@lobehub/lobehub 2.0.0-next.156 → 2.0.0-next.157
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/package.json +1 -1
- package/packages/model-bank/src/aiModels/cerebras.ts +22 -48
- package/packages/model-bank/src/aiModels/infiniai.ts +62 -0
- package/packages/model-bank/src/aiModels/minimax.ts +23 -11
- package/packages/model-bank/src/aiModels/moonshot.ts +3 -24
- package/packages/model-bank/src/aiModels/openai.ts +0 -23
- package/packages/model-bank/src/aiModels/qwen.ts +26 -27
- package/packages/model-bank/src/aiModels/siliconcloud.ts +46 -0
- package/packages/model-bank/src/aiModels/spark.ts +17 -16
- package/packages/model-bank/src/aiModels/volcengine.ts +53 -0
- package/packages/model-bank/src/aiModels/wenxin.ts +49 -1
- package/packages/model-runtime/src/core/RouterRuntime/createRuntime.ts +2 -2
- package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +44 -2
- package/packages/model-runtime/src/providers/minimax/index.ts +1 -11
- package/packages/model-runtime/src/providers/spark/index.test.ts +12 -11
- package/packages/model-runtime/src/providers/spark/index.ts +19 -4
- package/packages/model-runtime/src/providers/volcengine/index.test.ts +0 -14
- package/packages/model-runtime/src/providers/volcengine/index.ts +1 -24
- package/packages/types/src/tool/builtin.ts +6 -6
- package/src/config/modelProviders/spark.ts +0 -3
- package/src/config/modelProviders/volcengine.ts +2 -1
- package/src/store/aiInfra/store.ts +2 -2
- package/src/store/chat/store.ts +2 -2
- package/src/store/discover/store.ts +2 -2
- package/src/store/electron/store.ts +2 -2
- package/src/store/file/store.ts +2 -2
- package/src/store/global/store.ts +2 -2
- package/src/store/knowledgeBase/store.ts +2 -2
- package/src/store/serverConfig/store.ts +2 -2
- package/src/store/session/store.ts +2 -2
- package/src/store/tool/store.ts +2 -2
- package/src/store/user/store.ts +2 -2
package/CHANGELOG.md
CHANGED
|
@@ -2,6 +2,31 @@
|
|
|
2
2
|
|
|
3
3
|
# Changelog
|
|
4
4
|
|
|
5
|
+
## [Version 2.0.0-next.157](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.156...v2.0.0-next.157)
|
|
6
|
+
|
|
7
|
+
<sup>Released on **2025-12-04**</sup>
|
|
8
|
+
|
|
9
|
+
#### 💄 Styles
|
|
10
|
+
|
|
11
|
+
- **misc**: Update Spark X1.5 model.
|
|
12
|
+
|
|
13
|
+
<br/>
|
|
14
|
+
|
|
15
|
+
<details>
|
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
|
17
|
+
|
|
18
|
+
#### Styles
|
|
19
|
+
|
|
20
|
+
- **misc**: Update Spark X1.5 model, closes [#10103](https://github.com/lobehub/lobe-chat/issues/10103) ([d1aca26](https://github.com/lobehub/lobe-chat/commit/d1aca26))
|
|
21
|
+
|
|
22
|
+
</details>
|
|
23
|
+
|
|
24
|
+
<div align="right">
|
|
25
|
+
|
|
26
|
+
[](#readme-top)
|
|
27
|
+
|
|
28
|
+
</div>
|
|
29
|
+
|
|
5
30
|
## [Version 2.0.0-next.156](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.155...v2.0.0-next.156)
|
|
6
31
|
|
|
7
32
|
<sup>Released on **2025-12-04**</sup>
|
package/changelog/v1.json
CHANGED
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@lobehub/lobehub",
|
|
3
|
-
"version": "2.0.0-next.
