@lobehub/lobehub 2.0.0-next.192 → 2.0.0-next.194

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 is een MoE-model met 671 miljard parameters dat gebruikmaakt van MLA en DeepSeekMoE met verliesvrije load balancing voor efficiënte inferentie en training. Voorgetraind op 14,8 biljoen hoogwaardige tokens en verder verfijnd met SFT en RL, overtreft het andere open modellen en benadert toonaangevende gesloten modellen.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 is de nieuwste en krachtigste Kimi K2. Het is een topklasse MoE-model met 1 biljoen totale en 32 miljard actieve parameters. Belangrijke kenmerken zijn sterkere agentgerichte programmeerintelligentie met aanzienlijke verbeteringen op benchmarks en echte agenttaken, plus verbeterde esthetiek en bruikbaarheid van frontend-code.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo is de Turbo-variant geoptimaliseerd voor redeneersnelheid en verwerkingscapaciteit, terwijl het de meerstapsredenering en gereedschapsgebruik van K2 Thinking behoudt. Het is een MoE-model met ongeveer 1 biljoen totale parameters, native 256K context en stabiele grootschalige tool-aanroepen voor productieomgevingen met strengere eisen aan latentie en gelijktijdigheid.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 is het nieuwste vlaggenschipmodel van Zhipu, met verbeterde codeerprestaties, lange-termijn taakplanning en samenwerking met tools, speciaal geoptimaliseerd voor Agentic Coding-scenario’s. Het model behaalt toonaangevende resultaten onder open-source modellen op meerdere openbare benchmarks. De algemene capaciteiten zijn verbeterd: antwoorden zijn beknopter en natuurlijker, en schrijfopdrachten voelen meeslepender aan. Bij het uitvoeren van complexe agenttaken volgt het model instructies nauwkeuriger op tijdens toolgebruik. De esthetiek van gegenereerde artefacten en de efficiëntie bij het voltooien van lange taken zijn verder verbeterd.",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ is een experimenteel onderzoeksmodel gericht op het verbeteren van redenering.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview is een onderzoeksmodel van Qwen gericht op visuele redenering, met sterke prestaties in het begrijpen van complexe scènes en visuele wiskundeproblemen.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ is een experimenteel onderzoeksmodel gericht op verbeterde AI-redenering.",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 to model MoE z 671 mld parametrów, wykorzystujący MLA i DeepSeekMoE z równoważeniem obciążenia bez strat, zapewniający efektywne wnioskowanie i trening. Wstępnie wytrenowany na 14,8 bln wysokiej jakości tokenów i dalej dostrojony za pomocą SFT i RL, przewyższa inne modele otwarte i zbliża się do czołowych modeli zamkniętych.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 to najnowsza i najpotężniejsza wersja Kimi K2. Jest to model MoE najwyższej klasy z 1T łącznych i 32B aktywnych parametrów. Kluczowe cechy to silniejsza inteligencja kodowania agentowego z istotnymi poprawami w testach porównawczych i zadaniach agentowych w rzeczywistych warunkach, a także ulepszona estetyka i użyteczność kodowania frontendowego.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo to wariant Turbo zoptymalizowany pod kątem szybkości rozumowania i przepustowości, zachowując jednocześnie wieloetapowe rozumowanie i obsługę narzędzi znane z K2 Thinking. Jest to model MoE z około 1T łącznych parametrów, natywnym kontekstem 256K i stabilnym wywoływaniem narzędzi na dużą skalę, przeznaczony do zastosowań produkcyjnych z rygorystycznymi wymaganiami dotyczącymi opóźnień i współbieżności.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 to najnowszy flagowy model Zhipu, zaprojektowany z myślą o scenariuszach Agentic Coding. Wzmacnia zdolności kodowania, planowania zadań długoterminowych i współpracy z narzędziami, osiągając czołowe wyniki wśród modeli open-source w wielu aktualnych rankingach. Ulepszono ogólne możliwości modelu — odpowiedzi są bardziej zwięzłe i naturalne, a teksty pisane bardziej immersyjne. W realizacji złożonych zadań agentowych model lepiej przestrzega instrukcji podczas wywoływania narzędzi, a estetyka interfejsu Artifacts i efektywność realizacji długich zadań w Agentic Coding zostały znacznie poprawione.",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ to eksperymentalny model badawczy skoncentrowany na ulepszaniu zdolności rozumowania.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview to model badawczy od Qwen, skoncentrowany na rozumowaniu wizualnym, wyróżniający się w złożonym rozumieniu scen i problemach matematycznych opartych na obrazie.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ to eksperymentalny model badawczy skoncentrowany na ulepszonym rozumowaniu sztucznej inteligencji.",
@@ -320,6 +320,21 @@
320
320
  "comfyui/stable-diffusion-custom.description": "Modelo personalizado SD de texto para imagem. Use custom_sd_lobe.safetensors como nome do arquivo do modelo; se tiver um VAE, use custom_sd_vae_lobe.safetensors. Coloque os arquivos do modelo nas pastas exigidas pelo Comfy.",
321
321
  "comfyui/stable-diffusion-refiner.description": "Modelo SDXL de imagem para imagem que realiza transformações de alta qualidade a partir de imagens de entrada, com suporte a transferência de estilo, restauração e variações criativas.",
322
322
  "comfyui/stable-diffusion-xl.description": "SDXL é um modelo de texto para imagem que suporta geração em alta resolução 1024x1024 com melhor qualidade de imagem e detalhes.",
323
+ "command-a-03-2025.description": "O Command A é o nosso modelo mais avançado até o momento, com excelente desempenho no uso de ferramentas, agentes, RAG e cenários multilíngues. Possui uma janela de contexto de 256K, opera com apenas duas GPUs e oferece 150% mais rendimento do que o Command R+ 08-2024.",
324
+ "command-light-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série command-light, isso é chamado de command-light-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para produção.",
325
+ "command-light.description": "Uma variante menor e mais rápida do Command, quase tão capaz quanto, mas com maior velocidade.",
326
+ "command-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série Command, isso é chamado de command-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para produção.",
327
+ "command-r-03-2024.description": "O Command R é um modelo de chat que segue instruções, com maior qualidade, confiabilidade e uma janela de contexto mais longa do que os modelos anteriores. Suporta fluxos de trabalho complexos como geração de código, RAG, uso de ferramentas e agentes.",
328
+ "command-r-08-2024.description": "command-r-08-2024 é uma versão atualizada do modelo Command R, lançada em agosto de 2024.",
329
