@lobehub/lobehub 2.0.0-next.105 → 2.0.0-next.107
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/image.json +8 -0
- package/locales/ar/models.json +110 -64
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/image.json +8 -0
- package/locales/bg-BG/models.json +98 -68
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/image.json +8 -0
- package/locales/de-DE/models.json +176 -38
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/image.json +8 -0
- package/locales/en-US/models.json +176 -38
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/image.json +8 -0
- package/locales/es-ES/models.json +176 -38
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/image.json +8 -0
- package/locales/fa-IR/models.json +110 -64
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/image.json +8 -0
- package/locales/fr-FR/models.json +110 -64
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/image.json +8 -0
- package/locales/it-IT/models.json +176 -38
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/image.json +8 -0
- package/locales/ja-JP/models.json +110 -64
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/image.json +8 -0
- package/locales/ko-KR/models.json +110 -64
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/image.json +8 -0
- package/locales/nl-NL/models.json +176 -38
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/image.json +8 -0
- package/locales/pl-PL/models.json +110 -64
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/image.json +8 -0
- package/locales/pt-BR/models.json +176 -38
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/image.json +8 -0
- package/locales/ru-RU/models.json +98 -68
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/image.json +8 -0
- package/locales/tr-TR/models.json +110 -64
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/image.json +8 -0
- package/locales/vi-VN/models.json +176 -38
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/image.json +8 -0
- package/locales/zh-CN/models.json +179 -38
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/image.json +8 -0
- package/locales/zh-TW/models.json +176 -38
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/model-runtime/src/providers/google/createImage.test.ts +6 -5
- package/packages/model-runtime/src/providers/google/createImage.ts +12 -8
- package/packages/model-runtime/src/types/error.ts +11 -8
- package/packages/model-runtime/src/utils/googleErrorParser.ts +5 -0
- package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
- package/src/server/routers/async/image.ts +20 -2
|
@@ -720,25 +720,28 @@
|
|
|
720
720
|
"description": "Claude 3 Opus هوشمندترین مدل Anthropic است که در وظایف بسیار پیچیده عملکرد پیشرو در بازار دارد. این مدل میتواند با روانی و درک انسانی برجسته، ورودیهای باز و سناریوهای ناآشنا را مدیریت کند."
|
|
721
721
|
},
|
|
722
722
|
"anthropic/claude-3.5-haiku": {
|
|
723
|
-
"description": "Claude 3.5 Haiku
|
|
723
|
+
"description": "Claude 3.5 Haiku دارای قابلیتهای پیشرفته در سرعت، دقت کدنویسی و استفاده از ابزارها است. مناسب برای سناریوهایی با نیاز بالا به سرعت و تعامل با ابزارها."
|
|
724
724
|
},
|
|
725
725
|
"anthropic/claude-3.5-sonnet": {
|
|
726
|
-
"description": "Claude 3.5 Sonnet
|
|
726
|
+
"description": "Claude 3.5 Sonnet یک مدل سریع و کارآمد از خانواده Sonnet است که عملکرد بهتری در کدنویسی و استدلال ارائه میدهد. برخی نسخهها به تدریج با Sonnet 3.7 و مدلهای مشابه جایگزین خواهند شد."
|
|
727
727
|
},
|
|
728
728
|
"anthropic/claude-3.7-sonnet": {
|
|
729
|
-
"description": "Claude 3.7 Sonnet
|
|
729
|
+
"description": "Claude 3.7 Sonnet نسخه ارتقاءیافتهای از سری Sonnet است که تواناییهای استدلال و کدنویسی قویتری دارد و برای وظایف پیچیده در سطح سازمانی مناسب است."
|
|
730
|
+
},
|
|
731
|
+
"anthropic/claude-haiku-4.5": {
|
|
732
|
+
"description": "Claude Haiku 4.5 یک مدل سریع و با عملکرد بالا از Anthropic است که با حفظ دقت بالا، تأخیر بسیار کمی دارد."
|
|
730
733
|
},
|
|
731
734
|
"anthropic/claude-opus-4": {
|
|
732
|
-
"description": "
|
|
735
|
+
"description": "Opus 4 مدل پرچمدار Anthropic است که برای وظایف پیچیده و کاربردهای سازمانی طراحی شده است."
|
|
733
736
|
},
|
|
734
737
|
"anthropic/claude-opus-4.1": {
|
|
735
|
-
"description": "
|
|
738
|
+
"description": "Opus 4.1 یک مدل پیشرفته از Anthropic است که برای برنامهنویسی، استدلال پیچیده و وظایف مداوم بهینهسازی شده است."
|
|
736
739
|
},
|
|
737
740
|
"anthropic/claude-sonnet-4": {
|
|
738
|
-
"description": "Claude Sonnet 4
|
|
741
|
+
"description": "Claude Sonnet 4 نسخهای با قابلیت استدلال ترکیبی از Anthropic است که تواناییهای فکری و غیر فکری را با هم ترکیب میکند."
|
|
739
742
|
},
|
|
740
743
|
"anthropic/claude-sonnet-4.5": {
|
|
741
|
-
"description": "
|
|
744
|
+
"description": "Claude Sonnet 4.5 جدیدترین مدل استدلال ترکیبی از Anthropic است که برای استدلال پیچیده و کدنویسی بهینه شده است."
|
|
742
745
|
},
|
|
743
746
|
"ascend-tribe/pangu-pro-moe": {
|
|
744
747
|
"description": "Pangu-Pro-MoE 72B-A16B یک مدل زبان بزرگ پراکنده با 72 میلیارد پارامتر و 16 میلیارد پارامتر فعال است که بر اساس معماری متخصصان ترکیبی گروهبندی شده (MoGE) ساخته شده است. در مرحله انتخاب متخصص، متخصصان به گروههایی تقسیم میشوند و توکنها در هر گروه به تعداد مساوی متخصصان فعال میشوند تا تعادل بار متخصصان حفظ شود، که به طور قابل توجهی کارایی استقرار مدل را در پلتفرم Ascend افزایش میدهد."