|
|
3
|
+
"version": "2.0.0-next.157",
|
|
4
4
|
"description": "LobeHub - an open-source,comprehensive AI Agent framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
|
5
5
|
"keywords": [
|
|
6
6
|
"framework",
|
|
@@ -4,47 +4,20 @@ const cerebrasModels: AIChatModelCard[] = [
|
|
|
4
4
|
{
|
|
5
5
|
abilities: {
|
|
6
6
|
functionCall: true,
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
description: 'Llama 4 Scout:高性能的 Llama 系列模型,适合需高吞吐与低延迟的场景。',
|
|
10
|
-
displayName: 'Llama 4 Scout',
|
|
11
|
-
id: 'llama-4-scout-17b-16e-instruct',
|
|
12
|
-
pricing: {
|
|
13
|
-
units: [
|
|
14
|
-
{ name: 'textInput', rate: 0.65, strategy: 'fixed', unit: 'millionTokens' },
|
|
15
|
-
{ name: 'textOutput', rate: 0.85, strategy: 'fixed', unit: 'millionTokens' },
|
|
16
|
-
],
|
|
17
|
-
},
|
|
18
|
-
type: 'chat',
|
|
19
|
-
},
|
|
20
|
-
{
|
|
21
|
-
abilities: {
|
|
22
|
-
functionCall: true,
|
|
23
|
-
},
|
|
24
|
-
contextWindowTokens: 32_768,
|
|
25
|
-
description: 'Llama 3.1 8B:小体量、低延迟的 Llama 变体,适合轻量在线推理与交互场景。',
|
|
26
|
-
displayName: 'Llama 3.1 8B',
|
|
27
|
-
id: 'llama3.1-8b',
|
|
28
|
-
pricing: {
|
|
29
|
-
units: [
|
|
30
|
-
{ name: 'textInput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
31
|
-
{ name: 'textOutput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
32
|
-
],
|
|
33
|
-
},
|
|
34
|
-
type: 'chat',
|
|
35
|
-
},
|
|
36
|
-
{
|
|
37
|
-
abilities: {
|
|
38
|
-
functionCall: true,
|
|
7
|
+
reasoning: true,
|
|
8
|
+
structuredOutput: true,
|
|
39
9
|
},
|
|
40
10
|
contextWindowTokens: 131_072,
|
|
41
|
-
description:
|
|
42
|
-
|
|
43
|
-
|
|
11
|
+
description:
|
|
12
|
+
'在编程与推理任务上表现优良,支持流式与工具调用,适合 agentic 编码与复杂推理场景。',
|
|
13
|
+
displayName: 'GLM-4.6',
|
|
14
|
+
enabled: true,
|
|
15
|
+
id: 'zai-glm-4.6',
|
|
16
|
+
maxOutput: 40_000,
|
|
44
17
|
pricing: {
|
|
45
18
|
units: [
|
|
46
|
-
{ name: 'textInput', rate:
|
|
47
|
-
{ name: 'textOutput', rate:
|
|
19
|
+
{ name: 'textInput', rate: 2.25, strategy: 'fixed', unit: 'millionTokens' },
|
|
20
|
+
{ name: 'textOutput', rate: 2.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
48
21
|
],
|
|
49
22
|
},
|
|
50
23
|
type: 'chat',
|
|
@@ -103,15 +76,16 @@ const cerebrasModels: AIChatModelCard[] = [
|
|
|
103
76
|
},
|
|
104
77
|
{
|
|
105
78
|
abilities: {
|
|
106
|
-
|
|
79
|
+
functionCall: true,
|
|
107
80
|
},
|
|
108
81
|
contextWindowTokens: 131_072,
|
|
109
|
-
|
|
110
|
-
|
|
82
|
+
description: 'Llama 3.3 70B:中大型 Llama 模型,兼顾推理能力与吞吐。',
|
|
83
|
+
displayName: 'Llama 3.3 70B',
|
|
84
|
+
id: 'llama-3.3-70b',
|
|
111
85
|
pricing: {
|
|
112
86
|
units: [
|
|
113
|
-
{ name: 'textInput', rate: 0.
|
|
114
|
-
{ name: 'textOutput', rate: 2
|
|
87
|
+
{ name: 'textInput', rate: 0.85, strategy: 'fixed', unit: 'millionTokens' },
|
|
88
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
115
89
|
],
|
|
116
90
|
},
|
|
117
91
|
type: 'chat',
|
|
@@ -120,14 +94,14 @@ const cerebrasModels: AIChatModelCard[] = [
|
|
|
120
94
|
abilities: {
|
|
121
95
|
functionCall: true,
|
|
122
96
|
},
|
|
123
|
-
contextWindowTokens:
|
|
124
|
-
description: '
|
|
