی کرده است.",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ یک مدل تحقیقاتی آزمایشی است که بر بهبود توانایی استدلال تمرکز دارد.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview یک مدل تحقیقاتی از Qwen است که بر استدلال بصری تمرکز دارد و در درک صحنه‌های پیچیده و حل مسائل ریاضی بصری توانمند است.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ یک مدل تحقیقاتی آزمایشی است که بر بهبود استدلال هوش مصنوعی تمرکز دارد.",
@@ -335,6 +335,7 @@
335
335
  "computer-use-preview.description": "computer-use-preview est un modèle spécialisé pour l'outil \"utilisation de l'ordinateur\", entraîné pour comprendre et exécuter des tâches liées à l'informatique.",
336
336
  "dall-e-2.description": "Modèle DALL·E de deuxième génération avec une génération d'images plus réaliste et précise, et une résolution 4× supérieure à la première génération.",
337
337
  "dall-e-3.description": "Le dernier modèle DALL·E, publié en novembre 2023, prend en charge une génération d'images plus réaliste et précise avec un niveau de détail renforcé.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct offre une gestion des instructions hautement fiable dans divers secteurs.",
338
339
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 est un modèle LLM ouvert destiné aux développeurs, chercheurs et entreprises, conçu pour les aider à créer, expérimenter et faire évoluer de manière responsable des idées d'IA générative. Faisant partie de la base de l'innovation communautaire mondiale, il est particulièrement adapté aux environnements à ressources limitées, aux appareils en périphérie et aux temps d'entraînement réduits.",
339
340
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Raisonnement visuel performant sur des images haute résolution, idéal pour les applications de compréhension visuelle.",
340
341
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Raisonnement visuel avancé pour les agents d'applications de compréhension visuelle.",
@@ -335,6 +335,7 @@
335
335
  "computer-use-preview.description": "computer-use-preview è un modello specializzato per lo strumento \"uso del computer\", addestrato per comprendere ed eseguire compiti legati al computer.",
336
336
  "dall-e-2.description": "Modello DALL·E di seconda generazione con generazione di immagini più realistica e accurata e risoluzione 4× rispetto alla prima generazione.",
337
337
  "dall-e-3.description": "L'ultimo modello DALL·E, rilasciato a novembre 2023, supporta generazione di immagini più realistica e accurata con maggiore dettaglio.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct offre una gestione delle istruzioni altamente affidabile in diversi settori.",
338
339
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
339
340
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
340
341
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
@@ -360,6 +360,59 @@
360
360
  "deepseek-coder-v2.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
361
361
  "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
362
362
  "deepseek-ocr.description": "DeepSeek-OCR は DeepSeek AI による視覚と言語の統合モデルで、OCR(光学文字認識)と「コンテキスト光学圧縮」に特化しています。画像からの文脈情報を圧縮し、文書を効率的に処理して構造化テキスト(例:Markdown)に変換します。画像内のテキストを高精度で認識し、文書のデジタル化、テキスト抽出、構造化処理に最適です。",
363
+ "deepseek-r1-0528.description": "2025年5月28日に685Bのフルモデルをリリース。DeepSeek-R1は、事後学習において大規模な強化学習(RL)を活用し、最小限のラベル付きデータで推論能力を大幅に向上。数学、コーディング、自然言語推論において高い性能を発揮します。",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528は、難解な数学や論理タスク向けに設計されたDeepSeek-R1の完全推論モデルです。",
365
+ "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B 高速版はリアルタイムのウェブ検索を搭載し、性能を維持しつつ応答速度を向上させています。",
366
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B 標準版はリアルタイムのウェブ検索を備え、最新のチャットやテキストタスクに適しています。",
367
+ "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70Bは、R1の推論能力とLlamaエコシステムを融合させたモデルです。",
368
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8Bは、Llama-3.1-8BをベースにDeepSeek R1の出力を用いて蒸留されたモデルです。",
369
+ "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llamaは、DeepSeek-R1をLlama上で蒸留したモデルです。",
370
+ "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70Bは、Qianfan-70BをベースにしたR1蒸留モデルで、高い価値を提供します。",
371
+ "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8Bは、Qianfan-8BをベースにしたR1蒸留モデルで、小規模から中規模アプリケーションに適しています。",
372
+ "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70Bは、Llama-70BをベースにしたR1蒸留モデルです。",
373
+ "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5Bは、非常に低リソース環境向けの超軽量蒸留モデルです。",
374
+ "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14Bは、複数のシナリオに対応可能な中規模蒸留モデルです。",
375
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32Bは、Qwen-32BをベースにしたR1蒸留モデルで、性能とコストのバランスに優れています。",
376
+ "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7Bは、エッジ環境や企業内プライベート環境向けの軽量蒸留モデルです。",
377
+ "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwenは、DeepSeek-R1をQwen上で蒸留したモデルです。",
378
+ "deepseek-r1-fast-online.description": "DeepSeek R1 高速フルバージョンは、リアルタイムのウェブ検索を搭載し、671Bスケールの能力と高速応答を両立します。",
379
+ "deepseek-r1-online.description": "DeepSeek R1 フルバージョンは、671Bパラメータとリアルタイムのウェブ検索を備え、より強力な理解と生成を提供します。",
380
+ "deepseek-r1.description": "DeepSeek-R1は、強化学習前にコールドスタートデータを使用し、数学、コーディング、推論においてOpenAI-o1と同等の性能を発揮します。",
381
+ "deepseek-reasoner.description": "DeepSeek V3.2の思考モードは、最終的な回答の前に思考の連鎖(Chain-of-Thought)を出力し、精度を向上させます。",
382
+ "deepseek-v2.description": "DeepSeek V2は、コスト効率の高い処理を実現する効率的なMoEモデルです。",
383
+ "deepseek-v2:236b.description": "DeepSeek V2 236Bは、コード生成に特化したDeepSeekのモデルで、強力なコード生成能力を持ちます。",
384
+ "deepseek-v3-0324.description": "DeepSeek-V3-0324は、671BパラメータのMoEモデルで、プログラミングや技術的能力、文脈理解、長文処理において優れた性能を発揮します。",
385
+ "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminusは、ターミナルデバイス向けに最適化されたDeepSeekのLLMです。",
386
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821は、Terminusバージョンに対応する深い思考モデルで、高性能な推論に対応します。",
387
+ "deepseek-v3.1.description": "DeepSeek-V3.1は、DeepSeekの新しいハイブリッド推論モデルで、思考モードと非思考モードの両方をサポートし、DeepSeek-R1-0528よりも高い思考効率を実現します。事後学習の最適化により、エージェントツールの使用とタスク処理能力が大幅に向上。128kのコンテキストウィンドウと最大64kの出力トークンに対応します。",
388
+ "deepseek-v3.1:671b.description": "DeepSeek V3.1は、複雑な推論とChain-of-Thoughtに優れた次世代推論モデルで、深い分析を必要とするタスクに適しています。",
389
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-expは、長文テキストの学習と推論効率を向上させるスパースアテンションを導入し、deepseek-v3.1よりも低価格で提供されます。",
390
+ "deepseek-v3.2-think.description": "DeepSeek V3.2 Thinkは、長い思考の連鎖に対応した完全な深層思考モデルです。",
391
+ "deepseek-v3.2.description": "DeepSeek-V3.2は、深度求索が開発した初の思考とツール使用を融合したハイブリッド推論モデルです。効率的なアーキテクチャで計算資源を節約し、大規模強化学習で能力を強化、大量の合成タスクデータで汎化性能を高め、三位一体でGPT-5-Highに匹敵する性能を実現。出力長が大幅に短縮され、計算コストとユーザーの待機時間を大きく削減します。",
392
+ "deepseek-v3.description": "DeepSeek-V3は、671Bの総パラメータとトークンごとに37Bがアクティブな強力なMoEモデルです。",
393
+ "deepseek-vl2-small.description": "DeepSeek VL2 Smallは、リソース制約や高同時接続環境向けの軽量マルチモーダルモデルです。",
394
+ "deepseek-vl2.description": "DeepSeek VL2は、画像と言語の理解および精緻な視覚的質問応答に対応するマルチモーダルモデルです。",
395
+ "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、あらゆるタスクで高い性能を発揮します。",
396
+ "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、あらゆるタスクで高い性能を発揮します。",
397
+ "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1は、長文コンテキストに対応したDeepSeekのハイブリッド推論モデルで、思考モードと非思考モードの切り替えやツール統合をサポートします。",
398
+ "deepseek/deepseek-chat.description": "DeepSeek-V3は、複雑なタスクやツール統合に対応する高性能ハイブリッド推論モデルです。",
399
+ "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528は、オープンアクセスと深い推論に焦点を当てた更新版です。",
400
+ "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1は、最小限のラベル付きデータで推論能力を大幅に向上させ、最終的な回答の前に思考の連鎖を出力して精度を高めます。",
401
+ "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70Bは、Llama 3.3 70BをベースにDeepSeek R1の出力でファインチューニングされた蒸留LLMで、大規模最先端モデルに匹敵する性能を実現します。",
402
+ "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8Bは、Llama-3.1-8B-InstructをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。",
403
+ "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14Bは、Qwen 2.5 14BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。複数のベンチマークでOpenAI o1-miniを上回り、密なモデルの中で最先端の結果を達成しています。ベンチマークのハイライト:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
404