|
|
@@ -761,6 +764,9 @@
|
|
|
761
764
|
"baidu/ERNIE-4.5-300B-A47B": {
|
|
762
765
|
"description": "ERNIE-4.5-300B-A47B یک مدل زبان بزرگ مبتنی بر معماری متخصصان ترکیبی (MoE) است که توسط شرکت بایدو توسعه یافته است. این مدل دارای 300 میلیارد پارامتر کل است، اما در زمان استنتاج تنها 47 میلیارد پارامتر برای هر توکن فعال میشود، که ضمن حفظ عملکرد قدرتمند، کارایی محاسباتی را نیز تضمین میکند. به عنوان یکی از مدلهای اصلی سری ERNIE 4.5، این مدل در وظایف درک متن، تولید، استدلال و برنامهنویسی عملکرد برجستهای دارد. این مدل از یک روش پیشآموزش نوآورانه چندرسانهای ناهمگن MoE استفاده میکند که با آموزش مشترک متن و مدیا تصویری، توانایی کلی مدل را بهبود میبخشد، بهویژه در زمینه پیروی از دستورالعملها و حافظه دانش جهانی."
|
|
763
766
|
},
|
|
767
|
+
"baidu/ernie-5.0-thinking-preview": {
|
|
768
|
+
"description": "پیشنمایش ERNIE 5.0 Thinking مدل چندوجهی نسل جدید Baidu است که در درک چندوجهی، پیروی از دستورات، تولید محتوا، پرسش و پاسخ واقعی و استفاده از ابزارها تخصص دارد."
|
|
769
|
+
},
|
|
764
770
|
"c4ai-aya-expanse-32b": {
|
|
765
771
|
"description": "Aya Expanse یک مدل چندزبانه با عملکرد بالا و 32B است که با هدف به چالش کشیدن عملکرد مدلهای تکزبانه از طریق بهینهسازی دستور، آربیتراژ دادهها، آموزش ترجیحات و نوآوری در ادغام مدلها طراحی شده است. این مدل از 23 زبان پشتیبانی میکند."
|
|
766
772
|
},
|
|
@@ -869,6 +875,9 @@
|
|
|
869
875
|
"codex-mini-latest": {
|
|
870
876
|
"description": "codex-mini-latest نسخهای تنظیمشده از o4-mini است که بهطور خاص برای Codex CLI طراحی شده است. برای استفاده مستقیم از طریق API، ما توصیه میکنیم از gpt-4.1 شروع کنید."
|
|
871
877
|
},
|
|
878
|
+
"cogito-2.1:671b": {
|
|
879
|
+
"description": "Cogito v2.1 671B یک مدل زبان بزرگ متنباز آمریکایی با قابلیت استفاده تجاری رایگان است که با عملکردی در سطح مدلهای برتر، بازدهی بالای استدلال توکن، پشتیبانی از 128k زمینه طولانی و تواناییهای جامع قوی شناخته میشود."
|
|
880
|
+
},
|
|
872
881
|
"cogview-4": {
|
|
873
882
|
"description": "CogView-4 نخستین مدل متن به تصویر متنباز Zhizhu است که از تولید حروف چینی پشتیبانی میکند. این مدل در درک معنایی، کیفیت تولید تصویر و توانایی تولید متون چینی و انگلیسی به طور جامع بهبود یافته است، از ورودی دوزبانه چینی و انگلیسی با طول دلخواه پشتیبانی میکند و قادر است تصاویر با هر وضوحی در محدوده داده شده تولید کند."
|
|
874
883
|
},
|
|
@@ -1139,6 +1148,9 @@
|
|
|
1139
1148
|
"deepseek-vl2-small": {
|
|
1140
1149
|
"description": "DeepSeek VL2 Small، نسخه سبک چندوجهی، مناسب برای محیطهای با منابع محدود و بارگذاری بالا."
|
|
1141
1150
|
},
|
|
1151
|
+
"deepseek/deepseek-chat": {
|
|
1152
|
+
"description": "DeepSeek-V3 یک مدل استدلال ترکیبی با عملکرد بالا از تیم DeepSeek است که برای وظایف پیچیده و یکپارچهسازی ابزارها مناسب است."
|
|
1153
|
+
},
|
|
1142
1154
|
"deepseek/deepseek-chat-v3-0324": {
|
|
1143
1155
|
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
|
1144
1156
|
},
|
|
@@ -1146,13 +1158,13 @@
|
|
|
1146
1158
|
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
|
1147
1159
|
},
|
|
1148
1160
|
"deepseek/deepseek-chat-v3.1": {
|
|
1149
|
-
"description": "DeepSeek-V3.1
|
|
1161
|
+
"description": "DeepSeek-V3.1 مدل استدلال ترکیبی با زمینه طولانی از DeepSeek است که از حالتهای ترکیبی فکری/غیرفکری و یکپارچهسازی ابزارها پشتیبانی میکند."
|
|
1150
1162
|
},
|
|
1151
1163
|
"deepseek/deepseek-r1": {
|
|
1152
1164
|
"description": "مدل DeepSeek R1 بهروزرسانیهای جزئی دریافت کرده و نسخه فعلی DeepSeek-R1-0528 است. در آخرین بهروزرسانی، DeepSeek R1 با بهرهگیری از منابع محاسباتی افزایشیافته و مکانیزمهای بهینهسازی الگوریتمی پس از آموزش، عمق و توان استدلال خود را به طور قابل توجهی بهبود بخشیده است. این مدل در ارزیابیهای معیار مختلف مانند ریاضیات، برنامهنویسی و منطق عمومی عملکرد برجستهای دارد و عملکرد کلی آن اکنون به مدلهای پیشرو مانند O3 و Gemini 2.5 Pro نزدیک شده است."
|
|
1153
1165
|
},
|
|
1154
1166
|
"deepseek/deepseek-r1-0528": {
|
|
1155
|
-
"description": "DeepSeek
|
|
1167
|
+
"description": "DeepSeek R1 0528 نسخه بهروزشدهای از DeepSeek است که بر متنباز بودن و عمق استدلال تمرکز دارد."
|
|
1156
1168
|
},
|
|
1157
1169
|
"deepseek/deepseek-r1-0528:free": {
|
|
1158
1170
|
"description": "DeepSeek-R1 با داشتن دادههای برچسبخورده بسیار محدود، توانایی استدلال مدل را به طور چشمگیری افزایش داده است. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره فکری را تولید میکند تا دقت پاسخ نهایی را بهبود بخشد."
|
|
@@ -1175,6 +1187,9 @@
|
|
|
1175
1187
|
"deepseek/deepseek-r1:free": {
|
|
1176
1188
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
|
1177
1189
|
},
|
|
1190
|
+
"deepseek/deepseek-reasoner": {
|
|
1191
|
+
"description": "DeepSeek-V3 Thinking (reasoner) مدل آزمایشی استدلال از DeepSeek است که برای وظایف استدلالی با پیچیدگی بالا مناسب است."
|
|
1192
|
+
},
|
|
1178
1193
|
"deepseek/deepseek-v3": {
|
|
1179
1194
|
"description": "مدل زبان بزرگ سریع و عمومی با توان استدلال بهبود یافته."
