@lobehub/lobehub 2.0.0-next.156 → 2.0.0-next.158
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docs/development/database-schema.dbml +1 -0
- package/package.json +1 -1
- package/packages/database/migrations/0058_add_source_into_user_plugins.sql +1 -0
- package/packages/database/migrations/meta/0058_snapshot.json +8432 -0
- package/packages/database/migrations/meta/_journal.json +7 -0
- package/packages/database/src/core/migrations.json +19 -32
- package/packages/database/src/schemas/user.ts +2 -2
- package/packages/model-bank/src/aiModels/cerebras.ts +22 -48
- package/packages/model-bank/src/aiModels/infiniai.ts +62 -0
- package/packages/model-bank/src/aiModels/minimax.ts +23 -11
- package/packages/model-bank/src/aiModels/moonshot.ts +3 -24
- package/packages/model-bank/src/aiModels/openai.ts +0 -23
- package/packages/model-bank/src/aiModels/qwen.ts +26 -27
- package/packages/model-bank/src/aiModels/siliconcloud.ts +46 -0
- package/packages/model-bank/src/aiModels/spark.ts +17 -16
- package/packages/model-bank/src/aiModels/volcengine.ts +53 -0
- package/packages/model-bank/src/aiModels/wenxin.ts +49 -1
- package/packages/model-runtime/src/core/RouterRuntime/createRuntime.ts +2 -2
- package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +44 -2
- package/packages/model-runtime/src/providers/minimax/index.ts +1 -11
- package/packages/model-runtime/src/providers/spark/index.test.ts +12 -11
- package/packages/model-runtime/src/providers/spark/index.ts +19 -4
- package/packages/model-runtime/src/providers/volcengine/index.test.ts +0 -14
- package/packages/model-runtime/src/providers/volcengine/index.ts +1 -24
- package/packages/types/src/tool/builtin.ts +6 -6
- package/src/app/(backend)/api/auth/check-user/route.ts +0 -6
- package/src/config/modelProviders/spark.ts +0 -3
- package/src/config/modelProviders/volcengine.ts +2 -1
- package/src/store/aiInfra/store.ts +2 -2
- package/src/store/chat/store.ts +2 -2
- package/src/store/discover/store.ts +2 -2
- package/src/store/electron/store.ts +2 -2
- package/src/store/file/store.ts +2 -2
- package/src/store/global/store.ts +2 -2
- package/src/store/knowledgeBase/store.ts +2 -2
- package/src/store/serverConfig/store.ts +2 -2
- package/src/store/session/store.ts +2 -2
- package/src/store/tool/store.ts +2 -2
- package/src/store/user/store.ts +2 -2
|
@@ -406,6 +406,13 @@
|
|
|
406
406
|
"when": 1764734167674,
|
|
407
407
|
"tag": "0057_add_topic_user_memory_extract_status",
|
|
408
408
|
"breakpoints": true
|
|
409
|
+
},
|
|
410
|
+
{
|
|
411
|
+
"idx": 58,
|
|
412
|
+
"version": "7",
|
|
413
|
+
"when": 1764842015809,
|
|
414
|
+
"tag": "0058_add_source_into_user_plugins",
|
|
415
|
+
"breakpoints": true
|
|
409
416
|
}
|
|
410
417
|
],
|
|
411
418
|
"version": "6"
|
|
@@ -223,10 +223,7 @@
|
|
|
223
223
|
"hash": "9646161fa041354714f823d726af27247bcd6e60fa3be5698c0d69f337a5700b"
|
|
224
224
|
},
|
|
225
225
|
{
|
|
226
|
-
"sql": [
|
|
227
|
-
"DROP TABLE \"user_budgets\";",
|
|
228
|
-
"\nDROP TABLE \"user_subscriptions\";"
|
|
229
|
-
],
|
|
226
|
+
"sql": ["DROP TABLE \"user_budgets\";", "\nDROP TABLE \"user_subscriptions\";"],
|
|
230
227
|
"bps": true,
|
|
231
228
|
"folderMillis": 1729699958471,
|
|
232
229
|
"hash": "7dad43a2a25d1aec82124a4e53f8d82f8505c3073f23606c1dc5d2a4598eacf9"
|
|
@@ -298,9 +295,7 @@
|
|
|
298
295
|
"hash": "845a692ceabbfc3caf252a97d3e19a213bc0c433df2689900135f9cfded2cf49"
