@lobehub/lobehub 2.0.0-next.183 → 2.0.0-next.185
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/auth.json +1 -0
- package/locales/ar/models.json +40 -0
- package/locales/ar/setting.json +1 -0
- package/locales/ar/subscription.json +13 -0
- package/locales/bg-BG/auth.json +1 -0
- package/locales/bg-BG/models.json +22 -0
- package/locales/bg-BG/setting.json +1 -0
- package/locales/bg-BG/subscription.json +13 -0
- package/locales/de-DE/auth.json +1 -0
- package/locales/de-DE/models.json +37 -0
- package/locales/de-DE/setting.json +1 -0
- package/locales/de-DE/subscription.json +13 -0
- package/locales/en-US/auth.json +1 -0
- package/locales/en-US/setting.json +1 -1
- package/locales/es-ES/auth.json +1 -0
- package/locales/es-ES/models.json +30 -0
- package/locales/es-ES/setting.json +1 -0
- package/locales/es-ES/subscription.json +13 -0
- package/locales/fa-IR/auth.json +1 -0
- package/locales/fa-IR/models.json +31 -0
- package/locales/fa-IR/setting.json +1 -0
- package/locales/fa-IR/subscription.json +13 -0
- package/locales/fr-FR/auth.json +1 -0
- package/locales/fr-FR/models.json +17 -0
- package/locales/fr-FR/setting.json +1 -0
- package/locales/fr-FR/subscription.json +13 -0
- package/locales/it-IT/auth.json +1 -0
- package/locales/it-IT/models.json +31 -0
- package/locales/it-IT/setting.json +1 -0
- package/locales/it-IT/subscription.json +13 -0
- package/locales/ja-JP/auth.json +1 -0
- package/locales/ja-JP/models.json +1 -0
- package/locales/ja-JP/setting.json +1 -0
- package/locales/ja-JP/subscription.json +13 -0
- package/locales/ko-KR/auth.json +1 -0
- package/locales/ko-KR/models.json +39 -0
- package/locales/ko-KR/setting.json +1 -0
- package/locales/ko-KR/subscription.json +13 -0
- package/locales/nl-NL/auth.json +1 -0
- package/locales/nl-NL/models.json +35 -0
- package/locales/nl-NL/setting.json +1 -0
- package/locales/nl-NL/subscription.json +13 -0
- package/locales/pl-PL/auth.json +1 -0
- package/locales/pl-PL/models.json +12 -0
- package/locales/pl-PL/setting.json +1 -0
- package/locales/pl-PL/subscription.json +13 -0
- package/locales/pt-BR/auth.json +1 -0
- package/locales/pt-BR/models.json +1 -0
- package/locales/pt-BR/setting.json +1 -0
- package/locales/pt-BR/subscription.json +13 -0
- package/locales/ru-RU/auth.json +1 -0
- package/locales/ru-RU/models.json +32 -0
- package/locales/ru-RU/setting.json +1 -0
- package/locales/ru-RU/subscription.json +13 -0
- package/locales/tr-TR/auth.json +1 -0
- package/locales/tr-TR/models.json +20 -0
- package/locales/tr-TR/setting.json +1 -0
- package/locales/tr-TR/subscription.json +13 -0
- package/locales/vi-VN/auth.json +1 -0
- package/locales/vi-VN/models.json +39 -0
- package/locales/vi-VN/setting.json +1 -0
- package/locales/vi-VN/subscription.json +13 -0
- package/locales/zh-CN/auth.json +1 -0
- package/locales/zh-CN/models.json +49 -0
- package/locales/zh-CN/setting.json +1 -1
- package/locales/zh-TW/auth.json +1 -0
- package/locales/zh-TW/models.json +23 -0
- package/locales/zh-TW/setting.json +1 -0
- package/locales/zh-TW/subscription.json +13 -0
- package/package.json +1 -1
- package/packages/builtin-tool-local-system/package.json +10 -0
- package/packages/builtin-tool-local-system/src/client/Inspector/EditLocalFile/index.tsx +81 -0
- package/packages/builtin-tool-local-system/src/client/Inspector/GlobLocalFiles/index.tsx +73 -0
- package/packages/builtin-tool-local-system/src/client/Inspector/GrepContent/index.tsx +73 -0
- package/packages/builtin-tool-local-system/src/client/Inspector/ReadLocalFile/index.tsx +81 -0
- package/packages/builtin-tool-local-system/src/client/Inspector/RunCommand/index.tsx +80 -0
- package/packages/builtin-tool-local-system/src/client/Inspector/SearchLocalFiles/index.tsx +71 -0
- package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Inspector/index.ts +1 -2
- package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Intervention/index.ts +1 -2
- package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/ListFiles/Result.tsx +2 -1
- package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/index.ts +1 -2
- package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Streaming/index.ts +1 -2
- package/packages/builtin-tool-local-system/src/client/index.ts +20 -0
- package/src/app/[variants]/(main)/chat/_layout/Sidebar/Topic/index.tsx +3 -3
- package/src/app/[variants]/(main)/group/_layout/Sidebar/Topic/index.tsx +3 -3
- package/src/app/[variants]/(main)/home/_layout/Body/Agent/index.tsx +3 -3
- package/src/app/[variants]/(main)/home/features/RecentPage/index.tsx +3 -2
- package/src/app/[variants]/(main)/home/features/RecentResource/index.tsx +3 -2
- package/src/app/[variants]/(main)/home/features/RecentTopic/index.tsx +3 -3
- package/src/components/NeuralNetworkLoading/index.tsx +181 -0
- package/src/libs/swr/index.ts +1 -8
- package/src/store/image/utils/size.test.ts +245 -0
- package/src/tools/inspectors.ts +6 -5
- package/src/tools/interventions.ts +5 -4
- package/src/tools/placeholders.ts +9 -7
- package/src/tools/renders.ts +5 -3
- package/src/tools/streamings.ts +6 -5
- package/src/tools/local-system/Inspector/EditLocalFile/index.tsx +0 -55
- package/src/tools/local-system/Inspector/GlobLocalFiles/index.tsx +0 -59
- package/src/tools/local-system/Inspector/GrepContent/index.tsx +0 -59
- package/src/tools/local-system/Inspector/ReadLocalFile/index.tsx +0 -55
- package/src/tools/local-system/Inspector/RunCommand/index.tsx +0 -66
- package/src/tools/local-system/Inspector/SearchLocalFiles/index.tsx +0 -59
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Intervention/EditLocalFile/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Intervention/MoveLocalFiles/MoveFileItem.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Intervention/MoveLocalFiles/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Intervention/RunCommand/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Intervention/WriteFile/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Placeholder/ListFiles.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Placeholder/SearchFiles.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/EditLocalFile/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/ListFiles/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/MoveLocalFiles/MoveFileItem.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/MoveLocalFiles/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/ReadLocalFile/ReadFileSkeleton.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/ReadLocalFile/ReadFileView.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/ReadLocalFile/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/RenameLocalFile/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/RunCommand/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/SearchFiles/Result.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/SearchFiles/SearchQuery/SearchView.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/SearchFiles/SearchQuery/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/SearchFiles/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Render/WriteFile/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/Streaming/RunCommand/index.tsx +0 -0
- /package/{src/tools/local-system → packages/builtin-tool-local-system/src/client}/components/FileItem.tsx +0 -0
|
@@ -179,6 +179,37 @@
|
|
|
179
179
|
"Skylark2-pro-4k.description": "مدل نسل دوم Skylark. نسخه Skylark2-pro دقت بالاتری برای تولید متون پیچیده مانند نگارش حرفهای، رماننویسی و ترجمه با کیفیت بالا ارائه میدهد و از پنجره متنی ۴ هزار توکن پشتیبانی میکند.",
|
|
180
180
|
"Skylark2-pro-character-4k.description": "مدل نسل دوم Skylark. نسخه Skylark2-pro-character در ایفای نقش و گفتوگو عملکرد برجستهای دارد و سبکهای شخصیتی متمایز و گفتوگوی طبیعی را برای چتباتها، دستیارهای مجازی و خدمات مشتری ارائه میدهد، با پاسخدهی سریع.",
|
|
181
181
|
"Skylark2-pro-turbo-8k.description": "مدل نسل دوم Skylark. نسخه Skylark2-pro-turbo-8k استنتاج سریعتری با هزینه کمتر ارائه میدهد و از پنجره متنی ۸ هزار توکن پشتیبانی میکند.",
|
|
182
|
+
"THUDM/GLM-4-32B-0414.description": "GLM-4-32B-0414 یک مدل نسل جدید GLM با ۳۲ میلیارد پارامتر است که از نظر عملکرد با مدلهای OpenAI GPT و سری DeepSeek V3/R1 قابل مقایسه است.",
|
|
183
|
+
"THUDM/GLM-4-9B-0414.description": "GLM-4-9B-0414 یک مدل ۹ میلیاردی GLM است که تکنیکهای GLM-4-32B را به ارث برده و در عین حال استقرار سبکتری را ارائه میدهد. این مدل در تولید کد، طراحی وب، تولید SVG و نگارش مبتنی بر جستجو عملکرد خوبی دارد.",
|
|
184
|
+
"THUDM/GLM-4.1V-9B-Thinking.description": "GLM-4.1V-9B-Thinking یک مدل VLM متنباز از Zhipu AI و آزمایشگاه KEG دانشگاه Tsinghua است که برای درک پیچیده چندرسانهای طراحی شده است. این مدل بر پایه GLM-4-9B-0414 ساخته شده و با افزودن زنجیره تفکر و یادگیری تقویتی، توانایی استدلال میانوجهی و پایداری را بهطور قابل توجهی بهبود میبخشد.",
|
|
185
|
+
"THUDM/GLM-Z1-32B-0414.description": "GLM-Z1-32B-0414 یک مدل استدلال عمیق است که بر پایه GLM-4-32B-0414 با دادههای شروع سرد و یادگیری تقویتی گسترده ساخته شده و آموزش بیشتری در زمینه ریاضی، کدنویسی و منطق دیده است. این مدل توانایی حل مسائل پیچیده و ریاضی را نسبت به مدل پایه بهطور چشمگیری افزایش میدهد.",
|
|
186
|
+
"THUDM/GLM-Z1-9B-0414.description": "GLM-Z1-9B-0414 یک مدل GLM کوچک با ۹ میلیارد پارامتر است که در عین حفظ مزایای متنباز، عملکرد چشمگیری ارائه میدهد. این مدل در استدلال ریاضی و وظایف عمومی بسیار قوی عمل کرده و در میان مدلهای همرده خود پیشتاز است.",
|
|
187
|
+