125
|
-
displayName: '
|
|
126
|
-
id: '
|
|
97
|
+
contextWindowTokens: 32_768,
|
|
98
|
+
description: 'Llama 3.1 8B:小体量、低延迟的 Llama 变体,适合轻量在线推理与交互场景。',
|
|
99
|
+
displayName: 'Llama 3.1 8B',
|
|
100
|
+
id: 'llama3.1-8b',
|
|
127
101
|
pricing: {
|
|
128
102
|
units: [
|
|
129
|
-
{ name: 'textInput', rate:
|
|
130
|
-
{ name: 'textOutput', rate:
|
|
103
|
+
{ name: 'textInput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
104
|
+
{ name: 'textOutput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
131
105
|
],
|
|
132
106
|
},
|
|
133
107
|
type: 'chat',
|
|
@@ -3,6 +3,47 @@ import { AIChatModelCard } from '../types/aiModel';
|
|
|
3
3
|
// https://cloud.infini-ai.com/genstudio/model
|
|
4
4
|
|
|
5
5
|
const infiniaiChatModels: AIChatModelCard[] = [
|
|
6
|
+
{
|
|
7
|
+
abilities: {
|
|
8
|
+
functionCall: true,
|
|
9
|
+
reasoning: true,
|
|
10
|
+
},
|
|
11
|
+
contextWindowTokens: 262_144,
|
|
12
|
+
description:
|
|
13
|
+
"Kimi K2 Thinking 是最新、最强大的开源思考模型。它通过大幅扩展多步推理深度,并在 200–300 次连续工具调用中保持稳定的工具使用,在 Humanity's Last Exam (HLE)、BrowseComp 及其他基准测试中树立了新的标杆。同时,K2 Thinking 在编程、数学、逻辑推理和 Agent 场景中表现卓越。该模型基于混合专家(MoE)架构,总参数约 1T,支持 256K 上下文窗口并支持工具调用。",
|
|
14
|
+
displayName: 'Kimi K2 Thinking',
|
|
15
|
+
id: 'kimi-k2-thinking',
|
|
16
|
+
maxOutput: 32_768,
|
|
17
|
+
pricing: {
|
|
18
|
+
currency: 'CNY',
|
|
19
|
+
units: [
|
|
20
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
21
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
22
|
+
],
|
|
23
|
+
},
|
|
24
|
+
releasedAt: '2025-11-07',
|
|
25
|
+
type: 'chat',
|
|
26
|
+
},
|
|
27
|
+
{
|
|
28
|
+
abilities: {
|
|
29
|
+
vision: true,
|
|
30
|
+
},
|
|
31
|
+
contextWindowTokens: 8192,
|
|
32
|
+
description:
|
|
33
|
+
'DeepSeek-OCR 是由深度求索(DeepSeek AI)推出的一个视觉语言模型,专注于光学字符识别(OCR)与"上下文光学压缩"。该模型旨在探索从图像中压缩上下文信息的边界,能够高效处理文档并将其转换为如 Markdown 等结构化文本格式。它能够准确识别图像中的文字内容,特别适用于文档数字化、文字提取和结构化处理等应用场景。',
|
|
34
|
+
displayName: 'DeepSeek OCR',
|
|
35
|
+
id: 'deepseek-ocr',
|
|
36
|
+
maxOutput: 8192,
|
|
37
|
+
pricing: {
|
|
38
|
+
currency: 'CNY',
|
|
39
|
+
units: [
|
|
40
|
+
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
41
|
+
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
42
|
+
],
|
|
43
|
+
},
|
|
44
|
+
releasedAt: '2025-10-20',
|
|
45
|
+
type: 'chat',
|
|
46
|
+
},
|
|
6
47
|
{
|
|
7
48
|
abilities: {
|
|
8
49
|
functionCall: true,
|
|
@@ -187,6 +228,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
187
228
|
{ name: 'textOutput', rate: 12, strategy: 'fixed', unit: 'millionTokens' },
|
|
188
229
|
],
|
|
189
230
|
},
|
|
231
|
+
settings: {
|
|
232
|
+
extendParams: ['enableReasoning'],
|
|
233
|
+
},
|
|
190
234
|
type: 'chat',
|
|
191
235
|
},
|
|
192
236
|
{
|
|
@@ -224,6 +268,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
224
268
|
{ name: 'textOutput', rate: 12, strategy: 'fixed', unit: 'millionTokens' },
|
|
225
269
|
],
|
|
226
270
|
},
|
|
271
|
+
settings: {
|
|
272
|
+
extendParams: ['enableReasoning'],
|
|
273
|
+
},
|
|
227
274
|
type: 'chat',
|
|
228
275
|
},
|
|
229
276
|
{
|
|
@@ -260,6 +307,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
