@lobehub/lobehub 2.0.0-next.184 → 2.0.0-next.186

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/e2e/src/support/webServer.ts +0 -1
  4. package/locales/ar/auth.json +1 -0
  5. package/locales/ar/models.json +40 -0
  6. package/locales/ar/setting.json +1 -0
  7. package/locales/ar/subscription.json +13 -0
  8. package/locales/bg-BG/auth.json +1 -0
  9. package/locales/bg-BG/models.json +22 -0
  10. package/locales/bg-BG/setting.json +1 -0
  11. package/locales/bg-BG/subscription.json +13 -0
  12. package/locales/de-DE/auth.json +1 -0
  13. package/locales/de-DE/models.json +37 -0
  14. package/locales/de-DE/setting.json +1 -0
  15. package/locales/de-DE/subscription.json +13 -0
  16. package/locales/en-US/auth.json +1 -0
  17. package/locales/en-US/setting.json +1 -1
  18. package/locales/es-ES/auth.json +1 -0
  19. package/locales/es-ES/models.json +30 -0
  20. package/locales/es-ES/setting.json +1 -0
  21. package/locales/es-ES/subscription.json +13 -0
  22. package/locales/fa-IR/auth.json +1 -0
  23. package/locales/fa-IR/models.json +31 -0
  24. package/locales/fa-IR/setting.json +1 -0
  25. package/locales/fa-IR/subscription.json +13 -0
  26. package/locales/fr-FR/auth.json +1 -0
  27. package/locales/fr-FR/models.json +17 -0
  28. package/locales/fr-FR/setting.json +1 -0
  29. package/locales/fr-FR/subscription.json +13 -0
  30. package/locales/it-IT/auth.json +1 -0
  31. package/locales/it-IT/models.json +31 -0
  32. package/locales/it-IT/setting.json +1 -0
  33. package/locales/it-IT/subscription.json +13 -0
  34. package/locales/ja-JP/auth.json +1 -0
  35. package/locales/ja-JP/models.json +1 -0
  36. package/locales/ja-JP/setting.json +1 -0
  37. package/locales/ja-JP/subscription.json +13 -0
  38. package/locales/ko-KR/auth.json +1 -0
  39. package/locales/ko-KR/models.json +39 -0
  40. package/locales/ko-KR/setting.json +1 -0
  41. package/locales/ko-KR/subscription.json +13 -0
  42. package/locales/nl-NL/auth.json +1 -0
  43. package/locales/nl-NL/models.json +35 -0
  44. package/locales/nl-NL/setting.json +1 -0
  45. package/locales/nl-NL/subscription.json +13 -0
  46. package/locales/pl-PL/auth.json +1 -0
  47. package/locales/pl-PL/models.json +12 -0
  48. package/locales/pl-PL/setting.json +1 -0
  49. package/locales/pl-PL/subscription.json +13 -0
  50. package/locales/pt-BR/auth.json +1 -0
  51. package/locales/pt-BR/models.json +1 -0
  52. package/locales/pt-BR/setting.json +1 -0
  53. package/locales/pt-BR/subscription.json +13 -0
  54. package/locales/ru-RU/auth.json +1 -0
  55. package/locales/ru-RU/models.json +32 -0
  56. package/locales/ru-RU/setting.json +1 -0
  57. package/locales/ru-RU/subscription.json +13 -0
  58. package/locales/tr-TR/auth.json +1 -0
  59. package/locales/tr-TR/models.json +20 -0
  60. package/locales/tr-TR/setting.json +1 -0
  61. package/locales/tr-TR/subscription.json +13 -0
  62. package/locales/vi-VN/auth.json +1 -0
  63. package/locales/vi-VN/models.json +39 -0
  64. package/locales/vi-VN/setting.json +1 -0
  65. package/locales/vi-VN/subscription.json +13 -0
  66. package/locales/zh-CN/auth.json +1 -0
  67. package/locales/zh-CN/models.json +49 -0
  68. package/locales/zh-CN/setting.json +1 -1
  69. package/locales/zh-TW/auth.json +1 -0
  70. package/locales/zh-TW/models.json +23 -0
  71. package/locales/zh-TW/setting.json +1 -0
  72. package/locales/zh-TW/subscription.json +13 -0
  73. package/next.config.ts +14 -1
  74. package/package.json +2 -1
  75. package/packages/types/src/message/common/base.ts +1 -1
  76. package/packages/types/src/message/ui/chat.ts +3 -3
  77. package/packages/types/src/message/ui/extra.ts +2 -2
  78. package/packages/types/src/openai/plugin.ts +1 -1
  79. package/packages/types/src/session/agentSession.ts +1 -1
  80. package/packages/types/src/user/settings/index.ts +1 -1
  81. package/src/app/(backend)/oidc/[...oidc]/route.ts +2 -2
  82. package/src/app/[variants]/(auth)/oauth/consent/[uid]/page.tsx +2 -2
  83. package/src/envs/auth.ts +2 -0
  84. package/src/libs/next/config/define-config.ts +19 -10
  85. package/src/libs/next/proxy/define-config.ts +4 -5
  86. package/src/libs/trpc/lambda/context.ts +9 -11
  87. package/src/server/services/oidc/oidcProvider.ts +2 -2
  88. package/src/store/image/utils/size.test.ts +245 -0
  89. package/vercel.json +1 -1
  90. package/src/envs/oidc.ts +0 -18
package/CHANGELOG.md CHANGED
@@ -2,6 +2,56 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ## [Version 2.0.0-next.186](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.185...v2.0.0-next.186)
6
+
7
+ <sup>Released on **2026-01-01**</sup>
8
+
9
+ #### ♻ Code Refactoring
10
+
11
+ - **misc**: Refactor oidc env to auth env.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### Code refactoring
19
+
20
+ - **misc**: Refactor oidc env to auth env, closes [#11095](https://github.com/lobehub/lobe-chat/issues/11095) ([6e8d4ff](https://github.com/lobehub/lobe-chat/commit/6e8d4ff))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
30
+ ## [Version 2.0.0-next.185](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.184...v2.0.0-next.185)
31
+
32
+ <sup>Released on **2026-01-01**</sup>
33
+
34
+ #### 💄 Styles
35
+
36
+ - **misc**: Update i18n.
37
+
38
+ <br/>
39
+
40
+ <details>
41
+ <summary><kbd>Improvements and Fixes</kbd></summary>
42
+
43
+ #### Styles
44
+
45
+ - **misc**: Update i18n, closes [#11085](https://github.com/lobehub/lobe-chat/issues/11085) ([0941a52](https://github.com/lobehub/lobe-chat/commit/0941a52))
46
+
47
+ </details>
48
+
49
+ <div align="right">
50
+
51
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
52
+
53
+ </div>
54
+
5
55
  ## [Version 2.0.0-next.184](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.183...v2.0.0-next.184)
6
56
 
7
57
  <sup>Released on **2026-01-01**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,22 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "improvements": [
5
+ "Refactor oidc env to auth env."
6
+ ]
7
+ },
8
+ "date": "2026-01-01",
9
+ "version": "2.0.0-next.186"
10
+ },
11
+ {
12
+ "children": {
13
+ "improvements": [
14
+ "Update i18n."