+ "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32Bは、Qwen 2.5 32BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。複数のベンチマークでOpenAI o1-miniを上回り、密なモデルの中で最先端の結果を達成しています。ベンチマークのハイライト:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
405
+ "deepseek/deepseek-r1.description": "DeepSeek R1は、DeepSeek-R1-0528にアップデートされました。計算資源と事後学習アルゴリズムの最適化により、推論の深さと能力が大幅に向上。数学、プログラミング、一般的な論理ベンチマークで高い性能を発揮し、o3やGemini 2.5 Proといったリーダーに迫る実力を持ちます。",
406
+ "deepseek/deepseek-r1/community.description": "DeepSeek R1は、DeepSeekチームがリリースした最新のオープンソースモデルで、特に数学、コーディング、推論タスクにおいて非常に高い推論性能を発揮し、OpenAI o1に匹敵します。",
407
+ "deepseek/deepseek-r1:free.description": "DeepSeek-R1は、最小限のラベル付きデータで推論能力を大幅に向上させ、最終的な回答の前に思考の連鎖を出力して精度を高めます。",
408
+ "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking(reasoner)は、DeepSeekの実験的推論モデルで、高度な複雑性を持つ推論タスクに適しています。",
409
+ "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Baseは、DeepSeek V3モデルの改良版です。",
410
+ "deepseek/deepseek-v3.description": "高速かつ汎用性の高いLLMで、推論能力が強化されています。",
411
+ "deepseek/deepseek-v3/community.description": "DeepSeek-V3は、従来モデルに比べて推論速度で大きなブレークスルーを達成。オープンソースモデルの中でトップにランクインし、最先端のクローズドモデルにも匹敵します。DeepSeek-V3は、DeepSeek-V2で実証されたMulti-Head Latent Attention(MLA)とDeepSeekMoEアーキテクチャを採用。さらに、負荷分散のためのロスレス補助戦略や、性能を強化するマルチトークン予測学習目標も導入しています。",
412
+ "deepseek_r1.description": "DeepSeek-R1は、強化学習を活用した推論モデルで、繰り返しや可読性の問題に対応します。RL前にはコールドスタートデータを使用し、推論性能をさらに向上。数学、コーディング、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、慎重に設計されたトレーニングにより全体的な結果を改善します。",
413
+ "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70Bは、Llama-3.3-70B-Instructをベースに、DeepSeek-R1が生成したサンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において高い性能を発揮します。",
414
+ "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、強力な推論能力を持ちます。",
415
+ "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において優れた性能を発揮します。",
363
416
  "gemini-flash-latest.description": "Gemini Flash の最新リリース",
364
417
  "gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
365
418
  "gemini-pro-latest.description": "Gemini Pro の最新リリース",
@@ -348,6 +348,44 @@
348
348
  "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5는 DeepSeek-V2-Chat과 DeepSeek-Coder-V2-Instruct를 업그레이드하여 일반 및 코딩 능력을 통합합니다. 글쓰기 및 지시문 이행 능력을 향상시켜 선호도 정렬을 개선하며, AlpacaEval 2.0, ArenaHard, AlignBench, MT-Bench에서 큰 성능 향상을 보입니다.",
349
349
  "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus는 하이브리드 에이전트 LLM으로 포지셔닝된 V3.1 모델의 업데이트 버전입니다. 사용자 피드백 문제를 해결하고 안정성, 언어 일관성, 중문/영문 혼합 및 비정상 문자 출력을 개선합니다. 사고 및 비사고 모드를 통합하고 채팅 템플릿을 통해 유연하게 전환할 수 있으며, Code Agent 및 Search Agent 성능도 향상되어 도구 사용 및 다단계 작업에서 더 높은 신뢰성을 제공합니다.",
350
350
  "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1은 하이브리드 추론 아키텍처를 사용하며, 사고 모드와 비사고 모드를 모두 지원합니다.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp는 차세대 아키텍처로의 전환을 위한 실험적 V3.2 릴리스입니다. V3.1-Terminus 위에 DeepSeek Sparse Attention(DSA)을 추가하여 긴 문맥 학습 및 추론 효율성을 향상시켰으며, 도구 사용, 장문 문서 이해, 다단계 추론에 최적화되어 있습니다. 대규모 문맥 처리 예산 하에서 고차원 추론 효율성을 탐색하기에 이상적입니다.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3는 MLA와 DeepSeekMoE를 기반으로 손실 없는 부하 분산을 구현한 671B 파라미터의 MoE 모델입니다. 14.8T 고품질 토큰으로 사전 학습되었으며 SFT와 RL을 통해 미세 조정되어, 다른 오픈 모델을 능가하고 주요 폐쇄형 모델에 근접한 성능을 보입니다.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B)은 심층 언어 이해와 상호작용을 제공하는 혁신적인 모델입니다.",
354
+ "deepseek-ai/deepseek-r1.description": "최신 기술을 반영한 고효율 LLM으로, 추론, 수학, 프로그래밍에 강점을 보입니다.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
357
+ "deepseek-ai/deepseek-v3.2-exp.description": "deepseek-v3.2-exp는 희소 어텐션을 도입하여 장문 텍스트에 대한 학습 및 추론 효율을 향상시키며, deepseek-v3.1보다 저렴한 비용으로 제공됩니다.",
358
+ "deepseek-ai/deepseek-v3.2-think.description": "DeepSeek V3.2 Think는 장기 사고 추론에 강한 완전한 심층 사고 모델입니다.",
359
+ "deepseek-ai/deepseek-v3.2.description": "DeepSeek-V3.2는 DeepSeek가 출시한 최초의 도구 사용에 사고를 결합한 하이브리드 추론 모델입니다. 효율적인 아키텍처로 연산 자원을 절약하고, 대규모 강화 학습으로 능력을 향상시키며, 대규모 합성 작업 데이터로 일반화 성능을 강화하여, 세 가지 요소가 결합된 성능은 GPT-5-High에 필적합니다. 출력 길이가 크게 줄어들어 계산 비용과 사용자 대기 시간이 현저히 감소합니다.",
360
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2는 DeepSeekMoE-27B 기반의 MoE 비전-언어 모델로, 희소 활성화를 통해 4.5B 활성 파라미터만으로도 뛰어난 성능을 발휘합니다. 시각적 질의응답, OCR, 문서/표/차트 이해, 시각적 정렬에 탁월합니다.",
361
+ "deepseek-chat.description": "일반 대화 능력과 코드 처리 능력을 결합한 새로운 오픈소스 모델입니다. 대화 모델의 자연스러운 상호작용과 코드 모델의 강력한 코딩 능력을 유지하며, 사용자 선호도에 더 잘 맞춰졌습니다. DeepSeek-V2.5는 글쓰기와 지시 따르기에서도 향상된 성능을 보입니다.",
362
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B는 2T 토큰(코드 87%, 중/영문 텍스트 13%)으로 학습된 코드 언어 모델입니다. 16K 문맥 창과 중간 채우기(fit-in-the-middle) 작업을 도입하여 프로젝트 수준의 코드 완성과 코드 조각 보완을 지원합니다.",
363
+ "deepseek-ocr.description": "DeepSeek-OCR은 DeepSeek AI가 개발한 비전-언어 모델로, OCR과 '문맥 기반 광학 압축'에 중점을 둡니다. 이미지에서 문맥 정보를 압축하고 문서를 효율적으로 처리하여 Markdown과 같은 구조화된 텍스트 형식으로 변환합니다. 이미지 내 텍스트를 정확하게 인식하여 문서 디지털화, 텍스트 추출, 구조화 처리에 적합합니다.",
364
+ "deepseek-r1-0528.description": "2025년 5월 28일에 공개된 685B 전체 모델입니다. DeepSeek-R1은 사후 학습에서 대규모 강화 학습을 활용하여 소량의 라벨 데이터로도 추론 능력을 크게 향상시켰으며, 수학, 코딩, 자연어 추론에서 뛰어난 성능을 보입니다.",
365
+ "deepseek-r1-250528.description": "DeepSeek R1 250528은 고난도 수학 및 논리 작업을 위한 DeepSeek-R1 전체 추론 모델입니다.",
366
+ "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B의 빠른 버전으로, 실시간 웹 검색을 지원하며 성능을 유지하면서 더 빠른 응답을 제공합니다.",
367
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B 표준 버전으로, 실시간 웹 검색을 지원하며 최신 대화 및 텍스트 작업에 적합합니다.",
368
+ "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B는 R1 추론을 Llama 생태계와 결합한 모델입니다.",
369
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B는 DeepSeek R1의 출력을 기반으로 Llama-3.1-8B에서 증류된 모델입니다.",
370
+ "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama는 DeepSeek-R1을 Llama에 증류한 모델입니다.",
371
+ "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B는 Qianfan-70B를 기반으로 한 R1 증류 모델로, 높은 가치의 성능을 제공합니다.",
372
+ "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B는 Qianfan-8B를 기반으로 한 R1 증류 모델로, 중소형 애플리케이션에 적합합니다.",
373
+ "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B는 Llama-70B를 기반으로 한 R1 증류 모델입니다.",
374
+ "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B는 매우 저자원 환경을 위한 초경량 증류 모델입니다.",
375
+ "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B는 다양한 시나리오에 배포 가능한 중형 증류 모델입니다.",
376
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B는 Qwen-32B를 기반으로 한 R1 증류 모델로, 성능과 비용의 균형을 이룹니다.",
377
+ "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B는 엣지 및 프라이빗 기업 환경을 위한 경량 증류 모델입니다.",
378
+ "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen은 DeepSeek-R1을 Qwen에 증류한 모델입니다.",
379
+ "deepseek-r1-fast-online.description": "DeepSeek R1의 빠른 전체 버전으로, 실시간 웹 검색을 지원하며 671B 규모의 성능과 빠른 응답을 결합합니다.",
380
+ "deepseek-r1-online.description": "DeepSeek R1 전체 버전은 671B 파라미터와 실시간 웹 검색을 지원하여 더 강력한 이해 및 생성 능력을 제공합니다.",
381
+ "deepseek-r1.description": "DeepSeek-R1은 강화 학습 이전에 콜드 스타트 데이터를 사용하며, 수학, 코딩, 추론 작업에서 OpenAI-o1과 유사한 성능을 보입니다.",
382
+ "deepseek-reasoner.description": "DeepSeek V3.2 사고 모드는 최종 답변 전에 사고의 흐름(chain-of-thought)을 출력하여 정확도를 높입니다.",
383
+ "deepseek-v2.description": "DeepSeek V2는 비용 효율적인 처리를 위한 고효율 MoE 모델입니다.",
384
+ "deepseek-v2:236b.description": "DeepSeek V2 236B는 코드 생성에 강점을 가진 DeepSeek의 코드 특화 모델입니다.",
385
+ "deepseek-v3-0324.description": "DeepSeek-V3-0324는 671B 파라미터의 MoE 모델로, 프로그래밍 및 기술적 역량, 문맥 이해, 장문 처리에서 뛰어난 성능을 보입니다.",
386
+ "deepseek-v3.description": "DeepSeek-V3는 총 671B 파라미터 중 토큰당 37B가 활성화되는 강력한 MoE 모델입니다.",
387
+ "deepseek-vl2-small.description": "DeepSeek VL2 Small은 자원이 제한되거나 동시 접속이 많은 환경을 위한 경량 멀티모달 버전입니다.",
388
+ "deepseek-vl2.description": "DeepSeek VL2는 이미지-텍스트 이해와 정밀한 시각적 질의응답에 특화된 멀티모달 모델입니다.",
351
389
  "gemini-flash-latest.description": "Gemini Flash 최신 버전",
352
390
  "gemini-flash-lite-latest.description": "Gemini Flash-Lite 최신 버전",
353
391