|
|
299
296
|
},
|
|
300
297
|
{
|
|
301
|
-
"sql": [
|
|
302
|
-
"ALTER TABLE \"messages\" ADD COLUMN \"reasoning\" jsonb;"
|
|
303
|
-
],
|
|
298
|
+
"sql": ["ALTER TABLE \"messages\" ADD COLUMN \"reasoning\" jsonb;"],
|
|
304
299
|
"bps": true,
|
|
305
300
|
"folderMillis": 1737609172353,
|
|
306
301
|
"hash": "2cb36ae4fcdd7b7064767e04bfbb36ae34518ff4bb1b39006f2dd394d1893868"
|
|
@@ -515,9 +510,7 @@
|
|
|
515
510
|
"hash": "a7ccf007fd185ff922823148d1eae6fafe652fc98d2fd2793f84a84f29e93cd1"
|
|
516
511
|
},
|
|
517
512
|
{
|
|
518
|
-
"sql": [
|
|
519
|
-
"ALTER TABLE \"ai_providers\" ADD COLUMN \"config\" jsonb;"
|
|
520
|
-
],
|
|
513
|
+
"sql": ["ALTER TABLE \"ai_providers\" ADD COLUMN \"config\" jsonb;"],
|
|
521
514
|
"bps": true,
|
|
522
515
|
"folderMillis": 1749309388370,
|
|
523
516
|
"hash": "39cea379f08ee4cb944875c0b67f7791387b508c2d47958bb4cd501ed1ef33eb"
|
|
@@ -635,9 +628,7 @@
|
|
|
635
628
|
"hash": "1ba9b1f74ea13348da98d6fcdad7867ab4316ed565bf75d84d160c526cdac14b"
|
|
636
629
|
},
|
|
637
630
|
{
|
|
638
|
-
"sql": [
|
|
639
|
-
"ALTER TABLE \"agents\" ADD COLUMN IF NOT EXISTS \"virtual\" boolean DEFAULT false;"
|
|
640
|
-
],
|
|
631
|
+
"sql": ["ALTER TABLE \"agents\" ADD COLUMN IF NOT EXISTS \"virtual\" boolean DEFAULT false;"],
|
|
641
632
|
"bps": true,
|
|
642
633
|
"folderMillis": 1759116400580,
|
|
643
634
|
"hash": "433ddae88e785f2db734e49a4c115eee93e60afe389f7919d66e5ba9aa159a37"
|
|
@@ -687,17 +678,13 @@
|
|
|
687
678
|
"hash": "4bdc6505797d7a33b622498c138cfd47f637239f6905e1c484cd01d9d5f21d6b"
|
|
688
679
|
},
|
|
689
680
|
{
|
|
690
|
-
"sql": [
|
|
691
|
-
"ALTER TABLE \"user_settings\" ADD COLUMN IF NOT EXISTS \"image\" jsonb;"
|
|
692
|
-
],
|
|
681
|
+
"sql": ["ALTER TABLE \"user_settings\" ADD COLUMN IF NOT EXISTS \"image\" jsonb;"],
|
|
693
682
|
"bps": true,
|
|
694
683
|
"folderMillis": 1760108430562,
|
|
695
684
|
"hash": "ce09b301abb80f6563abc2f526bdd20b4f69bae430f09ba2179b9e3bfec43067"
|
|
696
685
|
},
|
|
697
686
|
{
|
|
698
|
-
"sql": [
|
|
699
|
-
"ALTER TABLE \"documents\" ADD COLUMN IF NOT EXISTS \"editor_data\" jsonb;"
|
|
700
|
-
],
|
|
687
|
+
"sql": ["ALTER TABLE \"documents\" ADD COLUMN IF NOT EXISTS \"editor_data\" jsonb;"],
|
|
701
688
|
"bps": true,
|
|
702
689
|
"folderMillis": 1761554153406,
|
|
703
690
|
"hash": "bf2f21293e90e11cf60a784cf3ec219eafa95f7545d7d2f9d1449c0b0949599a"
|
|
@@ -777,17 +764,13 @@
|
|
|
777
764
|
"hash": "923ccbdf46c32be9a981dabd348e6923b4a365444241e9b8cc174bf5b914cbc5"
|
|
778
765
|
},
|
|
779
766
|
{
|
|
780
|
-
"sql": [
|
|
781
|
-
"ALTER TABLE \"agents\" ADD COLUMN IF NOT EXISTS \"market_identifier\" text;\n"
|
|
782
|
-
],
|
|
767
|
+
"sql": ["ALTER TABLE \"agents\" ADD COLUMN IF NOT EXISTS \"market_identifier\" text;\n"],
|
|
783
768
|
"bps": true,
|
|
784
769
|
"folderMillis": 1762870034882,
|
|
785
770
|
"hash": "4178aacb4b8892b7fd15d29209bbf9b1d1f9d7c406ba796f27542c0bcd919680"
|
|
786
771
|
},
|
|
787
772
|
{
|
|
788
|
-
"sql": [
|
|
789
|
-
"ALTER TABLE \"message_plugins\" ADD COLUMN IF NOT EXISTS \"intervention\" jsonb;\n"
|
|
790
|
-
],
|
|
773
|
+
"sql": ["ALTER TABLE \"message_plugins\" ADD COLUMN IF NOT EXISTS \"intervention\" jsonb;\n"],
|
|
791
774
|
"bps": true,
|
|
792
775
|
"folderMillis": 1762911968658,
|
|
793
776
|
"hash": "552a032cc0e595277232e70b5f9338658585bafe9481ae8346a5f322b673a68b"