+ "command-r-plus-04-2024.description": "command-r-plus é um alias de command-r-plus-04-2024, portanto, usar command-r-plus na API aponta para esse modelo.",
330
+ "command-r-plus-08-2024.description": "O Command R+ é um modelo de chat que segue instruções, com maior qualidade, confiabilidade e uma janela de contexto mais longa do que os modelos anteriores. É ideal para fluxos de trabalho RAG complexos e uso de ferramentas em múltiplas etapas.",
331
+ "command-r-plus.description": "O Command R+ é um LLM de alto desempenho projetado para cenários empresariais reais e aplicativos complexos.",
332
+ "command-r.description": "O Command R é um LLM otimizado para chat e tarefas com contexto longo, ideal para interações dinâmicas e gestão de conhecimento.",
333
+ "command-r7b-12-2024.description": "command-r7b-12-2024 é uma atualização pequena e eficiente lançada em dezembro de 2024. Destaca-se em RAG, uso de ferramentas e tarefas com agentes que exigem raciocínio complexo em múltiplas etapas.",
334
+ "command.description": "Um modelo de chat que segue instruções, oferecendo maior qualidade e confiabilidade em tarefas de linguagem, com uma janela de contexto mais longa do que nossos modelos generativos base.",
335
+ "computer-use-preview.description": "computer-use-preview é um modelo especializado para a ferramenta \"uso de computador\", treinado para compreender e executar tarefas relacionadas ao uso de computadores.",
336
+ "dall-e-2.description": "Modelo DALL·E de segunda geração com geração de imagens mais realista e precisa, e resolução 4× maior que a da primeira geração.",
337
+ "dall-e-3.description": "O modelo DALL·E mais recente, lançado em novembro de 2023, oferece geração de imagens mais realista e precisa, com maior riqueza de detalhes.",
323
338
  "meta.llama3-8b-instruct-v1:0.description": "O Meta Llama 3 é um modelo de linguagem aberto para desenvolvedores, pesquisadores e empresas, projetado para ajudá-los a construir, experimentar e escalar ideias de IA generativa de forma responsável. Como parte da base para a inovação da comunidade global, é ideal para ambientes com recursos computacionais limitados, dispositivos de borda e tempos de treinamento mais rápidos.",
324
339
  "mistral-large-latest.description": "Mistral Large é o modelo principal, com excelente desempenho em tarefas multilíngues, raciocínio complexo e geração de código — ideal para aplicações de alto nível.",
325
340
  "mistral-large.description": "Mixtral Large é o modelo principal da Mistral, combinando geração de código, matemática e raciocínio com uma janela de contexto de 128K.",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 — это модель MoE с 671B параметрами, использующая MLA и DeepSeekMoE с балансировкой нагрузки без потерь для эффективного вывода и обучения. Предобучена на 14.8T высококачественных токенов и дополнительно дообучена с использованием SFT и RL, превосходит другие открытые модели и приближается к ведущим закрытым моделям.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 — новейшая и самая мощная версия Kimi K2. Это передовая модель MoE с общим числом параметров 1 трлн и 32 млрд активных. Ключевые особенности включают усиленный агентный интеллект в программировании с заметным улучшением результатов на тестах и в реальных задачах, а также улучшенную эстетику и удобство интерфейсного кода.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo — это ускоренный вариант, оптимизированный для скорости рассуждений и пропускной способности, при сохранении многошагового мышления и использования инструментов K2 Thinking. Это модель MoE с ~1 трлн параметров, нативной поддержкой контекста 256K и стабильным вызовом инструментов в масштабных производственных сценариях с жёсткими требованиями к задержке и параллельности.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 — это флагманская модель нового поколения от Zhipu AI с общим числом параметров 355 миллиардов и 32 миллиардами активных параметров. Она представляет собой всестороннее обновление в области универсального диалога, рассуждений и возможностей интеллектуальных агентов. GLM-4.7 усиливает Interleaved Thinking (перекрёстное мышление), а также вводит концепции Preserved Thinking (сохранённое мышление) и Turn-level Thinking (пошаговое мышление).",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ — это экспериментальная исследовательская модель, направленная на улучшение логического мышления.",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview — исследовательская модель от Qwen, ориентированная на визуальное мышление, с сильными сторонами в понимании сложных сцен и решении визуальных математических задач.",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ — экспериментальная исследовательская модель, сосредоточенная на улучшении логического мышления ИИ.",
@@ -270,15 +271,20 @@
270
271
  "chatgpt-4o-latest.description": "ChatGPT-4o — это динамическая модель с обновлением в реальном времени, сочетающая сильное понимание и генерацию для масштабных сценариев, таких как поддержка клиентов, образование и техническая помощь.",
271
272
  "claude-2.0.description": "Claude 2 предлагает ключевые улучшения для бизнеса, включая контекст до 200 тысяч токенов, снижение галлюцинаций, системные подсказки и новую функцию тестирования — вызов инструментов.",
272
273
  "claude-2.1.description": "Claude 2 предлагает ключевые улучшения для бизнеса, включая контекст до 200 тысяч токенов, снижение галлюцинаций, системные подсказки и новую функцию тестирования — вызов инструментов.",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku — самая быстрая модель нового поколения от Anthropic. По сравнению с Claude 3 Haiku, она демонстрирует улучшения во всех навыках и превосходит предыдущую крупнейшую модель Claude 3 Opus по многим интеллектуальным метрикам.",
273
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku обеспечивает быстрые ответы для легких задач.",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet — самая интеллектуальная модель от Anthropic и первая на рынке гибридная модель рассуждений. Она способна выдавать почти мгновенные ответы или пошаговые рассуждения, видимые пользователю. Особенно сильна в программировании, анализе данных, компьютерном зрении и задачах агентов.",
274
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet — последняя и самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
275
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku — самая быстрая и компактная модель от Anthropic, предназначенная для мгновенных ответов с высокой точностью и скоростью.",
276
279
  "claude-3-opus-20240229.description": "Claude 3 Opus — самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
277
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet сочетает интеллект и скорость для корпоративных задач, обеспечивая высокую полезность при низкой стоимости и надежное масштабируемое развертывание.",