  "gemini-pro-latest.description": "Gemini Pro 최신 버전",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 is een MoE-model met 671 miljard parameters dat gebruikmaakt van MLA en DeepSeekMoE met verliesvrije load balancing voor efficiënte inferentie en training. Voorgetraind op 14,8 biljoen hoogwaardige tokens en verder verfijnd met SFT en RL, overtreft het andere open modellen en benadert toonaangevende gesloten modellen.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 is de nieuwste en krachtigste Kimi K2. Het is een topklasse MoE-model met 1 biljoen totale en 32 miljard actieve parameters. Belangrijke kenmerken zijn sterkere agentgerichte programmeerintelligentie met aanzienlijke verbeteringen op benchmarks en echte agenttaken, plus verbeterde esthetiek en bruikbaarheid van frontend-code.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo is de Turbo-variant geoptimaliseerd voor redeneersnelheid en verwerkingscapaciteit, terwijl het de meerstapsredenering en gereedschapsgebruik van K2 Thinking behoudt. Het is een MoE-model met ongeveer 1 biljoen totale parameters, native 256K context en stabiele grootschalige tool-aanroepen voor productieomgevingen met strengere eisen aan latentie en gelijktijdigheid.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 is het nieuwste vlaggenschipmodel van Zhipu, met verbeterde codeerprestaties, lange-termijn taakplanning en samenwerking met tools, speciaal geoptimaliseerd voor Agentic Coding-scenario’s. Het model behaalt toonaangevende resultaten onder open-source modellen op meerdere openbare benchmarks. De algemene capaciteiten zijn verbeterd: antwoorden zijn beknopter en natuurlijker, en schrijfopdrachten voelen meeslepender aan. Bij het uitvoeren van complexe agenttaken volgt het model instructies nauwkeuriger op tijdens toolgebruik. De esthetiek van gegenereerde artefacten en de efficiëntie bij het voltooien van lange taken zijn verder verbeterd.",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ is een experimenteel onderzoeksmodel gericht op het verbeteren van redenering.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview is een onderzoeksmodel van Qwen gericht op visuele redenering, met sterke prestaties in het begrijpen van complexe scènes en visuele wiskundeproblemen.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ is een experimenteel onderzoeksmodel gericht op verbeterde AI-redenering.",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 to model MoE z 671 mld parametrów, wykorzystujący MLA i DeepSeekMoE z równoważeniem obciążenia bez strat, zapewniający efektywne wnioskowanie i trening. Wstępnie wytrenowany na 14,8 bln wysokiej jakości tokenów i dalej dostrojony za pomocą SFT i RL, przewyższa inne modele otwarte i zbliża się do czołowych modeli zamkniętych.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 to najnowsza i najpotężniejsza wersja Kimi K2. Jest to model MoE najwyższej klasy z 1T łącznych i 32B aktywnych parametrów. Kluczowe cechy to silniejsza inteligencja kodowania agentowego z istotnymi poprawami w testach porównawczych i zadaniach agentowych w rzeczywistych warunkach, a także ulepszona estetyka i użyteczność kodowania frontendowego.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo to wariant Turbo zoptymalizowany pod kątem szybkości rozumowania i przepustowości, zachowując jednocześnie wieloetapowe rozumowanie i obsługę narzędzi znane z K2 Thinking. Jest to model MoE z około 1T łącznych parametrów, natywnym kontekstem 256K i stabilnym wywoływaniem narzędzi na dużą skalę, przeznaczony do zastosowań produkcyjnych z rygorystycznymi wymaganiami dotyczącymi opóźnień i współbieżności.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 to najnowszy flagowy model Zhipu, zaprojektowany z myślą o scenariuszach Agentic Coding. Wzmacnia zdolności kodowania, planowania zadań długoterminowych i współpracy z narzędziami, osiągając czołowe wyniki wśród modeli open-source w wielu aktualnych rankingach. Ulepszono ogólne możliwości modelu — odpowiedzi są bardziej zwięzłe i naturalne, a teksty pisane bardziej immersyjne. W realizacji złożonych zadań agentowych model lepiej przestrzega instrukcji podczas wywoływania narzędzi, a estetyka interfejsu Artifacts i efektywność realizacji długich zadań w Agentic Coding zostały znacznie poprawione.",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ to eksperymentalny model badawczy skoncentrowany na ulepszaniu zdolności rozumowania.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview to model badawczy od Qwen, skoncentrowany na rozumowaniu wizualnym, wyróżniający się w złożonym rozumieniu scen i problemach matematycznych opartych na obrazie.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ to eksperymentalny model badawczy skoncentrowany na ulepszonym rozumowaniu sztucznej inteligencji.",
@@ -320,6 +320,21 @@
320
320
  "comfyui/stable-diffusion-custom.description": "Modelo personalizado SD de texto para imagem. Use custom_sd_lobe.safetensors como nome do arquivo do modelo; se tiver um VAE, use custom_sd_vae_lobe.safetensors. Coloque os arquivos do modelo nas pastas exigidas pelo Comfy.",
321
321
  "comfyui/stable-diffusion-refiner.description": "Modelo SDXL de imagem para imagem que realiza transformações de alta qualidade a partir de imagens de entrada, com suporte a transferência de estilo, restauração e variações criativas.",
322
322
  "comfyui/stable-diffusion-xl.description": "SDXL é um modelo de texto para imagem que suporta geração em alta resolução 1024x1024 com melhor qualidade de imagem e detalhes.",
323
+ "command-a-03-2025.description": "O Command A é o nosso modelo mais avançado até o momento, com excelente desempenho no uso de ferramentas, agentes, RAG e cenários multilíngues. Possui uma janela de contexto de 256K, opera com apenas duas GPUs e oferece 150% mais rendimento do que o Command R+ 08-2024.",
324
+ "command-light-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série command-light, isso é chamado de command-light-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para produção.",
325
+ "command-light.description": "Uma variante menor e mais rápida do Command, quase tão capaz quanto, mas com maior velocidade.",
326
+ "command-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série Command, isso é chamado de command-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para produção.",
327
+ "command-r-03-2024.description": "O Command R é um modelo de chat que segue instruções, com maior qualidade, confiabilidade e uma janela de contexto mais longa do que os modelos anteriores. Suporta fluxos de trabalho complexos como geração de código, RAG, uso de ferramentas e agentes.",
328
+ "command-r-08-2024.description": "command-r-08-2024 é uma versão atualizada do modelo Command R, lançada em agosto de 2024.",
329
+ "command-r-plus-04-2024.description": "command-r-plus é um alias de command-r-plus-04-2024, portanto, usar command-r-plus na API aponta para esse modelo.",
330
+ "command-r-plus-08-2024.description": "O Command R+ é um modelo de chat que segue instruções, com maior qualidade, confiabilidade e uma janela de contexto mais longa do que os modelos anteriores. É ideal para fluxos de trabalho RAG complexos e uso de ferramentas em múltiplas etapas.",
331
+ "command-r-plus.description": "O Command R+ é um LLM de alto desempenho projetado para cenários empresariais reais e aplicativos complexos.",
332
+ "command-r.description": "O Command R é um LLM otimizado para chat e tarefas com contexto longo, ideal para interações dinâmicas e gestão de conhecimento.",
333
+ "command-r7b-12-2024.description": "command-r7b-12-2024 é uma atualização pequena e eficiente lançada em dezembro de 2024. Destaca-se em RAG, uso de ferramentas e tarefas com agentes que exigem raciocínio complexo em múltiplas etapas.",
334
+ "command.description": "Um modelo de chat que segue instruções, oferecendo maior qualidade e confiabilidade em tarefas de linguagem, com uma janela de contexto mais longa do que nossos modelos generativos base.",
335
+ "computer-use-preview.description": "computer-use-preview é um modelo especializado para a ferramenta \"uso de computador\", treinado para compreender e executar tarefas relacionadas ao uso de computadores.",
336
+ "dall-e-2.description": "Modelo DALL·E de segunda geração com geração de imagens mais realista e precisa, e resolução 4× maior que a da primeira geração.",
337
+ "dall-e-3.description": "O modelo DALL·E mais recente, lançado em novembro de 2023, oferece geração de imagens mais realista e precisa, com maior riqueza de detalhes.",
323
338