260
307
|
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
261
308
|
],
|
|
262
309
|
},
|
|
310
|
+
settings: {
|
|
311
|
+
extendParams: ['enableReasoning'],
|
|
312
|
+
},
|
|
263
313
|
type: 'chat',
|
|
264
314
|
},
|
|
265
315
|
{
|
|
@@ -369,6 +419,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
369
419
|
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
370
420
|
],
|
|
371
421
|
},
|
|
422
|
+
settings: {
|
|
423
|
+
extendParams: ['enableReasoning'],
|
|
424
|
+
},
|
|
372
425
|
type: 'chat',
|
|
373
426
|
},
|
|
374
427
|
{
|
|
@@ -409,6 +462,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
409
462
|
{ name: 'textOutput', rate: 11.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
410
463
|
],
|
|
411
464
|
},
|
|
465
|
+
settings: {
|
|
466
|
+
extendParams: ['enableReasoning'],
|
|
467
|
+
},
|
|
412
468
|
type: 'chat',
|
|
413
469
|
},
|
|
414
470
|
{
|
|
@@ -429,6 +485,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
429
485
|
{ name: 'textOutput', rate: 8.7, strategy: 'fixed', unit: 'millionTokens' },
|
|
430
486
|
],
|
|
431
487
|
},
|
|
488
|
+
settings: {
|
|
489
|
+
extendParams: ['enableReasoning'],
|
|
490
|
+
},
|
|
432
491
|
type: 'chat',
|
|
433
492
|
},
|
|
434
493
|
{
|
|
@@ -449,6 +508,9 @@ const infiniaiChatModels: AIChatModelCard[] = [
|
|
|
449
508
|
{ name: 'textOutput', rate: 20, strategy: 'fixed', unit: 'millionTokens' },
|
|
450
509
|
],
|
|
451
510
|
},
|
|
511
|
+
settings: {
|
|
512
|
+
extendParams: ['enableReasoning'],
|
|
513
|
+
},
|
|
452
514
|
type: 'chat',
|
|
453
515
|
},
|
|
454
516
|
{
|
|
@@ -5,7 +5,6 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
5
5
|
abilities: {
|
|
6
6
|
functionCall: true,
|
|
7
7
|
reasoning: true,
|
|
8
|
-
search: true,
|
|
9
8
|
},
|
|
10
9
|
contextWindowTokens: 204_800,
|
|
11
10
|
description: '专为高效编码与Agent工作流而生',
|
|
@@ -16,21 +15,41 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
16
15
|
pricing: {
|
|
17
16
|
currency: 'CNY',
|
|
18
17
|
units: [
|
|
18
|
+
{ name: 'textInput_cacheRead', rate: 0.21, strategy: 'fixed', unit: 'millionTokens' },
|
|
19
|
+
{ name: 'textInput_cacheWrite', rate: 2.625, strategy: 'fixed', unit: 'millionTokens' },
|
|
19
20
|
{ name: 'textInput', rate: 2.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
20
21
|
{ name: 'textOutput', rate: 8.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
21
22
|
],
|
|
22
23
|
},
|
|
23
24
|
releasedAt: '2025-10-27',
|
|
24
|
-
|
|
25
|
-
|
|
25
|
+
type: 'chat',
|
|
26
|
+
},
|
|
27
|
+
{
|
|
28
|
+
abilities: {
|
|
29
|
+
functionCall: true,
|
|
30
|
+
reasoning: true,
|
|
31
|
+
},
|
|
32
|
+
contextWindowTokens: 204_800,
|
|
33
|
+
description: '专为高效编码与Agent工作流而生,更高并发,商业使用。',
|
|
34
|
+
displayName: 'MiniMax M2 Stable',
|
|
35
|
+
id: 'MiniMax-M2-Stable',
|
|
36
|
+
maxOutput: 131_072,
|
|
37
|
+
pricing: {
|
|
38
|
+
currency: 'CNY',
|
|
39
|
+
units: [
|
|
40
|
+
{ name: 'textInput_cacheRead', rate: 0.21, strategy: 'fixed', unit: 'millionTokens' },
|
|
41
|
+
{ name: 'textInput_cacheWrite', rate: 2.625, strategy: 'fixed', unit: 'millionTokens' },