|
|
@@ -816,9 +799,7 @@
|
|
|
816
799
|
"hash": "f823b521f4d25e5dc5ab238b372727d2d2d7f0aed27b5eabc8a9608ce4e50568"
|
|
817
800
|
},
|
|
818
801
|
{
|
|
819
|
-
"sql": [
|
|
820
|
-
"ALTER TABLE \"agents\" ADD COLUMN IF NOT EXISTS \"editor_data\" jsonb;"
|
|
821
|
-
],
|
|
802
|
+
"sql": ["ALTER TABLE \"agents\" ADD COLUMN IF NOT EXISTS \"editor_data\" jsonb;"],
|
|
822
803
|
"bps": true,
|
|
823
804
|
"folderMillis": 1764215503726,
|
|
824
805
|
"hash": "4188893a9083b3c7baebdbad0dd3f9d9400ede7584ca2394f5c64305dc9ec7b0"
|
|
@@ -859,9 +840,7 @@
|
|
|
859
840
|
"hash": "2c103eee82bdf329944fb622dd9c2b9f20df80eb54f23eb9254d2285de413099"
|
|
860
841
|
},
|
|
861
842
|
{
|
|
862
|
-
"sql": [
|
|
863
|
-
"ALTER TABLE \"user_settings\" ADD COLUMN IF NOT EXISTS \"market\" jsonb;"
|
|
864
|
-
],
|
|
843
|
+
"sql": ["ALTER TABLE \"user_settings\" ADD COLUMN IF NOT EXISTS \"market\" jsonb;"],
|
|
865
844
|
"bps": true,
|
|
866
845
|
"folderMillis": 1764335703306,
|
|
867
846
|
"hash": "28c0d738c0b1fdf5fd871363be1a1477b4accbabdc140fe8dc6e9b339aae2c89"
|
|
@@ -939,5 +918,13 @@
|
|
|
939
918
|
"bps": true,
|
|
940
919
|
"folderMillis": 1764734167674,
|
|
941
920
|
"hash": "89c134be2948d3afc360d6bac11dea0c6fd5c902bf6093ed077033adb920fd02"
|
|
921
|
+
},
|
|
922
|
+
{
|
|
923
|
+
"sql": [
|
|
924
|
+
"ALTER TABLE \"user_installed_plugins\" ADD COLUMN IF NOT EXISTS \"source\" varchar(255);"
|
|
925
|
+
],
|
|
926
|
+
"bps": true,
|
|
927
|
+
"folderMillis": 1764842015809,
|
|
928
|
+
"hash": "276514dc101fffc66794156f4ba644599a4ae5997a68b9e7f54452ee374bfa61"
|
|
942
929
|
}
|
|
943
|
-
]
|
|
930
|
+
]
|
|
@@ -4,7 +4,7 @@ import type { CustomPluginParams } from '@lobechat/types';
|
|
|
4
4
|
import { LobeChatPluginManifest } from '@lobehub/chat-plugin-sdk';
|
|
5
5
|
import { boolean, jsonb, pgTable, primaryKey, text } from 'drizzle-orm/pg-core';
|
|
6
6
|
|
|
7
|
-
import { timestamps, timestamptz } from './_helpers';
|
|
7
|
+
import { timestamps, timestamptz, varchar255 } from './_helpers';
|
|
8
8
|
|
|
9
9
|
export const users = pgTable('users', {
|
|
10
10
|
id: text('id').primaryKey().notNull(),
|
|
@@ -76,7 +76,7 @@ export const userInstalledPlugins = pgTable(
|
|
|
76
76
|
manifest: jsonb('manifest').$type<LobeChatPluginManifest>(),
|
|
77
77
|
settings: jsonb('settings'),
|
|
78
78
|
customParams: jsonb('custom_params').$type<CustomPluginParams>(),
|
|
79
|
-
|
|
79
|
+
source: varchar255('source'),
|
|
80
80
|
...timestamps,
|
|
81
81
|
},
|
|
82
82
|
(self) => ({
|
|
@@ -4,47 +4,20 @@ const cerebrasModels: AIChatModelCard[] = [
|
|
|
4
4
|
{
|
|
5
5
|
abilities: {
|
|
6
6
|
functionCall: true,
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
description: 'Llama 4 Scout:高性能的 Llama 系列模型,适合需高吞吐与低延迟的场景。',
|
|
10
|
-
displayName: 'Llama 4 Scout',
|
|
11
|
-
id: 'llama-4-scout-17b-16e-instruct',
|
|
12
|
-
pricing: {
|
|
13
|
-
units: [
|
|
14
|
-
{ name: 'textInput', rate: 0.65, strategy: 'fixed', unit: 'millionTokens' },
|
|
15
|
-
{ name: 'textOutput', rate: 0.85, strategy: 'fixed', unit: 'millionTokens' },
|
|
16
|
-
],
|
|
17
|
-
},
|
|
18
|
-
type: 'chat',
|
|
19
|
-
},
|
|
20
|
-
{
|
|
21
|
-
abilities: {
|
|
22
|
-
functionCall: true,
|
|
23
|
-
},
|
|
24
|
-
contextWindowTokens: 32_768,
|
|
25
|
-
description: 'Llama 3.1 8B:小体量、低延迟的 Llama 变体,适合轻量在线推理与交互场景。',
|
|
26
|
-
displayName: 'Llama 3.1 8B',
|
|
27
|
-