"THUDM/GLM-Z1-Rumination-32B-0414.description": "GLM-Z1-Rumination-32B-0414 یک مدل استدلال عمیق با قابلیت تفکر تأملی است (با مدلهای تحقیق عمیق OpenAI مقایسه شده است). برخلاف مدلهای معمول تفکر عمیق، این مدل زمان بیشتری را صرف تأمل میکند تا مسائل باز و پیچیدهتری را حل کند.",
|
|
188
|
+
"THUDM/glm-4-9b-chat.description": "GLM-4-9B-Chat مدل متنباز GLM-4 از Zhipu AI است. این مدل در زمینههای معناشناسی، ریاضی، استدلال، کدنویسی و دانش عملکرد قوی دارد. علاوه بر گفتوگوی چندمرحلهای، از مرور وب، اجرای کد، فراخوانی ابزارهای سفارشی و استدلال متون بلند پشتیبانی میکند. این مدل از ۲۶ زبان (از جمله چینی، انگلیسی، ژاپنی، کرهای و آلمانی) پشتیبانی میکند و در آزمونهایی مانند AlignBench-v2، MT-Bench، MMLU و C-Eval عملکرد خوبی دارد. همچنین تا ۱۲۸ هزار توکن زمینه را برای کاربردهای علمی و تجاری پشتیبانی میکند.",
|
|
189
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B.description": "QwenLong-L1-32B نخستین مدل استدلال با زمینه بلند (LRM) است که با یادگیری تقویتی آموزش دیده و برای استدلال متون بلند بهینهسازی شده است. یادگیری تقویتی با گسترش تدریجی زمینه، انتقال پایدار از زمینههای کوتاه به بلند را ممکن میسازد. این مدل در هفت معیار پرسشوپاسخ اسناد بلند از مدلهایی مانند OpenAI-o3-mini و Qwen3-235B-A22B پیشی گرفته و با Claude-3.7-Sonnet-Thinking رقابت میکند. در زمینه ریاضی، منطق و استدلال چندمرحلهای بسیار قوی عمل میکند.",
|
|
190
|
+
"Yi-34B-Chat.description": "Yi-1.5-34B ضمن حفظ تواناییهای زبانی قوی سری Yi، با آموزش افزایشی بر روی ۵۰۰ میلیارد توکن با کیفیت، تواناییهای منطق ریاضی و کدنویسی را بهطور قابل توجهی بهبود داده است.",
|
|
191
|
+
"abab5.5-chat.description": "برای سناریوهای بهرهوری طراحی شده است و توانایی انجام وظایف پیچیده و تولید متن کارآمد برای استفاده حرفهای را دارد.",
|
|
192
|
+
"abab5.5s-chat.description": "برای گفتوگوی شخصیتمحور به زبان چینی طراحی شده و گفتوگوی با کیفیت بالا به زبان چینی را در کاربردهای مختلف ارائه میدهد.",
|
|
193
|
+
"abab6.5g-chat.description": "برای گفتوگوی شخصیتمحور چندزبانه طراحی شده و تولید گفتوگوی با کیفیت به زبان انگلیسی و سایر زبانها را پشتیبانی میکند.",
|
|
194
|
+
"abab6.5s-chat.description": "برای طیف گستردهای از وظایف پردازش زبان طبیعی مناسب است، از جمله تولید متن و سیستمهای گفتوگو.",
|
|
195
|
+
"abab6.5t-chat.description": "برای گفتوگوی شخصیتمحور به زبان چینی بهینهسازی شده و گفتوگویی روان و منطبق با عادات بیانی زبان چینی ارائه میدهد.",
|
|
196
|
+
"accounts/fireworks/models/deepseek-r1.description": "DeepSeek-R1 یک مدل زبان بزرگ پیشرفته است که با یادگیری تقویتی و دادههای شروع سرد بهینهسازی شده و عملکرد عالی در استدلال، ریاضی و کدنویسی دارد.",
|
|
197
|
+
"accounts/fireworks/models/deepseek-v3.description": "مدلی قدرتمند از نوع Mixture-of-Experts (MoE) از DeepSeek با ۶۷۱ میلیارد پارامتر کل و ۳۷ میلیارد پارامتر فعال در هر توکن.",
|
|
198
|
+
"accounts/fireworks/models/llama-v3-70b-instruct.description": "Meta سری مدلهای Meta Llama 3 را توسعه داده و منتشر کرده است که شامل مدلهای تولید متن پیشآموزشدیده و تنظیمشده برای دستورالعمل در اندازههای ۸B و ۷۰B میباشد. مدلهای تنظیمشده برای دستورالعمل Llama 3 برای استفاده در گفتوگو بهینهسازی شدهاند و در بسیاری از معیارهای صنعتی از مدلهای متنباز موجود پیشی میگیرند.",
|
|
199
|
+
"accounts/fireworks/models/llama-v3-8b-instruct-hf.description": "مدلهای تنظیمشده برای دستورالعمل Meta Llama 3 برای استفاده در گفتوگو بهینهسازی شدهاند و در بسیاری از معیارهای صنعتی از مدلهای متنباز موجود پیشی میگیرند. Llama 3 8B Instruct (نسخه HF) نسخه اصلی FP16 از Llama 3 8B Instruct است و نتایج آن با پیادهسازی رسمی Hugging Face مطابقت دارد.",
|
|
200
|
+
"accounts/fireworks/models/llama-v3-8b-instruct.description": "Meta سری مدلهای Meta Llama 3 را توسعه داده و منتشر کرده است که شامل مدلهای تولید متن پیشآموزشدیده و تنظیمشده برای دستورالعمل در اندازههای ۸B و ۷۰B میباشد. مدلهای تنظیمشده برای دستورالعمل Llama 3 برای استفاده در گفتوگو بهینهسازی شدهاند و در بسیاری از معیارهای صنعتی از مدلهای متنباز موجود پیشی میگیرند.",
|
|
201
|
+
"accounts/fireworks/models/llama-v3p1-405b-instruct.description": "Meta Llama 3.1 یک خانواده چندزبانه از مدلهای زبان بزرگ است که شامل مدلهای تولید متن پیشآموزشدیده و تنظیمشده برای دستورالعمل در اندازههای ۸B، ۷۰B و ۴۰۵B میباشد. مدلهای تنظیمشده برای دستورالعمل برای گفتوگوی چندزبانه بهینهسازی شدهاند و در بسیاری از معیارهای صنعتی از مدلهای متنباز و بسته پیشی میگیرند. مدل ۴۰۵B قدرتمندترین مدل در خانواده Llama 3.1 است و از استنتاج FP8 استفاده میکند که با پیادهسازی مرجع مطابقت دارد.",
|
|
202
|
+
"accounts/fireworks/models/llama-v3p1-70b-instruct.description": "Meta Llama 3.1 یک خانواده چندزبانه از مدلهای زبان بزرگ است که شامل مدلهای تولید متن پیشآموزشدیده و تنظیمشده برای دستورالعمل در اندازههای ۸B، ۷۰B و ۴۰۵B میباشد. مدلهای تنظیمشده برای دستورالعمل برای گفتوگوی چندزبانه بهینهسازی شدهاند و در بسیاری از معیارهای صنعتی از مدلهای متنباز و بسته پیشی میگیرند.",
|
|
203
|
+
"accounts/fireworks/models/llama-v3p1-8b-instruct.description": "Meta Llama 3.1 یک خانواده چندزبانه از مدلهای زبان بزرگ است که شامل مدلهای تولید متن پیشآموزشدیده و تنظیمشده برای دستورالعمل در اندازههای ۸B، ۷۰B و ۴۰۵B میباشد. مدلهای تنظیمشده برای دستورالعمل برای گفتوگوی چندزبانه بهینهسازی شدهاند و در بسیاری از معیارهای صنعتی از مدلهای متنباز و بسته پیشی میگیرند.",
|
|
204
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct.description": "مدل استدلال تصویری تنظیمشده برای دستورالعمل از Meta با ۱۱ میلیارد پارامتر، بهینهسازیشده برای شناسایی بصری، استدلال تصویری، تولید کپشن و پرسشوپاسخ مرتبط با تصویر. این مدل دادههای بصری مانند نمودارها و گرافها را درک میکند و با تولید توصیفهای متنی از جزئیات تصویر، بینایی و زبان را به هم پیوند میدهد.",
|
|
205
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct.description": "Llama 3.2 3B Instruct یک مدل چندزبانه سبک از Meta است که برای زمان اجرای کارآمد طراحی شده و نسبت به مدلهای بزرگتر تأخیر و هزینه کمتری دارد. موارد استفاده معمول شامل بازنویسی پرسوجو/پرامپت و کمک به نگارش است.",
|
|
206
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct.description": "مدل استدلال تصویری تنظیمشده برای دستورالعمل از Meta با ۹۰ میلیارد پارامتر، بهینهسازیشده برای شناسایی بصری، استدلال تصویری، تولید کپشن و پرسشوپاسخ مرتبط با تصویر. این مدل دادههای بصری مانند نمودارها و گرافها را درک میکند و با تولید توصیفهای متنی از جزئیات تصویر، بینایی و زبان را به هم پیوند میدهد. توجه: این مدل در حال حاضر بهصورت آزمایشی بهعنوان مدل بدون سرور ارائه میشود. برای استفاده در تولید، توجه داشته باشید که Fireworks ممکن است استقرار آن را بهزودی متوقف کند.",
|
|
207
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct.description": "Llama 3.3 70B Instruct بهروزرسانی دسامبر برای Llama 3.1 70B است. این مدل استفاده از ابزار، پشتیبانی از متن چندزبانه، ریاضی و کدنویسی را نسبت به نسخه جولای ۲۰۲۴ بهبود میبخشد. عملکردی در سطح پیشرو در صنعت در استدلال، ریاضی و پیروی از دستورالعمل ارائه میدهد و عملکردی قابل مقایسه با 3.1 405B با مزایای قابل توجه در سرعت و هزینه دارد.",
|
|
208
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501.description": "مدلی با ۲۴ میلیارد پارامتر و توانایی پیشرفته که با مدلهای بزرگتر قابل مقایسه است.",
|
|
209
|
+
"accounts/fireworks/models/mixtral-8x22b-instruct.description": "Mixtral MoE 8x22B Instruct v0.1 نسخه تنظیمشده برای دستورالعمل از Mixtral MoE 8x22B v0.1 است که API تکمیل گفتوگو در آن فعال شده است.",
|
|
210
|
+
"accounts/fireworks/models/mixtral-8x7b-instruct.description": "Mixtral MoE 8x7B Instruct نسخه تنظیمشده برای دستورالعمل از Mixtral MoE 8x7B است که API تکمیل گفتوگو در آن فعال شده است.",
|
|
211
|
+
"accounts/fireworks/models/mythomax-l2-13b.description": "نسخه بهبودیافتهای از MythoMix که احتمالاً شکل پالایششدهتری از آن است و با ترکیب MythoLogic-L2 و Huginn با تکنیک ادغام تنسور بسیار تجربی ساخته شده است. ماهیت منحصربهفرد آن را برای داستانسرایی و ایفای نقش عالی میسازد.",
|
|
212
|
+
"accounts/fireworks/models/phi-3-vision-128k-instruct.description": "Phi-3-Vision-128K-Instruct یک مدل چندرسانهای سبک و پیشرفته است که از دادههای مصنوعی و مجموعه دادههای عمومی وب انتخابشده ساخته شده و بر دادههای متنی و تصویری با کیفیت بالا و نیازمند استدلال تمرکز دارد. این مدل متعلق به خانواده Phi-3 است و نسخه چندرسانهای آن از طول زمینه ۱۲۸ هزار توکن پشتیبانی میکند. این مدل تحت بهبودهای دقیق از جمله تنظیم نظارتشده و بهینهسازی مستقیم ترجیح قرار گرفته تا پیروی دقیق از دستورالعمل و اقدامات ایمنی قوی را تضمین کند.",
|
|
182
213
|
"meta.llama3-8b-instruct-v1:0.description": "متا لاما ۳ یک مدل زبان باز برای توسعهدهندگان، پژوهشگران و شرکتها است که برای کمک به ساخت، آزمایش و گسترش مسئولانه ایدههای هوش مصنوعی مولد طراحی شده است. این مدل بهعنوان بخشی از زیرساخت نوآوری جامعه جهانی، برای محیطهایی با منابع محدود، دستگاههای لبه و زمانهای آموزش سریع مناسب است.",
|
|
183
214
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "استدلال تصویری قوی بر روی تصاویر با وضوح بالا، مناسب برای برنامههای درک بصری.",
|
|
184
215
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "استدلال تصویری پیشرفته برای برنامههای عامل با قابلیت درک بصری.",
|
|
@@ -215,6 +215,7 @@
|
|
|
215
215
|
"settingAgent.name.placeholder": "نام عامل را وارد کنید",
|
|
216
216
|
"settingAgent.name.title": "نام",
|
|
217
217
|
"settingAgent.prompt.placeholder": "تنظیمات عامل را وارد کنید، برای باز کردن منوی دستورات / را فشار دهید",
|
|
218
|
+
"settingAgent.prompt.templatePlaceholder": "#### هدف\nهدف اصلی و مقصود این عامل را توضیح دهید.\n\n#### مهارتها\n- فهرستی از تواناییهای کلیدی\n- و حوزههای دانش تخصصی\n\n#### جریان کاری\n1. فرآیند گامبهگام\n2. نحوهی برخورد عامل با وظایف\n3. تعاملات مورد انتظار با کاربران\n\n#### محدودیتها\n- محدودیتهای مهمی که باید رعایت شوند\n- دستورالعملهایی برای رفتار",
|
|
218
219
|
"settingAgent.prompt.title": "پروفایل عامل",
|
|
219
220
|
"settingAgent.submit": "بهروزرسانی عامل",
|
|
220
221
|
"settingAgent.tag.desc": "برچسبهای عامل در جامعه عامل نمایش داده میشوند",
|
|
@@ -271,15 +271,28 @@
|
|
|
271
271
|
"referral.edit.hint": "از ۲ تا ۸ حرف، عدد یا زیرخط پشتیبانی میشود",