281
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 — самая быстрая и умная модель Haiku от Anthropic, сочетающая молниеносную скорость и расширенные возможности рассуждения.",
278
282
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking — продвинутая версия, способная демонстрировать процесс рассуждения.",
279
283
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 — последняя и самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
284
+ "claude-opus-4-20250514.description": "Claude Opus 4 — самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
280
285
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 — флагманская модель от Anthropic, сочетающая выдающийся интеллект с масштабируемой производительностью, идеально подходящая для сложных задач, требующих высококачественных ответов и рассуждений.",
281
286
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking может выдавать как мгновенные ответы, так и пошаговое рассуждение с видимым процессом.",
287
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 способен выдавать почти мгновенные ответы или пошаговое мышление с видимым процессом рассуждения.",
282
288
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 — самая интеллектуальная модель от Anthropic на сегодняшний день.",
283
289
  "codegeex-4.description": "CodeGeeX-4 — мощный AI-помощник для программирования, поддерживающий многоязычные вопросы и автодополнение кода для повышения продуктивности разработчиков.",
284
290
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B — многоязычная модель генерации кода, поддерживающая автодополнение, генерацию кода, интерпретацию, веб-поиск, вызов функций и вопросы по репозиториям. Охватывает широкий спектр сценариев разработки ПО и является одной из лучших моделей кода с параметрами до 10B.",
@@ -329,6 +335,35 @@
329
335
  "computer-use-preview.description": "computer-use-preview — специализированная модель для инструмента \"использование компьютера\", обученная понимать и выполнять задачи, связанные с компьютером.",
330
336
  "dall-e-2.description": "Модель DALL·E второго поколения с более реалистичной и точной генерацией изображений и разрешением в 4 раза выше, чем у первого поколения.",
331
337
  "dall-e-3.description": "Последняя модель DALL·E, выпущенная в ноябре 2023 года, обеспечивает более реалистичную и точную генерацию изображений с улучшенной детализацией.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct обеспечивает высоконадежную обработку инструкций в различных отраслях.",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR — это модель визуально-языкового типа от DeepSeek AI, ориентированная на оптическое распознавание текста (OCR) и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированный текст (например, Markdown). Точно распознаёт текст на изображениях, идеально подходит для оцифровки документов, извлечения текста и структурированной обработки.",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B — это дистиллят модели DeepSeek-R1-0528 на базе Qwen3 8B. Она достигает уровня SOTA среди открытых моделей, превосходя Qwen3 8B на 10% в AIME 2024 и сопоставима с производительностью Qwen3-235B-thinking. Отличается выдающимися результатами в математике, программировании и логике. Использует архитектуру Qwen3-8B и токенизатор DeepSeek-R1-0528.",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 использует дополнительные вычислительные ресурсы и алгоритмические оптимизации постобучения для углубления рассуждений. Демонстрирует высокие результаты в математике, программировании и логике, приближаясь к лидерам, таким как o3 и Gemini 2.5 Pro.",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей в многозадачных сценариях.",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей в многозадачных сценариях.",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей в многозадачных сценариях.",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B — дистиллят модели Qwen2.5-32B, дообученный на 800 тысячах отобранных выборок DeepSeek-R1. Отличается выдающимися результатами в математике, программировании и логике, достигая высоких показателей на AIME 2024, MATH-500 (94.3% точности) и GPQA Diamond.",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B — дистиллят модели Qwen2.5-Math-7B, дообученный на 800 тысячах отобранных выборок DeepSeek-R1. Демонстрирует высокие результаты: 92.8% на MATH-500, 55.5% на AIME 2024 и рейтинг 1189 на CodeForces для модели 7B.",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 улучшает рассуждения с помощью обучения с подкреплением и cold-start данных, устанавливая новые стандарты среди открытых моделей и превосходя OpenAI-o1-mini.",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 — это обновление моделей DeepSeek-V2-Chat и DeepSeek-Coder-V2-Instruct, объединяющее общие и программные способности. Улучшает написание текстов и следование инструкциям для лучшего соответствия предпочтениям, демонстрируя значительный прогресс на AlpacaEval 2.0, ArenaHard, AlignBench и MT-Bench.",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus — обновлённая модель V3.1, позиционируемая как гибридный агентный LLM. Исправляет ошибки, сообщённые пользователями, повышает стабильность, согласованность языка и снижает количество смешанных китайско-английских и некорректных символов. Интегрирует режимы мышления и немышления с шаблонами чата для гибкого переключения. Также улучшает производительность Code Agent и Search Agent для более надёжного использования инструментов и выполнения многошаговых задач.",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 использует гибридную архитектуру рассуждений и поддерживает как режим мышления, так и немышления.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp — экспериментальный выпуск V3.2, переходный к следующей архитектуре. Добавляет DeepSeek Sparse Attention (DSA) поверх V3.1-Terminus для повышения эффективности обучения и вывода на длинных контекстах, с оптимизациями для использования инструментов, понимания длинных документов и многошагового рассуждения. Идеально подходит для изучения более эффективного рассуждения при больших объёмах контекста.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 — модель MoE с 671 миллиардами параметров, использующая MLA и DeepSeekMoE с балансировкой нагрузки без потерь для эффективного обучения и вывода. Предобучена на 14.8 триллионах высококачественных токенов с использованием SFT и RL, превосходит другие открытые модели и приближается к ведущим закрытым решениям.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) — инновационная модель с глубоким пониманием языка и возможностью взаимодействия.",
354