15
+ ]
16
+ },
17
+ "date": "2026-01-01",
18
+ "version": "2.0.0-next.185"
19
+ },
2
20
  {
3
21
  "children": {
4
22
  "improvements": [
@@ -101,7 +101,6 @@ export async function startWebServer(options: WebServerOptions): Promise<void> {
101
101
  ...process.env,
102
102
  // E2E test secret keys
103
103
  BETTER_AUTH_SECRET: 'e2e-test-secret-key-for-better-auth-32chars!',
104
- ENABLE_OIDC: '0',
105
104
  KEY_VAULTS_SECRET: 'LA7n9k3JdEcbSgml2sxfw+4TV1AzaaFU5+R176aQz4s=',
106
105
  // Disable email verification for e2e
107
106
  NEXT_PUBLIC_AUTH_EMAIL_VERIFICATION: '0',
@@ -147,6 +147,7 @@
147
147
  "loginGuide.f4": "استكشاف الإضافات القوية",
148
148
  "loginGuide.title": "بعد تسجيل الدخول، يمكنك:",
149
149
  "loginOrSignup": "تسجيل الدخول / إنشاء حساب",
150
+ "profile.account": "الحساب",
150
151
  "profile.authorizations.actions.revoke": "إلغاء",
151
152
  "profile.authorizations.revoke.description": "بعد الإلغاء، لن يتمكن الأداة من الوصول إلى بياناتك. ستحتاج إلى إعادة التفويض لاستخدامها مرة أخرى.",
152
153
  "profile.authorizations.revoke.title": "هل تريد إلغاء تفويض {{name}}؟",
@@ -255,6 +255,46 @@
255
255
  "baichuan/baichuan2-13b-chat.description": "Baichuan-13B هو نموذج LLM مفتوح المصدر وقابل للاستخدام التجاري يحتوي على 13 مليار معلمة من Baichuan، يحقق نتائج رائدة في فئته على معايير اللغة الصينية والإنجليزية الموثوقة.",
256
256
  "baidu/ERNIE-4.5-300B-A47B.description": "ERNIE-4.5-300B-A47B هو نموذج MoE من Baidu يحتوي على 300 مليار معلمة إجمالية و47 مليار نشطة لكل رمز، يوازن بين الأداء القوي وكفاءة الحوسبة. كنموذج أساسي في سلسلة ERNIE 4.5، يتميز بالفهم والتوليد والاستدلال والبرمجة. يستخدم طريقة تدريب مسبق متعددة الوسائط غير متجانسة مع تدريب مشترك على النصوص والرؤية لتعزيز القدرات، خاصة في اتباع التعليمات والمعرفة العامة.",
257
257
  "baidu/ernie-5.0-thinking-preview.description": "ERNIE 5.0 Thinking Preview هو نموذج ERNIE متعدد الوسائط من الجيل التالي من Baidu، يتميز بفهم متعدد الوسائط قوي، واتباع التعليمات، والإبداع، والأسئلة والأجوبة الواقعية، واستدعاء الأدوات.",
258
+ "black-forest-labs/flux-1.1-pro.description": "FLUX 1.1 Pro هو إصدار أسرع ومحسّن من FLUX Pro يتميز بجودة صور ممتازة والتزام دقيق بالتعليمات.",
259
+ "black-forest-labs/flux-dev.description": "FLUX Dev هو الإصدار المخصص للتطوير من FLUX للاستخدام غير التجاري.",
260
+ "black-forest-labs/flux-pro.description": "FLUX Pro هو النموذج الاحترافي من FLUX لإنتاج صور عالية الجودة.",
261
+ "black-forest-labs/flux-schnell.description": "FLUX Schnell هو نموذج توليد صور سريع مُحسّن للأداء العالي.",
262
+ "c4ai-aya-expanse-32b.description": "Aya Expanse هو نموذج متعدد اللغات عالي الأداء بحجم 32B يستخدم ضبط التعليمات، وتحليل البيانات، وتدريب التفضيلات، ودمج النماذج لمنافسة النماذج أحادية اللغة. يدعم 23 لغة.",
263
+ "c4ai-aya-expanse-8b.description": "Aya Expanse هو نموذج متعدد اللغات عالي الأداء بحجم 8B يستخدم ضبط التعليمات، وتحليل البيانات، وتدريب التفضيلات، ودمج النماذج لمنافسة النماذج أحادية اللغة. يدعم 23 لغة.",
264
+ "c4ai-aya-vision-32b.description": "Aya Vision هو نموذج متعدد الوسائط متقدم يقدم أداءً قويًا في اختبارات اللغة والنصوص والرؤية. يدعم 23 لغة. يركز إصدار 32B على الأداء المتعدد اللغات من الدرجة الأولى.",
265
+ "c4ai-aya-vision-8b.description": "Aya Vision هو نموذج متعدد الوسائط متقدم يقدم أداءً قويًا في اختبارات اللغة والنصوص والرؤية. يركز إصدار 8B على تقليل التأخير مع الحفاظ على أداء قوي.",
266
+ "charglm-3.description": "CharGLM-3 مصمم للمحادثات التمثيلية والدعم العاطفي، ويدعم ذاكرة طويلة متعددة الأدوار وحوارات مخصصة.",
267
+ "charglm-4.description": "CharGLM-4 مصمم للمحادثات التمثيلية والدعم العاطفي، ويدعم ذاكرة طويلة متعددة الأدوار وحوارات مخصصة.",
268
+ "chatgpt-4o-latest.description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الفعلي، يجمع بين الفهم العميق والقدرة على التوليد لتلبية احتياجات الاستخدام الواسعة مثل دعم العملاء والتعليم والدعم الفني.",
269
+ "claude-2.0.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
270
+ "claude-2.1.description": "Claude 2 يقدم تحسينات رئيسية للمؤسسات، بما في ذلك سياق 200 ألف رمز، تقليل الهلوسة، دعم التعليمات النظامية، وميزة جديدة: استدعاء الأدوات.",
271
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku هو أسرع نموذج من الجيل التالي من Anthropic. مقارنة بـ Claude 3 Haiku، يقدم تحسينات شاملة ويتفوق على Claude 3 Opus في العديد من اختبارات الذكاء.",
272
+ "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku يقدم استجابات سريعة للمهام الخفيفة.",
273
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet هو أذكى نموذج من Anthropic وأول نموذج تفكير هجين في السوق. يمكنه تقديم استجابات فورية أو تفكير متسلسل يمكن للمستخدمين متابعته. يتميز بقوة في البرمجة، علم البيانات، الرؤية، والمهام التفاعلية.",
274
+ "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم العميق.",
275
+ "claude-3-haiku-20240307.description": "Claude 3 Haiku هو أسرع وأصغر نموذج من Anthropic، مصمم لتقديم استجابات شبه فورية بأداء سريع ودقيق.",
276
+ "claude-3-opus-20240229.description": "Claude 3 Opus هو أقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
277
+ "claude-3-sonnet-20240229.description": "Claude 3 Sonnet يوازن بين الذكاء والسرعة لتلبية احتياجات المؤسسات، ويوفر فائدة عالية بتكلفة أقل ونشر موثوق على نطاق واسع.",
278
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 هو أسرع وأذكى نموذج Haiku من Anthropic، يتميز بسرعة فائقة وقدرة على التفكير المتسلسل.",
279
+ "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking هو إصدار متقدم يمكنه عرض عملية تفكيره.",
280
+ "claude-opus-4-1-20250805.description": "Claude Opus 4.1 هو أحدث وأقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
281
+ "claude-opus-4-20250514.description": "Claude Opus 4 هو أقوى نموذج من Anthropic للمهام المعقدة، يتميز بالأداء العالي، الذكاء، الطلاقة، والفهم.",
282
+ "claude-opus-4-5-20251101.description": "Claude Opus 4.5 هو النموذج الرائد من Anthropic، يجمع بين الذكاء الاستثنائي والأداء القابل للتوسع، مثالي للمهام المعقدة التي تتطلب استجابات عالية الجودة وتفكير متقدم.",
283
+ "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking يمكنه تقديم استجابات شبه فورية أو تفكير متسلسل مرئي.",
284
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 يمكنه تقديم استجابات شبه فورية أو تفكير متسلسل مرئي.",
285
+ "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 هو أذكى نموذج من Anthropic حتى الآن.",
286
+ "codegeex-4.description": "CodeGeeX-4 هو مساعد برمجة ذكي يدعم الأسئلة والأجوبة متعددة اللغات وإكمال الشيفرة لزيادة إنتاجية المطورين.",
287
+ "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B هو نموذج توليد شيفرة متعدد اللغات يدعم الإكمال والتوليد، تفسير الشيفرة، البحث عبر الإنترنت، استدعاء الوظائف، وأسئلة وأجوبة على مستوى المستودع، ويغطي مجموعة واسعة من سيناريوهات تطوير البرمجيات. يُعد من أفضل نماذج الشيفرة تحت 10B.",
288
+ "codegemma.description": "CodeGemma هو نموذج خفيف الوزن لمهام البرمجة المتنوعة، يتيح التكرار السريع والتكامل السلس.",
289
+ "codegemma:2b.description": "CodeGemma هو نموذج خفيف الوزن لمهام البرمجة المتنوعة، يتيح التكرار السريع والتكامل السلس.",
290
+ "codellama.description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة ومناقشتها، ويدعم لغات متعددة لتسهيل سير عمل المطورين.",
291
+ "codellama/CodeLlama-34b-Instruct-hf.description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة ومناقشتها، ويدعم لغات متعددة لتسهيل سير عمل المطورين.",
292
+ "codellama:13b.description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة ومناقشتها، ويدعم لغات متعددة لتسهيل سير عمل المطورين.",
293
+ "codellama:34b.description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة ومناقشتها، ويدعم لغات متعددة لتسهيل سير عمل المطورين.",
294
+ "codellama:70b.description": "Code Llama هو نموذج لغوي كبير يركز على توليد الشيفرة ومناقشتها، ويدعم لغات متعددة لتسهيل سير عمل المطورين.",
295
+ "codeqwen.description": "CodeQwen1.5 هو نموذج لغوي كبير مدرب على بيانات شيفرة واسعة النطاق، مصمم للمهام البرمجية المعقدة.",
296
+ "codestral-latest.description": "Codestral هو أحدث نموذج برمجة لدينا؛ الإصدار v2 (يناير 2025) يستهدف المهام منخفضة التأخير وعالية التكرار مثل FIM، تصحيح الشيفرة، وتوليد الاختبارات.",
297
+ "codestral.description": "Codestral هو أول نموذج شيفرة من Mistral AI، يقدم دعمًا قويًا لتوليد الشيفرة.",
258
298
  "meta.llama3-8b-instruct-v1:0.description": "ميتا لاما 3 هو نموذج لغوي مفتوح المصدر مخصص للمطورين والباحثين والشركات، صُمم لمساعدتهم في بناء أفكار الذكاء الاصطناعي التوليدي، وتجربتها، وتوسيع نطاقها بشكل مسؤول. يُعد جزءًا من البنية التحتية للابتكار المجتمعي العالمي، وهو مناسب للبيئات ذات الموارد المحدودة، والأجهزة الطرفية، وأوقات التدريب الأسرع.",
259
299
  "meta/Llama-3.2-11B-Vision-Instruct.description": "قدرات قوية في الاستدلال الصوري على الصور عالية الدقة، مناسب لتطبيقات الفهم البصري.",