|
|
1180
1195
|
},
|
|
@@ -1523,8 +1538,14 @@
|
|
|
1523
1538
|
"gemini-2.5-pro-preview-06-05": {
|
|
1524
1539
|
"description": "Gemini 2.5 Pro Preview پیشرفتهترین مدل تفکر گوگل است که قادر به استدلال درباره مسائل پیچیده در حوزه کد، ریاضیات و STEM است و میتواند با استفاده از زمینه طولانی، دادههای بزرگ، مخازن کد و مستندات را تحلیل کند."
|
|
1525
1540
|
},
|
|
1541
|
+
"gemini-3-pro-image-preview": {
|
|
1542
|
+
"description": "Gemini 3 Pro Image (Nano Banana Pro) مدل تولید تصویر Google است که از گفتوگوی چندوجهی نیز پشتیبانی میکند."
|
|
1543
|
+
},
|
|
1544
|
+
"gemini-3-pro-image-preview:image": {
|
|
1545
|
+
"description": "Gemini 3 Pro Image (Nano Banana Pro) مدل تولید تصویر Google است که از گفتوگوی چندوجهی نیز پشتیبانی میکند."
|
|
1546
|
+
},
|
|
1526
1547
|
"gemini-3-pro-preview": {
|
|
1527
|
-
"description": "Gemini 3 Pro
|
|
1548
|
+
"description": "Gemini 3 Pro بهترین مدل درک چندوجهی در جهان است و قدرتمندترین عامل هوشمند و مدل برنامهنویسی زمینهای Google تا به امروز محسوب میشود. این مدل جلوههای بصری غنیتر و تعامل عمیقتری را ارائه میدهد که همگی بر پایه تواناییهای پیشرفته استدلال بنا شدهاند."
|
|
1528
1549
|
},
|
|
1529
1550
|
"gemini-flash-latest": {
|
|
1530
1551
|
"description": "جدیدترین نسخه Gemini Flash"
|
|
@@ -1650,7 +1671,7 @@
|
|
|
1650
1671
|
"description": "GLM-Zero-Preview دارای تواناییهای پیچیده استدلال است و در زمینههای استدلال منطقی، ریاضیات، برنامهنویسی و غیره عملکرد عالی دارد."
|
|
1651
1672
|
},
|
|
1652
1673
|
"google/gemini-2.0-flash": {
|
|
1653
|
-
"description": "Gemini 2.0 Flash
|
|
1674
|
+
"description": "Gemini 2.0 Flash مدل استدلال با عملکرد بالای Google است که برای وظایف چندوجهی گسترده مناسب است."
|
|
1654
1675
|
},
|
|
1655
1676
|
"google/gemini-2.0-flash-001": {
|
|
1656
1677
|
"description": "Gemini 2.0 Flash ویژگیها و بهبودهای نسل بعدی را ارائه میدهد، از جمله سرعت عالی، استفاده از ابزارهای بومی، تولید چندرسانهای و پنجره متن 1M توکن."
|
|
@@ -1661,14 +1682,23 @@
|
|
|
1661
1682
|
"google/gemini-2.0-flash-lite": {
|
|
1662
1683
|
"description": "Gemini 2.0 Flash Lite ویژگیها و قابلیتهای نسل بعدی را ارائه میدهد، از جمله سرعت عالی، استفاده داخلی از ابزارها، تولید چندرسانهای و پنجره زمینه 1 میلیون توکن."
|
|
1663
1684
|
},
|
|
1685
|
+
"google/gemini-2.0-flash-lite-001": {
|
|
1686
|
+
"description": "Gemini 2.0 Flash Lite نسخه سبک خانواده Gemini است که بهطور پیشفرض حالت فکری را غیرفعال کرده تا تأخیر و هزینه را کاهش دهد، اما میتوان آن را از طریق پارامتر فعال کرد."
|
|
1687
|
+
},
|
|
1664
1688
|
"google/gemini-2.5-flash": {
|
|
1665
|
-
"description": "Gemini 2.5 Flash
|
|
1689
|
+
"description": "سری Gemini 2.5 Flash (Lite/Pro/Flash) مدلهای استدلال Google با تأخیر کم تا عملکرد بالا هستند."
|
|
1690
|
+
},
|
|
1691
|
+
"google/gemini-2.5-flash-image": {
|
|
1692
|
+
"description": "Gemini 2.5 Flash Image (Nano Banana) مدل تولید تصویر Google است که از گفتوگوی چندوجهی نیز پشتیبانی میکند."
|
|
1693
|
+
},
|
|
1694
|
+
"google/gemini-2.5-flash-image-free": {
|
|
1695
|
+
"description": "نسخه رایگان Gemini 2.5 Flash Image که از تولید چندوجهی با سهمیه محدود پشتیبانی میکند."
|
|
1666
1696
|
},
|
|
1667
1697
|
"google/gemini-2.5-flash-image-preview": {
|
|
1668
1698
|
"description": "مدل آزمایشی Gemini 2.5 Flash با پشتیبانی از تولید تصویر"
|
|
1669
1699
|
},
|
|
1670
1700
|
"google/gemini-2.5-flash-lite": {
|
|
1671
|
-
"description": "Gemini 2.5 Flash
|
|
1701
|
+
"description": "Gemini 2.5 Flash Lite نسخه سبک Gemini 2.5 است که برای تأخیر و هزینه بهینه شده و برای سناریوهای با حجم بالا مناسب است."