|
|
272
272
|
"referral.edit.placeholder": "کد دعوت را وارد کنید",
|
|
273
273
|
"referral.edit.save": "ذخیره",
|
|
274
|
+
"referral.errors.alreadyBound": "شما قبلاً یک کد دعوت را وارد کردهاید",
|
|
275
|
+
"referral.errors.backfillExpired": "مهلت تکمیل گذشته است. پس از ۳ روز از ثبتنام امکان تکمیل وجود ندارد",
|
|
274
276
|
"referral.errors.codeExists": "این کد دعوت قبلاً استفاده شده است، لطفاً کد دیگری انتخاب کنید",
|
|
277
|
+
"referral.errors.invalidCode": "کد دعوت وجود ندارد، لطفاً بررسی کرده و دوباره تلاش کنید",
|
|
275
278
|
"referral.errors.invalidFormat": "فرمت کد دعوت نامعتبر است، لطفاً ۲ تا ۸ حرف، عدد یا زیرخط وارد کنید",
|
|
279
|
+
"referral.errors.selfReferral": "نمیتوانید از کد دعوت خودتان استفاده کنید",
|
|
276
280
|
"referral.errors.updateFailed": "بهروزرسانی ناموفق بود، لطفاً بعداً دوباره تلاش کنید",
|
|
277
281
|
"referral.inviteCode.description": "کد دعوت اختصاصی خود را به اشتراک بگذارید تا دوستان را به ثبتنام دعوت کنید",
|
|
278
282
|
"referral.inviteCode.title": "کد دعوت من",
|
|
279
283
|
"referral.inviteLink.description": "لینک را کپی کرده و با دوستان به اشتراک بگذارید. پس از ثبتنام، پاداش دریافت کنید",
|
|
280
284
|
"referral.inviteLink.title": "لینک دعوت",
|
|
285
|
+
"referral.rules.backfill.alreadyBound": "شما قبلاً یک کد دعوت را وارد کردهاید",
|
|
286
|
+
"referral.rules.backfill.description": "کد دعوت را فراموش کردهاید؟ میتوانید تا ۳ روز پس از ثبتنام آن را وارد کنید",
|
|
287
|
+
"referral.rules.backfill.expiredTip": "مهلت تکمیل گذشته است. پس از ۳ روز از ثبتنام امکان تکمیل وجود ندارد",
|
|
288
|
+
"referral.rules.backfill.link": "تکمیل کد دعوت",
|
|
289
|
+
"referral.rules.backfill.placeholder": "کد دعوت را وارد کنید",
|
|
290
|
+
"referral.rules.backfill.submit": "تأیید اتصال",
|
|
291
|
+
"referral.rules.backfill.success": "کد دعوت با موفقیت ثبت شد",
|
|
292
|
+
"referral.rules.backfill.title": "تکمیل کد دعوت",
|
|
281
293
|
"referral.rules.description": "با قوانین برنامه پاداش دعوت آشنا شوید",
|
|
282
294
|
"referral.rules.expiry": "اعتبار پاداش: اعتبارات دعوت پس از ۱۰۰ روز عدم فعالیت کاربر حذف میشوند",
|
|
295
|
+
"referral.rules.missedCode": "کد دعوت را وارد نکردهاید: میتوانید تا <0>۳ روز پس از ثبتنام</0> آن را وارد کنید",
|
|
283
296
|
"referral.rules.priority": "اولویت مصرف اعتبار: اعتبارات رایگان → اعتبارات اشتراک → اعتبارات دعوت → اعتبارات شارژشده",
|
|
284
297
|
"referral.rules.registration": "روش ثبتنام: کاربران دعوتشده از طریق لینک دعوت ثبتنام میکنند یا کد دعوت را در صفحه ثبتنام وارد میکنند",
|
|
285
298
|
"referral.rules.reward": "پاداش: دعوتکننده و دعوتشونده هرکدام {{reward}}M اعتبار دریافت میکنند",
|
package/locales/fr-FR/auth.json
CHANGED
|
@@ -147,6 +147,7 @@
|
|
|
147
147
|
"loginGuide.f4": "Explorez des plugins puissants",
|
|
148
148
|
"loginGuide.title": "Après connexion, vous pouvez :",
|
|
149
149
|
"loginOrSignup": "Connexion / Inscription",
|
|
150
|
+
"profile.account": "Compte",
|
|
150
151
|
"profile.authorizations.actions.revoke": "Révoquer",
|
|
151
152
|
"profile.authorizations.revoke.description": "Après révocation, l'outil n'aura plus accès à vos données. Une nouvelle autorisation sera nécessaire pour l'utiliser à nouveau.",
|
|
152
153
|
"profile.authorizations.revoke.title": "Révoquer l'autorisation pour {{name}} ?",
|
|
@@ -230,6 +230,23 @@
|
|
|
230
230
|
"amazon/titan-embed-text-v2.description": "Amazon Titan Text Embeddings V2 est un modèle d'embedding multilingue léger et efficace prenant en charge les dimensions 1024, 512 et 256.",
|
|
231
231
|
"anthropic.claude-3-5-sonnet-20240620-v1:0.description": "Claude 3.5 Sonnet établit une nouvelle norme dans l'industrie, surpassant ses concurrents et Claude 3 Opus dans de nombreuses évaluations tout en conservant une vitesse et un coût intermédiaires.",
|
|
232
232
|
"anthropic.claude-3-5-sonnet-20241022-v2:0.description": "Claude 3.5 Sonnet établit une nouvelle norme dans l'industrie, surpassant ses concurrents et Claude 3 Opus dans de nombreuses évaluations tout en conservant une vitesse et un coût intermédiaires.",
|
|
233
|
+
"anthropic.claude-3-haiku-20240307-v1:0.description": "Claude 3 Haiku est le modèle le plus rapide et le plus compact d’Anthropic, offrant des réponses quasi instantanées aux requêtes simples. Il permet des interactions fluides et naturelles avec l’IA, et prend en charge l’entrée d’images avec une fenêtre de contexte de 200 000 tokens.",
|
|
234
|
+
"anthropic.claude-3-opus-20240229-v1:0.description": "Claude 3 Opus est le modèle d’IA le plus puissant d’Anthropic, offrant des performances de pointe sur des tâches hautement complexes. Il gère les requêtes ouvertes et les scénarios inédits avec une grande fluidité et une compréhension proche de l’humain, et prend en charge l’entrée d’images avec une fenêtre de contexte de 200 000 tokens.",
|
|
235
|
+
"anthropic.claude-3-sonnet-20240229-v1:0.description": "Claude 3 Sonnet allie intelligence et rapidité pour les charges de travail en entreprise, offrant un excellent rapport qualité-prix. Conçu comme un modèle fiable pour les déploiements IA à grande échelle, il prend en charge l’entrée d’images avec une fenêtre de contexte de 200 000 tokens.",
|
|
236
|
+
"anthropic.claude-instant-v1.description": "Un modèle rapide, économique et performant pour les conversations quotidiennes, l’analyse de texte, les résumés et les questions-réponses sur documents.",
|
|
237
|
+
"anthropic.claude-v2.description": "Un modèle très performant pour des tâches variées, allant du dialogue complexe à la génération créative, en passant par le suivi précis d’instructions.",
|
|
238
|
+
"anthropic.claude-v2:1.description": "Une version mise à jour de Claude 2 avec une fenêtre de contexte doublée et une fiabilité améliorée, réduisant les hallucinations et augmentant la précision fondée sur des preuves pour les documents longs et le RAG.",
|
|
239
|
+
"anthropic/claude-3-haiku.description": "Claude 3 Haiku est le modèle le plus rapide d’Anthropic, conçu pour les charges de travail en entreprise avec des invites longues. Il peut analyser rapidement de grands documents comme des rapports trimestriels, des contrats ou des dossiers juridiques, à un coût moitié moindre que ses concurrents.",
|
|
240
|
+
"anthropic/claude-3-opus.description": "Claude 3 Opus est le modèle le plus intelligent d’Anthropic, offrant des performances de pointe sur des tâches complexes, avec une grande fluidité et une compréhension proche de l’humain pour les requêtes ouvertes et les scénarios inédits.",
|
|
241
|
+
"anthropic/claude-3.5-haiku.description": "Claude 3.5 Haiku offre une vitesse accrue, une meilleure précision en programmation et une utilisation optimisée des outils, idéal pour les scénarios exigeant rapidité et interaction avec des outils.",
|
|
242
|
+
"anthropic/claude-3.5-sonnet.description": "Claude 3.5 Sonnet est le modèle rapide et efficace de la famille Sonnet, offrant de meilleures performances en programmation et en raisonnement, certaines versions étant progressivement remplacées par Sonnet 3.7 et ultérieures.",
|
|
243
|
+
"anthropic/claude-3.7-sonnet.description": "Claude 3.7 Sonnet est une version améliorée du modèle Sonnet, avec des capacités renforcées en raisonnement et en programmation, adapté aux tâches complexes de niveau entreprise.",
|
|
244
|
+
"anthropic/claude-haiku-4.5.description": "Claude Haiku 4.5 est le modèle rapide haute performance d’Anthropic, offrant une latence très faible tout en maintenant une grande précision.",
|
|
245
|
+
"anthropic/claude-opus-4.1.description": "Opus 4.1 est le modèle haut de gamme d’Anthropic, optimisé pour la programmation, le raisonnement complexe et les tâches longues.",
|
|
246
|
+
"anthropic/claude-opus-4.5.description": "Claude Opus 4.5 est le modèle phare d’Anthropic, combinant intelligence de haut niveau et performance évolutive pour des tâches complexes nécessitant un raisonnement de qualité supérieure.",
|
|
247
|
+
"anthropic/claude-opus-4.description": "Opus 4 est le modèle phare d’Anthropic, conçu pour les tâches complexes et les applications en entreprise.",
|
|
248
|
+
"anthropic/claude-sonnet-4.5.description": "Claude Sonnet 4.5 est le dernier modèle hybride de raisonnement d’Anthropic, optimisé pour le raisonnement complexe et la programmation.",
|
|
249
|
+
"anthropic/claude-sonnet-4.description": "Claude Sonnet 4 est un modèle hybride de raisonnement d’Anthropic, combinant des capacités de réflexion et d’exécution directe.",
|
|
233
250
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 est un modèle LLM ouvert destiné aux développeurs, chercheurs et entreprises, conçu pour les aider à créer, expérimenter et faire évoluer de manière responsable des idées d'IA générative. Faisant partie de la base de l'innovation communautaire mondiale, il est particulièrement adapté aux environnements à ressources limitées, aux appareils en périphérie et aux temps d'entraînement réduits.",
|
|
234
251
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Raisonnement visuel performant sur des images haute résolution, idéal pour les applications de compréhension visuelle.",
|
|
235
252
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Raisonnement visuel avancé pour les agents d'applications de compréhension visuelle.",
|
|
@@ -215,6 +215,7 @@
|
|
|
215
215
|
"settingAgent.name.placeholder": "Saisissez le nom de l’agent",
|
|
216
216
|
"settingAgent.name.title": "Nom",
|
|
217
217
|
"settingAgent.prompt.placeholder": "Saisissez les paramètres de l’agent, appuyez sur / pour ouvrir le menu de commandes",
|
|
218
|
+