260
300
  "meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال صوري متقدم لتطبيقات الوكلاء المعتمدين على الفهم البصري.",
@@ -215,6 +215,7 @@
215
215
  "settingAgent.name.placeholder": "أدخل اسم الوكيل",
216
216
  "settingAgent.name.title": "الاسم",
217
217
  "settingAgent.prompt.placeholder": "أدخل إعدادات الوكيل، اضغط / لفتح قائمة الأوامر",
218
+ "settingAgent.prompt.templatePlaceholder": "#### الهدف\nوصف الغرض الرئيسي والهدف من هذا الوكيل.\n\n#### المهارات\n- سرد القدرات الرئيسية\n- ومجالات المعرفة المتخصصة\n\n#### سير العمل\n1. عملية خطوة بخطوة\n2. كيفية تعامل الوكيل مع المهام\n3. التفاعلات المتوقعة مع المستخدمين\n\n#### القيود\n- القيود المهمة التي يجب الالتزام بها\n- إرشادات السلوك",
218
219
  "settingAgent.prompt.title": "ملف تعريف الوكيل",
219
220
  "settingAgent.submit": "تحديث الوكيل",
220
221
  "settingAgent.tag.desc": "سيتم عرض علامات الوكيل في مجتمع الوكلاء",
@@ -271,15 +271,28 @@
271
271
  "referral.edit.hint": "يدعم 2-8 أحرف أو أرقام أو شرطات سفلية",
272
272
  "referral.edit.placeholder": "أدخل رمز الإحالة",
273
273
  "referral.edit.save": "حفظ",
274
+ "referral.errors.alreadyBound": "لقد قمت بربط رمز الدعوة مسبقًا",
275
+ "referral.errors.backfillExpired": "انتهت فترة الإكمال. لا يمكن الإكمال بعد 3 أيام من التسجيل",
274
276
  "referral.errors.codeExists": "رمز الإحالة مستخدم بالفعل، يرجى اختيار رمز آخر",
277
+ "referral.errors.invalidCode": "رمز الدعوة غير موجود، يرجى التحقق والمحاولة مرة أخرى",
275
278
  "referral.errors.invalidFormat": "تنسيق رمز الإحالة غير صالح، يرجى إدخال 2-8 أحرف أو أرقام أو شرطات سفلية",
279
+ "referral.errors.selfReferral": "لا يمكنك استخدام رمز الدعوة الخاص بك",
276
280
  "referral.errors.updateFailed": "فشل التحديث، يرجى المحاولة لاحقًا",
277
281
  "referral.inviteCode.description": "شارك رمز الإحالة الحصري الخاص بك لدعوة الأصدقاء للتسجيل",
278
282
  "referral.inviteCode.title": "رمز الإحالة الخاص بي",
279
283
  "referral.inviteLink.description": "انسخ الرابط وشاركه مع الأصدقاء. بعد التسجيل، ستحصل على مكافآت",
280
284
  "referral.inviteLink.title": "رابط الإحالة",
285
+ "referral.rules.backfill.alreadyBound": "لقد قمت بربط رمز الدعوة مسبقًا",
286
+ "referral.rules.backfill.description": "نسيت إدخال رمز الدعوة؟ يمكنك إكماله خلال 3 أيام من التسجيل",
287
+ "referral.rules.backfill.expiredTip": "انتهت فترة الإكمال. لا يمكن الإكمال بعد 3 أيام من التسجيل",
288
+ "referral.rules.backfill.link": "إكمال رمز الدعوة",
289
+ "referral.rules.backfill.placeholder": "أدخل رمز الدعوة",
290
+ "referral.rules.backfill.submit": "تأكيد الربط",
291
+ "referral.rules.backfill.success": "تم ربط رمز الدعوة بنجاح",
292
+ "referral.rules.backfill.title": "إكمال رمز الدعوة",
281
293
  "referral.rules.description": "تعرف على قواعد برنامج مكافآت الإحالة",
282
294
  "referral.rules.expiry": "صلاحية الرصيد: يتم مسح أرصدة الإحالة بعد 100 يوم من عدم النشاط",
295
+ "referral.rules.missedCode": "فاتك إدخال رمز الدعوة: يمكنك <0>إكماله</0> خلال 3 أيام من التسجيل",
283
296
  "referral.rules.priority": "أولوية استهلاك الرصيد: الرصيد المجاني → رصيد الاشتراك → رصيد الإحالة → الرصيد المشحون",
284
297
  "referral.rules.registration": "طريقة التسجيل: يسجل المستخدمون المدعوون عبر رابط الإحالة أو بإدخال الرمز عند التسجيل",
285
298
  "referral.rules.reward": "المكافأة: يحصل كل من الداعي والمدعو على {{reward}}M رصيد",
@@ -147,6 +147,7 @@
147
147
  "loginGuide.f4": "Открийте мощни плъгини",
148
148
  "loginGuide.title": "След влизане ще можете:",
149
149
  "loginOrSignup": "Вход / Регистрация",
150
+ "profile.account": "Акаунт",
150
151
  "profile.authorizations.actions.revoke": "Отмени",
151
152
  "profile.authorizations.revoke.description": "След отмяна инструментът вече няма да има достъп до вашите данни. За повторна употреба е необходима нова авторизация.",
152
153
  "profile.authorizations.revoke.title": "Да отменя ли достъпа за {{name}}?",
@@ -193,6 +193,28 @@
193
193
  "abab6.5g-chat.description": "Проектиран за многоезичен чат с персонажи, поддържащ висококачествено генериране на диалог на английски и други езици.",
194
194
  "abab6.5s-chat.description": "Подходящ за широк спектър от NLP задачи, включително генериране на текст и диалогови системи.",
195
195
  "abab6.5t-chat.description": "Оптимизиран за чат с китайски персонажи, осигуряващ плавен диалог, съобразен с китайските езикови навици.",
196
+ "accounts/fireworks/models/deepseek-r1.description": "DeepSeek-R1 е модерен LLM, оптимизиран с обучение чрез подсилване и cold-start данни, осигуряващ отлично представяне при логическо разсъждение, математика и програмиране.",
197
+ "accounts/fireworks/models/deepseek-v3.description": "Мощен езиков модел от тип Mixture-of-Experts (MoE) от DeepSeek с общо 671 милиарда параметъра и 37 милиарда активни параметъра на токен.",
198
+ "accounts/fireworks/models/llama-v3-70b-instruct.description": "Meta разработи и пусна серията Meta Llama 3 LLM, която включва предварително обучени и фино настроени за инструкции модели за генериране на текст с размери 8B и 70B. Моделите Llama 3, фино настроени за инструкции, са оптимизирани за разговорна употреба и надминават много от съществуващите отворени чат модели по общи индустриални показатели.",
199
+ "accounts/fireworks/models/llama-v3-8b-instruct-hf.description": "Моделите Meta Llama 3, фино настроени за инструкции, са оптимизирани за разговорна употреба и надминават много от съществуващите отворени чат модели по общи индустриални показатели. Llama 3 8B Instruct (HF версия) е оригиналната FP16 версия на Llama 3 8B Instruct, като се очаква резултатите да съвпадат с официалната имплементация на Hugging Face.",
200
+ "accounts/fireworks/models/llama-v3-8b-instruct.description": "Meta разработи и пусна серията Meta Llama 3 LLM — колекция от предварително обучени и фино настроени за инструкции модели за генериране на текст с размери 8B и 70B. Моделите Llama 3, фино настроени за инструкции, са оптимизирани за разговорна употреба и надминават много от съществуващите отворени чат модели по общи индустриални показатели.",
201
+ "accounts/fireworks/models/llama-v3p1-405b-instruct.description": "Meta Llama 3.1 е многоезично LLM семейство с предварително обучени и фино настроени за инструкции модели за генериране с размери 8B, 70B и 405B. Моделите, фино настроени за текстови инструкции, са оптимизирани за многоезичен диалог и надминават много от съществуващите отворени и затворени чат модели по общи индустриални показатели. 405B е най-способният модел в семейството Llama 3.1, използващ FP8 извод, който точно съвпада с референтната имплементация.",
202
+ "accounts/fireworks/models/llama-v3p1-70b-instruct.description": "Meta Llama 3.1 е многоезично LLM семейство с предварително обучени и фино настроени за инструкции модели за генериране с размери 8B, 70B и 405B. Моделите, фино настроени за текстови инструкции, са оптимизирани за многоезичен диалог и надминават много от съществуващите отворени и затворени чат модели по общи индустриални показатели.",
203
+ "accounts/fireworks/models/llama-v3p1-8b-instruct.description": "Meta Llama 3.1 е многоезично LLM семейство с предварително обучени и фино настроени за инструкции модели за генериране с размери 8B, 70B и 405B. Моделите, фино настроени за текстови инструкции, са оптимизирани за многоезичен диалог и надминават много от съществуващите отворени и затворени чат модели по общи индустриални показатели.",
204
+ "accounts/fireworks/models/llama-v3p2-11b-vision-instruct.description": "Фино настроен за инструкции модел за визуално разсъждение от Meta с 11 милиарда параметъра, оптимизиран за визуално разпознаване, логическо разсъждение по изображения, надписи и въпроси и отговори, свързани с изображения. Разбира визуални данни като диаграми и графики и свързва визията и езика чрез генериране на текстови описания на детайли от изображенията.",
205
+ "accounts/fireworks/models/llama-v3p2-3b-instruct.description": "Llama 3.2 3B Instruct е лек многоезичен модел от Meta, проектиран за ефективна работа с предимства по отношение на латентност и разходи спрямо по-големите модели. Типични случаи на употреба включват пренаписване на заявки/подсказки и помощ при писане.",
206
+ "accounts/fireworks/models/llama-v3p2-90b-vision-instruct.description": "Фино настроен за инструкции модел за визуално разсъждение от Meta с 90 милиарда параметъра, оптимизиран за визуално разпознаване, логическо разсъждение по изображения, надписи и въпроси и отговори, свързани с изображения. Разбира визуални данни като диаграми и графики и свързва визията и езика чрез генериране на текстови описания на детайли от изображенията. Забележка: този модел се предоставя експериментално като безсървърен модел. За производствена употреба имайте предвид, че Fireworks може да прекрати разполагането без предизвестие.",