|
|
42
|
+
{ name: 'textInput', rate: 2.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
43
|
+
{ name: 'textOutput', rate: 8.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
44
|
+
],
|
|
26
45
|
},
|
|
46
|
+
releasedAt: '2025-10-27',
|
|
27
47
|
type: 'chat',
|
|
28
48
|
},
|
|
29
49
|
{
|
|
30
50
|
abilities: {
|
|
31
51
|
functionCall: true,
|
|
32
52
|
reasoning: true,
|
|
33
|
-
search: true,
|
|
34
53
|
},
|
|
35
54
|
contextWindowTokens: 1_000_192,
|
|
36
55
|
description: '全新自研推理模型。全球领先:80K 思维链 x 1M 输入,效果比肩海外顶尖模型',
|
|
@@ -45,15 +64,11 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
45
64
|
],
|
|
46
65
|
},
|
|
47
66
|
releasedAt: '2025-06-16',
|
|
48
|
-
settings: {
|
|
49
|
-
searchImpl: 'params',
|
|
50
|
-
},
|
|
51
67
|
type: 'chat',
|
|
52
68
|
},
|
|
53
69
|
{
|
|
54
70
|
abilities: {
|
|
55
71
|
functionCall: true,
|
|
56
|
-
search: true,
|
|
57
72
|
vision: true,
|
|
58
73
|
},
|
|
59
74
|
contextWindowTokens: 1_000_192,
|
|
@@ -70,9 +85,6 @@ const minimaxChatModels: AIChatModelCard[] = [
|
|
|
70
85
|
],
|
|
71
86
|
},
|
|
72
87
|
releasedAt: '2025-01-15',
|
|
73
|
-
settings: {
|
|
74
|
-
searchImpl: 'params',
|
|
75
|
-
},
|
|
76
88
|
type: 'chat',
|
|
77
89
|
},
|
|
78
90
|
];
|
|
@@ -102,9 +102,9 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
|
102
102
|
pricing: {
|
|
103
103
|
currency: 'CNY',
|
|
104
104
|
units: [
|
|
105
|
-
{ name: 'textInput_cacheRead', rate:
|
|
106
|
-
{ name: 'textInput', rate:
|
|
107
|
-
{ name: 'textOutput', rate:
|
|
105
|
+
{ name: 'textInput_cacheRead', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
106
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
107
|
+
{ name: 'textOutput', rate: 58, strategy: 'fixed', unit: 'millionTokens' },
|
|
108
108
|
],
|
|
109
109
|
},
|
|
110
110
|
releasedAt: '2025-09-05',
|
|
@@ -132,27 +132,6 @@ const moonshotChatModels: AIChatModelCard[] = [
|
|
|
132
132
|
releasedAt: '2025-02-17',
|
|
133
133
|
type: 'chat',
|
|
134
134
|
},
|
|
135
|
-
{
|
|
136
|
-
abilities: {
|
|
137
|
-
reasoning: true,
|
|
138
|
-
vision: true,
|
|
139
|
-
},
|
|
140
|
-
contextWindowTokens: 131_072,
|
|
141
|
-
description:
|
|
142
|
-
'kimi-thinking-preview 模型是月之暗面提供的具有多模态推理能力和通用推理能力的多模态思考模型,它擅长深度推理,帮助解决更多更难的事情',
|
|
143
|
-
displayName: 'Kimi Thinking Preview',
|
|
144
|
-
enabled: true,
|
|
145
|
-
id: 'kimi-thinking-preview',
|
|
146
|
-
pricing: {
|
|
147
|
-
currency: 'CNY',
|
|
148
|
-
units: [
|
|
149
|
-
{ name: 'textInput', rate: 200, strategy: 'fixed', unit: 'millionTokens' },
|
|
150
|
-
{ name: 'textOutput', rate: 200, strategy: 'fixed', unit: 'millionTokens' },
|
|
151
|
-
],
|
|
152
|
-
},
|
|
153
|
-
releasedAt: '2025-05-06',
|
|
154
|
-
type: 'chat',
|
|
155
|
-
},
|
|
156
135
|
{
|
|
157
136
|
abilities: {
|
|
158
137
|
functionCall: true,
|
|
@@ -458,29 +458,6 @@ export const openaiChatModels: AIChatModelCard[] = [
|
|
|
458
458
|
},
|
|
459
459
|
type: 'chat',
|
|
460
460
|
},
|
|
461
|
-
{
|
|
462
|
-
abilities: {
|
|
463
|
-
reasoning: true,
|
|
464
|
-
},
|
|
465
|
-
contextWindowTokens: 128_000,
|
|
466
|
-