"settingAgent.prompt.templatePlaceholder": "#### Objectif\nDécrivez le but principal et l’objectif de cet agent.\n\n#### Compétences\n- Listez les principales capacités\n- Et les domaines de connaissance spécialisés\n\n#### Flux de travail\n1. Processus étape par étape\n2. Comment l’agent doit aborder les tâches\n3. Interactions attendues avec les utilisateurs\n\n#### Contraintes\n- Limitations importantes à respecter\n- Lignes directrices pour le comportement",
|
|
218
219
|
"settingAgent.prompt.title": "Profil de l’agent",
|
|
219
220
|
"settingAgent.submit": "Mettre à jour l’agent",
|
|
220
221
|
"settingAgent.tag.desc": "Les étiquettes de l’agent seront visibles dans la communauté",
|
|
@@ -271,15 +271,28 @@
|
|
|
271
271
|
"referral.edit.hint": "2 à 8 lettres, chiffres ou underscores autorisés",
|
|
272
272
|
"referral.edit.placeholder": "Saisir le code de parrainage",
|
|
273
273
|
"referral.edit.save": "Enregistrer",
|
|
274
|
+
"referral.errors.alreadyBound": "Vous avez déjà lié un code d'invitation",
|
|
275
|
+
"referral.errors.backfillExpired": "La période de rattrapage est expirée. Impossible de saisir un code après 3 jours suivant l'inscription",
|
|
274
276
|
"referral.errors.codeExists": "Ce code est déjà utilisé, veuillez en choisir un autre",
|
|
277
|
+
"referral.errors.invalidCode": "Le code d'invitation n'existe pas, veuillez vérifier et réessayer",
|
|
275
278
|
"referral.errors.invalidFormat": "Format invalide, veuillez entrer 2 à 8 lettres, chiffres ou underscores",
|
|
279
|
+
"referral.errors.selfReferral": "Vous ne pouvez pas utiliser votre propre code d'invitation",
|
|
276
280
|
"referral.errors.updateFailed": "Échec de la mise à jour, veuillez réessayer plus tard",
|
|
277
281
|
"referral.inviteCode.description": "Partagez votre code de parrainage exclusif pour inviter vos amis",
|
|
278
282
|
"referral.inviteCode.title": "Mon code de parrainage",
|
|
279
283
|
"referral.inviteLink.description": "Copiez le lien et partagez-le. Une fois l’inscription terminée, recevez des récompenses",
|
|
280
284
|
"referral.inviteLink.title": "Lien de parrainage",
|
|
285
|
+
"referral.rules.backfill.alreadyBound": "Vous avez déjà lié un code d'invitation",
|
|
286
|
+
"referral.rules.backfill.description": "Vous avez oublié de saisir un code d'invitation ? Vous pouvez le faire dans les 3 jours suivant votre inscription",
|
|
287
|
+
"referral.rules.backfill.expiredTip": "La période de rattrapage est expirée. Impossible de saisir un code après 3 jours suivant l'inscription",
|
|
288
|
+
"referral.rules.backfill.link": "Saisir un code d'invitation",
|
|
289
|
+
"referral.rules.backfill.placeholder": "Saisissez le code d'invitation",
|
|
290
|
+
"referral.rules.backfill.submit": "Confirmer la liaison",
|
|
291
|
+
"referral.rules.backfill.success": "Code d'invitation lié avec succès",
|
|
292
|
+
"referral.rules.backfill.title": "Saisir un code d'invitation",
|
|
281
293
|
"referral.rules.description": "Découvrez les règles du programme de parrainage",
|
|
282
294
|
"referral.rules.expiry": "Validité des crédits : les crédits seront supprimés après 100 jours d’inactivité",
|
|
295
|
+
"referral.rules.missedCode": "Code d'invitation manqué : vous pouvez le <0>saisir</0> dans les 3 jours suivant votre inscription",
|
|
283
296
|
"referral.rules.priority": "Ordre d’utilisation : Crédits gratuits → Crédits d’abonnement → Crédits de parrainage → Crédits achetés",
|
|
284
297
|
"referral.rules.registration": "Méthode d’inscription : via lien ou code de parrainage",
|
|
285
298
|
"referral.rules.reward": "Récompense : le parrain et le filleul reçoivent chacun {{reward}}M crédits",
|
package/locales/it-IT/auth.json
CHANGED
|
@@ -147,6 +147,7 @@
|
|
|
147
147
|
"loginGuide.f4": "Esplora potenti plugin",
|
|
148
148
|
"loginGuide.title": "Dopo l'accesso, puoi:",
|
|
149
149
|
"loginOrSignup": "Accedi / Registrati",
|
|
150
|
+
"profile.account": "Account",
|
|
150
151
|
"profile.authorizations.actions.revoke": "Revoca",
|
|
151
152
|
"profile.authorizations.revoke.description": "Dopo la revoca, lo strumento non avrà più accesso ai tuoi dati. Sarà necessaria una nuova autorizzazione per utilizzarlo.",
|
|
152
153
|
"profile.authorizations.revoke.title": "Revocare l'autorizzazione per {{name}}?",
|
|
@@ -193,6 +193,37 @@
|
|
|
193
193
|
"abab6.5g-chat.description": "Progettato per chat con personaggi multilingue, supporta generazione di dialoghi di alta qualità in inglese e altre lingue.",
|
|
194
194
|
"abab6.5s-chat.description": "Adatto a un'ampia gamma di compiti NLP, inclusa la generazione di testo e sistemi di dialogo.",
|
|
195
195
|
"abab6.5t-chat.description": "Ottimizzato per chat con personaggi in cinese, fornendo dialoghi fluidi che rispettano le abitudini espressive cinesi.",
|
|
196
|
+
"accounts/fireworks/models/deepseek-r1.description": "DeepSeek-R1 è un modello linguistico all'avanguardia ottimizzato con apprendimento per rinforzo e dati cold-start, che offre prestazioni eccellenti in ragionamento, matematica e programmazione.",
|
|
197
|
+
"accounts/fireworks/models/deepseek-v3.description": "Un potente modello linguistico Mixture-of-Experts (MoE) di DeepSeek con 671 miliardi di parametri totali e 37 miliardi di parametri attivi per token.",
|
|
198
|
+
"accounts/fireworks/models/llama-v3-70b-instruct.description": "Meta ha sviluppato e rilasciato la serie di modelli linguistici Meta Llama 3, che include modelli pre-addestrati e ottimizzati per l'uso conversazionale da 8B e 70B. I modelli Llama 3 ottimizzati per le istruzioni sono progettati per l'interazione conversazionale e superano molti modelli open chat esistenti nei benchmark di settore.",
|
|
199
|
+
"accounts/fireworks/models/llama-v3-8b-instruct-hf.description": "I modelli Llama 3 ottimizzati per le istruzioni sono progettati per l'interazione conversazionale e superano molti modelli open chat esistenti nei benchmark di settore. Llama 3 8B Instruct (versione HF) è la versione FP16 originale di Llama 3 8B Instruct, con risultati attesi in linea con l'implementazione ufficiale di Hugging Face.",
|
|
200
|
+
"accounts/fireworks/models/llama-v3-8b-instruct.description": "Meta ha sviluppato e rilasciato la serie di modelli linguistici Meta Llama 3, una collezione di modelli pre-addestrati e ottimizzati per la generazione di testo da 8B e 70B. I modelli Llama 3 ottimizzati per le istruzioni sono progettati per l'uso conversazionale e superano molti modelli open chat esistenti nei benchmark di settore.",
|
|
201
|
+
"accounts/fireworks/models/llama-v3p1-405b-instruct.description": "Meta Llama 3.1 è una famiglia di modelli linguistici multilingue con modelli di generazione pre-addestrati e ottimizzati per le istruzioni nei formati 8B, 70B e 405B. I modelli ottimizzati per le istruzioni sono progettati per il dialogo multilingue e superano molti modelli open e closed chat nei benchmark di settore. Il modello 405B è il più avanzato della famiglia Llama 3.1, utilizzando inferenza FP8 che replica fedelmente l'implementazione di riferimento.",
|
|
202
|
+
"accounts/fireworks/models/llama-v3p1-70b-instruct.description": "Meta Llama 3.1 è una famiglia di modelli linguistici multilingue con modelli di generazione pre-addestrati e ottimizzati per le istruzioni nei formati 8B, 70B e 405B. I modelli ottimizzati per le istruzioni sono progettati per il dialogo multilingue e superano molti modelli open e closed chat nei benchmark di settore.",
|
|
203
|
+
"accounts/fireworks/models/llama-v3p1-8b-instruct.description": "Meta Llama 3.1 è una famiglia di modelli linguistici multilingue con modelli di generazione pre-addestrati e ottimizzati per le istruzioni nei formati 8B, 70B e 405B. I modelli ottimizzati per le istruzioni sono progettati per il dialogo multilingue e superano molti modelli open e closed chat nei benchmark di settore.",
|
|
204
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct.description": "Un modello di ragionamento visivo ottimizzato per le istruzioni di Meta con 11 miliardi di parametri, progettato per il riconoscimento visivo, il ragionamento su immagini, la generazione di didascalie e domande e risposte basate su immagini. Comprende dati visivi come grafici e tabelle e collega visione e linguaggio generando descrizioni testuali dei dettagli visivi.",
|
|
205
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct.description": "Llama 3.2 3B Instruct è un modello multilingue leggero di Meta, progettato per un'esecuzione efficiente con vantaggi significativi in termini di latenza e costi rispetto ai modelli più grandi. Gli usi tipici includono la riscrittura di query/promt e l'assistenza alla scrittura.",
|
|
206
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct.description": "Un modello di ragionamento visivo ottimizzato per le istruzioni di Meta con 90 miliardi di parametri, progettato per il riconoscimento visivo, il ragionamento su immagini, la generazione di didascalie e domande e risposte basate su immagini. Comprende dati visivi come grafici e tabelle e collega visione e linguaggio generando descrizioni testuali dei dettagli visivi. Nota: questo modello è attualmente fornito in via sperimentale come modello serverless. Per l'uso in produzione, Fireworks potrebbe ritirare il deployment con breve preavviso.",
|
|
207
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct.description": "Llama 3.3 70B Instruct è l'aggiornamento di dicembre del modello Llama 3.1 70B. Migliora l'uso degli strumenti, il supporto multilingue, la matematica e la programmazione rispetto alla versione di luglio 2024. Raggiunge prestazioni leader nel settore in ragionamento, matematica e comprensione delle istruzioni, offrendo prestazioni comparabili al modello 3.1 405B con vantaggi significativi in termini di velocità e costi.",