207
+ "accounts/fireworks/models/llama-v3p3-70b-instruct.description": "Llama 3.3 70B Instruct е декемврийската актуализация на Llama 3.1 70B. Подобрява използването на инструменти, поддръжката на многоезичен текст, математиката и програмирането спрямо изданието от юли 2024 г. Достига водещо в индустрията представяне при логическо разсъждение, математика и следване на инструкции, като предлага производителност, сравнима с 3.1 405B, но със значителни предимства по отношение на скорост и разходи.",
208
+ "accounts/fireworks/models/mistral-small-24b-instruct-2501.description": "Модел с 24 милиарда параметъра и водещи възможности, сравними с по-големи модели.",
209
+ "accounts/fireworks/models/mixtral-8x22b-instruct.description": "Mixtral MoE 8x22B Instruct v0.1 е фино настроената за инструкции версия на Mixtral MoE 8x22B v0.1, с активиран API за завършване на чат.",
210
+ "accounts/fireworks/models/mixtral-8x7b-instruct.description": "Mixtral MoE 8x7B Instruct е фино настроената за инструкции версия на Mixtral MoE 8x7B, с активиран API за завършване на чат.",
211
+ "accounts/fireworks/models/mythomax-l2-13b.description": "Подобрена версия на MythoMix, вероятно по-усъвършенствана форма, обединяваща MythoLogic-L2 и Huginn с експериментална техника за сливане на тензори. Уникалната ѝ природа я прави отлична за разказване на истории и ролеви игри.",
212
+ "accounts/fireworks/models/phi-3-vision-128k-instruct.description": "Phi-3-Vision-128K-Instruct е лек, модерен отворен мултимодален модел, изграден от синтетични данни и подбрани публични уеб набори от данни, фокусиран върху висококачествени текстови и визуални данни, изискващи логическо разсъждение. Принадлежи към семейството Phi-3, с мултимодална версия, поддържаща контекст с дължина 128K токена. Моделът преминава през задълбочено подобрение, включително фино обучение под надзор и директна оптимизация на предпочитанията, за да осигури точно следване на инструкции и силни мерки за безопасност.",
213
+ "accounts/fireworks/models/qwen-qwq-32b-preview.description": "Моделът Qwen QwQ се фокусира върху напредъка в логическото разсъждение на ИИ, демонстрирайки, че отворените модели могат да съперничат на затворените водещи модели. QwQ-32B-Preview е експериментално издание, което съвпада с o1 и надминава GPT-4o и Claude 3.5 Sonnet по логическо разсъждение и анализ в GPQA, AIME, MATH-500 и LiveCodeBench. Забележка: този модел се предоставя експериментално като безсървърен модел. За производствена употреба имайте предвид, че Fireworks може да прекрати разполагането без предизвестие.",
214
+ "accounts/fireworks/models/qwen2-vl-72b-instruct.description": "Моделът Qwen-VL с 72 милиарда параметъра е най-новата итерация на Alibaba, отразяваща почти година иновации.",
215
+ "accounts/fireworks/models/qwen2p5-72b-instruct.description": "Qwen2.5 е серия LLM само с декодер, разработена от екипа на Qwen и Alibaba Cloud, предлагаща размери 0.5B, 1.5B, 3B, 7B, 14B, 32B и 72B, с базови и фино настроени за инструкции варианти.",
216
+ "accounts/fireworks/models/qwen2p5-coder-32b-instruct.description": "Qwen2.5-Coder е най-новият LLM от Qwen, проектиран за програмиране (преди CodeQwen). Забележка: този модел се предоставя експериментално като безсървърен модел. За производствена употреба имайте предвид, че Fireworks може да прекрати разполагането без предизвестие.",
217
+ "accounts/yi-01-ai/models/yi-large.description": "Yi-Large е LLM от най-висок клас, който се нарежда непосредствено под GPT-4, Gemini 1.5 Pro и Claude 3 Opus в класацията LMSYS. Отличава се с многоезични възможности, особено на испански, китайски, японски, немски и френски. Yi-Large е също така удобен за разработчици, използвайки същата API схема като OpenAI за лесна интеграция.",
196
218
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 е отворен LLM, предназначен за разработчици, изследователи и предприятия, създаден да им помага да изграждат, експериментират и отговорно мащабират идеи за генеративен ИИ. Като част от основата за глобални иновации в общността, той е подходящ за среди с ограничени изчислителни ресурси, крайни устройства и по-бързо обучение.",
197
219
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Силен визуален анализ на изображения с висока резолюция, подходящ за приложения за визуално разбиране.",
198
220
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Разширен визуален анализ за приложения с агенти за визуално разбиране.",
@@ -215,6 +215,7 @@
215
215
  "settingAgent.name.placeholder": "Въведете име на агента",
216
216
  "settingAgent.name.title": "Име",
217
217
  "settingAgent.prompt.placeholder": "Въведете настройки на агента, натиснете / за отваряне на менюто с команди",
218
+ "settingAgent.prompt.templatePlaceholder": "#### Цел\nОпишете основната цел и предназначение на този агент.\n\n#### Умения\n- Избройте основните способности\n- И специализираните области на познание\n\n#### Работен процес\n1. Стъпка по стъпка процес\n2. Как агентът трябва да подхожда към задачите\n3. Очаквани взаимодействия с потребителите\n\n#### Ограничения\n- Важни ограничения, които трябва да се спазват\n- Насоки за поведение",
218
219
  "settingAgent.prompt.title": "Профил на агента",
219
220
  "settingAgent.submit": "Актуализирай агента",
220
221
  "settingAgent.tag.desc": "Етикетите на агента ще се показват в Общността на агентите",
@@ -271,15 +271,28 @@
271
271
  "referral.edit.hint": "Позволени са 2–8 букви, цифри или долни черти",
272
272
  "referral.edit.placeholder": "Въведете код за покана",
273
273
  "referral.edit.save": "Запази",
274
+ "referral.errors.alreadyBound": "Вече сте свързали поканен код",
275
+ "referral.errors.backfillExpired": "Периодът за попълване е изтекъл. Не можете да попълните след 3 дни от регистрацията",
274
276
  "referral.errors.codeExists": "Този код за покана вече се използва, моля изберете друг",
277
+ "referral.errors.invalidCode": "Кодът за покана не съществува, моля проверете и опитайте отново",
275
278
  "referral.errors.invalidFormat": "Невалиден формат на кода, въведете 2–8 букви, цифри или долни черти",
279
+ "referral.errors.selfReferral": "Не можете да използвате собствения си код за покана",
276
280
  "referral.errors.updateFailed": "Неуспешна актуализация, моля опитайте отново по-късно",
277
281
  "referral.inviteCode.description": "Споделете своя уникален код за покана, за да поканите приятели да се регистрират",
278
282
  "referral.inviteCode.title": "Моят код за покана",
279
283
  "referral.inviteLink.description": "Копирайте линка и го споделете с приятели. След регистрация ще получите награди",
280
284
  "referral.inviteLink.title": "Линк за покана",
285
+ "referral.rules.backfill.alreadyBound": "Вече сте свързали поканен код",
286
+ "referral.rules.backfill.description": "Забравихте да въведете код за покана? Можете да го попълните в рамките на 3 дни след регистрацията",
287
+ "referral.rules.backfill.expiredTip": "Периодът за попълване е изтекъл. Не можете да попълните след 3 дни от регистрацията",
288
+ "referral.rules.backfill.link": "Попълни код за покана",
289
+ "referral.rules.backfill.placeholder": "Въведете код за покана",
290
+ "referral.rules.backfill.submit": "Потвърди свързването",
291
+ "referral.rules.backfill.success": "Кодът за покана беше успешно свързан",
292
+ "referral.rules.backfill.title": "Попълни код за покана",
281
293
  "referral.rules.description": "Научете правилата на програмата за покани и награди",
282
294
  "referral.rules.expiry": "Валидност на кредитите: наличните кредити от покани ще бъдат изчистени след 100 дни неактивност",
295
+ "referral.rules.missedCode": "Пропуснат код за покана: Можете да го <0>попълните</0> в рамките на 3 дни след регистрацията",
283
296
  "referral.rules.priority": "Приоритет на използване: Безплатни кредити → Абонаментни кредити → Кредити от покани → Закупени кредити",
284
297
  "referral.rules.registration": "Метод на регистрация: Поканените потребители се регистрират чрез линк за покана или въвеждат код при регистрация",
285
298
  "referral.rules.reward": "Награда: Поканилият и поканеният получават по {{reward}}M кредита",
@@ -147,6 +147,7 @@
147
147
  "loginGuide.f4": "Leistungsstarke Plugins entdecken",
148
148
  "loginGuide.title": "Nach der Anmeldung können Sie:",
149
149
  "loginOrSignup": "Anmelden / Registrieren",
150
+ "profile.account": "Konto",
150
151