|
|
1672
1702
|
},
|
|
1673
1703
|
"google/gemini-2.5-flash-preview": {
|
|
1674
1704
|
"description": "Gemini 2.5 Flash مدل اصلی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» داخلی است که به آن اجازه میدهد پاسخهایی با دقت بالاتر و پردازش زمینهای دقیقتری ارائه دهد.\n\nتوجه: این مدل دارای دو واریانت است: تفکر و غیرتفکر. قیمتگذاری خروجی بسته به فعال بودن قابلیت تفکر به طور قابل توجهی متفاوت است. اگر شما واریانت استاندارد (بدون پسوند «:thinking») را انتخاب کنید، مدل به وضوح از تولید توکنهای تفکر اجتناب خواهد کرد.\n\nبرای استفاده از قابلیت تفکر و دریافت توکنهای تفکر، شما باید واریانت «:thinking» را انتخاب کنید که منجر به قیمتگذاری بالاتر خروجی تفکر خواهد شد.\n\nعلاوه بر این، Gemini 2.5 Flash میتواند از طریق پارامتر «حداکثر تعداد توکنهای استدلال» پیکربندی شود، همانطور که در مستندات توضیح داده شده است (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
|
@@ -1677,11 +1707,23 @@
|
|
|
1677
1707
|
"description": "Gemini 2.5 Flash مدل اصلی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» داخلی است که به آن اجازه میدهد پاسخهایی با دقت بالاتر و پردازش زمینهای دقیقتری ارائه دهد.\n\nتوجه: این مدل دارای دو واریانت است: تفکر و غیرتفکر. قیمتگذاری خروجی بسته به فعال بودن قابلیت تفکر به طور قابل توجهی متفاوت است. اگر شما واریانت استاندارد (بدون پسوند «:thinking») را انتخاب کنید، مدل به وضوح از تولید توکنهای تفکر اجتناب خواهد کرد.\n\nبرای استفاده از قابلیت تفکر و دریافت توکنهای تفکر، شما باید واریانت «:thinking» را انتخاب کنید که منجر به قیمتگذاری بالاتر خروجی تفکر خواهد شد.\n\nعلاوه بر این، Gemini 2.5 Flash میتواند از طریق پارامتر «حداکثر تعداد توکنهای استدلال» پیکربندی شود، همانطور که در مستندات توضیح داده شده است (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
|
1678
1708
|
},
|
|
1679
1709
|
"google/gemini-2.5-pro": {
|
|
1680
|
-
"description": "Gemini 2.5 Pro
|
|
1710
|
+
"description": "Gemini 2.5 Pro مدل پرچمدار استدلال Google است که از زمینه طولانی و وظایف پیچیده پشتیبانی میکند."
|
|
1711
|
+
},
|
|
1712
|
+
"google/gemini-2.5-pro-free": {
|
|
1713
|
+
"description": "نسخه رایگان Gemini 2.5 Pro که از زمینه طولانی چندوجهی با سهمیه محدود پشتیبانی میکند و برای آزمایش و جریانهای کاری سبک مناسب است."
|
|
1681
1714
|
},
|
|
1682
1715
|
"google/gemini-2.5-pro-preview": {
|
|
1683
1716
|
"description": "Gemini 2.5 Pro Preview پیشرفتهترین مدل فکری گوگل است که قادر به استدلال درباره مسائل پیچیده در زمینه کد، ریاضیات و حوزههای STEM بوده و همچنین میتواند با استفاده از متنهای طولانی، مجموعههای داده بزرگ، کدها و مستندات را تحلیل کند."
|
|
1684
1717
|
},
|
|
1718
|
+
"google/gemini-3-pro-image-preview-free": {
|
|
1719
|
+
"description": "نسخه رایگان Gemini 3 Pro Image که از تولید چندوجهی با سهمیه محدود پشتیبانی میکند."
|
|
1720
|
+
},
|
|
1721
|
+
"google/gemini-3-pro-preview": {
|
|
1722
|
+
"description": "Gemini 3 Pro نسل بعدی مدل استدلال چندوجهی از سری Gemini است که توانایی درک متن، صدا، تصویر، ویدیو و دیگر ورودیها را دارد و میتواند وظایف پیچیده و مخازن کد بزرگ را پردازش کند."
|
|
1723
|
+
},
|
|
1724
|
+
"google/gemini-3-pro-preview-free": {
|
|
1725
|
+
"description": "نسخه پیشنمایش رایگان Gemini 3 Pro با همان تواناییهای درک و استدلال چندوجهی نسخه استاندارد، اما با محدودیتهای سهمیه و نرخ، مناسب برای تجربه و استفاده کمتکرار."
|
|
1726
|
+
},
|
|
1685
1727
|
"google/gemini-embedding-001": {
|
|
1686
1728
|
"description": "مدل جاسازی پیشرفته با عملکرد برجسته در وظایف زبان انگلیسی، چندزبانه و کد."
|
|
1687
1729
|
},
|
|
@@ -2057,21 +2099,36 @@
|
|
|
2057
2099
|
"inception/mercury-coder-small": {
|
|
2058
2100
|
"description": "Mercury Coder Small انتخاب ایدهآل برای تولید، اشکالزدایی و بازسازی کد با کمترین تأخیر است."
|
|
2059
2101
|
},
|
|
2060
|
-
"inclusionAI/Ling-1T": {
|
|
2061
|
-
"description": "Ling-1T نخستین مدل پرچمدار از سری «灵 2.0» است که در دسته مدلهای non-thinking قرار دارد. این مدل دارای یک تریلیون پارامتر کلی و حدود ۵۰ میلیارد پارامتر فعال به ازای هر توکن است. بر پایه معماری 灵 2.0 ساخته شده و هدف آن شکستن مرزهای استدلال کارآمد و شناخت مقیاسپذیر است. Ling-1T-base با بیش از ۲۰ تریلیون توکن با کیفیت بالا و متمرکز بر استدلال آموزش دیده است."
|
|
2062
|
-
},
|
|
2063
2102
|
"inclusionAI/Ling-flash-2.0": {
|
|
2064
2103
|
"description": "Ling-flash-2.0 سومین مدل از سری معماری Ling 2.0 است که توسط تیم Bailing شرکت Ant Group منتشر شده است. این مدل یک مدل متخصص ترکیبی (MoE) با ۱۰۰ میلیارد پارامتر کل است که در هر توکن تنها ۶.۱ میلیارد پارامتر فعال میشوند (۴.۸ میلیارد غیر بردار کلمه). به عنوان یک مدل با پیکربندی سبک، Ling-flash-2.0 در چندین ارزیابی معتبر عملکردی برابر یا حتی فراتر از مدلهای متراکم ۴۰ میلیارد پارامتری و مدلهای MoE بزرگتر نشان داده است. هدف این مدل کشف مسیرهای کارآمد در چارچوب «مدل بزرگ برابر است با پارامتر بزرگ» از طریق طراحی معماری و استراتژیهای آموزش بهینه است."
|
|
2065
2104
|
},
|
|
2066
2105
|
"inclusionAI/Ling-mini-2.0": {
|
|
2067
2106
|
"description": "Ling-mini-2.0 یک مدل زبان بزرگ کوچکحجم و با عملکرد بالا مبتنی بر معماری MoE است. این مدل دارای ۱۶ میلیارد پارامتر کل است اما در هر توکن تنها ۱.۴ میلیارد پارامتر فعال میشوند (۷۸۹ میلیون غیر بردار کلمه)، که سرعت تولید بسیار بالایی را فراهم میکند. به لطف طراحی کارآمد MoE و دادههای آموزشی بزرگ و با کیفیت، با وجود فعال بودن تنها ۱.۴ میلیارد پارامتر، Ling-mini-2.0 در وظایف پاییندستی عملکردی در سطح مدلهای متراکم زیر ۱۰ میلیارد و مدلهای MoE بزرگتر ارائه میدهد."