+ "deepseek-ai/deepseek-r1.description": "Современная эффективная LLM, сильная в рассуждениях, математике и программировании.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями сложного анализа и цепочечного мышления.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями сложного анализа и цепочечного мышления.",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 — модель визуально-языкового типа MoE на базе DeepSeekMoE-27B с разреженной активацией, достигающая высокой производительности при использовании всего 4.5B активных параметров. Отличается выдающимися результатами в визуальном QA, OCR, понимании документов/таблиц/диаграмм и визуальной привязке.",
358
+ "deepseek-chat.description": "Новая модель с открытым исходным кодом, объединяющая общие и программные способности. Сохраняет универсальность диалоговой модели и мощные возможности кодирования, с улучшенным соответствием предпочтениям. DeepSeek-V2.5 также улучшает написание текстов и следование инструкциям.",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B — языковая модель для программирования, обученная на 2 триллионах токенов (87% кода, 13% китайского/английского текста). Поддерживает контекстное окно 16K и задачи заполнения в середине, обеспечивая автодополнение на уровне проекта и вставку фрагментов кода.",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
362
+ "deepseek-ocr.description": "DeepSeek-OCR — это визуально-языковая модель от DeepSeek AI, ориентированная на OCR и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированные текстовые форматы, такие как Markdown. Точно распознаёт текст на изображениях, идеально подходит для оцифровки документов, извлечения текста и структурированной обработки.",
363
+ "deepseek-r1-0528.description": "Полная модель 685B, выпущенная 28 мая 2025 года. DeepSeek-R1 использует масштабное обучение с подкреплением на этапе постобучения, значительно улучшая рассуждения при минимуме размеченных данных. Демонстрирует высокие результаты в математике, программировании и естественно-языковом рассуждении.",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528 — полная модель рассуждений DeepSeek-R1 для сложных математических и логических задач.",
365
+ "deepseek-r1-70b-fast-online.description": "Быстрая версия DeepSeek R1 70B с поддержкой веб-поиска в реальном времени, обеспечивающая более быстрые ответы при сохранении производительности.",
366
+ "deepseek-r1-70b-online.description": "Стандартная версия DeepSeek R1 70B с поддержкой веб-поиска в реальном времени, подходящая для актуальных диалогов и текстовых задач.",
332
367
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 — это открытая LLM для разработчиков, исследователей и предприятий, созданная для поддержки создания, экспериментов и ответственного масштабирования идей генеративного ИИ. Являясь частью основы для глобальных инноваций сообщества, она хорошо подходит для ограниченных вычислительных ресурсов, устройств на периферии и ускоренного обучения.",
333
368
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Модель с высокой способностью к визуальному рассуждению на изображениях высокого разрешения, подходящая для приложений визуального понимания.",
334
369
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Продвинутая модель визуального рассуждения для агентов, ориентированных на визуальное понимание.",
@@ -335,6 +335,35 @@
335
335
  "computer-use-preview.description": "computer-use-preview, \"bilgisayar kullanımı aracı\" için özel olarak eğitilmiş, bilgisayarla ilgili görevleri anlama ve yürütme yeteneğine sahip bir modeldir.",
336
336
  "dall-e-2.description": "İkinci nesil DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi sunar. İlk nesle göre 4 kat daha yüksek çözünürlük sağlar.",
337
337
  "dall-e-3.description": "Kasım 2023’te yayınlanan en yeni DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi sunar. Detaylarda daha güçlüdür.",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct, sektörler arası güvenilir talimat işleme sunar.",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlam optik sıkıştırma\"ya odaklanır. Görsellerden bağlamı sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları yapılandırılmış metne (örneğin Markdown) dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış işleme için idealdir.",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B, DeepSeek-R1-0528'den çıkarılan düşünce zincirini Qwen3 8B Base'e aktarır. Açık modeller arasında SOTA seviyesine ulaşır, AIME 2024'te Qwen3 8B'yi %10 oranında geçer ve Qwen3-235B-thinking performansına eşdeğerdir. Matematiksel akıl yürütme, programlama ve genel mantık testlerinde üstün performans gösterir. Qwen3-8B mimarisini paylaşır ancak DeepSeek-R1-0528 tokenlaştırıcısını kullanır.",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1, ek hesaplama gücü ve son eğitim algoritma iyileştirmeleriyle akıl yürütmeyi derinleştirir. Matematik, programlama ve genel mantık testlerinde güçlü performans sergiler; o3 ve Gemini 2.5 Pro gibi lider modellere yaklaşır.",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B, Qwen2.5-32B'den distil edilmiştir ve 800K seçilmiş DeepSeek-R1 örneğiyle ince ayar yapılmıştır. Matematik, programlama ve akıl yürütmede üstün performans gösterir; AIME 2024, MATH-500 (%94,3 doğruluk) ve GPQA Diamond testlerinde güçlü sonuçlar elde eder.",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B, Qwen2.5-Math-7B'den distil edilmiştir ve 800K seçilmiş DeepSeek-R1 örneğiyle ince ayar yapılmıştır. MATH-500'de %92,8, AIME 2024'te %55,5 ve 7B model için 1189 CodeForces puanı ile güçlü performans sergiler.",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1, RL ve soğuk başlangıç verileriyle akıl yürütmeyi geliştirir, yeni açık model çoklu görev kıyaslamaları belirler ve OpenAI-o1-mini'yi geride bırakır.",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5, DeepSeek-V2-Chat ve DeepSeek-Coder-V2-Instruct modellerini geliştirerek genel ve kodlama yeteneklerini birleştirir. Yazma ve talimat takibini geliştirerek tercih uyumunu artırır; AlpacaEval 2.0, ArenaHard, AlignBench ve MT-Bench testlerinde önemli kazanımlar sağlar.",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus, hibrit ajan LLM olarak konumlandırılmış güncellenmiş V3.1 modelidir. Kullanıcı geri bildirimleriyle tespit edilen sorunları düzeltir, kararlılığı ve dil tutarlılığını artırır, karışık Çince/İngilizce ve anormal karakterleri azaltır. Düşünen ve düşünmeyen modları sohbet şablonlarıyla entegre eder, esnek geçiş sağlar. Ayrıca Code Agent ve Search Agent performansını artırarak daha güvenilir araç kullanımı ve çok adımlı görevler sunar.",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1, hibrit akıl yürütme mimarisi kullanır ve hem düşünen hem de düşünmeyen modları destekler.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp, bir sonraki mimariye geçişi sağlayan deneysel V3.2 sürümüdür. V3.1-Terminus üzerine DeepSeek Sparse Attention (DSA) ekleyerek uzun bağlamlı eğitim ve çıkarım verimliliğini artırır. Araç kullanımı, uzun belge anlama ve çok adımlı akıl yürütme için optimize edilmiştir. Geniş bağlam bütçeleriyle daha yüksek akıl yürütme verimliliğini keşfetmek için idealdir.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3, MLA ve DeepSeekMoE kullanan, kayıpsız yük dengeleme ile verimli eğitim ve çıkarım sağlayan 671B parametreli bir MoE modelidir. 14.8T yüksek kaliteli token ile önceden eğitilmiş, SFT ve RL ile geliştirilmiştir; diğer açık modelleri geride bırakır ve önde gelen kapalı modellere yaklaşır.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B), derin dil anlama ve etkileşim sunan yenilikçi bir modeldir.",