  "profile.authorizations.actions.revoke": "Widerrufen",
151
152
  "profile.authorizations.revoke.description": "Nach dem Widerruf hat das Tool keinen Zugriff mehr auf Ihre Daten. Eine erneute Autorisierung ist erforderlich.",
152
153
  "profile.authorizations.revoke.title": "Autorisierung für {{name}} widerrufen?",
@@ -210,6 +210,43 @@
210
210
  "accounts/fireworks/models/mixtral-8x7b-instruct.description": "Mixtral MoE 8x7B Instruct ist die instruktionstunierte Version von Mixtral MoE 8x7B mit aktivierter Chat-Completion-API.",
211
211
  "accounts/fireworks/models/mythomax-l2-13b.description": "Eine verbesserte Variante von MythoMix, möglicherweise eine verfeinerte Form, die MythoLogic-L2 und Huginn mit einer experimentellen Tensor-Merge-Technik kombiniert. Aufgrund ihrer einzigartigen Natur eignet sie sich hervorragend für Storytelling und Rollenspiele.",
212
212
  "accounts/fireworks/models/phi-3-vision-128k-instruct.description": "Phi-3-Vision-128K-Instruct ist ein leichtgewichtiges, hochmodernes multimodales Modell, das auf synthetischen Daten und kuratierten öffentlichen Web-Datensätzen basiert. Es konzentriert sich auf qualitativ hochwertige, argumentationsintensive Text- und Bilddaten. Es gehört zur Phi-3-Familie und unterstützt eine Kontextlänge von 128.000 Tokens. Das Modell wurde durch Supervised Fine-Tuning und Direct Preference Optimization verbessert, um eine präzise Befolgung von Anweisungen und hohe Sicherheitsstandards zu gewährleisten.",
213
+ "accounts/fireworks/models/qwen-qwq-32b-preview.description": "Das Qwen QwQ-Modell konzentriert sich auf die Weiterentwicklung des KI-Schlussfolgerns und zeigt, dass offene Modelle in puncto logischem Denken mit geschlossenen Spitzenmodellen konkurrieren können. QwQ-32B-Preview ist eine experimentelle Version, die mit o1 vergleichbar ist und GPT-4o sowie Claude 3.5 Sonnet bei Aufgaben zu logischem Denken und Analyse in GPQA, AIME, MATH-500 und LiveCodeBench übertrifft. Hinweis: Dieses Modell wird derzeit experimentell als serverloses Modell bereitgestellt. Für den produktiven Einsatz beachten Sie bitte, dass Fireworks die Bereitstellung kurzfristig einstellen kann.",
214
+ "accounts/fireworks/models/qwen2-vl-72b-instruct.description": "Das 72B Qwen-VL-Modell ist die neueste Version von Alibaba und spiegelt fast ein Jahr Innovation wider.",
215
+ "accounts/fireworks/models/qwen2p5-72b-instruct.description": "Qwen2.5 ist eine LLM-Serie mit Decoder-Architektur, entwickelt vom Qwen-Team und Alibaba Cloud. Sie bietet Modelle in den Größen 0.5B, 1.5B, 3B, 7B, 14B, 32B und 72B – jeweils als Basis- und Instruct-Varianten.",
216
+ "accounts/fireworks/models/qwen2p5-coder-32b-instruct.description": "Qwen2.5-Coder ist das neueste Qwen-LLM für Programmieraufgaben (ehemals CodeQwen). Hinweis: Dieses Modell wird derzeit experimentell als serverloses Modell bereitgestellt. Für den produktiven Einsatz beachten Sie bitte, dass Fireworks die Bereitstellung kurzfristig einstellen kann.",
217
+ "accounts/yi-01-ai/models/yi-large.description": "Yi-Large ist ein leistungsstarkes LLM, das auf dem LMSYS-Leaderboard direkt hinter GPT-4, Gemini 1.5 Pro und Claude 3 Opus rangiert. Es überzeugt durch seine mehrsprachigen Fähigkeiten, insbesondere in Spanisch, Chinesisch, Japanisch, Deutsch und Französisch. Yi-Large ist zudem entwicklerfreundlich und verwendet das gleiche API-Schema wie OpenAI für eine einfache Integration.",
218
+ "ai21-jamba-1.5-large.description": "Ein mehrsprachiges Modell mit 398 Milliarden Parametern (davon 94 Milliarden aktiv), 256K Kontextfenster, Funktionsaufrufen, strukturiertem Output und fundierter Generierung.",
219
+ "ai21-jamba-1.5-mini.description": "Ein mehrsprachiges Modell mit 52 Milliarden Parametern (davon 12 Milliarden aktiv), 256K Kontextfenster, Funktionsaufrufen, strukturiertem Output und fundierter Generierung.",
220
+ "ai21-labs/AI21-Jamba-1.5-Large.description": "Ein mehrsprachiges Modell mit 398 Milliarden Parametern (davon 94 Milliarden aktiv), 256K Kontextfenster, Funktionsaufrufen, strukturiertem Output und fundierter Generierung.",
221
+ "ai21-labs/AI21-Jamba-1.5-Mini.description": "Ein mehrsprachiges Modell mit 52 Milliarden Parametern (davon 12 Milliarden aktiv), 256K Kontextfenster, Funktionsaufrufen, strukturiertem Output und fundierter Generierung.",
222
+ "alibaba/qwen-3-14b.description": "Qwen3 ist die neueste Generation der Qwen-Serie und bietet eine umfassende Auswahl an dichten und MoE-Modellen. Basierend auf umfangreichem Training bringt es Durchbrüche in den Bereichen logisches Denken, Befolgen von Anweisungen, Agentenfähigkeiten und Mehrsprachigkeit.",
223
+ "alibaba/qwen-3-235b.description": "Qwen3 ist die neueste Generation der Qwen-Serie und bietet eine umfassende Auswahl an dichten und MoE-Modellen. Basierend auf umfangreichem Training bringt es Durchbrüche in den Bereichen logisches Denken, Befolgen von Anweisungen, Agentenfähigkeiten und Mehrsprachigkeit.",
224
+ "alibaba/qwen-3-30b.description": "Qwen3 ist die neueste Generation der Qwen-Serie und bietet eine umfassende Auswahl an dichten und MoE-Modellen. Basierend auf umfangreichem Training bringt es Durchbrüche in den Bereichen logisches Denken, Befolgen von Anweisungen, Agentenfähigkeiten und Mehrsprachigkeit.",
225
+ "alibaba/qwen-3-32b.description": "Qwen3 ist die neueste Generation der Qwen-Serie und bietet eine umfassende Auswahl an dichten und MoE-Modellen. Basierend auf umfangreichem Training bringt es Durchbrüche in den Bereichen logisches Denken, Befolgen von Anweisungen, Agentenfähigkeiten und Mehrsprachigkeit.",
226
+ "alibaba/qwen3-coder.description": "Qwen3-Coder-480B-A35B-Instruct ist Qwens fortschrittlichstes Modell für Programmieraufgaben. Es überzeugt bei agentenbasiertem Codieren, Browser-Nutzung durch Agenten und anderen zentralen Programmieraufgaben und erreicht Ergebnisse auf dem Niveau von Claude Sonnet.",
227
+ "amazon/nova-lite.description": "Ein äußerst kostengünstiges multimodales Modell mit extrem schneller Verarbeitung von Bild-, Video- und Texteingaben.",
228
+ "amazon/nova-micro.description": "Ein reines Textmodell mit extrem niedriger Latenz zu sehr geringen Kosten.",
229
+ "amazon/nova-pro.description": "Ein leistungsstarkes multimodales Modell mit optimaler Balance aus Genauigkeit, Geschwindigkeit und Kosten für vielfältige Aufgaben.",
230
+ "amazon/titan-embed-text-v2.description": "Amazon Titan Text Embeddings V2 ist ein leichtgewichtiges, effizientes mehrsprachiges Embedding-Modell mit Unterstützung für 1024, 512 und 256 Dimensionen.",
231
+ "anthropic.claude-3-5-sonnet-20240620-v1:0.description": "Claude 3.5 Sonnet setzt neue Branchenstandards, übertrifft Wettbewerber und Claude 3 Opus in umfassenden Bewertungen und bietet gleichzeitig mittlere Geschwindigkeit und Kosten.",
232
+ "anthropic.claude-3-5-sonnet-20241022-v2:0.description": "Claude 3.5 Sonnet setzt neue Branchenstandards, übertrifft Wettbewerber und Claude 3 Opus in umfassenden Bewertungen und bietet gleichzeitig mittlere Geschwindigkeit und Kosten.",
233
+ "anthropic.claude-3-haiku-20240307-v1:0.description": "Claude 3 Haiku ist das schnellste und kompakteste Modell von Anthropic und liefert nahezu sofortige Antworten auf einfache Anfragen. Es ermöglicht nahtlose, menschenähnliche KI-Erlebnisse und unterstützt Bildeingaben mit einem Kontextfenster von 200K.",
234
+ "anthropic.claude-3-opus-20240229-v1:0.description": "Claude 3 Opus ist das leistungsstärkste KI-Modell von Anthropic mit modernster Leistung bei hochkomplexen Aufgaben. Es verarbeitet offene Eingaben und neue Szenarien mit außergewöhnlicher Sprachgewandtheit und menschenähnlichem Verständnis und unterstützt Bildeingaben mit einem Kontextfenster von 200K.",
235
+ "anthropic.claude-3-sonnet-20240229-v1:0.description": "Claude 3 Sonnet vereint Intelligenz und Geschwindigkeit für Unternehmensanwendungen und bietet ein starkes Preis-Leistungs-Verhältnis. Es ist als zuverlässiges Arbeitspferd für skalierte KI-Einsätze konzipiert und unterstützt Bildeingaben mit einem Kontextfenster von 200K.",
236
+ "anthropic.claude-instant-v1.description": "Ein schnelles, kostengünstiges und dennoch leistungsfähiges Modell für alltägliche Chats, Textanalysen, Zusammenfassungen und Dokumentenfragen.",
237
+ "anthropic.claude-v2.description": "Ein vielseitiges Modell für Aufgaben von komplexem Dialog und kreativer Generierung bis hin zu detailliertem Befolgen von Anweisungen.",
238
+ "anthropic.claude-v2:1.description": "Ein aktualisiertes Claude 2 mit verdoppeltem Kontextfenster und verbesserter Zuverlässigkeit, geringerer Halluzinationsrate und evidenzbasierter Genauigkeit für lange Dokumente und RAG.",