|
|
2068
2107
|
},
|
|
2069
|
-
"inclusionAI/Ring-1T": {
|
|
2070
|
-
"description": "Ring-1T یک مدل متنباز با مقیاس تریلیونی است که توسط تیم Bailing توسعه یافته است. این مدل بر پایه معماری Ling 2.0 و مدل پایه Ling-1T-base آموزش دیده و دارای یک تریلیون پارامتر کلی و ۵۰ میلیارد پارامتر فعال است. همچنین از پنجره متنی تا ۱۲۸ هزار توکن پشتیبانی میکند و با استفاده از یادگیری تقویتی مبتنی بر پاداشهای قابل تأیید در مقیاس وسیع بهینهسازی شده است."
|
|
2071
|
-
},
|
|
2072
2108
|
"inclusionAI/Ring-flash-2.0": {
|
|
2073
2109
|
"description": "Ring-flash-2.0 مدلی با عملکرد بالا برای تفکر است که بر پایه Ling-flash-2.0-base بهینهسازی عمیق شده است. این مدل از معماری متخصص ترکیبی (MoE) با ۱۰۰ میلیارد پارامتر کل بهره میبرد اما در هر استنتاج تنها ۶.۱ میلیارد پارامتر فعال میشوند. این مدل با الگوریتم ابتکاری icepop مشکل ناپایداری مدلهای بزرگ MoE در آموزش تقویتی (RL) را حل کرده و توانایی استنتاج پیچیده آن در طول آموزشهای بلندمدت بهبود مییابد. Ring-flash-2.0 در مسابقات ریاضی، تولید کد و استدلال منطقی در چندین بنچمارک دشوار پیشرفت قابل توجهی داشته است و عملکرد آن نه تنها از مدلهای متراکم برتر زیر ۴۰ میلیارد پارامتر فراتر رفته، بلکه با مدلهای MoE متنباز بزرگتر و مدلهای تفکر با عملکرد بالا و بسته رقابت میکند. اگرچه این مدل بر استنتاج پیچیده تمرکز دارد، در وظایف خلاقانه نوشتاری نیز عملکرد خوبی دارد. علاوه بر این، به لطف طراحی معماری کارآمد، Ring-flash-2.0 ضمن ارائه عملکرد قدرتمند، استنتاج سریع را ممکن ساخته و هزینه استقرار مدلهای تفکر در شرایط بار بالا را به طور قابل توجهی کاهش میدهد."
|
|
2074
2110
|
},
|
|
2111
|
+
"inclusionai/ling-1t": {
|
|
2112
|
+
"description": "Ling-1T مدل MoE با ظرفیت 1 تریلیون پارامتر از inclusionAI است که برای وظایف استدلالی شدید و زمینههای بزرگ بهینه شده است."
|
|
2113
|
+
},
|
|
2114
|
+
"inclusionai/ling-flash-2.0": {
|
|
2115
|
+
"description": "Ling-flash-2.0 مدل MoE از inclusionAI است که برای بهرهوری و عملکرد استدلالی بهینه شده و برای وظایف متوسط تا بزرگ مناسب است."
|
|
2116
|
+
},
|
|
2117
|
+
"inclusionai/ling-mini-2.0": {
|
|
2118
|
+
"description": "Ling-mini-2.0 نسخه سبک مدل MoE از inclusionAI است که با حفظ توانایی استدلال، هزینهها را بهطور قابل توجهی کاهش میدهد."
|
|
2119
|
+
},
|
|
2120
|
+
"inclusionai/ming-flash-omini-preview": {
|
|
2121
|
+
"description": "Ming-flash-omni Preview مدل چندوجهی از inclusionAI است که از ورودیهای صوتی، تصویری و ویدیویی پشتیبانی میکند و تواناییهای رندر تصویر و تشخیص صدا را بهینه کرده است."
|
|
2122
|
+
},
|
|
2123
|
+
"inclusionai/ring-1t": {
|
|
2124
|
+
"description": "Ring-1T مدل MoE با ظرفیت تریلیونی از inclusionAI است که برای استدلال در مقیاس بزرگ و وظایف تحقیقاتی مناسب است."
|
|
2125
|
+
},
|
|
2126
|
+
"inclusionai/ring-flash-2.0": {
|
|
2127
|
+
"description": "Ring-flash-2.0 نسخهای از مدل Ring از inclusionAI است که برای سناریوهای با حجم بالا طراحی شده و بر سرعت و بهرهوری هزینه تأکید دارد."
|
|
2128
|
+
},
|
|
2129
|
+
"inclusionai/ring-mini-2.0": {
|
|
2130
|
+
"description": "Ring-mini-2.0 نسخه سبک و با حجم بالا از مدل MoE inclusionAI است که عمدتاً برای سناریوهای همزمانی بالا استفاده میشود."
|
|
2131
|
+
},
|
|
2075
2132
|
"internlm/internlm2_5-7b-chat": {
|
|
2076
2133
|
"description": "InternLM2.5 راهحلهای گفتگوی هوشمند در چندین سناریو ارائه میدهد."
|
|
2077
2134
|
},
|
|
@@ -2123,6 +2180,12 @@
|
|
|
2123
2180
|
"kimi-k2-instruct": {
|
|
2124
2181
|
"description": "Kimi K2 Instruct، مدل استنتاج رسمی Kimi، پشتیبانی از زمینه بلند، کدنویسی، پرسش و پاسخ و سناریوهای متنوع."
|
|
2125
2182
|
},
|
|
2183
|
+
"kimi-k2-thinking": {
|
|
2184
|
+
"description": "مدل تفکر طولانی K2 با پشتیبانی از زمینه 256k، قابلیت فراخوانی چندمرحلهای ابزارها و تفکر چندگامی، در حل مسائل پیچیده مهارت دارد."
|
|
2185
|
+
},
|
|
2186
|
+
"kimi-k2-thinking-turbo": {
|
|
2187
|
+
"description": "نسخه پرسرعت مدل تفکر طولانی K2 با پشتیبانی از زمینه 256k، مناسب برای استدلال عمیق با سرعت خروجی 60 تا 100 توکن در ثانیه."