  "meta.llama3-8b-instruct-v1:0.description": "O Meta Llama 3 é um modelo de linguagem aberto para desenvolvedores, pesquisadores e empresas, projetado para ajudá-los a construir, experimentar e escalar ideias de IA generativa de forma responsável. Como parte da base para a inovação da comunidade global, é ideal para ambientes com recursos computacionais limitados, dispositivos de borda e tempos de treinamento mais rápidos.",
324
339
  "mistral-large-latest.description": "Mistral Large é o modelo principal, com excelente desempenho em tarefas multilíngues, raciocínio complexo e geração de código — ideal para aplicações de alto nível.",
325
340
  "mistral-large.description": "Mixtral Large é o modelo principal da Mistral, combinando geração de código, matemática e raciocínio com uma janela de contexto de 128K.",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 — это модель MoE с 671B параметрами, использующая MLA и DeepSeekMoE с балансировкой нагрузки без потерь для эффективного вывода и обучения. Предобучена на 14.8T высококачественных токенов и дополнительно дообучена с использованием SFT и RL, превосходит другие открытые модели и приближается к ведущим закрытым моделям.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 — новейшая и самая мощная версия Kimi K2. Это передовая модель MoE с общим числом параметров 1 трлн и 32 млрд активных. Ключевые особенности включают усиленный агентный интеллект в программировании с заметным улучшением результатов на тестах и в реальных задачах, а также улучшенную эстетику и удобство интерфейсного кода.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo — это ускоренный вариант, оптимизированный для скорости рассуждений и пропускной способности, при сохранении многошагового мышления и использования инструментов K2 Thinking. Это модель MoE с ~1 трлн параметров, нативной поддержкой контекста 256K и стабильным вызовом инструментов в масштабных производственных сценариях с жёсткими требованиями к задержке и параллельности.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 — это флагманская модель нового поколения от Zhipu AI с общим числом параметров 355 миллиардов и 32 миллиардами активных параметров. Она представляет собой всестороннее обновление в области универсального диалога, рассуждений и возможностей интеллектуальных агентов. GLM-4.7 усиливает Interleaved Thinking (перекрёстное мышление), а также вводит концепции Preserved Thinking (сохранённое мышление) и Turn-level Thinking (пошаговое мышление).",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ — это экспериментальная исследовательская модель, направленная на улучшение логического мышления.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview — исследовательская модель от Qwen, ориентированная на визуальное мышление, с сильными сторонами в понимании сложных сцен и решении визуальных математических задач.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ — экспериментальная исследовательская модель, сосредоточенная на улучшении логического мышления ИИ.",
@@ -270,15 +271,20 @@
270
271
  "chatgpt-4o-latest.description": "ChatGPT-4o — это динамическая модель с обновлением в реальном времени, сочетающая сильное понимание и генерацию для масштабных сценариев, таких как поддержка клиентов, образование и техническая помощь.",
271
272
  "claude-2.0.description": "Claude 2 предлагает ключевые улучшения для бизнеса, включая контекст до 200 тысяч токенов, снижение галлюцинаций, системные подсказки и новую функцию тестирования — вызов инструментов.",
272
273
  "claude-2.1.description": "Claude 2 предлагает ключевые улучшения для бизнеса, включая контекст до 200 тысяч токенов, снижение галлюцинаций, системные подсказки и новую функцию тестирования — вызов инструментов.",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku — самая быстрая модель нового поколения от Anthropic. По сравнению с Claude 3 Haiku, она демонстрирует улучшения во всех навыках и превосходит предыдущую крупнейшую модель Claude 3 Opus по многим интеллектуальным метрикам.",
273
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku обеспечивает быстрые ответы для легких задач.",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet — самая интеллектуальная модель от Anthropic и первая на рынке гибридная модель рассуждений. Она способна выдавать почти мгновенные ответы или пошаговые рассуждения, видимые пользователю. Особенно сильна в программировании, анализе данных, компьютерном зрении и задачах агентов.",
274
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet — последняя и самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
275
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku — самая быстрая и компактная модель от Anthropic, предназначенная для мгновенных ответов с высокой точностью и скоростью.",
276
279
  "claude-3-opus-20240229.description": "Claude 3 Opus — самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
277
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet сочетает интеллект и скорость для корпоративных задач, обеспечивая высокую полезность при низкой стоимости и надежное масштабируемое развертывание.",
281
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 — самая быстрая и умная модель Haiku от Anthropic, сочетающая молниеносную скорость и расширенные возможности рассуждения.",
278
282
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking — продвинутая версия, способная демонстрировать процесс рассуждения.",
279
283
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 — последняя и самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
284
+ "claude-opus-4-20250514.description": "Claude Opus 4 — самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
280
285
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 — флагманская модель от Anthropic, сочетающая выдающийся интеллект с масштабируемой производительностью, идеально подходящая для сложных задач, требующих высококачественных ответов и рассуждений.",
281
286
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking может выдавать как мгновенные ответы, так и пошаговое рассуждение с видимым процессом.",
287
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 способен выдавать почти мгновенные ответы или пошаговое мышление с видимым процессом рассуждения.",
282
288
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 — самая интеллектуальная модель от Anthropic на сегодняшний день.",
283
289
  "codegeex-4.description": "CodeGeeX-4 — мощный AI-помощник для программирования, поддерживающий многоязычные вопросы и автодополнение кода для повышения продуктивности разработчиков.",
284
290
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B — многоязычная модель генерации кода, поддерживающая автодополнение, генерацию кода, интерпретацию, веб-поиск, вызов функций и вопросы по репозиториям. Охватывает широкий спектр сценариев разработки ПО и является одной из лучших моделей кода с параметрами до 10B.",
@@ -329,6 +335,35 @@
329
335
  "computer-use-preview.description": "computer-use-preview — специализированная модель для инструмента \"использование компьютера\", обученная понимать и выполнять задачи, связанные с компьютером.",
330
336
  "dall-e-2.description": "Модель DALL·E второго поколения с более реалистичной и точной генерацией изображений и разрешением в 4 раза выше, чем у первого поколения.",
331
337