id: 'llama3.1-8b',
|
|
28
|
-
pricing: {
|
|
29
|
-
units: [
|
|
30
|
-
{ name: 'textInput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
31
|
-
{ name: 'textOutput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
32
|
-
],
|
|
33
|
-
},
|
|
34
|
-
type: 'chat',
|
|
35
|
-
},
|
|
36
|
-
{
|
|
37
|
-
abilities: {
|
|
38
|
-
functionCall: true,
|
|
7
|
+
reasoning: true,
|
|
8
|
+
structuredOutput: true,
|
|
39
9
|
},
|
|
40
10
|
contextWindowTokens: 131_072,
|
|
41
|
-
description:
|
|
42
|
-
|
|
43
|
-
|
|
11
|
+
description:
|
|
12
|
+
'在编程与推理任务上表现优良,支持流式与工具调用,适合 agentic 编码与复杂推理场景。',
|
|
13
|
+
displayName: 'GLM-4.6',
|
|
14
|
+
enabled: true,
|
|
15
|
+
id: 'zai-glm-4.6',
|
|
16
|
+
maxOutput: 40_000,
|
|
44
17
|
pricing: {
|
|
45
18
|
units: [
|
|
46
|
-
{ name: 'textInput', rate:
|
|
47
|
-
{ name: 'textOutput', rate:
|
|
19
|
+
{ name: 'textInput', rate: 2.25, strategy: 'fixed', unit: 'millionTokens' },
|
|
20
|
+
{ name: 'textOutput', rate: 2.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
48
21
|
],
|
|
49
22
|
},
|
|
50
23
|
type: 'chat',
|
|
@@ -103,15 +76,16 @@ const cerebrasModels: AIChatModelCard[] = [
|
|
|
103
76
|
},
|
|
104
77
|
{
|
|
105
78
|
abilities: {
|
|
106
|
-
|
|
79
|
+
functionCall: true,
|
|
107
80
|
},
|
|
108
81
|
contextWindowTokens: 131_072,
|
|
109
|
-
|
|
110
|
-
|
|
82
|
+
description: 'Llama 3.3 70B:中大型 Llama 模型,兼顾推理能力与吞吐。',
|
|
83
|
+
displayName: 'Llama 3.3 70B',
|
|
84
|
+
id: 'llama-3.3-70b',
|
|
111
85
|
pricing: {
|
|
112
86
|
units: [
|
|
113
|
-
{ name: 'textInput', rate: 0.
|
|
114
|
-
{ name: 'textOutput', rate: 2
|
|
87
|
+
{ name: 'textInput', rate: 0.85, strategy: 'fixed', unit: 'millionTokens' },
|
|
88
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
115
89
|
],
|
|
116
90
|
},
|
|
117
91
|
type: 'chat',
|
|
@@ -120,14 +94,14 @@ const cerebrasModels: AIChatModelCard[] = [
|
|
|
120
94
|
abilities: {
|
|
121
95
|
functionCall: true,
|
|
122
96
|
},
|
|
123
|
-
contextWindowTokens:
|
|
124
|
-
description: '
|
|
125
|
-
displayName: '
|
|
126
|
-
id: '
|
|
97
|
+
contextWindowTokens: 32_768,
|
|
98
|
+
description: 'Llama 3.1 8B:小体量、低延迟的 Llama 变体,适合轻量在线推理与交互场景。',
|
|
99
|
+
displayName: 'Llama 3.1 8B',
|
|
100
|
+
id: 'llama3.1-8b',
|
|
127
101
|
pricing: {
|
|
128
102
|
units: [
|
|
129
|
-
{ name: 'textInput', rate:
|
|
130
|
-
{ name: 'textOutput', rate:
|
|
103
|
+
{ name: 'textInput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
104
|
+
{ name: 'textOutput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
131
105
|
],
|
|
132
106
|
},
|
|
133
107
|
type: 'chat',
|
|
@@ -3,6 +3,47 @@ import { AIChatModelCard } from '../types/aiModel';
|
|
|
3
3
|
// https://cloud.infini-ai.com/genstudio/model
|
|
4
4
|
|
|
5
5
|
const infiniaiChatModels: AIChatModelCard[] = [
|
|
6
|
+
{
|
|
7
|
+
abilities: {
|
|
8
|
+
functionCall: true,
|
|
9
|
+
reasoning: true,
|
|
10
|
+
},
|
|
11
|
+
contextWindowTokens: 262_144,
|
|
12
|
+
description:
|
|
13
|
+
"Kimi K2 Thinking 是最新、最强大的开源思考模型。它通过大幅扩展多步推理深度,并在 200–300 次连续工具调用中保持稳定的工具使用,在 Humanity's Last Exam (HLE)、BrowseComp 及其他基准测试中树立了新的标杆。同时,K2 Thinking 在编程、数学、逻辑推理和 Agent 场景中表现卓越。该模型基于混合专家(MoE)架构,总参数约 1T,支持 256K 上下文窗口并支持工具调用。",
|
|
14
|
+
displayName: 'Kimi K2 Thinking',
|
|
15
|
+
id: 'kimi-k2-thinking',
|
|
16
|
+
maxOutput: 32_768,
|
|
17
|
+
pricing: {
|
|
18
|
+
currency: 'CNY',
|
|
19
|
+
units: [
|
|
20