|
|
2188
|
+
},
|
|
2126
2189
|
"kimi-k2-turbo-preview": {
|
|
2127
2190
|
"description": "kimi-k2 یک مدل پایه با معماری MoE است که دارای توانمندیهای بسیار قوی در حوزهٔ برنامهنویسی و عاملها (Agent) میباشد. مجموع پارامترها 1T و پارامترهای فعالشده 32B است. در آزمونهای بنچمارک در دستههای اصلی مانند استدلال دانش عمومی، برنامهنویسی، ریاضیات و Agent، عملکرد مدل K2 از سایر مدلهای متنباز مرسوم پیشی گرفته است."
|
|
2128
2191
|
},
|
|
@@ -2135,6 +2198,9 @@
|
|
|
2135
2198
|
"kimi-thinking-preview": {
|
|
2136
2199
|
"description": "مدل kimi-thinking-preview که توسط Moon’s Dark Side ارائه شده است، مدلی چندرسانهای با توانایی استدلال چندوجهی و استدلال عمومی است که در استدلال عمیق مهارت دارد و به حل مسائل پیچیدهتر کمک میکند."
|
|
2137
2200
|
},
|
|
2201
|
+
"kuaishou/kat-coder-pro-v1": {
|
|
2202
|
+
"description": "KAT-Coder-Pro-V1 (رایگان برای مدت محدود) بر درک کد و برنامهنویسی خودکار تمرکز دارد و برای وظایف نمایندگی برنامهنویسی کارآمد طراحی شده است."
|
|
2203
|
+
},
|
|
2138
2204
|
"learnlm-1.5-pro-experimental": {
|
|
2139
2205
|
"description": "LearnLM یک مدل زبانی تجربی و خاص برای وظایف است که برای مطابقت با اصول علم یادگیری آموزش دیده است و میتواند در سناریوهای آموزشی و یادگیری از دستورات سیستم پیروی کند و به عنوان مربی متخصص عمل کند."
|
|
2140
2206
|
},
|
|
@@ -2466,7 +2532,7 @@
|
|
|
2466
2532
|
"description": "MiniMax M2 یک مدل زبانی بزرگ و کارآمد است که بهطور خاص برای کدنویسی و جریانهای کاری عاملمحور طراحی شده است."
|
|
2467
2533
|
},
|
|
2468
2534
|
"minimax/minimax-m2": {
|
|
2469
|
-
"description": "
|
|
2535
|
+
"description": "MiniMax-M2 مدلی با عملکرد عالی در کدنویسی و وظایف نمایندگی است که برای سناریوهای مهندسی متنوع مناسب است."
|
|
2470
2536
|
},
|
|
2471
2537
|
"minimaxai/minimax-m2": {
|
|
2472
2538
|
"description": "MiniMax-M2 یک مدل فشرده، سریع و مقرونبهصرفه از نوع متخصصان ترکیبی (MoE) است که دارای ۲۳۰ میلیارد پارامتر کلی و ۱۰ میلیارد پارامتر فعال میباشد. این مدل برای ارائه عملکردی عالی در وظایف کدنویسی و عاملهای هوشمند طراحی شده و در عین حال هوش عمومی قدرتمندی را حفظ میکند. این مدل در ویرایش چندفایلی، چرخه کدنویسی-اجرا-اصلاح، آزمون و تصحیح، و زنجیره ابزارهای پیچیده و طولانی عملکردی برجسته دارد و گزینهای ایدهآل برای جریان کاری توسعهدهندگان محسوب میشود."
|
|
@@ -2615,12 +2681,21 @@
|
|
|
2615
2681
|
"moonshotai/kimi-k2": {
|
|
2616
2682
|
"description": "Kimi K2 مدل زبان بزرگ متخصص ترکیبی (MoE) با مقیاس بزرگ توسعه یافته توسط Moonshot AI است که دارای 1 تریلیون پارامتر کل و 32 میلیارد پارامتر فعال در هر عبور جلو است. این مدل برای توانایی نمایندگی بهینه شده است، از جمله استفاده پیشرفته از ابزارها، استدلال و ترکیب کد."
|
|
2617
2683
|
},
|
|
2684
|
+
"moonshotai/kimi-k2-0711": {
|
|
2685
|
+
"description": "Kimi K2 0711 نسخه Instruct از سری Kimi است که برای کدهای با کیفیت بالا و فراخوانی ابزارها مناسب است."
|
|
2686
|
+
},
|
|
2618
2687
|
"moonshotai/kimi-k2-0905": {
|
|
2619
|
-
"description": "
|
|
2688
|
+
"description": "Kimi K2 0905 بهروزرسانی نسخه 0905 از سری Kimi است که زمینه و عملکرد استدلال را گسترش داده و برای سناریوهای کدنویسی بهینه شده است."
|
|
2620
2689
|
},
|
|
2621
2690
|
"moonshotai/kimi-k2-instruct-0905": {
|
|
2622
2691
|
"description": "مدل پیشنمایش kimi-k2-0905 دارای طول متن ۲۵۶ هزار توکنی است و تواناییهای قویتری در برنامهنویسی عاملمحور، زیبایی و کاربردی بودن کدهای فرانتاند و درک بهتر متن دارد."
|
|
2623
2692
|
},
|
|
2693
|
+
"moonshotai/kimi-k2-thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking مدل تفکری بهینهشده از Moonshot برای وظایف استدلال عمیق است که توانایی عامل عمومی را داراست."
|
|
2695
|
+
},
|
|
2696
|
+
"moonshotai/kimi-k2-thinking-turbo": {
|
|
2697
|
+
"description": "Kimi K2 Thinking Turbo نسخه پرسرعت Kimi K2 Thinking است که با حفظ توانایی استدلال عمیق، تأخیر پاسخ را بهطور قابل توجهی کاهش میدهد."
|
|
2698
|
+
},
|
|
2624
2699
|
"morph/morph-v3-fast": {
|
|
2625
2700
|
"description": "Morph مدل هوش مصنوعی تخصصی است که تغییرات کد پیشنهادی مدلهای پیشرفته مانند Claude یا GPT-4o را به فایلهای کد موجود شما به سرعت اعمال میکند — بیش از 4500 توکن در ثانیه. این مدل به عنوان مرحله نهایی در جریان کاری کدنویسی هوش مصنوعی عمل میکند و از ورودی و خروجی 16k توکن پشتیبانی میکند."
|
|
2626
2701
|
},
|
|
@@ -2702,30 +2777,14 @@
|
|
|
2702
2777
|
"openai/gpt-4-turbo": {
|
|
2703
2778
|
"description": "gpt-4-turbo از OpenAI دانش عمومی گسترده و تخصص حوزهای دارد که آن را قادر میسازد دستورالعملهای پیچیده زبان طبیعی را دنبال کرده و مسائل دشوار را با دقت حل کند. تاریخ قطع دانش آن آوریل 2023 است و پنجره زمینه آن 128,000 توکن است."