  "dall-e-3.description": "Последняя модель DALL·E, выпущенная в ноябре 2023 года, обеспечивает более реалистичную и точную генерацию изображений с улучшенной детализацией.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct обеспечивает высоконадежную обработку инструкций в различных отраслях.",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR — это модель визуально-языкового типа от DeepSeek AI, ориентированная на оптическое распознавание текста (OCR) и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированный текст (например, Markdown). Точно распознаёт текст на изображениях, идеально подходит для оцифровки документов, извлечения текста и структурированной обработки.",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B — это дистиллят модели DeepSeek-R1-0528 на базе Qwen3 8B. Она достигает уровня SOTA среди открытых моделей, превосходя Qwen3 8B на 10% в AIME 2024 и сопоставима с производительностью Qwen3-235B-thinking. Отличается выдающимися результатами в математике, программировании и логике. Использует архитектуру Qwen3-8B и токенизатор DeepSeek-R1-0528.",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 использует дополнительные вычислительные ресурсы и алгоритмические оптимизации постобучения для углубления рассуждений. Демонстрирует высокие результаты в математике, программировании и логике, приближаясь к лидерам, таким как o3 и Gemini 2.5 Pro.",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей в многозадачных сценариях.",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей в многозадачных сценариях.",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей в многозадачных сценариях.",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B — дистиллят модели Qwen2.5-32B, дообученный на 800 тысячах отобранных выборок DeepSeek-R1. Отличается выдающимися результатами в математике, программировании и логике, достигая высоких показателей на AIME 2024, MATH-500 (94.3% точности) и GPQA Diamond.",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B — дистиллят модели Qwen2.5-Math-7B, дообученный на 800 тысячах отобранных выборок DeepSeek-R1. Демонстрирует высокие результаты: 92.8% на MATH-500, 55.5% на AIME 2024 и рейтинг 1189 на CodeForces для модели 7B.",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 улучшает рассуждения с помощью обучения с подкреплением и cold-start данных, устанавливая новые стандарты среди открытых моделей и превосходя OpenAI-o1-mini.",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 — это обновление моделей DeepSeek-V2-Chat и DeepSeek-Coder-V2-Instruct, объединяющее общие и программные способности. Улучшает написание текстов и следование инструкциям для лучшего соответствия предпочтениям, демонстрируя значительный прогресс на AlpacaEval 2.0, ArenaHard, AlignBench и MT-Bench.",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus — обновлённая модель V3.1, позиционируемая как гибридный агентный LLM. Исправляет ошибки, сообщённые пользователями, повышает стабильность, согласованность языка и снижает количество смешанных китайско-английских и некорректных символов. Интегрирует режимы мышления и немышления с шаблонами чата для гибкого переключения. Также улучшает производительность Code Agent и Search Agent для более надёжного использования инструментов и выполнения многошаговых задач.",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 использует гибридную архитектуру рассуждений и поддерживает как режим мышления, так и немышления.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp — экспериментальный выпуск V3.2, переходный к следующей архитектуре. Добавляет DeepSeek Sparse Attention (DSA) поверх V3.1-Terminus для повышения эффективности обучения и вывода на длинных контекстах, с оптимизациями для использования инструментов, понимания длинных документов и многошагового рассуждения. Идеально подходит для изучения более эффективного рассуждения при больших объёмах контекста.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 — модель MoE с 671 миллиардами параметров, использующая MLA и DeepSeekMoE с балансировкой нагрузки без потерь для эффективного обучения и вывода. Предобучена на 14.8 триллионах высококачественных токенов с использованием SFT и RL, превосходит другие открытые модели и приближается к ведущим закрытым решениям.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) — инновационная модель с глубоким пониманием языка и возможностью взаимодействия.",
354
+ "deepseek-ai/deepseek-r1.description": "Современная эффективная LLM, сильная в рассуждениях, математике и программировании.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями сложного анализа и цепочечного мышления.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями сложного анализа и цепочечного мышления.",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 — модель визуально-языкового типа MoE на базе DeepSeekMoE-27B с разреженной активацией, достигающая высокой производительности при использовании всего 4.5B активных параметров. Отличается выдающимися результатами в визуальном QA, OCR, понимании документов/таблиц/диаграмм и визуальной привязке.",
358
+ "deepseek-chat.description": "Новая модель с открытым исходным кодом, объединяющая общие и программные способности. Сохраняет универсальность диалоговой модели и мощные возможности кодирования, с улучшенным соответствием предпочтениям. DeepSeek-V2.5 также улучшает написание текстов и следование инструкциям.",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B — языковая модель для программирования, обученная на 2 триллионах токенов (87% кода, 13% китайского/английского текста). Поддерживает контекстное окно 16K и задачи заполнения в середине, обеспечивая автодополнение на уровне проекта и вставку фрагментов кода.",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
362
+ "deepseek-ocr.description": "DeepSeek-OCR — это визуально-языковая модель от DeepSeek AI, ориентированная на OCR и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированные текстовые форматы, такие как Markdown. Точно распознаёт текст на изображениях, идеально подходит для оцифровки документов, извлечения текста и структурированной обработки.",
363
+ "deepseek-r1-0528.description": "Полная модель 685B, выпущенная 28 мая 2025 года. DeepSeek-R1 использует масштабное обучение с подкреплением на этапе постобучения, значительно улучшая рассуждения при минимуме размеченных данных. Демонстрирует высокие результаты в математике, программировании и естественно-языковом рассуждении.",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528 — полная модель рассуждений DeepSeek-R1 для сложных математических и логических задач.",
365
+ "deepseek-r1-70b-fast-online.description": "Быстрая версия DeepSeek R1 70B с поддержкой веб-поиска в реальном времени, обеспечивающая более быстрые ответы при сохранении производительности.",
366
+ "deepseek-r1-70b-online.description": "Стандартная версия DeepSeek R1 70B с поддержкой веб-поиска в реальном времени, подходящая для актуальных диалогов и текстовых задач.",
332
367
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 — это открытая LLM для разработчиков, исследователей и предприятий, созданная для поддержки создания, экспериментов и ответственного масштабирования идей генеративного ИИ. Являясь частью основы для глобальных инноваций сообщества, она хорошо подходит для ограниченных вычислительных ресурсов, устройств на периферии и ускоренного обучения.",
333
368
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Модель с высокой способностью к визуальному рассуждению на изображениях высокого разрешения, подходящая для приложений визуального понимания.",
334
369
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Продвинутая модель визуального рассуждения для агентов, ориентированных на визуальное понимание.",
@@ -335,6 +335,35 @@
335
335
  "computer-use-preview.description": "computer-use-preview, \"bilgisayar kullanımı aracı\" için özel olarak eğitilmiş, bilgisayarla ilgili görevleri anlama ve yürütme yeteneğine sahip bir modeldir.",
336
336
  "dall-e-2.description": "İkinci nesil DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi sunar. İlk nesle göre 4 kat daha yüksek çözünürlük sağlar.",
337
337