description:
|
|
467
|
-
'o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。',
|
|
468
|
-
displayName: 'o1-mini',
|
|
469
|
-
id: 'o1-mini', // deprecated on 2025-10-27
|
|
470
|
-
maxOutput: 65_536,
|
|
471
|
-
pricing: {
|
|
472
|
-
units: [
|
|
473
|
-
{ name: 'textInput_cacheRead', rate: 0.55, strategy: 'fixed', unit: 'millionTokens' },
|
|
474
|
-
{ name: 'textInput', rate: 1.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
475
|
-
{ name: 'textOutput', rate: 4.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
476
|
-
],
|
|
477
|
-
},
|
|
478
|
-
releasedAt: '2024-09-12',
|
|
479
|
-
settings: {
|
|
480
|
-
extendParams: ['reasoningEffort'],
|
|
481
|
-
},
|
|
482
|
-
type: 'chat',
|
|
483
|
-
},
|
|
484
461
|
{
|
|
485
462
|
abilities: {
|
|
486
463
|
functionCall: true,
|
|
@@ -3,31 +3,6 @@ import { AIChatModelCard, AIImageModelCard } from '../types/aiModel';
|
|
|
3
3
|
// https://help.aliyun.com/zh/model-studio/models?spm=a2c4g.11186623
|
|
4
4
|
|
|
5
5
|
const qwenChatModels: AIChatModelCard[] = [
|
|
6
|
-
{
|
|
7
|
-
abilities: {
|
|
8
|
-
functionCall: true,
|
|
9
|
-
reasoning: true,
|
|
10
|
-
},
|
|
11
|
-
contextWindowTokens: 262_144,
|
|
12
|
-
description:
|
|
13
|
-
'kimi-k2-thinking模型是月之暗面提供的具有通用 Agentic能力和推理能力的思考模型,它擅长深度推理,并可通过多步工具调用,帮助解决各类难题。',
|
|
14
|
-
displayName: 'Kimi K2 Thinking',
|
|
15
|
-
id: 'kimi-k2-thinking',
|
|
16
|
-
maxOutput: 16_384,
|
|
17
|
-
organization: 'Qwen',
|
|
18
|
-
pricing: {
|
|
19
|
-
currency: 'CNY',
|
|
20
|
-
units: [
|
|
21
|
-
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
22
|
-
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
23
|
-
],
|
|
24
|
-
},
|
|
25
|
-
releasedAt: '2025-11-10',
|
|
26
|
-
settings: {
|
|
27
|
-
extendParams: ['reasoningBudgetToken'],
|
|
28
|
-
},
|
|
29
|
-
type: 'chat',
|
|
30
|
-
},
|
|
31
6
|
{
|
|
32
7
|
abilities: {
|
|
33
8
|
reasoning: true,
|
|
@@ -176,6 +151,31 @@ const qwenChatModels: AIChatModelCard[] = [
|
|
|
176
151
|
},
|
|
177
152
|
type: 'chat',
|
|
178
153
|
},
|
|
154
|
+
{
|
|
155
|
+
abilities: {
|
|
156
|
+
functionCall: true,
|
|
157
|
+
reasoning: true,
|
|
158
|
+
},
|
|
159
|
+
contextWindowTokens: 262_144,
|
|
160
|
+
description:
|
|
161
|
+
'kimi-k2-thinking模型是月之暗面提供的具有通用 Agentic能力和推理能力的思考模型,它擅长深度推理,并可通过多步工具调用,帮助解决各类难题。',
|
|
162
|
+
displayName: 'Kimi K2 Thinking',
|
|
163
|
+
id: 'kimi-k2-thinking',
|
|
164
|
+
maxOutput: 16_384,
|
|
165
|
+
organization: 'Qwen',
|
|
166
|
+
pricing: {
|
|
167
|
+
currency: 'CNY',
|
|
168
|
+
units: [
|
|
169
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
170
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
171
|
+
],
|
|
172
|
+
},
|
|
173
|
+
releasedAt: '2025-11-10',
|
|
174
|
+
settings: {
|
|
175
|
+
extendParams: ['reasoningBudgetToken'],
|
|
176
|
+
},
|
|
177
|
+
type: 'chat',
|
|
178
|
+
},
|
|
179
179
|
{
|
|
180
180
|
abilities: {
|
|
181
181
|
functionCall: true,
|
|
@@ -187,7 +187,6 @@ const qwenChatModels: AIChatModelCard[] = [
|
|
|
187
187
|
displayName: 'Kimi K2 Instruct',
|
|
188
188
|
id: 'Moonshot-Kimi-K2-Instruct',
|
|
189
189
|
maxOutput: 8192,