354
+ "deepseek-ai/deepseek-r1.description": "Akıl yürütme, matematik ve programlamada güçlü, son teknoloji verimli bir LLM.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir akıl yürütme modelidir.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir akıl yürütme modelidir.",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2, yalnızca 4.5B aktif parametreyle güçlü performans sunan, DeepSeekMoE-27B tabanlı MoE görsel-dil modelidir. Görsel Soru-Cevap, OCR, belge/tablo/grafik anlama ve görsel eşleme konularında öne çıkar.",
358
+ "deepseek-chat.description": "Genel ve kodlama yeteneklerini birleştiren yeni açık kaynaklı model. Sohbet modelinin genel diyalog yeteneklerini ve kodlayıcı modelin güçlü kodlama becerilerini korur, tercih uyumunu geliştirir. DeepSeek-V2.5 ayrıca yazma ve talimat takibini iyileştirir.",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B, 2T token (%%87 kod, %%13 Çince/İngilizce metin) ile eğitilmiş bir kodlama dil modelidir. 16K bağlam penceresi ve ortadan doldurma görevleri sunar, proje düzeyinde kod tamamlama ve kod parçası doldurma sağlar.",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2, GPT-4 Turbo ile karşılaştırılabilir güçlü performansa sahip açık kaynaklı bir MoE kod modeli.",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2, GPT-4 Turbo ile karşılaştırılabilir güçlü performansa sahip açık kaynaklı bir MoE kod modeli.",
362
+ "deepseek-ocr.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlamsal optik sıkıştırma\"ya odaklanır. Görsellerden bağlamsal bilgiyi sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları Markdown gibi yapılandırılmış metin formatlarına dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış işleme için idealdir.",
363
+ "deepseek-r1-0528.description": "685B tam model, 2025-05-28'de yayımlandı. DeepSeek-R1, son eğitimde büyük ölçekli RL kullanarak etiketli veriye minimum ihtiyaçla akıl yürütmeyi büyük ölçüde geliştirir; matematik, kodlama ve doğal dil akıl yürütmede güçlü performans gösterir.",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528, zorlu matematik ve mantık görevleri için tam DeepSeek-R1 akıl yürütme modelidir.",
365
+ "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B hızlı sürüm, gerçek zamanlı web aramasıyla daha hızlı yanıtlar sunar ve performansı korur.",
366
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B standart sürüm, gerçek zamanlı web aramasıyla güncel sohbet ve metin görevleri için uygundur.",
338
367
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3, geliştiriciler, araştırmacılar ve işletmeler için açık bir büyük dil modeli (LLM) olup, üretken yapay zeka fikirlerini oluşturma, deneme ve sorumlu bir şekilde ölçeklendirme süreçlerinde yardımcı olmak üzere tasarlanmıştır. Küresel topluluk inovasyonunun temel taşlarından biri olarak, sınırlı bilgi işlem gücü ve kaynaklara sahip ortamlar, uç cihazlar ve daha hızlı eğitim süreleri için uygundur.",
339
368
  "mistral-small-latest.description": "Mistral Small, çeviri, özetleme ve duygu analizi için uygun maliyetli, hızlı ve güvenilir bir seçenektir.",
340
369
  "mistral-small.description": "Mistral Small, yüksek verimlilik ve düşük gecikme gerektiren her türlü dil tabanlı görev için uygundur.",
@@ -298,6 +298,7 @@
298
298
  "codeqwen.description": "CodeQwen1.5 là mô hình ngôn ngữ lớn được huấn luyện trên dữ liệu mã phong phú, được xây dựng cho các tác vụ lập trình phức tạp.",
299
299
  "codestral-latest.description": "Codestral là mô hình lập trình tiên tiến nhất của chúng tôi; phiên bản v2 (tháng 1 năm 2025) nhắm đến các tác vụ tần suất cao, độ trễ thấp như FIM, sửa mã và sinh bài kiểm tra.",
300
300
  "codestral.description": "Codestral là mô hình lập trình đầu tiên của Mistral AI, cung cấp hỗ trợ sinh mã mạnh mẽ.",
301
+ "codex-mini-latest.description": "codex-mini-latest là một mô hình o4-mini được tinh chỉnh dành cho Codex CLI. Đối với việc sử dụng API trực tiếp, chúng tôi khuyến nghị bắt đầu với gpt-4.1.",
301
302
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 là một mô hình ngôn ngữ mở dành cho nhà phát triển, nhà nghiên cứu và doanh nghiệp, được thiết kế để hỗ trợ xây dựng, thử nghiệm và mở rộng các ý tưởng AI sinh ngữ một cách có trách nhiệm. Là một phần trong nền tảng đổi mới cộng đồng toàn cầu, mô hình này phù hợp với môi trường có tài nguyên hạn chế, thiết bị biên và yêu cầu thời gian huấn luyện nhanh hơn.",
302
303
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Khả năng suy luận hình ảnh mạnh mẽ trên ảnh độ phân giải cao, phù hợp cho các ứng dụng hiểu thị giác.",
303
304
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Khả năng suy luận hình ảnh tiên tiến dành cho các ứng dụng tác tử hiểu thị giác.",
@@ -270,15 +270,20 @@
270
270
  "chatgpt-4o-latest.description": "ChatGPT-4o 是一款实时更新的动态模型,结合强大的理解与生成能力,适用于客户支持、教育和技术支持等大规模应用场景。",
271
271
  "claude-2.0.description": "Claude 2 提供关键的企业级改进,包括领先的 20 万 token 上下文窗口、减少幻觉、系统提示支持,以及新测试功能:工具调用。",
272
272
  "claude-2.1.description": "Claude 2 提供关键的企业级改进,包括领先的 20 万 token 上下文窗口、减少幻觉、系统提示支持,以及新测试功能:工具调用。",
273
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku 是 Anthropic 推出的下一代最快模型。与 Claude 3 Haiku 相比,其各项能力均有提升,并在多个智能基准测试中超越了此前的最大模型 Claude 3 Opus。",
273
274
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku 提供快速响应,适用于轻量级任务。",
275
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet 是 Anthropic 最智能的模型,也是市场上首个混合推理模型。它既能生成几乎即时的响应,也能输出用户可见的逐步推理过程。Sonnet 在编程、数据科学、视觉理解和智能体任务方面表现尤为出色。",
274
276
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet 是 Anthropic 最新、最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
275
277
  "claude-3-haiku-20240307.description": "Claude 3 Haiku 是 Anthropic 推出的最快、最紧凑的模型,专为近乎即时响应而设计,具备快速且准确的性能。",
276
278
  "claude-3-opus-20240229.description": "Claude 3 Opus 是 Anthropic 最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
277
279
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet 在智能与速度之间取得平衡,适用于企业级工作负载,提供高效能与低成本的可靠部署。",
280
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 是 Anthropic 推出的最快、最智能的 Haiku 模型,具备闪电般的响应速度和增强的推理能力。",
278
281
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking 是一款高级变体,能够展示其推理过程。",
279
282