|
|
208
|
+
"accounts/fireworks/models/mistral-small-24b-instruct-2501.description": "Un modello da 24 miliardi di parametri con capacità all'avanguardia comparabili a modelli più grandi.",
|
|
209
|
+
"accounts/fireworks/models/mixtral-8x22b-instruct.description": "Mixtral MoE 8x22B Instruct v0.1 è la versione ottimizzata per le istruzioni di Mixtral MoE 8x22B v0.1, con API di completamento chat abilitata.",
|
|
210
|
+
"accounts/fireworks/models/mixtral-8x7b-instruct.description": "Mixtral MoE 8x7B Instruct è la versione ottimizzata per le istruzioni di Mixtral MoE 8x7B, con API di completamento chat abilitata.",
|
|
211
|
+
"accounts/fireworks/models/mythomax-l2-13b.description": "Una variante migliorata di MythoMix, probabilmente la sua forma più raffinata, che unisce MythoLogic-L2 e Huginn con una tecnica di fusione tensoriale altamente sperimentale. La sua natura unica lo rende eccellente per la narrazione e il gioco di ruolo.",
|
|
212
|
+
"accounts/fireworks/models/phi-3-vision-128k-instruct.description": "Phi-3-Vision-128K-Instruct è un modello multimodale leggero e all'avanguardia costruito con dati sintetici e dataset pubblici selezionati, focalizzato su dati testuali e visivi di alta qualità e ad alta intensità di ragionamento. Fa parte della famiglia Phi-3, con una versione multimodale che supporta una lunghezza di contesto di 128K token. Il modello è stato migliorato con fine-tuning supervisionato e ottimizzazione diretta delle preferenze, per garantire un'accurata comprensione delle istruzioni e solide misure di sicurezza.",
|
|
213
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview.description": "Il modello Qwen QwQ si concentra sull'avanzamento del ragionamento dell'IA, dimostrando che i modelli open possono competere con quelli closed di frontiera. QwQ-32B-Preview è una versione sperimentale che eguaglia o1 e supera GPT-4o e Claude 3.5 Sonnet nel ragionamento e nell'analisi su GPQA, AIME, MATH-500 e LiveCodeBench. Nota: questo modello è attualmente fornito in via sperimentale come modello serverless. Per l'uso in produzione, Fireworks potrebbe ritirare il deployment con breve preavviso.",
|
|
214
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct.description": "Il modello Qwen-VL da 72B è l'ultima iterazione di Alibaba, frutto di quasi un anno di innovazione.",
|
|
215
|
+
"accounts/fireworks/models/qwen2p5-72b-instruct.description": "Qwen2.5 è una serie di modelli linguistici solo decoder sviluppata dal team Qwen e da Alibaba Cloud, disponibile nei formati 0.5B, 1.5B, 3B, 7B, 14B, 32B e 72B, con varianti base e ottimizzate per le istruzioni.",
|
|
216
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct.description": "Qwen2.5-Coder è l'ultimo modello linguistico Qwen progettato per la programmazione (precedentemente CodeQwen). Nota: questo modello è attualmente fornito in via sperimentale come modello serverless. Per l'uso in produzione, Fireworks potrebbe ritirare il deployment con breve preavviso.",
|
|
217
|
+
"accounts/yi-01-ai/models/yi-large.description": "Yi-Large è un modello linguistico di alto livello che si posiziona appena sotto GPT-4, Gemini 1.5 Pro e Claude 3 Opus nella classifica LMSYS. Eccelle nella capacità multilingue, in particolare in spagnolo, cinese, giapponese, tedesco e francese. Yi-Large è anche adatto agli sviluppatori, utilizzando lo stesso schema API di OpenAI per una facile integrazione.",
|
|
218
|
+
"ai21-jamba-1.5-large.description": "Un modello multilingue da 398 miliardi di parametri (94B attivi) con una finestra di contesto di 256K, supporto per chiamate di funzione, output strutturato e generazione ancorata.",
|
|
219
|
+
"ai21-jamba-1.5-mini.description": "Un modello multilingue da 52 miliardi di parametri (12B attivi) con una finestra di contesto di 256K, supporto per chiamate di funzione, output strutturato e generazione ancorata.",
|
|
220
|
+
"ai21-labs/AI21-Jamba-1.5-Large.description": "Un modello multilingue da 398 miliardi di parametri (94B attivi) con una finestra di contesto di 256K, supporto per chiamate di funzione, output strutturato e generazione ancorata.",
|
|
221
|
+
"ai21-labs/AI21-Jamba-1.5-Mini.description": "Un modello multilingue da 52 miliardi di parametri (12B attivi) con una finestra di contesto di 256K, supporto per chiamate di funzione, output strutturato e generazione ancorata.",
|
|
222
|
+
"alibaba/qwen-3-14b.description": "Qwen3 è l'ultima generazione della serie Qwen, che offre una gamma completa di modelli densi e MoE. Basato su un addestramento esteso, introduce innovazioni nel ragionamento, nella comprensione delle istruzioni, nelle capacità agentiche e nel supporto multilingue.",
|
|
223
|
+
"alibaba/qwen-3-235b.description": "Qwen3 è l'ultima generazione della serie Qwen, che offre una gamma completa di modelli densi e MoE. Basato su un addestramento esteso, introduce innovazioni nel ragionamento, nella comprensione delle istruzioni, nelle capacità agentiche e nel supporto multilingue.",
|
|
224
|
+
"alibaba/qwen-3-30b.description": "Qwen3 è l'ultima generazione della serie Qwen, che offre una gamma completa di modelli densi e MoE. Basato su un addestramento esteso, introduce innovazioni nel ragionamento, nella comprensione delle istruzioni, nelle capacità agentiche e nel supporto multilingue.",
|
|
225
|
+
"alibaba/qwen-3-32b.description": "Qwen3 è l'ultima generazione della serie Qwen, che offre una gamma completa di modelli densi e MoE. Basato su un addestramento esteso, introduce innovazioni nel ragionamento, nella comprensione delle istruzioni, nelle capacità agentiche e nel supporto multilingue.",
|
|
226
|
+
"alibaba/qwen3-coder.description": "Qwen3-Coder-480B-A35B-Instruct è il modello Qwen più avanzato per la programmazione, con ottime prestazioni in attività agentiche di codifica, uso del browser e altri compiti fondamentali, raggiungendo risultati comparabili a Claude Sonnet.",
|
|
196
227
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
|
|
197
228
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
|
|
198
229
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
|
|
@@ -215,6 +215,7 @@
|
|
|
215
215
|
"settingAgent.name.placeholder": "Inserisci il nome dell'agente",
|
|
216
216
|
"settingAgent.name.title": "Nome",
|
|
217
217
|
"settingAgent.prompt.placeholder": "Inserisci le impostazioni dell'agente, premi / per aprire il menu comandi",
|
|
218
|
+
"settingAgent.prompt.templatePlaceholder": "#### Obiettivo\nDescrivi lo scopo principale e l'obiettivo di questo agente.\n\n#### Competenze\n- Elenca le capacità principali\n- E le aree di conoscenza specialistiche\n\n#### Flusso di lavoro\n1. Processo passo dopo passo\n2. Come l'agente dovrebbe affrontare i compiti\n3. Interazioni previste con gli utenti\n\n#### Vincoli\n- Limitazioni importanti da rispettare\n- Linee guida per il comportamento",
|
|
218
219
|
"settingAgent.prompt.title": "Profilo Agente",
|
|
219
220
|
"settingAgent.submit": "Aggiorna Agente",
|
|
220
221
|
"settingAgent.tag.desc": "I tag dell'agente saranno visibili nella Community degli Agenti",
|
|
@@ -271,15 +271,28 @@
|
|
|
271
271
|
"referral.edit.hint": "Supporta 2-8 lettere, numeri o underscore",
|
|
272
272
|
"referral.edit.placeholder": "Inserisci codice invito",
|
|
273
273
|
"referral.edit.save": "Salva",
|
|
274
|
+
"referral.errors.alreadyBound": "Hai già associato un codice invito",
|
|
275
|
+
"referral.errors.backfillExpired": "Il periodo di recupero è scaduto. Non è possibile recuperare dopo 3 giorni dalla registrazione",
|
|
274
276
|
"referral.errors.codeExists": "Questo codice invito è già in uso, scegline un altro",
|
|
277
|
+
"referral.errors.invalidCode": "Il codice invito non esiste, controlla e riprova",
|
|
275
278
|
"referral.errors.invalidFormat": "Formato del codice invito non valido, inserisci 2-8 lettere, numeri o underscore",
|
|
279
|
+
"referral.errors.selfReferral": "Non puoi utilizzare il tuo stesso codice invito",
|
|
276
280
|
"referral.errors.updateFailed": "Aggiornamento fallito, riprova più tardi",
|
|
277
281
|
"referral.inviteCode.description": "Condividi il tuo codice invito esclusivo per invitare amici a registrarsi",
|
|
278
282
|
"referral.inviteCode.title": "Il Mio Codice Invito",
|
|
279
283
|
"referral.inviteLink.description": "Copia il link e condividilo con gli amici. Completa la registrazione per ricevere ricompense",
|
|
280
284
|
"referral.inviteLink.title": "Link Invito",
|
|
285
|
+
"referral.rules.backfill.alreadyBound": "Hai già associato un codice invito",
|
|
286
|
+
"referral.rules.backfill.description": "Hai dimenticato di inserire il codice invito? Puoi recuperarlo entro 3 giorni dalla registrazione",
|
|
287
|
+
"referral.rules.backfill.expiredTip": "Il periodo di recupero è scaduto. Non è possibile recuperare dopo 3 giorni dalla registrazione",
|
|
288
|
+
"referral.rules.backfill.link": "Recupera Codice Invito",
|
|
289
|
+
"referral.rules.backfill.placeholder": "Inserisci il codice invito",
|
|
290
|
+
"referral.rules.backfill.submit": "Conferma Associazione",
|
|
291
|
+
"referral.rules.backfill.success": "Codice invito associato con successo",
|
|
292
|
+
"referral.rules.backfill.title": "Recupera Codice Invito",
|
|
281
293
|
"referral.rules.description": "Scopri le regole del programma di ricompensa inviti",