  "dall-e-3.description": "Kasım 2023’te yayınlanan en yeni DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi sunar. Detaylarda daha güçlüdür.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct, sektörler arası güvenilir talimat işleme sunar.",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlam optik sıkıştırma\"ya odaklanır. Görsellerden bağlamı sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları yapılandırılmış metne (örneğin Markdown) dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış işleme için idealdir.",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B, DeepSeek-R1-0528'den çıkarılan düşünce zincirini Qwen3 8B Base'e aktarır. Açık modeller arasında SOTA seviyesine ulaşır, AIME 2024'te Qwen3 8B'yi %10 oranında geçer ve Qwen3-235B-thinking performansına eşdeğerdir. Matematiksel akıl yürütme, programlama ve genel mantık testlerinde üstün performans gösterir. Qwen3-8B mimarisini paylaşır ancak DeepSeek-R1-0528 tokenlaştırıcısını kullanır.",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1, ek hesaplama gücü ve son eğitim algoritma iyileştirmeleriyle akıl yürütmeyi derinleştirir. Matematik, programlama ve genel mantık testlerinde güçlü performans sergiler; o3 ve Gemini 2.5 Pro gibi lider modellere yaklaşır.",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B, Qwen2.5-32B'den distil edilmiştir ve 800K seçilmiş DeepSeek-R1 örneğiyle ince ayar yapılmıştır. Matematik, programlama ve akıl yürütmede üstün performans gösterir; AIME 2024, MATH-500 (%94,3 doğruluk) ve GPQA Diamond testlerinde güçlü sonuçlar elde eder.",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B, Qwen2.5-Math-7B'den distil edilmiştir ve 800K seçilmiş DeepSeek-R1 örneğiyle ince ayar yapılmıştır. MATH-500'de %92,8, AIME 2024'te %55,5 ve 7B model için 1189 CodeForces puanı ile güçlü performans sergiler.",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1, RL ve soğuk başlangıç verileriyle akıl yürütmeyi geliştirir, yeni açık model çoklu görev kıyaslamaları belirler ve OpenAI-o1-mini'yi geride bırakır.",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5, DeepSeek-V2-Chat ve DeepSeek-Coder-V2-Instruct modellerini geliştirerek genel ve kodlama yeteneklerini birleştirir. Yazma ve talimat takibini geliştirerek tercih uyumunu artırır; AlpacaEval 2.0, ArenaHard, AlignBench ve MT-Bench testlerinde önemli kazanımlar sağlar.",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus, hibrit ajan LLM olarak konumlandırılmış güncellenmiş V3.1 modelidir. Kullanıcı geri bildirimleriyle tespit edilen sorunları düzeltir, kararlılığı ve dil tutarlılığını artırır, karışık Çince/İngilizce ve anormal karakterleri azaltır. Düşünen ve düşünmeyen modları sohbet şablonlarıyla entegre eder, esnek geçiş sağlar. Ayrıca Code Agent ve Search Agent performansını artırarak daha güvenilir araç kullanımı ve çok adımlı görevler sunar.",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1, hibrit akıl yürütme mimarisi kullanır ve hem düşünen hem de düşünmeyen modları destekler.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp, bir sonraki mimariye geçişi sağlayan deneysel V3.2 sürümüdür. V3.1-Terminus üzerine DeepSeek Sparse Attention (DSA) ekleyerek uzun bağlamlı eğitim ve çıkarım verimliliğini artırır. Araç kullanımı, uzun belge anlama ve çok adımlı akıl yürütme için optimize edilmiştir. Geniş bağlam bütçeleriyle daha yüksek akıl yürütme verimliliğini keşfetmek için idealdir.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3, MLA ve DeepSeekMoE kullanan, kayıpsız yük dengeleme ile verimli eğitim ve çıkarım sağlayan 671B parametreli bir MoE modelidir. 14.8T yüksek kaliteli token ile önceden eğitilmiş, SFT ve RL ile geliştirilmiştir; diğer açık modelleri geride bırakır ve önde gelen kapalı modellere yaklaşır.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B), derin dil anlama ve etkileşim sunan yenilikçi bir modeldir.",
354
+ "deepseek-ai/deepseek-r1.description": "Akıl yürütme, matematik ve programlamada güçlü, son teknoloji verimli bir LLM.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir akıl yürütme modelidir.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir akıl yürütme modelidir.",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2, yalnızca 4.5B aktif parametreyle güçlü performans sunan, DeepSeekMoE-27B tabanlı MoE görsel-dil modelidir. Görsel Soru-Cevap, OCR, belge/tablo/grafik anlama ve görsel eşleme konularında öne çıkar.",
358
+ "deepseek-chat.description": "Genel ve kodlama yeteneklerini birleştiren yeni açık kaynaklı model. Sohbet modelinin genel diyalog yeteneklerini ve kodlayıcı modelin güçlü kodlama becerilerini korur, tercih uyumunu geliştirir. DeepSeek-V2.5 ayrıca yazma ve talimat takibini iyileştirir.",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B, 2T token (%%87 kod, %%13 Çince/İngilizce metin) ile eğitilmiş bir kodlama dil modelidir. 16K bağlam penceresi ve ortadan doldurma görevleri sunar, proje düzeyinde kod tamamlama ve kod parçası doldurma sağlar.",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2, GPT-4 Turbo ile karşılaştırılabilir güçlü performansa sahip açık kaynaklı bir MoE kod modeli.",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2, GPT-4 Turbo ile karşılaştırılabilir güçlü performansa sahip açık kaynaklı bir MoE kod modeli.",
362
+ "deepseek-ocr.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlamsal optik sıkıştırma\"ya odaklanır. Görsellerden bağlamsal bilgiyi sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları Markdown gibi yapılandırılmış metin formatlarına dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış işleme için idealdir.",
363
+ "deepseek-r1-0528.description": "685B tam model, 2025-05-28'de yayımlandı. DeepSeek-R1, son eğitimde büyük ölçekli RL kullanarak etiketli veriye minimum ihtiyaçla akıl yürütmeyi büyük ölçüde geliştirir; matematik, kodlama ve doğal dil akıl yürütmede güçlü performans gösterir.",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528, zorlu matematik ve mantık görevleri için tam DeepSeek-R1 akıl yürütme modelidir.",
365
+ "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B hızlı sürüm, gerçek zamanlı web aramasıyla daha hızlı yanıtlar sunar ve performansı korur.",
366
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B standart sürüm, gerçek zamanlı web aramasıyla güncel sohbet ve metin görevleri için uygundur.",
338
367
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3, geliştiriciler, araştırmacılar ve işletmeler için açık bir büyük dil modeli (LLM) olup, üretken yapay zeka fikirlerini oluşturma, deneme ve sorumlu bir şekilde ölçeklendirme süreçlerinde yardımcı olmak üzere tasarlanmıştır. Küresel topluluk inovasyonunun temel taşlarından biri olarak, sınırlı bilgi işlem gücü ve kaynaklara sahip ortamlar, uç cihazlar ve daha hızlı eğitim süreleri için uygundur.",
339
368
  "mistral-small-latest.description": "Mistral Small, çeviri, özetleme ve duygu analizi için uygun maliyetli, hızlı ve güvenilir bir seçenektir.",
340
369
  "mistral-small.description": "Mistral Small, yüksek verimlilik ve düşük gecikme gerektiren her türlü dil tabanlı görev için uygundur.",
@@ -298,6 +298,7 @@
298
298
  "codeqwen.description": "CodeQwen1.5 là mô hình ngôn ngữ lớn được huấn luyện trên dữ liệu mã phong phú, được xây dựng cho các tác vụ lập trình phức tạp.",
299
299
  "codestral-latest.description": "Codestral là mô hình lập trình tiên tiến nhất của chúng tôi; phiên bản v2 (tháng 1 năm 2025) nhắm đến các tác vụ tần suất cao, độ trễ thấp như FIM, sửa mã và sinh bài kiểm tra.",
300
300
  "codestral.description": "Codestral là mô hình lập trình đầu tiên của Mistral AI, cung cấp hỗ trợ sinh mã mạnh mẽ.",
301
+ "codex-mini-latest.description": "codex-mini-latest là một mô hình o4-mini được tinh chỉnh dành cho Codex CLI. Đối với việc sử dụng API trực tiếp, chúng tôi khuyến nghị bắt đầu với gpt-4.1.",
301
302
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 là một mô hình ngôn ngữ mở dành cho nhà phát triển, nhà nghiên cứu và doanh nghiệp, được thiết kế để hỗ trợ xây dựng, thử nghiệm và mở rộng các ý tưởng AI sinh ngữ một cách có trách nhiệm. Là một phần trong nền tảng đổi mới cộng đồng toàn cầu, mô hình này phù hợp với môi trường có tài nguyên hạn chế, thiết bị biên và yêu cầu thời gian huấn luyện nhanh hơn.",
302
303
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Khả năng suy luận hình ảnh mạnh mẽ trên ảnh độ phân giải cao, phù hợp cho các ứng dụng hiểu thị giác.",
303
304
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Khả năng suy luận hình ảnh tiên tiến dành cho các ứng dụng tác tử hiểu thị giác.",