|
|
190
|
-
organization: 'Qwen',
|
|
191
190
|
pricing: {
|
|
192
191
|
currency: 'CNY',
|
|
193
192
|
units: [
|
|
@@ -1246,7 +1245,7 @@ const qwenChatModels: AIChatModelCard[] = [
|
|
|
1246
1245
|
'通义千问超大规模语言模型,支持长文本上下文,以及基于长文档、多文档等多个场景的对话功能。',
|
|
1247
1246
|
displayName: 'Qwen Long',
|
|
1248
1247
|
id: 'qwen-long',
|
|
1249
|
-
maxOutput:
|
|
1248
|
+
maxOutput: 32_768,
|
|
1250
1249
|
organization: 'Qwen',
|
|
1251
1250
|
pricing: {
|
|
1252
1251
|
currency: 'CNY',
|
|
@@ -2,6 +2,52 @@ import { AIChatModelCard, AIImageModelCard } from '../types/aiModel';
|
|
|
2
2
|
|
|
3
3
|
// https://siliconflow.cn/zh-cn/models
|
|
4
4
|
const siliconcloudChatModels: AIChatModelCard[] = [
|
|
5
|
+
{
|
|
6
|
+
abilities: {
|
|
7
|
+
functionCall: true,
|
|
8
|
+
reasoning: true,
|
|
9
|
+
},
|
|
10
|
+
contextWindowTokens: 262_144,
|
|
11
|
+
description:
|
|
12
|
+
"Kimi K2 Thinking 是最新、最强大的开源思考模型。它通过大幅扩展多步推理深度,并在 200–300 次连续工具调用中保持稳定的工具使用,在 Humanity's Last Exam (HLE)、BrowseComp 及其他基准测试中树立了新的标杆。同时,K2 Thinking 在编程、数学、逻辑推理和 Agent 场景中表现卓越。该模型基于混合专家(MoE)架构,总参数约 1T,支持 256K 上下文窗口并支持工具调用。",
|
|
13
|
+
displayName: 'Kimi K2 Thinking',
|
|
14
|
+
id: 'moonshotai/Kimi-K2-Thinking',
|
|
15
|
+
pricing: {
|
|
16
|
+
currency: 'CNY',
|
|
17
|
+
units: [
|
|
18
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
19
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
20
|
+
],
|
|
21
|
+
},
|
|
22
|
+
releasedAt: '2025-11-07',
|
|
23
|
+
settings: {
|
|
24
|
+
extendParams: ['reasoningBudgetToken'],
|
|
25
|
+
},
|
|
26
|
+
type: 'chat',
|
|
27
|
+
},
|
|
28
|
+
{
|
|
29
|
+
abilities: {
|
|
30
|
+
functionCall: true,
|
|
31
|
+
reasoning: true,
|
|
32
|
+
},
|
|
33
|
+
contextWindowTokens: 262_144,
|
|
34
|
+
description:
|
|
35
|
+
'Kimi K2 Thinking Turbo 是 Kimi K2 系列的 Turbo 版本,针对推理速度和吞吐进行了优化,同时保留 K2 Thinking 的多步推理与工具调用能力。该模型基于混合专家(MoE)架构,总参数约 1T,原生支持 256K 上下文并可稳定执行大规模工具调用,适用于对延迟和并发有更高要求的生产场景。',
|
|
36
|
+
displayName: 'Kimi K2 Thinking (Pro)',
|
|
37
|
+
id: 'Pro/moonshotai/Kimi-K2-Thinking',
|
|
38
|
+
pricing: {
|
|
39
|
+
currency: 'CNY',
|
|
40
|
+
units: [
|
|
41
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
42
|
+
{ name: 'textOutput', rate: 32, strategy: 'fixed', unit: 'millionTokens' },
|
|
43
|
+
],
|
|
44
|
+
},
|
|
45
|
+
releasedAt: '2025-11-07',
|
|
46
|
+
settings: {
|
|
47
|
+
extendParams: ['reasoningBudgetToken'],
|
|
48
|
+
},
|
|
49
|
+
type: 'chat',
|
|
50
|
+
},
|
|
5
51
|
{
|
|
6
52
|
abilities: {
|
|
7
53
|
functionCall: true,
|
|
@@ -3,22 +3,25 @@ import { AIChatModelCard } from '../types/aiModel';
|
|
|
3
3
|
const sparkChatModels: AIChatModelCard[] = [
|
|
4
4
|
{
|
|
5
5
|
abilities: {
|
|
6
|
+
functionCall: true,
|
|
6
7
|
reasoning: true,
|
|
7
8
|
search: true,
|
|
8
9
|
},
|
|
9
|
-
contextWindowTokens:
|
|
10
|
+
contextWindowTokens: 65_535,
|
|
10
11
|
description:
|
|
11
|
-
'
|
|
12
|
-
displayName: 'Spark X1',
|
|
13
|
-
|
|
14
|
-
|
|
12
|
+
'X1.5能力介绍:(1)新增动态调整思考模式,通过thinking 字段控制;(2)上下文长度增大:输入、输出各64K;(3)支持FunctionCall功能。',
|
|
13
|
+
displayName: 'Spark X1.5',
|
|
14
|
+
enabled: true,
|
|
15
|
+
id: 'spark-x',