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 是 Anthropic 最新、最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
283
+ "claude-opus-4-20250514.description": "Claude Opus 4 是 Anthropic 最强大的模型,专为处理高度复杂任务而设计,在性能、智能、流畅性和理解力方面表现卓越。",
280
284
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 是 Anthropic 的旗舰模型,结合卓越智能与可扩展性能,适用于需要最高质量响应与推理的复杂任务。",
281
285
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking 可生成近乎即时的响应或可视化的逐步推理过程。",
286
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 能够生成几乎即时的响应,或输出可视化的逐步思考过程。",
282
287
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 是 Anthropic 迄今为止最智能的模型。",
283
288
  "codegeex-4.description": "CodeGeeX-4 是一款强大的 AI 编程助手,支持多语言问答和代码补全,提升开发者效率。",
284
289
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B 是一款多语言代码生成模型,支持代码补全与生成、代码解释器、网页搜索、函数调用和仓库级代码问答,覆盖广泛的软件开发场景。是 100 亿参数以下的顶级代码模型。",
@@ -330,6 +335,60 @@
330
335
  "dall-e-2.description": "第二代 DALL·E 模型,图像生成更真实、准确,分辨率是第一代的 4 倍。",
331
336
  "dall-e-3.description": "最新的 DALL·E 模型,于 2023 年 11 月发布,图像生成更真实、准确,细节表现更强。",
332
337
  "databricks/dbrx-instruct.description": "DBRX Instruct 提供跨行业高度可靠的指令处理能力。",
338
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于 OCR 和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
339
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B 将 DeepSeek-R1-0528 的链式思维能力蒸馏至 Qwen3 8B Base 模型中。在开源模型中达到 SOTA 水平,在 AIME 2024 上超越 Qwen3 8B 10%,并与 Qwen3-235B-thinking 表现相当。擅长数学推理、编程和通用逻辑任务,采用 Qwen3-8B 架构,并使用 DeepSeek-R1-0528 的分词器。",
340
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 利用额外算力和后训练算法优化,增强推理能力。在数学、编程和通用逻辑等基准测试中表现优异,接近 o3 和 Gemini 2.5 Pro 等领先模型。",
341
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B 由 Qwen2.5-32B 蒸馏而来,并在 80 万条精挑细选的 DeepSeek-R1 样本上微调。擅长数学、编程和推理任务,在 AIME 2024、MATH-500(94.3% 准确率)和 GPQA Diamond 上表现出色。",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B 由 Qwen2.5-Math-7B 蒸馏而来,并在 80 万条精挑细选的 DeepSeek-R1 样本上微调。在 MATH-500 上达到 92.8%,AIME 2024 为 55.5%,CodeForces 评分为 1189(7B 模型)。",
346
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 通过强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准,超越 OpenAI-o1-mini。",
347
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 升级了 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct,融合通用与编程能力。提升写作与指令遵循能力,实现更优偏好对齐,在 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 上取得显著进步。",
348
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus 是 V3.1 的更新版本,定位为混合智能体大模型。修复用户反馈问题,提升稳定性、语言一致性,减少中英混杂和异常字符。集成思考与非思考模式,支持通过聊天模板灵活切换。Code Agent 和 Search Agent 性能也得到提升,工具使用更可靠,多步任务完成度更高。",
349
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 采用混合推理架构,支持思考与非思考模式。",
350
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp 是 V3.2 的实验版本,连接下一代架构。在 V3.1-Terminus 基础上引入 DeepSeek Sparse Attention(DSA),提升长上下文训练与推理效率,优化工具使用、长文档理解和多步推理。适合探索大上下文预算下的高效推理。",
351
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一个拥有 671B 参数的 MoE 模型,采用 MLA 和 DeepSeekMoE 架构,具备无损负载均衡能力,实现高效训练与推理。预训练数据达 14.8T,结合 SFT 和 RL,性能超越其他开源模型,接近领先闭源模型。",
352
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat(67B)是一款创新模型,具备深度语言理解与交互能力。",
353
+ "deepseek-ai/deepseek-r1.description": "一款高效的先进大模型,在推理、数学和编程方面表现出色。",
354
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于深度分析任务。",
355
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于深度分析任务。",
356
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 是基于 DeepSeekMoE-27B 的 MoE 视觉语言模型,采用稀疏激活机制,仅使用 4.5B 激活参数即可实现强大性能。擅长视觉问答、OCR、文档/表格/图表理解和视觉定位任务。",
357
+ "deepseek-chat.description": "一款结合通用与编程能力的开源模型。保留聊天模型的通用对话能力与编程模型的强大编码能力,偏好对齐更优。DeepSeek-V2.5 还提升了写作与指令遵循能力。",
358
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B 是一款代码语言模型,训练数据达 2T(87% 代码,13% 中英文文本)。引入 16K 上下文窗口与中间填充任务,支持项目级代码补全与片段填充。",
359
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 是一款开源 MoE 编码模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
360
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 是一款开源 MoE 编码模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
361
+ "deepseek-ocr.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于 OCR 和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本格式(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
362
+ "deepseek-r1-0528.description": "2025 年 5 月 28 日发布的 685B 全量模型。DeepSeek-R1 在后训练阶段使用大规模强化学习,显著提升推理能力,仅需极少标注数据,在数学、编程和自然语言推理方面表现出色。",
363
+ "deepseek-r1-250528.description": "DeepSeek R1 250528 是 DeepSeek-R1 的完整推理模型,专为高难度数学与逻辑任务设计。",
364
+ "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B 快速版,支持实时网页搜索,在保持性能的同时提供更快响应。",
365
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B 标准版,支持实时网页搜索,适用于最新聊天与文本任务。",
366
+ "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B 将 R1 推理能力与 Llama 生态系统结合。",
367
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B 由 Llama-3.1-8B 蒸馏而来,使用 DeepSeek R1 输出进行训练。",
368
+ "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama 是在 Llama 上基于 DeepSeek-R1 蒸馏而成。",
369
+ "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B 是基于 Qianfan-70B 的 R1 蒸馏模型,具备强大价值。",
370
+ "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B 是基于 Qianfan-8B 的 R1 蒸馏模型,适用于中小型应用。",
371
+ "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B 是基于 Llama-70B 的 R1 蒸馏模型。",
372
+ "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B 是一款超轻量蒸馏模型,适用于极低资源环境。",
373
+ "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B 是一款中型蒸馏模型,适用于多场景部署。",
374
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B 是基于 Qwen-32B 的 R1 蒸馏模型,兼顾性能与成本。",
375
+ "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B 是一款轻量蒸馏模型,适用于边缘计算与企业私有部署环境。",
376
+ "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen 是在 Qwen 上基于 DeepSeek-R1 蒸馏而成。",
377
+ "deepseek-r1-fast-online.description": "DeepSeek R1 快速全量版,支持实时网页搜索,结合 671B 规模能力与更快响应。",
378
+ "deepseek-r1-online.description": "DeepSeek R1 全量版,具备 671B 参数与实时网页搜索能力,提供更强理解与生成能力。",
379
+ "deepseek-r1.description": "DeepSeek-R1 在强化学习前使用冷启动数据,数学、编程与推理任务表现可与 OpenAI-o1 相媲美。",
380
+ "deepseek-reasoner.description": "DeepSeek V3.2 思考模式在最终答案前输出链式思维,提升准确性。",
381
+ "deepseek-v2.description": "DeepSeek V2 是一款高效的 MoE 模型,适用于成本敏感型处理任务。",
382
+ "deepseek-v2:236b.description": "DeepSeek V2 236B 是 DeepSeek 推出的代码专用模型,具备强大代码生成能力。",
383
+ "deepseek-v3-0324.description": "DeepSeek-V3-0324 是一款拥有 671B 参数的 MoE 模型,在编程与技术能力、上下文理解和长文本处理方面表现突出。",
384
+ "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus 是 DeepSeek 推出的终端优化大模型,专为终端设备定制。",
385
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 是 Terminus 版本对应的深度思考模型,专为高性能推理任务打造。",
386
+ "deepseek-v3.1.description": "DeepSeek-V3.1 是 DeepSeek 推出的新一代混合推理模型,支持思考与非思考模式,推理效率高于 DeepSeek-R1-0528。后训练优化显著提升智能体工具使用与任务执行能力,支持 128k 上下文窗口与最多 64k 输出。",
387
+ "deepseek-v3.1:671b.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于需要深度分析的任务。",
388
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-exp 引入稀疏注意力机制,提升长文本训练与推理效率,价格低于 deepseek-v3.1。",
389
+ "deepseek-v3.2-think.description": "DeepSeek V3.2 Think 是一款完整的深度思考模型,具备更强的长链推理能力。",
390