@@ -270,15 +270,20 @@
270
270
  "chatgpt-4o-latest.description": "ChatGPT-4o 是一款实时更新的动态模型,结合强大的理解与生成能力,适用于客户支持、教育和技术支持等大规模应用场景。",
271
271
  "claude-2.0.description": "Claude 2 提供关键的企业级改进,包括领先的 20 万 token 上下文窗口、减少幻觉、系统提示支持,以及新测试功能:工具调用。",
272
272
  "claude-2.1.description": "Claude 2 提供关键的企业级改进,包括领先的 20 万 token 上下文窗口、减少幻觉、系统提示支持,以及新测试功能:工具调用。",
273
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku 是 Anthropic 推出的下一代最快模型。与 Claude 3 Haiku 相比,其各项能力均有提升,并在多个智能基准测试中超越了此前的最大模型 Claude 3 Opus。",
273
274
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku 提供快速响应,适用于轻量级任务。",
275
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet 是 Anthropic 最智能的模型,也是市场上首个混合推理模型。它既能生成几乎即时的响应,也能输出用户可见的逐步推理过程。Sonnet 在编程、数据科学、视觉理解和智能体任务方面表现尤为出色。",
274
276
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet 是 Anthropic 最新、最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
275
277
  "claude-3-haiku-20240307.description": "Claude 3 Haiku 是 Anthropic 推出的最快、最紧凑的模型,专为近乎即时响应而设计,具备快速且准确的性能。",
276
278
  "claude-3-opus-20240229.description": "Claude 3 Opus 是 Anthropic 最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
277
279
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet 在智能与速度之间取得平衡,适用于企业级工作负载,提供高效能与低成本的可靠部署。",
280
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 是 Anthropic 推出的最快、最智能的 Haiku 模型,具备闪电般的响应速度和增强的推理能力。",
278
281
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking 是一款高级变体,能够展示其推理过程。",
279
282
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 是 Anthropic 最新、最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
283
+ "claude-opus-4-20250514.description": "Claude Opus 4 是 Anthropic 最强大的模型,专为处理高度复杂任务而设计,在性能、智能、流畅性和理解力方面表现卓越。",
280
284
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 是 Anthropic 的旗舰模型,结合卓越智能与可扩展性能,适用于需要最高质量响应与推理的复杂任务。",
281
285
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking 可生成近乎即时的响应或可视化的逐步推理过程。",
286
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 能够生成几乎即时的响应,或输出可视化的逐步思考过程。",
282
287
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 是 Anthropic 迄今为止最智能的模型。",
283
288
  "codegeex-4.description": "CodeGeeX-4 是一款强大的 AI 编程助手,支持多语言问答和代码补全,提升开发者效率。",
284
289
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B 是一款多语言代码生成模型,支持代码补全与生成、代码解释器、网页搜索、函数调用和仓库级代码问答,覆盖广泛的软件开发场景。是 100 亿参数以下的顶级代码模型。",
@@ -330,6 +335,60 @@
330
335
  "dall-e-2.description": "第二代 DALL·E 模型,图像生成更真实、准确,分辨率是第一代的 4 倍。",
331
336
  "dall-e-3.description": "最新的 DALL·E 模型,于 2023 年 11 月发布,图像生成更真实、准确,细节表现更强。",
332
337
  "databricks/dbrx-instruct.description": "DBRX Instruct 提供跨行业高度可靠的指令处理能力。",
338
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于 OCR 和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
339
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B 将 DeepSeek-R1-0528 的链式思维能力蒸馏至 Qwen3 8B Base 模型中。在开源模型中达到 SOTA 水平,在 AIME 2024 上超越 Qwen3 8B 10%,并与 Qwen3-235B-thinking 表现相当。擅长数学推理、编程和通用逻辑任务,采用 Qwen3-8B 架构,并使用 DeepSeek-R1-0528 的分词器。",
340
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 利用额外算力和后训练算法优化,增强推理能力。在数学、编程和通用逻辑等基准测试中表现优异,接近 o3 和 Gemini 2.5 Pro 等领先模型。",
341
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B 由 Qwen2.5-32B 蒸馏而来,并在 80 万条精挑细选的 DeepSeek-R1 样本上微调。擅长数学、编程和推理任务,在 AIME 2024、MATH-500(94.3% 准确率)和 GPQA Diamond 上表现出色。",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B 由 Qwen2.5-Math-7B 蒸馏而来,并在 80 万条精挑细选的 DeepSeek-R1 样本上微调。在 MATH-500 上达到 92.8%,AIME 2024 为 55.5%,CodeForces 评分为 1189(7B 模型)。",
346
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 通过强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准,超越 OpenAI-o1-mini。",
347
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 升级了 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct,融合通用与编程能力。提升写作与指令遵循能力,实现更优偏好对齐,在 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 上取得显著进步。",
348
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus 是 V3.1 的更新版本,定位为混合智能体大模型。修复用户反馈问题,提升稳定性、语言一致性,减少中英混杂和异常字符。集成思考与非思考模式,支持通过聊天模板灵活切换。Code Agent 和 Search Agent 性能也得到提升,工具使用更可靠,多步任务完成度更高。",
349
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 采用混合推理架构,支持思考与非思考模式。",
350
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp 是 V3.2 的实验版本,连接下一代架构。在 V3.1-Terminus 基础上引入 DeepSeek Sparse Attention(DSA),提升长上下文训练与推理效率,优化工具使用、长文档理解和多步推理。适合探索大上下文预算下的高效推理。",
351
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一个拥有 671B 参数的 MoE 模型,采用 MLA 和 DeepSeekMoE 架构,具备无损负载均衡能力,实现高效训练与推理。预训练数据达 14.8T,结合 SFT 和 RL,性能超越其他开源模型,接近领先闭源模型。",
352
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat(67B)是一款创新模型,具备深度语言理解与交互能力。",
353
+ "deepseek-ai/deepseek-r1.description": "一款高效的先进大模型,在推理、数学和编程方面表现出色。",
354
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于深度分析任务。",
355
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于深度分析任务。",
356
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 是基于 DeepSeekMoE-27B 的 MoE 视觉语言模型,采用稀疏激活机制,仅使用 4.5B 激活参数即可实现强大性能。擅长视觉问答、OCR、文档/表格/图表理解和视觉定位任务。",
357
+ "deepseek-chat.description": "一款结合通用与编程能力的开源模型。保留聊天模型的通用对话能力与编程模型的强大编码能力,偏好对齐更优。DeepSeek-V2.5 还提升了写作与指令遵循能力。",
358
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B 是一款代码语言模型,训练数据达 2T(87% 代码,13% 中英文文本)。引入 16K 上下文窗口与中间填充任务,支持项目级代码补全与片段填充。",
359
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 是一款开源 MoE 编码模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
360
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 是一款开源 MoE 编码模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
361
+ "deepseek-ocr.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于 OCR 和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本格式(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
362
+ "deepseek-r1-0528.description": "2025 年 5 月 28 日发布的 685B 全量模型。DeepSeek-R1 在后训练阶段使用大规模强化学习,显著提升推理能力,仅需极少标注数据,在数学、编程和自然语言推理方面表现出色。",
363
+ "deepseek-r1-250528.description": "DeepSeek R1 250528 是 DeepSeek-R1 的完整推理模型,专为高难度数学与逻辑任务设计。",
364
+ "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B 快速版,支持实时网页搜索,在保持性能的同时提供更快响应。",
365
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B 标准版,支持实时网页搜索,适用于最新聊天与文本任务。",
366
+ "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B 将 R1 推理能力与 Llama 生态系统结合。",
367
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B 由 Llama-3.1-8B 蒸馏而来,使用 DeepSeek R1 输出进行训练。",
368
+ "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama 是在 Llama 上基于 DeepSeek-R1 蒸馏而成。",
369
+ "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B 是基于 Qianfan-70B 的 R1 蒸馏模型,具备强大价值。",
370
+ "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B 是基于 Qianfan-8B 的 R1 蒸馏模型,适用于中小型应用。",
371
+ "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B 是基于 Llama-70B 的 R1 蒸馏模型。",
372
+ "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B 是一款超轻量蒸馏模型,适用于极低资源环境。",
373
+ "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B 是一款中型蒸馏模型,适用于多场景部署。",
374
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B 是基于 Qwen-32B 的 R1 蒸馏模型,兼顾性能与成本。",
375
+ "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B 是一款轻量蒸馏模型,适用于边缘计算与企业私有部署环境。",
376
+ "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen 是在 Qwen 上基于 DeepSeek-R1 蒸馏而成。",
377
+ "deepseek-r1-fast-online.description": "DeepSeek R1 快速全量版,支持实时网页搜索,结合 671B 规模能力与更快响应。",
378
+ "deepseek-r1-online.description": "DeepSeek R1 全量版,具备 671B 参数与实时网页搜索能力,提供更强理解与生成能力。",
379
+ "deepseek-r1.description": "DeepSeek-R1 在强化学习前使用冷启动数据,数学、编程与推理任务表现可与 OpenAI-o1 相媲美。",
380
+ "deepseek-reasoner.description": "DeepSeek V3.2 思考模式在最终答案前输出链式思维,提升准确性。",
381
+ "deepseek-v2.description": "DeepSeek V2 是一款高效的 MoE 模型,适用于成本敏感型处理任务。",
382
+ "deepseek-v2:236b.description": "DeepSeek V2 236B 是 DeepSeek 推出的代码专用模型,具备强大代码生成能力。",
383
+ "deepseek-v3-0324.description": "DeepSeek-V3-0324 是一款拥有 671B 参数的 MoE 模型,在编程与技术能力、上下文理解和长文本处理方面表现突出。",
384
+ "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus 是 DeepSeek 推出的终端优化大模型,专为终端设备定制。",
385
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 是 Terminus 版本对应的深度思考模型,专为高性能推理任务打造。",
386
+ "deepseek-v3.1.description": "DeepSeek-V3.1 是 DeepSeek 推出的新一代混合推理模型,支持思考与非思考模式,推理效率高于 DeepSeek-R1-0528。后训练优化显著提升智能体工具使用与任务执行能力,支持 128k 上下文窗口与最多 64k 输出。",
387