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
21
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
22
|
+
],
|
|
23
|
+
},
|
|
24
|
+
releasedAt: '2025-11-07',
|
|
25
|
+
type: 'chat',
|
|
26
|
+
},
|
|
27
|
+
{
|
|
28
|
+
abilities: {
|
|
29
|
+
vision: true,
|
|
30
|
+
},
|
|
31
|
+
contextWindowTokens: 8192,
|
|
32
|
+
description:
|
|
33
|
+
'DeepSeek-OCR 是由深度求索(DeepSeek AI)推出的一个视觉语言模型,专注于光学字符识别(OCR)与"上下文光学压缩"。该模型旨在探索从图像中压缩上下文信息的边界,能够高效处理文档并将其转换为如 Markdown 等结构化文本格式。它能够准确识别图像中的文字内容,特别适用于文档数字化、文字提取和结构化处理等应用场景。',
|
|
34
|
+
displayName: 'DeepSeek OCR',
|
|
35
|
+
id: 'deepseek-ocr',
|
|
36
|
+
maxOutput: 8192,
|
|
37
|
+
pricing: {
|
|
38
|
+
currency: 'CNY',
|
|
39
|
+
units: [
|
|
40
|
+
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
41
|
+
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
42
|
+
],
|
|
43
|
+
},
|
|
44
|
+
releasedAt: '2025-10-20',
|
|
45
|
+
type: 'chat',
|
|
46
|
+
},
|
|
6
47
|
{
|
|
7
48
|
abilities: {
|
|
8
49
|
functionCall: true,
|
|
@@ -187,6 +228,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
187
228
|
{ name: 'textOutput', rate: 12, strategy: 'fixed', unit: 'millionTokens' },
|
|
188
229
|
],
|
|
189
230
|
},
|
|
231
|
+
settings: {
|
|
232
|
+
extendParams: ['enableReasoning'],
|
|
233
|
+
},
|
|
190
234
|
type: 'chat',
|
|
191
235
|
},
|
|
192
236
|
{
|
|
@@ -224,6 +268,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
224
268
|
{ name: 'textOutput', rate: 12, strategy: 'fixed', unit: 'millionTokens' },
|
|
225
269
|
],
|
|
226
270
|
},
|
|
271
|
+
settings: {
|
|
272
|
+
extendParams: ['enableReasoning'],
|
|
273
|
+
},
|
|
227
274
|
type: 'chat',
|
|
228
275
|
},
|
|
229
276
|
{
|
|
@@ -260,6 +307,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
260
307
|
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
261
308
|
],
|
|
262
309
|
},
|
|
310
|
+
settings: {
|
|
311
|
+
extendParams: ['enableReasoning'],
|
|
312
|
+
},
|
|
263
313
|
type: 'chat',
|
|
264
314
|
},
|
|
265
315
|
{
|
|
@@ -369,6 +419,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
369
419
|
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
370
420
|
],
|
|
371
421
|
},
|
|
422
|
+
settings: {
|
|
423
|
+
extendParams: ['enableReasoning'],
|
|
424
|
+
},
|
|
372
425
|
type: 'chat',
|
|
373
426
|
},
|
|
374
427
|
{
|
|
@@ -409,6 +462,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
409
462
|
{ name: 'textOutput', rate: 11.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
410
463
|
],
|
|
411
464
|
},
|
|
465
|
+
settings: {
|
|
466
|
+
extendParams: ['enableReasoning'],
|
|
467
|
+
},
|
|
412
468
|
type: 'chat',
|
|
413
469
|
},
|
|
414
470
|
{
|
|
@@ -429,6 +485,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
429
485
|
{ name: 'textOutput', rate: 8.7, strategy: 'fixed', unit: 'millionTokens' },
|
|
430
486
|
],
|
|
431
487
|
},
|
|
488
|
+
settings: {
|
|
489
|
+
extendParams: ['enableReasoning'],
|
|
490
|
+
},
|
|
432
491
|
type: 'chat',
|
|
433
492
|
},
|
|
434
493
|
{
|
|
@@ -449,6 +508,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
449
508
|
{ name: 'textOutput', rate: 20, strategy: 'fixed', unit: 'millionTokens' },
|
|
450
509
|
],
|
|
451
510
|
},
|
|
511
|
+
settings: {
|
|
512
|
+
extendParams: ['enableReasoning'],
|
|
513
|
+
},
|
|
452
514
|
type: 'chat',
|
|
453
515
|
},
|
|
454
516
|
{
|
|
@@ -5,7 +5,6 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