|
|
282
294
|
"referral.rules.expiry": "Validità dei crediti: i crediti invito disponibili verranno eliminati dopo 100 giorni di inattività dell'utente",
|
|
295
|
+
"referral.rules.missedCode": "Hai dimenticato il codice invito: puoi <0>recuperarlo</0> entro 3 giorni dalla registrazione",
|
|
283
296
|
"referral.rules.priority": "Priorità di consumo crediti: Crediti gratuiti → Crediti abbonamento → Crediti invito → Crediti ricaricati",
|
|
284
297
|
"referral.rules.registration": "Metodo di registrazione: gli utenti invitati si registrano tramite link invito o inserendo il codice invito nella pagina di registrazione",
|
|
285
298
|
"referral.rules.reward": "Ricompensa: sia il referente che l'invitato ricevono {{reward}}M crediti",
|
package/locales/ja-JP/auth.json
CHANGED
|
@@ -147,6 +147,7 @@
|
|
|
147
147
|
"loginGuide.f4": "強力なプラグインを体験",
|
|
148
148
|
"loginGuide.title": "ログイン後にできること:",
|
|
149
149
|
"loginOrSignup": "ログイン / サインアップ",
|
|
150
|
+
"profile.account": "アカウント",
|
|
150
151
|
"profile.authorizations.actions.revoke": "認可を取り消す",
|
|
151
152
|
"profile.authorizations.revoke.description": "認可を取り消すと、このツールはあなたのデータにアクセスできなくなります。再度使用するには、再認可が必要です。",
|
|
152
153
|
"profile.authorizations.revoke.title": "{{name}} の認可を取り消してもよろしいですか?",
|
|
@@ -295,6 +295,7 @@
|
|
|
295
295
|
"codeqwen.description": "CodeQwen1.5は、大規模なコードデータで学習されたLLMで、複雑なプログラミングタスクに対応します。",
|
|
296
296
|
"codestral-latest.description": "Codestralは、最も高度なコーディングモデルで、v2(2025年1月)はFIM、コード修正、テスト生成などの低レイテンシ・高頻度タスクに最適化されています。",
|
|
297
297
|
"codestral.description": "Codestralは、Mistral AIによる初のコードモデルで、強力なコード生成をサポートします。",
|
|
298
|
+
"codex-mini-latest.description": "codex-mini-latest は Codex CLI 用にファインチューニングされた o4-mini モデルです。API を直接使用する場合は、gpt-4.1 から始めることを推奨します。",
|
|
298
299
|
"gemini-flash-latest.description": "Gemini Flash の最新リリース",
|
|
299
300
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
|
|
300
301
|
"gemini-pro-latest.description": "Gemini Pro の最新リリース",
|
|
@@ -215,6 +215,7 @@
|
|
|
215
215
|
"settingAgent.name.placeholder": "アシスタントの名前を入力してください",
|
|
216
216
|
"settingAgent.name.title": "名前",
|
|
217
217
|
"settingAgent.prompt.placeholder": "アシスタントの設定を入力し、「/」でコマンドメニューを開く",
|
|
218
|
+
"settingAgent.prompt.templatePlaceholder": "#### 目的\nこのエージェントの主な目的と目標を記述してください。\n\n#### スキル\n- 主要な能力を列挙\n- 専門的な知識分野も含めてください\n\n#### ワークフロー\n1. ステップごとのプロセス\n2. タスクへの取り組み方\n3. ユーザーとの想定されるやり取り\n\n#### 制約\n- 守るべき重要な制限事項\n- 行動に関するガイドライン",
|
|
218
219
|
"settingAgent.prompt.title": "アシスタント設定",
|
|
219
220
|
"settingAgent.submit": "アシスタント情報を更新",
|
|
220
221
|
"settingAgent.tag.desc": "アシスタントのタグはコミュニティ内で表示されます",
|
|
@@ -271,15 +271,28 @@
|
|
|
271
271
|
"referral.edit.hint": "2〜8文字の英数字またはアンダースコアに対応",
|
|
272
272
|
"referral.edit.placeholder": "紹介コードを入力",
|
|
273
273
|
"referral.edit.save": "保存",
|
|
274
|
+
"referral.errors.alreadyBound": "すでに招待コードが紐付けられています",
|
|
275
|
+
"referral.errors.backfillExpired": "追加入力期間が終了しました。登録から3日以内でないと追加入力はできません",
|
|
274
276
|
"referral.errors.codeExists": "この紹介コードはすでに使用されています。別のコードを選んでください。",
|
|
277
|
+
"referral.errors.invalidCode": "招待コードが存在しません。ご確認のうえ、再度お試しください",
|
|
275
278
|
"referral.errors.invalidFormat": "無効な紹介コード形式です。2〜8文字の英数字またはアンダースコアを入力してください。",
|
|
279
|
+
"referral.errors.selfReferral": "自分自身の招待コードは使用できません",
|
|
276
280
|
"referral.errors.updateFailed": "更新に失敗しました。後でもう一度お試しください。",
|
|
277
281
|
"referral.inviteCode.description": "あなた専用の紹介コードを共有して、友達を招待しましょう",
|
|
278
282
|
"referral.inviteCode.title": "マイ紹介コード",
|
|
279
283
|
"referral.inviteLink.description": "リンクをコピーして友達に共有。登録完了で報酬を獲得",
|
|
280
284
|
"referral.inviteLink.title": "紹介リンク",
|
|
285
|
+
"referral.rules.backfill.alreadyBound": "すでに招待コードが紐付けられています",
|
|
286
|
+
"referral.rules.backfill.description": "招待コードの入力を忘れましたか?登録から3日以内であれば追加入力が可能です",
|
|
287
|
+
"referral.rules.backfill.expiredTip": "追加入力期間が終了しました。登録から3日以内でないと追加入力はできません",
|
|
288
|
+
"referral.rules.backfill.link": "招待コードを追加入力",
|
|
289
|
+
"referral.rules.backfill.placeholder": "招待コードを入力してください",
|
|
290
|
+
"referral.rules.backfill.submit": "紐付けを確定",
|
|
291
|
+
"referral.rules.backfill.success": "招待コードの紐付けが完了しました",
|
|
292
|
+
"referral.rules.backfill.title": "招待コードの追加入力",
|
|
281
293
|
"referral.rules.description": "紹介報酬プログラムのルールを確認",
|
|
282
294
|
"referral.rules.expiry": "クレジットの有効期限:100日間アクティビティがない場合、紹介クレジットは失効します",
|
|
295
|
+
"referral.rules.missedCode": "招待コードを入力し忘れましたか?登録から3日以内であれば<0>追加入力</0>が可能です",
|
|
283
296
|
"referral.rules.priority": "クレジット使用優先順位:無料クレジット → サブスククレジット → 紹介クレジット → チャージクレジット",
|
|
284
297
|
"referral.rules.registration": "登録方法:紹介リンクから登録、または登録ページで紹介コードを入力",
|
|
285
298
|
"referral.rules.reward": "報酬:紹介者と被紹介者の両方に{{reward}}Mクレジットを付与",
|
package/locales/ko-KR/auth.json
CHANGED
|
@@ -147,6 +147,7 @@
|
|
|
147
147
|
"loginGuide.f4": "강력한 플러그인 탐색",
|
|
148
148
|
"loginGuide.title": "로그인 후 이용 가능한 기능:",
|
|
149
149
|
"loginOrSignup": "로그인 / 회원가입",
|
|
150
|
+
"profile.account": "계정",
|
|
150
151
|
"profile.authorizations.actions.revoke": "권한 취소",
|
|
151
152
|
"profile.authorizations.revoke.description": "권한을 취소하면 이 도구는 더 이상 귀하의 데이터에 접근할 수 없습니다. 다시 사용하려면 재인증이 필요합니다.",
|
|
152
153
|
"profile.authorizations.revoke.title": "{{name}}의 권한을 취소하시겠습니까?",
|
|
@@ -223,7 +223,46 @@
|
|
|
223
223
|
"alibaba/qwen-3-235b.description": "Qwen3는 Qwen 시리즈의 최신 세대로, 밀집 및 MoE 모델을 모두 포함한 포괄적인 제품군을 제공합니다. 광범위한 학습을 기반으로 추론, 지시 따르기, 에이전트 기능, 다국어 지원에서 획기적인 성능을 보여줍니다.",
|
|
224
224
|
"alibaba/qwen-3-30b.description": "Qwen3는 Qwen 시리즈의 최신 세대로, 밀집 및 MoE 모델을 모두 포함한 포괄적인 제품군을 제공합니다. 광범위한 학습을 기반으로 추론, 지시 따르기, 에이전트 기능, 다국어 지원에서 획기적인 성능을 보여줍니다.",
|
|
225
225
|
"alibaba/qwen-3-32b.description": "Qwen3는 Qwen 시리즈의 최신 세대로, 밀집 및 MoE 모델을 모두 포함한 포괄적인 제품군을 제공합니다. 광범위한 학습을 기반으로 추론, 지시 따르기, 에이전트 기능, 다국어 지원에서 획기적인 성능을 보여줍니다.",
|
|
226
|
+
"alibaba/qwen3-coder.description": "Qwen3-Coder-480B-A35B-Instruct는 Qwen의 가장 에이전트 지향적인 코드 모델로, 에이전트 기반 코딩, 브라우저 활용, 기타 핵심 코딩 작업에서 뛰어난 성능을 발휘하며 Claude Sonnet 수준의 결과를 보여줍니다.",
|
|
227
|
+
"amazon/nova-lite.description": "이미지, 비디오, 텍스트 입력을 초고속으로 처리하는 매우 저비용의 멀티모달 모델입니다.",
|
|
228
|
+
"amazon/nova-micro.description": "초저지연과 매우 낮은 비용으로 제공되는 텍스트 전용 모델입니다.",
|
|
229
|
+
"amazon/nova-pro.description": "정확도, 속도, 비용의 균형이 뛰어난 고성능 멀티모달 모델로, 다양한 작업에 적합합니다.",
|
|
226
230
|
"amazon/titan-embed-text-v2.description": "Amazon Titan Text Embeddings V2는 경량화되고 효율적인 다국어 임베딩 모델로, 1024, 512 및 256 차원을 지원합니다.",
|
|
231
|
+
"anthropic.claude-3-5-sonnet-20240620-v1:0.description": "Claude 3.5 Sonnet은 업계 표준을 끌어올린 모델로, 경쟁 모델과 Claude 3 Opus를 광범위한 평가에서 능가하면서도 중간 수준의 속도와 비용을 유지합니다.",
|
|
232
|
+
"anthropic.claude-3-5-sonnet-20241022-v2:0.description": "Claude 3.5 Sonnet은 업계 표준을 끌어올린 모델로, 경쟁 모델과 Claude 3 Opus를 광범위한 평가에서 능가하면서도 중간 수준의 속도와 비용을 유지합니다.",
|
|
233
|
+
"anthropic.claude-3-haiku-20240307-v1:0.description": "Claude 3 Haiku는 Anthropic의 가장 빠르고 컴팩트한 모델로, 간단한 질문에 거의 즉각적인 응답을 제공합니다. 사람과 유사한 AI 경험을 가능하게 하며, 200K 컨텍스트 윈도우에서 이미지 입력을 지원합니다.",
|
|
234
|
+
"anthropic.claude-3-opus-20240229-v1:0.description": "Claude 3 Opus는 Anthropic의 가장 강력한 AI 모델로, 매우 복잡한 작업에서 최첨단 성능을 발휘합니다. 개방형 프롬프트와 새로운 시나리오를 유창하고 사람처럼 이해하며, 200K 컨텍스트 윈도우에서 이미지 입력을 지원합니다.",
|
|
235
|
+
"anthropic.claude-3-sonnet-20240229-v1:0.description": "Claude 3 Sonnet은 기업용 작업을 위해 지능과 속도의 균형을 맞춘 모델로, 낮은 비용으로 높은 가치를 제공합니다. 대규모 AI 배포에 적합하며, 200K 컨텍스트 윈도우에서 이미지 입력을 지원합니다.",
|
|
236
|
+
"anthropic.claude-instant-v1.description": "일상적인 대화, 텍스트 분석, 요약, 문서 질의응답에 적합한 빠르고 경제적인 모델입니다.",
|
|
237
|
+
"anthropic.claude-v2.description": "복잡한 대화, 창의적 생성, 세부 지침 이행 등 다양한 작업에서 뛰어난 성능을 발휘하는 고성능 모델입니다.",
|
|
238
|
+
"anthropic.claude-v2:1.description": "Claude 2의 업그레이드 버전으로, 컨텍스트 윈도우가 두 배로 확장되었으며, 장문 문서 및 RAG 작업에서 신뢰성, 환각률, 근거 기반 정확도가 향상되었습니다.",
|
|
239
|
+
"anthropic/claude-3-haiku.description": "Claude 3 Haiku는 Anthropic의 가장 빠른 모델로, 긴 프롬프트를 사용하는 기업용 작업에 적합합니다. 분기 보고서, 계약서, 법률 문서 등 대형 문서를 빠르게 분석하며, 동급 모델 대비 절반의 비용으로 운영됩니다.",
|
|
240
|
+
"anthropic/claude-3-opus.description": "Claude 3 Opus는 Anthropic의 가장 지능적인 모델로, 매우 복잡한 작업에서 시장 선도 성능을 발휘하며, 개방형 프롬프트와 새로운 시나리오를 유창하고 사람처럼 이해합니다.",
|
|
241
|
+
"anthropic/claude-3.5-haiku.description": "Claude 3.5 Haiku는 향상된 속도, 코딩 정확도, 도구 활용 능력을 갖춘 모델로, 빠른 응답과 도구 상호작용이 요구되는 시나리오에 적합합니다.",
|
|
242
|
+
"anthropic/claude-3.5-sonnet.description": "Claude 3.5 Sonnet은 Sonnet 계열의 빠르고 효율적인 모델로, 향상된 코딩 및 추론 성능을 제공합니다. 일부 버전은 Sonnet 3.7 이상으로 점진적으로 대체됩니다.",
|
|
243
|
+
"anthropic/claude-3.7-sonnet.description": "Claude 3.7 Sonnet은 향상된 추론 및 코딩 능력을 갖춘 업그레이드된 Sonnet 모델로, 기업 수준의 복잡한 작업에 적합합니다.",
|
|
244
|
+
"anthropic/claude-haiku-4.5.description": "Claude Haiku 4.5는 Anthropic의 고성능 초고속 모델로, 매우 낮은 지연 시간과 높은 정확도를 동시에 제공합니다.",
|
|
245
|
+
"anthropic/claude-opus-4.1.description": "Opus 4.1은 프로그래밍, 복잡한 추론, 장기 작업에 최적화된 Anthropic의 고급 모델입니다.",
|
|
246
|
+
"anthropic/claude-opus-4.5.description": "Claude Opus 4.5는 Anthropic의 플래그십 모델로, 최고 수준의 지능과 확장 가능한 성능을 결합하여 복잡하고 고품질의 추론 작업에 적합합니다.",
|
|
247
|
+
"anthropic/claude-opus-4.description": "Opus 4는 복잡한 작업과 기업용 애플리케이션을 위해 설계된 Anthropic의 플래그십 모델입니다.",
|
|
248
|
+
"anthropic/claude-sonnet-4.5.description": "Claude Sonnet 4.5는 복잡한 추론과 코딩에 최적화된 Anthropic의 최신 하이브리드 추론 모델입니다.",
|
|
249
|
+
"anthropic/claude-sonnet-4.description": "Claude Sonnet 4는 사고 기반과 비사고 기반 기능을 혼합한 하이브리드 추론 모델입니다.",
|
|
250
|
+
"ascend-tribe/pangu-pro-moe.description": "Pangu-Pro-MoE 72B-A16B는 총 72B 파라미터 중 16B가 활성화되는 희소 LLM으로, 그룹화된 MoE(MoGE) 아키텍처를 기반으로 합니다. 전문가를 그룹으로 선택하고 각 그룹당 동일한 수의 전문가를 활성화하여 부하를 균형 있게 분산시키고 Ascend에서의 배포 효율을 향상시킵니다.",
|
|
251
|
+
"aya.description": "Aya 23은 Cohere의 다국어 모델로, 23개 언어를 지원하여 다양한 사용 사례에 활용할 수 있습니다.",
|
|
252
|
+
"aya:35b.description": "Aya 23은 Cohere의 다국어 모델로, 23개 언어를 지원하여 다양한 사용 사례에 활용할 수 있습니다.",