239
+ "anthropic/claude-3-haiku.description": "Claude 3 Haiku ist das schnellste Modell von Anthropic, entwickelt für Unternehmensanwendungen mit längeren Eingaben. Es analysiert große Dokumente wie Quartalsberichte, Verträge oder Rechtsfälle schnell und kostengünstig.",
240
+ "anthropic/claude-3-opus.description": "Claude 3 Opus ist das intelligenteste Modell von Anthropic mit marktführender Leistung bei hochkomplexen Aufgaben. Es verarbeitet offene Eingaben und neue Szenarien mit außergewöhnlicher Sprachgewandtheit und menschenähnlichem Verständnis.",
241
+ "anthropic/claude-3.5-haiku.description": "Claude 3.5 Haiku bietet verbesserte Geschwindigkeit, Genauigkeit beim Programmieren und Werkzeugnutzung – ideal für Szenarien mit hohen Anforderungen an Tempo und Interaktion.",
242
+ "anthropic/claude-3.5-sonnet.description": "Claude 3.5 Sonnet ist das schnelle, effiziente Modell der Sonnet-Familie mit besserer Leistung bei Programmierung und logischem Denken. Einige Versionen werden schrittweise durch Sonnet 3.7 und spätere ersetzt.",
243
+ "anthropic/claude-3.7-sonnet.description": "Claude 3.7 Sonnet ist ein verbessertes Sonnet-Modell mit stärkerem logischen Denken und Programmierfähigkeiten, geeignet für komplexe Unternehmensaufgaben.",
244
+ "anthropic/claude-haiku-4.5.description": "Claude Haiku 4.5 ist das leistungsstarke Schnellmodell von Anthropic mit sehr niedriger Latenz bei gleichzeitig hoher Genauigkeit.",
245
+ "anthropic/claude-opus-4.1.description": "Opus 4.1 ist das High-End-Modell von Anthropic, optimiert für Programmierung, komplexes logisches Denken und lang andauernde Aufgaben.",
246
+ "anthropic/claude-opus-4.5.description": "Claude Opus 4.5 ist das Flaggschiffmodell von Anthropic, das erstklassige Intelligenz mit skalierbarer Leistung für komplexe Aufgaben mit höchster Qualität bei Antworten und logischem Denken vereint.",
247
+ "anthropic/claude-opus-4.description": "Opus 4 ist das Flaggschiffmodell von Anthropic, entwickelt für komplexe Aufgaben und Unternehmensanwendungen.",
248
+ "anthropic/claude-sonnet-4.5.description": "Claude Sonnet 4.5 ist das neueste hybride Modell von Anthropic, optimiert für komplexes logisches Denken und Programmierung.",
249
+ "anthropic/claude-sonnet-4.description": "Claude Sonnet 4 ist ein hybrides Modell von Anthropic mit gemischten Denk- und Nicht-Denkfähigkeiten.",
213
250
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 ist ein offenes LLM für Entwickler, Forscher und Unternehmen. Es wurde entwickelt, um beim Aufbau, Experimentieren und verantwortungsvollen Skalieren generativer KI-Ideen zu unterstützen. Als Teil der Grundlage für globale Innovationsgemeinschaften eignet es sich besonders für Umgebungen mit begrenzten Rechenressourcen, Edge-Geräte und schnellere Trainingszeiten.",
214
251
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Starke Bildverarbeitung bei hochauflösenden Bildern – ideal für visuelle Verständnisanwendungen.",
215
252
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Fortschrittliche Bildverarbeitung für visuelle Agentenanwendungen.",
@@ -215,6 +215,7 @@
215
215
  "settingAgent.name.placeholder": "Agentennamen eingeben",
216
216
  "settingAgent.name.title": "Name",
217
217
  "settingAgent.prompt.placeholder": "Agenteneinstellungen eingeben, / drücken, um das Befehlsmenü zu öffnen",
218
+ "settingAgent.prompt.templatePlaceholder": "#### Ziel\nBeschreiben Sie den Hauptzweck und das Hauptziel dieses Agents.\n\n#### Fähigkeiten\n- Wichtige Kompetenzen auflisten\n- Und spezialisierte Wissensgebiete\n\n#### Arbeitsablauf\n1. Schritt-für-Schritt-Prozess\n2. Wie der Agent Aufgaben angehen soll\n3. Erwartete Interaktionen mit Nutzern\n\n#### Einschränkungen\n- Wichtige zu beachtende Begrenzungen\n- Verhaltensrichtlinien",
218
219
  "settingAgent.prompt.title": "Agentenprofil",
219
220
  "settingAgent.submit": "Agent aktualisieren",
220
221
  "settingAgent.tag.desc": "Agenten-Tags werden in der Agenten-Community angezeigt",
@@ -271,15 +271,28 @@
271
271
  "referral.edit.hint": "Erlaubt 2–8 Buchstaben, Zahlen oder Unterstriche",
272
272
  "referral.edit.placeholder": "Empfehlungscode eingeben",
273
273
  "referral.edit.save": "Speichern",
274
+ "referral.errors.alreadyBound": "Du hast bereits einen Einladungscode eingegeben",
275
+ "referral.errors.backfillExpired": "Der Nachtragezeitraum ist abgelaufen. Nach 3 Tagen nach der Registrierung ist kein Nachtrag mehr möglich",
274
276
  "referral.errors.codeExists": "Dieser Empfehlungscode ist bereits vergeben, bitte wählen Sie einen anderen",
277
+ "referral.errors.invalidCode": "Einladungscode existiert nicht, bitte überprüfe ihn und versuche es erneut",
275
278
  "referral.errors.invalidFormat": "Ungültiges Format, bitte 2–8 Buchstaben, Zahlen oder Unterstriche eingeben",
279
+ "referral.errors.selfReferral": "Du kannst deinen eigenen Einladungscode nicht verwenden",
276
280
  "referral.errors.updateFailed": "Aktualisierung fehlgeschlagen, bitte später erneut versuchen",
277
281
  "referral.inviteCode.description": "Teilen Sie Ihren exklusiven Empfehlungscode, um Freunde einzuladen",
278
282
  "referral.inviteCode.title": "Mein Empfehlungscode",
279
283
  "referral.inviteLink.description": "Link kopieren und mit Freunden teilen. Nach Registrierung erhalten Sie Belohnungen",
280
284
  "referral.inviteLink.title": "Empfehlungslink",
285
+ "referral.rules.backfill.alreadyBound": "Du hast bereits einen Einladungscode eingegeben",
286
+ "referral.rules.backfill.description": "Einladungscode vergessen? Du kannst ihn innerhalb von 3 Tagen nach der Registrierung nachtragen",
287
+ "referral.rules.backfill.expiredTip": "Der Nachtragezeitraum ist abgelaufen. Nach 3 Tagen nach der Registrierung ist kein Nachtrag mehr möglich",
288
+ "referral.rules.backfill.link": "Einladungscode nachtragen",
289
+ "referral.rules.backfill.placeholder": "Einladungscode eingeben",
290
+ "referral.rules.backfill.submit": "Bestätigen",
291
+ "referral.rules.backfill.success": "Einladungscode erfolgreich eingegeben",
292
+ "referral.rules.backfill.title": "Einladungscode nachtragen",
281
293
  "referral.rules.description": "Erfahren Sie mehr über die Regeln des Empfehlungsprogramms",
282
294
  "referral.rules.expiry": "Gültigkeit: Credits verfallen nach 100 Tagen Inaktivität",
295
+ "referral.rules.missedCode": "Einladungscode verpasst: Du kannst ihn innerhalb von <0>3 Tagen</0> nach der Registrierung nachtragen",
283
296
  "referral.rules.priority": "Verbrauchsreihenfolge: Kostenlose Credits → Abo-Credits → Empfehlungs-Credits → Aufgeladene Credits",
284
297
  "referral.rules.registration": "Registrierung: Eingeladene registrieren sich über Link oder geben Code ein",
285
298
  "referral.rules.reward": "Belohnung: Werber und Geworbener erhalten jeweils {{reward}}M Credits",
@@ -147,6 +147,7 @@
147
147
  "loginGuide.f4": "Explore powerful plugins",
148
148
  "loginGuide.title": "After logging in, you can:",
149
149
  "loginOrSignup": "Log In / Sign Up",
150
+ "profile.account": "Account",
150
151
  "profile.authorizations.actions.revoke": "Revoke",
151
152
  "profile.authorizations.revoke.description": "After revoking, the tool will no longer have access to your data. Re-authorization is required to use it again.",
152
153
  "profile.authorizations.revoke.title": "Revoke authorization for {{name}}?",
@@ -215,7 +215,7 @@
215
215
  "settingAgent.name.placeholder": "Enter agent name",
216
216
  "settingAgent.name.title": "Name",
217
217
  "settingAgent.prompt.placeholder": "Enter agent settings, press / to open the command menu",
218
- "settingAgent.prompt.templatePlaceholder": "#### Goal\nDescribe the main purpose and objective of this agent.\n\n #### Skills\n- List the key capabilities\n- And specialized knowledge areas\n\n#### Workflow\n1. Step-by-step process\n2. How the agent should approach tasks\n3. Expected interactions with users\n\n#### Constraints\n- Important limitations to follow\n- Guidelines for behavior",
218
+ "settingAgent.prompt.templatePlaceholder": "#### Goal\nDescribe the main purpose and objective of this agent.\n\n#### Skills\n- List the key capabilities\n- And specialized knowledge areas\n\n#### Workflow\n1. Step-by-step process\n2. How the agent should approach tasks\n3. Expected interactions with users\n\n#### Constraints\n- Important limitations to follow\n- Guidelines for behavior",
219
219
  "settingAgent.prompt.title": "Agent Profile",
220
220