5
5
|
abilities: {
|
|
6
6
|
functionCall: true,
|
|
7
7
|
reasoning: true,
|
|
8
|
-
search: true,
|
|
9
8
|
},
|
|
10
9
|
contextWindowTokens: 204_800,
|
|
11
10
|
description: '专为高效编码与Agent工作流而生',
|
|
@@ -16,21 +15,41 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
16
15
|
pricing: {
|
|
17
16
|
currency: 'CNY',
|
|
18
17
|
units: [
|
|
18
|
+
{ name: 'textInput_cacheRead', rate: 0.21, strategy: 'fixed', unit: 'millionTokens' },
|
|
19
|
+
{ name: 'textInput_cacheWrite', rate: 2.625, strategy: 'fixed', unit: 'millionTokens' },
|
|
19
20
|
{ name: 'textInput', rate: 2.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
20
21
|
{ name: 'textOutput', rate: 8.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
21
22
|
],
|
|
22
23
|
},
|
|
23
24
|
releasedAt: '2025-10-27',
|
|
24
|
-
|
|
25
|
-
|
|
25
|
+
type: 'chat',
|
|
26
|
+
},
|
|
27
|
+
{
|
|
28
|
+
abilities: {
|
|
29
|
+
functionCall: true,
|
|
30
|
+
reasoning: true,
|
|
31
|
+
},
|
|
32
|
+
contextWindowTokens: 204_800,
|
|
33
|
+
description: '专为高效编码与Agent工作流而生,更高并发,商业使用。',
|
|
34
|
+
displayName: 'MiniMax M2 Stable',
|
|
35
|
+
id: 'MiniMax-M2-Stable',
|
|
36
|
+
maxOutput: 131_072,
|
|
37
|
+
pricing: {
|
|
38
|
+
currency: 'CNY',
|
|
39
|
+
units: [
|
|
40
|
+
{ name: 'textInput_cacheRead', rate: 0.21, strategy: 'fixed', unit: 'millionTokens' },
|
|
41
|
+
{ name: 'textInput_cacheWrite', rate: 2.625, strategy: 'fixed', unit: 'millionTokens' },
|
|
42
|
+
{ name: 'textInput', rate: 2.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
43
|
+
{ name: 'textOutput', rate: 8.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
44
|
+
],
|
|
26
45
|
},
|
|
46
|
+
releasedAt: '2025-10-27',
|
|
27
47
|
type: 'chat',
|
|
28
48
|
},
|
|
29
49
|
{
|
|
30
50
|
abilities: {
|
|
31
51
|
functionCall: true,
|
|
32
52
|
reasoning: true,
|
|
33
|
-
search: true,
|
|
34
53
|
},
|
|
35
54
|
contextWindowTokens: 1_000_192,
|
|
36
55
|
description: '全新自研推理模型。全球领先:80K 思维链 x 1M 输入,效果比肩海外顶尖模型',
|
|
@@ -45,15 +64,11 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
45
64
|
],
|
|
46
65
|
},
|
|
47
66
|
releasedAt: '2025-06-16',
|
|
48
|
-
settings: {
|
|
49
|
-
searchImpl: 'params',
|
|
50
|
-
},
|
|
51
67
|
type: 'chat',
|
|
52
68
|
},
|
|
53
69
|
{
|
|
54
70
|
abilities: {
|
|
55
71
|
functionCall: true,
|
|
56
|
-
search: true,
|
|
57
72
|
vision: true,
|
|
58
73
|
},
|
|
59
74
|
contextWindowTokens: 1_000_192,
|
|
@@ -70,9 +85,6 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
70
85
|
],
|
|
71
86
|
},
|
|
72
87
|
releasedAt: '2025-01-15',
|
|
73
|
-
settings: {
|
|
74
|
-
searchImpl: 'params',
|
|
75
|
-
},
|
|
76
88
|
type: 'chat',
|
|
77
89
|
},
|
|
78
90
|
];
|
|
@@ -102,9 +102,9 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
|
102
102
|
pricing: {
|
|
103
103
|
currency: 'CNY',
|
|
104
104
|
units: [
|
|
105
|
-
{ name: 'textInput_cacheRead', rate:
|
|
106
|
-
{ name: 'textInput', rate:
|
|
107
|
-
{ name: 'textOutput', rate:
|
|
105
|
+
{ name: 'textInput_cacheRead', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
106
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
107
|
+
{ name: 'textOutput', rate: 58, strategy: 'fixed', unit: 'millionTokens' },
|
|
108
108
|
],
|
|
109
109
|
},
|
|
110
110
|
releasedAt: '2025-09-05',
|
|
@@ -132,27 +132,6 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
|
132
132
|
releasedAt: '2025-02-17',