|
|
16
|
+
maxOutput: 65_535,
|
|
15
17
|
settings: {
|
|
18
|
+
extendParams: ['thinking'],
|
|
16
19
|
searchImpl: 'params',
|
|
17
20
|
},
|
|
18
21
|
type: 'chat',
|
|
19
22
|
},
|
|
20
23
|
{
|
|
21
|
-
contextWindowTokens: 8192,
|
|
24
|
+
contextWindowTokens: 8192 + 4096,
|
|
22
25
|
description:
|
|
23
26
|
'Spark Lite 是一款轻量级大语言模型,具备极低的延迟与高效的处理能力,完全免费开放,支持实时在线搜索功能。其快速响应的特性使其在低算力设备上的推理应用和模型微调中表现出色,为用户带来出色的成本效益和智能体验,尤其在知识问答、内容生成及搜索场景下表现不俗。',
|
|
24
27
|
displayName: 'Spark Lite',
|
|
@@ -31,11 +34,10 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
|
31
34
|
abilities: {
|
|
32
35
|
search: true,
|
|
33
36
|
},
|
|
34
|
-
contextWindowTokens: 8192,
|
|
37
|
+
contextWindowTokens: 8192 + 8192,
|
|
35
38
|
description:
|
|
36
39
|
'Spark Pro 是一款为专业领域优化的高性能大语言模型,专注数学、编程、医疗、教育等多个领域,并支持联网搜索及内置天气、日期等插件。其优化后模型在复杂知识问答、语言理解及高层次文本创作中展现出色表现和高效性能,是适合专业应用场景的理想选择。',
|
|
37
40
|
displayName: 'Spark Pro',
|
|
38
|
-
enabled: true,
|
|
39
41
|
id: 'generalv3',
|
|
40
42
|
maxOutput: 8192,
|
|
41
43
|
settings: {
|
|
@@ -49,7 +51,7 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
|
49
51
|
'Spark Pro 128K 配置了特大上下文处理能力,能够处理多达128K的上下文信息,特别适合需通篇分析和长期逻辑关联处理的长文内容,可在复杂文本沟通中提供流畅一致的逻辑与多样的引用支持。',
|
|
50
52
|
displayName: 'Spark Pro 128K',
|
|
51
53
|
id: 'pro-128k',
|
|
52
|
-
maxOutput:
|
|
54
|
+
maxOutput: 131_072,
|
|
53
55
|
type: 'chat',
|
|
54
56
|
},
|
|
55
57
|
{
|
|
@@ -57,11 +59,10 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
|
57
59
|
functionCall: true,
|
|
58
60
|
search: true,
|
|
59
61
|
},
|
|
60
|
-
contextWindowTokens: 8192,
|
|
62
|
+
contextWindowTokens: 8192 + 8192,
|
|
61
63
|
description:
|
|
62
64
|
'Spark Max 为功能最为全面的版本,支持联网搜索及众多内置插件。其全面优化的核心能力以及系统角色设定和函数调用功能,使其在各种复杂应用场景中的表现极为优异和出色。',
|
|
63
65
|
displayName: 'Spark Max',
|
|
64
|
-
enabled: true,
|
|
65
66
|
id: 'generalv3.5',
|
|
66
67
|
maxOutput: 8192,
|
|
67
68
|
settings: {
|
|
@@ -74,12 +75,12 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
|
74
75
|
functionCall: true,
|
|
75
76
|
search: true,
|
|
76
77
|
},
|
|
77
|
-
contextWindowTokens: 32_768,
|
|
78
|
+
contextWindowTokens: 32_768 + 32_768,
|
|
78
79
|
description:
|
|
79
80
|
'Spark Max 32K 配置了大上下文处理能力,更强的上下文理解和逻辑推理能力,支持32K tokens的文本输入,适用于长文档阅读、私有知识问答等场景',
|
|
80
81
|
displayName: 'Spark Max 32K',
|
|
81
82
|
id: 'max-32k',
|
|
82
|
-
maxOutput:
|
|
83
|
+
maxOutput: 32_768,
|
|
83
84
|
settings: {
|
|
84
85
|
searchImpl: 'internal',
|
|
85
86
|
},
|
|
@@ -88,15 +89,15 @@ const sparkChatModels: AIChatModelCard[] = [
|
|
|
88
89
|
{
|
|
89
90
|
abilities: {
|
|
90
91
|
functionCall: true,
|
|
92
|
+
reasoning: true,
|
|
91
93
|
search: true,
|
|
92
94
|
},
|
|
93
|
-
contextWindowTokens:
|
|
95
|
+
contextWindowTokens: 32_768 + 32_768,
|
|
94
96
|
description:
|
|
95
97
|
'Spark Ultra 是星火大模型系列中最为强大的版本,在升级联网搜索链路同时,提升对文本内容的理解和总结能力。它是用于提升办公生产力和准确响应需求的全方位解决方案,是引领行业的智能产品。',
|
|
96
98
|
displayName: 'Spark 4.0 Ultra',
|
|
97
|
-
enabled: true,
|
|
98
99
|
id: '4.0Ultra',
|
|
99
|
-
maxOutput:
|
|
100
|
+
maxOutput: 32_768,
|
|
100
101
|
settings: {
|
|
101
102
|
searchImpl: 'params',
|
|
102
103
|
},
|