|
|
2704
2779
|
},
|
|
2705
|
-
"openai/gpt-4.1": {
|
|
2706
|
-
|
|
2707
|
-
},
|
|
2708
|
-
"openai/gpt-
|
|
2709
|
-
|
|
2710
|
-
},
|
|
2711
|
-
"openai/gpt-
|
|
2712
|
-
|
|
2713
|
-
},
|
|
2714
|
-
"openai/gpt-4o": {
|
|
2715
|
-
"description": "GPT-4o از OpenAI دانش عمومی گسترده و تخصص حوزهای دارد که آن را قادر میسازد دستورالعملهای پیچیده زبان طبیعی را دنبال کرده و مسائل دشوار را با دقت حل کند. این مدل عملکرد GPT-4 Turbo را با API سریعتر و ارزانتر ارائه میدهد."
|
|
2716
|
-
},
|
|
2717
|
-
"openai/gpt-4o-mini": {
|
|
2718
|
-
"description": "GPT-4o mini از OpenAI کوچکترین مدل پیشرفته و مقرونبهصرفه آنها است. این مدل چندرسانهای است (ورودی متن یا تصویر را میپذیرد و خروجی متن ارائه میدهد) و هوشمندتر از gpt-3.5-turbo است، اما سرعت مشابهی دارد."
|
|
2719
|
-
},
|
|
2720
|
-
"openai/gpt-5": {
|
|
2721
|
-
"description": "GPT-5 مدل زبان پرچمدار OpenAI است که در استدلال پیچیده، دانش گسترده دنیای واقعی، وظایف کدمحور و نمایندگی چندمرحلهای عملکرد برجستهای دارد."
|
|
2722
|
-
},
|
|
2723
|
-
"openai/gpt-5-mini": {
|
|
2724
|
-
"description": "GPT-5 mini مدلی بهینهشده از نظر هزینه است که در وظایف استدلال/مکالمه عملکرد خوبی دارد. این مدل تعادل بهینهای بین سرعت، هزینه و توانایی ارائه میدهد."
|
|
2725
|
-
},
|
|
2726
|
-
"openai/gpt-5-nano": {
|
|
2727
|
-
"description": "GPT-5 nano مدلی با توان عملیاتی بالا است که در وظایف دستورالعمل ساده یا دستهبندی عملکرد خوبی دارد."
|
|
2728
|
-
},
|
|
2780
|
+
"openai/gpt-4.1": {},
|
|
2781
|
+
"openai/gpt-4.1-mini": {},
|
|
2782
|
+
"openai/gpt-4.1-nano": {},
|
|
2783
|
+
"openai/gpt-4o": {},
|
|
2784
|
+
"openai/gpt-4o-mini": {},
|
|
2785
|
+
"openai/gpt-5": {},
|
|
2786
|
+
"openai/gpt-5-mini": {},
|
|
2787
|
+
"openai/gpt-5-nano": {},
|
|
2729
2788
|
"openai/gpt-oss-120b": {
|
|
2730
2789
|
"description": "مدل زبان بزرگ عمومی بسیار توانمند با توان استدلال قوی و قابل کنترل."
|
|
2731
2790
|
},
|
|
@@ -2750,9 +2809,7 @@
|
|
|
2750
2809
|
"openai/o3-mini-high": {
|
|
2751
2810
|
"description": "نسخه o3-mini با سطح استدلال بالا، هوش بالایی را در همان هزینه و هدف تأخیر o1-mini ارائه میدهد."
|
|
2752
2811
|
},
|
|
2753
|
-
"openai/o4-mini": {
|
|
2754
|
-
"description": "o4-mini از OpenAI استدلال سریع و مقرونبهصرفه ارائه میدهد و در اندازه خود عملکرد برجستهای دارد، به ویژه در ریاضیات (بهترین عملکرد در آزمون AIME)، کدنویسی و وظایف بصری."
|
|
2755
|
-
},
|
|
2812
|
+
"openai/o4-mini": {},
|
|
2756
2813
|
"openai/o4-mini-high": {
|
|
2757
2814
|
"description": "نسخه با سطح استدلال بالا o4-mini، که بهطور خاص برای استدلال سریع و مؤثر بهینهسازی شده و در وظایف کدنویسی و بصری عملکرد بسیار بالایی دارد."
|
|
2758
2815
|
},
|
|
@@ -2954,9 +3011,7 @@
|
|
|
2954
3011
|
"qwen/qwen2.5-coder-7b-instruct": {
|
|
2955
3012
|
"description": "مدل کد قدرتمند و متوسط که از طول زمینه 32K پشتیبانی میکند و در برنامهنویسی چند زبانه مهارت دارد."
|
|
2956
3013
|
},
|
|
2957
|
-
"qwen/qwen3-14b": {
|
|
2958
|
-
"description": "Qwen3-14B یک مدل زبان علّی با ۱۴.۸ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای استدلال پیچیده و مکالمات کارآمد طراحی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای وظایف ریاضی، برنامهنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات عمومی پشتیبانی میکند. این مدل به طور خاص برای پیروی از دستورات، استفاده از ابزارهای نمایندگی، نوشتن خلاق و انجام وظایف چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف تنظیم شده است. این مدل به طور بومی از ۳۲K توکن زمینه پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
|
2959
|
-
},
|
|
3014
|
+
"qwen/qwen3-14b": {},
|
|
2960
3015
|
"qwen/qwen3-14b:free": {
|
|
2961
3016
|
"description": "Qwen3-14B یک مدل زبان علّی با ۱۴.۸ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای استدلال پیچیده و مکالمات کارآمد طراحی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای وظایف ریاضی، برنامهنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات عمومی پشتیبانی میکند. این مدل به طور خاص برای پیروی از دستورات، استفاده از ابزارهای نمایندگی، نوشتن خلاق و انجام وظایف چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف تنظیم شده است. این مدل به طور بومی از ۳۲K توکن زمینه پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
|
2962
3017
|
},
|
|
@@ -3275,9 +3330,6 @@
|
|
|
3275
3330
|
"step-r1-v-mini": {
|
|
3276
3331
|
"description": "این مدل یک مدل استدلال بزرگ با تواناییهای قوی در درک تصویر است که میتواند اطلاعات تصویری و متنی را پردازش کند و پس از تفکر عمیق، متن تولید کند. این مدل در زمینه استدلال بصری عملکرد برجستهای دارد و همچنین دارای تواناییهای ریاضی، کدنویسی و استدلال متنی در سطح اول است. طول متن زمینهای 100k است."