|
|
133
133
|
type: 'chat',
|
|
134
134
|
},
|
|
135
|
-
{
|
|
136
|
-
abilities: {
|
|
137
|
-
reasoning: true,
|
|
138
|
-
vision: true,
|
|
139
|
-
},
|
|
140
|
-
contextWindowTokens: 131_072,
|
|
141
|
-
description:
|
|
142
|
-
'kimi-thinking-preview 模型是月之暗面提供的具有多模态推理能力和通用推理能力的多模态思考模型,它擅长深度推理,帮助解决更多更难的事情',
|
|
143
|
-
displayName: 'Kimi Thinking Preview',
|
|
144
|
-
enabled: true,
|
|
145
|
-
id: 'kimi-thinking-preview',
|
|
146
|
-
pricing: {
|
|
147
|
-
currency: 'CNY',
|
|
148
|
-
units: [
|
|
149
|
-
{ name: 'textInput', rate: 200, strategy: 'fixed', unit: 'millionTokens' },
|
|
150
|
-
{ name: 'textOutput', rate: 200, strategy: 'fixed', unit: 'millionTokens' },
|
|
151
|
-
],
|
|
152
|
-
},
|
|
153
|
-
releasedAt: '2025-05-06',
|
|
154
|
-
type: 'chat',
|
|
155
|
-
},
|
|
156
135
|
{
|
|
157
136
|
abilities: {
|
|
158
137
|
functionCall: true,
|
|
@@ -458,29 +458,6 @@ export const openaiChatModels: AIChatModelCard[] = [
|
|
|
458
458
|
},
|
|
459
459
|
type: 'chat',
|
|
460
460
|
},
|
|
461
|
-
{
|
|
462
|
-
abilities: {
|
|
463
|
-
reasoning: true,
|
|
464
|
-
},
|
|
465
|
-
contextWindowTokens: 128_000,
|
|
466
|
-
description:
|
|
467
|
-
'o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。',
|
|
468
|
-
displayName: 'o1-mini',
|
|
469
|
-
id: 'o1-mini', // deprecated on 2025-10-27
|
|
470
|
-
maxOutput: 65_536,
|
|
471
|
-
pricing: {
|
|
472
|
-
units: [
|
|
473
|
-
{ name: 'textInput_cacheRead', rate: 0.55, strategy: 'fixed', unit: 'millionTokens' },
|
|
474
|
-
{ name: 'textInput', rate: 1.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
475
|
-
{ name: 'textOutput', rate: 4.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
476
|
-
],
|
|
477
|
-
},
|
|
478
|
-
releasedAt: '2024-09-12',
|
|
479
|
-
settings: {
|
|
480
|
-
extendParams: ['reasoningEffort'],
|
|
481
|
-
},
|
|
482
|
-
type: 'chat',
|
|
483
|
-
},
|
|
484
461
|
{
|
|
485
462
|
abilities: {
|
|
486
463
|
functionCall: true,
|
|
@@ -3,31 +3,6 @@ import { AIChatModelCard, AIImageModelCard } from '../types/aiModel';
|
|
|
3
3
|
// https://help.aliyun.com/zh/model-studio/models?spm=a2c4g.11186623
|
|
4
4
|
|
|
5
5
|
const qwenChatModels: AIChatModelCard[] = [
|
|
6
|
-
{
|
|
7
|
-
abilities: {
|
|
8
|
-
functionCall: true,
|
|
9
|
-
reasoning: true,
|
|
10
|
-
},
|
|
11
|
-
contextWindowTokens: 262_144,
|
|
12
|
-
description:
|
|
13
|
-
'kimi-k2-thinking模型是月之暗面提供的具有通用 Agentic能力和推理能力的思考模型,它擅长深度推理,并可通过多步工具调用,帮助解决各类难题。',
|
|
14
|
-
displayName: 'Kimi K2 Thinking',
|
|
15
|
-
id: 'kimi-k2-thinking',
|
|
16
|
-
maxOutput: 16_384,
|
|
17
|
-
organization: 'Qwen',
|
|
18
|
-
pricing: {
|
|
19
|
-
currency: 'CNY',
|
|
20
|
-
units: [
|
|
21
|
-
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
22
|
-
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
23
|
-
],
|
|
24
|
-
},
|
|
25
|
-
releasedAt: '2025-11-10',
|
|
26
|
-
settings: {
|
|
27
|
-
extendParams: ['reasoningBudgetToken'],
|
|
28
|
-
},
|
|
29
|
-
type: 'chat',
|
|
30
|
-
},
|
|
31
6
|
{
|
|
32
7
|
abilities: {
|
|
33
8
|
reasoning: true,
|
|
@@ -176,6 +151,31 @@ const qwenChatModels: AIChatModelCard[] = [
|
|
|
176
151
|
},
|
|
177
152
|
type: 'chat',
|
|
178
153
|
},
|
|
154
|
+
{
|
|
155
|
+
abilities: {
|
|
156
|
+
functionCall: true,
|
|
157
|
+
reasoning: true,
|
|
158
|
+
},
|
|
159
|
+
contextWindowTokens: 262_144,
|
|
160
|
+
description:
|
|
161
|
+