|
|
253
|
+
"azure-DeepSeek-R1-0528.description": "Microsoft가 배포한 DeepSeek R1은 DeepSeek-R1-0528로 업그레이드되었습니다. 이 업데이트는 연산량과 사후 학습 알고리즘을 최적화하여 추론 깊이와 성능을 크게 향상시켰습니다. 수학, 코딩, 일반 논리 벤치마크에서 강력한 성능을 발휘하며, O3 및 Gemini 2.5 Pro와 유사한 수준에 도달합니다.",
|
|
254
|
+
"baichuan-m2-32b.description": "Baichuan M2 32B는 Baichuan Intelligence의 MoE 모델로, 강력한 추론 능력을 갖추고 있습니다.",
|
|
255
|
+
"baichuan/baichuan2-13b-chat.description": "Baichuan-13B는 Baichuan이 개발한 오픈소스 상업용 13B 파라미터 LLM으로, 중국어 및 영어의 권위 있는 벤치마크에서 동급 최고 성능을 달성했습니다.",
|
|
256
|
+
"baidu/ERNIE-4.5-300B-A47B.description": "ERNIE-4.5-300B-A47B는 Baidu의 MoE LLM으로, 총 300B 파라미터 중 토큰당 47B가 활성화됩니다. 뛰어난 성능과 연산 효율의 균형을 이루며, 이해, 생성, 추론, 프로그래밍에 강점을 보입니다. 텍스트-비전 공동 학습을 포함한 멀티모달 이질적 MoE 사전학습 방식을 사용하여 전반적인 능력을 향상시켰습니다.",
|
|
257
|
+
"baidu/ernie-5.0-thinking-preview.description": "ERNIE 5.0 Thinking Preview는 Baidu의 차세대 네이티브 멀티모달 ERNIE 모델로, 멀티모달 이해, 지시 이행, 창작, 사실 기반 질의응답, 도구 호출에 강점을 보입니다.",
|
|
258
|
+
"black-forest-labs/flux-1.1-pro.description": "FLUX 1.1 Pro는 향상된 속도와 이미지 품질, 프롬프트 이행 능력을 갖춘 FLUX Pro의 개선 버전입니다.",
|
|
259
|
+
"black-forest-labs/flux-dev.description": "FLUX Dev는 비상업적 사용을 위한 FLUX의 개발 버전입니다.",
|
|
260
|
+
"black-forest-labs/flux-pro.description": "FLUX Pro는 고품질 이미지 출력을 위한 전문가용 FLUX 모델입니다.",
|
|
261
|
+
"black-forest-labs/flux-schnell.description": "FLUX Schnell은 속도에 최적화된 빠른 이미지 생성 모델입니다.",
|
|
262
|
+
"c4ai-aya-expanse-32b.description": "Aya Expanse는 32B 규모의 고성능 다국어 모델로, 지시 튜닝, 데이터 중재, 선호도 학습, 모델 병합을 통해 단일 언어 모델과 경쟁합니다. 23개 언어를 지원합니다.",
|
|
263
|
+
"c4ai-aya-expanse-8b.description": "Aya Expanse는 8B 규모의 고성능 다국어 모델로, 지시 튜닝, 데이터 중재, 선호도 학습, 모델 병합을 통해 단일 언어 모델과 경쟁합니다. 23개 언어를 지원합니다.",
|
|
264
|
+
"c4ai-aya-vision-32b.description": "Aya Vision은 언어, 텍스트, 비전 벤치마크에서 강력한 성능을 보이는 최첨단 멀티모달 모델입니다. 23개 언어를 지원하며, 이 32B 버전은 최고 수준의 다국어 성능에 중점을 둡니다.",
|
|
265
|
+
"c4ai-aya-vision-8b.description": "Aya Vision은 언어, 텍스트, 비전 벤치마크에서 강력한 성능을 보이는 최첨단 멀티모달 모델입니다. 이 8B 버전은 낮은 지연 시간과 강력한 성능에 중점을 둡니다.",
|
|
227
266
|
"gemini-flash-latest.description": "Gemini Flash 최신 버전",
|
|
228
267
|
"gemini-flash-lite-latest.description": "Gemini Flash-Lite 최신 버전",
|
|
229
268
|
"gemini-pro-latest.description": "Gemini Pro 최신 버전",
|
|
@@ -215,6 +215,7 @@
|
|
|
215
215
|
"settingAgent.name.placeholder": "도우미 이름을 입력하세요",
|
|
216
216
|
"settingAgent.name.title": "이름",
|
|
217
217
|
"settingAgent.prompt.placeholder": "도우미 설정을 입력하세요. / 키를 눌러 명령 메뉴를 여세요",
|
|
218
|
+
"settingAgent.prompt.templatePlaceholder": "#### 목표\n이 에이전트의 주요 목적과 목표를 설명하세요.\n\n#### 기술\n- 핵심 기능 나열\n- 전문 지식 분야 포함\n\n#### 작업 흐름\n1. 단계별 절차\n2. 에이전트가 작업을 수행하는 방식\n3. 사용자와의 예상 상호작용\n\n#### 제약 사항\n- 반드시 지켜야 할 중요한 제한 사항\n- 행동 지침",
|
|
218
219
|
"settingAgent.prompt.title": "도우미 설정",
|
|
219
220
|
"settingAgent.submit": "도우미 정보 업데이트",
|
|
220
221
|
"settingAgent.tag.desc": "도우미 태그는 도우미 커뮤니티에 표시됩니다",
|
|
@@ -271,15 +271,28 @@
|
|
|
271
271
|
"referral.edit.hint": "2~8자의 영문, 숫자 또는 밑줄(_)만 사용 가능",
|
|
272
272
|
"referral.edit.placeholder": "추천 코드를 입력하세요",
|
|
273
273
|
"referral.edit.save": "저장",
|
|
274
|
+
"referral.errors.alreadyBound": "이미 초대 코드를 등록하셨습니다",
|
|
275
|
+
"referral.errors.backfillExpired": "소급 입력 기간이 만료되었습니다. 가입 후 3일 이내에만 입력할 수 있습니다",
|
|
274
276
|
"referral.errors.codeExists": "이미 사용 중인 추천 코드입니다. 다른 코드를 선택해 주세요.",
|
|
277
|
+
"referral.errors.invalidCode": "초대 코드가 존재하지 않습니다. 다시 확인해 주세요",
|
|
275
278
|
"referral.errors.invalidFormat": "추천 코드 형식이 올바르지 않습니다. 2~8자의 영문, 숫자 또는 밑줄을 입력해 주세요.",
|
|
279
|
+
"referral.errors.selfReferral": "본인의 초대 코드는 사용할 수 없습니다",
|
|
276
280
|
"referral.errors.updateFailed": "업데이트에 실패했습니다. 나중에 다시 시도해 주세요.",
|
|
277
281
|
"referral.inviteCode.description": "나만의 추천 코드를 공유하여 친구를 초대하세요.",
|
|
278
282
|
"referral.inviteCode.title": "내 추천 코드",
|
|
279
283
|
"referral.inviteLink.description": "링크를 복사하여 친구에게 공유하세요. 가입 완료 시 보상을 받을 수 있습니다.",
|
|
280
284
|
"referral.inviteLink.title": "추천 링크",
|
|
285
|
+
"referral.rules.backfill.alreadyBound": "이미 초대 코드를 등록하셨습니다",
|
|
286
|
+
"referral.rules.backfill.description": "초대 코드 입력을 깜빡하셨나요? 가입 후 3일 이내에 소급 입력이 가능합니다",
|
|
287
|
+
"referral.rules.backfill.expiredTip": "소급 입력 기간이 만료되었습니다. 가입 후 3일 이내에만 입력할 수 있습니다",
|
|
288
|
+
"referral.rules.backfill.link": "초대 코드 소급 입력",
|
|
289
|
+
"referral.rules.backfill.placeholder": "초대 코드를 입력하세요",
|
|
290
|
+
"referral.rules.backfill.submit": "등록 확인",
|
|
291
|
+
"referral.rules.backfill.success": "초대 코드가 성공적으로 등록되었습니다",
|
|
292
|
+
"referral.rules.backfill.title": "초대 코드 소급 입력",
|
|
281
293
|
"referral.rules.description": "추천 보상 프로그램 규칙 알아보기",
|
|
282
294
|
"referral.rules.expiry": "크레딧 유효기간: 100일간 활동이 없으면 추천 크레딧이 소멸됩니다.",
|
|
295
|
+
"referral.rules.missedCode": "초대 코드 입력을 놓치셨나요? 가입 후 3일 이내에 <0>소급 입력</0>이 가능합니다",
|
|
283
296
|
"referral.rules.priority": "크레딧 사용 우선순위: 무료 크레딧 → 구독 크레딧 → 추천 크레딧 → 충전 크레딧",
|
|
284
297
|
"referral.rules.registration": "가입 방법: 추천 링크를 통해 가입하거나 가입 시 추천 코드 입력",
|
|
285
298
|
"referral.rules.reward": "보상: 추천인과 피추천인 모두 {{reward}}M 크레딧 지급",
|
package/locales/nl-NL/auth.json
CHANGED
|
@@ -147,6 +147,7 @@
|
|
|
147
147
|
"loginGuide.f4": "Ontdek krachtige plug-ins",
|
|
148
148
|
"loginGuide.title": "Na inloggen kun je:",
|
|
149
149
|
"loginOrSignup": "Inloggen / Registreren",
|
|
150
|
+
"profile.account": "Account",
|
|
150
151
|
"profile.authorizations.actions.revoke": "Intrekken",
|
|
151
152
|
"profile.authorizations.revoke.description": "Na intrekking heeft de tool geen toegang meer tot je gegevens. Herautorisatie is vereist om opnieuw te gebruiken.",
|
|
152
153
|
"profile.authorizations.revoke.title": "Autorisatie voor {{name}} intrekken?",
|
|
@@ -201,6 +201,41 @@
|
|
|
201
201
|
"accounts/fireworks/models/llama-v3p1-405b-instruct.description": "Meta Llama 3.1 is een meertalig LLM-familie met voorgetrainde en instructie-afgestemde generatiemodellen van 8B, 70B en 405B. De instructie-afgestemde tekstmodellen zijn geoptimaliseerd voor meertalige dialogen en overtreffen veel bestaande open en gesloten chatmodellen op gangbare industriële benchmarks. 405B is het krachtigste model in de Llama 3.1-familie, met FP8-inferentie die nauw aansluit bij de referentie-implementatie.",
|
|
202
202
|
"accounts/fireworks/models/llama-v3p1-70b-instruct.description": "Meta Llama 3.1 is een meertalig LLM-familie met voorgetrainde en instructie-afgestemde generatiemodellen van 8B, 70B en 405B. De instructie-afgestemde tekstmodellen zijn geoptimaliseerd voor meertalige dialogen en overtreffen veel bestaande open en gesloten chatmodellen op gangbare industriële benchmarks.",
|
|
203
203
|
"accounts/fireworks/models/llama-v3p1-8b-instruct.description": "Meta Llama 3.1 is een meertalig LLM-familie met voorgetrainde en instructie-afgestemde generatiemodellen van 8B, 70B en 405B. De instructie-afgestemde tekstmodellen zijn geoptimaliseerd voor meertalige dialogen en overtreffen veel bestaande open en gesloten chatmodellen op gangbare industriële benchmarks.",
|
|
204
|
+
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct.description": "Een op instructies afgestemd visueel redeneermodel van Meta met 11 miljard parameters, geoptimaliseerd voor visuele herkenning, beeldredenering, ondertiteling en beeldgerelateerde vraag-en-antwoordtaken. Het begrijpt visuele gegevens zoals grafieken en diagrammen en slaat een brug tussen beeld en taal door tekstuele beschrijvingen van beeldinhoud te genereren.",
|
|
205
|
+
"accounts/fireworks/models/llama-v3p2-3b-instruct.description": "Llama 3.2 3B Instruct is een lichtgewicht meertalig model van Meta, ontworpen voor efficiënte uitvoering met aanzienlijke voordelen in snelheid en kosten ten opzichte van grotere modellen. Typische toepassingen zijn het herschrijven van zoekopdrachten/prompts en hulp bij schrijven.",
|
|
206
|
+
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct.description": "Een op instructies afgestemd visueel redeneermodel van Meta met 90 miljard parameters, geoptimaliseerd voor visuele herkenning, beeldredenering, ondertiteling en beeldgerelateerde vraag-en-antwoordtaken. Het begrijpt visuele gegevens zoals grafieken en diagrammen en slaat een brug tussen beeld en taal door tekstuele beschrijvingen van beeldinhoud te genereren. Opmerking: dit model wordt momenteel experimenteel aangeboden als serverless model. Voor productiegebruik geldt dat Fireworks de implementatie mogelijk op korte termijn beëindigt.",
|
|
207
|
+
"accounts/fireworks/models/llama-v3p3-70b-instruct.description": "Llama 3.3 70B Instruct is de decemberupdate van Llama 3.1 70B. Het verbetert het gebruik van tools, meertalige tekstondersteuning, wiskunde en programmeren ten opzichte van de release van juli 2024. Het behaalt toonaangevende prestaties op het gebied van redeneren, wiskunde en het volgen van instructies, en biedt prestaties vergelijkbaar met 3.1 405B met aanzienlijke voordelen in snelheid en kosten.",
|
|
208
|
+
"accounts/fireworks/models/mistral-small-24b-instruct.description": "Een model met 24 miljard parameters met geavanceerde capaciteiten die vergelijkbaar zijn met grotere modellen.",
|
|
209
|
+
"accounts/fireworks/models/mixtral-8x22b-instruct.description": "Mixtral MoE 8x22B Instruct v0.1 is de op instructies afgestemde versie van Mixtral MoE 8x22B v0.1, met ondersteuning voor de chat completion API.",
|
|
210
|
+
"accounts/fireworks/models/mixtral-8x7b-instruct.description": "Mixtral MoE 8x7B Instruct is de op instructies afgestemde versie van Mixtral MoE 8x7B, met ondersteuning voor de chat completion API.",
|
|
211
|
+