+ "deepseek-v3.2.description": "DeepSeek-V3.2 是深度求索推出的首个将思考融入工具使用的混合推理模型,采用高效架构节省算力,结合大规模强化学习提升能力,配合大规模合成任务数据增强泛化能力,三者结合使其性能媲美 GPT-5-High,输出长度大幅降低,显著减少计算开销与用户等待时间。",
391
+ "deepseek-v3.description": "DeepSeek-V3 是一款强大的 MoE 模型,总参数量为 671B,每个 token 激活参数为 37B。",
333
392
  "gemini-flash-latest.description": "Latest release of Gemini Flash",
334
393
  "gemini-flash-lite-latest.description": "Latest release of Gemini Flash-Lite",
335
394
  "gemini-pro-latest.description": "Latest release of Gemini Pro",
@@ -103,6 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一款擁有 6710 億參數的 MoE 模型,採用 MLA 與 DeepSeekMoE 架構,並透過無損負載平衡實現高效推理與訓練。預訓練於 14.8 兆高品質詞元上,並經過 SFT 與強化學習微調,表現超越其他開源模型,接近領先的封閉模型。",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 是最新且最強大的 Kimi K2 模型。這是一款頂級的 MoE 模型,總參數達 1 兆,啟用參數為 320 億。其主要特點包括更強的代理式程式設計智能,在基準測試與真實世界代理任務中表現大幅提升,並且前端程式碼的美學與可用性也獲得顯著改善。",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo 是 K2 Thinking 的 Turbo 變體,針對推理速度與吞吐量進行優化,同時保留多步推理與工具使用能力。這是一款 MoE 模型,總參數約為 1 兆,原生支援 256K 上下文,並具備穩定的大規模工具調用能力,適用於對延遲與併發有嚴格要求的生產場景。",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 是智譜推出的新一代旗艦模型,總參數量達 355B,激活參數量為 32B,在通用對話、推理與智能體能力方面全面升級。GLM-4.7 強化了交錯思考(Interleaved Thinking),並引入保留思考(Preserved Thinking)與輪級思考(Turn-level Thinking),在多輪對話與複雜任務中展現更高效的推理與決策能力。",
106
107
  "QwQ-32B-Preview.description": "Qwen QwQ 是一個實驗性研究模型,專注於提升推理能力。",
107
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview 是來自 Qwen 的研究模型,專注於視覺推理,擅長複雜場景理解與視覺數學問題。",
108
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ 是一個實驗性研究模型,致力於提升 AI 推理能力。",
@@ -270,15 +271,20 @@
270
271
  "chatgpt-4o-latest.description": "ChatGPT-4o 是一款即時更新的動態模型,結合強大的理解與生成能力,適用於客服、教育與技術支援等大規模應用場景。",
271
272
  "claude-2.0.description": "Claude 2 提供企業級關鍵改進,包括領先的 20 萬 token 上下文、降低幻覺、系統提示與新測試功能:工具調用。",
272
273
  "claude-2.1.description": "Claude 2 提供企業級關鍵改進,包括領先的 20 萬 token 上下文、降低幻覺、系統提示與新測試功能:工具調用。",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku 是 Anthropic 推出的次世代最快模型。相較於 Claude 3 Haiku,其在多項能力上均有提升,並在多個智慧基準測試中超越先前最大模型 Claude 3 Opus。",
273
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku 提供快速回應,適用於輕量任務。",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet 是 Anthropic 最具智慧的模型,也是市場上首個混合推理模型。它能夠即時回應,或進行可視化的逐步推理,特別擅長程式設計、資料科學、視覺處理與智能體任務。",
274
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet 是 Anthropic 最新且最強大的模型,適用於高度複雜任務,具備卓越的效能、智慧、流暢度與理解力。",
275
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku 是 Anthropic 推出的最快速且最精簡的模型,設計用於即時回應,具備快速且準確的表現。",
276
279
  "claude-3-opus-20240229.description": "Claude 3 Opus 是 Anthropic 最強大的模型,適用於高度複雜任務,具備卓越的效能、智慧、流暢度與理解力。",
277
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet 在智慧與速度之間取得平衡,適合企業工作負載,提供高效能與低成本的大規模部署。",
281
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 是 Anthropic 推出的最快速且最智慧的 Haiku 模型,具備閃電般的速度與延展推理能力。",
278
282
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking 是一個進階版本,能夠揭示其推理過程。",
279
283
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 是 Anthropic 最新且最強大的模型,適用於高度複雜任務,具備卓越的效能、智慧、流暢度與理解力。",
284
+ "claude-opus-4-20250514.description": "Claude Opus 4 是 Anthropic 最強大的模型,專為處理高度複雜任務而設,表現出色於智慧、流暢度與理解力。",
280
285
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 是 Anthropic 的旗艦模型,結合卓越智慧與可擴展效能,適合需要最高品質回應與推理的複雜任務。",
281
286
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking 可產生即時回應或延伸的逐步思考,並顯示其推理過程。",
287
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 能夠即時回應,或進行可視化的逐步思考,展現清晰的推理過程。",
282
288
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 是 Anthropic 迄今最智慧的模型。",
283
289
  "codegeex-4.description": "CodeGeeX-4 是一款強大的 AI 程式輔助工具,支援多語言問答與程式碼補全,能有效提升開發者的生產力。",
284
290
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B 是一個多語言程式碼生成模型,支援程式碼補全與生成、程式碼解釋器、網頁搜尋、函式呼叫與倉庫層級的程式碼問答,涵蓋多種軟體開發場景。它是參數數量低於 100 億的頂尖程式碼模型之一。",
@@ -329,6 +335,31 @@
329
335
  "computer-use-preview.description": "computer-use-preview 是一款專為「電腦使用工具」訓練的模型,能理解並執行與電腦相關的任務。",
330
336
  "dall-e-2.description": "第二代 DALL·E 模型,具備更真實、準確的圖像生成能力,解析度為第一代的四倍。",
331
337
  "dall-e-3.description": "最新的 DALL·E 模型於 2023 年 11 月發布,支援更真實、準確的圖像生成,細節表現更強。",
338
+ "databricks/dbrx-instruct.description": "DBRX Instruct 提供跨產業高度可靠的指令處理能力。",
339
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR 是 DeepSeek AI 推出的視覺語言模型,專注於光學字元辨識(OCR)與「上下文光學壓縮」。該模型探索從影像中壓縮上下文資訊,能高效處理文件並轉換為結構化文字(如 Markdown),準確辨識影像中的文字,適用於文件數位化、文字擷取與結構化處理。",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B 將 DeepSeek-R1-0528 的思維鏈(Chain-of-Thought)蒸餾至 Qwen3 8B Base。在開源模型中達到 SOTA 表現,於 AIME 2024 超越 Qwen3 8B 10%,並匹敵 Qwen3-235B-thinking 的表現。擅長數學推理、程式設計與邏輯基準測試。架構與 Qwen3-8B 相同,但使用 DeepSeek-R1-0528 的分詞器。",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 利用額外算力與後訓練演算法優化,深化推理能力。在數學、程式設計與邏輯基準測試中表現優異,接近 o3 與 Gemini 2.5 Pro 等領先模型。",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 蒸餾模型使用強化學習(RL)與冷啟動資料來提升推理能力,並創下開源多任務基準新紀錄。",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 蒸餾模型使用強化學習(RL)與冷啟動資料來提升推理能力,並創下開源多任務基準新紀錄。",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 蒸餾模型使用強化學習(RL)與冷啟動資料來提升推理能力,並創下開源多任務基準新紀錄。",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B 是從 Qwen2.5-32B 蒸餾而來,並在 80 萬筆精選 DeepSeek-R1 樣本上微調。擅長數學、程式設計與推理,在 AIME 2024、MATH-500(94.3% 準確率)與 GPQA Diamond 上表現出色。",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B 是從 Qwen2.5-Math-7B 蒸餾而來,並在 80 萬筆精選 DeepSeek-R1 樣本上微調。表現優異,在 MATH-500 達 92.8%、AIME 2024 達 55.5%、CodeForces 評分為 1189(7B 模型)。",
347
+ "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 結合強化學習與冷啟動資料,提升推理能力,創下開源多任務基準新高,超越 OpenAI-o1-mini。",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 升級了 DeepSeek-V2-Chat 與 DeepSeek-Coder-V2-Instruct,融合通用與程式能力。提升寫作與指令遵循能力,偏好對齊更佳,在 AlpacaEval 2.0、ArenaHard、AlignBench 與 MT-Bench 上有顯著進步。",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus 是 V3.1 的更新版本,定位為混合智能體大模型。修復用戶回報問題,提升穩定性與語言一致性,減少中英混雜與異常字元。整合思考與非思考模式,支援聊天模板靈活切換。Code Agent 與 Search Agent 表現也獲得提升,工具使用與多步任務更可靠。",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 採用混合推理架構,支援思考與非思考模式。",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp 是 V3.2 的實驗版本,銜接下一代架構。在 V3.1-Terminus 基礎上加入 DeepSeek Sparse Attention(DSA),提升長上下文訓練與推理效率,並針對工具使用、長文理解與多步推理進行優化,適合探索高效推理與大上下文應用。",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一款擁有 671B 參數的 MoE 模型,採用 MLA 與 DeepSeekMoE 架構,具備無損負載平衡,訓練與推理效率高。預訓練資料達 14.8T 高品質 token,並經過 SFT 與 RL 微調,表現超越其他開源模型,接近封閉模型領先水準。",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat(67B)是一款創新模型,具備深層語言理解與互動能力。",
354
+ "deepseek-ai/deepseek-r1.description": "一款高效能的先進大模型,擅長推理、數學與程式設計。",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 是新一代推理模型,具備更強的複雜推理與思維鏈能力,適用於深度分析任務。",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 是新一代推理模型,具備更強的複雜推理與思維鏈能力,適用於深度分析任務。",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 是一款基於 DeepSeekMoE-27B 的 MoE 視覺語言模型,採用稀疏激活,僅使用 4.5B 活躍參數即可達到強大表現。擅長視覺問答、OCR、文件/表格/圖表理解與視覺對齊。",
358
+ "deepseek-chat.description": "一款結合通用與程式能力的開源模型,保留聊天模型的對話能力與程式模型的強大編碼能力,偏好對齊更佳。DeepSeek-V2.5 也提升了寫作與指令遵循能力。",
359