'kimi-k2-thinking模型是月之暗面提供的具有通用 Agentic能力和推理能力的思考模型,它擅长深度推理,并可通过多步工具调用,帮助解决各类难题。',
|
|
162
|
+
displayName: 'Kimi K2 Thinking',
|
|
163
|
+
id: 'kimi-k2-thinking',
|
|
164
|
+
maxOutput: 16_384,
|
|
165
|
+
organization: 'Qwen',
|
|
166
|
+
pricing: {
|
|
167
|
+
currency: 'CNY',
|
|
168
|
+
units: [
|
|
169
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
170
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
171
|
+
],
|
|
172
|
+
},
|
|
173
|
+
releasedAt: '2025-11-10',
|
|
174
|
+
settings: {
|
|
175
|
+
extendParams: ['reasoningBudgetToken'],
|
|
176
|
+
},
|
|
177
|
+
type: 'chat',
|
|
178
|
+
},
|
|
179
179
|
{
|
|
180
180
|
abilities: {
|
|
181
181
|
functionCall: true,
|
|
@@ -187,7 +187,6 @@ const qwenChatModels: AIChatModelCard[] = [
|
|
|
187
187
|
displayName: 'Kimi K2 Instruct',
|
|
188
188
|
id: 'Moonshot-Kimi-K2-Instruct',
|
|
189
189
|
maxOutput: 8192,
|
|
190
|
-
organization: 'Qwen',
|
|
191
190
|
pricing: {
|
|
192
191
|
currency: 'CNY',
|
|
193
192
|
units: [
|
|
@@ -1246,7 +1245,7 @@ const qwenChatModels: AIChatModelCard[] = [
|
|
|
1246
1245
|
'通义千问超大规模语言模型,支持长文本上下文,以及基于长文档、多文档等多个场景的对话功能。',
|
|
1247
1246
|
displayName: 'Qwen Long',
|
|
1248
1247
|
id: 'qwen-long',
|
|
1249
|
-
maxOutput:
|
|
1248
|
+
maxOutput: 32_768,
|
|
1250
1249
|
organization: 'Qwen',
|
|
1251
1250
|
pricing: {
|
|
1252
1251
|
currency: 'CNY',
|
|
@@ -2,6 +2,52 @@ import { AIChatModelCard, AIImageModelCard } from '../types/aiModel';
|
|
|
2
2
|
|
|
3
3
|
// https://siliconflow.cn/zh-cn/models
|
|
4
4
|
const siliconcloudChatModels: AIChatModelCard[] = [
|
|
5
|
+
{
|
|
6
|
+
abilities: {
|
|
7
|
+
functionCall: true,
|
|
8
|
+
reasoning: true,
|
|
9
|
+
},
|
|
10
|
+
contextWindowTokens: 262_144,
|
|
11
|
+
description:
|
|
12
|
+
"Kimi K2 Thinking 是最新、最强大的开源思考模型。它通过大幅扩展多步推理深度,并在 200–300 次连续工具调用中保持稳定的工具使用,在 Humanity's Last Exam (HLE)、BrowseComp 及其他基准测试中树立了新的标杆。同时,K2 Thinking 在编程、数学、逻辑推理和 Agent 场景中表现卓越。该模型基于混合专家(MoE)架构,总参数约 1T,支持 256K 上下文窗口并支持工具调用。",
|
|
13
|
+
displayName: 'Kimi K2 Thinking',
|
|
14
|
+
id: 'moonshotai/Kimi-K2-Thinking',
|
|
15
|
+
pricing: {
|
|
16
|
+
currency: 'CNY',
|
|
17
|
+
units: [
|
|
18
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
19
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
20
|
+
],
|
|
21
|
+
},
|
|
22
|
+
releasedAt: '2025-11-07',
|
|
23
|
+
settings: {
|
|
24
|
+
extendParams: ['reasoningBudgetToken'],
|
|
25
|
+
},
|
|
26
|
+
type: 'chat',
|
|
27
|
+
},
|
|
28
|
+
{
|
|
29
|
+
abilities: {
|
|
30
|
+
functionCall: true,
|
|
31
|
+
reasoning: true,
|
|
32
|
+
},
|
|
33
|
+
contextWindowTokens: 262_144,
|
|
34
|
+
description:
|
|
35
|
+
'Kimi K2 Thinking Turbo 是 Kimi K2 系列的 Turbo 版本,针对推理速度和吞吐进行了优化,同时保留 K2 Thinking 的多步推理与工具调用能力。该模型基于混合专家(MoE)架构,总参数约 1T,原生支持 256K 上下文并可稳定执行大规模工具调用,适用于对延迟和并发有更高要求的生产场景。',
|
|
36
|
+
displayName: 'Kimi K2 Thinking (Pro)',
|
|
37
|
+
id: 'Pro/moonshotai/Kimi-K2-Thinking',
|
|
38
|
+
pricing: {
|
|
39
|
+
currency: 'CNY',
|
|
40
|
+
units: [
|
|
41
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
42
|
+
{ name: 'textOutput', rate: 32, strategy: 'fixed', unit: 'millionTokens' },
|
|
43
|
+
],
|
|
44
|
+
},
|
|
45
|
+
releasedAt: '2025-11-07',
|
|
46
|
+
settings: {
|
|
47
|
+
extendParams: ['reasoningBudgetToken'],
|
|
48
|
+
},
|
|
49
|
+
type: 'chat',
|
|
50
|
+
},
|
|
5
51
|
{
|
|
6
52
|
abilities: {
|
|
7
53
|
functionCall: true,
|