  "settingAgent.submit": "Update Agent",
221
221
  "settingAgent.tag.desc": "Agent tags will be displayed in the Agent Community",
@@ -147,6 +147,7 @@
147
147
  "loginGuide.f4": "Explore potentes complementos",
148
148
  "loginGuide.title": "Después de iniciar sesión, podrá:",
149
149
  "loginOrSignup": "Iniciar sesión / Registrarse",
150
+ "profile.account": "Cuenta",
150
151
  "profile.authorizations.actions.revoke": "Revocar",
151
152
  "profile.authorizations.revoke.description": "Después de revocar, la herramienta ya no tendrá acceso a sus datos. Se requerirá una nueva autorización para usarla nuevamente.",
152
153
  "profile.authorizations.revoke.title": "¿Revocar autorización para {{name}}?",
@@ -193,6 +193,36 @@
193
193
  "abab6.5g-chat.description": "Diseñado para conversación con personajes multilingües, compatible con generación de diálogos de alta calidad en inglés y otros idiomas.",
194
194
  "abab6.5s-chat.description": "Adecuado para una amplia gama de tareas de PLN, incluida la generación de texto y sistemas de diálogo.",
195
195
  "abab6.5t-chat.description": "Optimizado para conversación con personajes en chino, proporcionando diálogos fluidos que se ajustan a los hábitos de expresión en chino.",
196
+ "accounts/fireworks/models/deepseek-r1.description": "DeepSeek-R1 es un modelo de lenguaje de última generación optimizado con aprendizaje por refuerzo y datos de arranque en frío, que ofrece un rendimiento sobresaliente en razonamiento, matemáticas y programación.",
197
+ "accounts/fireworks/models/deepseek-v3.description": "Un potente modelo de lenguaje Mixture-of-Experts (MoE) de DeepSeek con 671 mil millones de parámetros totales y 37 mil millones de parámetros activos por token.",
198
+ "accounts/fireworks/models/llama-v3-70b-instruct.description": "Meta desarrolló y lanzó la serie de modelos LLM Meta Llama 3, que incluye modelos de generación de texto preentrenados y ajustados por instrucciones en tamaños de 8B y 70B. Los modelos Llama 3 ajustados por instrucciones están optimizados para uso conversacional y superan a muchos modelos de chat abiertos existentes en los principales estándares de la industria.",
199
+ "accounts/fireworks/models/llama-v3-8b-instruct-hf.description": "Los modelos Llama 3 de Meta ajustados por instrucciones están optimizados para uso conversacional y superan a muchos modelos de chat abiertos existentes en los principales estándares de la industria. Llama 3 8B Instruct (versión HF) es la versión original en FP16 de Llama 3 8B Instruct, con resultados esperados que coinciden con la implementación oficial de Hugging Face.",
200
+ "accounts/fireworks/models/llama-v3-8b-instruct.description": "Meta desarrolló y lanzó la serie de modelos LLM Meta Llama 3, una colección de modelos de generación de texto preentrenados y ajustados por instrucciones en tamaños de 8B y 70B. Los modelos Llama 3 ajustados por instrucciones están optimizados para uso conversacional y superan a muchos modelos de chat abiertos existentes en los principales estándares de la industria.",
201
+ "accounts/fireworks/models/llama-v3p1-405b-instruct.description": "Meta Llama 3.1 es una familia de modelos LLM multilingües con modelos de generación preentrenados y ajustados por instrucciones en tamaños de 8B, 70B y 405B. Los modelos de texto ajustados por instrucciones están optimizados para diálogos multilingües y superan a muchos modelos de chat abiertos y cerrados en los principales estándares de la industria. El modelo de 405B es el más potente de la familia Llama 3.1, utilizando inferencia FP8 que se aproxima estrechamente a la implementación de referencia.",
202
+ "accounts/fireworks/models/llama-v3p1-70b-instruct.description": "Meta Llama 3.1 es una familia de modelos LLM multilingües con modelos de generación preentrenados y ajustados por instrucciones en tamaños de 8B, 70B y 405B. Los modelos de texto ajustados por instrucciones están optimizados para diálogos multilingües y superan a muchos modelos de chat abiertos y cerrados en los principales estándares de la industria.",
203
+ "accounts/fireworks/models/llama-v3p1-8b-instruct.description": "Meta Llama 3.1 es una familia de modelos LLM multilingües con modelos de generación preentrenados y ajustados por instrucciones en tamaños de 8B, 70B y 405B. Los modelos de texto ajustados por instrucciones están optimizados para diálogos multilingües y superan a muchos modelos de chat abiertos y cerrados en los principales estándares de la industria.",
204
+ "accounts/fireworks/models/llama-v3p2-11b-vision-instruct.description": "Un modelo de razonamiento visual ajustado por instrucciones de Meta con 11 mil millones de parámetros, optimizado para reconocimiento visual, razonamiento sobre imágenes, generación de descripciones y preguntas y respuestas relacionadas con imágenes. Comprende datos visuales como gráficos y diagramas, y conecta visión y lenguaje generando descripciones textuales de los detalles de las imágenes.",
205
+ "accounts/fireworks/models/llama-v3p2-3b-instruct.description": "Llama 3.2 3B Instruct es un modelo multilingüe ligero de Meta, diseñado para una ejecución eficiente con ventajas significativas en latencia y costo frente a modelos más grandes. Los casos de uso típicos incluyen reescritura de consultas/prompts y asistencia en redacción.",
206
+ "accounts/fireworks/models/llama-v3p2-90b-vision-instruct.description": "Un modelo de razonamiento visual ajustado por instrucciones de Meta con 90 mil millones de parámetros, optimizado para reconocimiento visual, razonamiento sobre imágenes, generación de descripciones y preguntas y respuestas relacionadas con imágenes. Comprende datos visuales como gráficos y diagramas, y conecta visión y lenguaje generando descripciones textuales de los detalles de las imágenes. Nota: este modelo se ofrece actualmente de forma experimental como modelo sin servidor. Para uso en producción, tenga en cuenta que Fireworks podría retirar su despliegue sin previo aviso.",
207
+ "accounts/fireworks/models/llama-v3p3-70b-instruct.description": "Llama 3.3 70B Instruct es la actualización de diciembre del modelo Llama 3.1 70B. Mejora el uso de herramientas, el soporte multilingüe, las matemáticas y la programación respecto a la versión de julio de 2024. Alcanza un rendimiento líder en la industria en razonamiento, matemáticas y seguimiento de instrucciones, ofreciendo un rendimiento comparable al modelo 3.1 405B con ventajas significativas en velocidad y costo.",
208
+ "accounts/fireworks/models/mistral-small-24b-instruct-2501.description": "Un modelo de 24 mil millones de parámetros con capacidades de vanguardia comparables a modelos más grandes.",
209
+ "accounts/fireworks/models/mixtral-8x22b-instruct.description": "Mixtral MoE 8x22B Instruct v0.1 es la versión ajustada por instrucciones de Mixtral MoE 8x22B v0.1, con la API de finalización de chat habilitada.",
210
+ "accounts/fireworks/models/mixtral-8x7b-instruct.description": "Mixtral MoE 8x7B Instruct es la versión ajustada por instrucciones de Mixtral MoE 8x7B, con la API de finalización de chat habilitada.",
211
+ "accounts/fireworks/models/mythomax-l2-13b.description": "Una variante mejorada de MythoMix, posiblemente su forma más refinada, que fusiona MythoLogic-L2 y Huginn mediante una técnica de fusión de tensores altamente experimental. Su naturaleza única lo hace excelente para narración y juegos de rol.",
212
+ "accounts/fireworks/models/phi-3-vision-128k-instruct.description": "Phi-3-Vision-128K-Instruct es un modelo multimodal ligero y de última generación construido a partir de datos sintéticos y conjuntos de datos públicos seleccionados, centrado en datos de texto y visión de alta calidad y con gran carga de razonamiento. Pertenece a la familia Phi-3, con una versión multimodal que admite una longitud de contexto de 128K (en tokens). El modelo se somete a mejoras rigurosas, incluyendo ajuste supervisado y optimización directa de preferencias, para garantizar un seguimiento preciso de instrucciones y sólidas medidas de seguridad.",
213
+ "accounts/fireworks/models/qwen-qwq-32b-preview.description": "El modelo Qwen QwQ se centra en avanzar en el razonamiento de IA, demostrando que los modelos abiertos pueden rivalizar con los modelos cerrados de vanguardia en razonamiento. QwQ-32B-Preview es una versión experimental que iguala a o1 y supera a GPT-4o y Claude 3.5 Sonnet en razonamiento y análisis en GPQA, AIME, MATH-500 y LiveCodeBench. Nota: este modelo se ofrece actualmente de forma experimental como modelo sin servidor. Para uso en producción, tenga en cuenta que Fireworks podría retirar su despliegue sin previo aviso.",