"accounts/fireworks/models/mythomax-l2-13b.description": "Een verbeterde variant van MythoMix, mogelijk een verfijndere vorm, die MythoLogic-L2 en Huginn samenvoegt met een experimentele tensor-merge techniek. Door zijn unieke karakter is het uitermate geschikt voor verhalen vertellen en rollenspel.",
|
|
212
|
+
"accounts/fireworks/models/phi-3-vision-128k-instruct.description": "Phi-3-Vision-128K-Instruct is een lichtgewicht, geavanceerd open multimodaal model, getraind op synthetische data en zorgvuldig geselecteerde openbare webdatasets. Het richt zich op hoogwaardige, redeneerintensieve tekst- en visuele gegevens. Het behoort tot de Phi-3-familie en ondersteunt een contextlengte van 128K tokens. Het model is grondig verbeterd via gesuperviseerde fine-tuning en directe voorkeuroptimalisatie, wat zorgt voor nauwkeurige instructieopvolging en sterke veiligheidsmaatregelen.",
|
|
213
|
+
"accounts/fireworks/models/qwen-qwq-32b-preview.description": "Het Qwen QwQ-model richt zich op het verbeteren van AI-redenering en toont aan dat open modellen kunnen concurreren met gesloten topmodellen op het gebied van redenering. QwQ-32B-Preview is een experimentele release die gelijkwaardig presteert aan o1 en beter scoort dan GPT-4o en Claude 3.5 Sonnet op redenering en analyse in GPQA, AIME, MATH-500 en LiveCodeBench. Opmerking: dit model wordt momenteel experimenteel aangeboden als serverless model. Voor productiegebruik geldt dat Fireworks de implementatie mogelijk op korte termijn beëindigt.",
|
|
214
|
+
"accounts/fireworks/models/qwen2-vl-72b-instruct.description": "Het 72B Qwen-VL-model is de nieuwste iteratie van Alibaba, het resultaat van bijna een jaar innovatie.",
|
|
215
|
+
"accounts/fireworks/models/qwen2p5-72b-instruct.description": "Qwen2.5 is een LLM-serie met alleen decoders, ontwikkeld door het Qwen-team en Alibaba Cloud. De serie biedt modellen van 0.5B, 1.5B, 3B, 7B, 14B, 32B en 72B, met zowel basis- als instructievarianten.",
|
|
216
|
+
"accounts/fireworks/models/qwen2p5-coder-32b-instruct.description": "Qwen2.5-Coder is het nieuwste Qwen LLM-model gericht op programmeren (voorheen CodeQwen). Opmerking: dit model wordt momenteel experimenteel aangeboden als serverless model. Voor productiegebruik geldt dat Fireworks de implementatie mogelijk op korte termijn beëindigt.",
|
|
217
|
+
"accounts/yi-01-ai/models/yi-large.description": "Yi-Large is een topklasse LLM die net onder GPT-4, Gemini 1.5 Pro en Claude 3 Opus staat op de LMSYS-ranglijst. Het blinkt uit in meertalige ondersteuning, met name in Spaans, Chinees, Japans, Duits en Frans. Yi-Large is ook ontwikkelaarsvriendelijk en gebruikt hetzelfde API-schema als OpenAI voor eenvoudige integratie.",
|
|
218
|
+
"ai21-jamba-1.5-large.description": "Een meertalig model met 398 miljard parameters (waarvan 94 miljard actief), een contextvenster van 256K, ondersteuning voor functieaanroepen, gestructureerde output en onderbouwde generatie.",
|
|
219
|
+
"ai21-jamba-1.5-mini.description": "Een meertalig model met 52 miljard parameters (waarvan 12 miljard actief), een contextvenster van 256K, ondersteuning voor functieaanroepen, gestructureerde output en onderbouwde generatie.",
|
|
220
|
+
"ai21-labs/AI21-Jamba-1.5-Large.description": "Een meertalig model met 398 miljard parameters (waarvan 94 miljard actief), een contextvenster van 256K, ondersteuning voor functieaanroepen, gestructureerde output en onderbouwde generatie.",
|
|
221
|
+
"ai21-labs/AI21-Jamba-1.5-Mini.description": "Een meertalig model met 52 miljard parameters (waarvan 12 miljard actief), een contextvenster van 256K, ondersteuning voor functieaanroepen, gestructureerde output en onderbouwde generatie.",
|
|
222
|
+
"alibaba/qwen-3-14b.description": "Qwen3 is de nieuwste generatie in de Qwen-serie en biedt een uitgebreide reeks dichte en MoE-modellen. Gebaseerd op uitgebreide training levert het doorbraken op het gebied van redenering, instructieopvolging, agentcapaciteiten en meertalige ondersteuning.",
|
|
223
|
+
"alibaba/qwen-3-235b.description": "Qwen3 is de nieuwste generatie in de Qwen-serie en biedt een uitgebreide reeks dichte en MoE-modellen. Gebaseerd op uitgebreide training levert het doorbraken op het gebied van redenering, instructieopvolging, agentcapaciteiten en meertalige ondersteuning.",
|
|
224
|
+
"alibaba/qwen-3-30b.description": "Qwen3 is de nieuwste generatie in de Qwen-serie en biedt een uitgebreide reeks dichte en MoE-modellen. Gebaseerd op uitgebreide training levert het doorbraken op het gebied van redenering, instructieopvolging, agentcapaciteiten en meertalige ondersteuning.",
|
|
225
|
+
"alibaba/qwen-3-32b.description": "Qwen3 is de nieuwste generatie in de Qwen-serie en biedt een uitgebreide reeks dichte en MoE-modellen. Gebaseerd op uitgebreide training levert het doorbraken op het gebied van redenering, instructieopvolging, agentcapaciteiten en meertalige ondersteuning.",
|
|
226
|
+
"alibaba/qwen3-coder.description": "Qwen3-Coder-480B-A35B-Instruct is Qwen’s meest geavanceerde programmeermodel, met sterke prestaties op het gebied van agentisch programmeren, browsergebruik en andere kernprogrammeertaken, vergelijkbaar met Claude Sonnet-niveau.",
|
|
227
|
+
"amazon/nova-lite.description": "Een zeer voordelig multimodaal model met extreem snelle verwerking van beeld-, video- en tekstinvoer.",
|
|
228
|
+
"amazon/nova-micro.description": "Een tekstgericht model met ultralage latentie tegen zeer lage kosten.",
|
|
229
|
+
"amazon/nova-pro.description": "Een krachtig multimodaal model met de beste balans tussen nauwkeurigheid, snelheid en kosten voor een breed scala aan taken.",
|
|
230
|
+
"amazon/titan-embed-text-v2.description": "Amazon Titan Text Embeddings V2 is een lichtgewicht, efficiënt meertalig embeddingmodel dat ondersteuning biedt voor 1024, 512 en 256 dimensies.",
|
|
231
|
+
"anthropic.claude-3-5-sonnet-20240620-v1:0.description": "Claude 3.5 Sonnet stelt een nieuwe industriestandaard en overtreft concurrenten en Claude 3 Opus in brede evaluaties, terwijl het snelheid en kosten op middelhoog niveau behoudt.",
|
|
232
|
+
"anthropic.claude-3-5-sonnet-20241022-v2:0.description": "Claude 3.5 Sonnet stelt een nieuwe industriestandaard en overtreft concurrenten en Claude 3 Opus in brede evaluaties, terwijl het snelheid en kosten op middelhoog niveau behoudt.",
|
|
233
|
+
"anthropic.claude-3-haiku-20240307-v1:0.description": "Claude 3 Haiku is het snelste en meest compacte model van Anthropic, dat vrijwel directe reacties levert op eenvoudige vragen. Het biedt een naadloze, mensachtige AI-ervaring en ondersteunt beeldinvoer met een contextvenster van 200K tokens.",
|
|
234
|
+
"anthropic.claude-3-opus-20240229-v1:0.description": "Claude 3 Opus is het krachtigste AI-model van Anthropic met geavanceerde prestaties bij zeer complexe taken. Het verwerkt open vragen en nieuwe scenario’s met uitzonderlijke vloeiendheid en mensachtig begrip, en ondersteunt beeldinvoer met een contextvenster van 200K tokens.",
|
|
235
|
+
"anthropic.claude-3-sonnet-20240229-v1:0.description": "Claude 3 Sonnet biedt een balans tussen intelligentie en snelheid voor zakelijke toepassingen, met sterke prestaties tegen lagere kosten. Het is ontworpen als een betrouwbare krachtpatser voor grootschalige AI-implementaties en ondersteunt beeldinvoer met een contextvenster van 200K tokens.",
|
|
236
|
+
"anthropic.claude-instant-v1.description": "Een snel, voordelig en toch capabel model voor dagelijks chatten, tekstanalyse, samenvattingen en documentvragen.",
|
|
237
|
+
"anthropic.claude-v2.description": "Een zeer capabel model voor uiteenlopende taken, van complexe dialogen en creatieve generatie tot gedetailleerde instructieopvolging.",
|
|
238
|
+
"anthropic.claude-v2:1.description": "Een bijgewerkte versie van Claude 2 met een verdubbeld contextvenster en verbeterde betrouwbaarheid, lagere hallucinatiegraad en nauwkeurigheid op basis van bewijs voor lange documenten en RAG.",
|
|
204
239
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 is een open LLM voor ontwikkelaars, onderzoekers en bedrijven, ontworpen om hen te helpen bij het bouwen, experimenteren en verantwoord opschalen van generatieve AI-ideeën. Als onderdeel van de basis voor wereldwijde gemeenschapsinnovatie is het goed geschikt voor beperkte rekenkracht en middelen, edge-apparaten en snellere trainingstijden.",
|
|
205
240
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Sterke beeldredenering op afbeeldingen met hoge resolutie, geschikt voor toepassingen voor visueel begrip.",
|
|
206
241
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Geavanceerde beeldredenering voor toepassingen met visueel begrip en agentfunctionaliteit.",
|
|
@@ -215,6 +215,7 @@
|
|
|
215
215
|
"settingAgent.name.placeholder": "Voer agentnaam in",
|
|
216
216
|
"settingAgent.name.title": "Naam",
|
|
217
217
|
"settingAgent.prompt.placeholder": "Voer agentinstellingen in, druk op / om het opdrachtmenu te openen",
|
|
218
|
+
"settingAgent.prompt.templatePlaceholder": "#### Doel\nBeschrijf het hoofddoel en de belangrijkste doelstelling van deze agent.\n\n#### Vaardigheden\n- Noem de kerncompetenties\n- En gespecialiseerde kennisgebieden\n\n#### Werkwijze\n1. Stapsgewijs proces\n2. Hoe de agent taken moet benaderen\n3. Verwachte interacties met gebruikers\n\n#### Beperkingen\n- Belangrijke beperkingen om te respecteren\n- Richtlijnen voor gedrag",
|
|
218
219
|
"settingAgent.prompt.title": "Agentprofiel",
|
|
219
220
|
"settingAgent.submit": "Agent bijwerken",
|
|
220
221
|
"settingAgent.tag.desc": "Agenttags worden weergegeven in de Agent Community",
|