|
|
3277
3332
|
},
|
|
3278
|
-
"step3": {
|
|
3279
|
-
"description": "Step3 یک مدل چندرسانهای است که توسط StepStar توسعه یافته و دارای توانایی قوی در درک بصری میباشد."
|
|
3280
|
-
},
|
|
3281
3333
|
"stepfun-ai/step3": {
|
|
3282
3334
|
"description": "Step3 یک مدل استنتاج چندمودالی پیشرفته است که توسط شرکت StepFun منتشر شده است. این مدل بر پایهٔ معماری مخلوط متخصصان (MoE) با مجموع 321 میلیارد پارامتر و 38 میلیارد پارامتر فعال ساخته شده است. طراحی آن انتهابهانتها است و هدفش کمینهسازی هزینهٔ رمزگشایی در حالیست که در استدلال بینایی-زبانی عملکردی در سطح برتر ارائه میدهد. از طریق طراحی همافزا مبتنی بر توجه چند-ماتریسی تجزیهشده (MFA) و جداسازی توجه و FFN (AFD)، Step3 قادر است کارایی برجستهای را هم روی شتابدهندههای ردهپرچمدار و هم روی شتابدهندههای سطح پایین حفظ کند. در مرحلهٔ پیشآموزش، Step3 بیش از 20T توکن متنی و 4T توکن ترکیبی تصویر-متن را پردازش کرده و بیش از ده زبان را پوشش داده است. این مدل در بنچمارکهای متعددی از جمله ریاضیات، کدنویسی و چندمودال در میان مدلهای متنباز در جایگاه پیشرو قرار گرفته است."
|
|
3283
3335
|
},
|
|
@@ -3386,12 +3438,8 @@
|
|
|
3386
3438
|
"wizardlm2:8x22b": {
|
|
3387
3439
|
"description": "WizardLM 2 یک مدل زبانی ارائه شده توسط مایکروسافت AI است که در زمینههای مکالمات پیچیده، چندزبانه، استدلال و دستیارهای هوشمند عملکرد برجستهای دارد."
|
|
3388
3440
|
},
|
|
3389
|
-
"x-ai/grok-4-fast": {
|
|
3390
|
-
|
|
3391
|
-
},
|
|
3392
|
-
"x-ai/grok-code-fast-1": {
|
|
3393
|
-
"description": "ما با افتخار grok-code-fast-1 را معرفی میکنیم، مدلی سریع و اقتصادی برای استنتاج که در کدنویسی عاملها عملکردی عالی دارد."
|
|
3394
|
-
},
|
|
3441
|
+
"x-ai/grok-4-fast": {},
|
|
3442
|
+
"x-ai/grok-code-fast-1": {},
|
|
3395
3443
|
"x1": {
|
|
3396
3444
|
"description": "مدل Spark X1 بهزودی ارتقا خواهد یافت و در زمینه وظایف ریاضی که در کشور پیشرو است، عملکردهای استدلال، تولید متن و درک زبان را با OpenAI o1 و DeepSeek R1 مقایسه خواهد کرد."
|
|
3397
3445
|
},
|
|
@@ -3452,9 +3500,7 @@
|
|
|
3452
3500
|
"yi-vision-v2": {
|
|
3453
3501
|
"description": "مدلهای پیچیده بصری که قابلیتهای درک و تحلیل با عملکرد بالا را بر اساس چندین تصویر ارائه میدهند."
|
|
3454
3502
|
},
|
|
3455
|
-
"z-ai/glm-4.6": {
|
|
3456
|
-
"description": "جدیدترین مدل پرچمدار Zhipu به نام GLM-4.6 که در کدنویسی پیشرفته، پردازش متون طولانی، استنتاج و تواناییهای عاملها بهطور کامل از نسل قبلی پیشی گرفته است."
|
|
3457
|
-
},
|
|
3503
|
+
"z-ai/glm-4.6": {},
|
|
3458
3504
|
"zai-org/GLM-4.5": {
|
|
3459
3505
|
"description": "GLM-4.5 یک مدل پایه طراحی شده برای کاربردهای عامل هوشمند است که از معماری Mixture-of-Experts استفاده میکند. این مدل در زمینههای فراخوانی ابزار، مرور وب، مهندسی نرمافزار و برنامهنویسی فرانتاند بهینهسازی عمیق شده و از ادغام بیوقفه با عاملهای کد مانند Claude Code و Roo Code پشتیبانی میکند. GLM-4.5 از حالت استدلال ترکیبی بهره میبرد و میتواند در سناریوهای استدلال پیچیده و استفاده روزمره به خوبی عمل کند."
|
|
3460
3506
|
},
|
|
@@ -191,6 +191,9 @@
|
|
|
191
191
|
"xinference": {
|
|
192
192
|
"description": "Xorbits Inference (Xinference) یک پلتفرم اپنسورس برای سادهسازی اجرای و ادغام انواع مدلهای هوش مصنوعی است. با کمک Xinference، شما میتوانید هر مدل زبانی اپنسورس، مدلهای مبتنی بر بردار و مدلهای چندمدیا را در محیطهای ابری یا محلی اجرا کرده و برنامههای AI قدرتمند ایجاد کنید."
|
|
193
193
|
},
|
|
194
|
+
"zenmux": {
|
|
195
|
+
"description": "ZenMux یک پلتفرم یکپارچه برای تجمیع خدمات هوش مصنوعی است که از رابطهای خدماتی متنوعی مانند OpenAI، Anthropic، Google VertexAI و دیگر سرویسهای هوش مصنوعی پشتیبانی میکند. این پلتفرم قابلیت مسیریابی انعطافپذیری را ارائه میدهد تا بتوانید بهراحتی بین مدلهای مختلف هوش مصنوعی جابجا شده و آنها را مدیریت کنید."
|
|
196
|
+
},
|
|
194
197
|
"zeroone": {
|
|
195
198
|
"description": "صفر و یک متعهد به پیشبرد انقلاب فناوری AI 2.0 با محوریت انسان است و هدف آن ایجاد ارزش اقتصادی و اجتماعی عظیم از طریق مدلهای زبانی بزرگ و همچنین ایجاد اکوسیستم جدید هوش مصنوعی و مدلهای تجاری است."
|
|
196
199
|
},
|
package/locales/fr-FR/image.json
CHANGED