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B 是一款程式語言模型,訓練於 2T token(87% 程式碼,13% 中英文文本),支援 16K 上下文視窗與中間填充任務,提供專案級程式補全與片段填充功能。",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 是一款開源 MoE 程式模型,在程式任務中表現強勁,媲美 GPT-4 Turbo。",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 是一款開源 MoE 程式模型,在程式任務中表現強勁,媲美 GPT-4 Turbo。",
362
+ "deepseek-ocr.description": "DeepSeek-OCR 是 DeepSeek AI 推出的視覺語言模型,專注於 OCR 與「上下文光學壓縮」。探索從影像中壓縮上下文資訊,能高效處理文件並轉換為結構化文字格式(如 Markdown),準確辨識影像中的文字,適用於文件數位化、文字擷取與結構化處理。",
332
363
  "gemini-flash-latest.description": "Gemini Flash 最新版本",
333
364
  "gemini-flash-lite-latest.description": "Gemini Flash-Lite 最新版本",
334
365
  "gemini-pro-latest.description": "Gemini Pro 最新版本",
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/lobehub",
3
- "version": "2.0.0-next.192",
3
+ "version": "2.0.0-next.194",
4
4
  "description": "LobeHub - an open-source,comprehensive AI Agent framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -2,7 +2,7 @@
2
2
  import { and, eq } from 'drizzle-orm';
3
3
  import { afterEach, beforeEach, describe, expect, it } from 'vitest';
4
4
 
5
- import { LobeChatDatabase } from '../../type';import { sleep } from '@/utils/sleep';
5
+ import { sleep } from '@/utils/sleep';
6
6
 
7
7
  import {
8
8
  NewKnowledgeBase,
@@ -12,6 +12,7 @@ import {
12
12
  knowledgeBases,
13
13
  users,
14
14
  } from '../../schemas';
15
+ import { LobeChatDatabase } from '../../type';
15
16
  import { KnowledgeBaseModel } from '../knowledgeBase';
16
17
  import { getTestDB } from './_util';
17
18
 
@@ -228,6 +229,34 @@ describe('KnowledgeBaseModel', () => {
228
229
  expect(remainingFiles).toHaveLength(1);
229
230
  expect(remainingFiles[0].fileId).toBe('file2');
230
231
  });
232
+
233
+ it('should not allow removing files from another user knowledge base', async () => {
234
+ await serverDB.insert(globalFiles).values([
235
+ {
236
+ hashId: 'hash1',
237
+ url: 'https://example.com/document.pdf',
238
+ size: 1000,
239
+ fileType: 'application/pdf',
240
+ creator: userId,
241
+ },
242
+ ]);
243
+
244
+ await serverDB.insert(files).values([fileList[0]]);
245
+
246
+ const { id: knowledgeBaseId } = await knowledgeBaseModel.create({ name: 'Test Group' });
247
+ await knowledgeBaseModel.addFilesToKnowledgeBase(knowledgeBaseId, ['file1']);
248
+
249
+ // Another user tries to remove files from this knowledge base
250
+ const attackerModel = new KnowledgeBaseModel(serverDB, 'user2');
251
+ await attackerModel.removeFilesFromKnowledgeBase(knowledgeBaseId, ['file1']);
252
+
253
+ // Files should still exist since the attacker doesn't own them
254
+ const remainingFiles = await serverDB.query.knowledgeBaseFiles.findMany({
255
+ where: eq(knowledgeBaseFiles.knowledgeBaseId, knowledgeBaseId),
256
+ });
257
+ expect(remainingFiles).toHaveLength(1);
258
+ expect(remainingFiles[0].fileId).toBe('file1');
259
+ });
231
260
  });
232
261
 
233
262
  describe('static findById', () => {
@@ -43,13 +43,15 @@ export class KnowledgeBaseModel {
43
43
  };
44
44
 
45
45
  removeFilesFromKnowledgeBase = async (knowledgeBaseId: string, ids: string[]) => {
46
- return this.db.delete(knowledgeBaseFiles).where(
47
- and(
48
- eq(knowledgeBaseFiles.knowledgeBaseId, knowledgeBaseId),
49
- inArray(knowledgeBaseFiles.fileId, ids),
50
- // eq(knowledgeBaseFiles.userId, this.userId),
51
- ),
52
- );
46
+ return this.db
47
+ .delete(knowledgeBaseFiles)
48
+ .where(
49
+ and(
50
+ eq(knowledgeBaseFiles.userId, this.userId),
51
+ eq(knowledgeBaseFiles.knowledgeBaseId, knowledgeBaseId),
52
+ inArray(knowledgeBaseFiles.fileId, ids),
53
+ ),
54
+ );
53
55
  };
54
56
  // query
55
57
  query = async () => {
@@ -3,6 +3,7 @@ import {
3
3
  DeleteObjectCommand,
4
4
  DeleteObjectsCommand,
5
5
  GetObjectCommand,
6
+ HeadObjectCommand,
6
7
  PutObjectCommand,
7
8
  S3Client,
8
9
  } from '@aws-sdk/client-s3';
@@ -304,6 +305,63 @@ describe('FileS3', () => {
304
305
  });
305
306
  });
306
307
 
308
+ describe('getFileMetadata', () => {
309
+ it('should retrieve file metadata with content length and type', async () => {
310
+ const s3 = new FileS3();
311
+ mockS3ClientSend.mockResolvedValue({
312
+ ContentLength: 1024,
313
+ ContentType: 'image/png',
314
+ });
315
+
316
+ const result = await s3.getFileMetadata('test-file.png');
317
+
318
+ expect(HeadObjectCommand).toHaveBeenCalledWith({
319
+ Bucket: 'test-bucket',
320
+ Key: 'test-file.png',
321
+ });
322
+ expect(result).toEqual({
323
+ contentLength: 1024,
324
+ contentType: 'image/png',
325
+ });
326
+ });
327
+
328
+ it('should return 0 for content length when not provided', async () => {
329
+ const s3 = new FileS3();
330
+ mockS3ClientSend.mockResolvedValue({
331
+ ContentType: 'application/octet-stream',
332
+ });
333
+
334
+ const result = await s3.getFileMetadata('test-file.bin');
335
+
336
+ expect(result).toEqual({
337
+ contentLength: 0,
338
+ contentType: 'application/octet-stream',
339
+ });
340
+ });
341
+
342
+ it('should handle missing content type', async () => {
343
+ const s3 = new FileS3();
344
+ mockS3ClientSend.mockResolvedValue({
345
+ ContentLength: 2048,
346
+ });
347
+
348
+ const result = await s3.getFileMetadata('test-file.bin');
349
+
350
+ expect(result).toEqual({
351
+ contentLength: 2048,
352
+ contentType: undefined,
353
+ });
354
+ });
355
+
356
+ it('should handle S3 errors', async () => {
357
+ const s3 = new FileS3();
358
+ const error = new Error('File not found');
359
+ mockS3ClientSend.mockRejectedValue(error);
360
+
361
+ await expect(s3.getFileMetadata('non-existent-file.txt')).rejects.toThrow('File not found');
362
+ });
363
+ });
364
+
307
365
  describe('createPreSignedUrl', () => {
308
366
  it('should create presigned URL for upload with ACL', async () => {
309
367
  const s3 = new FileS3();
@@ -2,6 +2,7 @@ import {
2
2
  DeleteObjectCommand,
3
3
  DeleteObjectsCommand,
4
4
  GetObjectCommand,
5
+ HeadObjectCommand,
5
6
  PutObjectCommand,
6
7
  S3Client,
7
8
  } from '@aws-sdk/client-s3';
@@ -111,6 +112,26 @@ export class S3 {
111
112
  return response.Body.transformToByteArray();
112
113
  }
113
114
 
115
+ /**
116
+ * Get file metadata from S3 using HeadObject
117
+ * This is used to verify actual file size from S3 instead of trusting client-provided values
118
+ */
119
+ public async getFileMetadata(
120
+ key: string,
121
+ ): Promise<{ contentLength: number; contentType?: string }> {
122
+ const command = new HeadObjectCommand({
123
+ Bucket: this.bucket,
124
+ Key: key,
125
+ });
126
+
127
+ const response = await this.client.send(command);
128
+
129
+ return {
130
+ contentLength: response.ContentLength ?? 0,
131
+ contentType: response.ContentType,
132
+ };
133
+ }
134
+
114
135
  public async createPreSignedUrl(key: string): Promise<string> {
115
136
  const command = new PutObjectCommand({
116
137
  ACL: this.setAcl ? 'public-read' : undefined,