214
+ "accounts/fireworks/models/qwen2-vl-72b-instruct.description": "El modelo Qwen-VL de 72B es la última iteración de Alibaba, reflejando casi un año de innovación.",
215
+ "accounts/fireworks/models/qwen2p5-72b-instruct.description": "Qwen2.5 es una serie de modelos LLM solo decodificadores desarrollada por el equipo de Qwen y Alibaba Cloud, que ofrece tamaños de 0.5B, 1.5B, 3B, 7B, 14B, 32B y 72B, con variantes base y ajustadas por instrucciones.",
216
+ "accounts/fireworks/models/qwen2p5-coder-32b-instruct.description": "Qwen2.5-Coder es el modelo LLM más reciente de Qwen diseñado para programación (anteriormente CodeQwen). Nota: este modelo se ofrece actualmente de forma experimental como modelo sin servidor. Para uso en producción, tenga en cuenta que Fireworks podría retirar su despliegue sin previo aviso.",
217
+ "accounts/yi-01-ai/models/yi-large.description": "Yi-Large es un modelo LLM de primer nivel que se sitúa justo por debajo de GPT-4, Gemini 1.5 Pro y Claude 3 Opus en el ranking de LMSYS. Destaca por su capacidad multilingüe, especialmente en español, chino, japonés, alemán y francés. Yi-Large también es amigable para desarrolladores, utilizando el mismo esquema de API que OpenAI para facilitar la integración.",
218
+ "ai21-jamba-1.5-large.description": "Un modelo multilingüe de 398 mil millones de parámetros (94B activos) con una ventana de contexto de 256K, llamadas a funciones, salida estructurada y generación fundamentada.",
219
+ "ai21-jamba-1.5-mini.description": "Un modelo multilingüe de 52 mil millones de parámetros (12B activos) con una ventana de contexto de 256K, llamadas a funciones, salida estructurada y generación fundamentada.",
220
+ "ai21-labs/AI21-Jamba-1.5-Large.description": "Un modelo multilingüe de 398 mil millones de parámetros (94B activos) con una ventana de contexto de 256K, llamadas a funciones, salida estructurada y generación fundamentada.",
221
+ "ai21-labs/AI21-Jamba-1.5-Mini.description": "Un modelo multilingüe de 52 mil millones de parámetros (12B activos) con una ventana de contexto de 256K, llamadas a funciones, salida estructurada y generación fundamentada.",
222
+ "alibaba/qwen-3-14b.description": "Qwen3 es la última generación de la serie Qwen, que ofrece un conjunto completo de modelos densos y MoE. Basado en un entrenamiento exhaustivo, aporta avances en razonamiento, seguimiento de instrucciones, capacidades de agente y soporte multilingüe.",
223
+ "alibaba/qwen-3-235b.description": "Qwen3 es la última generación de la serie Qwen, que ofrece un conjunto completo de modelos densos y MoE. Basado en un entrenamiento exhaustivo, aporta avances en razonamiento, seguimiento de instrucciones, capacidades de agente y soporte multilingüe.",
224
+ "alibaba/qwen-3-30b.description": "Qwen3 es la última generación de la serie Qwen, que ofrece un conjunto completo de modelos densos y MoE. Basado en un entrenamiento exhaustivo, aporta avances en razonamiento, seguimiento de instrucciones, capacidades de agente y soporte multilingüe.",
225
+ "alibaba/qwen-3-32b.description": "Qwen3 es la última generación de la serie Qwen, que ofrece un conjunto completo de modelos densos y MoE. Basado en un entrenamiento exhaustivo, aporta avances en razonamiento, seguimiento de instrucciones, capacidades de agente y soporte multilingüe.",
196
226
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 es un modelo LLM abierto para desarrolladores, investigadores y empresas, diseñado para ayudarles a construir, experimentar y escalar de manera responsable ideas de IA generativa. Como parte de la base para la innovación de la comunidad global, es ideal para entornos con recursos y capacidad de cómputo limitados, dispositivos en el borde y tiempos de entrenamiento más rápidos.",
197
227
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Razonamiento visual sólido en imágenes de alta resolución, ideal para aplicaciones de comprensión visual.",
198
228
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Razonamiento visual avanzado para aplicaciones de agentes con comprensión visual.",
@@ -215,6 +215,7 @@
215
215
  "settingAgent.name.placeholder": "Introduce el nombre del agente",
216
216
  "settingAgent.name.title": "Nombre",
217
217
  "settingAgent.prompt.placeholder": "Introduce la configuración del agente, presiona / para abrir el menú de comandos",
218
+ "settingAgent.prompt.templatePlaceholder": "#### Objetivo\nDescribe el propósito principal y el objetivo de este agente.\n\n#### Habilidades\n- Enumera las capacidades clave\n- Y las áreas de conocimiento especializado\n\n#### Flujo de trabajo\n1. Proceso paso a paso\n2. Cómo debe abordar el agente las tareas\n3. Interacciones esperadas con los usuarios\n\n#### Restricciones\n- Limitaciones importantes a seguir\n- Directrices para el comportamiento",
218
219
  "settingAgent.prompt.title": "Perfil del Agente",
219
220
  "settingAgent.submit": "Actualizar Agente",
220
221
  "settingAgent.tag.desc": "Las etiquetas del agente se mostrarán en la Comunidad de Agentes",
@@ -271,15 +271,28 @@
271
271
  "referral.edit.hint": "Soporta 2-8 letras, números o guiones bajos",
272
272
  "referral.edit.placeholder": "Introduce el código de referido",
273
273
  "referral.edit.save": "Guardar",
274
+ "referral.errors.alreadyBound": "Ya has vinculado un código de invitación",
275
+ "referral.errors.backfillExpired": "El período de recuperación ha expirado. No se puede recuperar después de 3 días desde el registro",
274
276
  "referral.errors.codeExists": "Este código ya está en uso, por favor elige otro",
277
+ "referral.errors.invalidCode": "El código de invitación no existe, por favor verifica e inténtalo de nuevo",
275
278
  "referral.errors.invalidFormat": "Formato inválido, introduce 2-8 letras, números o guiones bajos",
279
+ "referral.errors.selfReferral": "No puedes usar tu propio código de invitación",
276
280
  "referral.errors.updateFailed": "Error al actualizar, por favor intenta más tarde",
277
281
  "referral.inviteCode.description": "Comparte tu código exclusivo para invitar amigos a registrarse",
278
282
  "referral.inviteCode.title": "Mi Código de Referido",
279
283
  "referral.inviteLink.description": "Copia el enlace y compártelo con amigos. Completa el registro para recibir recompensas",
280
284
  "referral.inviteLink.title": "Enlace de Referido",
285
+ "referral.rules.backfill.alreadyBound": "Ya has vinculado un código de invitación",
286
+ "referral.rules.backfill.description": "¿Olvidaste ingresar el código de invitación? Puedes recuperarlo dentro de los 3 días posteriores al registro",
287
+ "referral.rules.backfill.expiredTip": "El período de recuperación ha expirado. No se puede recuperar después de 3 días desde el registro",
288
+ "referral.rules.backfill.link": "Recuperar código de invitación",
289
+ "referral.rules.backfill.placeholder": "Ingresa el código de invitación",
290
+ "referral.rules.backfill.submit": "Confirmar vinculación",
291
+ "referral.rules.backfill.success": "Código de invitación vinculado con éxito",
292
+ "referral.rules.backfill.title": "Recuperar código de invitación",
281
293
  "referral.rules.description": "Conoce las reglas del programa de recompensas por referidos",
282
294
  "referral.rules.expiry": "Validez de créditos: los créditos se eliminarán tras 100 días de inactividad",
295
+ "referral.rules.missedCode": "Código de invitación perdido: Puedes <0>recuperarlo</0> dentro de los 3 días posteriores al registro",
283
296
  "referral.rules.priority": "Prioridad de consumo: Créditos gratuitos → Créditos de suscripción → Créditos por referidos → Créditos recargados",
284
297
  "referral.rules.registration": "Método de registro: los invitados se registran mediante el enlace o ingresan el código en la página de registro",
285
298
  "referral.rules.reward": "Recompensa: el referente y el invitado reciben {{reward}}M créditos cada uno",
@@ -147,6 +147,7 @@
147
147
  "loginGuide.f4": "کشف افزونه‌های قدرتمند",
148
148
  "loginGuide.title": "پس از ورود می‌توانید:",
149
149
  "loginOrSignup": "ورود / ثبت‌نام",
150
+ "profile.account": "حساب کاربری",
150
151
  "profile.authorizations.actions.revoke": "لغو دسترسی",
151
152
  "profile.authorizations.revoke.description": "پس از لغو، این ابزار دیگر به داده‌های شما دسترسی نخواهد داشت. برای استفاده مجدد، نیاز به مجوزدهی دوباره است.",
152
153
  "profile.authorizations.revoke.title": "آیا می‌خواهید دسترسی {{name}} را لغو کنید؟",