+ "deepseek-v3.1:671b.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于需要深度分析的任务。",
388
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-exp 引入稀疏注意力机制,提升长文本训练与推理效率,价格低于 deepseek-v3.1。",
389
+ "deepseek-v3.2-think.description": "DeepSeek V3.2 Think 是一款完整的深度思考模型,具备更强的长链推理能力。",
390
+ "deepseek-v3.2.description": "DeepSeek-V3.2 是深度求索推出的首个将思考融入工具使用的混合推理模型,采用高效架构节省算力,结合大规模强化学习提升能力,配合大规模合成任务数据增强泛化能力,三者结合使其性能媲美 GPT-5-High,输出长度大幅降低,显著减少计算开销与用户等待时间。",
391
+ "deepseek-v3.description": "DeepSeek-V3 是一款强大的 MoE 模型,总参数量为 671B,每个 token 激活参数为 37B。",
333
392
  "gemini-flash-latest.description": "Latest release of Gemini Flash",
334
393
  "gemini-flash-lite-latest.description": "Latest release of Gemini Flash-Lite",
335
394
  "gemini-pro-latest.description": "Latest release of Gemini Pro",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一款擁有 6710 億參數的 MoE 模型,採用 MLA 與 DeepSeekMoE 架構,並透過無損負載平衡實現高效推理與訓練。預訓練於 14.8 兆高品質詞元上,並經過 SFT 與強化學習微調,表現超越其他開源模型,接近領先的封閉模型。",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 是最新且最強大的 Kimi K2 模型。這是一款頂級的 MoE 模型,總參數達 1 兆,啟用參數為 320 億。其主要特點包括更強的代理式程式設計智能,在基準測試與真實世界代理任務中表現大幅提升,並且前端程式碼的美學與可用性也獲得顯著改善。",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo 是 K2 Thinking 的 Turbo 變體,針對推理速度與吞吐量進行優化,同時保留多步推理與工具使用能力。這是一款 MoE 模型,總參數約為 1 兆,原生支援 256K 上下文,並具備穩定的大規模工具調用能力,適用於對延遲與併發有嚴格要求的生產場景。",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 是智譜推出的新一代旗艦模型,總參數量達 355B,激活參數量為 32B,在通用對話、推理與智能體能力方面全面升級。GLM-4.7 強化了交錯思考(Interleaved Thinking),並引入保留思考(Preserved Thinking)與輪級思考(Turn-level Thinking),在多輪對話與複雜任務中展現更高效的推理與決策能力。",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ 是一個實驗性研究模型,專注於提升推理能力。",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview 是來自 Qwen 的研究模型,專注於視覺推理,擅長複雜場景理解與視覺數學問題。",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ 是一個實驗性研究模型,致力於提升 AI 推理能力。",
@@ -270,15 +271,20 @@
270
271
  "chatgpt-4o-latest.description": "ChatGPT-4o 是一款即時更新的動態模型,結合強大的理解與生成能力,適用於客服、教育與技術支援等大規模應用場景。",
271
272
  "claude-2.0.description": "Claude 2 提供企業級關鍵改進,包括領先的 20 萬 token 上下文、降低幻覺、系統提示與新測試功能:工具調用。",
272
273
  "claude-2.1.description": "Claude 2 提供企業級關鍵改進,包括領先的 20 萬 token 上下文、降低幻覺、系統提示與新測試功能:工具調用。",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku 是 Anthropic 推出的次世代最快模型。相較於 Claude 3 Haiku,其在多項能力上均有提升,並在多個智慧基準測試中超越先前最大模型 Claude 3 Opus。",
273
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku 提供快速回應,適用於輕量任務。",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet 是 Anthropic 最具智慧的模型,也是市場上首個混合推理模型。它能夠即時回應,或進行可視化的逐步推理,特別擅長程式設計、資料科學、視覺處理與智能體任務。",
274
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet 是 Anthropic 最新且最強大的模型,適用於高度複雜任務,具備卓越的效能、智慧、流暢度與理解力。",
275
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku 是 Anthropic 推出的最快速且最精簡的模型,設計用於即時回應,具備快速且準確的表現。",
276
279
  "claude-3-opus-20240229.description": "Claude 3 Opus 是 Anthropic 最強大的模型,適用於高度複雜任務,具備卓越的效能、智慧、流暢度與理解力。",
277
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet 在智慧與速度之間取得平衡,適合企業工作負載,提供高效能與低成本的大規模部署。",
281
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 是 Anthropic 推出的最快速且最智慧的 Haiku 模型,具備閃電般的速度與延展推理能力。",
278
282
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking 是一個進階版本,能夠揭示其推理過程。",
279
283
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 是 Anthropic 最新且最強大的模型,適用於高度複雜任務,具備卓越的效能、智慧、流暢度與理解力。",
284
+ "claude-opus-4-20250514.description": "Claude Opus 4 是 Anthropic 最強大的模型,專為處理高度複雜任務而設,表現出色於智慧、流暢度與理解力。",
280
285
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 是 Anthropic 的旗艦模型,結合卓越智慧與可擴展效能,適合需要最高品質回應與推理的複雜任務。",
281
286
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking 可產生即時回應或延伸的逐步思考,並顯示其推理過程。",
287
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 能夠即時回應,或進行可視化的逐步思考,展現清晰的推理過程。",
282
288
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 是 Anthropic 迄今最智慧的模型。",
283
289
  "codegeex-4.description": "CodeGeeX-4 是一款強大的 AI 程式輔助工具,支援多語言問答與程式碼補全,能有效提升開發者的生產力。",
284
290
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B 是一個多語言程式碼生成模型,支援程式碼補全與生成、程式碼解釋器、網頁搜尋、函式呼叫與倉庫層級的程式碼問答,涵蓋多種軟體開發場景。它是參數數量低於 100 億的頂尖程式碼模型之一。",
@@ -329,6 +335,31 @@
329
335
  "computer-use-preview.description": "computer-use-preview 是一款專為「電腦使用工具」訓練的模型,能理解並執行與電腦相關的任務。",
330
336
  "dall-e-2.description": "第二代 DALL·E 模型,具備更真實、準確的圖像生成能力,解析度為第一代的四倍。",
331
337
  "dall-e-3.description": "最新的 DALL·E 模型於 2023 年 11 月發布,支援更真實、準確的圖像生成,細節表現更強。",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct 提供跨產業高度可靠的指令處理能力。",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR 是 DeepSeek AI 推出的視覺語言模型,專注於光學字元辨識(OCR)與「上下文光學壓縮」。該模型探索從影像中壓縮上下文資訊,能高效處理文件並轉換為結構化文字(如 Markdown),準確辨識影像中的文字,適用於文件數位化、文字擷取與結構化處理。",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B 將 DeepSeek-R1-0528 的思維鏈(Chain-of-Thought)蒸餾至 Qwen3 8B Base。在開源模型中達到 SOTA 表現,於 AIME 2024 超越 Qwen3 8B 10%,並匹敵 Qwen3-235B-thinking 的表現。擅長數學推理、程式設計與邏輯基準測試。架構與 Qwen3-8B 相同,但使用 DeepSeek-R1-0528 的分詞器。",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 利用額外算力與後訓練演算法優化,深化推理能力。在數學、程式設計與邏輯基準測試中表現優異,接近 o3 與 Gemini 2.5 Pro 等領先模型。",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 蒸餾模型使用強化學習(RL)與冷啟動資料來提升推理能力,並創下開源多任務基準新紀錄。",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 蒸餾模型使用強化學習(RL)與冷啟動資料來提升推理能力,並創下開源多任務基準新紀錄。",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 蒸餾模型使用強化學習(RL)與冷啟動資料來提升推理能力,並創下開源多任務基準新紀錄。",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B 是從 Qwen2.5-32B 蒸餾而來,並在 80 萬筆精選 DeepSeek-R1 樣本上微調。擅長數學、程式設計與推理,在 AIME 2024、MATH-500(94.3% 準確率)與 GPQA Diamond 上表現出色。",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B 是從 Qwen2.5-Math-7B 蒸餾而來,並在 80 萬筆精選 DeepSeek-R1 樣本上微調。表現優異,在 MATH-500 達 92.8%、AIME 2024 達 55.5%、CodeForces 評分為 1189(7B 模型)。",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 結合強化學習與冷啟動資料,提升推理能力,創下開源多任務基準新高,超越 OpenAI-o1-mini。",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 升級了 DeepSeek-V2-Chat 與 DeepSeek-Coder-V2-Instruct,融合通用與程式能力。提升寫作與指令遵循能力,偏好對齊更佳,在 AlpacaEval 2.0、ArenaHard、AlignBench 與 MT-Bench 上有顯著進步。",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus 是 V3.1 的更新版本,定位為混合智能體大模型。修復用戶回報問題,提升穩定性與語言一致性,減少中英混雜與異常字元。整合思考與非思考模式,支援聊天模板靈活切換。Code Agent 與 Search Agent 表現也獲得提升,工具使用與多步任務更可靠。",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 採用混合推理架構,支援思考與非思考模式。",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp 是 V3.2 的實驗版本,銜接下一代架構。在 V3.1-Terminus 基礎上加入 DeepSeek Sparse Attention(DSA),提升長上下文訓練與推理效率,並針對工具使用、長文理解與多步推理進行優化,適合探索高效推理與大上下文應用。",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一款擁有 671B 參數的 MoE 模型,採用 MLA 與 DeepSeekMoE 架構,具備無損負載平衡,訓練與推理效率高。預訓練資料達 14.8T 高品質 token,並經過 SFT 與 RL 微調,表現超越其他開源模型,接近封閉模型領先水準。",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat(67B)是一款創新模型,具備深層語言理解與互動能力。",
354
+ "deepseek-ai/deepseek-r1.description": "一款高效能的先進大模型,擅長推理、數學與程式設計。",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 是新一代推理模型,具備更強的複雜推理與思維鏈能力,適用於深度分析任務。",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 是新一代推理模型,具備更強的複雜推理與思維鏈能力,適用於深度分析任務。",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 是一款基於 DeepSeekMoE-27B 的 MoE 視覺語言模型,採用稀疏激活,僅使用 4.5B 活躍參數即可達到強大表現。擅長視覺問答、OCR、文件/表格/圖表理解與視覺對齊。",
358
+ "deepseek-chat.description": "一款結合通用與程式能力的開源模型,保留聊天模型的對話能力與程式模型的強大編碼能力,偏好對齊更佳。DeepSeek-V2.5 也提升了寫作與指令遵循能力。",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B 是一款程式語言模型,訓練於 2T token(87% 程式碼,13% 中英文文本),支援 16K 上下文視窗與中間填充任務,提供專案級程式補全與片段填充功能。",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 是一款開源 MoE 程式模型,在程式任務中表現強勁,媲美 GPT-4 Turbo。",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 是一款開源 MoE 程式模型,在程式任務中表現強勁,媲美 GPT-4 Turbo。",
362
+ "deepseek-ocr.description": "DeepSeek-OCR 是 DeepSeek AI 推出的視覺語言模型,專注於 OCR 與「上下文光學壓縮」。探索從影像中壓縮上下文資訊,能高效處理文件並轉換為結構化文字格式(如 Markdown),準確辨識影像中的文字,適用於文件數位化、文字擷取與結構化處理。",
332
363
  "gemini-flash-latest.description": "Gemini Flash 最新版本",
333
364
  "gemini-flash-lite-latest.description": "Gemini Flash-Lite 最新版本",
334
365
  "gemini-pro-latest.description": "Gemini Pro 最新版本",
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/lobehub",
3
- "version": "2.0.0-next.193",
3
+ "version": "2.0.0-next.194",
4
4
  "description": "LobeHub - an open-source,comprehensive AI Agent framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",